WallGen, Software to Construct Layered Cellulose-Hemicellulose Networks and Predict Their Small Deformation Mechanics
We understand few details about how the arrangement and interactions of cell wall polymers produce the mechanical properties of primary cell walls. Consequently, we cannot quantitatively assess if proposed wall structures are mechanically reasonable or assess the effectiveness of proposed mechanisms...
Saved in:
Published in | Plant physiology (Bethesda) Vol. 152; no. 2; pp. 774 - 786 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Rockville, MD
American Society of Plant Biologists
01.02.2010
|
Subjects | |
Online Access | Get full text |
ISSN | 0032-0889 1532-2548 1532-2548 |
DOI | 10.1104/pp.109.146936 |
Cover
Abstract | We understand few details about how the arrangement and interactions of cell wall polymers produce the mechanical properties of primary cell walls. Consequently, we cannot quantitatively assess if proposed wall structures are mechanically reasonable or assess the effectiveness of proposed mechanisms to change mechanical properties. As a step to remedying this, we developed WallGen, a Fortran program (available on request) building virtual cellulose-hemicellulose networks by stochastic self-assembly whose mechanical properties can be predicted by finite element analysis. The thousands of mechanical elements in the virtual wall are intended to have one-to-one spatial and mechanical correspondence with their real wall counterparts of cellulose microfibrils and hemicellulose chains. User-defined inputs set the properties of the two polymer types (elastic moduli, dimensions of microfibrils and hemicellulose chains, hemicellulose molecular weight) and their population properties (microfibril alignment and volume fraction, polymer weight percentages in the network). This allows exploration of the mechanical consequences of variations in nanostructure that might occur in vivo and provides estimates of how uncertainties regarding certain inputs will affect WallGen's mechanical predictions. We summarize WallGen's operation and the choice of values for user-defined inputs and show that predicted values for the elastic moduli of multinet walls subject to small displacements overlap measured values. "Design of experiment" methods provide systematic exploration of how changed input values affect mechanical properties and suggest that changing microfibril orientation and/or the number of hemicellulose cross-bridges could change wall mechanical anisotropy. |
---|---|
AbstractList | We understand few details about how the arrangement and interactions of cell wall polymers produce the mechanical properties of primary cell walls. Consequently, we cannot quantitatively assess if proposed wall structures are mechanically reasonable or assess the effectiveness of proposed mechanisms to change mechanical properties. As a step to remedying this, we developed WallGen, a Fortran program (available on request) building virtual cellulose-hemicellulose networks by stochastic self-assembly whose mechanical properties can be predicted by finite element analysis. The thousands of mechanical elements in the virtual wall are intended to have one-to-one spatial and mechanical correspondence with their real wall counterparts of cellulose microfibrils and hemicellulose chains. User-defined inputs set the properties of the two polymer types (elastic moduli, dimensions of microfibrils and hemicellulose chains, hemicellulose molecular weight) and their population properties (microfibril alignment and volume fraction, polymer weight percentages in the network). This allows exploration of the mechanical consequences of variations in nanostructure that might occur in vivo and provides estimates of how uncertainties regarding certain inputs will affect WallGen's mechanical predictions. We summarize WallGen's operation and the choice of values for user-defined inputs and show that predicted values for the elastic moduli of multinet walls subject to small displacements overlap measured values. "Design of