Deep-Learning-Based Multivariate Pattern Analysis (dMVPA): A Tutorial and a Toolbox
In recent years, multivariate pattern analysis (MVPA) has been hugely beneficial for cognitive neuroscience by making new experiment designs possible and by increasing the inferential power of functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and other neuroimaging methodol...
Saved in:
| Published in | Frontiers in human neuroscience Vol. 15; p. 638052 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
Frontiers Research Foundation
02.03.2021
Frontiers Media S.A |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1662-5161 1662-5161 |
| DOI | 10.3389/fnhum.2021.638052 |
Cover
| Abstract | In recent years, multivariate pattern analysis (MVPA) has been hugely beneficial for cognitive neuroscience by making new experiment designs possible and by increasing the inferential power of functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and other neuroimaging methodologies. In a similar time frame, “deep learning” (a term for the use of artificial neural networks with convolutional, recurrent, or similarly sophisticated architectures) has produced a parallel revolution in the field of machine learning and has been employed across a wide variety of applications. Traditional MVPA also uses a form of machine learning, but most commonly with much simpler techniques based on linear calculations; a number of studies have applied deep learning techniques to neuroimaging data, but we believe that those have barely scratched the surface of the potential deep learning holds for the field. In this paper, we provide a brief introduction to deep learning for those new to the technique, explore the logistical pros and cons of using deep learning to analyze neuroimaging data – which we term “deep MVPA,” or dMVPA – and introduce a new software toolbox (the “Deep Learning In Neuroimaging: Exploration, Analysis, Tools, and Education” package, DeLINEATE for short) intended to facilitate dMVPA for neuroscientists (and indeed, scientists more broadly) everywhere. |
|---|---|
| AbstractList | In recent years, multivariate pattern analysis (MVPA) has been hugely beneficial for cognitive neuroscience by making new experiment designs possible and by increasing the inferential power of functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and other neuroimaging methodologies. In a similar time frame, “deep learning” (a term for the use of artificial neural networks with convolutional, recurrent, or similarly sophisticated architectures) has produced a parallel revolution in the field of machine learning and has been employed across a wide variety of applications. Traditional MVPA also uses a form of machine learning, but most commonly with much simpler techniques based on linear calculations; a number of studies have applied deep learning techniques to neuroimaging data, but we believe that those have barely scratched the surface of the potential deep learning holds for the field. In this paper, we provide a brief introduction to deep learning for those new to the technique, explore the logistical pros and cons of using deep learning to analyze neuroimaging data – which we term “deep MVPA,” or dMVPA – and introduce a new software toolbox (the “Deep Learning In Neuroimaging: Exploration, Analysis, Tools, and Education” package, DeLINEATE for short) intended to facilitate dMVPA for neuroscientists (and indeed, scientists more broadly) everywhere. In recent years, multivariate pattern analysis (MVPA) has been hugely beneficial for cognitive neuroscience by making new experiment designs possible and by increasing the inferential power of functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and other neuroimaging methodologies. In a similar time frame, "deep learning" (a term for the use of artificial neural networks with convolutional, recurrent, or similarly sophisticated architectures) has produced a parallel revolution in the field of machine learning and has been employed