Development and evaluation of a novel framework to enhance k-NN algorithm’s accuracy in data sparsity contexts

This paper presents a novel framework for implementing the k-NN algorithm, designed to enhance its accuracy in contexts with sparse data. The framework addresses limitations in the algorithm’s training process by optimizing data structures. It employs composite datasets generated from the initial da...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; pp. 25036 - 13
Main Authors Giannopoulos, Panagiotis G., Dasaklis, Thomas K., Rachaniotis, Nikolaos
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 23.10.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-024-76909-6

Cover

Abstract This paper presents a novel framework for implementing the k-NN algorithm, designed to enhance its accuracy in contexts with sparse data. The framework addresses limitations in the algorithm’s training process by optimizing data structures. It employs composite datasets generated from the initial data using a data-driven fuzzy Analytic Hierarchy Process weighting scheme. This approach is designed to enhance the informational content in the initial datasets, thus reducing the entropy and implementation uncertainty. The framework was evaluated using 75 publicly available datasets and 3 generated datasets, demonstrating significant accuracy improvements across various k -parameter values. The findings were rigorously generalized using non-parametric hypothesis tests; while the resulting sensitivity was assessed by applying different distance metrics. By enhancing informational content, the composite data structures contribute to both accuracy improvements and scalability, particularly in data-sparse contexts. This relationship underscores the critical role of entropy in enhancing the performance of explainable machine learning algorithms, providing a valuable and interpretable tool for transforming data structures in sparse data environments.
AbstractList This paper presents a novel framework for implementing the k-NN algorithm, designed to enhance its accuracy in contexts with sparse data. The framework addresses limitations in the algorithm’s training process by optimizing data structures. It employs composite datasets generated from the initial data using a data-driven fuzzy Analytic Hierarchy Process weighting scheme. This approach is designed to enhance the informational content in the initial datasets, thus reducing the entropy and implementation uncertainty. The framework was evaluated using 75 publicly available datasets and 3 generated datasets, demonstrating significant accuracy improvements across various k-parameter values. The findings were rigorously generalized using non-parametric hypothesis tests; while the resulting sensitivity was assessed by applying different distance metrics. By enhancing informational content, the composite data structures contribute to both accuracy improvements and scalability, particularly in data-sparse contexts. This relationship underscores the critical role of entropy in enhancing the performance of explainable machine learning algorithms, providing a valuable and interpretable tool for transforming data structures in sparse data environments.
Abstract This paper presents a novel framework for implementing the k-NN algorithm, designed to enhance its accuracy in contexts with sparse data. The framework addresses limitations in the algorithm’s training process by optimizing data structures. It employs composite datasets generated from the initial data using a data-driven fuzzy Analytic Hierarchy Process weighting scheme. This approach is designed to enhance the informational content in the initial datasets, thus reducing the entropy and implementation uncertainty. The framework was evaluated using 75 publicly available datasets and 3 generated datasets, demonstrating significant accuracy improvements across various k-parameter values. The findings were rigorously generalized using non-parametric hypothesis tests; while the resulting sensitivity was assessed by applying different distance metrics. By enhancing informational content, the composite data structures contribute to both accuracy improvements and scalability, particularly in data-sparse contexts. This relationship underscores the critical role of entropy in enhancing the performance of explainable machine learning algorithms, providing a valuable and interpretable tool for transforming data structures in sparse data environments.
This paper presents a novel framework for implementing the k-NN algorithm, designed to enhance its accuracy in contexts with sparse data. The framework addresses limitations in the algorithm’s training process by optimizing data structures. It employs composite datasets generated from the initial data using a data-driven fuzzy Analytic Hierarchy Process weighting scheme. This approach is designed to enhance the informational content in the initial datasets, thus reducing the entropy and implementation uncertainty. The framework was evaluated using 75 publicly available datasets and 3 generated datasets, demonstrating significant accuracy improvements across various k -parameter values. The findings were rigorously generalized using non-parametric hypothesis tests; while the resulting sensitivity was assessed by applying different distance metrics. By enhancing informational content, the composite data structures contribute to both accuracy improvements and scalability, particularly in data-sparse contexts. This relationship underscores the critical role of entropy in enhancing the performance of explainable machine learning algorithms, providing a valuable and interpretable tool for transforming data structures in sparse data environments.