experiment" methods provide systematic exploration of how changed input values affect mechanical properties and suggest that changing microfibril orientation and/or the number of hemicellulose cross-bridges could change wall mechanical anisotropy. We understand few details about how the arrangement and interactions of cell wall polymers produce the mechanical properties of primary cell walls. Consequently, we cannot quantitatively assess if proposed wall structures are mechanically reasonable or assess the effectiveness of proposed mechanisms to change mechanical properties. As a step to remedying this, we developed WallGen, a Fortran program (available on request) building virtual cellulose-hemicellulose networks by stochastic self-assembly whose mechanical properties can be predicted by finite element analysis. The thousands of mechanical elements in the virtual wall are intended to have one-to-one spatial and mechanical correspondence with their real wall counterparts of cellulose microfibrils and hemicellulose chains. User-defined inputs set the properties of the two polymer types (elastic moduli, dimensions of microfibrils and hemicellulose chains, hemicellulose molecular weight) and their population properties (microfibril alignment and volume fraction, polymer weight percentages in the network). This allows exploration of the mechanical consequences of variations in nanostructure that might occur in vivo and provides estimates of how uncertainties regarding certain inputs will affect WallGen's mechanical predictions. We summarize WallGen's operation and the choice of values for user-defined inputs and show that predicted values for the elastic moduli of multinet walls subject to small displacements overlap measured values. "Design of experiment" methods provide systematic exploration of how changed input values affect mechanical properties and suggest that changing microfibril orientation and/or the number of hemicellulose cross-bridges could change wall mechanical anisotropy.We understand few details about how the arrangement and interactions of cell wall polymers produce the mechanical properties of primary cell walls. Consequently, we cannot quantitatively assess if proposed wall structures are mechanically reasonable or assess the effectiveness of proposed mechanisms to change mechanical properties. As a step to remedying this, we developed WallGen, a Fortran program (available on request) building virtual cellulose-hemicellulose networks by stochastic self-assembly whose mechanical properties can be predicted by finite element analysis. The thousands of mechanical elements in the virtual wall are intended to have one-to-one spatial and mechanical correspondence with their real wall counterparts of cellulose microfibrils and hemicellulose chains. User-defined inputs set the properties of the two polymer types (elastic moduli, dimensions of microfibrils and hemicellulose chains, hemicellulose molecular weight) and their population properties (microfibril alignment and volume fraction, polymer weight percentages in the network). This allows exploration of the mechanical consequences of variations in nanostructure that might occur in vivo and provides estimates of how uncertainties regarding certain inputs will affect WallGen's mechanical predictions. We summarize WallGen's operation and the choice of values for user-defined inputs and show that predicted values for the elastic moduli of multinet walls subject to small displacements overlap measured values. "Design of experiment" methods provide systematic exploration of how changed input values affect mechanical properties and suggest that changing microfibril orientation and/or the number of hemicellulose cross-bridges could change wall mechanical anisotropy. |
Author | Kha, Hung Williamson, Richard E Tuble, Sigrid C Kalyanasundaram, Shankar |
AuthorAffiliation | Department of Engineering, College of Engineering and Computer Science (H.K., S.C.T., S.K.), and Research School of Biology, College of Medicine, Biology, and Environment (H.K., S.C.T., R.E.W.), Australian National University, Canberra 0200, Australia |