across a wide variety of applications. Traditional MVPA also uses a form of machine learning, but most commonly with much simpler techniques based on linear calculations; a number of studies have applied deep learning techniques to neuroimaging data, but we believe that those have barely scratched the surface of the potential deep learning holds for the field. In this paper, we provide a brief introduction to deep learning for those new to the technique, explore the logistical pros and cons of using deep learning to analyze neuroimaging data - which we term "deep MVPA," or dMVPA - and introduce a new software toolbox (the "Deep Learning In Neuroimaging: Exploration, Analysis, Tools, and Education" package, DeLINEATE for short) intended to facilitate dMVPA for neuroscientists (and indeed, scientists more broadly) everywhere.In recent years, multivariate pattern analysis (MVPA) has been hugely beneficial for cognitive neuroscience by making new experiment designs possible and by increasing the inferential power of functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and other neuroimaging methodologies. In a similar time frame, "deep learning" (a term for the use of artificial neural networks with convolutional, recurrent, or similarly sophisticated architectures) has produced a parallel revolution in the field of machine learning and has been employed across a wide variety of applications. Traditional MVPA also uses a form of machine learning, but most commonly with much simpler techniques based on linear calculations; a number of studies have applied deep learning techniques to neuroimaging data, but we believe that those have barely scratched the surface of the potential deep learning holds for the field. In this paper, we provide a brief introduction to deep learning for those new to the technique, explore the logistical pros and cons of using deep learning to analyze neuroimaging data - which we term "deep MVPA," or dMVPA - and introduce a new software toolbox (the "Deep Learning In Neuroimaging: Exploration, Analysis, Tools, and Education" package, DeLINEATE for short) intended to facilitate dMVPA for neuroscientists (and indeed, scientists more broadly) everywhere. |
| Author | Lim, Phui Cheng Johnson, Matthew R. Kuntzelman, Karl M. Samal, Ashok Williams, Jacob M. Rao, Prahalada K. |
| AuthorAffiliation | 2 Office of Technology Development and Coordination, National Institute of Mental Health, National Institutes of Health , Bethesda, MD , United States 5 Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln , Lincoln, NE , United States 1 Center for Brain, Biology and Behavior, University of Nebraska-Lincoln , Lincoln, NE , United States 3 Department of Computer Science and Engineering, University of Nebraska-Lincoln , Lincoln, NE , United States 4 Department of Psychology, University of Nebraska-Lincoln , Lincoln, NE , United States |
| AuthorAffiliation_xml | – name: 3 Department of Computer Science and Engineering, University of Nebraska-Lincoln , Lincoln, NE , United States – name: 1 Center for Brain, Biology and Behavior, University of Nebraska-Lincoln , Lincoln, NE , United States – name: 5 Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln , Lincoln, NE , United States – name: 2 Office of Technology Development and Coordination, National Institute of Mental Health, National Institutes of Health , Bethesda, MD , United States – name: 4 Department of Psychology, University of Nebraska-Lincoln , Lincoln, NE , United States |
