Deep-Learning-Based Multivariate Pattern Analysis (dMVPA): A Tutorial and a Toolbox

In recent years, multivariate pattern analysis (MVPA) has been hugely beneficial for cognitive neuroscience by making new experiment designs possible and by increasing the inferential power of functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and other neuroimaging methodol...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in human neuroscience Vol. 15; p. 638052
Main Authors Kuntzelman, Karl M., Williams, Jacob M., Lim, Phui Cheng, Samal, Ashok, Rao, Prahalada K., Johnson, Matthew R.
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 02.03.2021
Frontiers Media S.A
Subjects
Online AccessGet full text
ISSN1662-5161
1662-5161
DOI10.3389/fnhum.2021.638052

Cover

Abstract In recent years, multivariate pattern analysis (MVPA) has been hugely beneficial for cognitive neuroscience by making new experiment designs possible and by increasing the inferential power of functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and other neuroimaging methodologies. In a similar time frame, “deep learning” (a term for the use of artificial neural networks with convolutional, recurrent, or similarly sophisticated architectures) has produced a parallel revolution in the field of machine learning and has been employed across a wide variety of applications. Traditional MVPA also uses a form of machine learning, but most commonly with much simpler techniques based on linear calculations; a number of studies have applied deep learning techniques to neuroimaging data, but we believe that those have barely scratched the surface of the potential deep learning holds for the field. In this paper, we provide a brief introduction to deep learning for those new to the technique, explore the logistical pros and cons of using deep learning to analyze neuroimaging data – which we term “deep MVPA,” or dMVPA – and introduce a new software toolbox (the “Deep Learning In Neuroimaging: Exploration, Analysis, Tools, and Education” package, DeLINEATE for short) intended to facilitate dMVPA for neuroscientists (and indeed, scientists more broadly) everywhere.
AbstractList In recent years, multivariate pattern analysis (MVPA) has been hugely beneficial for cognitive neuroscience by making new experiment designs possible and by increasing the inferential power of functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and other neuroimaging methodologies. In a similar time frame, “deep learning” (a term for the use of artificial neural networks with convolutional, recurrent, or similarly sophisticated architectures) has produced a parallel revolution in the field of machine learning and has been employed across a wide variety of applications. Traditional MVPA also uses a form of machine learning, but most commonly with much simpler techniques based on linear calculations; a number of studies have applied deep learning techniques to neuroimaging data, but we believe that those have barely scratched the surface of the potential deep learning holds for the field. In this paper, we provide a brief introduction to deep learning for those new to the technique, explore the logistical pros and cons of using deep learning to analyze neuroimaging data – which we term “deep MVPA,” or dMVPA – and introduce a new software toolbox (the “Deep Learning In Neuroimaging: Exploration, Analysis, Tools, and Education” package, DeLINEATE for short) intended to facilitate dMVPA for neuroscientists (and indeed, scientists more broadly) everywhere.
In recent years, multivariate pattern analysis (MVPA) has been hugely beneficial for cognitive neuroscience by making new experiment designs possible and by increasing the inferential power of functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and other neuroimaging methodologies. In a similar time frame, "deep learning" (a term for the use of artificial neural networks with convolutional, recurrent, or similarly sophisticated architectures) has produced a parallel revolution in the field of machine learning and has been employed across a wide variety of applications. Traditional MVPA also uses a form of machine learning, but most commonly with much simpler techniques based on linear calculations; a number of studies have applied deep learning techniques to neuroimaging data, but we believe that those have barely scratched the surface of the potential deep learning holds for the field. In this paper, we provide a brief introduction to deep learning for those new to the technique, explore the logistical pros and cons of using deep learning to analyze neuroimaging data - which we term "deep MVPA," or dMVPA - and introduce a new software toolbox (the "Deep Learning In Neuroimaging: Exploration, Analysis, Tools, and Education" package, DeLINEATE for short) intended to facilitate dMVPA for neuroscientists (and indeed, scientists more broadly) everywhere.In recent years, multivariate pattern analysis (MVPA) has been hugely beneficial for cognitive neuroscience by making new experiment designs possible and by increasing the inferential power of functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and other neuroimaging methodologies. In a similar time frame, "deep learning" (a term for the use of artificial neural networks with convolutional, recurrent, or similarly sophisticated architectures) has produced a parallel revolution in the field of machine learning and has been employed across a wide variety of applications. Traditional MVPA also uses a form of machine learning, but most commonly with much simpler techniques based on linear calculations; a number of studies have applied deep learning techniques to neuroimaging data, but we believe that those have barely scratched the surface of the potential deep learning holds for the field. In this paper, we provide a brief introduction to deep learning for those new to the technique, explore the logistical pros and cons of using deep learning to analyze neuroimaging data - which we term "deep MVPA," or dMVPA - and introduce a new software toolbox (the "Deep Learning In Neuroimaging: Exploration, Analysis, Tools, and Education" package, DeLINEATE for short) intended to facilitate dMVPA for neuroscientists (and indeed, scientists more broadly) everywhere.
Author Lim, Phui Cheng
Johnson, Matthew R.
Kuntzelman, Karl M.
Samal, Ashok
Williams, Jacob M.
Rao, Prahalada K.
AuthorAffiliation 2 Office of Technology Development and Coordination, National Institute of Mental Health, National Institutes of Health , Bethesda, MD , United States
5 Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln , Lincoln, NE , United States
1 Center for Brain, Biology and Behavior, University of Nebraska-Lincoln , Lincoln, NE , United States
3 Department of Computer Science and Engineering, University of Nebraska-Lincoln , Lincoln, NE , United States
4 Department of Psychology, University of Nebraska-Lincoln , Lincoln, NE , United States
AuthorAffiliation_xml – name: 3 Department of Computer Science and Engineering, University of Nebraska-Lincoln , Lincoln, NE , United States
– name: 1 Center for Brain, Biology and Behavior, University of Nebraska-Lincoln , Lincoln, NE , United States
– name: 5 Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln , Lincoln, NE , United States
– name: 2 Office of Technology Development and Coordination, National Institute of Mental Health, National Institutes of Health , Bethesda, MD , United States
– name: 4 Department of Psychology, University of Nebraska-Lincoln , Lincoln, NE , United States
Author_xml – sequence: 1
  givenname: Karl M.
  surname: Kuntzelman
  fullname: Kuntzelman, Karl M.
– sequence: 2
  givenname: Jacob M.
  surname: Williams
  fullname: Williams, Jacob M.
– sequence: 3
  givenname: Phui Cheng
  surname: Lim
  fullname: Lim, Phui Cheng
– sequence: 4
  givenname: Ashok
  surname: Samal
  fullname: Samal, Ashok
– sequence: 5
  givenname: Prahalada K.
  surname: Rao
  fullname: Rao, Prahalada K.
– sequence: 6
  givenname: Matthew R.
  surname: Johnson
  fullname: Johnson, Matthew R.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33737872$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtvEzEUhS1URNvAD2CDRmJTFhPs8fgxLCqF8qqUikoEttadsSd15NjB9hTy75k0pWq7gJUt-5xP5557jA588AahlwRPKZXN295fDetphSsy5VRiVj1BR4TzqmSEk4N790N0nNIKY15xRp6hQ0oFFVJUR-jbB2M25dxA9NYvy_eQjC4uBpftNUQL2RSXkLOJvph5cNtkU3GiL35czt68K2bFYshhVLkCvC6gWITg2vD7OXrag0vmxe05Qd8_fVycfSnnXz-fn83mZVc3NJcUdI1JgzGTUMmu1q1sOSXEaF23vNfAsWSCskZo0XccGy0lZ4xI0jBRM0In6HzP1QFWahPtGuJWBbDq5iHEpYKYbeeMki0zRgKrsa5qLqSEVhPZMwqEEMnpyKr2rMFvYPsLnLsDEqx2baubttWubbVvezSd7k2boV0b3RmfI7gHSR7-eHulluFaiYZjPpYwQSe3gBh-DiZltbapM86BN2FIqmKY1pQLvpO-fiRdhSGOOxlVdcPIiJS7MV7dT3QX5e_CR4HYC7oYUoqmV53NkG3YBbTun8OSR87_F_QH3aHOhw
CitedBy_id crossref_primary_10_3389_fnins_2022_1046752
crossref_primary_10_3389_fnimg_2022_981642
crossref_primary_10_3390_app13095472
crossref_primary_10_1167_jov_21_7_9
Cites_doi 10.1038/nrn3687
10.1162/neco.2006.18.7.1527
10.1016/j.neuroimage.2013.05.041
10.1145/130385.130401
10.1016/j.neuroimage.2017.08.005
10.1016/j.patcog.2016.06.008
10.1037/h0042519
10.3389/fnhum.2014.00059
10.1002/hbm.20379
10.1371/journal.pone.0066032
10.1146/annurev-neuro-062012-170325
10.1007/978-3-319-10590-1_53
10.21236/ADA164453
10.1007/BF02478259
10.3389/fninf.2012.00024
10.1145/1553374.1553486
10.1038/323533a0
10.1371/journal.pcbi.1003553
10.1109/4235.585893
10.1126/science.1193125
10.1126/science.284.5411.96
10.3389/fninf.2013.00012
10.1162/jocn_a_00823
10.1007/s12021-008-9041-y
10.1162/jocn_a_01427
10.1126/science.1063736
10.1162/jocn.1996.8.6.551
10.1109/TPAMI.2005.127
10.1111/j.1467-9868.2005.00503.x
10.1007/BF00994018
10.1016/j.neuroimage.2013.04.019
10.1007/BF01797193
10.1016/j.neuroimage.2008.06.037
10.1016/S0893-6080(00)00053-8
10.3389/fnins.2020.00417
10.1126/science.1194144
ContentType Journal Article
Copyright Copyright © 2021 Kuntzelman, Williams, Lim, Samal, Rao and Johnson.
2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2021 Kuntzelman, Williams, Lim, Samal, Rao and Johnson. 2021 Kuntzelman, Williams, Lim, Samal, Rao and Johnson
Copyright_xml – notice: Copyright © 2021 Kuntzelman, Williams, Lim, Samal, Rao and Johnson.
– notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2021 Kuntzelman, Williams, Lim, Samal, Rao and Johnson. 2021 Kuntzelman, Williams, Lim, Samal, Rao and Johnson
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3389/fnhum.2021.638052
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed

CrossRef
Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-5161
ExternalDocumentID oai_doaj_org_article_8b5ee8a540d246788abd18f53a111863
10.3389/fnhum.2021.638052
PMC7960649
33737872
10_3389_fnhum_2021_638052
Genre Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: P20 GM130461
– fundername: Nvidia
  grantid: GPU grant
– fundername: Division of Civil, Mechanical and Manufacturing Innovation
  grantid: 1719388
– fundername: Office of Experimental Program to Stimulate Competitive Research
  grantid: 1632849
– fundername: National Institute of General Medical Sciences
  grantid: P20 GM130461
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABIVO
ABUWG
ACGFO
ACGFS
ADBBV
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EMOBN
F5P
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PUEGO
RNS
RPM
TR2
ACXDI
C1A
IAO
IEA
IHR
IHW
IPNFZ
IPY
ISR
NPM
RIG
3V.
7XB
8FK
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c493t-3ad40190058a28c4db8b6311edd4b6fda608573597d7fc60ed886551819574513
IEDL.DBID M48
ISSN 1662-5161
IngestDate Fri Oct 03 12:45:38 EDT 2025
Sun Oct 26 01:50:12 EDT 2025
Tue Sep 30 16:07:01 EDT 2025
Fri Sep 05 06:10:36 EDT 2025
Fri Jul 25 11:45:10 EDT 2025
Thu Jan 02 22:56:46 EST 2025
Thu Apr 24 23:08:46 EDT 2025
Wed Oct 01 04:22:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords deep learning
fMRI
EEG
neural networks
cognitive neuroscience
machine learning
MVPA
Python
Language English
License Copyright © 2021 Kuntzelman, Williams, Lim, Samal, Rao and Johnson.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c493t-3ad40190058a28c4db8b6311edd4b6fda608573597d7fc60ed886551819574513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Edited by: Gopikrishna Deshpande, Auburn University, United States
This article was submitted to Cognitive Neuroscience, a section of the journal Frontiers in Human Neuroscience
Reviewed by: Christian Habeck, Columbia University, United States; Tyler Davis, Texas Tech University, United States
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnhum.2021.638052
PMID 33737872
PQID 2495179683
PQPubID 4424408
ParticipantIDs doaj_primary_oai_doaj_org_article_8b5ee8a540d246788abd18f53a111863
unpaywall_primary_10_3389_fnhum_2021_638052
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7960649
proquest_miscellaneous_2503436769
proquest_journals_2495179683
pubmed_primary_33737872
crossref_citationtrail_10_3389_fnhum_2021_638052
crossref_primary_10_3389_fnhum_2021_638052
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-02
PublicationDateYYYYMMDD 2021-03-02
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-02
  day: 02
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in human neuroscience
PublicationTitleAlternate Front Hum Neurosci
PublicationYear 2021
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Dosenbach (B9) 2010; 329
Kingma (B21) 2014
Zou (B49) 2005; 67
Berger (B3) 1929; 87
De Martino (B8) 2008; 43
Akama (B1) 2012; 6
Bentin (B2) 1996; 8
Wolpert (B44) 1997; 1
Krishnapuram (B24) 2005; 27
Williams (B43) 2020; 14
Kohler (B23) 2013; 78
Chollet (B6) 2015
Grus (B10) 2018
Xue (B46) 2010; 330
Sporns (B39) 2000; 13
Boser (B4) 1992
Haxby (B12) 2014; 37
Van Essen (B41) 2013; 80
Rumelhart (B37); 1
Werbos (B42) 1974
Zeiler (B48) 2014; 2014
Buzsaki (B5) 2014; 15
Johnson (B18) 2015; 27
Hinton (B16) 2006; 18
Ngiam (B31) 2011; 11
Lore (B27) 2017; 61
Hebb (B15) 1949
Maas (B28) 2013; 30
Rosenblatt (B35) 1958; 65
McCulloch (B29) 1943; 5
Minsky (B30) 1969
Poldrack (B33) 2013; 7
Rumelhart (B36); 323
Zeiler (B47) 2013
Nili (B32) 2014; 10
Koch (B22) 1999; 284
Linnainmaa (B26) 1970
Hanke (B11) 2009; 7
Johnson (B17) 2014; 8
Hebart (B14) 2018; 180
Kay (B20) 2008; 29
Haxby (B13) 2001; 293
Shalev-Shwartz (B38) 2014
Cortes (B7) 1995; 20
Szegedy (B40) 2016
Kassam (B19) 2013; 8
Raina (B34) 2009
Lim (B25) 2019; 31
Xie (B45) 2016
References_xml – volume: 15
  start-page: 264
  year: 2014
  ident: B5
  article-title: The log-dynamic brain: how skewed distributions affect network operations.