This paper presents a novel framework for implementing the k-NN algorithm, designed to enhance its accuracy in contexts with sparse data. The framework addresses limitations in the algorithm's training process by optimizing data structures. It employs composite datasets generated from the initial data using a data-driven fuzzy Analytic Hierarchy Process weighting scheme. This approach is designed to enhance the informational content in the initial datasets, thus reducing the entropy and implementation uncertainty. The framework was evaluated using 75 publicly available datasets and 3 generated datasets, demonstrating significant accuracy improvements across various k-parameter values. The findings were rigorously generalized using non-parametric hypothesis tests; while the resulting sensitivity was assessed by applying different distance metrics. By enhancing informational content, the composite data structures contribute to both accuracy improvements and scalability, particularly in data-sparse contexts. This relationship underscores the critical role of entropy in enhancing the performance of explainable machine learning algorithms, providing a valuable and interpretable tool for transforming data structures in sparse data environments.This paper presents a novel framework for implementing the k-NN algorithm, designed to enhance its accuracy in contexts with sparse data. The framework addresses limitations in the algorithm's training process by optimizing data structures. It employs composite datasets generated from the initial data using a data-driven fuzzy Analytic Hierarchy Process weighting scheme. This approach is designed to enhance the informational content in the initial datasets, thus reducing the entropy and implementation uncertainty. The framework was evaluated using 75 publicly available datasets and 3 generated datasets, demonstrating significant accuracy improvements across various k-parameter values. The findings were rigorously generalized using non-parametric hypothesis tests; while the resulting sensitivity was assessed by applying different distance metrics. By enhancing informational content, the composite data structures contribute to both accuracy improvements and scalability, particularly in data-sparse contexts. This relationship underscores the critical role of entropy in enhancing the performance of explainable machine learning algorithms, providing a valuable and interpretable tool for transforming data structures in sparse data environments.
ArticleNumber 25036
Author Dasaklis, Thomas K.
Giannopoulos, Panagiotis G.
Rachaniotis, Nikolaos
Author_xml – sequence: 1
  givenname: Panagiotis G.
  surname: Giannopoulos
  fullname: Giannopoulos, Panagiotis G.
  organization: School of Social Sciences, Hellenic Open University
– sequence: 2
  givenname: Thomas K.
  surname: Dasaklis
  fullname: Dasaklis, Thomas K.
  email: dasaklis@eap.gr
  organization: School of Social Sciences, Hellenic Open University
– sequence: 3
  givenname: Nikolaos
  surname: Rachaniotis
  fullname: Rachaniotis, Nikolaos
  organization: Department of Industrial Management and Technology, University of Piraeus
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39443669$$D View this record in MEDLINE/PubMed
BookMark eNqNks9u1DAQxiNUREvpC3BAlrhwCdiOndgnhMq_SlW5wNmaOJPdbBM72MmWvfU1-no8Cd7uUloOCF9seb75zXg-P80OnHeYZc8Zfc1ood5EwaRWOeUir0pNdV4-yo44FTLnBecH986H2UmMK5qW5Fow_SQ7LLQQRVnqo2x8j2vs_Tigmwi4huAa-hmmzjviWwLE-RQnbYABr3y4JJMn6JbgLJLL_OKCQL_woZuWw8_rm0jA2jmA3ZDOkQYmIHGEELtpQ6x3E_6Y4rPscQt9xJP9fpx9-_jh6-nn_PzLp7PTd-e5FZpPeVsKbSW3ICsOULOm4jVjbVlbW7FaWkqBF00FumoqKS0KXdO6tZViFlVdiOI4O9txGw8rM4ZugLAxHjpze-HDwkCYOtujSXxFNbS15FIohRqEpIgSBXCooEqsYsea3QibK-j7OyCjZmuH2dlhkh3m1g5Tpqy3u6xxrgdsbJpwgP5BKw8jrluahV8bxoTWim0Jr_aE4L_PGCczdNFi34NDP0dTMJ5MVWWlkvTlX9KVn4NLE04qppVQJd-qXtxv6a6X3_8hCfhOYIOPMWD7fw_djycmsVtg-FP7H1m_ACIb2yw