| Author_xml | – sequence: 1 givenname: Karl M. surname: Kuntzelman fullname: Kuntzelman, Karl M. – sequence: 2 givenname: Jacob M. surname: Williams fullname: Williams, Jacob M. – sequence: 3 givenname: Phui Cheng surname: Lim fullname: Lim, Phui Cheng – sequence: 4 givenname: Ashok surname: Samal fullname: Samal, Ashok – sequence: 5 givenname: Prahalada K. surname: Rao fullname: Rao, Prahalada K. – sequence: 6 givenname: Matthew R. surname: Johnson fullname: Johnson, Matthew R. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33737872$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkUtvEzEUhS1URNvAD2CDRmJTFhPs8fgxLCqF8qqUikoEttadsSd15NjB9hTy75k0pWq7gJUt-5xP5557jA588AahlwRPKZXN295fDetphSsy5VRiVj1BR4TzqmSEk4N790N0nNIKY15xRp6hQ0oFFVJUR-jbB2M25dxA9NYvy_eQjC4uBpftNUQL2RSXkLOJvph5cNtkU3GiL35czt68K2bFYshhVLkCvC6gWITg2vD7OXrag0vmxe05Qd8_fVycfSnnXz-fn83mZVc3NJcUdI1JgzGTUMmu1q1sOSXEaF23vNfAsWSCskZo0XccGy0lZ4xI0jBRM0In6HzP1QFWahPtGuJWBbDq5iHEpYKYbeeMki0zRgKrsa5qLqSEVhPZMwqEEMnpyKr2rMFvYPsLnLsDEqx2baubttWubbVvezSd7k2boV0b3RmfI7gHSR7-eHulluFaiYZjPpYwQSe3gBh-DiZltbapM86BN2FIqmKY1pQLvpO-fiRdhSGOOxlVdcPIiJS7MV7dT3QX5e_CR4HYC7oYUoqmV53NkG3YBbTun8OSR87_F_QH3aHOhw |
| CitedBy_id | crossref_primary_10_3389_fnins_2022_1046752 crossref_primary_10_3389_fnimg_2022_981642 crossref_primary_10_3390_app13095472 crossref_primary_10_1167_jov_21_7_9 |
| Cites_doi | 10.1038/nrn3687 10.1162/neco.2006.18.7.1527 10.1016/j.neuroimage.2013.05.041 10.1145/130385.130401 10.1016/j.neuroimage.2017.08.005 10.1016/j.patcog.2016.06.008 10.1037/h0042519 10.3389/fnhum.2014.00059 10.1002/hbm.20379 10.1371/journal.pone.0066032 10.1146/annurev-neuro-062012-170325 10.1007/978-3-319-10590-1_53 10.21236/ADA164453 10.1007/BF02478259 10.3389/fninf.2012.00024 10.1145/1553374.1553486 10.1038/323533a0 10.1371/journal.pcbi.1003553 10.1109/4235.585893 10.1126/science.1193125 10.1126/science.284.5411.96 10.3389/fninf.2013.00012 10.1162/jocn_a_00823 10.1007/s12021-008-9041-y 10.1162/jocn_a_01427 10.1126/science.1063736 10.1162/jocn.1996.8.6.551 10.1109/TPAMI.2005.127 10.1111/j.1467-9868.2005.00503.x 10.1007/BF00994018 10.1016/j.neuroimage.2013.04.019 10.1007/BF01797193 10.1016/j.neuroimage.2008.06.037 10.1016/S0893-6080(00)00053-8 10.3389/fnins.2020.00417 10.1126/science.1194144 |
| ContentType | Journal Article |
| Copyright | Copyright © 2021 Kuntzelman, Williams, Lim, Samal, Rao and Johnson. 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2021 Kuntzelman, Williams, Lim, Samal, Rao and Johnson. 2021 Kuntzelman, Williams, Lim, Samal, Rao and Johnson |
| Copyright_xml | – notice: Copyright © 2021 Kuntzelman, Williams, Lim, Samal, Rao and Johnson. – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2021 Kuntzelman, Williams, Lim, Samal, Rao and Johnson. 2021 Kuntzelman, Williams, Lim, Samal, Rao and Johnson |
| DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3389/fnhum.2021.638052 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed CrossRef Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1662-5161 |
| ExternalDocumentID | oai_doaj_org_article_8b5ee8a540d246788abd18f53a111863 10.3389/fnhum.2021.638052 PMC7960649 33737872 10_3389_fnhum_2021_638052 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: P20 GM130461 – fundername: Nvidia grantid: GPU grant – fundername: Division of Civil, Mechanical and Manufacturing Innovation grantid: 1719388 – fundername: Office of Experimental Program to Stimulate Competitive Research grantid: 1632849 – fundername: National Institute of General Medical Sciences grantid: P20 GM130461 |
| GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABIVO ABUWG ACGFO ACGFS ADBBV ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EMOBN F5P GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P M~E O5R O5S OK1 OVT PGMZT PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PUEGO RNS RPM TR2 ACXDI C1A IAO IEA IHR IHW IPNFZ IPY ISR NPM RIG 3V. 7XB 8FK PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c493t-3ad40190058a28c4db8b6311edd4b6fda608573597d7fc60ed886551819574513 |
| IEDL.DBID | M48 |
| ISSN | 1662-5161 |
| IngestDate | Fri Oct 03 12:45:38 EDT 2025 Sun Oct 26 01:50:12 EDT 2025 Tue Sep 30 16:07:01 EDT 2025 Fri Sep 05 06:10:36 EDT 2025 Fri Jul 25 11:45:10 EDT 2025 Thu Jan 02 22:56:46 EST 2025 Thu Apr 24 23:08:46 EDT 2025 Wed Oct 01 04:22:43 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | deep learning fMRI EEG neural networks cognitive neuroscience machine learning MVPA Python |
| Language | English |
