The glucose-dependent insulinotropic polypeptide (GIP) regulates body weight and food intake via CNS-GIPR signaling

Uncertainty exists as to whether the glucose-dependent insulinotropic polypeptide receptor (GIPR) should be activated or inhibited for the treatment of obesity. Gipr was recently demonstrated in hypothalamic feeding centers, but the physiological relevance of CNS Gipr remains unknown. Here we show t...

Full description

Saved in:
Bibliographic Details
Published inCell metabolism Vol. 33; no. 4; pp. 833 - 844.e5
Main Authors Zhang, Qian, Delessa, Challa Tenagne, Augustin, Robert, Bakhti, Mostafa, Colldén, Gustav, Drucker, Daniel J., Feuchtinger, Annette, Caceres, Cristina Garcia, Grandl, Gerald, Harger, Alexandra, Herzig, Stephan, Hofmann, Susanna, Holleman, Cassie Lynn, Jastroch, Martin, Keipert, Susanne, Kleinert, Maximilian, Knerr, Patrick J., Kulaj, Konxhe, Legutko, Beata, Lickert, Heiko, Liu, Xue, Luippold, Gerd, Lutter, Dominik, Malogajski, Emilija, Medina, Marta Tarquis, Mowery, Stephanie A., Blutke, Andreas, Perez-Tilve, Diego, Salinno, Ciro, Sehrer, Laura, DiMarchi, Richard D., Tschöp, Matthias H., Stemmer, Kerstin, Finan, Brian, Wolfrum, Christian, Müller, Timo D.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 06.04.2021
Cell Press
Subjects
Online AccessGet full text
ISSN1550-4131
1932-7420
1932-7420
DOI10.1016/j.cmet.2021.01.015

Cover

Abstract Uncertainty exists as to whether the glucose-dependent insulinotropic polypeptide receptor (GIPR) should be activated or inhibited for the treatment of obesity. Gipr was recently demonstrated in hypothalamic feeding centers, but the physiological relevance of CNS Gipr remains unknown. Here we show that HFD-fed CNS-Gipr KO mice and humanized (h)GIPR knockin mice with CNS-hGIPR deletion show decreased body weight and improved glucose metabolism. In DIO mice, acute central and peripheral administration of acyl-GIP increases cFos neuronal activity in hypothalamic feeding centers, and this coincides with decreased body weight and food intake and improved glucose handling. Chronic central and peripheral administration of acyl-GIP lowers body weight and food intake in wild-type mice, but shows blunted/absent efficacy in CNS-Gipr KO mice. Also, the superior metabolic effect of GLP-1/GIP co-agonism relative to GLP-1 is extinguished in CNS-Gipr KO mice. Our data hence establish a key role of CNS Gipr for control of energy metabolism. [Display omitted] •CNS-Gipr KO mice are protected from diet-induced obesity and glucose intolerance•Acyl-GIP increases cFOS neuronal activity in key hypothalamic feeding centers•Acyl-GIP effects on body weight and food intake are absent/blunted in CNS-mGipr KO mice•GLP-1/GIP dual-agonism loses superior potency over GLP-1 in CNS-mGipr KO mice. Zhang et al. report that CNS GIPR plays a significant role in regulating food intake. They show that treatment with acyl-GIP or with a GLP-1/GIP dual-agonist lowers body weight and food intake in wild-type mice but shows blunted efficacy in CNS-Gipr KO mice.
AbstractList Uncertainty exists as to whether the glucose-dependent insulinotropic polypeptide receptor (GIPR) should be activated or inhibited for the treatment of obesity. Gipr was recently demonstrated in hypothalamic feeding centers, but the physiological relevance of CNS Gipr remains unknown. Here we show that HFD-fed CNS- Gipr KO mice and humanized (h)GIPR knockin mice with CNS- hGIPR deletion show decreased body weight and improved glucose metabolism. In DIO mice, acute central and peripheral administration of acyl-GIP increases cFos neuronal activity in hypothalamic feeding centers, and this coincides with decreased body weight and food intake and improved glucose handling. Chronic central and peripheral administration of acyl-GIP lowers body weight and food intake in wild-type mice, but shows blunted/absent efficacy in CNS- Gipr KO mice. Also, the superior metabolic effect of GLP-1/GIP co-agonism relative to GLP-1 is extinguished in CNS- Gipr KO mice. Our data hence establish a key role of CNS Gipr for control of energy metabolism. • CNS- Gipr KO mice are protected from diet-induced obesity and glucose intolerance • Acyl-GIP increases cFOS neuronal activity in key hypothalamic feeding centers • Acyl-GIP effects on body weight and food intake are absent/blunted in CNS-mGipr KO mice • GLP-1/GIP dual-agonism loses superior potency over GLP-1 in CNS-mGipr KO mice. Zhang et al. report that CNS GIPR plays a significant role in regulating food intake. They show that treatment with acyl-GIP or with a GLP-1/GIP dual-agonist lowers body weight and food intake in wild-type mice but shows blunted efficacy in CNS-Gipr KO mice.
Uncertainty exists as to whether the glucose-dependent insulinotropic polypeptide receptor (GIPR) should be activated or inhibited for the treatment of obesity. Gipr was recently demonstrated in hypothalamic feeding centers, but the physiological relevance of CNS Gipr remains unknown. Here we show that HFD-fed CNS-Gipr KO mice and humanized (h)GIPR knockin mice with CNS-hGIPR deletion show decreased body weight and improved glucose metabolism. In DIO mice, acute central and peripheral administration of acyl-GIP increases cFos neuronal activity in hypothalamic feeding centers, and this coincides with decreased body weight and food intake and improved glucose handling. Chronic central and peripheral administration of acyl-GIP lowers body weight and food intake in wild-type mice, but shows blunted/absent efficacy in CNS-Gipr KO mice. Also, the superior metabolic effect of GLP-1/GIP co-agonism relative to GLP-1 is extinguished in CNS-Gipr KO mice. Our data hence establish a key role of CNS Gipr for control of energy metabolism.Uncertainty exists as to whether the glucose-dependent insulinotropic polypeptide receptor (GIPR) should be activated or inhibited for the treatment of obesity. Gipr was recently demonstrated in hypothalamic feeding centers, but the physiological relevance of CNS Gipr remains unknown. Here we show that HFD-fed CNS-Gipr KO mice and humanized (h)GIPR knockin mice with CNS-hGIPR deletion show decreased body weight and improved glucose metabolism. In DIO mice, acute central and peripheral administration of acyl-GIP increases cFos neuronal activity in hypothalamic feeding centers, and this coincides with decreased body weight and food intake and improved glucose handling. Chronic central and peripheral administration of acyl-GIP lowers body weight and food intake in wild-type mice, but shows blunted/absent efficacy in CNS-Gipr KO mice. Also, the superior metabolic effect of GLP-1/GIP co-agonism relative to GLP-1 is extinguished in CNS-Gipr KO mice. Our data hence establish a key role of CNS Gipr for control of energy metabolism.