Cites_doi 10.1146/annurev-statistics-040620-041554
10.1007/978-3-031-05484-6_142
10.1016/S0957-4174(02)00045-3
10.1016/j.patcog.2017.01.018
10.1109/INCOS.2009.25
10.1016/j.eswa.2020.113374
10.1007/s12665-022-10312-0
10.1016/j.asoc.2017.05.042
10.1007/s41664-018-0068-2
10.1007/s10115-022-01756-8
10.4090/juee.2011.v5n1.032043
10.1016/j.eswa.2018.04.015
10.1016/j.enganabound.2024.03.006
10.1016/j.watres.2023.120667
10.35848/1882-0786/acf184
10.3233/IDT-200217
10.1109/ICCED46541.2019.9161133
10.1109/IICETA54559.2022.9888273
10.3390/RS12010106
10.1142/S0218213022400036
10.1016/j.eswa.2020.113738
10.1007/978-3-030-65965-3_28
10.1109/IISA59645.2023.10345895
10.3390/app12042124
10.1371/journal.pone.0207772
10.1016/j.patrec.2017.09.036
ContentType Journal Article
Copyright The Author(s) 2024. corrected publication 2024
2024. The Author(s).
The Author(s) 2024. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024. corrected publication 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1038/s41598-024-76909-6
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed


Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 13
ExternalDocumentID oai_doaj_org_article_aab809afb525488e9a450ee5e4a2a7a7
10.1038/s41598-024-76909-6
PMC11499816
39443669
10_1038_s41598_024_76909_6
Genre Journal Article
GrantInformation_xml – fundername: This research was financially supported by the Hellenic Open University and the European Commission, under the NextGeneration-EU programm
  grantid: YP1TA 0555681
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M48
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
CITATION
PJZUB
PPXIY
PQGLB
PUEGO
3V.
88A
ACSMW
AJTQC
M0L
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
EJD
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c492t-f649c52ca572aab1d72b11f6bcc71b5c00a23d7a97d755ce49b0bfc781ce8b343
IEDL.DBID UNPAY
ISSN 2045-2322
IngestDate Fri Oct 03 12:53:20 EDT 2025
Sun Oct 26 03:52:39 EDT 2025
Tue Sep 30 17:07:26 EDT 2025
Fri Sep 05 07:25:05 EDT 2025
Tue Oct 07 07:46:52 EDT 2025
Wed Feb 19 02:15:44 EST 2025
Wed Oct 01 04:02:21 EDT 2025
Thu May 22 04:31:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c492t-f649c52ca572aab1d72b11f6bcc71b5c00a23d7a97d755ce49b0bfc781ce8b343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=http://doi.org/10.1038/s41598-024-76909-6
PMID 39443669
PQID 3119848628
PQPubID 2041939
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_aab809afb525488e9a450ee5e4a2a7a7
unpaywall_primary_10_1038_s41598_024_76909_6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11499816
proquest_miscellaneous_3120058678
proquest_journals_3119848628
pubmed_primary_39443669
crossref_primary_10_1038_s41598_024_76909_6
springer_journals_10_1038_s41598_024_76909_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-23
PublicationDateYYYYMMDD 2024-10-23
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-23
  day: 23
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Nasiri, Minaei, Sharifi (CR16) 2017; 61
CR19
CR18
CR17
CR12
CR11
CR10
Cengiz, Ercanoglu (CR25) 2022; 81
Aboutorab, Saberi, Asadabadi, Hussain, Chang (CR24) 2018; 107
Bhattacharya, Ghosh, Chowdhury (CR13) 2017; 66
Khan, Pao, Pilario, Sallih (CR21) 2024; 163
Li (CR20) 2022; 64
Park, Han (CR6) 2002; 23
Xu, Goodacre (CR15) 2018; 2
Khalil, AlSayed, Liu, Vanrolleghem (CR22) 2023; 245
CR2
CR4
CR5
CR7
Marjanović, Bajat, Kovačević (CR8) 2009; 273–278
CR9
Ali (CR3) 2020; 151
Engelke, Ivanovs (CR1) 2021; 8
CR23
Wei (CR14) 2022; 138
Soltani, Marandi (CR26) 2011; 5
76909_CR9
76909_CR7
76909_CR5
A Soltani (76909_CR26) 2011; 5
76909_CR4
76909_CR2
G Bhattacharya (76909_CR13) 2017; 66
76909_CR23
S Engelke (76909_CR1) 2021; 8
C-S Park (76909_CR6) 2002; 23
M Marjanović (76909_CR8) 2009; 273–278
W Wei (76909_CR14) 2022; 138
M Ali (76909_CR3) 2020; 151
U Khan (76909_CR21) 2024; 163
LD Cengiz (76909_CR25) 2022; 81
76909_CR11
76909_CR10
76909_CR12
Y Xu (76909_CR15) 2018; 2
76909_CR19
76909_CR18
76909_CR17
M Nasiri (76909_CR16) 2017; 61
M Khalil (76909_CR22) 2023; 245
X Li (76909_CR20) 2022; 64
H Aboutorab (76909_CR24) 2018; 107
References_xml – volume: 8
  start-page: 241
  year: 2021
  end-page: 270
  ident: CR1
  article-title: Sparse structures for multivariate extremes
  publication-title: Annu. Rev. Stat. Appl.