| License | Copyright © 2021 Kuntzelman, Williams, Lim, Samal, Rao and Johnson. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c493t-3ad40190058a28c4db8b6311edd4b6fda608573597d7fc60ed886551819574513 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Edited by: Gopikrishna Deshpande, Auburn University, United States This article was submitted to Cognitive Neuroscience, a section of the journal Frontiers in Human Neuroscience Reviewed by: Christian Habeck, Columbia University, United States; Tyler Davis, Texas Tech University, United States |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnhum.2021.638052 |
| PMID | 33737872 |
| PQID | 2495179683 |
| PQPubID | 4424408 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_8b5ee8a540d246788abd18f53a111863 unpaywall_primary_10_3389_fnhum_2021_638052 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7960649 proquest_miscellaneous_2503436769 proquest_journals_2495179683 pubmed_primary_33737872 crossref_citationtrail_10_3389_fnhum_2021_638052 crossref_primary_10_3389_fnhum_2021_638052 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-03-02 |
| PublicationDateYYYYMMDD | 2021-03-02 |
| PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-02 day: 02 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Lausanne |
| PublicationTitle | Frontiers in human neuroscience |
| PublicationTitleAlternate | Front Hum Neurosci |
| PublicationYear | 2021 |
| Publisher | Frontiers Research Foundation Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
| References | Dosenbach (B9) 2010; 329 Kingma (B21) 2014 Zou (B49) 2005; 67 Berger (B3) 1929; 87 De Martino (B8) 2008; 43 Akama (B1) 2012; 6 Bentin (B2) 1996; 8 Wolpert (B44) 1997; 1 Krishnapuram (B24) 2005; 27 Williams (B43) 2020; 14 Kohler (B23) 2013; 78 Chollet (B6) 2015 Grus (B10) 2018 Xue (B46) 2010; 330 Sporns (B39) 2000; 13 Boser (B4) 1992 Haxby (B12) 2014; 37 Van Essen (B41) 2013; 80 Rumelhart (B37); 1 Werbos (B42) 1974 Zeiler (B48) 2014; 2014 Buzsaki (B5) 2014; 15 Johnson (B18) 2015; 27 Hinton (B16) 2006; 18 Ngiam (B31) 2011; 11 Lore (B27) 2017; 61 Hebb (B15) 1949 Maas (B28) 2013; 30 Rosenblatt (B35) 1958; 65 McCulloch (B29) 1943; 5 Minsky (B30) 1969 Poldrack (B33) 2013; 7 Rumelhart (B36); 323 Zeiler (B47) 2013 Nili (B32) 2014; 10 Koch (B22) 1999; 284 Linnainmaa (B26) 1970 Hanke (B11) 2009; 7 Johnson (B17) 2014; 8 Hebart (B14) 2018; 180 Kay (B20) 2008; 29 Haxby (B13) 2001; 293 Shalev-Shwartz (B38) 2014 Cortes (B7) 1995; 20 Szegedy (B40) 2016 Kassam (B19) 2013; 8 Raina (B34) 2009 Lim (B25) 2019; 31 Xie (B45) 2016 |
| References_xml | – volume: 15 start-page: 264 year: 2014 ident: B5 article-title: The log-dynamic brain: how skewed distributions affect network operations. publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn3687 – volume: 18 start-page: 1527 year: 2006 ident: B16 article-title: A fast learning algorithm for deep belief nets. publication-title: Neural Comput. doi: 10.1162/neco.2006.18.7.1527 – year: 2014 ident: B21 publication-title: Adam: A Method for Stochastic Optimization. arXiv [Preprint] – volume: 80 start-page: 62 year: 2013 ident: B41 article-title: The WU-Minn human connectome project: an overview. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.041 – start-page: 144 year: 1992 ident: B4 article-title: A training algorithm for optimal margin classifiers publication-title: Proceedings of the Fifth Annual Workshop on Computational Learning Theory doi: 10.1145/130385.130401 – volume: 180 start-page: 4 year: 2018 ident: B14 article-title: Deconstructing multivariate decoding for the study of brain function. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.08.005 – volume: 61 start-page: 650 year: 2017 ident: B27 article-title: LLNet: A deep autoencoder approach to natural low-light image enhancement. publication-title: Patt. Recogn. doi: 10.1016/j.patcog.2016.06.008 – volume: 65 start-page: 386 year: 1958 ident: B35 article-title: The perceptron: A probabilistic model for information storage and organization in the brain. publication-title: Psychol. Rev. doi: 10.1037/h0042519 – year: 2016 ident: B40 publication-title: Inception-v4, inception-resnet and the impact of residual connections on learning. – volume: 8 year: 2014 ident: B17 article-title: Decoding individual natural scene representations during perception and imagery. publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2014.00059 – volume: 29 start-page: 142 year: 2008 ident: B20 article-title: Modeling low-frequency fluctuation and hemodynamic response timecourse in event-related fMRI. publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20379 – volume: 11 start-page: 689 year: 2011 ident: B31 article-title: Multimodal deep learning. publication-title: ICML – year: 2013 ident: B47 publication-title: Stochastic Pooling for Regularization of Deep Convolutional Neural Networks. arXiv [Preprint] – volume: 8 year: 2013 ident: B19 article-title: Identifying emotions on the basis of neural activation. publication-title: PLoS One doi: 10.1371/journal.pone.0066032 – volume: 37 start-page: 435 year: 2014 ident: B12 article-title: Decoding neural representational spaces using multivariate pattern analysis. publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev-neuro-062012-170325 – year: 1949 ident: B15 publication-title: The organization of behavior: a neuropsychological theory. – volume: 2014 start-page: 818 year: 2014 ident: B48 article-title: Visualizing and understanding convolutional networks. publication-title: Eur. Conf. Comput. Vision doi: 10.1007/978-3-319-10590-1_53 – year: 1974 ident: B42 publication-title: Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. – volume: 1 ident: B37 article-title: Learning internal representations by error propagation. publication-title: Paral. Distr. Proc.: Expl. Microstruct. Cogn. doi: 10.21236/ADA164453 – volume: 5 start-page: 115 year: 1943 ident: B29 article-title: A logical calculus of the ideas immanent in nervous activity. publication-title: Bull. Mathem. Biophys. doi: 10.1007/BF02478259 – volume: 30 year: 2013 ident: B28 article-title: Rectifier nonlinearities improve neural network acoustic models. publication-title: Proc. ICML – volume: 6 year: 2012 ident: B1 article-title: Decoding semantics across fMRI sessions with different stimulus modalities: a practical MVPA study. publication-title: Front. Neuroinform. doi: 10.3389/fninf.2012.00024 – start-page: 873 year: 2009 ident: B34 article-title: Large-scale deep unsupervised learning using graphics processors publication-title: Proceedings of the 26th annual international conference on machine learning doi: 10.1145/1553374.1553486 – year: 1970 ident: B26 publication-title: The representation of the cumulative rounding error of an algorithm as a Taylor expansion of the local rounding errors. – volume: 323 start-page: 533 ident: B36 article-title: Learning representations by back-propagating errors. publication-title: Nature doi: 10.1038/323533a0 – volume: 10 year: 2014 ident: B32 article-title: A toolbox for representational similarity analysis. publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1003553 – volume: 1 year: 1997 ident: B44 article-title: No Free Lunch Theorems for Optimization. publication-title: IEEE Transact. Evol. Comput. doi: 10.1109/4235.585893 – year: 2014 ident: B38 publication-title: Understanding machine learning: From theory to algorithms. – volume: 330 start-page: 97 year: 2010 ident: B46 article-title: Greater neural pattern similarity across repetitions is associated with better memory. publication-title: Science doi: 10.1126/science.1193125 – volume: 284 start-page: 96 year: 1999 ident: B22 article-title: Complexity and the nervous system. publication-title: Science doi: 10.1126/science.284.5411.96 – year: 2018 ident: B10 publication-title: I Don’t Like Notebooks. – volume: 7 year: 2013 ident: B33 article-title: Toward open sharing of task-based fMRI data: the OpenfMRI project. publication-title: Front. Neuroinform. doi: 10.3389/fninf.2013.00012 – year: 2015 ident: B6 publication-title: Keras. – volume: 27 start-page: 1823 year: 2015 ident: B18 article-title: Electrophysiological correlates of refreshing: event-related potentials associated with directing reflective attention to face, scene, or word representations. publication-title: J. Cogn. Neurosci. doi: 10.1162/jocn_a_00823 – volume: 7 start-page: 37 year: 2009 ident: B11 article-title: PyMVPA: a python toolbox for multivariate pattern analysis of fMRI data. publication-title: Neuroinformatics doi: 10.1007/s12021-008-9041-y – volume: 31 start-page: 1520 year: 2019 ident: B25 article-title: Not-so-working memory: Drift in functional magnetic resonance imaging pattern representations during maintenance predicts errors in a visual working memory task. publication-title: J. Cogn. Neurosci. doi: 10.1162/jocn_a_01427 – volume: 293 start-page: 2425 year: 2001 ident: B13 article-title: Distributed and overlapping representations of faces and objects in ventral temporal cortex. publication-title: Science doi: 10.1126/science.1063736 – year: 1969 ident: B30 publication-title: Perceptrons: An Introduction to Computational Geometry. – volume: 8 start-page: 551 year: 1996 ident: B2 article-title: Electrophysiological studies of face perception in humans. publication-title: J. Cogn. Neurosci. doi: 10.1162/jocn.1996.8.6.551 – volume: 27 start-page: 957 year: 2005 ident: B24 article-title: Sparse Multinomial Logistic Regression: Fast Algorithms and Generalization Bounds. publication-title: IEEE Transac. Patt. Anal. Mach. Intell. doi: 10.1109/TPAMI.2005.127 – volume: 67 start-page: 301 year: 2005 ident: B49 article-title: Regularization and variable selection via the elastic net. publication-title: J. Royal Statist. Soc. doi: 10.1111/j.1467-9868.2005.00503.x – volume: 20 start-page: 273 year: 1995 ident: B7 article-title: Support-vector networks. publication-title: Mach. Learn. doi: 10.1007/BF00994018 – volume: 78 start-page: 249 year: 2013 ident: B23 article-title: Pattern classification precedes region-average hemodynamic response in early visual cortex. publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.04.019 – volume: 87 start-page: 527 year: 1929 ident: B3 article-title: Über das elektroenkephalogramm des menschen. publication-title: Archiv Psychiatrie Nervenkrankheiten doi: 10.1007/BF01797193 – volume: 43 start-page: 44 year: 2008 ident: B8 article-title: Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.06.037 – volume: 13 start-page: 909 year: 2000 ident: B39 article-title: Connectivity and complexity: the relationship between neuroanatomy and brain dynamics. publication-title: Neural. Networks doi: 10.1016/S0893-6080(00)00053-8 – volume: 14 year: 2020 ident: B43 article-title: Paired Trial Classification: A Novel Deep Learning Technique for MVPA. publication-title: Front. Neurosci. doi: 10.3389/fnins.2020.00417 – volume: 329 start-page: 1358 year: 2010 ident: B9 article-title: Prediction of individual brain maturity using fMRI. publication-title: Science doi: 10.1126/science.1194144 – start-page: 478 year: 2016 ident: B45 article-title: Unsupervised deep embedding for clustering analysis. publication-title: Int. conf. Mach. Learn. |
| SSID | ssj0062651 |
| Score | 2.32131 |
| Snippet | In recent years, multivariate pattern analysis (MVPA) has been hugely beneficial for cognitive neuroscience by making new experiment designs possible and by... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 638052 |
| SubjectTerms | Cognitive ability cognitive neuroscience Datasets Deep learning EEG Electroencephalography fMRI Functional magnetic resonance imaging Image processing Learning algorithms Machine learning Medical imaging Nervous system Neural networks Neuroimaging Neuroscience Neurosciences Noise Software |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL3BBlPJYWpCREOKh0PiVTLhtgapCKqrEFvVmObFDkRZnBbtA_z0zTjbqCkQvXGMnGnlm7PnimW8YeyIAWqikz3yoTKZbdEXX1EWmgwdZemOMo2rk4w_F0al-f2bOLrX6opywnh64X7h9qE0I4DCw8BKdGsDVXkBrlEMvhSLxfOZQrcFUvwdjlG5Ef4eJEKzab-P5isrOpXiF9pYbuXEKJbL-v0WYfyZKXl_Fhbv46ebzS6fQ4S12cwgf-bQXe5tdC_E225lGhM5fL_hTnhI605_yHfbxbQiLbCBQ_Zwd4HnleSq4_YEAGWNMfpLINSNfM5PwZ_7408n0-Ws-5TMiN0Dj5C567vis6-Z19-sOOz18N3tzlA09FLJGV2qZKec1lYvnBpyERvsa6kIJEbzXddF6VxDFvUJY4cu2KXJUEZWqCrpeK7UR6i7bil0M9xnHSEt4ArVlSzz03skWZKiNh6ChCTBh-XpNbTMQjFOfi7lFoEFqsEkNltRgezVM2IvxlUXPrvGvyQekqHEiEWOnB2gudjAXe5W5TNjeWs128Nbvlvpv48ZUAA4_HofRz-jyxMXQrXCOyZUmertqwu71VjFKolSpcONDCcsNe9kQdXMkfjlPXN4lIUiN33w5WtbVK_Hgf6zELrtBn0z5dHKPbS2_rcJDDLCW9aPkS78BEAQg6Q priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELdG9wAvCBgfGQMZCSE-lC2J7cRBQqiFTRPSqgo6tLfIyTkbUnG60QL777lzkkIFGq_xJXJ837bvd4w9jbWudZ5ACDZXoaxRFU1VpqG0oJMMlFKGqpGPxunhsfxwok422LivhaFrlb1N9IYamor2yPeoRzIKT6rF2_l5SF2j6HS1b6FhutYK8MZDjF1jmwkhYw3Y5mh_PPnY22aM3lXcnm1iapbv1e5sSeXoSbyLchipZM07eRD_f0Wef1-gvL50c3P5w8xmf3ing1vsZhdW8mErB7fZhnV32NbQYUr99ZI_4_6ip99B32Kf3ls7Dztg1dNwhH4MuC_E_Y6JM8aefOJBNx3vEUv4czj6PBm-eM2HfEqgByi03Djghk-bZlY2P--y44P96bvDsOutEFYyF4tQGJBURh4pbRJdSSh1mYo4tgCyTGswKUHfC0w3IKurNELWUQlrTMdumVSxuMcGrnH2AeMYgcVAyW5WEz49mKTWiS0VaCt1ZXXAon5Ni6oDHqf-F7MCExBiQ-HZUBAbipYNAXu5emXeom5cRTwiRq0ICTDbP2guTotO_wpdKmu1wfgUEvQNWpsSYl0rYdDY61QEbKdnc9Fp8bfit8wF7MlqGPWPDlWMs80SaVQkJMHe5QG730rFaiZCZAINIs4wW5OXtamuj7gvZx7jO6PMUuI3X60k6_8rsX31TzxkN4jY36BLdthgcbG0jzCkWpSPOz35BX3NH6Q priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELege4AXvsZHYSAjIcSH0iXxRxzeMmCakDZVokXjKbJjm03rnAoaYPz13CVptcIEQjymtiPnfOe7X333MyFPEqW8ylMbWZeLiHswRV0ZGXFnVZpZIYTGauT9A7k35e8OxeG5WhhMq_RYuo8XQR-Hjim4TxFDCwdElW_7cNRgFXmajEB9YpFuz62_TDakgHh8QDamB-PiIyItKQFpQUzTHWdePHbNIbW8_RcFm7_nTF5pwlyffdOz2TmHtHudVMtP6fJQTkbNwoyqH7-wPP7ft94g1_p4lRbdgJvkkgu3yGYRAKufntGntM0gbf-a3yTv3zg3j3rG1k_RDjhIS9sK36-AyCGopeOWzTPQJRUKfWb3P4yL569oQSfIpgDWQHWwVNNJXc9M_f02me6-nbzei_pLG6KK52wRMW051qfHQulUVdwaZSRLEmctN9JbLZFTnwGOsZmvZAw6gbWxCZ7nZVwk7A4ZhDq4e4RCaJdYRNGZR-J7q1OvUmeEVY6ryqkhiZcrV1Y9ozlerDErAdmg8MpWeCUKr-yENyQvVkPmHZ3HnzrvoDqsOiITd_sDLFTZL1SpjHBOaQh8bQpORyltbKK8YBq8iJJsSLaWylT228OXEi_8hp1QKmh-vGoGw8bTGh1c3UAfETOOfHr5kNztdG81E8YyBjstzDBb08q1qa63hOOjljw8Q8jK4Z0vV_r7d0nc_6feD8hVfGoz9dItMlh8btxDCN0W5lFvmz8BDgtAWA priority: 102 providerName: Unpaywall |
| Title | Deep-Learning-Based Multivariate Pattern Analysis (dMVPA): A Tutorial and a Toolbox |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/33737872 https://www.proquest.com/docview/2495179683 https://www.proquest.com/docview/2503436769 https://pubmed.ncbi.nlm.nih.gov/PMC7960649 https://www.frontiersin.org/articles/10.3389/fnhum.2021.638052/pdf https://doaj.org/article/8b5ee8a540d246788abd18f53a111863 |
| UnpaywallVersion | publishedVersion |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1662-5161 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062651 issn: 1662-5161 databaseCode: KQ8 dateStart: 20070101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1662-5161 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062651 issn: 1662-5161 databaseCode: KQ8 dateStart: 20080101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1662-5161 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062651 issn: 1662-5161 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1662-5161 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062651 issn: 1662-5161 databaseCode: DIK dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1662-5161 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062651 issn: 1662-5161 databaseCode: GX1 dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1662-5161 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062651 issn: 1662-5161 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central (ODIN) customDbUrl: eissn: 1662-5161 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062651 issn: 1662-5161 databaseCode: RPM dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1662-5161 dateEnd: 20211231 omitProxy: true ssIdentifier: ssj0062651 issn: 1662-5161 databaseCode: BENPR dateStart: 20080328 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal - Open Access customDbUrl: eissn: 1662-5161 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0062651 issn: 1662-5161 databaseCode: M48 dateStart: 20100101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELemTYK9IGB8ZIzKSAjxoYwkthMHCaEUNiakVhW0qDxFTuxsk0JSSgvrf8-dm0RUVCDxkofY-ZDvd7472_c7Qh77UhYyDrSrTSxcXoAqqjwLXW60DCIthFCYjTwYhmcT_mEqpjukLW_VDOD3raEd1pOazMvjq2-rN6DwrzHiBHv7sqgulphUHvjHgCZPwIy8B4YqxkoOA95tKoDrLvz1xub2x_bJNcYiBhAONqyUJfPf5oH-eZDy-rKaqdVPVZa_WanTm-RG417SZI2HW2THVLfJQVJBaP11RZ9Qe-DTrqQfkE_vjJm5DcHqudsHe6apTcj9AQE0-KB0ZMk3K9oyl9CnevB5lDx7RRM6RvIDAC9VlaaKjuu6zOqrO2RyejJ-e-Y2NRbcnMds4TKlOaaTe0KqQOZcZzILme8brXkWFlqFSIHPIOzQUZGHHogQU1l93H6LuPDZXbJb1ZW5Tyh4Yr7GoDcqkKdeq6CQgcmElobL3EiHeO2YpnlDQI51MMoUAhGUSGolkqJE0rVEHPK8e2S2Zt_4W-c-CqrriMTZ9kY9P08bPUxlJoyRCvxUHYCNkFJl2peFYAomfRkyhxy1Yk5bMKZYnxsmrlBC86OuGfQQN1dUZeol9BEe40h_Fzvk3hoV3Z-0qHJItIGXjV_dbKkuLyzXd4QRJod3vuiQ9e-ROPzv7zwg-_gee8guOCK7i_nSPASva5H1yF7_ZDj62LOrFnB9P_V7Vr-gZTIcJV9-AciHL3c |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfG9jBeJmB8ZAwwEiA-FNb4I3GQJtSyTR1bqwo6tLfgxM6GVJKytYz-c_xt3LlJoAKNp73GjuX47nz3i32_I-RJoFSuYmZ8Y2PpixxMUWdp6AtrFIuMlFJjNnKvH3aPxPtjebxEfta5MHitst4T3UZtygz_kW9hjWRQnlDxt-NvPlaNwtPVuoSGrkormG1HMVYldhzY2QVAuPPt_R2Q91PG9naH77p-VWXAz0TMJz7XRmBCdUsqzVQmTKrSkAeBNUakYW50iCTwHAJvE-VZ2IKPwGTOAA-gIiEDDuNeIyuCixjA30pntz_4UPsCQAsymJ-lAhSMt_LidIrp7yx4DXrfkmzBG7qiAf-KdP--sLk6LcZ6dqFHoz-84d4NslaFsbQ917ubZMkWt8h6uwAI_3VGn1F3sdT9sV8nH3esHfsVkeuJ3wG_aahL_P0OQB1iXTpwJJ8FrRlS6HPT-zRov3hD23SIJAtgJFQXhmo6LMtRWv64TY6uZJXvkOWiLOw9QiHiCwyC6yhHPnyjWa6YTaVRVqjMKo-06jVNsoroHOttjBIAPCiGxIkhQTEkczF45GXzynjO8nFZ5w4KqumIBN3uQXl2klT2nqhUWqs0xMOGgS9SSqcmULnkGpyLCrlHNmsxJ9WucZ781nGPPG6awd7xEEcXtpxCH9niAmn2Yo_cnWtFMxPOIw4bMMwwWtCXhakuthRfTh2neIRIVsCYrxrN-v9KbFz-EY_IanfYO0wO9_sH98l1fNHd3mObZHlyNrUPIJybpA8rm6Hk81Wb6S9lVlqk |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF6VVgJeEFAOQ4FFAsQhE3sPe4NUoYQ0aimNopKivpm1d90iBTu0CSV_kV_FzNoORKDy1Fd7ba13bs_MN4Q8CZXKVZsZ39i29EUOoqizNPKFNYrFRkqpsRt5bxBtH4j3h_JwhfxsemGwrLLRiU5RmzLDf-QtnJEMzBMp3srrsohhr_928s3HCVKYaW3Gaeh6zILZdHBjdZPHrp2fQTh3urnTA9o_Zay_NXq37dcTB_xMtPnU59oIbK4OpNJMZcKkKo14GFpjRBrlRkcICM_BCTdxnkUBfBA2doaYjIqFDDm89xJZw-QXKIm17tZguN_YBYgcZFjlVSEsbLfy4niGrfAsfA0yEEi2ZBndAIF_eb1_F29emRUTPT_T4_EflrF_nVyrXVraqXjwBlmxxU2y3ikgnP86p8-oKzJ1f-_XyceetRO_BnU98rtgQw11TcDfIWgHv5cOHeBnQRu0FPrc7H0adl68oR06QsAFEBiqC0M1HZXlOC1_3CIHF3LKt8lqURb2LqHg_YUGA-04R2x8o1mumE2lUVaozCqPBM2ZJlkNeo6zN8YJBD9IhsSRIUEyJBUZPPJy8cikQvw4b3EXCbVYiGDd7kJ5cpTUsp-oVFqrNPjGhoFdUkqnJlS55BoMjYq4RzYaMie1BjlNfvO7Rx4vboPsY0JHF7acwRoZcIGQe22P3Km4YrETzmMOyhh2GC_xy9JWl-8UX44dvniMUa2Ad75acNb_T-Le-R_xiFwGcU0-7Ax275Or-Jwr5GMbZHV6MrMPwLObpg9rkaHk80VL6S-eq17T |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELege4AXvsZHYSAjIcSH0iXxRxzeMmCakDZVokXjKbJjm03rnAoaYPz13CVptcIEQjymtiPnfOe7X333MyFPEqW8ylMbWZeLiHswRV0ZGXFnVZpZIYTGauT9A7k35e8OxeG5WhhMq_RYuo8XQR-Hjim4TxFDCwdElW_7cNRgFXmajEB9YpFuz62_TDakgHh8QDamB-PiIyItKQFpQUzTHWdePHbNIbW8_RcFm7_nTF5pwlyffdOz2TmHtHudVMtP6fJQTkbNwoyqH7-wPP7ft94g1_p4lRbdgJvkkgu3yGYRAKufntGntM0gbf-a3yTv3zg3j3rG1k_RDjhIS9sK36-AyCGopeOWzTPQJRUKfWb3P4yL569oQSfIpgDWQHWwVNNJXc9M_f02me6-nbzei_pLG6KK52wRMW051qfHQulUVdwaZSRLEmctN9JbLZFTnwGOsZmvZAw6gbWxCZ7nZVwk7A4ZhDq4e4RCaJdYRNGZR-J7q1OvUmeEVY6ryqkhiZcrV1Y9ozlerDErAdmg8MpWeCUKr-yENyQvVkPmHZ3HnzrvoDqsOiITd_sDLFTZL1SpjHBOaQh8bQpORyltbKK8YBq8iJJsSLaWylT228OXEi_8hp1QKmh-vGoGw8bTGh1c3UAfETOOfHr5kNztdG81E8YyBjstzDBb08q1qa63hOOjljw8Q8jK4Z0vV_r7d0nc_6feD8hVfGoz9dItMlh8btxDCN0W5lFvmz8BDgtAWA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep-Learning-Based+Multivariate+Pattern+Analysis+%28dMVPA%29%3A+A+Tutorial+and+a+Toolbox&rft.jtitle=Frontiers+in+human+neuroscience&rft.au=Kuntzelman%2C+Karl+M.&rft.au=Williams%2C+Jacob+M.&rft.au=Lim%2C+Phui+Cheng&rft.au=Samal%2C+Ashok&rft.date=2021-03-02&rft.pub=Frontiers+Media+S.A&rft.eissn=1662-5161&rft.volume=15&rft_id=info:doi/10.3389%2Ffnhum.2021.638052&rft_id=info%3Apmid%2F33737872&rft.externalDocID=PMC7960649 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5161&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5161&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5161&client=summon |