AuthorAffiliation_xml | – name: Department of Engineering, College of Engineering and Computer Science (H.K., S.C.T., S.K.), and Research School of Biology, College of Medicine, Biology, and Environment (H.K., S.C.T., R.E.W.), Australian National University, Canberra 0200, Australia |
Author_xml | – sequence: 1 fullname: Kha, Hung – sequence: 2 fullname: Tuble, Sigrid C – sequence: 3 fullname: Kalyanasundaram, Shankar – sequence: 4 fullname: Williamson, Richard E |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22421565$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/20007450$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks9v0zAcxS00xLrCkSOQC-NCih3bSXxBQgU2pPJD6iaO1reOs3okdrATqv73c5eOAhJwytfy5z09v29O0JF1ViP0mOAZIZi96roZwWJGWC5ofg9NCKdZmnFWHqEJxnHGZSmO0UkI1xhjQgl7gI6zOBaM4wkavkLTnGn7Mlm6ut-A10nvkrmzofeD6pMFbLXXVTLXTTM0Luj0XLdG3Z2ST7rfOP8tJGCr5EskTRRdrLXxybKN1slbXTvfQm-cTT5qtQZrVHiI7tfQBP1o_52iy_fvLubn6eLz2Yf5m0WqmKB9ylcAwETBAapiVYkqE4BFJTTTKtMZUZgLUtB8VQteC5XHM6mrvFyVTFMsKJ2i2eg72A62m5hHdt604LeSYLnrT3ZdHIUc-4uC16OgG1atrpS2vYeDyIGRv99Ys5ZX7ofMSsJLUUaDF3sD774POvSyNWFXF1jthiALSgtB8hxH8vSfJMs5LXixs3z6a6afYe6WGIHnewCCgqb2YJUJBy5jGeHRbYroyCnvQvC6lsr0t5uJTzHNXytJ_1D9r8InI38deucPKXhe4vx2J8_G-xqchCsfk14us_hnYlJizBihN5Bh4Fg |
CODEN | PPHYA5 |
CitedBy_id | crossref_primary_10_1007_s10853_015_9204_9 crossref_primary_10_1016_j_jtbi_2012_04_035 crossref_primary_10_1016_j_tplants_2016_01_019 crossref_primary_10_1093_jxb_erv511 crossref_primary_10_1093_plphys_kiac184 crossref_primary_10_1038_s41528_022_00177_5 crossref_primary_10_3732_ajb_1200649 crossref_primary_10_1007_s10570_015_0568_4 crossref_primary_10_1111_tpj_14519 crossref_primary_10_1126_science_abf2824 crossref_primary_10_1016_j_tcsw_2018_04_001 crossref_primary_10_1093_mp_ssq075 crossref_primary_10_1016_j_actbio_2015_10_032 crossref_primary_10_1007_s10665_014_9761_y crossref_primary_10_1016_j_pbi_2010_09_017 crossref_primary_10_1093_jxb_erz281 crossref_primary_10_1152_physiol_00030_2014 crossref_primary_10_3390_computation2020023 crossref_primary_10_1016_j_bpj_2012_06_046 crossref_primary_10_1146_annurev_cellbio_101512_122410 crossref_primary_10_1105_tpc_110_075754 crossref_primary_10_3732_ajb_1300315 crossref_primary_10_1016_j_jsb_2010_08_012 crossref_primary_10_1111_brv_12935 crossref_primary_10_1021_acsnano_8b04379 crossref_primary_10_1146_annurev_arplant_042817_040517 crossref_primary_10_1016_j_bpj_2018_11_014 crossref_primary_10_1371_journal_pone_0074400 |
Cites_doi | 10.1111/j.1745-4603.2004.35511.x 10.1093/jxb/erj177 10.1016/j.pbi.2004.09.008 10.1093/jxb/13.1.111 10.1146/annurev.cellbio.20.082503.103053 10.1007/s10237-005-0010-1 10.1034/j.1399-3054.2001.1110111.x 10.1088/0957-4484/15/9/031 10.1007/s10570-006-9068-x 10.1007/BF00429465 10.1046/j.1365-313X.1999.00630.x 10.3183/npprj-2004-19-01-p105-111 10.1104/pp.104.038711 10.1016/S0009-2509(98)00198-5 10.1007/s004250050669 10.1104/pp.124.1.1 10.1016/S0009-2614(99)00389-9 10.1111/j.1749-6632.1970.tb45187.x 10.1104/pp.121.2.657 10.1115/1.3005337 10.1111/j.1574-6968.1993.tb05970.x 10.1007/s10570-007-9129-9 10.1023/A:1013115925679 10.1016/S0014-5793(04)00346-1 10.1093/jxb/erm074 10.1115/1.2807000 10.1007/s10570-007-9116-1 10.1016/j.jplph.2007.08.002 10.1007/s11483-006-9013-4 10.1002/pol.1962.1205716551 10.1007/BF02860816 10.1242/jcs.96.2.323 10.1016/j.euromechsol.2005.05.006 10.1023/A:1013181804540 10.1104/pp.105.065912 10.1016/j.crvi.2004.03.010 10.1146/annurev.pp.40.060189.001035 10.1016/j.jtbi.2008.03.010 10.1104/pp.103.021873 10.1007/s00425-003-0979-6 10.1093/jxb/eri247 10.1111/j.1365-313X.1993.tb00007.x 10.1007/978-3-642-93132-1_10 10.1529/biophysj.105.077826 10.1177/002199836800200305 10.1074/jbc.M203530200 10.1038/nmat1019 |
ContentType | Journal Article |
Copyright | 2010 American Society of Plant Biologists 2015 INIST-CNRS Copyright © 2010, American Society of Plant Biologists 2010 |
Copyright_xml | – notice: 2010 American Society of Plant Biologists – notice: 2015 INIST-CNRS – notice: Copyright © 2010, American Society of Plant Biologists 2010 |