Uncertainty exists as to whether the glucose-dependent insulinotropic polypeptide receptor (GIPR) should be activated or inhibited for the treatment of obesity. Gipr was recently demonstrated in hypothalamic feeding centers, but the physiological relevance of CNS Gipr remains unknown. Here we show that HFD-fed CNS-Gipr KO mice and humanized (h)GIPR knockin mice with CNS-hGIPR deletion show decreased body weight and improved glucose metabolism. In DIO mice, acute central and peripheral administration of acyl-GIP increases cFos neuronal activity in hypothalamic feeding centers, and this coincides with decreased body weight and food intake and improved glucose handling. Chronic central and peripheral administration of acyl-GIP lowers body weight and food intake in wild-type mice, but shows blunted/absent efficacy in CNS-Gipr KO mice. Also, the superior metabolic effect of GLP-1/GIP co-agonism relative to GLP-1 is extinguished in CNS-Gipr KO mice. Our data hence establish a key role of CNS Gipr for control of energy metabolism.
Uncertainty exists as to whether the glucose-dependent insulinotropic polypeptide receptor (GIPR) should be activated or inhibited for the treatment of obesity. Gipr was recently demonstrated in hypothalamic feeding centers, but the physiological relevance of CNS Gipr remains unknown. Here we show that HFD-fed CNS-Gipr KO mice and humanized (h)GIPR knockin mice with CNS-hGIPR deletion show decreased body weight and improved glucose metabolism. In DIO mice, acute central and peripheral administration of acyl-GIP increases cFos neuronal activity in hypothalamic feeding centers, and this coincides with decreased body weight and food intake and improved glucose handling. Chronic central and peripheral administration of acyl-GIP lowers body weight and food intake in wild-type mice, but shows blunted/absent efficacy in CNS-Gipr KO mice. Also, the superior metabolic effect of GLP-1/GIP co-agonism relative to GLP-1 is extinguished in CNS-Gipr KO mice. Our data hence establish a key role of CNS Gipr for control of energy metabolism. [Display omitted] •CNS-Gipr KO mice are protected from diet-induced obesity and glucose intolerance•Acyl-GIP increases cFOS neuronal activity in key hypothalamic feeding centers•Acyl-GIP effects on body weight and food intake are absent/blunted in CNS-mGipr KO mice•GLP-1/GIP dual-agonism loses superior potency over GLP-1 in CNS-mGipr KO mice. Zhang et al. report that CNS GIPR plays a significant role in regulating food intake. They show that treatment with acyl-GIP or with a GLP-1/GIP dual-agonist lowers body weight and food intake in wild-type mice but shows blunted efficacy in CNS-Gipr KO mice.
Author Salinno, Ciro
Mowery, Stephanie A.
DiMarchi, Richard D.
Perez-Tilve, Diego
Herzig, Stephan
Augustin, Robert
Holleman, Cassie Lynn
Sehrer, Laura
Legutko, Beata
Müller, Timo D.
Medina, Marta Tarquis
Drucker, Daniel J.
Wolfrum, Christian
Liu, Xue
Jastroch, Martin
Caceres, Cristina Garcia
Malogajski, Emilija
Stemmer, Kerstin
Hofmann, Susanna
Knerr, Patrick J.
Lutter, Dominik
Zhang, Qian
Tschöp, Matthias H.
Luippold, Gerd
Harger, Alexandra
Bakhti, Mostafa
Feuchtinger, Annette
Kulaj, Konxhe
Lickert, Heiko
Keipert, Susanne
Blutke, Andreas
Finan, Brian
Colldén, Gustav
Delessa, Challa Tenagne
Kleinert, Maximilian
Grandl, Gerald
Author_xml – sequence: 1
  givenname: Qian
  surname: Zhang
  fullname: Zhang, Qian
  organization: Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
– sequence: 2
  givenname: Challa Tenagne
  surname: Delessa
  fullname: Delessa, Challa Tenagne
  organization: Institute of Food, Nutrition and Health, Department of Health Sciences and Technology (D-HEST), ETH Zürich, Zurich, Switzerland
– sequence: 3
  givenname: Robert
  surname: Augustin
  fullname: Augustin, Robert
  organization: Cardiometabolic Diseases Research Department, Boehringer Ingelheim Pharma GmbH and Co., KG, Biberach/Riss, Germany
– sequence: 4
  givenname: Mostafa
  surname: Bakhti
  fullname: Bakhti, Mostafa
  organization: German Center for Diabetes Research (DZD), Neuherberg, Germany
– sequence: 5
  givenname: Gustav
  surname: Colldén
  fullname: Colldén, Gustav
  organization: Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
– sequence: 6
  givenname: Daniel J.
  surname: Drucker
  fullname: Drucker, Daniel J.
  organization: Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, ON M5G 1X5, Canada
– sequence: 7
  givenname: Annette
  surname: Feuchtinger
  fullname: Feuchtinger, Annette
  organization: Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
– sequence: 8
  givenname: Cristina Garcia
  surname: Caceres
  fullname: Caceres, Cristina Garcia
  organization: Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
– sequence: 9
  givenname: Gerald
  surname: Grandl
  fullname: Grandl, Gerald
  organization: Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
– sequence: 10
  givenname: Alexandra
  surname: Harger
  fullname: Harger, Alexandra
  organization: Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
– sequence: 11
  givenname: Stephan
  surname: Herzig
  fullname: Herzig, Stephan
  organization: German Center for Diabetes Research (DZD), Neuherberg, Germany
– sequence: 12
  givenname: Susanna
  surname: Hofmann
  fullname: Hofmann, Susanna
  organization: German Center for Diabetes Research (DZD), Neuherberg, Germany
– sequence: 13
  givenname: Cassie Lynn
  surname: Holleman
  fullname: Holleman, Cassie Lynn
  organization: Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
– sequence: 14
  givenname: Martin
  surname: Jastroch
  fullname: Jastroch, Martin
  organization: Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, Stockholm, Sweden
– sequence: 15
  givenname: Susanne
  surname: Keipert
  fullname: Keipert, Susanne
  organization: Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, Stockholm, Sweden
– sequence: 16
  givenname: Maximilian
  surname: Kleinert
  fullname: Kleinert, Maximilian
  organization: Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
– sequence: 17
  givenname: Patrick J.
  surname: Knerr
  fullname: Knerr, Patrick J.
  organization: Novo Nordisk Research Center Indianapolis, Indianapolis, IN 46241, USA
– sequence: 18
  givenname: Konxhe
  surname: Kulaj
  fullname: Kulaj, Konxhe
  organization: Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
– sequence: 19
  givenname: Beata
  surname: Legutko
  fullname: Legutko, Beata
  organization: Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
– sequence: 20
  givenname: Heiko
  surname: Lickert
  fullname: Lickert, Heiko
  organization: German Center for Diabetes Research (DZD), Neuherberg, Germany
– sequence: 21
  givenname: Xue
  surname: Liu
  fullname: Liu, Xue
  organization: Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
– sequence: 22
  givenname: Gerd
  surname: Luippold
  fullname: Luippold, Gerd
  organization: Cardiometabolic Diseases Research Department, Boehringer Ingelheim Pharma GmbH and Co., KG, Biberach/Riss, Germany
– sequence: 23
  givenname: Dominik
  surname: Lutter
  fullname: Lutter, Dominik
  organization: Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
– sequence: 24
  givenname: Emilija
  surname: Malogajski
  fullname: Malogajski, Emilija
  organization: Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
– sequence: 25
  givenname: Marta Tarquis
  surname: Medina
  fullname: Medina, Marta Tarquis
  organization: German Center for Diabetes Research (DZD), Neuherberg, Germany
– sequence: 26
  givenname: Stephanie A.