  doi: 10.1146/annurev-statistics-040620-041554
– volume: 138
  start-page: 1047
  year: 2022
  end-page: 1052
  ident: CR14
  article-title: Application of feature weighted knn classification algorithm in cross-border e-commerce talent training
  publication-title: Lect. Notes Data Eng. Commun. Technol.
  doi: 10.1007/978-3-031-05484-6_142
– ident: CR18
– volume: 23
  start-page: 255
  year: 2002
  end-page: 264
  ident: CR6
  article-title: A case-based reasoning with the feature weights derived by analytic hierarchy process for bankruptcy prediction
  publication-title: Expert Syst. Appl.
  doi: 10.1016/S0957-4174(02)00045-3
– ident: CR4
– ident: CR2
– ident: CR12
– ident: CR10
– volume: 66
  start-page: 425
  year: 2017
  end-page: 436
  ident: CR13
  article-title: Granger causality driven ahp for feature weighted knn
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2017.01.018
– volume: 273–278
  start-page: 2009
  year: 2009
  ident: CR8
  article-title: Landslide susceptibility assessment with machine learning algorithms
  publication-title: In International Conference on Intelligent Networking and Collaborative Systems, INCoS
  doi: 10.1109/INCOS.2009.25
– ident: CR23
– ident: CR19
– volume: 151
  year: 2020
  ident: CR3
  article-title: Semantic-k-nn algorithm: An enhanced version of traditional k-nn algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113374
– volume: 81
  start-page: 222
  year: 2022
  ident: CR25
  article-title: A novel data-driven approach to pairwise comparisons in AHP using fuzzy relations and matrices for landslide susceptibility assessments
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-022-10312-0
– volume: 61
  start-page: 1153
  year: 2017
  end-page: 1159
  ident: CR16
  article-title: Adjusting data sparsity problem using linear algebra and machine learning algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.05.042
– volume: 2
  start-page: 249
  year: 2018
  end-page: 262
  ident: CR15
  article-title: On splitting training and validation set: A comparative study of cross-validation, bootstrap and systematic sampling for estimating the generalization performance of supervised learning
  publication-title: J. Anal. Test.
  doi: 10.1007/s41664-018-0068-2
– ident: CR17
– volume: 64
  start-page: 3197
  year: 2022
  end-page: 3234
  ident: CR20
  article-title: Interpretable deep learning: interpretation, interpretability, trustworthiness, and beyond
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-022-01756-8
– volume: 5
  start-page: 32
  year: 2011
  end-page: 43
  ident: CR26
  article-title: Hospital site selection using two-stage fuzzy multi-criteria decision making process
  publication-title: J. Urban Environ. Eng.
  doi: 10.4090/juee.2011.v5n1.032043
– ident: CR11
– ident: CR9
– volume: 107
  start-page: 115
  year: 2018
  end-page: 125
  ident: CR24
  article-title: Zbwm: The z-number extension of best worst method and its application for supplier development
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.04.015
– volume: 163
  start-page: 161
  year: 2024
  end-page: 174
  ident: CR21
  article-title: Flow regime classification using various dimensionality reduction methods and automl
  publication-title: Eng. Anal. Boundary Elem.
  doi: 10.1016/j.enganabound.2024.03.006
– ident: CR5
– volume: 245
  year: 2023
  ident: CR22
  article-title: Machine learning for modeling n2o emissions from wastewater treatment plants: Aligning model performance, complexity, and interpretability
  publication-title: Water Res.
  doi: 10.1016/j.watres.2023.120667
– ident: CR7
– volume: 273–278
  start-page: 2009
  year: 2009
  ident: 76909_CR8
  publication-title: In International Conference on Intelligent Networking and Collaborative Systems, INCoS
  doi: 10.1109/INCOS.2009.25
– ident: 76909_CR7
  doi: 10.35848/1882-0786/acf184
– volume: 66
  start-page: 425
  year: 2017
  ident: 76909_CR13
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2017.01.018
– volume: 5
  start-page: 32
  year: 2011
  ident: 76909_CR26
  publication-title: J. Urban Environ. Eng.
  doi: 10.4090/juee.2011.v5n1.032043
– volume: 23
  start-page: 255
  year: 2002
  ident: 76909_CR6
  publication-title: Expert Syst. Appl.
  doi: 10.1016/S0957-4174(02)00045-3
– volume: 245
  year: 2023
  ident: 76909_CR22
  publication-title: Water Res.