DBID | FBQ AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7S9 L.6 7X8 5PM ADTOC UNPAY |
DOI | 10.1104/pp.109.146936 |
DatabaseName | AGRIS CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany Chemistry |
EISSN | 1532-2548 |
EndPage | 786 |
ExternalDocumentID | 10.1104/pp.109.146936 PMC2815898 20007450 22421565 10_1104_pp_109_146936 25680693 US201301800441 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X 123 29O 2AX 2WC 2~F 3V. 4.4 53G 5VS 5WD 7X2 7X7 85S 88A 88E 88I 8AF 8AO 8CJ 8FE 8FH 8FI 8FJ 8FW 8G5 8R4 8R5 AAHKG AAPXW AAVAP AAWDT AAXTN AAYJJ ABBHK ABJNI ABPLY ABPPZ ABPTD ABPTK ABTLG ABUWG ABXZS ACBTR ACFRR ACGOD ACIPB ACNCT ACPRK ACUFI ACUTJ ADBBV ADIPN ADIYS ADULT ADVEK ADYHW ADZLD AEEJZ AENEX AESBF AEUPB AFAZZ AFDAS AFFDN AFFZL AFGWE AFKRA AFRAH AFYAG AGUYK AHMBA AICQM AIDAL AIDBO AJEEA ALMA_UNASSIGNED_HOLDINGS ALXQX ANFBD AQDSO AS~ ATCPS AZQEC BAWUL BBNVY BCRHZ BENPR BHPHI BPHCQ BTFSW BVXVI BYORX C1A CBGCD CCPQU CS3 CWIXF D1J DATOO DFEDG DIK DOOOF DU5 DWIUU DWQXO E3Z EBS ECGQY EJD F20 F5P FBQ FLUFQ FOEOM FYUFA GNUQQ GTFYD GUQSH HCIFZ HMCUK HTVGU ISR JAAYA JBMMH JBS JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST KOP KQ8 KSI KSN LK8 M0K M0L M1P M2O M2P M2Q M7P MV1 MVM NOMLY OBOKY OJZSN OK1 OWPYF P0- P2P PQQKQ PROAC PSQYO Q2X QZG RHF RHI ROX RPB RPM RWL RXW S0X SA0 TAE TCN TN5 TR2 UBC UKHRP UKR VQA W8F WH7 WHG WOQ XOL XSW Y6R YBU YKV YNT YSK YZZ ZCA ZCG ZCN ~02 ~KM 0R~ AAHBH AARHZ AAUAY ABDFA ABEJV ABGNP ABMNT ABVGC ABXSQ ABXVV ACHIC ADGKP ADQBN ADXHL AEUYN AGORE AHXOZ AJBYB AJNCP ALIPV AQVQM ATGXG BEYMZ H13 IPSME JXSIZ NU- PHGZM PHGZT AAYXX CITATION PJZUB PPXIY PQGLB PUEGO ABIME ABPIB ABZEO ACVCV ACZBC AGMDO AHGBF AJDVS APJGH IQODW LU7 CGR CUY CVF ECM EIF NPM 7S9 L.6 7X8 5PM ADTOC UNPAY |
ID | FETCH-LOGICAL-c493t-5baaa4975aad7bd9d29a09d9e4ec2e21c0591736bf95f9c6c051fd68b84e30933 |
IEDL.DBID | UNPAY |
ISSN | 0032-0889 1532-2548 |
IngestDate | Wed Aug 20 00:19:29 EDT 2025 Tue Sep 30 16:47:58 EDT 2025 Sun Sep 28 09:15:07 EDT 2025 Sat Sep 27 20:45:30 EDT 2025 Mon Jul 21 05:37:31 EDT 2025 Mon Jul 21 09:17:26 EDT 2025 Thu Apr 24 23:06:02 EDT 2025 Wed Oct 01 03:45:19 EDT 2025 Fri Jun 20 02:18:56 EDT 2025 Wed Dec 27 19:12:17 EST 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Hemicellulose Deformation Plant physiology Cellulose Prediction Network Mechanics Software |
Language | English |
License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c493t-5baaa4975aad7bd9d29a09d9e4ec2e21c0591736bf95f9c6c051fd68b84e30933 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 This work was supported by the Australian Research Council (grant no. DP0665069) and the Research School of Biological Sciences. The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantphysiol.org) is: Hung Kha (hung.kha@anu.edu.au.). www.plantphysiol.org/cgi/doi/10.1104/pp.109.146936 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://academic.oup.com/plphys/article-pdf/152/2/774/38106256/plphys_v152_2_774.pdf |
PMID | 20007450 |
PQID | 46537578 |
PQPubID | 24069 |
PageCount | 13 |
ParticipantIDs | unpaywall_primary_10_1104_pp_109_146936 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2815898 proquest_miscellaneous_733791660 proquest_miscellaneous_46537578 pubmed_primary_20007450 pascalfrancis_primary_22421565 crossref_citationtrail_10_1104_pp_109_146936 crossref_primary_10_1104_pp_109_146936 jstor_primary_25680693 fao_agris_US201301800441 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-02-01 |
PublicationDateYYYYMMDD | 2010-02-01 |
PublicationDate_xml | – month: 02 year: 2010 text: 2010-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Rockville, MD |
PublicationPlace_xml | – name: Rockville, MD – name: United States |
PublicationTitle | Plant physiology (Bethesda) |
PublicationTitleAlternate | Plant Physiol |
PublicationYear | 2010 |
Publisher | American Society of Plant Biologists |
Publisher_xml | – name: American Society of Plant Biologists |
References | (2021052608145367200_b18) 2005; 24 (2021052608145367200_b4) 2002; 37 (2021052608145367200_b51) 2006; 13 (2021052608145367200_b43) 2006; 91 (2021052608145367200_b25) 2007; 164 (2021052608145367200_b56) 2005; 139 (2021052608145367200_b47) 1997; 29 (2021052608145367200_b12) 1995 (2021052608145367200_b2) 2008; 253 (2021052608145367200_b19) 2003; 2 (2021052608145367200_b21) 2007; 14 (2021052608145367200_b20) 2007; 14 (2021052608145367200_b45) 1998; 53 (2021052608145367200_b28) 1999; 305 (2021052608145367200_b29) 1990; 96 (2021052608145367200_b24) 2000; 210 (2021052608145367200_b40) 2003; 132 (2021052608145367200_b54) 2004; 7 (2021052608145367200_b11) 1980; 33 (2021052608145367200_b50) 2006; 57 (2021052608145367200_b3) 2005; 21 (2021052608145367200_b15) 2004; 19 (2021052608145367200_b16) 1989; 40 (2021052608145367200_b17) 2004; 35 (2021052608145367200_b9) 2007; 58 (2021052608145367200_b39) 2003 (2021052608145367200_b34) 1974 (2021052608145367200_b22) 2008; 32 (2021052608145367200_b53) 1962; 28 (2021052608145367200_b41) 1962; 57 (2021052608145367200_b1) 2009; 131 (2021052608145367200_b42) 2004; 327 (2021052608145367200_b32) 2004; 564 (2021052608145367200_b14) 1970; 175 (2021052608145367200_b31) 2004; 15 (2021052608145367200_b33) 1999; 20 (2021052608145367200_b37) 2004; 135 (2021052608145367200_b10) 2001; 8 (2021052608145367200_b5) 2006; 5 (2021052608145367200_b38) 1959; III (2021052608145367200_b13) 1969; 24 (2021052608145367200_b49) 2000; 124 (2021052608145367200_b55) 1999; 121 (2021052608145367200_b30) 1991 (2021052608145367200_b7) 1968; 2 (2021052608145367200_b35) 1982; 155 (2021052608145367200_b36) 1962; 13 (2021052608145367200_b6) 1993; 3 (2021052608145367200_b26) 2008 (2021052608145367200_b27) 2002; 277 (2021052608145367200_b48) 1998; 120 (2021052608145367200_b52) 2005; 56 (2021052608145367200_b46) 1993; 106 (2021052608145367200_b23) 2006; 1 (2021052608145367200_b8) 2003; 217 (2021052608145367200_b44) 2001; 111 14625541 - Nat Mater. 2003 Dec;2(12):810-4 12805631 - Plant Physiol. 2003 Jun;132(2):1033-40 12783336 - Planta. 2003 Jun;217(2):283-9 19102565 - J Biomech Eng. 2009 Feb;131(2):021006 15181211 - Plant Physiol. 2004 Jun;135(2):959-68 18485371 - J Theor Biol. 2008 Aug 7;253(3):434-45 10805439 - Planta. 2000 Apr;210(5):691-700 16212493 - Annu Rev Cell Dev Biol. 2005;21:203-22 16720609 - J Exp Bot. 2006;57(10):2183-92 17905474 - J Plant Physiol. 2007 Nov;164(11):1395-409 16126855 - Plant Physiol. 2005 Sep;139(1):397-407 15587078 - C R Biol. 2004 Sep-Oct;327(9-10):873-80 12145282 - J Biol Chem. 2002 Oct 4;277(40):36931-9 15094064 - FEBS Lett. 2004 Apr 23;564(1-2):183-7 16061505 - J Exp Bot. 2005 Sep;56(419):2275-85 16731557 - Biophys J. 2006 Aug 15;91(4):1521-31 11115865 - Plant Physiol. 2000 Dec;124(4):1493-506 8401598 - Plant J. 1993 Jan;3(1):1-30 24271873 - Planta. 1982 Aug;155(4):356-63 15491913 - Curr Opin Plant Biol. 2004 Dec;7(6):651-60 4185230 - Z Naturforsch B. 1969 Jul;24(7):918-22 16514520 - Biomech Model Mechanobiol. 2006 Nov;5(4):227-36 10652135 - Plant J. 1999 Dec;20(6):629-39 8454189 - FEMS Microbiol Lett. 1993 Feb 1;106(3):239-43 17470442 - J Exp Bot. 2007;58(8):2079-89 10517858 - Plant Physiol. 1999 Oct;121(2):657-64 |
References_xml | – volume: 35 start-page: 586 year: 2004 ident: 2021052608145367200_b17 publication-title: J Texture Stud doi: 10.1111/j.1745-4603.2004.35511.x – volume: 57 start-page: 2183 year: 2006 ident: 2021052608145367200_b50 publication-title: J Exp Bot doi: 10.1093/jxb/erj177 – volume: 7 start-page: 651 year: 2004 ident: 2021052608145367200_b54 publication-title: Curr Opin Plant Biol doi: 10.1016/j.pbi.2004.09.008 – volume: 13 start-page: 111 year: 1962 ident: 2021052608145367200_b36 publication-title: J Exp Bot doi: 10.1093/jxb/13.1.111 – volume: 21 start-page: 203 year: 2005 ident: 2021052608145367200_b3 publication-title: Annu Rev Cell Dev Biol doi: 10.1146/annurev.cellbio.20.082503.103053 – volume: 5 start-page: 227 year: 2006 ident: 2021052608145367200_b5 publication-title: Biomech Model Mechanobiol doi: 10.1007/s10237-005-0010-1 – volume: 111 start-page: 83 year: 2001 ident: 2021052608145367200_b44 publication-title: Physiol Plant doi: 