  surname: Mowery
  fullname: Mowery, Stephanie A.
  organization: Novo Nordisk Research Center Indianapolis, Indianapolis, IN 46241, USA
– sequence: 27
  givenname: Andreas
  surname: Blutke
  fullname: Blutke, Andreas
  organization: Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
– sequence: 28
  givenname: Diego
  surname: Perez-Tilve
  fullname: Perez-Tilve, Diego
  organization: Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
– sequence: 29
  givenname: Ciro
  surname: Salinno
  fullname: Salinno, Ciro
  organization: German Center for Diabetes Research (DZD), Neuherberg, Germany
– sequence: 30
  givenname: Laura
  surname: Sehrer
  fullname: Sehrer, Laura
  organization: Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
– sequence: 31
  givenname: Richard D.
  surname: DiMarchi
  fullname: DiMarchi, Richard D.
  organization: Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
– sequence: 32
  givenname: Matthias H.
  surname: Tschöp
  fullname: Tschöp, Matthias H.
  organization: German Center for Diabetes Research (DZD), Neuherberg, Germany
– sequence: 33
  givenname: Kerstin
  surname: Stemmer
  fullname: Stemmer, Kerstin
  organization: Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
– sequence: 34
  givenname: Brian
  surname: Finan
  fullname: Finan, Brian
  organization: Novo Nordisk Research Center Indianapolis, Indianapolis, IN 46241, USA
– sequence: 35
  givenname: Christian
  surname: Wolfrum
  fullname: Wolfrum, Christian
  organization: Institute of Food, Nutrition and Health, Department of Health Sciences and Technology (D-HEST), ETH Zürich, Zurich, Switzerland
– sequence: 36
  givenname: Timo D.
  surname: Müller
  fullname: Müller, Timo D.
  email: timo.mueller@helmholtz-muenchen.de
  organization: Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33571454$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-194271$$DView record from Swedish Publication Index
BookMark eNp9kl1rFDEYhYNU7If-AS8klxWcNR_zCVIoa62FoqLV25BJ3pnNOpuMSWbL_vtm2FasF4UXEsh5zoG85xgdWGcBodeULCih5fv1Qm0gLhhhdEHmKZ6hI9pwllU5IwfpXhQkyymnh-g4hDUhvOQNf4EOOS8qmhf5EQo3K8D9MCkXINMwgtVgIzY2TIOxLno3GoVHN-xGGKPRgE8vr769xR76aZARAm6d3uFbMP0qYmk17pzTiY_yN-CtkXj55UeWkO84mN7KZNq_RM87OQR4dX-eoJ-fLm6Wn7Prr5dXy_PrTOUNixnorq2A6aYrywoKrTQtZVMrWVKpSF1WXVXrolRto4DmbV2XXQudgo5UXd0Q4Cfo3d433MI4tWL0ZiP9TjhpxEfz61w434swCdrkrKJJfraXJ-0GtEr_4OXwiHr8Ys1K9G4rasILUrNkcHpv4N2fCUIUGxMUDIO04KYgWF43rOR5USXpm3-z_oY8LCYJ6r1AeReCh04oE2U0bo42g6BEzB0QazF3QMwdEGSeIqHsP_TB_Unowx6CtJCtAS-CMmAVaONBRaGdeQq_Ax8bzhY
CitedBy_id crossref_primary_10_1016_j_soard_2022_08_020
crossref_primary_10_3390_nu14183775
crossref_primary_10_1038_s41574_022_00737_9
crossref_primary_10_1080_14656566_2024_2356254
crossref_primary_10_3390_nu16193245
crossref_primary_10_1080_14656566_2021_1974401
crossref_primary_10_1007_s00125_023_05956_x
crossref_primary_10_1016_j_molmet_2022_101533
crossref_primary_10_1152_ajpendo_00236_2023
crossref_primary_10_1016_j_cell_2024_06_003
crossref_primary_10_1016_j_peptides_2024_171198
crossref_primary_10_1038_s41598_022_20343_z
crossref_primary_10_1080_13543784_2023_2206560
crossref_primary_10_3390_biom15030408
crossref_primary_10_1021_acs_jmedchem_2c02073
crossref_primary_10_1111_dom_15001
crossref_primary_10_1007_s40265_023_01982_6
crossref_primary_10_4103_1673_5374_389358
crossref_primary_10_1016_j_cmet_2021_12_005
crossref_primary_10_1111_dom_16294
crossref_primary_10_1016_j_lanepe_2024_101100
crossref_primary_10_1093_ajhp_zxad080
crossref_primary_10_1055_a_1904_5552
crossref_primary_10_3724_abbs_2023276
crossref_primary_10_2337_dbi21_0002
crossref_primary_10_1007_s00125_023_05906_7
crossref_primary_10_1016_j_pharmthera_2022_108187
crossref_primary_10_2337_dbi21_0001
crossref_primary_10_1055_a_2102_3927
crossref_primary_10_1152_ajpendo_00371_2023
crossref_primary_10_7570_jomes23032
crossref_primary_10_3390_ph16060836
crossref_primary_10_7570_jomes22067
crossref_primary_10_1016_j_molmet_2024_101945
crossref_primary_10_1007_s00125_023_05929_0
crossref_primary_10_1080_19490976_2022_2068365
crossref_primary_10_3390_nu16183170
crossref_primary_10_1155_2023_5891532
crossref_primary_10_1016_j_cnd_2023_04_005
crossref_primary_10_1111_bph_15894
crossref_primary_10_1038_s41586_024_07419_8
crossref_primary_10_1210_endrev_bnaf006
crossref_primary_10_3390_diagnostics12081984
crossref_primary_10_3389_fendo_2022_887238
crossref_primary_10_1111_dom_14843
crossref_primary_10_1111_dom_16106
crossref_primary_10_1016_j_molmet_2024_102074
crossref_primary_10_4103_ijem_ijem_442_23
crossref_primary_10_2174_0115733998256797231009062744
crossref_primary_10_1016_j_ebiom_2023_104684
crossref_primary_10_1172_jci_insight_164921
crossref_primary_10_18632_aging_205673
crossref_primary_10_1146_annurev_nutr_062320_113625
crossref_primary_10_3389_fnut_2022_1051452
crossref_primary_10_1016_j_cell_2024_06_029
crossref_primary_10_3390_ijms23063339
crossref_primary_10_4093_jkd_2022_23_2_89
crossref_primary_10_1016_j_molmet_2024_101915
crossref_primary_10_3389_fendo_2023_1301017
crossref_primary_10_3390_ijms25073769
crossref_primary_10_1007_s40200_024_01472_w
crossref_primary_10_1016_j_molmet_2024_101992
crossref_primary_10_1111_dom_14496
crossref_primary_10_1016_j_molmet_2024_101996
crossref_primary_10_1038_s41574_022_00783_3
crossref_primary_10_1210_clinem_dgac542
crossref_primary_10_1016_j_phrs_2022_106058
crossref_primary_10_1007_s00018_023_05027_9
crossref_primary_10_1186_s12944_024_02092_2
crossref_primary_10_1007_s11883_022_01041_7
crossref_primary_10_2337_dbi21_0026
crossref_primary_10_2337_dci24_0003
crossref_primary_10_1038_s41586_024_08207_0
crossref_primary_10_1016_j_tem_2024_07_022
crossref_primary_10_1016_j_peptides_2023_171003
crossref_primary_10_3389_fendo_2022_838410
crossref_primary_10_1016_j_peptides_2023_171093
crossref_primary_10_1111_dom_15235
crossref_primary_10_1016_j_molmet_2025_102118
crossref_primary_10_1038_s42255_022_00606_9
crossref_primary_10_17925_EE_2022_18_1_10
crossref_primary_10_1016_j_tips_2022_11_001
crossref_primary_10_1002_ptr_7788
crossref_primary_10_1038_s41467_022_30187_w
crossref_primary_10_1016_j_bcp_2021_114715
crossref_primary_10_1038_s42255_023_00811_0
crossref_primary_10_1016_j_bbagen_2021_129917
crossref_primary_10_1113_JP280581
crossref_primary_10_2147_DMSO_S415934
crossref_primary_10_1016_j_cmet_2024_11_003
crossref_primary_10_1152_ajpendo_00330_2023
crossref_primary_10_1038_s42255_023_00812_z
crossref_primary_10_1111_jdi_13816
crossref_primary_10_1007_s11739_023_03237_4
crossref_primary_10_1038_s41573_021_00337_8
crossref_primary_10_1126_scitranslmed_adh4453
crossref_primary_10_3390_antiox11071309
crossref_primary_10_1111_obr_13663
crossref_primary_10_1016_j_cmet_2024_05_010
crossref_primary_10_3389_fendo_2025_1532076
crossref_primary_10_2337_db23_0172
crossref_primary_10_3390_nu16081166
crossref_primary_10_1152_ajpendo_00374_2023
crossref_primary_10_1016_j_ejphar_2024_177095
crossref_primary_10_1073_pnas_2116506119
crossref_primary_10_1016_j_diabres_2024_111905
crossref_primary_10_1152_physiol_00032_2023
crossref_primary_10_1007_s10304_023_00527_0
crossref_primary_10_1038_s41574_024_00951_7
crossref_primary_10_1152_ajpendo_00360_2023
crossref_primary_10_1016_j_cnd_2024_09_003
crossref_primary_10_1186_s12933_023_01940_2
crossref_primary_10_2337_db21_0848
crossref_primary_10_1111_dme_14699
crossref_primary_10_1007_s00108_023_01530_0
crossref_primary_10_1111_dom_14640
crossref_primary_10_1111_dom_16146
crossref_primary_10_3389_fendo_2023_1095753
crossref_primary_10_1016_S2213_8587_21_00113_3
crossref_primary_10_1080_17460441_2023_2203911
crossref_primary_10_1016_j_cmet_2021_03_010
crossref_primary_10_3389_fcell_2021_749607
crossref_primary_10_1093_ejendo_lvae151
crossref_primary_10_21215_kjfp_2025_15_1_2
crossref_primary_10_1016_j_molmet_2025_102094
crossref_primary_10_1152_ajpendo_00250_2023
crossref_primary_10_2337_db21_0459
crossref_primary_10_3389_fendo_2024_1431292
crossref_primary_10_3389_fendo_2023_1220044
crossref_primary_10_1056_NEJMoa2107519
crossref_primary_10_1016_j_peptides_2024_171212
crossref_primary_10_1038_s42255_023_00931_7
crossref_primary_10_3390_ijms26031142
crossref_primary_10_1016_j_molmet_2023_101831
crossref_primary_10_1038_s41366_024_01473_y
crossref_primary_10_4103_jod_jod_102_22
crossref_primary_10_1186_s12933_024_02180_8
crossref_primary_10_3390_ijms24043384
crossref_primary_10_3389_fcvm_2023_1185707
crossref_primary_10_1016_j_molmet_2022_101638
crossref_primary_10_1007_s13300_024_01566_x
crossref_primary_10_1016_j_molmet_2021_101350
crossref_primary_10_53941_ijddp_2024_100023
crossref_primary_10_1007_s00210_024_03687_3
crossref_primary_10_1210_endrev_bnab034
crossref_primary_10_1007_s11428_023_01146_w
crossref_primary_10_1007_s10787_023_01239_4
crossref_primary_10_1055_a_2102_2436
crossref_primary_10_1186_s12944_024_02416_2
crossref_primary_10_1111_bph_15647
crossref_primary_10_14341_omet13184
crossref_primary_10_1038_s12276_021_00677_w
crossref_primary_10_3390_ijms25073832
crossref_primary_10_1016_j_ecoenv_2023_114660
crossref_primary_10_1016_j_cmet_2023_07_010
crossref_primary_10_1210_endocr_bqad153
crossref_primary_10_1016_j_jbc_2024_107473
crossref_primary_10_3390_cells12131801
crossref_primary_10_1016_j_eclinm_2023_101882
crossref_primary_10_1007_s12268_023_1919_6
crossref_primary_10_1016_j_diabres_2023_110770
crossref_primary_10_1080_10408398_2023_2256400
crossref_primary_10_1007_s00018_024_05507_6
crossref_primary_10_1080_13543784_2024_2377319
crossref_primary_10_1111_dom_15796
crossref_primary_10_3390_pharmaceutics16111353
crossref_primary_10_1002_med_22070
crossref_primary_10_1038_s42255_023_00966_w
crossref_primary_10_2337_db21_1166
crossref_primary_10_1038_s41401_022_00962_y
crossref_primary_10_1002_ncp_11013
Cites_doi 10.1172/JCI116186
10.1016/j.cmet.2017.11.003
10.1242/dev.173849
10.1016/j.molmet.2018.09.009
10.2337/db17-0480
10.1016/j.tem.2020.02.006
10.1016/j.molmet.2018.12.001
10.1126/scitranslmed.aat3392
10.1371/journal.pone.0040156
10.1007/BF02427284
10.1074/jbc.M609088200
10.1242/dmm.009860
10.1016/j.cmet.2013.05.019
10.1159/000177467
10.1194/jlr.M006841
10.1038/nmeth.1806
10.1038/nm727
10.1210/clinem/dgaa327
10.1126/science.1089459
10.1016/j.cmet.2019.07.013
10.2337/diab.28.12.1141
10.1038/ng.3527
10.1038/nm.3997
10.1126/scitranslmed.3007218
10.1172/JCI126107
10.2337/db11-0979
10.2337/db09-0519
10.1016/S0140-6736(18)32260-8
10.1016/j.molmed.2016.03.005
ContentType Journal Article
Copyright 2021 The Authors
Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.
2021 The Authors 2021
Copyright_xml – notice: 2021 The Authors
– notice: Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: 2021 The Authors 2021
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ABAVF
ADTPV
AOWAS
D8T
DG7
ZZAVC
DOI 10.1016/j.cmet.2021.01.015
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
SWEPUB Stockholms universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Stockholms universitet
SwePub Articles full text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1932-7420
EndPage 844.e5
ExternalDocumentID oai_DiVA_org_su_194271
PMC8035082
33571454
10_1016_j_cmet_2021_01_015
S1550413121000152
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: CIHR
  grantid: 154321
GroupedDBID ---
--K
0R~
1~5
29B
2WC
4.4
457
4G.
53G
5GY
62-
6I.
6J9
7-5
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AAKUH
AALRI
AAUCE
AAVLU
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
F5P
FCP
FDB
FEDTE
FIRID
HVGLF
IHE
IXB
J1W
JIG
M3Z
M41
O-L
O9-
OK1
P2P
RCE
ROL
RPZ
SES
SSZ
TR2
UNMZH
WQ6
ZA5
AAEDT
AAIKJ
AAMRU
AAYWO
AAYXX
ABDGV
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AGCQF
AGHFR
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
EJD
HZ~
OZT
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
5PM
ABAVF
ADTPV
AOWAS
D8T
DG7
ZZAVC
ID FETCH-LOGICAL-c492t-edfb7e2d9f667e5dcd16a98ca61ac0867f78d56cb9ce14b886fbefcef07f890e3
IEDL.DBID IXB
ISSN 1550-4131
1932-7420
IngestDate Thu Aug 21 06:11:56 EDT 2025
Thu Aug 21 14:11:00 EDT 2025
Sat Sep 27 22:34:27 EDT 2025
Thu Apr 03 07:05:05 EDT 2025
Tue Jul 01 03:58:19 EDT 2025
Thu Apr 24 23:01:25 EDT 2025
Fri Feb 23 02:47:24 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords body weight
type 2 diabetes
incretin
GIPR CNS KO
CNS
glucose metabolism
diet-induced obesity
GIP
food intake
Language English
License This is an open access article under the CC BY license.
Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c492t-edfb7e2d9f667e5dcd16a98ca61ac0867f78d56cb9ce14b886fbefcef07f890e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead contact
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1550413121000152
PMID 33571454
PQID 2489263457
PQPubID 23479
ParticipantIDs swepub_primary_oai_DiVA_org_su_194271
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8035082
proquest_miscellaneous_2489263457
pubmed_primary_33571454
crossref_citationtrail_10_1016_j_cmet_2021_01_015
crossref_primary_10_1016_j_cmet_2021_01_015
elsevier_sciencedirect_doi_10_1016_j_cmet_2021_01_015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-06
PublicationDateYYYYMMDD 2021-04-06
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-06
  day: 06
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell metabolism
PublicationTitleAlternate Cell Metab
PublicationYear 2021
Publisher Elsevier Inc
Cell Press
Publisher_xml – name: Elsevier Inc
– name: Cell Press
References Holst, Rosenkilde (bib14) 2020; 105
Bastidas-Ponce, Tritschler, Dony, Scheibner, Tarquis-Medina, Salinno, Schirge, Burtscher, Böttcher, Theis (bib3) 2019; 146
Adriaenssens, Biggs, Darwish, Tadross, Sukthankar, Girish, Polex-Wolf, Lam, Zvetkova, Pan (bib1) 2019; 30
Eckel, Fujimoto, Brunzell (bib8) 1979; 28
Finan, Ma, Ottaway, Müller, Habegger, Heppner, Kirchner, Holland, Hembree, Raver (bib9) 2013; 5
Kim, Nian, Karunakaran, Clee, Isales, McIntosh (bib20) 2012; 7
Christensen, Vedtofte, Holst, Vilsbøll, Knop (bib6) 2011; 60
Campbell, Ussher, Mulvihill, Kolic, Baggio, Cao, Liu, Lamont, Morii, Streutker (bib5) 2016; 22
Mroz, Finan, Gelfanov, Yang, Tschöp, DiMarchi, Perez-Tilve (bib22) 2019; 20
Miyawaki, Yamada, Ban, Ihara, Tsukiyama, Zhou, Fujimoto, Oku, Tsuda, Toyokuni (bib21) 2002; 8
Nauck, Heimesaat, Orskov, Holst, Ebert, Creutzfeldt (bib23) 1993; 91
Killion, Wang, Yie, Shi, Bates, Min, Komorowski, Hager, Deng, Atangan (bib17) 2018; 10
Speakman, Fletcher, Vaanholt (bib27) 2013; 6
Huypens, Sass, Wu, Dyckhoff, Tschöp, Theis, Marschall, Hrabě de Angelis, Beckers (bib15) 2016; 48
Coskun, Sloop, Loghin, Alsina-Fernandez, Urva, Bokvist, Cui, Briere, Cabrera, Roell (bib7) 2018; 18
Frias, Nauck, Van, Kutner, Cui, Benson, Urva, Gimeno, Milicevic, Robins, Haupt (bib11) 2018; 392
Kim, Nian, McIntosh (bib18) 2007; 282
Samms, Coghlan, Sloop (bib26) 2020; 31
Harno, Cottrell, White (bib12) 2013; 18
Kim, Nian, McIntosh (bib19) 2010; 51
Beck, Max (bib4) 1986; 29
Renner, Fehlings, Herbach, Hofmann, von Waldthausen, Kessler, Ulrichs, Chodnevskaja, Moskalenko, Amselgruber (bib25) 2010; 59
Kaneko, Fu, Lin, Cordonier, Mo, Gao, Yao, Naylor, Howard, Saito (bib16) 2019; 129
Tschöp, Speakman, Arch, Auwerx, Brüning, Chan, Eckel, Farese, Galgani, Hambly (bib28) 2011; 9
Asmar, Asmar, Simonsen, Gasbjerg, Sparre-Ulrich, Rosenkilde, Hartmann, Dela, Holst, Bülow (bib2) 2017; 66
Ussher, Campbell, Mulvihill, Baggio, Bates, McLean, Gopal, Capozzi, Yusta, Cao (bib29) 2018; 27
Hauner, Glatting, Kaminska, Pfeiffer (bib13) 1988; 32
Finan, Müller, Clemmensen, Perez-Tilve, DiMarchi, Tschöp (bib10) 2016; 22
Pinto, Roseberry, Liu, Diano, Shanabrough, Cai, Friedman, Horvath (bib24) 2004; 304
Asmar (10.1016/j.cmet.2021.01.015_bib2) 2017; 66
Speakman (10.1016/j.cmet.2021.01.015_bib27) 2013; 6
Coskun (10.1016/j.cmet.2021.01.015_bib7) 2018; 18
Mroz (10.1016/j.cmet.2021.01.015_bib22) 2019; 20
Tschöp (10.1016/j.cmet.2021.01.015_bib28) 2011; 9
Eckel (10.1016/j.cmet.2021.01.015_bib8) 1979; 28
Kaneko (10.1016/j.cmet.2021.01.015_bib16) 2019; 129
Finan (10.1016/j.cmet.2021.01.015_bib10) 2016; 22
Hauner (10.1016/j.cmet.2021.01.015_bib13) 1988; 32
Samms (10.1016/j.cmet.2021.01.015_bib26) 2020; 31
Killion (10.1016/j.cmet.2021.01.015_bib17) 2018; 10
Harno (10.1016/j.cmet.2021.01.015_bib12) 2013; 18
Kim (10.1016/j.cmet.2021.01.015_bib20) 2012; 7
Finan (10.1016/j.cmet.2021.01.015_bib9) 2013; 5
Ussher (10.1016/j.cmet.2021.01.015_bib29) 2018; 27
Adriaenssens (10.1016/j.cmet.2021.01.015_bib1) 2019; 30
Bastidas-Ponce (10.1016/j.cmet.2021.01.015_bib3) 2019; 146
Kim (10.1016/j.cmet.2021.01.015_bib18) 2007; 282
Frias (10.1016/j.cmet.2021.01.015_bib11) 2018; 392
Holst (10.1016/j.cmet.2021.01.015_bib14) 2020; 105
Huypens (10.1016/j.cmet.2021.01.015_bib15) 2016; 48
Kim (10.1016/j.cmet.2021.01.015_bib19) 2010; 51
Miyawaki (10.1016/j.cmet.2021.01.015_bib21) 2002; 8
Pinto (10.1016/j.cmet.2021.01.015_bib24) 2004; 304
Beck (10.1016/j.cmet.2021.01.015_bib4) 1986; 29
Campbell (10.1016/j.cmet.2021.01.015_bib5) 2016; 22
Renner (10.1016/j.cmet.2021.01.015_bib25) 2010; 59
Christensen (10.1016/j.cmet.2021.01.015_bib6) 2011; 60
Nauck (10.1016/j.cmet.2021.01.015_bib23) 1993; 91
References_xml – volume: 28
  start-page: 1141
  year: 1979
  end-page: 1142
  ident: bib8
  article-title: Gastric inhibitory polypeptide enhanced lipoprotein lipase activity in cultured preadipocytes
  publication-title: Diabetes
– volume: 282
  start-page: 8557
  year: 2007
  end-page: 8567
  ident: bib18
  article-title: Activation of lipoprotein lipase by glucose-dependent insulinotropic polypeptide in adipocytes. A role for a protein kinase B, LKB1, and AMP-activated protein kinase cascade
  publication-title: J. Biol. Chem.
– volume: 31
  start-page: 410
  year: 2020
  end-page: 421
  ident: bib26
  article-title: How may GIP enhance the therapeutic efficacy of GLP-1?
  publication-title: Trends Endocrinol. Metab.
– volume: 6
  start-page: 293
  year: 2013
  end-page: 301
  ident: bib27
  article-title: The ‘39 steps’: an algorithm for performing statistical analysis of data on energy intake and expenditure
  publication-title: Dis. Model. Mech.
– volume: 59
  start-page: 1228
  year: 2010
  end-page: 1238
  ident: bib25
  article-title: Glucose intolerance and reduced proliferation of pancreatic beta-cells in transgenic pigs with impaired glucose-dependent insulinotropic polypeptide function
  publication-title: Diabetes
– volume: 66
  start-page: 2363
  year: 2017
  end-page: 2371
  ident: bib2
  article-title: The gluco- and liporegulatory and vasodilatory effects of glucose-dependent insulinotropic polypeptide (GIP) are abolished by an antagonist of the human GIP receptor
  publication-title: Diabetes
– volume: 27
  start-page: 450
  year: 2018
  end-page: 460.e6
  ident: bib29
  article-title: Inactivation of the glucose-dependent insulinotropic polypeptide receptor improves outcomes following experimental myocardial infarction
  publication-title: Cell Metab.
– volume: 60
  start-page: 3103
  year: 2011
  end-page: 3109
  ident: bib6
  article-title: Glucose-dependent insulinotropic polypeptide: a bifunctional glucose-dependent regulator of glucagon and insulin secretion in humans
  publication-title: Diabetes
– volume: 32
  start-page: 282
  year: 1988
  end-page: 288
  ident: bib13
  article-title: Effects of gastric inhibitory polypeptide on glucose and lipid metabolism of isolated rat adipocytes
  publication-title: Ann. Nutr. Metab.
– volume: 30
  start-page: 987
  year: 2019
  end-page: 996.e6
  ident: bib1
  article-title: Glucose-dependent insulinotropic polypeptide receptor-expressing cells in the hypothalamus regulate food intake
  publication-title: Cell Metab.
– volume: 8
  start-page: 738
  year: 2002
  end-page: 742
  ident: bib21
  article-title: Inhibition of gastric inhibitory polypeptide signaling prevents obesity
  publication-title: Nat. Med.
– volume: 20
  start-page: 51
  year: 2019
  end-page: 62
  ident: bib22
  article-title: Optimized GIP analogs promote body weight lowering in mice through GIPR agonism not antagonism
  publication-title: Mol. Metab.
– volume: 91
  start-page: 301
  year: 1993
  end-page: 307
  ident: bib23
  article-title: Preserved incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus
  publication-title: J. Clin. Invest.
– volume: 22
  start-page: 359
  year: 2016
  end-page: 376
  ident: bib10
  article-title: Reappraisal of GIP pharmacology for metabolic diseases
  publication-title: Trends Mol. Med.
– volume: 392
  start-page: 2180
  year: 2018
  end-page: 2193
  ident: bib11
  article-title: Efficacy and safety of LY3298176, a novel dual GIP and GLP-1 receptor agonist, in patients with type 2 diabetes: a randomised, placebo-controlled and active comparator-controlled phase 2 trial
  publication-title: Lancet
– volume: 5
  start-page: 209ra151
  year: 2013
  ident: bib9
  article-title: Unimolecular dual incretins maximize metabolic benefits in rodents, monkeys, and humans
  publication-title: Sci. Transl. Med.
– volume: 22
  start-page: 84
  year: 2016
  end-page: 90
  ident: bib5
  article-title: TCF1 links GIPR signaling to the control of beta cell function and survival
  publication-title: Nat. Med.
– volume: 304
  start-page: 110
  year: 2004
  end-page: 115
  ident: bib24
  article-title: Rapid rewiring of arcuate nucleus feeding circuits by leptin
  publication-title: Science
– volume: 10
  start-page: eaat3392
  year: 2018
  ident: bib17
  article-title: Anti-obesity effects of GIPR antagonists alone and in combination with GLP-1R agonists in preclinical models
  publication-title: Sci. Transl. Med.
– volume: 29
  start-page: 68
  year: 1986
  ident: bib4
  article-title: Direct metabolic effects of gastric inhibitory polypeptide (GIP): dissociation at physiological levels of effects on insulin-stimulated fatty acid and glucose incorporation in rat adipose tissue
  publication-title: Diabetologia
– volume: 146
  start-page: dev173849
  year: 2019
  ident: bib3
  article-title: Comprehensive single cell mRNA profiling reveals a detailed roadmap for pancreatic endocrinogenesis
  publication-title: Development
– volume: 105
  start-page: e2710
  year: 2020
  end-page: e2716
  ident: bib14
  article-title: GIP as a therapeutic target in diabetes and obesity: insight from incretin co-agonists
  publication-title: J. Clin. Endocrinol. Metab.
– volume: 48
  start-page: 497
  year: 2016
  end-page: 499
  ident: bib15
  article-title: Epigenetic germline inheritance of diet-induced obesity and insulin resistance
  publication-title: Nat. Genet.
– volume: 51
  start-page: 3145
  year: 2010
  end-page: 3157
  ident: bib19
  article-title: GIP increases human adipocyte LPL expression through CREB and TORC2-mediated trans-activation of the LPL gene
  publication-title: J. Lipid Res.
– volume: 129
  start-page: 3786
  year: 2019
  end-page: 3791
  ident: bib16
  article-title: Gut-derived GIP activates central Rap1 to impair neural leptin sensitivity during overnutrition
  publication-title: J. Clin. Invest.
– volume: 7
  start-page: e40156
  year: 2012
  ident: bib20
  article-title: GIP-overexpressing mice demonstrate reduced diet-induced obesity and steatosis, and improved glucose homeostasis
  publication-title: PLoS One
– volume: 18
  start-page: 3
  year: 2018
  end-page: 14
  ident: bib7
  article-title: LY3298176, a novel dual GIP and GLP-1 receptor agonist for the treatment of type 2 diabetes mellitus: from discovery to clinical proof of concept
  publication-title: Mol. Metab.
– volume: 9
  start-page: 57
  year: 2011
  end-page: 63
  ident: bib28
  article-title: A guide to analysis of mouse energy metabolism
  publication-title: Nat. Methods
– volume: 18
  start-page: 21
  year: 2013
  end-page: 28
  ident: bib12
  article-title: Metabolic pitfalls of CNS Cre-based technology
  publication-title: Cell Metab.
– volume: 91
  start-page: 301
  year: 1993
  ident: 10.1016/j.cmet.2021.01.015_bib23
  article-title: Preserved incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI116186
– volume: 27
  start-page: 450
  year: 2018
  ident: 10.1016/j.cmet.2021.01.015_bib29
  article-title: Inactivation of the glucose-dependent insulinotropic polypeptide receptor improves outcomes following experimental myocardial infarction
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2017.11.003
– volume: 146
  start-page: dev173849
  year: 2019
  ident: 10.1016/j.cmet.2021.01.015_bib3
  article-title: Comprehensive single cell mRNA profiling reveals a detailed roadmap for pancreatic endocrinogenesis
  publication-title: Development
  doi: 10.1242/dev.173849
– volume: 18
  start-page: 3
  year: 2018
  ident: 10.1016/j.cmet.2021.01.015_bib7
  article-title: LY3298176, a novel dual GIP and GLP-1 receptor agonist for the treatment of type 2 diabetes mellitus: from discovery to clinical proof of concept
  publication-title: Mol. Metab.
  doi: 10.1016/j.molmet.2018.09.009
– volume: 66
  start-page: 2363
  year: 2017
  ident: 10.1016/j.cmet.2021.01.015_bib2
  article-title: The gluco- and liporegulatory and vasodilatory effects of glucose-dependent insulinotropic polypeptide (GIP) are abolished by an antagonist of the human GIP receptor
  publication-title: Diabetes
  doi: 10.2337/db17-0480
– volume: 31
  start-page: 410
  year: 2020
  ident: 10.1016/j.cmet.2021.01.015_bib26
  article-title: How may GIP enhance the therapeutic efficacy of GLP-1?
  publication-title: Trends Endocrinol. Metab.
  doi: 10.1016/j.tem.2020.02.006
– volume: 20
  start-page: 51
  year: 2019
  ident: 10.1016/j.cmet.2021.01.015_bib22
  article-title: Optimized GIP analogs promote body weight lowering in mice through GIPR agonism not antagonism
  publication-title: Mol. Metab.
  doi: 10.1016/j.molmet.2018.12.001
– volume: 10
  start-page: eaat3392
  year: 2018
  ident: 10.1016/j.cmet.2021.01.015_bib17
  article-title: Anti-obesity effects of GIPR antagonists alone and in combination with GLP-1R agonists in preclinical models
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aat3392
– volume: 7
  start-page: e40156
  year: 2012
  ident: 10.1016/j.cmet.2021.01.015_bib20
  article-title: GIP-overexpressing mice demonstrate reduced diet-induced obesity and steatosis, and improved glucose homeostasis
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0040156
– volume: 29
  start-page: 68
  year: 1986
  ident: 10.1016/j.cmet.2021.01.015_bib4
  article-title: Direct metabolic effects of gastric inhibitory polypeptide (GIP): dissociation at physiological levels of effects on insulin-stimulated fatty acid and glucose incorporation in rat adipose tissue
  publication-title: Diabetologia
  doi: 10.1007/BF02427284
– volume: 282
  start-page: 8557
  year: 2007
  ident: 10.1016/j.cmet.2021.01.015_bib18
  article-title: Activation of lipoprotein lipase by glucose-dependent insulinotropic polypeptide in adipocytes. A role for a protein kinase B, LKB1, and AMP-activated protein kinase cascade
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M609088200
– volume: 6
  start-page: 293
  year: 2013
  ident: 10.1016/j.cmet.2021.01.015_bib27
  article-title: The ‘39 steps’: an algorithm for performing statistical analysis of data on energy intake and expenditure
  publication-title: Dis. Model. Mech.
  doi: 10.1242/dmm.009860
– volume: 18
  start-page: 21
  year: 2013
  ident: 10.1016/j.cmet.2021.01.015_bib12
  article-title: Metabolic pitfalls of CNS Cre-based technology
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2013.05.019
– volume: 32
  start-page: 282
  year: 1988
  ident: 10.1016/j.cmet.2021.01.015_bib13
  article-title: Effects of gastric inhibitory polypeptide on glucose and lipid metabolism of isolated rat adipocytes
  publication-title: Ann. Nutr. Metab.
  doi: 10.1159/000177467
– volume: 51
  start-page: 3145
  year: 2010
  ident: 10.1016/j.cmet.2021.01.015_bib19
  article-title: GIP increases human adipocyte LPL expression through CREB and TORC2-mediated trans-activation of the LPL gene
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.M006841
– volume: 9
  start-page: 57
  year: 2011
  ident: 10.1016/j.cmet.2021.01.015_bib28
  article-title: A guide to analysis of mouse energy metabolism
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1806
– volume: 8
  start-page: 738
  year: 2002
  ident: 10.1016/j.cmet.2021.01.015_bib21
  article-title: Inhibition of gastric inhibitory polypeptide signaling prevents obesity
  publication-title: Nat. Med.
  doi: 10.1038/nm727
– volume: 105
  start-page: e2710
  year: 2020
  ident: 10.1016/j.cmet.2021.01.015_bib14
  article-title: GIP as a therapeutic target in diabetes and obesity: insight from incretin co-agonists
  publication-title: J. Clin. Endocrinol. Metab.
  doi: 10.1210/clinem/dgaa327
– volume: 304
  start-page: 110
  year: 2004
  ident: 10.1016/j.cmet.2021.01.015_bib24
  article-title: Rapid rewiring of arcuate nucleus feeding circuits by leptin
  publication-title: Science
  doi: 10.1126/science.1089459
– volume: 30
  start-page: 987
  year: 2019
  ident: 10.1016/j.cmet.2021.01.015_bib1
  article-title: Glucose-dependent insulinotropic polypeptide receptor-expressing cells in the hypothalamus regulate food intake
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2019.07.013
– volume: 28
  start-page: 1141
  year: 1979
  ident: 10.1016/j.cmet.2021.01.015_bib8
  article-title: Gastric inhibitory polypeptide enhanced lipoprotein lipase activity in cultured preadipocytes
  publication-title: Diabetes
  doi: 10.2337/diab.28.12.1141
– volume: 48
  start-page: 497
  year: 2016
  ident: 10.1016/j.cmet.2021.01.015_bib15
  article-title: Epigenetic germline inheritance of diet-induced obesity and insulin resistance
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3527
– volume: 22
  start-page: 84
  year: 2016
  ident: 10.1016/j.cmet.2021.01.015_bib5
  article-title: TCF1 links GIPR signaling to the control of beta cell function and survival
  publication-title: Nat. Med.
  doi: 10.1038/nm.3997
– volume: 5
  start-page: 209ra151
  year: 2013
  ident: 10.1016/j.cmet.2021.01.015_bib9
  article-title: Unimolecular dual incretins maximize metabolic benefits in rodents, monkeys, and humans
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.3007218
– volume: 129
  start-page: 3786
  year: 2019
  ident: 10.1016/j.cmet.2021.01.015_bib16
  article-title: Gut-derived GIP activates central Rap1 to impair neural leptin sensitivity during overnutrition
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI126107
– volume: 60
  start-page: 3103
  year: 2011
  ident: 10.1016/j.cmet.2021.01.015_bib6
  article-title: Glucose-dependent insulinotropic polypeptide: a bifunctional glucose-dependent regulator of glucagon and insulin secretion in humans
  publication-title: Diabetes
  doi: 10.2337/db11-0979
– volume: 59
  start-page: 1228
  year: 2010
  ident: 10.1016/j.cmet.2021.01.015_bib25
  article-title: Glucose intolerance and reduced proliferation of pancreatic beta-cells in transgenic pigs with impaired glucose-dependent insulinotropic polypeptide function
  publication-title: Diabetes
  doi: 10.2337/db09-0519
– volume: 392
  start-page: 2180
  year: 2018
  ident: 10.1016/j.cmet.2021.01.015_bib11
  article-title: Efficacy and safety of LY3298176, a novel dual GIP and GLP-1 receptor agonist, in patients with type 2 diabetes: a randomised, placebo-controlled and active comparator-controlled phase 2 trial
  publication-title: Lancet
  doi: 10.1016/S0140-6736(18)32260-8
– volume: 22
  start-page: 359
  year: 2016
  ident: 10.1016/j.cmet.2021.01.015_bib10
  article-title: Reappraisal of GIP pharmacology for metabolic diseases
  publication-title: Trends Mol. Med.
  doi: 10.1016/j.molmed.2016.03.005
SSID ssj0036393
Score 2.683102
Snippet Uncertainty exists as to whether the glucose-dependent insulinotropic polypeptide receptor (GIPR) should be activated or inhibited for the treatment of...
SourceID swepub
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 833
SubjectTerms Animals
body weight
Body Weight - drug effects
Central Nervous System - metabolism
CNS
Diet, High-Fat
diet-induced obesity
Eating - drug effects
food intake
Gastric Inhibitory Polypeptide - chemistry
Gastric Inhibitory Polypeptide - pharmacology
GIP
GIPR CNS KO
Glucagon-Like Peptide 1 - pharmacology
glucose metabolism
Humans
Hypothalamus - metabolism
incretin
Male
Mice
Mice, Inbred C57BL
Mice, Transgenic
Obesity - metabolism
Obesity - pathology
Obesity - prevention & control
Proto-Oncogene Proteins c-fos - metabolism
Receptors, Gastrointestinal Hormone - deficiency
Receptors, Gastrointestinal Hormone - genetics
Receptors, Gastrointestinal Hormone - metabolism
Signal Transduction - drug effects
type 2 diabetes
Title The glucose-dependent insulinotropic polypeptide (GIP) regulates body weight and food intake via CNS-GIPR signaling
URI https://dx.doi.org/10.1016/j.cmet.2021.01.015
https://www.ncbi.nlm.nih.gov/pubmed/33571454
https://www.proquest.com/docview/2489263457
https://pubmed.ncbi.nlm.nih.gov/PMC8035082
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-194271
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ra9RAEF9KQfCL-DZWywoKioRLdjf7-FhPa6tYxFq5b8tmHxpbk-Mup_S_dyePg1DpByEEkszAZmcyM5v9zQxCz6WQMUxgNvUsNykrZZEaIVUM5EqbKeFNyCB3-NMJPzpjHxbFYgfNx1wYgFUOtr-36Z21Hu7MhtmcLatqdgrBdTTBUAELPD_YYcgqhSS-xZvRGtPogTuQfSROgXpInOkxXvaXBzwlybvSndAa99_O6WrweRVDOak02nmnw9vo1hBW4oN-5HfQjq_voht9o8nLe2gdtQEP6PR07Hvb4gGI3rSrZllZvGwu4qo02hDn8cv3x59f4VXfqd6vcdm4S_yn-4-KTe1waBoX-Vtz7vHvyuD5yWkaWb5gAIQYyHG_j84O332dH6VDu4XUMkXa1LtQCk-cCpwLXzjrcm6UtIbnxsaVjwhCuoLbUlmfR6lKHkofrA-ZCFJlnj5Au3VT-0cIU2q9dYErVhomeDwLJxQhnpacEiUTlI_zrO1QixxaYlzoEXT2U4NsNMhGZ3AUCXq95Vn2lTiupS5G8emJPunoKq7lezbKWscPDXZPTO2bzVoTJhXhlBUiQQ972W_HQWkhclawBImJVmwJoIj39Eld_eiKeUvY2pUkQS96_ZmwvK2-Hehm9V2vNzpXjIj88X--1x66CVcd5og_QbvtauOfxnCqLffjQuL443731fwFPDEhkA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELemIQQviG_Cp5FAAqGoieP443EURgtbhdiG-mY59hmyjaRqU9D-e-x8VKqG9oAU5SG-kxLf-e4c_-4OoVeCCx8mUBMDTXVMC5HHmgvpA7nCJJKDdknIHT6csckJ_TzP5ztoPOTCBFhlb_s7m95a6_7JqJ_N0aIsR0chuPYmOFTACp7f2-FrPhpIAq5rOn8_mOPMu-AWZe-p40DeZ850IC_zCwKgkqRt7c7QG_ff3uly9HkZRLlVarR1T_u30a0-rsR73avfQTtQ3UXXu06TF_fQyqsD7uHp8dD4tsE9Er1ulvWiNHhRn_ttqTciFvCbT9Ovb_Gya1UPK1zU9gL_aX-kYl1Z7Oraev5GnwH-XWo8nh3FnuUbDogQHZLc76OT_Y_H40nc91uIDZWkicG6ggOx0jHGIbfGpkxLYTRLtfFbH-64sDkzhTSQerEK5gpwBlzCnZAJZA_QblVX8AjhLDNgrGOSFppy5u_cckkIZAXLiBQRSod5VqYvRh56YpyrAXV2qoJsVJCNSsKVR-jdhmfRleK4kjofxKe2FEp5X3El38tB1sqvtHB8oiuo1ytFqJCEZTTnEXrYyX7zHlmW85TmNEJ8Sys2BKGK9_ZIVf5sq3mLcLYrSIRed_qzxfKh_L6n6uUPtVqrVFLC08f_-V0v0I3J8eGBOpjOvjxBN8NIC0BiT9Fus1zDMx9bNcXzdu38BfigI7k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+glucose-dependent+insulinotropic+polypeptide+%28GIP%29+regulates+body+weight+and+food+intake+via+CNS-GIPR+signaling&rft.jtitle=Cell+metabolism&rft.au=Zhang%2C+Qian&rft.au=Delessa%2C+Challa+Tenagne&rft.au=Augustin%2C+Robert&rft.au=Bakhti%2C+Mostafa&rft.date=2021-04-06&rft.pub=Elsevier+Inc&rft.issn=1550-4131&rft.eissn=1932-7420&rft.volume=33&rft.issue=4&rft.spage=833&rft.epage=844.e5&rft_id=info:doi/10.1016%2Fj.cmet.2021.01.015&rft.externalDocID=S1550413121000152
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-4131&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-4131&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-4131&client=summon