  doi: 10.1016/j.watres.2023.120667
– ident: 76909_CR19
  doi: 10.3233/IDT-200217
– ident: 76909_CR9
  doi: 10.1109/ICCED46541.2019.9161133
– ident: 76909_CR10
  doi: 10.1109/IICETA54559.2022.9888273
– volume: 151
  year: 2020
  ident: 76909_CR3
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113374
– ident: 76909_CR12
  doi: 10.3390/RS12010106
– volume: 163
  start-page: 161
  year: 2024
  ident: 76909_CR21
  publication-title: Eng. Anal. Boundary Elem.
  doi: 10.1016/j.enganabound.2024.03.006
– ident: 76909_CR11
  doi: 10.1142/S0218213022400036
– ident: 76909_CR23
  doi: 10.1016/j.eswa.2020.113738
– volume: 61
  start-page: 1153
  year: 2017
  ident: 76909_CR16
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.05.042
– ident: 76909_CR18
  doi: 10.1007/978-3-030-65965-3_28
– volume: 64
  start-page: 3197
  year: 2022
  ident: 76909_CR20
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-022-01756-8
– ident: 76909_CR4
  doi: 10.1109/IISA59645.2023.10345895
– ident: 76909_CR5
  doi: 10.3390/app12042124
– volume: 107
  start-page: 115
  year: 2018
  ident: 76909_CR24
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.04.015
– volume: 8
  start-page: 241
  year: 2021
  ident: 76909_CR1
  publication-title: Annu. Rev. Stat. Appl.
  doi: 10.1146/annurev-statistics-040620-041554
– volume: 138
  start-page: 1047
  year: 2022
  ident: 76909_CR14
  publication-title: Lect. Notes Data Eng. Commun. Technol.
  doi: 10.1007/978-3-031-05484-6_142
– volume: 81
  start-page: 222
  year: 2022
  ident: 76909_CR25
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-022-10312-0
– ident: 76909_CR17
  doi: 10.1371/journal.pone.0207772
– ident: 76909_CR2
  doi: 10.1016/j.patrec.2017.09.036
– volume: 2
  start-page: 249
  year: 2018
  ident: 76909_CR15
  publication-title: J. Anal. Test.
  doi: 10.1007/s41664-018-0068-2
SSID ssj0000529419
Score 2.4463365
Snippet This paper presents a novel framework for implementing the k-NN algorithm, designed to enhance its accuracy in contexts with sparse data. The framework...
Abstract This paper presents a novel framework for implementing the k-NN algorithm, designed to enhance its accuracy in contexts with sparse data. The...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 25036
SubjectTerms 639/705/1042
639/705/117
639/705/258
Accuracy
Algorithms
Datasets
Entropy
Humanities and Social Sciences
Machine learning
multidisciplinary
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQpQo4oPIOFGQkbjRq_IrtY4uoKiT2RKXeLD_ZFYuz2s0K7Y2_wd_jl2An2XRXIODANc5hPPONx2PPfAbgtZPI2nyuEahxJUXBldJjXzpCiHZ1jX3XC_NhUl9e0ffX7Hrnqa9cE9bTA_eKO9XaiErqYFhKZYTwUlNWec881Vhz3fWRV0LuJFM9qzeWFMmhS6Yi4nSVIlXuJsO05CkjlGW9F4k6wv7f7TJ_LZYcb0zvgtvruNCbr3o-3wlKF0fg3rCbhGf9LO6DWz4-AIf9-5Kbh2CxUxIEdXTwhtsbNgFqGJs0DsO2QAu2DfRxmoEAP5eTCdTzT81y1k6__Pj2fQW1teulths4izBXlsK0GnU1HTAXvKdVfvUIXF28-_j2shyeWCgtlbgtQ02lZdhqxnHSNHIcG4RCbazlyDBbVRoTx7XkjjNmPZWmMsFygawXhlDyGBzEJvqnAAqPhUeIBOkNDUgK5zhxwoUqsMxAU4A3W3WrRc-kobobcCJUbxyVjKM646i6AOfZIuOfmQW7-5CwoQZsqL9howDHW3uqwTVXiqAkG02JnCjAq3E4OVW-KdHRN-v8Tz5sEymQF-BJb_5RktxJTOpaFkDsAWNP1P2ROJt2xN0p90zZLUqTO9li6EauP-niZMTZP6ju2f9Q3XNwB2dfSVEak2Nw0C7X_kXafrXmZedpPwHz-i49
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3JahRB9BEniHoQt2hrlBK8mSZdS3dVHUSMJATBQcRAbk2tmeDYPc6CzM3f8Pf8Eqt6mwxK8NrVh1dvf_U2gFdWYmPiu4Zn2qYMe5tKR1xqKaXKFgVxTS_Mx3FxesY-nOfnOzDue2FiWWWvExtFbWsT38gPKQ7hMQv-t3g7-57GrVExu9qv0FDdagX7phkxdgN2SZyMNYLdo-Pxp8_Dq0vMazEsu-6ZjIrDRbBgscuMsJSHSFGmxZaFagb5_8v7_LuIcsik3oFbq2qm1j_UdHrFWJ3cg7udl4netWxxH3Zc9QButnsn1w9hdqVUCKnKos3Mb1R7pFBVh3Pk-8IttKyRqyaRQdDXdDxGanoRcLOcfPv989cCBbSs5sqs0WWFYsUpClqqqfVAsRA-aP_FIzg7Of7y_jTtVi-khkmyTH3BpMmJUTknSmlsOdEY-0Ibw7HOTZYpQi1Xklue58YxqTPtDRfYOKEpo3swqurKPQEkHBEOY-ql08wHIlrLqRXWZz6Pk2kSeN2ju5y1EzbKJjNORdkSpwzEKRvilEUCR5Eiw59xOnbzoZ5flJ2wlQFikUnldR7CXyGcVCzPnMsdU0RxxRPY7-lZdiK7KDcMlsDL4TgIW8ygqMrVq_hPfIQTwcAn8Lgl_wBJ7DCmRSETEFuMsQXq9kl1OWkGeoeYNES9OFzuoOehDVzX4eJg4LP_QN3T62_9DG6TKAXBLhO6D6PlfOWeB4drqV90UvQHOfUreA
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEQIOiDeBgozEjYbGj8T2ASFAVBVS98RKvVl-dlcsyZLNCvbG3-Dv8Uuw82pXrBDiGjvSZB6emXjmGwBeWIGMif81PNU2pcjbVDjsUksIUbYosGt7YU4nxcmUfjzLz_bAMO6oZ-BqZ2oX50lN68Wr7183b4LBv-5axvnRKjih2CiGacpCsifS4gq4GjyViKMcTvtwv8P6xoIi0ffO7H51yz-1MP67Ys8_SyjHe9Sb4Pq6XKrNN7VYXHJVx7fBrT7GhG87pbgD9lx5F1zrpk5u7oHlpUIhqEoLLxC_YeWhgmUV1qEfyrZgU0FXzqJ6wM_pZALV4ryq583sy68fP1dQGbOuldnAeQljvSkMZ1Rb6QFjGXw4-1f3wfT4w6f3J2k_eCE1VOAm9QUVJsdG5QwrpZFlWCPkC20MQzo3WaYwsUwJZlmeG0eFzrQ3jCPjuCaUPAD7ZVW6RwByh7lDiHjhNPVIcGsZsdz6zOcRlyYBLwd2y2WHryHbe3HCZSccGYQjW-HIIgHvokTGnREbu31Q1eeyNzUZKOaZUF7nIfnl3AlF88y53FGFFVMsAQeDPOWgb5KgQBsN6R1PwPNxOZhavD9RpavWcU_8BceDe0_Aw078IyWxv5gUhUgA31KMLVK3V8r5rIXzDhlpyHlR-LjDQYcu6PobLw5HPfsH1j3-f8KegBs4Wkjw2JgcgP2mXrunIRRr9LPWvn4DOPwz9w
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JixQxFH6MPYh6EHdLR4ngzS6sLFVJjq04DA32RQfmVmS1G9uqphekb_4N_56_xKS2mWZE9FpZeJXvvby8vCUAr63ExsR7Dc-0TRn2NpWOuNRSSpUtCuKaXJiPs-LsnE0v8osjGPe5MAf--6Z09yaomJgGRljKgykn0-IGHIvAmGIEx5PJ9NN0uFOJXiuGZZcbE4a_vT74QP80Zfr_dLa8HiI5-EnvwK1dtVL772q5vKKKTu_B3e4MiSYt6PfhyFUP4Gb7quT-IayuBAIhVVl0WdEb1R4pVNWhHfk-LAtta-SqeYQffU1nM6SWX-r1Yjv_9uvHzw1SxuzWyuzRokIxnhSFPaiJ5EAxzD3s7ZtHcH764fP7s7R7WCE1TJJt6gsmTU6MyjlRSmPLicbYF9oYjnVuskwRarmS3PI8N45JnWlvuMDGCU0ZfQyjqq7cU0DCEeEwpl46zTyWwlpOrbA-83msO5PAm365y1VbP6Ns_N5UlC04ZQCnbMApiwTeRUSGnrH2dfMhsETZiVIZKBaZVF7nwbgVwknF8sy53DFFFFc8gZMez7ITyE1JcaCNBfNNJPBqaA6iFP0jqnL1LvaJV2wiqO8EnrTwD5TE_GFaFDIBccAYB6QetlSLeVOuO1icwabF4efGPQ9d0vW3tRgPfPYPS_fs_2Z_DrdJlIqghQk9gdF2vXMvwvFqq192UvUbBIcfuQ
  priority: 102
  providerName: Springer Nature
Title Development and evaluation of a novel framework to enhance k-NN algorithm’s accuracy in data sparsity contexts
URI https://link.springer.com/article/10.1038/s41598-024-76909-6
https://www.ncbi.nlm.nih.gov/pubmed/39443669
https://www.proquest.com/docview/3119848628
https://www.proquest.com/docview/3120058678
https://pubmed.ncbi.nlm.nih.gov/PMC11499816
http://doi.org/10.1038/s41598-024-76909-6
https://doaj.org/article/aab809afb525488e9a450ee5e4a2a7a7
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: HH5
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: ABDBF
  dateStart: 20121221
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DIK
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAQT
  databaseName: Springer Nature - nature.com Journals - Fully Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: NAO
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.nature.com/siteindex/index.html
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M48
  dateStart: 20110801
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: AAJSJ
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: C6C
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELbYVgg48H4UlspI3Ngs8SOxfexWu1pV2moFVCqnyE9abUmqNhUqJ_4Gf49fgp2k3a12xeOSSLYjjcfjzIxn5jMAb41AWodzDUeViShyJhIW28gQQqRJU2yrWpizYXo6ooNxMr4Ei94J3xP-fun1S6gBwzRi3o8TUboH2mnize4WaI-G573P4fI4b5ZE3jLATVHMzR_uKJ4Kn_8mo_J6buQ2QHoP3Fnlc7n-JmezKzro5EGdvbWsoAtD6snF4apUh_r7dWDHv0_vIbjfWKKwV4vOI3DL5o_B7fpuyvUTML-STgRlbuAlLjgsHJQwL3w_dJvkLlgW0OaTIETwIhoOoZx9KRbTcvL114-fSyi1Xi2kXsNpDkNWKvR_siofBIZkea8hlk_B6OT4U_80aq5niDQVuIxcSoVOsJYJw1IqZBhWCLlUac2QSnQcS0wMk4IZliTaUqFi5TTjSFuuCCXPQCsvcvsCQG4xtwgRJ6yiDgluDCOGGxe7JKDXdMC7zdpl8xqFI6ui54RnNQ8zz8Os4mGWdsBRWN7tyICgXTV41mfNhsw8xTwW0qnEu8icWyFpElubWCqxZJJ1wP5GOLJmWy8zgjxt1DuBvAPebLv9hgxRFpnbYhXGhIM67o2ADnhey9KWklCFTNJUdADfkbIdUnd78umkAv32fqv3jJGf3MFGIC_p-hMvDrZC-w-se_l_w1-BuzgIr9flmOyDVrlY2dfeSCtVF-yxMeuCdq83-Djw76Pj4fkH39pP-93q4MM_zyjvNtv4NzOlO40
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKK1Q4IN4NFDASnGjU-JHEPlSIQqstbVcItVJvqeNHt2KbLPtQtTf-Bn-GH8MvYZxNsl2BKi69xlZk-5sZz3heCL0xkmjt3zUcz03IiTOhtNSGhjGmTJJQW-XCHHaTzjH_fBKfLKFfTS6MD6tsZGIlqE2p_Rv5JiNgHnPQv8X7wffQd43y3tWmhYaqWyuYrarEWJ3YsW-nl2DCjbb2PgHebynd3Tn62AnrLgOh5pKOQ5dwqWOqVZxSpXJiUpoT4pJc65TksY4iRZlJlUxNGsfacplHudOpINqKnHEG_72FVjjjEoy_le2d7pev7SuP96NxIutsnYiJzRHcmD6rjfIwBctUhsnCjVg1DviXtvt30Gbrub2LVifFQE0vVb9_5XLcvY_u1Vot_jAjwwdoyRYP0e1Zn8vpIzS4EpqEVWHwvMY4Lh1WuChhHLsmUAyPS2yLnidI_C3sdrHqnwEW497F7x8_RxhgmAyVnuLzAvsIVwxSsYotwT7wHm6b0WN0fCMgPEHLRVnYNYSFpcISwpy0OXdANMakzAjjIhf7SjgBetccdzaYVfTIKk88E9kMnAzAySpwsiRA2x6Rdqavxl19KIdnWc3cGaxYRFK5PAZzWwgrFY8ja2PLFVWpSgO03uCZ1SJilM0JOkCv22Fgbu-xUYUtJ36Of_QToFAE6OkM_nYlPqOZJYkMkFggjIWlLo4U572qgDjYwGBlE9jcRkND83VddxYbLZ39x9E9u37Xr9Bq5-jwIDvY6-4_R3eo5wjQCShbR8vj4cS-AGVvnL-sOQqj05tm4j8nMWmY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEa8D4s1CASPBiUYbPxLbB4SAsmoprDhQqbfg-NGtWJJlH6r2xt_gr_Bz-CWM89quQBWXXuMocvzN2DOeb2YQemYVMSbca3ie24gTbyPlqIssY0zbNKWuyoX5OEx3D_j7w-RwA_1qc2ECrbLdE6uN2pYm3JH3GQH3mIP9Lfu-oUV82hm8mnyPQgepEGlt22nUIrLvlifgvs1e7u0A1s8pHbz7_HY3ajoMRIYrOo98ypVJqNGJoFrnxAqaE-LT3BhB8sTEsabMCq2EFUliHFd5nHsjJDFO5owz-O4FdFEwpgKdUByK7n4nRNA4UU2eTsxkfwZnZchnozwS4JOqKF07C6uWAf-yc_-ma3Yx22voyqKY6OWJHo9PHYuDG-h6Y8_i17UA3kQbrriFLtUdLpe30eQUKQnrwuJVdXFceqxxUcI49i1FDM9L7IpREEX8NRoOsR4fwcrPR99-__g5w9qYxVSbJT4ucOC2YtgPK1YJDpR7AGt2Bx2cCwR30WZRFu4-wtJR6QhhXrmcexAXawWz0vrYJ6EGTg-9aJc7m9S1PLIqBs9kVoOTAThZBU6W9tCbgEj3ZqjDXT0op0dZo9YZzFjGSvs8AUdbSqc0T2LnEsc11UKLHtpq8cyazWGWrUS5h552w6DWIVajC1cuwjvhuk-CKdFD92r4u5mEXGaWpqqH5JpgrE11faQ4HlWlw8H7Bf-awM9ttzK0mtdZa7Hdydl_LN2Ds__6CboMqpt92BvuP0RXaVAIMAYo20Kb8-nCPQIrb54_rtQJoy_nrb9_AEk0ZzI
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELagKwQceD8CCzISNzZL_Irt44JYrZCoOFBpOUV-0mpLUrWpUDnxN_h7_BLsJE032hWPa-xI4_E3mZl45jMAL61ExsT_Gp5qm1LkbSoddqklhCib59g1vTAfxvnJhL4_Zac7sujB8T0Rr1fBv8QeMExTHvI4meZXwV7OQtg9AnuT8cejz_HyuBCWpCEywF1TzOUvDhxPw89_WVB5sTayPyC9Ca6vy4XafFPz-TkfdHy7rd5aNdSFsfTk7HBd60Pz_SKx49-Xdwfc6iJReNRC5y644sp74Fp7N-XmPlicKyeCqrRwxwsOKw8VLKswDv22uAvWFXTlNIIInqXjMVTzL9VyVk-__vrxcwWVMeulMhs4K2GsSoXhS9bUg8BYLB88xOoBmBy_-_T2JO2uZ0gNlbhOfU6lYdgoxrFSGlmONUI-18ZwpJnJMoWJ5UpyyxkzjkqdaW-4QMYJTSh5CEZlVbrHAAqHhUOIeOk09UgKazmxwvrMs8hek4BX270rFi0LR9GcnhNRtDosgg6LRodFnoA3cXv7mZFBu3kQVF90BlkEiUUmldcspMhCOKkoy5xjjiqsuOIJ2N-Co-jMelUQFGSjIQkUCXjRDweDjKcsqnTVOs6JP-pECAIS8KjFUi9J7EImeS4TIAYoG4g6HCln04b0O-StITNGYXEHW0Du5PqTLg560P6D6p783_Sn4AaO4A2-HJN9MKqXa_csBGm1ft6Z5294PzTU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+and+evaluation+of+a+novel+framework+to+enhance+k-NN+algorithm%E2%80%99s+accuracy+in+data+sparsity+contexts&rft.jtitle=Scientific+reports&rft.au=Giannopoulos%2C+Panagiotis+G.&rft.au=Dasaklis%2C+Thomas+K.&rft.au=Rachaniotis%2C+Nikolaos&rft.date=2024-10-23&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=14&rft_id=info:doi/10.1038%2Fs41598-024-76909-6&rft.externalDocID=PMC11499816
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon