WallGen, Software to Construct Layered Cellulose-Hemicellulose Networks and Predict Their Small Deformation Mechanics

We understand few details about how the arrangement and interactions of cell wall polymers produce the mechanical properties of primary cell walls. Consequently, we cannot quantitatively assess if proposed wall structures are mechanically reasonable or assess the effectiveness of proposed mechanisms...

Full description

Saved in:
Bibliographic Details
Published inPlant physiology (Bethesda) Vol. 152; no. 2; pp. 774 - 786
Main Authors Kha, Hung, Tuble, Sigrid C, Kalyanasundaram, Shankar, Williamson, Richard E
Format Journal Article
LanguageEnglish
Published Rockville, MD American Society of Plant Biologists 01.02.2010
Subjects
Online AccessGet full text
ISSN0032-0889
1532-2548
1532-2548
DOI10.1104/pp.109.146936

Cover

Abstract We understand few details about how the arrangement and interactions of cell wall polymers produce the mechanical properties of primary cell walls. Consequently, we cannot quantitatively assess if proposed wall structures are mechanically reasonable or assess the effectiveness of proposed mechanisms to change mechanical properties. As a step to remedying this, we developed WallGen, a Fortran program (available on request) building virtual cellulose-hemicellulose networks by stochastic self-assembly whose mechanical properties can be predicted by finite element analysis. The thousands of mechanical elements in the virtual wall are intended to have one-to-one spatial and mechanical correspondence with their real wall counterparts of cellulose microfibrils and hemicellulose chains. User-defined inputs set the properties of the two polymer types (elastic moduli, dimensions of microfibrils and hemicellulose chains, hemicellulose molecular weight) and their population properties (microfibril alignment and volume fraction, polymer weight percentages in the network). This allows exploration of the mechanical consequences of variations in nanostructure that might occur in vivo and provides estimates of how uncertainties regarding certain inputs will affect WallGen's mechanical predictions. We summarize WallGen's operation and the choice of values for user-defined inputs and show that predicted values for the elastic moduli of multinet walls subject to small displacements overlap measured values. "Design of experiment" methods provide systematic exploration of how changed input values affect mechanical properties and suggest that changing microfibril orientation and/or the number of hemicellulose cross-bridges could change wall mechanical anisotropy.
AbstractList We understand few details about how the arrangement and interactions of cell wall polymers produce the mechanical properties of primary cell walls. Consequently, we cannot quantitatively assess if proposed wall structures are mechanically reasonable or assess the effectiveness of proposed mechanisms to change mechanical properties. As a step to remedying this, we developed WallGen, a Fortran program (available on request) building virtual cellulose-hemicellulose networks by stochastic self-assembly whose mechanical properties can be predicted by finite element analysis. The thousands of mechanical elements in the virtual wall are intended to have one-to-one spatial and mechanical correspondence with their real wall counterparts of cellulose microfibrils and hemicellulose chains. User-defined inputs set the properties of the two polymer types (elastic moduli, dimensions of microfibrils and hemicellulose chains, hemicellulose molecular weight) and their population properties (microfibril alignment and volume fraction, polymer weight percentages in the network). This allows exploration of the mechanical consequences of variations in nanostructure that might occur in vivo and provides estimates of how uncertainties regarding certain inputs will affect WallGen's mechanical predictions. We summarize WallGen's operation and the choice of values for user-defined inputs and show that predicted values for the elastic moduli of multinet walls subject to small displacements overlap measured values. "Design of experiment" methods provide systematic exploration of how changed input values affect mechanical properties and suggest that changing microfibril orientation and/or the number of hemicellulose cross-bridges could change wall mechanical anisotropy.
We understand few details about how the arrangement and interactions of cell wall polymers produce the mechanical properties of primary cell walls. Consequently, we cannot quantitatively assess if proposed wall structures are mechanically reasonable or assess the effectiveness of proposed mechanisms to change mechanical properties. As a step to remedying this, we developed WallGen, a Fortran program (available on request) building virtual cellulose-hemicellulose networks by stochastic self-assembly whose mechanical properties can be predicted by finite element analysis. The thousands of mechanical elements in the virtual wall are intended to have one-to-one spatial and mechanical correspondence with their real wall counterparts of cellulose microfibrils and hemicellulose chains. User-defined inputs set the properties of the two polymer types (elastic moduli, dimensions of microfibrils and hemicellulose chains, hemicellulose molecular weight) and their population properties (microfibril alignment and volume fraction, polymer weight percentages in the network). This allows exploration of the mechanical consequences of variations in nanostructure that might occur in vivo and provides estimates of how uncertainties regarding certain inputs will affect WallGen's mechanical predictions. We summarize WallGen's operation and the choice of values for user-defined inputs and show that predicted values for the elastic moduli of multinet walls subject to small displacements overlap measured values. "Design of experiment" methods provide systematic exploration of how changed input values affect mechanical properties and suggest that changing microfibril orientation and/or the number of hemicellulose cross-bridges could change wall mechanical anisotropy.We understand few details about how the arrangement and interactions of cell wall polymers produce the mechanical properties of primary cell walls. Consequently, we cannot quantitatively assess if proposed wall structures are mechanically reasonable or assess the effectiveness of proposed mechanisms to change mechanical properties. As a step to remedying this, we developed WallGen, a Fortran program (available on request) building virtual cellulose-hemicellulose networks by stochastic self-assembly whose mechanical properties can be predicted by finite element analysis. The thousands of mechanical elements in the virtual wall are intended to have one-to-one spatial and mechanical correspondence with their real wall counterparts of cellulose microfibrils and hemicellulose chains. User-defined inputs set the properties of the two polymer types (elastic moduli, dimensions of microfibrils and hemicellulose chains, hemicellulose molecular weight) and their population properties (microfibril alignment and volume fraction, polymer weight percentages in the network). This allows exploration of the mechanical consequences of variations in nanostructure that might occur in vivo and provides estimates of how uncertainties regarding certain inputs will affect WallGen's mechanical predictions. We summarize WallGen's operation and the choice of values for user-defined inputs and show that predicted values for the elastic moduli of multinet walls subject to small displacements overlap measured values. "Design of experiment" methods provide systematic exploration of how changed input values affect mechanical properties and suggest that changing microfibril orientation and/or the number of hemicellulose cross-bridges could change wall mechanical anisotropy.
Author Kha, Hung
Williamson, Richard E
Tuble, Sigrid C
Kalyanasundaram, Shankar
AuthorAffiliation Department of Engineering, College of Engineering and Computer Science (H.K., S.C.T., S.K.), and Research School of Biology, College of Medicine, Biology, and Environment (H.K., S.C.T., R.E.W.), Australian National University, Canberra 0200, Australia
AuthorAffiliation_xml – name: Department of Engineering, College of Engineering and Computer Science (H.K., S.C.T., S.K.), and Research School of Biology, College of Medicine, Biology, and Environment (H.K., S.C.T., R.E.W.), Australian National University, Canberra 0200, Australia
Author_xml – sequence: 1
  fullname: Kha, Hung
– sequence: 2
  fullname: Tuble, Sigrid C
– sequence: 3
  fullname: Kalyanasundaram, Shankar
– sequence: 4
  fullname: Williamson, Richard E
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22421565$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20007450$$D View this record in MEDLINE/PubMed
BookMark eNqFks9v0zAcxS00xLrCkSOQC-NCih3bSXxBQgU2pPJD6iaO1reOs3okdrATqv73c5eOAhJwytfy5z09v29O0JF1ViP0mOAZIZi96roZwWJGWC5ofg9NCKdZmnFWHqEJxnHGZSmO0UkI1xhjQgl7gI6zOBaM4wkavkLTnGn7Mlm6ut-A10nvkrmzofeD6pMFbLXXVTLXTTM0Luj0XLdG3Z2ST7rfOP8tJGCr5EskTRRdrLXxybKN1slbXTvfQm-cTT5qtQZrVHiI7tfQBP1o_52iy_fvLubn6eLz2Yf5m0WqmKB9ylcAwETBAapiVYkqE4BFJTTTKtMZUZgLUtB8VQteC5XHM6mrvFyVTFMsKJ2i2eg72A62m5hHdt604LeSYLnrT3ZdHIUc-4uC16OgG1atrpS2vYeDyIGRv99Ys5ZX7ofMSsJLUUaDF3sD774POvSyNWFXF1jthiALSgtB8hxH8vSfJMs5LXixs3z6a6afYe6WGIHnewCCgqb2YJUJBy5jGeHRbYroyCnvQvC6lsr0t5uJTzHNXytJ_1D9r8InI38deucPKXhe4vx2J8_G-xqchCsfk14us_hnYlJizBihN5Bh4Fg
CODEN PPHYA5
CitedBy_id crossref_primary_10_1007_s10853_015_9204_9
crossref_primary_10_1016_j_jtbi_2012_04_035
crossref_primary_10_1016_j_tplants_2016_01_019
crossref_primary_10_1093_jxb_erv511
crossref_primary_10_1093_plphys_kiac184
crossref_primary_10_1038_s41528_022_00177_5
crossref_primary_10_3732_ajb_1200649
crossref_primary_10_1007_s10570_015_0568_4
crossref_primary_10_1111_tpj_14519
crossref_primary_10_1126_science_abf2824
crossref_primary_10_1016_j_tcsw_2018_04_001
crossref_primary_10_1093_mp_ssq075
crossref_primary_10_1016_j_actbio_2015_10_032
crossref_primary_10_1007_s10665_014_9761_y
crossref_primary_10_1016_j_pbi_2010_09_017
crossref_primary_10_1093_jxb_erz281
crossref_primary_10_1152_physiol_00030_2014
crossref_primary_10_3390_computation2020023
crossref_primary_10_1016_j_bpj_2012_06_046
crossref_primary_10_1146_annurev_cellbio_101512_122410
crossref_primary_10_1105_tpc_110_075754
crossref_primary_10_3732_ajb_1300315
crossref_primary_10_1016_j_jsb_2010_08_012
crossref_primary_10_1111_brv_12935
crossref_primary_10_1021_acsnano_8b04379
crossref_primary_10_1146_annurev_arplant_042817_040517
crossref_primary_10_1016_j_bpj_2018_11_014
crossref_primary_10_1371_journal_pone_0074400
Cites_doi 10.1111/j.1745-4603.2004.35511.x
10.1093/jxb/erj177
10.1016/j.pbi.2004.09.008
10.1093/jxb/13.1.111
10.1146/annurev.cellbio.20.082503.103053
10.1007/s10237-005-0010-1
10.1034/j.1399-3054.2001.1110111.x
10.1088/0957-4484/15/9/031
10.1007/s10570-006-9068-x
10.1007/BF00429465
10.1046/j.1365-313X.1999.00630.x
10.3183/npprj-2004-19-01-p105-111
10.1104/pp.104.038711
10.1016/S0009-2509(98)00198-5
10.1007/s004250050669
10.1104/pp.124.1.1
10.1016/S0009-2614(99)00389-9
10.1111/j.1749-6632.1970.tb45187.x
10.1104/pp.121.2.657
10.1115/1.3005337
10.1111/j.1574-6968.1993.tb05970.x
10.1007/s10570-007-9129-9
10.1023/A:1013115925679
10.1016/S0014-5793(04)00346-1
10.1093/jxb/erm074
10.1115/1.2807000
10.1007/s10570-007-9116-1
10.1016/j.jplph.2007.08.002
10.1007/s11483-006-9013-4
10.1002/pol.1962.1205716551
10.1007/BF02860816
10.1242/jcs.96.2.323
10.1016/j.euromechsol.2005.05.006
10.1023/A:1013181804540
10.1104/pp.105.065912
10.1016/j.crvi.2004.03.010
10.1146/annurev.pp.40.060189.001035
10.1016/j.jtbi.2008.03.010
10.1104/pp.103.021873
10.1007/s00425-003-0979-6
10.1093/jxb/eri247
10.1111/j.1365-313X.1993.tb00007.x
10.1007/978-3-642-93132-1_10
10.1529/biophysj.105.077826
10.1177/002199836800200305
10.1074/jbc.M203530200
10.1038/nmat1019
ContentType Journal Article
Copyright 2010 American Society of Plant Biologists
2015 INIST-CNRS
Copyright © 2010, American Society of Plant Biologists 2010
Copyright_xml – notice: 2010 American Society of Plant Biologists
– notice: 2015 INIST-CNRS
– notice: Copyright © 2010, American Society of Plant Biologists 2010
DBID FBQ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7X8
5PM
ADTOC
UNPAY
DOI 10.1104/pp.109.146936
DatabaseName AGRIS
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList AGRICOLA
MEDLINE



MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Botany
Chemistry
EISSN 1532-2548
EndPage 786
ExternalDocumentID 10.1104/pp.109.146936
PMC2815898
20007450
22421565
10_1104_pp_109_146936
25680693
US201301800441
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
123
29O
2AX
2WC
2~F
3V.
4.4
53G
5VS
5WD
7X2
7X7
85S
88A
88E
88I
8AF
8AO
8CJ
8FE
8FH
8FI
8FJ
8FW
8G5
8R4
8R5
AAHKG
AAPXW
AAVAP
AAWDT
AAXTN
AAYJJ
ABBHK
ABJNI
ABPLY
ABPPZ
ABPTD
ABPTK
ABTLG
ABUWG
ABXZS
ACBTR
ACFRR
ACGOD
ACIPB
ACNCT
ACPRK
ACUFI
ACUTJ
ADBBV
ADIPN
ADIYS
ADULT
ADVEK
ADYHW
ADZLD
AEEJZ
AENEX
AESBF
AEUPB
AFAZZ
AFDAS
AFFDN
AFFZL
AFGWE
AFKRA
AFRAH
AFYAG
AGUYK
AHMBA
AICQM
AIDAL
AIDBO
AJEEA
ALMA_UNASSIGNED_HOLDINGS
ALXQX
ANFBD
AQDSO
AS~
ATCPS
AZQEC
BAWUL
BBNVY
BCRHZ
BENPR
BHPHI
BPHCQ
BTFSW
BVXVI
BYORX
C1A
CBGCD
CCPQU
CS3
CWIXF
D1J
DATOO
DFEDG
DIK
DOOOF
DU5
DWIUU
DWQXO
E3Z
EBS
ECGQY
EJD
F20
F5P
FBQ
FLUFQ
FOEOM
FYUFA
GNUQQ
GTFYD
GUQSH
HCIFZ
HMCUK
HTVGU
ISR
JAAYA
JBMMH
JBS
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
KOP
KQ8
KSI
KSN
LK8
M0K
M0L
M1P
M2O
M2P
M2Q
M7P
MV1
MVM
NOMLY
OBOKY
OJZSN
OK1
OWPYF
P0-
P2P
PQQKQ
PROAC
PSQYO
Q2X
QZG
RHF
RHI
ROX
RPB
RPM
RWL
RXW
S0X
SA0
TAE
TCN
TN5
TR2
UBC
UKHRP
UKR
VQA
W8F
WH7
WHG
WOQ
XOL
XSW
Y6R
YBU
YKV
YNT
YSK
YZZ
ZCA
ZCG
ZCN
~02
~KM
0R~
AAHBH
AARHZ
AAUAY
ABDFA
ABEJV
ABGNP
ABMNT
ABVGC
ABXSQ
ABXVV
ACHIC
ADGKP
ADQBN
ADXHL
AEUYN
AGORE
AHXOZ
AJBYB
AJNCP
ALIPV
AQVQM
ATGXG
BEYMZ
H13
IPSME
JXSIZ
NU-
PHGZM
PHGZT
AAYXX
CITATION
PJZUB
PPXIY
PQGLB
PUEGO
ABIME
ABPIB
ABZEO
ACVCV
ACZBC
AGMDO
AHGBF
AJDVS
APJGH
IQODW
LU7
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c493t-5baaa4975aad7bd9d29a09d9e4ec2e21c0591736bf95f9c6c051fd68b84e30933
IEDL.DBID UNPAY
ISSN 0032-0889
1532-2548
IngestDate Wed Aug 20 00:19:29 EDT 2025
Tue Sep 30 16:47:58 EDT 2025
Sun Sep 28 09:15:07 EDT 2025
Sat Sep 27 20:45:30 EDT 2025
Mon Jul 21 05:37:31 EDT 2025
Mon Jul 21 09:17:26 EDT 2025
Thu Apr 24 23:06:02 EDT 2025
Wed Oct 01 03:45:19 EDT 2025
Fri Jun 20 02:18:56 EDT 2025
Wed Dec 27 19:12:17 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Hemicellulose
Deformation
Plant physiology
Cellulose
Prediction
Network
Mechanics
Software
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c493t-5baaa4975aad7bd9d29a09d9e4ec2e21c0591736bf95f9c6c051fd68b84e30933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
This work was supported by the Australian Research Council (grant no. DP0665069) and the Research School of Biological Sciences.
The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantphysiol.org) is: Hung Kha (hung.kha@anu.edu.au.).
www.plantphysiol.org/cgi/doi/10.1104/pp.109.146936
OpenAccessLink https://proxy.k.utb.cz/login?url=https://academic.oup.com/plphys/article-pdf/152/2/774/38106256/plphys_v152_2_774.pdf
PMID 20007450
PQID 46537578
PQPubID 24069
PageCount 13
ParticipantIDs unpaywall_primary_10_1104_pp_109_146936
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2815898
proquest_miscellaneous_733791660
proquest_miscellaneous_46537578
pubmed_primary_20007450
pascalfrancis_primary_22421565
crossref_citationtrail_10_1104_pp_109_146936
crossref_primary_10_1104_pp_109_146936
jstor_primary_25680693
fao_agris_US201301800441
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-02-01
PublicationDateYYYYMMDD 2010-02-01
PublicationDate_xml – month: 02
  year: 2010
  text: 2010-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Rockville, MD
PublicationPlace_xml – name: Rockville, MD
– name: United States
PublicationTitle Plant physiology (Bethesda)
PublicationTitleAlternate Plant Physiol
PublicationYear 2010
Publisher American Society of Plant Biologists
Publisher_xml – name: American Society of Plant Biologists
References (2021052608145367200_b18) 2005; 24
(2021052608145367200_b4) 2002; 37
(2021052608145367200_b51) 2006; 13
(2021052608145367200_b43) 2006; 91
(2021052608145367200_b25) 2007; 164
(2021052608145367200_b56) 2005; 139
(2021052608145367200_b47) 1997; 29
(2021052608145367200_b12) 1995
(2021052608145367200_b2) 2008; 253
(2021052608145367200_b19) 2003; 2
(2021052608145367200_b21) 2007; 14
(2021052608145367200_b20) 2007; 14
(2021052608145367200_b45) 1998; 53
(2021052608145367200_b28) 1999; 305
(2021052608145367200_b29) 1990; 96
(2021052608145367200_b24) 2000; 210
(2021052608145367200_b40) 2003; 132
(2021052608145367200_b54) 2004; 7
(2021052608145367200_b11) 1980; 33
(2021052608145367200_b50) 2006; 57
(2021052608145367200_b3) 2005; 21
(2021052608145367200_b15) 2004; 19
(2021052608145367200_b16) 1989; 40
(2021052608145367200_b17) 2004; 35
(2021052608145367200_b9) 2007; 58
(2021052608145367200_b39) 2003
(2021052608145367200_b34) 1974
(2021052608145367200_b22) 2008; 32
(2021052608145367200_b53) 1962; 28
(2021052608145367200_b41) 1962; 57
(2021052608145367200_b1) 2009; 131
(2021052608145367200_b42) 2004; 327
(2021052608145367200_b32) 2004; 564
(2021052608145367200_b14) 1970; 175
(2021052608145367200_b31) 2004; 15
(2021052608145367200_b33) 1999; 20
(2021052608145367200_b37) 2004; 135
(2021052608145367200_b10) 2001; 8
(2021052608145367200_b5) 2006; 5
(2021052608145367200_b38) 1959; III
(2021052608145367200_b13) 1969; 24
(2021052608145367200_b49) 2000; 124
(2021052608145367200_b55) 1999; 121
(2021052608145367200_b30) 1991
(2021052608145367200_b7) 1968; 2
(2021052608145367200_b35) 1982; 155
(2021052608145367200_b36) 1962; 13
(2021052608145367200_b6) 1993; 3
(2021052608145367200_b26) 2008
(2021052608145367200_b27) 2002; 277
(2021052608145367200_b48) 1998; 120
(2021052608145367200_b52) 2005; 56
(2021052608145367200_b46) 1993; 106
(2021052608145367200_b23) 2006; 1
(2021052608145367200_b8) 2003; 217
(2021052608145367200_b44) 2001; 111
14625541 - Nat Mater. 2003 Dec;2(12):810-4
12805631 - Plant Physiol. 2003 Jun;132(2):1033-40
12783336 - Planta. 2003 Jun;217(2):283-9
19102565 - J Biomech Eng. 2009 Feb;131(2):021006
15181211 - Plant Physiol. 2004 Jun;135(2):959-68
18485371 - J Theor Biol. 2008 Aug 7;253(3):434-45
10805439 - Planta. 2000 Apr;210(5):691-700
16212493 - Annu Rev Cell Dev Biol. 2005;21:203-22
16720609 - J Exp Bot. 2006;57(10):2183-92
17905474 - J Plant Physiol. 2007 Nov;164(11):1395-409
16126855 - Plant Physiol. 2005 Sep;139(1):397-407
15587078 - C R Biol. 2004 Sep-Oct;327(9-10):873-80
12145282 - J Biol Chem. 2002 Oct 4;277(40):36931-9
15094064 - FEBS Lett. 2004 Apr 23;564(1-2):183-7
16061505 - J Exp Bot. 2005 Sep;56(419):2275-85
16731557 - Biophys J. 2006 Aug 15;91(4):1521-31
11115865 - Plant Physiol. 2000 Dec;124(4):1493-506
8401598 - Plant J. 1993 Jan;3(1):1-30
24271873 - Planta. 1982 Aug;155(4):356-63
15491913 - Curr Opin Plant Biol. 2004 Dec;7(6):651-60
4185230 - Z Naturforsch B. 1969 Jul;24(7):918-22
16514520 - Biomech Model Mechanobiol. 2006 Nov;5(4):227-36
10652135 - Plant J. 1999 Dec;20(6):629-39
8454189 - FEMS Microbiol Lett. 1993 Feb 1;106(3):239-43
17470442 - J Exp Bot. 2007;58(8):2079-89
10517858 - Plant Physiol. 1999 Oct;121(2):657-64
References_xml – volume: 35
  start-page: 586
  year: 2004
  ident: 2021052608145367200_b17
  publication-title: J Texture Stud
  doi: 10.1111/j.1745-4603.2004.35511.x
– volume: 57
  start-page: 2183
  year: 2006
  ident: 2021052608145367200_b50
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erj177
– volume: 7
  start-page: 651
  year: 2004
  ident: 2021052608145367200_b54
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/j.pbi.2004.09.008
– volume: 13
  start-page: 111
  year: 1962
  ident: 2021052608145367200_b36
  publication-title: J Exp Bot
  doi: 10.1093/jxb/13.1.111
– volume: 21
  start-page: 203
  year: 2005
  ident: 2021052608145367200_b3
  publication-title: Annu Rev Cell Dev Biol
  doi: 10.1146/annurev.cellbio.20.082503.103053
– volume: 5
  start-page: 227
  year: 2006
  ident: 2021052608145367200_b5
  publication-title: Biomech Model Mechanobiol
  doi: 10.1007/s10237-005-0010-1
– volume: 111
  start-page: 83
  year: 2001
  ident: 2021052608145367200_b44
  publication-title: Physiol Plant
  doi: 10.1034/j.1399-3054.2001.1110111.x
– volume: 15
  start-page: 1296
  year: 2004
  ident: 2021052608145367200_b31
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/15/9/031
– volume: 13
  start-page: 509
  year: 2006
  ident: 2021052608145367200_b51
  publication-title: Cellulose
  doi: 10.1007/s10570-006-9068-x
– volume: 155
  start-page: 356
  year: 1982
  ident: 2021052608145367200_b35
  publication-title: Planta
  doi: 10.1007/BF00429465
– volume: 20
  start-page: 629
  year: 1999
  ident: 2021052608145367200_b33
  publication-title: Plant J
  doi: 10.1046/j.1365-313X.1999.00630.x
– volume: 29
  start-page: 345
  year: 1997
  ident: 2021052608145367200_b47
  publication-title: Wood Fiber Sci
– volume: 19
  start-page: 105
  year: 2004
  ident: 2021052608145367200_b15
  publication-title: Nord Pulp Pap Res J
  doi: 10.3183/npprj-2004-19-01-p105-111
– volume: III
  start-page: 4
  year: 1959
  ident: 2021052608145367200_b38
  publication-title: Handbuch der Pflanzenatomie
– volume: 135
  start-page: 959
  year: 2004
  ident: 2021052608145367200_b37
  publication-title: Plant Physiol
  doi: 10.1104/pp.104.038711
– year: 2008
  ident: 2021052608145367200_b26
– volume: 53
  start-page: 3913
  year: 1998
  ident: 2021052608145367200_b45
  publication-title: Chem Eng Sci
  doi: 10.1016/S0009-2509(98)00198-5
– volume: 210
  start-page: 691
  year: 2000
  ident: 2021052608145367200_b24
  publication-title: Planta
  doi: 10.1007/s004250050669
– volume: 124
  start-page: 1
  year: 2000
  ident: 2021052608145367200_b49
  publication-title: Plant Physiol
  doi: 10.1104/pp.124.1.1
– year: 1974
  ident: 2021052608145367200_b34
– volume: 305
  start-page: 197
  year: 1999
  ident: 2021052608145367200_b28
  publication-title: Chem Phys Lett
  doi: 10.1016/S0009-2614(99)00389-9
– volume: 175
  start-page: 712
  year: 1970
  ident: 2021052608145367200_b14
  publication-title: Ann N Y Acad Sci
  doi: 10.1111/j.1749-6632.1970.tb45187.x
– volume: 121
  start-page: 657
  year: 1999
  ident: 2021052608145367200_b55
  publication-title: Plant Physiol
  doi: 10.1104/pp.121.2.657
– volume: 131
  start-page: 021006
  year: 2009
  ident: 2021052608145367200_b1
  publication-title: J Biomech Eng
  doi: 10.1115/1.3005337
– volume: 106
  start-page: 239
  year: 1993
  ident: 2021052608145367200_b46
  publication-title: FEMS Microbiol Lett
  doi: 10.1111/j.1574-6968.1993.tb05970.x
– volume: 14
  start-page: 401
  year: 2007
  ident: 2021052608145367200_b21
  publication-title: Cellulose
  doi: 10.1007/s10570-007-9129-9
– volume: 37
  start-page: 151
  year: 2002
  ident: 2021052608145367200_b4
  publication-title: J Mater Sci
  doi: 10.1023/A:1013115925679
– volume: 564
  start-page: 183
  year: 2004
  ident: 2021052608145367200_b32
  publication-title: FEBS Lett
  doi: 10.1016/S0014-5793(04)00346-1
– year: 1991
  ident: 2021052608145367200_b30
– year: 2003
  ident: 2021052608145367200_b39
– volume: 58
  start-page: 2079
  year: 2007
  ident: 2021052608145367200_b9
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erm074
– volume: 120
  start-page: 126
  year: 1998
  ident: 2021052608145367200_b48
  publication-title: J Eng Mater Technol
  doi: 10.1115/1.2807000
– volume: 14
  start-page: 235
  year: 2007
  ident: 2021052608145367200_b20
  publication-title: Cellulose
  doi: 10.1007/s10570-007-9116-1
– volume: 164
  start-page: 1395
  year: 2007
  ident: 2021052608145367200_b25
  publication-title: J Plant Physiol
  doi: 10.1016/j.jplph.2007.08.002
– volume: 1
  start-page: 163
  year: 2006
  ident: 2021052608145367200_b23
  publication-title: Food Biophys
  doi: 10.1007/s11483-006-9013-4
– volume: 57
  start-page: 651
  year: 1962
  ident: 2021052608145367200_b41
  publication-title: J Polymer Sci
  doi: 10.1002/pol.1962.1205716551
– volume: 28
  start-page: 241
  year: 1962
  ident: 2021052608145367200_b53
  publication-title: Bot Rev
  doi: 10.1007/BF02860816
– volume: 96
  start-page: 323
  year: 1990
  ident: 2021052608145367200_b29
  publication-title: J Cell Sci
  doi: 10.1242/jcs.96.2.323
– volume: 24
  start-page: 1030
  year: 2005
  ident: 2021052608145367200_b18
  publication-title: Eur J Mech Solid
  doi: 10.1016/j.euromechsol.2005.05.006
– volume: 8
  start-page: 197
  year: 2001
  ident: 2021052608145367200_b10
  publication-title: Cellulose
  doi: 10.1023/A:1013181804540
– volume: 24
  start-page: 918
  year: 1969
  ident: 2021052608145367200_b13
  publication-title: Z Naturforsch [B]
– volume: 139
  start-page: 397
  year: 2005
  ident: 2021052608145367200_b56
  publication-title: Plant Physiol
  doi: 10.1104/pp.105.065912
– year: 1995
  ident: 2021052608145367200_b12
– volume: 327
  start-page: 873
  year: 2004
  ident: 2021052608145367200_b42
  publication-title: C R Biologies
  doi: 10.1016/j.crvi.2004.03.010
– volume: 40
  start-page: 139
  year: 1989
  ident: 2021052608145367200_b16
  publication-title: Annu Rev Plant Physiol Plant Mol Biol
  doi: 10.1146/annurev.pp.40.060189.001035
– volume: 253
  start-page: 434
  year: 2008
  ident: 2021052608145367200_b2
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2008.03.010
– volume: 132
  start-page: 1033
  year: 2003
  ident: 2021052608145367200_b40
  publication-title: Plant Physiol
  doi: 10.1104/pp.103.021873
– volume: 32
  start-page: 197
  year: 2008
  ident: 2021052608145367200_b22
  publication-title: Frontiers in Materials Science and Technology
– volume: 217
  start-page: 283
  year: 2003
  ident: 2021052608145367200_b8
  publication-title: Planta
  doi: 10.1007/s00425-003-0979-6
– volume: 56
  start-page: 2275
  year: 2005
  ident: 2021052608145367200_b52
  publication-title: J Exp Bot
  doi: 10.1093/jxb/eri247
– volume: 3
  start-page: 1
  year: 1993
  ident: 2021052608145367200_b6
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.1993.tb00007.x
– volume: 33
  start-page: 192
  year: 1980
  ident: 2021052608145367200_b11
  publication-title: Lect Notes Biomath
  doi: 10.1007/978-3-642-93132-1_10
– volume: 91
  start-page: 1521
  year: 2006
  ident: 2021052608145367200_b43
  publication-title: Biophys J
  doi: 10.1529/biophysj.105.077826
– volume: 2
  start-page: 332
  year: 1968
  ident: 2021052608145367200_b7
  publication-title: J Compos Mat
  doi: 10.1177/002199836800200305
– volume: 277
  start-page: 36931
  year: 2002
  ident: 2021052608145367200_b27
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M203530200
– volume: 2
  start-page: 810
  year: 2003
  ident: 2021052608145367200_b19
  publication-title: Nat Mater
  doi: 10.1038/nmat1019
– reference: 15587078 - C R Biol. 2004 Sep-Oct;327(9-10):873-80
– reference: 24271873 - Planta. 1982 Aug;155(4):356-63
– reference: 16720609 - J Exp Bot. 2006;57(10):2183-92
– reference: 10805439 - Planta. 2000 Apr;210(5):691-700
– reference: 15181211 - Plant Physiol. 2004 Jun;135(2):959-68
– reference: 16061505 - J Exp Bot. 2005 Sep;56(419):2275-85
– reference: 17905474 - J Plant Physiol. 2007 Nov;164(11):1395-409
– reference: 15094064 - FEBS Lett. 2004 Apr 23;564(1-2):183-7
– reference: 12805631 - Plant Physiol. 2003 Jun;132(2):1033-40
– reference: 8401598 - Plant J. 1993 Jan;3(1):1-30
– reference: 15491913 - Curr Opin Plant Biol. 2004 Dec;7(6):651-60
– reference: 17470442 - J Exp Bot. 2007;58(8):2079-89
– reference: 16514520 - Biomech Model Mechanobiol. 2006 Nov;5(4):227-36
– reference: 18485371 - J Theor Biol. 2008 Aug 7;253(3):434-45
– reference: 10517858 - Plant Physiol. 1999 Oct;121(2):657-64
– reference: 16731557 - Biophys J. 2006 Aug 15;91(4):1521-31
– reference: 12145282 - J Biol Chem. 2002 Oct 4;277(40):36931-9
– reference: 16126855 - Plant Physiol. 2005 Sep;139(1):397-407
– reference: 16212493 - Annu Rev Cell Dev Biol. 2005;21:203-22
– reference: 12783336 - Planta. 2003 Jun;217(2):283-9
– reference: 4185230 - Z Naturforsch B. 1969 Jul;24(7):918-22
– reference: 10652135 - Plant J. 1999 Dec;20(6):629-39
– reference: 8454189 - FEMS Microbiol Lett. 1993 Feb 1;106(3):239-43
– reference: 11115865 - Plant Physiol. 2000 Dec;124(4):1493-506
– reference: 19102565 - J Biomech Eng. 2009 Feb;131(2):021006
– reference: 14625541 - Nat Mater. 2003 Dec;2(12):810-4
SSID ssj0001314
Score 2.1856694
Snippet We understand few details about how the arrangement and interactions of cell wall polymers produce the mechanical properties of primary cell walls....
SourceID unpaywall
pubmedcentral
proquest
pubmed
pascalfrancis
crossref
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 774
SubjectTerms Anisotropy
Biological and medical sciences
CELL BIOLOGY AND SIGNAL TRANSDUCTION
Cell Wall
Cell Wall - chemistry
Cell walls
cellulose
Cellulose - chemistry
chemistry
computer software
deformation
Elastic Modulus
Elasticity
Finite Element Analysis
Fundamental and applied biological sciences. Psychology
hemicellulose
Mechanical properties
Mechanics
Microfibrils
Microfibrils - chemistry
Moduli of elasticity
modulus of elasticity
molecular weight
Plant cells
Plant physiology and development
Plants
Polymers
Polysaccharides
Polysaccharides - chemistry
prediction
Software
Stiffness
uncertainty
Title WallGen, Software to Construct Layered Cellulose-Hemicellulose Networks and Predict Their Small Deformation Mechanics
URI https://www.jstor.org/stable/25680693
https://www.ncbi.nlm.nih.gov/pubmed/20007450
https://www.proquest.com/docview/46537578
https://www.proquest.com/docview/733791660
https://pubmed.ncbi.nlm.nih.gov/PMC2815898
https://academic.oup.com/plphys/article-pdf/152/2/774/38106256/plphys_v152_2_774.pdf
UnpaywallVersion publishedVersion
Volume 152
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1532-2548
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001314
  issn: 0032-0889
  databaseCode: KQ8
  dateStart: 19260101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1532-2548
  dateEnd: 20241003
  omitProxy: true
  ssIdentifier: ssj0001314
  issn: 0032-0889
  databaseCode: DIK
  dateStart: 19260101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1532-2548
  dateEnd: 20120831
  omitProxy: true
  ssIdentifier: ssj0001314
  issn: 0032-0889
  databaseCode: 7X7
  dateStart: 19981001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1532-2548
  dateEnd: 20120831
  omitProxy: true
  ssIdentifier: ssj0001314
  issn: 0032-0889
  databaseCode: BENPR
  dateStart: 19981001
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF61CRJceJeaR9gDgksdx-v1Y49taYkQjSKSSOFk7dprqDC21cSqwq9nxq8QoIgDR2fHG2d2svOtZ-YbQl4xBV7H5ZEpmEpMrlRsSkdxU9kqkFIkgR9hvfPFxBsv-Pulu9wj87YWRjZZ4cO2pKFI8YhvNXo0izixwOVYzALcYiE9FQB4r5GCE5_LQhbC0BAE90nfw7BTj_QXk-nxp5qhkZmY2VPTqDITnjPoqDe5VRTIr4Tbh6hIm7euaj-ReZuziAmUcgU6TOrmF39Cp78nWd4us0JurmWa_uTBzu-Rsv3tdeLK12G5VsPo-y-0kP9bOffJ3Qby0uP69gdkT2cPya2THGDp5hEp8VX-O50d0Rl4hGt5pek6p9hHtGK2pR_kBtuJ0lOdpmWar7Q5xodrr-ikzmNfUZnFdHqFcac1nWP4g86-wdT0re4KNOmFxkLny2j1mCzOz-anY7PpBWFGXDhr01VSSi58V8rYV7GImZAjEQvNdcQ0syOAibbveCoRbiIiD67tJPYCFXCNwV7ngPSyPNOHhMLS-m7MvSCKOEeL1IEHOMdVDD5QQhvkqF32MGqI0rFfRxpWB6YRD4sCA_dhbSUGed2JFzVDyE2Ch2BDofwMu3e4mDGMGdsBRtRtgxxUhtVNAMsWjOAmgwx2LG0rgKF8AOMGedmaXggbA2pfZjovVyES52GzAoPQGyR8x_HhdOCNDPKkttXt9BW2dGHE37HiTgBZyXdHsssvFTs5A1UGAr72TWfvf9fL03-WfEbu1MkbmE30nPTADvULwIRrNSD7_tIfkP7J2WT6cdD84X8AP1lfew
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF61KRJcyrPUPMoeEFy6cbxeP_ZYCiVCNKqURCona9delwrXtppYVfj1zPgVAhRx4OjseOPMTna-9cx8Q8hrrsHreCJmkuuUCa0TplwtmHZ0qJRMwyDGeufTiT-ei0_n3vkWmXW1MKrNCh92JQ1lhkd8u9UjK5PUBpdjcxtwi430VADg_VYKTnwej3gEQ0MQ3CY7PoadBmRnPjk7-tIwNHKGmT0NjSpn8JxhT70p7LJEfiXcPmRN2rx2VdupKrqcRUygVAvQYdo0v_gTOv09yfJulZdqdaOy7CcPdnKfVN1vbxJXvg2rpR7G33-hhfzfynlAdlvIS4-a2x-SLZM_InfeFQBLV49Jha_yP5r8kE7BI9yoa0OXBcU-ojWzLf2sVthOlB6bLKuyYmHYGB-uu6KTJo99QVWe0LNrjDst6QzDH3R6BVPT96Yv0KSnBgudL-PFEzI_-TA7HrO2FwSLhXSXzNNKKSEDT6kk0IlMuFQjmUgjTMwNd2KAiU7g-jqVXipjH66dNPFDHQqDwV53jwzyIjf7hMLSBl4i_DCOhUCLNKEPOMfTHD7Q0ljksFv2KG6J0rFfRxbVB6aRiMoSA_dRYyUWedOLlw1DyG2C-2BDkbqA3TuaTznGjJ0QI-qORfZqw-ongGULR3CTRQ42LG0tgKF8AOMWedWZXgQbA2pf5aaoFhES52GzAovQWyQC1w3gdOCPLPK0sdX19DW29GAk2LDiXgBZyTdH8suvNTs5B1WGEr72bW_vf9fLs3-WfE7uNckbmE30ggzADs1LwIRLfdD-xX8AHi5c-g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=WallGen%2C+Software+to+Construct+Layered+Cellulose-Hemicellulose+Networks+and+Predict+Their+Small+Deformation+Mechanics&rft.jtitle=Plant+physiology+%28Bethesda%29&rft.au=Kha%2C+Hung&rft.au=Tuble%2C+Sigrid+C&rft.au=Kalyanasundaram%2C+Shankar&rft.au=Williamson%2C+Richard+E&rft.date=2010-02-01&rft.issn=0032-0889&rft.volume=152&rft.issue=2+p.774-786&rft.spage=774&rft.epage=786&rft_id=info:doi/10.1104%2Fpp.109.146936&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-0889&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-0889&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-0889&client=summon