Development and evaluation of a novel framework to enhance k-NN algorithm’s accuracy in data sparsity contexts
This paper presents a novel framework for implementing the k-NN algorithm, designed to enhance its accuracy in contexts with sparse data. The framework addresses limitations in the algorithm’s training process by optimizing data structures. It employs composite datasets generated from the initial da...
Saved in:
| Published in | Scientific reports Vol. 14; no. 1; pp. 25036 - 13 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Nature Publishing Group UK
23.10.2024
Nature Publishing Group Nature Portfolio |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2045-2322 2045-2322 |
| DOI | 10.1038/s41598-024-76909-6 |
Cover
| Abstract | This paper presents a novel framework for implementing the k-NN algorithm, designed to enhance its accuracy in contexts with sparse data. The framework addresses limitations in the algorithm’s training process by optimizing data structures. It employs composite datasets generated from the initial data using a data-driven fuzzy Analytic Hierarchy Process weighting scheme. This approach is designed to enhance the informational content in the initial datasets, thus reducing the entropy and implementation uncertainty. The framework was evaluated using 75 publicly available datasets and 3 generated datasets, demonstrating significant accuracy improvements across various
k
-parameter values. The findings were rigorously generalized using non-parametric hypothesis tests; while the resulting sensitivity was assessed by applying different distance metrics. By enhancing informational content, the composite data structures contribute to both accuracy improvements and scalability, particularly in data-sparse contexts. This relationship underscores the critical role of entropy in enhancing the performance of explainable machine learning algorithms, providing a valuable and interpretable tool for transforming data structures in sparse data environments. |
|---|---|
| AbstractList | This paper presents a novel framework for implementing the k-NN algorithm, designed to enhance its accuracy in contexts with sparse data. The framework addresses limitations in the algorithm’s training process by optimizing data structures. It employs composite datasets generated from the initial data using a data-driven fuzzy Analytic Hierarchy Process weighting scheme. This approach is designed to enhance the informational content in the initial datasets, thus reducing the entropy and implementation uncertainty. The framework was evaluated using 75 publicly available datasets and 3 generated datasets, demonstrating significant accuracy improvements across various k-parameter values. The findings were rigorously generalized using non-parametric hypothesis tests; while the resulting sensitivity was assessed by applying different distance metrics. By enhancing informational content, the composite data structures contribute to both accuracy improvements and scalability, particularly in data-sparse contexts. This relationship underscores the critical role of entropy in enhancing the performance of explainable machine learning algorithms, providing a valuable and interpretable tool for transforming data structures in sparse data environments. Abstract This paper presents a novel framework for implementing the k-NN algorithm, designed to enhance its accuracy in contexts with sparse data. The framework addresses limitations in the algorithm’s training process by optimizing data structures. It employs composite datasets generated from the initial data using a data-driven fuzzy Analytic Hierarchy