10.1034/j.1399-3054.2001.1110111.x – volume: 15 start-page: 1296 year: 2004 ident: 2021052608145367200_b31 publication-title: Nanotechnology doi: 10.1088/0957-4484/15/9/031 – volume: 13 start-page: 509 year: 2006 ident: 2021052608145367200_b51 publication-title: Cellulose doi: 10.1007/s10570-006-9068-x – volume: 155 start-page: 356 year: 1982 ident: 2021052608145367200_b35 publication-title: Planta doi: 10.1007/BF00429465 – volume: 20 start-page: 629 year: 1999 ident: 2021052608145367200_b33 publication-title: Plant J doi: 10.1046/j.1365-313X.1999.00630.x – volume: 29 start-page: 345 year: 1997 ident: 2021052608145367200_b47 publication-title: Wood Fiber Sci – volume: 19 start-page: 105 year: 2004 ident: 2021052608145367200_b15 publication-title: Nord Pulp Pap Res J doi: 10.3183/npprj-2004-19-01-p105-111 – volume: III start-page: 4 year: 1959 ident: 2021052608145367200_b38 publication-title: Handbuch der Pflanzenatomie – volume: 135 start-page: 959 year: 2004 ident: 2021052608145367200_b37 publication-title: Plant Physiol doi: 10.1104/pp.104.038711 – year: 2008 ident: 2021052608145367200_b26 – volume: 53 start-page: 3913 year: 1998 ident: 2021052608145367200_b45 publication-title: Chem Eng Sci doi: 10.1016/S0009-2509(98)00198-5 – volume: 210 start-page: 691 year: 2000 ident: 2021052608145367200_b24 publication-title: Planta doi: 10.1007/s004250050669 – volume: 124 start-page: 1 year: 2000 ident: 2021052608145367200_b49 publication-title: Plant Physiol doi: 10.1104/pp.124.1.1 – year: 1974 ident: 2021052608145367200_b34 – volume: 305 start-page: 197 year: 1999 ident: 2021052608145367200_b28 publication-title: Chem Phys Lett doi: 10.1016/S0009-2614(99)00389-9 – volume: 175 start-page: 712 year: 1970 ident: 2021052608145367200_b14 publication-title: Ann N Y Acad Sci doi: 10.1111/j.1749-6632.1970.tb45187.x – volume: 121 start-page: 657 year: 1999 ident: 2021052608145367200_b55 publication-title: Plant Physiol doi: 10.1104/pp.121.2.657 – volume: 131 start-page: 021006 year: 2009 ident: 2021052608145367200_b1 publication-title: J Biomech Eng doi: 10.1115/1.3005337 – volume: 106 start-page: 239 year: 1993 ident: 2021052608145367200_b46 publication-title: FEMS Microbiol Lett doi: 10.1111/j.1574-6968.1993.tb05970.x – volume: 14 start-page: 401 year: 2007 ident: 2021052608145367200_b21 publication-title: Cellulose doi: 10.1007/s10570-007-9129-9 – volume: 37 start-page: 151 year: 2002 ident: 2021052608145367200_b4 publication-title: J Mater Sci doi: 10.1023/A:1013115925679 – volume: 564 start-page: 183 year: 2004 ident: 2021052608145367200_b32 publication-title: FEBS Lett doi: 10.1016/S0014-5793(04)00346-1 – year: 1991 ident: 2021052608145367200_b30 – year: 2003 ident: 2021052608145367200_b39 – volume: 58 start-page: 2079 year: 2007 ident: 2021052608145367200_b9 publication-title: J Exp Bot doi: 10.1093/jxb/erm074 – volume: 120 start-page: 126 year: 1998 ident: 2021052608145367200_b48 publication-title: J Eng Mater Technol doi: 10.1115/1.2807000 – volume: 14 start-page: 235 year: 2007 ident: 2021052608145367200_b20 publication-title: Cellulose doi: 10.1007/s10570-007-9116-1 – volume: 164 start-page: 1395 year: 2007 ident: 2021052608145367200_b25 publication-title: J Plant Physiol doi: 10.1016/j.jplph.2007.08.002 – volume: 1 start-page: 163 year: 2006 ident: 2021052608145367200_b23 publication-title: Food Biophys doi: 10.1007/s11483-006-9013-4 – volume: 57 start-page: 651 year: 1962 ident: 2021052608145367200_b41 publication-title: J Polymer Sci doi: 10.1002/pol.1962.1205716551 – volume: 28 start-page: 241 year: 1962 ident: 2021052608145367200_b53 publication-title: Bot Rev doi: 10.1007/BF02860816 – volume: 96 start-page: 323 year: 1990 ident: 2021052608145367200_b29 publication-title: J Cell Sci doi: 10.1242/jcs.96.2.323 – volume: 24 start-page: 1030 year: 2005 ident: 2021052608145367200_b18 publication-title: Eur J Mech Solid doi: 10.1016/j.euromechsol.2005.05.006 – volume: 8 start-page: 197 year: 2001 ident: 2021052608145367200_b10 publication-title: Cellulose doi: 10.1023/A:1013181804540 – volume: 24 start-page: 918 year: 1969 ident: 2021052608145367200_b13 publication-title: Z Naturforsch [B] – volume: 139 start-page: 397 year: 2005 ident: 2021052608145367200_b56 publication-title: Plant Physiol doi: 10.1104/pp.105.065912 – year: 1995 ident: 2021052608145367200_b12 – volume: 327 start-page: 873 year: 2004 ident: 2021052608145367200_b42 publication-title: C R Biologies doi: 10.1016/j.crvi.2004.03.010 – volume: 40 start-page: 139 year: 1989 ident: 2021052608145367200_b16 publication-title: Annu Rev Plant Physiol Plant Mol Biol doi: 10.1146/annurev.pp.40.060189.001035 – volume: 253 start-page: 434 year: 2008 ident: 2021052608145367200_b2 publication-title: J Theor Biol doi: 10.1016/j.jtbi.2008.03.010 – volume: 132 start-page: 1033 year: 2003 ident: 2021052608145367200_b40 publication-title: Plant Physiol doi: 10.1104/pp.103.021873 – volume: 32 start-page: 197 year: 2008 ident: 2021052608145367200_b22 publication-title: Frontiers in Materials Science and Technology – volume: 217 start-page: 283 year: 2003 ident: 2021052608145367200_b8 publication-title: Planta doi: 10.1007/s00425-003-0979-6 – volume: 56 start-page: 2275 year: 2005 ident: 2021052608145367200_b52 publication-title: J Exp Bot doi: 10.1093/jxb/eri247 – volume: 3 start-page: 1 year: 1993 ident: 2021052608145367200_b6 publication-title: Plant J doi: 10.1111/j.1365-313X.1993.tb00007.x – volume: 33 start-page: 192 year: 1980 ident: 2021052608145367200_b11 publication-title: Lect Notes Biomath doi: 10.1007/978-3-642-93132-1_10 – volume: 91 start-page: 1521 year: 2006 ident: 2021052608145367200_b43 publication-title: Biophys J doi: 10.1529/biophysj.105.077826 – volume: 2 start-page: 332 year: 1968 ident: 2021052608145367200_b7 publication-title: J Compos Mat doi: 10.1177/002199836800200305 – volume: 277 start-page: 36931 year: 2002 ident: 2021052608145367200_b27 publication-title: J Biol Chem doi: 10.1074/jbc.M203530200 – volume: 2 start-page: 810 year: 2003 ident: 2021052608145367200_b19 publication-title: Nat Mater doi: 10.1038/nmat1019 – reference: 15587078 - C R Biol. 2004 Sep-Oct;327(9-10):873-80 – reference: 24271873 - Planta. 1982 Aug;155(4):356-63 – reference: 16720609 - J Exp Bot. 2006;57(10):2183-92 – reference: 10805439 - Planta. 2000 Apr;210(5):691-700 – reference: 15181211 - Plant Physiol. 2004 Jun;135(2):959-68 – reference: 16061505 - J Exp Bot. 2005 Sep;56(419):2275-85 – reference: 17905474 - J Plant Physiol. 2007 Nov;164(11):1395-409 – reference: 15094064 - FEBS Lett. 2004 Apr 23;564(1-2):183-7 – reference: 12805631 - Plant Physiol. 2003 Jun;132(2):1033-40 – reference: 8401598 - Plant J. 1993 Jan;3(1):1-30 – reference: 15491913 - Curr Opin Plant Biol. 2004 Dec;7(6):651-60 – reference: 17470442 - J Exp Bot. 2007;58(8):2079-89 – reference: 16514520 - Biomech Model Mechanobiol. 2006 Nov;5(4):227-36 – reference: 18485371 - J Theor Biol. 2008 Aug 7;253(3):434-45 – reference: 10517858 - Plant Physiol. 1999 Oct;121(2):657-64 – reference: 16731557 - Biophys J. 2006 Aug 15;91(4):1521-31 – reference: 12145282 - J Biol Chem. 2002 Oct 4;277(40):36931-9 – reference: 16126855 - Plant Physiol. 2005 Sep;139(1):397-407 – reference: 16212493 - Annu Rev Cell Dev Biol. 2005;21:203-22 – reference: 12783336 - Planta. 2003 Jun;217(2):283-9 – reference: 4185230 - Z Naturforsch B. 1969 Jul;24(7):918-22 – reference: 10652135 - Plant J. 1999 Dec;20(6):629-39 – reference: 8454189 - FEMS Microbiol Lett. 1993 Feb 1;106(3):239-43 – reference: 11115865 - Plant Physiol. 2000 Dec;124(4):1493-506 – reference: 19102565 - J Biomech Eng. 2009 Feb;131(2):021006 – reference: 14625541 - Nat Mater. 2003 Dec;2(12):810-4 |
SSID | ssj0001314 |
Score | 2.1856694 |
Snippet | We understand few details about how the arrangement and interactions of cell wall polymers produce the mechanical properties of primary cell walls.... |
SourceID | unpaywall pubmedcentral proquest pubmed pascalfrancis crossref jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 774 |
SubjectTerms | Anisotropy Biological and medical sciences CELL BIOLOGY AND SIGNAL TRANSDUCTION Cell Wall Cell Wall - chemistry Cell walls cellulose Cellulose - chemistry chemistry computer software deformation Elastic Modulus Elasticity Finite Element Analysis Fundamental and applied biological sciences. Psychology hemicellulose Mechanical properties Mechanics Microfibrils Microfibrils - chemistry Moduli of elasticity modulus of elasticity molecular weight Plant cells Plant physiology and development Plants Polymers Polysaccharides Polysaccharides - chemistry prediction Software Stiffness uncertainty |
Title | WallGen, Software to Construct Layered Cellulose-Hemicellulose Networks and Predict Their Small Deformation Mechanics |
URI | https://www.jstor.org/stable/25680693 https://www.ncbi.nlm.nih.gov/pubmed/20007450 https://www.proquest.com/docview/46537578 https://www.proquest.com/docview/733791660 https://pubmed.ncbi.nlm.nih.gov/PMC2815898 https://academic.oup.com/plphys/article-pdf/152/2/774/38106256/plphys_v152_2_774.pdf |
UnpaywallVersion | publishedVersion |
Volume | 152 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1532-2548 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001314 issn: 0032-0889 databaseCode: KQ8 dateStart: 19260101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1532-2548 dateEnd: 20241003 omitProxy: true ssIdentifier: ssj0001314 issn: 0032-0889 databaseCode: DIK dateStart: 19260101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1532-2548 dateEnd: 20120831 omitProxy: true ssIdentifier: ssj0001314 issn: 0032-0889 databaseCode: 7X7 dateStart: 19981001 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1532-2548 dateEnd: 20120831 omitProxy: true ssIdentifier: ssj0001314 issn: 0032-0889 databaseCode: BENPR dateStart: 19981001 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF61CRJceJeaR9gDgksdx-v1Y49taYkQjSKSSOFk7dprqDC21cSqwq9nxq8QoIgDR2fHG2d2svOtZ-YbQl4xBV7H5ZEpmEpMrlRsSkdxU9kqkFIkgR9hvfPFxBsv-Pulu9wj87YWRjZZ4cO2pKFI8YhvNXo0izixwOVYzALcYiE9FQB4r5GCE5_LQhbC0BAE90nfw7BTj_QXk-nxp5qhkZmY2VPTqDITnjPoqDe5VRTIr4Tbh6hIm7euaj-ReZuziAmUcgU6TOrmF39Cp78nWd4us0JurmWa_uTBzu-Rsv3tdeLK12G5VsPo-y-0kP9bOffJ3Qby0uP69gdkT2cPya2THGDp5hEp8VX-O50d0Rl4hGt5pek6p9hHtGK2pR_kBtuJ0lOdpmWar7Q5xodrr-ikzmNfUZnFdHqFcac1nWP4g86-wdT0re4KNOmFxkLny2j1mCzOz-anY7PpBWFGXDhr01VSSi58V8rYV7GImZAjEQvNdcQ0syOAibbveCoRbiIiD67tJPYCFXCNwV7ngPSyPNOHhMLS-m7MvSCKOEeL1IEHOMdVDD5QQhvkqF32MGqI0rFfRxpWB6YRD4sCA_dhbSUGed2JFzVDyE2Ch2BDofwMu3e4mDGMGdsBRtRtgxxUhtVNAMsWjOAmgwx2LG0rgKF8AOMGedmaXggbA2pfZjovVyES52GzAoPQGyR8x_HhdOCNDPKkttXt9BW2dGHE37HiTgBZyXdHsssvFTs5A1UGAr72TWfvf9fL03-WfEbu1MkbmE30nPTADvULwIRrNSD7_tIfkP7J2WT6cdD84X8AP1lfew |
linkProvider | Unpaywall |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF61KRJcyrPUPMoeEFy6cbxeP_ZYCiVCNKqURCona9delwrXtppYVfj1zPgVAhRx4OjseOPMTna-9cx8Q8hrrsHreCJmkuuUCa0TplwtmHZ0qJRMwyDGeufTiT-ei0_n3vkWmXW1MKrNCh92JQ1lhkd8u9UjK5PUBpdjcxtwi430VADg_VYKTnwej3gEQ0MQ3CY7PoadBmRnPjk7-tIwNHKGmT0NjSpn8JxhT70p7LJEfiXcPmRN2rx2VdupKrqcRUygVAvQYdo0v_gTOv09yfJulZdqdaOy7CcPdnKfVN1vbxJXvg2rpR7G33-hhfzfynlAdlvIS4-a2x-SLZM_InfeFQBLV49Jha_yP5r8kE7BI9yoa0OXBcU-ojWzLf2sVthOlB6bLKuyYmHYGB-uu6KTJo99QVWe0LNrjDst6QzDH3R6BVPT96Yv0KSnBgudL-PFEzI_-TA7HrO2FwSLhXSXzNNKKSEDT6kk0IlMuFQjmUgjTMwNd2KAiU7g-jqVXipjH66dNPFDHQqDwV53jwzyIjf7hMLSBl4i_DCOhUCLNKEPOMfTHD7Q0ljksFv2KG6J0rFfRxbVB6aRiMoSA_dRYyUWedOLlw1DyG2C-2BDkbqA3TuaTznGjJ0QI-qORfZqw-ongGULR3CTRQ42LG0tgKF8AOMWedWZXgQbA2pf5aaoFhES52GzAovQWyQC1w3gdOCPLPK0sdX19DW29GAk2LDiXgBZyTdH8suvNTs5B1WGEr72bW_vf9fLs3-WfE7uNckbmE30ggzADs1LwIRLfdD-xX8AHi5c-g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=WallGen%2C+Software+to+Construct+Layered+Cellulose-Hemicellulose+Networks+and+Predict+Their+Small+Deformation+Mechanics&rft.jtitle=Plant+physiology+%28Bethesda%29&rft.au=Kha%2C+Hung&rft.au=Tuble%2C+Sigrid+C&rft.au=Kalyanasundaram%2C+Shankar&rft.au=Williamson%2C+Richard+E&rft.date=2010-02-01&rft.issn=0032-0889&rft.volume=152&rft.issue=2+p.774-786&rft.spage=774&rft.epage=786&rft_id=info:doi/10.1104%2Fpp.109.146936&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-0889&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-0889&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-0889&client=summon |