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn3687
– volume: 18
  start-page: 1527
  year: 2006
  ident: B16
  article-title: A fast learning algorithm for deep belief nets.
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
– year: 2014
  ident: B21
  publication-title: Adam: A Method for Stochastic Optimization. arXiv [Preprint]
– volume: 80
  start-page: 62
  year: 2013
  ident: B41
  article-title: The WU-Minn human connectome project: an overview.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.041
– start-page: 144
  year: 1992
  ident: B4
  article-title: A training algorithm for optimal margin classifiers
  publication-title: Proceedings of the Fifth Annual Workshop on Computational Learning Theory
  doi: 10.1145/130385.130401
– volume: 180
  start-page: 4
  year: 2018
  ident: B14
  article-title: Deconstructing multivariate decoding for the study of brain function.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.08.005
– volume: 61
  start-page: 650
  year: 2017
  ident: B27
  article-title: LLNet: A deep autoencoder approach to natural low-light image enhancement.
  publication-title: Patt. Recogn.
  doi: 10.1016/j.patcog.2016.06.008
– volume: 65
  start-page: 386
  year: 1958
  ident: B35
  article-title: The perceptron: A probabilistic model for information storage and organization in the brain.
  publication-title: Psychol. Rev.
  doi: 10.1037/h0042519
– year: 2016
  ident: B40
  publication-title: Inception-v4, inception-resnet and the impact of residual connections on learning.
– volume: 8
  year: 2014
  ident: B17
  article-title: Decoding individual natural scene representations during perception and imagery.
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2014.00059
– volume: 29
  start-page: 142
  year: 2008
  ident: B20
  article-title: Modeling low-frequency fluctuation and hemodynamic response timecourse in event-related fMRI.
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20379
– volume: 11
  start-page: 689
  year: 2011
  ident: B31
  article-title: Multimodal deep learning.
  publication-title: ICML
– year: 2013
  ident: B47
  publication-title: Stochastic Pooling for Regularization of Deep Convolutional Neural Networks. arXiv [Preprint]
– volume: 8
  year: 2013
  ident: B19
  article-title: Identifying emotions on the basis of neural activation.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0066032
– volume: 37
  start-page: 435
  year: 2014
  ident: B12
  article-title: Decoding neural representational spaces using multivariate pattern analysis.
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev-neuro-062012-170325
– year: 1949
  ident: B15
  publication-title: The organization of behavior: a neuropsychological theory.
– volume: 2014
  start-page: 818
  year: 2014
  ident: B48
  article-title: Visualizing and understanding convolutional networks.
  publication-title: Eur. Conf. Comput. Vision
  doi: 10.1007/978-3-319-10590-1_53
– year: 1974
  ident: B42
  publication-title: Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences.
– volume: 1
  ident: B37
  article-title: Learning internal representations by error propagation.
  publication-title: Paral. Distr. Proc.: Expl. Microstruct. Cogn.
  doi: 10.21236/ADA164453
– volume: 5
  start-page: 115
  year: 1943
  ident: B29
  article-title: A logical calculus of the ideas immanent in nervous activity.
  publication-title: Bull. Mathem. Biophys.
  doi: 10.1007/BF02478259
– volume: 30
  year: 2013
  ident: B28
  article-title: Rectifier nonlinearities improve neural network acoustic models.
  publication-title: Proc. ICML
– volume: 6
  year: 2012
  ident: B1
  article-title: Decoding semantics across fMRI sessions with different stimulus modalities: a practical MVPA study.
  publication-title: Front. Neuroinform.
  doi: 10.3389/fninf.2012.00024
– start-page: 873
  year: 2009
  ident: B34
  article-title: Large-scale deep unsupervised learning using graphics processors
  publication-title: Proceedings of the 26th annual international conference on machine learning
  doi: 10.1145/1553374.1553486
– year: 1970
  ident: B26
  publication-title: The representation of the cumulative rounding error of an algorithm as a Taylor expansion of the local rounding errors.
– volume: 323
  start-page: 533
  ident: B36
  article-title: Learning representations by back-propagating errors.
  publication-title: Nature
  doi: 10.1038/323533a0
– volume: 10
  year: 2014
  ident: B32
  article-title: A toolbox for representational similarity analysis.
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1003553
– volume: 1
  year: 1997
  ident: B44
  article-title: No Free Lunch Theorems for Optimization.
  publication-title: IEEE Transact. Evol. Comput.
  doi: 10.1109/4235.585893
– year: 2014
  ident: B38
  publication-title: Understanding machine learning: From theory to algorithms.
– volume: 330
  start-page: 97
  year: 2010
  ident: B46
  article-title: Greater neural pattern similarity across repetitions is associated with better memory.
  publication-title: Science
  doi: 10.1126/science.1193125
– volume: 284
  start-page: 96
  year: 1999
  ident: B22
  article-title: Complexity and the nervous system.
  publication-title: Science
  doi: 10.1126/science.284.5411.96
– year: 2018
  ident: B10
  publication-title: I Don’t Like Notebooks.
– volume: 7
  year: 2013
  ident: B33
  article-title: Toward open sharing of task-based fMRI data: the OpenfMRI project.
  publication-title: Front. Neuroinform.
  doi: 10.3389/fninf.2013.00012
– year: 2015
  ident: B6
  publication-title: Keras.
– volume: 27
  start-page: 1823
  year: 2015
  ident: B18
  article-title: Electrophysiological correlates of refreshing: event-related potentials associated with directing reflective attention to face, scene, or word representations.
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/jocn_a_00823
– volume: 7
  start-page: 37
  year: 2009
  ident: B11
  article-title: PyMVPA: a python toolbox for multivariate pattern analysis of fMRI data.
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-008-9041-y
– volume: 31
  start-page: 1520
  year: 2019
  ident: B25
  article-title: Not-so-working memory: Drift in functional magnetic resonance imaging pattern representations during maintenance predicts errors in a visual working memory task.
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/jocn_a_01427
– volume: 293
  start-page: 2425
  year: 2001
  ident: B13
  article-title: Distributed and overlapping representations of faces and objects in ventral temporal cortex.
  publication-title: Science
  doi: 10.1126/science.1063736
– year: 1969
  ident: B30
  publication-title: Perceptrons: An Introduction to Computational Geometry.
– volume: 8
  start-page: 551
  year: 1996
  ident: B2
  article-title: Electrophysiological studies of face perception in humans.
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/jocn.1996.8.6.551
– volume: 27
  start-page: 957
  year: 2005
  ident: B24
  article-title: Sparse Multinomial Logistic Regression: Fast Algorithms and Generalization Bounds.
  publication-title: IEEE Transac. Patt. Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2005.127
– volume: 67
  start-page: 301
  year: 2005
  ident: B49
  article-title: Regularization and variable selection via the elastic net.
  publication-title: J. Royal Statist. Soc.
  doi: 10.1111/j.1467-9868.2005.00503.x
– volume: 20
  start-page: 273
  year: 1995
  ident: B7
  article-title: Support-vector networks.
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– volume: 78
  start-page: 249
  year: 2013
  ident: B23
  article-title: Pattern classification precedes region-average hemodynamic response in early visual cortex.
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.04.019
– volume: 87
  start-page: 527
  year: 1929
  ident: B3
  article-title: Über das elektroenkephalogramm des menschen.
  publication-title: Archiv Psychiatrie Nervenkrankheiten
  doi: 10.1007/BF01797193
– volume: 43
  start-page: 44
  year: 2008
  ident: B8
  article-title: Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.06.037
– volume: 13
  start-page: 909
  year: 2000
  ident: B39
  article-title: Connectivity and complexity: the relationship between neuroanatomy and brain dynamics.
  publication-title: Neural. Networks
  doi: 10.1016/S0893-6080(00)00053-8
– volume: 14
  year: 2020
  ident: B43
  article-title: Paired Trial Classification: A Novel Deep Learning Technique for MVPA.
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2020.00417
– volume: 329
  start-page: 1358
  year: 2010
  ident: B9
  article-title: Prediction of individual brain maturity using fMRI.
  publication-title: Science
  doi: 10.1126/science.1194144
– start-page: 478
  year: 2016
  ident: B45
  article-title: Unsupervised deep embedding for clustering analysis.
  publication-title: Int. conf. Mach. Learn.
SSID ssj0062651
Score 2.32131
Snippet In recent years, multivariate pattern analysis (MVPA) has been hugely beneficial for cognitive neuroscience by making new experiment designs possible and by...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 638052
SubjectTerms Cognitive ability
cognitive neuroscience
Datasets
Deep learning
EEG
Electroencephalography
fMRI
Functional magnetic resonance imaging
Image processing
Learning algorithms
Machine learning
Medical imaging
Nervous system
Neural networks
Neuroimaging
Neuroscience
Neurosciences
Noise
Software
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL3BBlPJYWpCREOKh0PiVTLhtgapCKqrEFvVmObFDkRZnBbtA_z0zTjbqCkQvXGMnGnlm7PnimW8YeyIAWqikz3yoTKZbdEXX1EWmgwdZemOMo2rk4w_F0al-f2bOLrX6opywnh64X7h9qE0I4DCw8BKdGsDVXkBrlEMvhSLxfOZQrcFUvwdjlG5Ef4eJEKzab-P5isrOpXiF9pYbuXEKJbL-v0WYfyZKXl_Fhbv46ebzS6fQ4S12cwgf-bQXe5tdC_E225lGhM5fL_hTnhI605_yHfbxbQiLbCBQ_Zwd4HnleSq4_YEAGWNMfpLINSNfM5PwZ_7408n0-Ws-5TMiN0Dj5C567vis6-Z19-sOOz18N3tzlA09FLJGV2qZKec1lYvnBpyERvsa6kIJEbzXddF6VxDFvUJY4cu2KXJUEZWqCrpeK7UR6i7bil0M9xnHSEt4ArVlSzz03skWZKiNh6ChCTBh-XpNbTMQjFOfi7lFoEFqsEkNltRgezVM2IvxlUXPrvGvyQekqHEiEWOnB2gudjAXe5W5TNjeWs128Nbvlvpv48ZUAA4_HofRz-jyxMXQrXCOyZUmertqwu71VjFKolSpcONDCcsNe9kQdXMkfjlPXN4lIUiN33w5WtbVK_Hgf6zELrtBn0z5dHKPbS2_rcJDDLCW9aPkS78BEAQg6Q
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELdG9wAvCBgfGQMZCSE-lC2J7cRBQqiFTRPSqgo6tLfIyTkbUnG60QL777lzkkIFGq_xJXJ837bvd4w9jbWudZ5ACDZXoaxRFU1VpqG0oJMMlFKGqpGPxunhsfxwok422LivhaFrlb1N9IYamor2yPeoRzIKT6rF2_l5SF2j6HS1b6FhutYK8MZDjF1jmwkhYw3Y5mh_PPnY22aM3lXcnm1iapbv1e5sSeXoSbyLchipZM07eRD_f0Wef1-gvL50c3P5w8xmf3ing1vsZhdW8mErB7fZhnV32NbQYUr99ZI_4_6ip99B32Kf3ls7Dztg1dNwhH4MuC_E_Y6JM8aefOJBNx3vEUv4czj6PBm-eM2HfEqgByi03Djghk-bZlY2P--y44P96bvDsOutEFYyF4tQGJBURh4pbRJdSSh1mYo4tgCyTGswKUHfC0w3IKurNELWUQlrTMdumVSxuMcGrnH2AeMYgcVAyW5WEz49mKTWiS0VaCt1ZXXAon5Ni6oDHqf-F7MCExBiQ-HZUBAbipYNAXu5emXeom5cRTwiRq0ICTDbP2guTotO_wpdKmu1wfgUEvQNWpsSYl0rYdDY61QEbKdnc9Fp8bfit8wF7MlqGPWPDlWMs80SaVQkJMHe5QG730rFaiZCZAINIs4wW5OXtamuj7gvZx7jO6PMUuI3X60k6_8rsX31TzxkN4jY36BLdthgcbG0jzCkWpSPOz35BX3NH6Q
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELege4AXvsZHYSAjIcSH0iXxRxzeMmCakDZVokXjKbJjm03rnAoaYPz13CVptcIEQjymtiPnfOe7X333MyFPEqW8ylMbWZeLiHswRV0ZGXFnVZpZIYTGauT9A7k35e8OxeG5WhhMq_RYuo8XQR-Hjim4TxFDCwdElW_7cNRgFXmajEB9YpFuz62_TDakgHh8QDamB-PiIyItKQFpQUzTHWdePHbNIbW8_RcFm7_nTF5pwlyffdOz2TmHtHudVMtP6fJQTkbNwoyqH7-wPP7ft94g1_p4lRbdgJvkkgu3yGYRAKufntGntM0gbf-a3yTv3zg3j3rG1k_RDjhIS9sK36-AyCGopeOWzTPQJRUKfWb3P4yL569oQSfIpgDWQHWwVNNJXc9M_f02me6-nbzei_pLG6KK52wRMW051qfHQulUVdwaZSRLEmctN9JbLZFTnwGOsZmvZAw6gbWxCZ7nZVwk7A4ZhDq4e4RCaJdYRNGZR-J7q1OvUmeEVY6ryqkhiZcrV1Y9ozlerDErAdmg8MpWeCUKr-yENyQvVkPmHZ3HnzrvoDqsOiITd_sDLFTZL1SpjHBOaQh8bQpORyltbKK8YBq8iJJsSLaWylT228OXEi_8hp1QKmh-vGoGw8bTGh1c3UAfETOOfHr5kNztdG81E8YyBjstzDBb08q1qa63hOOjljw8Q8jK4Z0vV_r7d0nc_6feD8hVfGoz9dItMlh8btxDCN0W5lFvmz8BDgtAWA
  priority: 102
  providerName: Unpaywall
Title Deep-Learning-Based Multivariate Pattern Analysis (dMVPA): A Tutorial and a Toolbox
URI https://www.ncbi.nlm.nih.gov/pubmed/33737872
https://www.proquest.com/docview/2495179683
https://www.proquest.com/docview/2503436769
https://pubmed.ncbi.nlm.nih.gov/PMC7960649
https://www.frontiersin.org/articles/10.3389/fnhum.2021.638052/pdf
https://doaj.org/article/8b5ee8a540d246788abd18f53a111863
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1662-5161
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062651
  issn: 1662-5161
  databaseCode: KQ8
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1662-5161
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062651
  issn: 1662-5161
  databaseCode: KQ8
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1662-5161
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062651
  issn: 1662-5161
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1662-5161
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062651
  issn: 1662-5161
  databaseCode: DIK
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1662-5161
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062651
  issn: 1662-5161
  databaseCode: GX1
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1662-5161
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062651
  issn: 1662-5161
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central (ODIN)
  customDbUrl:
  eissn: 1662-5161
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062651
  issn: 1662-5161
  databaseCode: RPM
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1662-5161
  dateEnd: 20211231
  omitProxy: true
  ssIdentifier: ssj0062651
  issn: 1662-5161
  databaseCode: BENPR
  dateStart: 20080328
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal - Open Access
  customDbUrl:
  eissn: 1662-5161
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0062651
  issn: 1662-5161
  databaseCode: M48
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELemTYK9IGB8ZIzKSAjxoYwkthMHCaEUNiakVhW0qDxFTuxsk0JSSgvrf8-dm0RUVCDxkofY-ZDvd7472_c7Qh77UhYyDrSrTSxcXoAqqjwLXW60DCIthFCYjTwYhmcT_mEqpjukLW_VDOD3raEd1pOazMvjq2-rN6DwrzHiBHv7sqgulphUHvjHgCZPwIy8B4YqxkoOA95tKoDrLvz1xub2x_bJNcYiBhAONqyUJfPf5oH-eZDy-rKaqdVPVZa_WanTm-RG417SZI2HW2THVLfJQVJBaP11RZ9Qe-DTrqQfkE_vjJm5DcHqudsHe6apTcj9AQE0-KB0ZMk3K9oyl9CnevB5lDx7RRM6RvIDAC9VlaaKjuu6zOqrO2RyejJ-e-Y2NRbcnMds4TKlOaaTe0KqQOZcZzILme8brXkWFlqFSIHPIOzQUZGHHogQU1l93H6LuPDZXbJb1ZW5Tyh4Yr7GoDcqkKdeq6CQgcmElobL3EiHeO2YpnlDQI51MMoUAhGUSGolkqJE0rVEHPK8e2S2Zt_4W-c-CqrriMTZ9kY9P08bPUxlJoyRCvxUHYCNkFJl2peFYAomfRkyhxy1Yk5bMKZYnxsmrlBC86OuGfQQN1dUZeol9BEe40h_Fzvk3hoV3Z-0qHJItIGXjV_dbKkuLyzXd4QRJod3vuiQ9e-ROPzv7zwg-_gee8guOCK7i_nSPASva5H1yF7_ZDj62LOrFnB9P_V7Vr-gZTIcJV9-AciHL3c
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfG9jBeJmB8ZAwwEiA-FNb4I3GQJtSyTR1bqwo6tLfgxM6GVJKytYz-c_xt3LlJoAKNp73GjuX47nz3i32_I-RJoFSuYmZ8Y2PpixxMUWdp6AtrFIuMlFJjNnKvH3aPxPtjebxEfta5MHitst4T3UZtygz_kW9hjWRQnlDxt-NvPlaNwtPVuoSGrkormG1HMVYldhzY2QVAuPPt_R2Q91PG9naH77p-VWXAz0TMJz7XRmBCdUsqzVQmTKrSkAeBNUakYW50iCTwHAJvE-VZ2IKPwGTOAA-gIiEDDuNeIyuCixjA30pntz_4UPsCQAsymJ-lAhSMt_LidIrp7yx4DXrfkmzBG7qiAf-KdP--sLk6LcZ6dqFHoz-84d4NslaFsbQ917ubZMkWt8h6uwAI_3VGn1F3sdT9sV8nH3esHfsVkeuJ3wG_aahL_P0OQB1iXTpwJJ8FrRlS6HPT-zRov3hD23SIJAtgJFQXhmo6LMtRWv64TY6uZJXvkOWiLOw9QiHiCwyC6yhHPnyjWa6YTaVRVqjMKo-06jVNsoroHOttjBIAPCiGxIkhQTEkczF45GXzynjO8nFZ5w4KqumIBN3uQXl2klT2nqhUWqs0xMOGgS9SSqcmULnkGpyLCrlHNmsxJ9WucZ781nGPPG6awd7xEEcXtpxCH9niAmn2Yo_cnWtFMxPOIw4bMMwwWtCXhakuthRfTh2neIRIVsCYrxrN-v9KbFz-EY_IanfYO0wO9_sH98l1fNHd3mObZHlyNrUPIJybpA8rm6Hk81Wb6S9lVlqk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF6VVgJeEFAOQ4FFAsQhE3sPe4NUoYQ0aimNopKivpm1d90iBTu0CSV_kV_FzNoORKDy1Fd7ba13bs_MN4Q8CZXKVZsZ39i29EUOoqizNPKFNYrFRkqpsRt5bxBtH4j3h_JwhfxsemGwrLLRiU5RmzLDf-QtnJEMzBMp3srrsohhr_928s3HCVKYaW3Gaeh6zILZdHBjdZPHrp2fQTh3urnTA9o_Zay_NXq37dcTB_xMtPnU59oIbK4OpNJMZcKkKo14GFpjRBrlRkcICM_BCTdxnkUBfBA2doaYjIqFDDm89xJZw-QXKIm17tZguN_YBYgcZFjlVSEsbLfy4niGrfAsfA0yEEi2ZBndAIF_eb1_F29emRUTPT_T4_EflrF_nVyrXVraqXjwBlmxxU2y3ikgnP86p8-oKzJ1f-_XyceetRO_BnU98rtgQw11TcDfIWgHv5cOHeBnQRu0FPrc7H0adl68oR06QsAFEBiqC0M1HZXlOC1_3CIHF3LKt8lqURb2LqHg_YUGA-04R2x8o1mumE2lUVaozCqPBM2ZJlkNeo6zN8YJBD9IhsSRIUEyJBUZPPJy8cikQvw4b3EXCbVYiGDd7kJ5cpTUsp-oVFqrNPjGhoFdUkqnJlS55BoMjYq4RzYaMie1BjlNfvO7Rx4vboPsY0JHF7acwRoZcIGQe22P3Km4YrETzmMOyhh2GC_xy9JWl-8UX44dvniMUa2Ad75acNb_T-Le-R_xiFwGcU0-7Ax275Or-Jwr5GMbZHV6MrMPwLObpg9rkaHk80VL6S-eq17T
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELege4AXvsZHYSAjIcSH0iXxRxzeMmCakDZVokXjKbJjm03rnAoaYPz13CVptcIEQjymtiPnfOe7X333MyFPEqW8ylMbWZeLiHswRV0ZGXFnVZpZIYTGauT9A7k35e8OxeG5WhhMq_RYuo8XQR-Hjim4TxFDCwdElW_7cNRgFXmajEB9YpFuz62_TDakgHh8QDamB-PiIyItKQFpQUzTHWdePHbNIbW8_RcFm7_nTF5pwlyffdOz2TmHtHudVMtP6fJQTkbNwoyqH7-wPP7ft94g1_p4lRbdgJvkkgu3yGYRAKufntGntM0gbf-a3yTv3zg3j3rG1k_RDjhIS9sK36-AyCGopeOWzTPQJRUKfWb3P4yL569oQSfIpgDWQHWwVNNJXc9M_f02me6-nbzei_pLG6KK52wRMW051qfHQulUVdwaZSRLEmctN9JbLZFTnwGOsZmvZAw6gbWxCZ7nZVwk7A4ZhDq4e4RCaJdYRNGZR-J7q1OvUmeEVY6ryqkhiZcrV1Y9ozlerDErAdmg8MpWeCUKr-yENyQvVkPmHZ3HnzrvoDqsOiITd_sDLFTZL1SpjHBOaQh8bQpORyltbKK8YBq8iJJsSLaWylT228OXEi_8hp1QKmh-vGoGw8bTGh1c3UAfETOOfHr5kNztdG81E8YyBjstzDBb08q1qa63hOOjljw8Q8jK4Z0vV_r7d0nc_6feD8hVfGoz9dItMlh8btxDCN0W5lFvmz8BDgtAWA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep-Learning-Based+Multivariate+Pattern+Analysis+%28dMVPA%29%3A+A+Tutorial+and+a+Toolbox&rft.jtitle=Frontiers+in+human+neuroscience&rft.au=Kuntzelman%2C+Karl+M.&rft.au=Williams%2C+Jacob+M.&rft.au=Lim%2C+Phui+Cheng&rft.au=Samal%2C+Ashok&rft.date=2021-03-02&rft.pub=Frontiers+Media+S.A&rft.eissn=1662-5161&rft.volume=15&rft_id=info:doi/10.3389%2Ffnhum.2021.638052&rft_id=info%3Apmid%2F33737872&rft.externalDocID=PMC7960649
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5161&client=summon