Process weighting scheme. This approach is designed to enhance the informational content in the initial datasets, thus reducing the entropy and implementation uncertainty. The framework was evaluated using 75 publicly available datasets and 3 generated datasets, demonstrating significant accuracy improvements across various k-parameter values. The findings were rigorously generalized using non-parametric hypothesis tests; while the resulting sensitivity was assessed by applying different distance metrics. By enhancing informational content, the composite data structures contribute to both accuracy improvements and scalability, particularly in data-sparse contexts. This relationship underscores the critical role of entropy in enhancing the performance of explainable machine learning algorithms, providing a valuable and interpretable tool for transforming data structures in sparse data environments. This paper presents a novel framework for implementing the k-NN algorithm, designed to enhance its accuracy in contexts with sparse data. The framework addresses limitations in the algorithm’s training process by optimizing data structures. It employs composite datasets generated from the initial data using a data-driven fuzzy Analytic Hierarchy Process weighting scheme. This approach is designed to enhance the informational content in the initial datasets, thus reducing the entropy and implementation uncertainty. The framework was evaluated using 75 publicly available datasets and 3 generated datasets, demonstrating significant accuracy improvements across various k -parameter values. The findings were rigorously generalized using non-parametric hypothesis tests; while the resulting sensitivity was assessed by applying different distance metrics. By enhancing informational content, the composite data structures contribute to both accuracy improvements and scalability, particularly in data-sparse contexts. This relationship underscores the critical role of entropy in enhancing the performance of explainable machine learning algorithms, providing a valuable and interpretable tool for transforming data structures in sparse data environments. This paper presents a novel framework for implementing the k-NN algorithm, designed to enhance its accuracy in contexts with sparse data. The framework addresses limitations in the algorithm's training process by optimizing data structures. It employs composite datasets generated from the initial data using a data-driven fuzzy Analytic Hierarchy Process weighting scheme. This approach is designed to enhance the informational content in the initial datasets, thus reducing the entropy and implementation uncertainty. The framework was evaluated using 75 publicly available datasets and 3 generated datasets, demonstrating significant accuracy improvements across various k-parameter values. The findings were rigorously generalized using non-parametric hypothesis tests; while the resulting sensitivity was assessed by applying different distance metrics. By enhancing informational content, the composite data structures contribute to both accuracy improvements and scalability, particularly in data-sparse contexts. This relationship underscores the critical role of entropy in enhancing the performance of explainable machine learning algorithms, providing a valuable and interpretable tool for transforming data structures in sparse data environments.This paper presents a novel framework for implementing the k-NN algorithm, designed to enhance its accuracy in contexts with sparse data. The framework addresses limitations in the algorithm's training process by optimizing data structures. It employs composite datasets generated from the initial data using a data-driven fuzzy Analytic Hierarchy Process weighting scheme. This approach is designed to enhance the informational content in the initial datasets, thus reducing the entropy and implementation uncertainty. The framework was evaluated using 75 publicly available datasets and 3 generated datasets, demonstrating significant accuracy improvements across various k-parameter values. The findings were rigorously generalized using non-parametric hypothesis tests; while the resulting sensitivity was assessed by applying different distance metrics. By enhancing informational content, the composite data structures contribute to both accuracy improvements and scalability, particularly in data-sparse contexts. This relationship underscores the critical role of entropy in enhancing the performance of explainable machine learning algorithms, providing a valuable and interpretable tool for transforming data structures in sparse data environments. |
| ArticleNumber | 25036 |
| Author | Dasaklis, Thomas K. Giannopoulos, Panagiotis G. Rachaniotis, Nikolaos |
| Author_xml | – sequence: 1 givenname: Panagiotis G. surname: Giannopoulos fullname: Giannopoulos, Panagiotis G. organization: School of Social Sciences, Hellenic Open University – sequence: 2 givenname: Thomas K. surname: Dasaklis fullname: Dasaklis, Thomas K. email: dasaklis@eap.gr organization: School of Social Sciences, Hellenic Open University – sequence: 3 givenname: Nikolaos surname: Rachaniotis fullname: Rachaniotis, Nikolaos organization: Department of Industrial Management and Technology, University of Piraeus |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39443669$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNks9u1DAQxiNUREvpC3BAlrhwCdiOndgnhMq_SlW5wNmaOJPdbBM72MmWvfU1-no8Cd7uUloOCF9seb75zXg-P80OnHeYZc8Zfc1ood5EwaRWOeUir0pNdV4-yo44FTLnBecH986H2UmMK5qW5Fow_SQ7LLQQRVnqo2x8j2vs_Tigmwi4huAa-hmmzjviWwLE-RQnbYABr3y4JJMn6JbgLJLL_OKCQL_woZuWw8_rm0jA2jmA3ZDOkQYmIHGEELtpQ6x3E_6Y4rPscQt9xJP9fpx9-_jh6-nn_PzLp7PTd-e5FZpPeVsKbSW3ICsOULOm4jVjbVlbW7FaWkqBF00FumoqKS0KXdO6tZViFlVdiOI4O9txGw8rM4ZugLAxHjpze-HDwkCYOtujSXxFNbS15FIohRqEpIgSBXCooEqsYsea3QibK-j7OyCjZmuH2dlhkh3m1g5Tpqy3u6xxrgdsbJpwgP5BKw8jrluahV8bxoTWim0Jr_aE4L_PGCczdNFi34NDP0dTMJ5MVWWlkvTlX9KVn4NLE04qppVQJd-qXtxv6a6X3_8hCfhOYIOPMWD7fw_djycmsVtg-FP7H1m_ACIb2yw |
| Cites_doi | 10.1146/annurev-statistics-040620-041554 10.1007/978-3-031-05484-6_142 10.1016/S0957-4174(02)00045-3 10.1016/j.patcog.2017.01.018 10.1109/INCOS.2009.25 10.1016/j.eswa.2020.113374 10.1007/s12665-022-10312-0 10.1016/j.asoc.2017.05.042 10.1007/s41664-018-0068-2 10.1007/s10115-022-01756-8 10.4090/juee.2011.v5n1.032043 10.1016/j.eswa.2018.04.015 10.1016/j.enganabound.2024.03.006 10.1016/j.watres.2023.120667 10.35848/1882-0786/acf184 10.3233/IDT-200217 10.1109/ICCED46541.2019.9161133 10.1109/IICETA54559.2022.9888273 10.3390/RS12010106 10.1142/S0218213022400036 10.1016/j.eswa.2020.113738 10.1007/978-3-030-65965-3_28 10.1109/IISA59645.2023.10345895 10.3390/app12042124 10.1371/journal.pone.0207772 10.1016/j.patrec.2017.09.036 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024. corrected publication 2024 2024. The Author(s). The Author(s) 2024. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 2024 |
| Copyright_xml | – notice: The Author(s) 2024. corrected publication 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 2024 |
| DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1038/s41598-024-76909-6 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) ProQuest Health & Medical ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 13 |
| ExternalDocumentID | oai_doaj_org_article_aab809afb525488e9a450ee5e4a2a7a7 10.1038/s41598-024-76909-6 PMC11499816 39443669 10_1038_s41598_024_76909_6 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: This research was financially supported by the Hellenic Open University and the European Commission, under the NextGeneration-EU programm grantid: YP1TA 0555681 |
| GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M48 M7P M~E NAO OK1 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AAYXX CITATION PJZUB PPXIY PQGLB PUEGO 3V. 88A ACSMW AJTQC M0L NPM 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC EJD IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c492t-f649c52ca572aab1d72b11f6bcc71b5c00a23d7a97d755ce49b0bfc781ce8b343 |
| IEDL.DBID | UNPAY |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:53:20 EDT 2025 Sun Oct 26 03:52:39 EDT 2025 Tue Sep 30 17:07:26 EDT 2025 Fri Sep 05 07:25:05 EDT 2025 Tue Oct 07 07:46:52 EDT 2025 Wed Feb 19 02:15:44 EST 2025 Wed Oct 01 04:02:21 EDT 2025 Thu May 22 04:31:18 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c492t-f649c52ca572aab1d72b11f6bcc71b5c00a23d7a97d755ce49b0bfc781ce8b343 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://doi.org/10.1038/s41598-024-76909-6 |
| PMID | 39443669 |
| PQID | 3119848628 |
| PQPubID | 2041939 |
| PageCount | 13 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_aab809afb525488e9a450ee5e4a2a7a7 unpaywall_primary_10_1038_s41598_024_76909_6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11499816 proquest_miscellaneous_3120058678 proquest_journals_3119848628 pubmed_primary_39443669 crossref_primary_10_1038_s41598_024_76909_6 springer_journals_10_1038_s41598_024_76909_6 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-10-23 |
| PublicationDateYYYYMMDD | 2024-10-23 |
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-23 day: 23 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2024 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Nasiri, Minaei, Sharifi (CR16) 2017; 61 CR19 CR18 CR17 CR12 CR11 CR10 Cengiz, Ercanoglu (CR25) 2022; 81 Aboutorab, Saberi, Asadabadi, Hussain, Chang (CR24) 2018; 107 Bhattacharya, Ghosh, Chowdhury (CR13) 2017; 66 Khan, Pao, Pilario, Sallih (CR21) 2024; 163 Li (CR20) 2022; 64 Park, Han (CR6) 2002; 23 Xu, Goodacre (CR15) 2018; 2 Khalil, AlSayed, Liu, Vanrolleghem (CR22) 2023; 245 CR2 CR4 CR5 CR7 Marjanović, Bajat, Kovačević (CR8) 2009; 273–278 CR9 Ali (CR3) 2020; 151 Engelke, Ivanovs (CR1) 2021; 8 CR23 Wei (CR14) 2022; 138 Soltani, Marandi (CR26) 2011; 5 76909_CR9 76909_CR7 76909_CR5 A Soltani (76909_CR26) 2011; 5 76909_CR4 76909_CR2 G Bhattacharya (76909_CR13) 2017; 66 76909_CR23 S Engelke (76909_CR1) 2021; 8 C-S Park (76909_CR6) 2002; 23 M Marjanović (76909_CR8) 2009; 273–278 W Wei (76909_CR14) 2022; 138 M Ali (76909_CR3) 2020; 151 U Khan (76909_CR21) 2024; 163 LD Cengiz (76909_CR25) 2022; 81 76909_CR11 76909_CR10 76909_CR12 Y Xu (76909_CR15) 2018; 2 76909_CR19 76909_CR18 76909_CR17 M Nasiri (76909_CR16) 2017; 61 M Khalil (76909_CR22) 2023; 245 X Li (76909_CR20) 2022; 64 H Aboutorab (76909_CR24) 2018; 107 |
| References_xml | – volume: 8 start-page: 241 year: 2021 end-page: 270 ident: CR1 article-title: Sparse structures for multivariate extremes publication-title: Annu. Rev. Stat. Appl. doi: 10.1146/annurev-statistics-040620-041554 – volume: 138 start-page: 1047 year: 2022 end-page: 1052 ident: CR14 article-title: Application of feature weighted knn classification algorithm in cross-border e-commerce talent training publication-title: Lect. Notes Data Eng. Commun. Technol. doi: 10.1007/978-3-031-05484-6_142 – ident: CR18 – volume: 23 start-page: 255 year: 2002 end-page: 264 ident: CR6 article-title: A case-based reasoning with the feature weights derived by analytic hierarchy process for bankruptcy prediction publication-title: Expert Syst. Appl. doi: 10.1016/S0957-4174(02)00045-3 – ident: CR4 – ident: CR2 – ident: CR12 – ident: CR10 – volume: 66 start-page: 425 year: 2017 end-page: 436 ident: CR13 article-title: Granger causality driven ahp for feature weighted knn publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2017.01.018 – volume: 273–278 start-page: 2009 year: 2009 ident: CR8 article-title: Landslide susceptibility assessment with machine learning algorithms publication-title: In International Conference on Intelligent Networking and Collaborative Systems, INCoS doi: 10.1109/INCOS.2009.25 – ident: CR23 – ident: CR19 – volume: 151 year: 2020 ident: CR3 article-title: Semantic-k-nn algorithm: An enhanced version of traditional k-nn algorithm publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113374 – volume: 81 start-page: 222 year: 2022 ident: CR25 article-title: A novel data-driven approach to pairwise comparisons in AHP using fuzzy relations and matrices for landslide susceptibility assessments publication-title: Environ. Earth Sci. doi: 10.1007/s12665-022-10312-0 – volume: 61 start-page: 1153 year: 2017 end-page: 1159 ident: CR16 article-title: Adjusting data sparsity problem using linear algebra and machine learning algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.05.042 – volume: 2 start-page: 249 year: 2018 end-page: 262 ident: CR15 article-title: On splitting training and validation set: A comparative study of cross-validation, bootstrap and systematic sampling for estimating the generalization performance of supervised learning publication-title: J. Anal. Test. doi: 10.1007/s41664-018-0068-2 – ident: CR17 – volume: 64 start-page: 3197 year: 2022 end-page: 3234 ident: CR20 article-title: Interpretable deep learning: interpretation, interpretability, trustworthiness, and beyond publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-022-01756-8 – volume: 5 start-page: 32 year: 2011 end-page: 43 ident: CR26 article-title: Hospital site selection using two-stage fuzzy multi-criteria decision making process publication-title: J. Urban Environ. Eng. doi: 10.4090/juee.2011.v5n1.032043 – ident: CR11 – ident: CR9 – volume: 107 start-page: 115 year: 2018 end-page: 125 ident: CR24 article-title: Zbwm: The z-number extension of best worst method and its application for supplier development publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.04.015 – volume: 163 start-page: 161 year: 2024 end-page: 174 ident: CR21 article-title: Flow regime classification using various dimensionality reduction methods and automl publication-title: Eng. Anal. Boundary Elem. doi: 10.1016/j.enganabound.2024.03.006 – ident: CR5 – volume: 245 year: 2023 ident: CR22 article-title: Machine learning for modeling n2o emissions from wastewater treatment plants: Aligning model performance, complexity, and interpretability publication-title: Water Res. doi: 10.1016/j.watres.2023.120667 – ident: CR7 – volume: 273–278 start-page: 2009 year: 2009 ident: 76909_CR8 publication-title: In International Conference on Intelligent Networking and Collaborative Systems, INCoS doi: 10.1109/INCOS.2009.25 – ident: 76909_CR7 doi: 10.35848/1882-0786/acf184 – volume: 66 start-page: 425 year: 2017 ident: 76909_CR13 publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2017.01.018 – volume: 5 start-page: 32 year: 2011 ident: 76909_CR26 publication-title: J. Urban Environ. Eng. doi: 10.4090/juee.2011.v5n1.032043 – volume: 23 start-page: 255 year: 2002 ident: 76909_CR6 publication-title: Expert Syst. Appl. doi: 10.1016/S0957-4174(02)00045-3 – volume: 245 year: 2023 ident: 76909_CR22 publication-title: Water Res. doi: 10.1016/j.watres.2023.120667 – ident: 76909_CR19 doi: 10.3233/IDT-200217 – ident: 76909_CR9 doi: 10.1109/ICCED46541.2019.9161133 – ident: 76909_CR10 doi: 10.1109/IICETA54559.2022.9888273 – volume: 151 year: 2020 ident: 76909_CR3 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113374 – ident: 76909_CR12 doi: 10.3390/RS12010106 – volume: 163 start-page: 161 year: 2024 ident: 76909_CR21 publication-title: Eng. Anal. Boundary Elem. doi: 10.1016/j.enganabound.2024.03.006 – ident: 76909_CR11 doi: 10.1142/S0218213022400036 – ident: 76909_CR23 doi: 10.1016/j.eswa.2020.113738 – volume: 61 start-page: 1153 year: 2017 ident: 76909_CR16 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.05.042 – ident: 76909_CR18 doi: 10.1007/978-3-030-65965-3_28 – volume: 64 start-page: 3197 year: 2022 ident: 76909_CR20 publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-022-01756-8 – ident: 76909_CR4 doi: 10.1109/IISA59645.2023.10345895 – ident: 76909_CR5 doi: 10.3390/app12042124 – volume: 107 start-page: 115 year: 2018 ident: 76909_CR24 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.04.015 – volume: 8 start-page: 241 year: 2021 ident: 76909_CR1 publication-title: Annu. Rev. Stat. Appl. doi: 10.1146/annurev-statistics-040620-041554 – volume: 138 start-page: 1047 year: 2022 ident: 76909_CR14 publication-title: Lect. Notes Data Eng. Commun. Technol. doi: 10.1007/978-3-031-05484-6_142 – volume: 81 start-page: 222 year: 2022 ident: 76909_CR25 publication-title: Environ. Earth Sci. doi: 10.1007/s12665-022-10312-0 – ident: 76909_CR17 doi: 10.1371/journal.pone.0207772 – ident: 76909_CR2 doi: 10.1016/j.patrec.2017.09.036 – volume: 2 start-page: 249 year: 2018 ident: 76909_CR15 publication-title: J. Anal. Test. doi: 10.1007/s41664-018-0068-2 |
| SSID | ssj0000529419 |
| Score | 2.4463365 |
| Snippet | This paper presents a novel framework for implementing the k-NN algorithm, designed to enhance its accuracy in contexts with sparse data. The framework... Abstract This paper presents a novel framework for implementing the k-NN algorithm, designed to enhance its accuracy in contexts with sparse data. The... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 25036 |
| SubjectTerms | 639/705/1042 639/705/117 639/705/258 Accuracy Algorithms Datasets Entropy Humanities and Social Sciences Machine learning multidisciplinary Science Science (multidisciplinary) |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQpQo4oPIOFGQkbjRq_IrtY4uoKiT2RKXeLD_ZFYuz2s0K7Y2_wd_jl2An2XRXIODANc5hPPONx2PPfAbgtZPI2nyuEahxJUXBldJjXzpCiHZ1jX3XC_NhUl9e0ffX7Hrnqa9cE9bTA_eKO9XaiErqYFhKZYTwUlNWec881Vhz3fWRV0LuJFM9qzeWFMmhS6Yi4nSVIlXuJsO05CkjlGW9F4k6wv7f7TJ_LZYcb0zvgtvruNCbr3o-3wlKF0fg3rCbhGf9LO6DWz4-AIf9-5Kbh2CxUxIEdXTwhtsbNgFqGJs0DsO2QAu2DfRxmoEAP5eTCdTzT81y1k6__Pj2fQW1teulths4izBXlsK0GnU1HTAXvKdVfvUIXF28-_j2shyeWCgtlbgtQ02lZdhqxnHSNHIcG4RCbazlyDBbVRoTx7XkjjNmPZWmMsFygawXhlDyGBzEJvqnAAqPhUeIBOkNDUgK5zhxwoUqsMxAU4A3W3WrRc-kobobcCJUbxyVjKM646i6AOfZIuOfmQW7-5CwoQZsqL9howDHW3uqwTVXiqAkG02JnCjAq3E4OVW-KdHRN-v8Tz5sEymQF-BJb_5RktxJTOpaFkDsAWNP1P2ROJt2xN0p90zZLUqTO9li6EauP-niZMTZP6ju2f9Q3XNwB2dfSVEak2Nw0C7X_kXafrXmZedpPwHz-i49 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3JahRB9BEniHoQt2hrlBK8mSZdS3dVHUSMJATBQcRAbk2tmeDYPc6CzM3f8Pf8Eqt6mwxK8NrVh1dvf_U2gFdWYmPiu4Zn2qYMe5tKR1xqKaXKFgVxTS_Mx3FxesY-nOfnOzDue2FiWWWvExtFbWsT38gPKQ7hMQv-t3g7-57GrVExu9qv0FDdagX7phkxdgN2SZyMNYLdo-Pxp8_Dq0vMazEsu-6ZjIrDRbBgscuMsJSHSFGmxZaFagb5_8v7_LuIcsik3oFbq2qm1j_UdHrFWJ3cg7udl4netWxxH3Zc9QButnsn1w9hdqVUCKnKos3Mb1R7pFBVh3Pk-8IttKyRqyaRQdDXdDxGanoRcLOcfPv989cCBbSs5sqs0WWFYsUpClqqqfVAsRA-aP_FIzg7Of7y_jTtVi-khkmyTH3BpMmJUTknSmlsOdEY-0Ibw7HOTZYpQi1Xklue58YxqTPtDRfYOKEpo3swqurKPQEkHBEOY-ql08wHIlrLqRXWZz6Pk2kSeN2ju5y1EzbKJjNORdkSpwzEKRvilEUCR5Eiw59xOnbzoZ5flJ2wlQFikUnldR7CXyGcVCzPnMsdU0RxxRPY7-lZdiK7KDcMlsDL4TgIW8ygqMrVq_hPfIQTwcAn8Lgl_wBJ7DCmRSETEFuMsQXq9kl1OWkGeoeYNES9OFzuoOehDVzX4eJg4LP_QN3T62_9DG6TKAXBLhO6D6PlfOWeB4drqV90UvQHOfUreA priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEQIOiDeBgozEjYbGj8T2ASFAVBVS98RKvVl-dlcsyZLNCvbG3-Dv8Uuw82pXrBDiGjvSZB6emXjmGwBeWIGMif81PNU2pcjbVDjsUksIUbYosGt7YU4nxcmUfjzLz_bAMO6oZ-BqZ2oX50lN68Wr7183b4LBv-5axvnRKjih2CiGacpCsifS4gq4GjyViKMcTvtwv8P6xoIi0ffO7H51yz-1MP67Ys8_SyjHe9Sb4Pq6XKrNN7VYXHJVx7fBrT7GhG87pbgD9lx5F1zrpk5u7oHlpUIhqEoLLxC_YeWhgmUV1qEfyrZgU0FXzqJ6wM_pZALV4ryq583sy68fP1dQGbOuldnAeQljvSkMZ1Rb6QFjGXw4-1f3wfT4w6f3J2k_eCE1VOAm9QUVJsdG5QwrpZFlWCPkC20MQzo3WaYwsUwJZlmeG0eFzrQ3jCPjuCaUPAD7ZVW6RwByh7lDiHjhNPVIcGsZsdz6zOcRlyYBLwd2y2WHryHbe3HCZSccGYQjW-HIIgHvokTGnREbu31Q1eeyNzUZKOaZUF7nIfnl3AlF88y53FGFFVMsAQeDPOWgb5KgQBsN6R1PwPNxOZhavD9RpavWcU_8BceDe0_Aw078IyWxv5gUhUgA31KMLVK3V8r5rIXzDhlpyHlR-LjDQYcu6PobLw5HPfsH1j3-f8KegBs4Wkjw2JgcgP2mXrunIRRr9LPWvn4DOPwz9w priority: 102 providerName: Scholars Portal – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JixQxFH6MPYh6EHdLR4ngzS6sLFVJjq04DA32RQfmVmS1G9uqphekb_4N_56_xKS2mWZE9FpZeJXvvby8vCUAr63ExsR7Dc-0TRn2NpWOuNRSSpUtCuKaXJiPs-LsnE0v8osjGPe5MAf--6Z09yaomJgGRljKgykn0-IGHIvAmGIEx5PJ9NN0uFOJXiuGZZcbE4a_vT74QP80Zfr_dLa8HiI5-EnvwK1dtVL772q5vKKKTu_B3e4MiSYt6PfhyFUP4Gb7quT-IayuBAIhVVl0WdEb1R4pVNWhHfk-LAtta-SqeYQffU1nM6SWX-r1Yjv_9uvHzw1SxuzWyuzRokIxnhSFPaiJ5EAxzD3s7ZtHcH764fP7s7R7WCE1TJJt6gsmTU6MyjlRSmPLicbYF9oYjnVuskwRarmS3PI8N45JnWlvuMDGCU0ZfQyjqq7cU0DCEeEwpl46zTyWwlpOrbA-83msO5PAm365y1VbP6Ns_N5UlC04ZQCnbMApiwTeRUSGnrH2dfMhsETZiVIZKBaZVF7nwbgVwknF8sy53DFFFFc8gZMez7ITyE1JcaCNBfNNJPBqaA6iFP0jqnL1LvaJV2wiqO8EnrTwD5TE_GFaFDIBccAYB6QetlSLeVOuO1icwabF4efGPQ9d0vW3tRgPfPYPS_fs_2Z_DrdJlIqghQk9gdF2vXMvwvFqq192UvUbBIcfuQ priority: 102 providerName: Springer Nature |
| Title | Development and evaluation of a novel framework to enhance k-NN algorithm’s accuracy in data sparsity contexts |
| URI | https://link.springer.com/article/10.1038/s41598-024-76909-6 https://www.ncbi.nlm.nih.gov/pubmed/39443669 https://www.proquest.com/docview/3119848628 https://www.proquest.com/docview/3120058678 https://pubmed.ncbi.nlm.nih.gov/PMC11499816 http://doi.org/10.1038/s41598-024-76909-6 https://doaj.org/article/aab809afb525488e9a450ee5e4a2a7a7 |
| UnpaywallVersion | publishedVersion |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: HH5 dateStart: 20110101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: ABDBF dateStart: 20121221 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DIK dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: RPM dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAQT databaseName: Springer Nature - nature.com Journals - Fully Open Access customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: NAO dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.nature.com/siteindex/index.html providerName: Nature Publishing – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2045-2322 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M48 dateStart: 20110801 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: AAJSJ dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: C6C dateStart: 20111201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELbYVgg48H4UlspI3Ngs8SOxfexWu1pV2moFVCqnyE9abUmqNhUqJ_4Gf49fgp2k3a12xeOSSLYjjcfjzIxn5jMAb41AWodzDUeViShyJhIW28gQQqRJU2yrWpizYXo6ooNxMr4Ei94J3xP-fun1S6gBwzRi3o8TUboH2mnize4WaI-G573P4fI4b5ZE3jLATVHMzR_uKJ4Kn_8mo_J6buQ2QHoP3Fnlc7n-JmezKzro5EGdvbWsoAtD6snF4apUh_r7dWDHv0_vIbjfWKKwV4vOI3DL5o_B7fpuyvUTML-STgRlbuAlLjgsHJQwL3w_dJvkLlgW0OaTIETwIhoOoZx9KRbTcvL114-fSyi1Xi2kXsNpDkNWKvR_siofBIZkea8hlk_B6OT4U_80aq5niDQVuIxcSoVOsJYJw1IqZBhWCLlUac2QSnQcS0wMk4IZliTaUqFi5TTjSFuuCCXPQCsvcvsCQG4xtwgRJ6yiDgluDCOGGxe7JKDXdMC7zdpl8xqFI6ui54RnNQ8zz8Os4mGWdsBRWN7tyICgXTV41mfNhsw8xTwW0qnEu8icWyFpElubWCqxZJJ1wP5GOLJmWy8zgjxt1DuBvAPebLv9hgxRFpnbYhXGhIM67o2ADnhey9KWklCFTNJUdADfkbIdUnd78umkAv32fqv3jJGf3MFGIC_p-hMvDrZC-w-se_l_w1-BuzgIr9flmOyDVrlY2dfeSCtVF-yxMeuCdq83-Djw76Pj4fkH39pP-93q4MM_zyjvNtv4NzOlO40 |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKK1Q4IN4NFDASnGjU-JHEPlSIQqstbVcItVJvqeNHt2KbLPtQtTf-Bn-GH8MvYZxNsl2BKi69xlZk-5sZz3heCL0xkmjt3zUcz03IiTOhtNSGhjGmTJJQW-XCHHaTzjH_fBKfLKFfTS6MD6tsZGIlqE2p_Rv5JiNgHnPQv8X7wffQd43y3tWmhYaqWyuYrarEWJ3YsW-nl2DCjbb2PgHebynd3Tn62AnrLgOh5pKOQ5dwqWOqVZxSpXJiUpoT4pJc65TksY4iRZlJlUxNGsfacplHudOpINqKnHEG_72FVjjjEoy_le2d7pev7SuP96NxIutsnYiJzRHcmD6rjfIwBctUhsnCjVg1DviXtvt30Gbrub2LVifFQE0vVb9_5XLcvY_u1Vot_jAjwwdoyRYP0e1Zn8vpIzS4EpqEVWHwvMY4Lh1WuChhHLsmUAyPS2yLnidI_C3sdrHqnwEW497F7x8_RxhgmAyVnuLzAvsIVwxSsYotwT7wHm6b0WN0fCMgPEHLRVnYNYSFpcISwpy0OXdANMakzAjjIhf7SjgBetccdzaYVfTIKk88E9kMnAzAySpwsiRA2x6Rdqavxl19KIdnWc3cGaxYRFK5PAZzWwgrFY8ja2PLFVWpSgO03uCZ1SJilM0JOkCv22Fgbu-xUYUtJ36Of_QToFAE6OkM_nYlPqOZJYkMkFggjIWlLo4U572qgDjYwGBlE9jcRkND83VddxYbLZ39x9E9u37Xr9Bq5-jwIDvY6-4_R3eo5wjQCShbR8vj4cS-AGVvnL-sOQqj05tm4j8nMWmY |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEa8D4s1CASPBiUYbPxLbB4SAsmoprDhQqbfg-NGtWJJlH6r2xt_gr_Bz-CWM89quQBWXXuMocvzN2DOeb2YQemYVMSbca3ie24gTbyPlqIssY0zbNKWuyoX5OEx3D_j7w-RwA_1qc2ECrbLdE6uN2pYm3JH3GQH3mIP9Lfu-oUV82hm8mnyPQgepEGlt22nUIrLvlifgvs1e7u0A1s8pHbz7_HY3ajoMRIYrOo98ypVJqNGJoFrnxAqaE-LT3BhB8sTEsabMCq2EFUliHFd5nHsjJDFO5owz-O4FdFEwpgKdUByK7n4nRNA4UU2eTsxkfwZnZchnozwS4JOqKF07C6uWAf-yc_-ma3Yx22voyqKY6OWJHo9PHYuDG-h6Y8_i17UA3kQbrriFLtUdLpe30eQUKQnrwuJVdXFceqxxUcI49i1FDM9L7IpREEX8NRoOsR4fwcrPR99-__g5w9qYxVSbJT4ucOC2YtgPK1YJDpR7AGt2Bx2cCwR30WZRFu4-wtJR6QhhXrmcexAXawWz0vrYJ6EGTg-9aJc7m9S1PLIqBs9kVoOTAThZBU6W9tCbgEj3ZqjDXT0op0dZo9YZzFjGSvs8AUdbSqc0T2LnEsc11UKLHtpq8cyazWGWrUS5h552w6DWIVajC1cuwjvhuk-CKdFD92r4u5mEXGaWpqqH5JpgrE11faQ4HlWlw8H7Bf-awM9ttzK0mtdZa7Hdydl_LN2Ds__6CboMqpt92BvuP0RXaVAIMAYo20Kb8-nCPQIrb54_rtQJoy_nrb9_AEk0ZzI |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELagKwQceD8CCzISNzZL_Irt44JYrZCoOFBpOUV-0mpLUrWpUDnxN_h7_BLsJE032hWPa-xI4_E3mZl45jMAL61ExsT_Gp5qm1LkbSoddqklhCib59g1vTAfxvnJhL4_Zac7sujB8T0Rr1fBv8QeMExTHvI4meZXwV7OQtg9AnuT8cejz_HyuBCWpCEywF1TzOUvDhxPw89_WVB5sTayPyC9Ca6vy4XafFPz-TkfdHy7rd5aNdSFsfTk7HBd60Pz_SKx49-Xdwfc6iJReNRC5y644sp74Fp7N-XmPlicKyeCqrRwxwsOKw8VLKswDv22uAvWFXTlNIIInqXjMVTzL9VyVk-__vrxcwWVMeulMhs4K2GsSoXhS9bUg8BYLB88xOoBmBy_-_T2JO2uZ0gNlbhOfU6lYdgoxrFSGlmONUI-18ZwpJnJMoWJ5UpyyxkzjkqdaW-4QMYJTSh5CEZlVbrHAAqHhUOIeOk09UgKazmxwvrMs8hek4BX270rFi0LR9GcnhNRtDosgg6LRodFnoA3cXv7mZFBu3kQVF90BlkEiUUmldcspMhCOKkoy5xjjiqsuOIJ2N-Co-jMelUQFGSjIQkUCXjRDweDjKcsqnTVOs6JP-pECAIS8KjFUi9J7EImeS4TIAYoG4g6HCln04b0O-StITNGYXEHW0Du5PqTLg560P6D6p783_Sn4AaO4A2-HJN9MKqXa_csBGm1ft6Z5294PzTU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+and+evaluation+of+a+novel+framework+to+enhance+k-NN+algorithm%E2%80%99s+accuracy+in+data+sparsity+contexts&rft.jtitle=Scientific+reports&rft.au=Giannopoulos%2C+Panagiotis+G.&rft.au=Dasaklis%2C+Thomas+K.&rft.au=Rachaniotis%2C+Nikolaos&rft.date=2024-10-23&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=14&rft_id=info:doi/10.1038%2Fs41598-024-76909-6&rft.externalDocID=PMC11499816 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |