The glucose-dependent insulinotropic polypeptide (GIP) regulates body weight and food intake via CNS-GIPR signaling
Uncertainty exists as to whether the glucose-dependent insulinotropic polypeptide receptor (GIPR) should be activated or inhibited for the treatment of obesity. Gipr was recently demonstrated in hypothalamic feeding centers, but the physiological relevance of CNS Gipr remains unknown. Here we show t...
Saved in:
Published in | Cell metabolism Vol. 33; no. 4; pp. 833 - 844.e5 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
06.04.2021
Cell Press |
Subjects | |
Online Access | Get full text |
ISSN | 1550-4131 1932-7420 1932-7420 |
DOI | 10.1016/j.cmet.2021.01.015 |
Cover
Abstract | Uncertainty exists as to whether the glucose-dependent insulinotropic polypeptide receptor (GIPR) should be activated or inhibited for the treatment of obesity. Gipr was recently demonstrated in hypothalamic feeding centers, but the physiological relevance of CNS Gipr remains unknown. Here we show that HFD-fed CNS-Gipr KO mice and humanized (h)GIPR knockin mice with CNS-hGIPR deletion show decreased body weight and improved glucose metabolism. In DIO mice, acute central and peripheral administration of acyl-GIP increases cFos neuronal activity in hypothalamic feeding centers, and this coincides with decreased body weight and food intake and improved glucose handling. Chronic central and peripheral administration of acyl-GIP lowers body weight and food intake in wild-type mice, but shows blunted/absent efficacy in CNS-Gipr KO mice. Also, the superior metabolic effect of GLP-1/GIP co-agonism relative to GLP-1 is extinguished in CNS-Gipr KO mice. Our data hence establish a key role of CNS Gipr for control of energy metabolism.
[Display omitted]
•CNS-Gipr KO mice are protected from diet-induced obesity and glucose intolerance•Acyl-GIP increases cFOS neuronal activity in key hypothalamic feeding centers•Acyl-GIP effects on body weight and food intake are absent/blunted in CNS-mGipr KO mice•GLP-1/GIP dual-agonism loses superior potency over GLP-1 in CNS-mGipr KO mice.
Zhang et al. report that CNS GIPR plays a significant role in regulating food intake. They show that treatment with acyl-GIP or with a GLP-1/GIP dual-agonist lowers body weight and food intake in wild-type mice but shows blunted efficacy in CNS-Gipr KO mice. |
---|---|
AbstractList | Uncertainty exists as to whether the glucose-dependent insulinotropic polypeptide receptor (GIPR) should be activated or inhibited for the treatment of obesity. Gipr was recently demonstrated in hypothalamic feeding centers, but the physiological relevance of CNS Gipr remains unknown. Here we show that HFD-fed CNS-
Gipr
KO mice and humanized
(h)GIPR
knockin mice with CNS-
hGIPR
deletion show decreased body weight and improved glucose metabolism. In DIO mice, acute central and peripheral administration of acyl-GIP increases cFos neuronal activity in hypothalamic feeding centers, and this coincides with decreased body weight and food intake and improved glucose handling. Chronic central and peripheral administration of acyl-GIP lowers body weight and food intake in wild-type mice, but shows blunted/absent efficacy in CNS-
Gipr
KO mice. Also, the superior metabolic effect of GLP-1/GIP co-agonism relative to GLP-1 is extinguished in CNS-
Gipr
KO mice. Our data hence establish a key role of CNS Gipr for control of energy metabolism.
•
CNS-
Gipr
KO mice are protected from diet-induced obesity and glucose intolerance
•
Acyl-GIP increases cFOS neuronal activity in key hypothalamic feeding centers
•
Acyl-GIP effects on body weight and food intake are absent/blunted in
CNS-mGipr
KO mice
•
GLP-1/GIP dual-agonism loses superior potency over GLP-1 in
CNS-mGipr
KO mice.
Zhang et al. report that CNS GIPR plays a significant role in regulating food intake. They show that treatment with acyl-GIP or with a GLP-1/GIP dual-agonist lowers body weight and food intake in wild-type mice but shows blunted efficacy in CNS-Gipr KO mice. Uncertainty exists as to whether the glucose-dependent insulinotropic polypeptide receptor (GIPR) should be activated or inhibited for the treatment of obesity. Gipr was recently demonstrated in hypothalamic feeding centers, but the physiological relevance of CNS Gipr remains unknown. Here we show that HFD-fed CNS-Gipr KO mice and humanized (h)GIPR knockin mice with CNS-hGIPR deletion show decreased body weight and improved glucose metabolism. In DIO mice, acute central and peripheral administration of acyl-GIP increases cFos neuronal activity in hypothalamic feeding centers, and this coincides with decreased body weight and food intake and improved glucose handling. Chronic central and peripheral administration of acyl-GIP lowers body weight and food intake in wild-type mice, but shows blunted/absent efficacy in CNS-Gipr KO mice. Also, the superior metabolic effect of GLP-1/GIP co-agonism relative to GLP-1 is extinguished in CNS-Gipr KO mice. Our data hence establish a key role of CNS Gipr for control of energy metabolism.Uncertainty exists as to whether the glucose-dependent insulinotropic polypeptide receptor (GIPR) should be activated or inhibited for the treatment of obesity. Gipr was recently demonstrated in hypothalamic feeding centers, but the physiological relevance of CNS Gipr remains unknown. Here we show that HFD-fed CNS-Gipr KO mice and humanized (h)GIPR knockin mice with CNS-hGIPR deletion show decreased body weight and improved glucose metabolism. In DIO mice, acute central and peripheral administration of acyl-GIP increases cFos neuronal activity in hypothalamic feeding centers, and this coincides with decreased body weight and food intake and improved glucose handling. Chronic central and peripheral administration of acyl-GIP lowers body weight and food intake in wild-type mice, but shows blunted/absent efficacy in CNS-Gipr KO mice. Also, the superior metabolic effect of GLP-1/GIP co-agonism relative to GLP-1 is extinguished in CNS-Gipr KO mice. Our data hence establish a key role of CNS Gipr for control of energy metabolism. Uncertainty exists as to whether the glucose-dependent insulinotropic polypeptide receptor (GIPR) should be activated or inhibited for the treatment of obesity. Gipr was recently demonstrated in hypothalamic feeding centers, but the physiological relevance of CNS Gipr remains unknown. Here we show that HFD-fed CNS-Gipr KO mice and humanized (h)GIPR knockin mice with CNS-hGIPR deletion show decreased body weight and improved glucose metabolism. In DIO mice, acute central and peripheral administration of acyl-GIP increases cFos neuronal activity in hypothalamic feeding centers, and this coincides with decreased body weight and food intake and improved glucose handling. Chronic central and peripheral administration of acyl-GIP lowers body weight and food intake in wild-type mice, but shows blunted/absent efficacy in CNS-Gipr KO mice. Also, the superior metabolic effect of GLP-1/GIP co-agonism relative to GLP-1 is extinguished in CNS-Gipr KO mice. Our data hence establish a key role of CNS Gipr for control of energy metabolism. Uncertainty exists as to whether the glucose-dependent insulinotropic polypeptide receptor (GIPR) should be activated or inhibited for the treatment of obesity. Gipr was recently demonstrated in hypothalamic feeding centers, but the physiological relevance of CNS Gipr remains unknown. Here we show that HFD-fed CNS-Gipr KO mice and humanized (h)GIPR knockin mice with CNS-hGIPR deletion show decreased body weight and improved glucose metabolism. In DIO mice, acute central and peripheral administration of acyl-GIP increases cFos neuronal activity in hypothalamic feeding centers, and this coincides with decreased body weight and food intake and improved glucose handling. Chronic central and peripheral administration of acyl-GIP lowers body weight and food intake in wild-type mice, but shows blunted/absent efficacy in CNS-Gipr KO mice. Also, the superior metabolic effect of GLP-1/GIP co-agonism relative to GLP-1 is extinguished in CNS-Gipr KO mice. Our data hence establish a key role of CNS Gipr for control of energy metabolism. [Display omitted] •CNS-Gipr KO mice are protected from diet-induced obesity and glucose intolerance•Acyl-GIP increases cFOS neuronal activity in key hypothalamic feeding centers•Acyl-GIP effects on body weight and food intake are absent/blunted in CNS-mGipr KO mice•GLP-1/GIP dual-agonism loses superior potency over GLP-1 in CNS-mGipr KO mice. Zhang et al. report that CNS GIPR plays a significant role in regulating food intake. They show that treatment with acyl-GIP or with a GLP-1/GIP dual-agonist lowers body weight and food intake in wild-type mice but shows blunted efficacy in CNS-Gipr KO mice. |
Author | Salinno, Ciro Mowery, Stephanie A. DiMarchi, Richard D. Perez-Tilve, Diego Herzig, Stephan Augustin, Robert Holleman, Cassie Lynn Sehrer, Laura Legutko, Beata Müller, Timo D. Medina, Marta Tarquis Drucker, Daniel J. Wolfrum, Christian Liu, Xue Jastroch, Martin Caceres, Cristina Garcia Malogajski, Emilija Stemmer, Kerstin Hofmann, Susanna Knerr, Patrick J. Lutter, Dominik Zhang, Qian Tschöp, Matthias H. Luippold, Gerd Harger, Alexandra Bakhti, Mostafa Feuchtinger, Annette Kulaj, Konxhe Lickert, Heiko Keipert, Susanne Blutke, Andreas Finan, Brian Colldén, Gustav Delessa, Challa Tenagne Kleinert, Maximilian Grandl, Gerald |
Author_xml | – sequence: 1 givenname: Qian surname: Zhang fullname: Zhang, Qian organization: Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany – sequence: 2 givenname: Challa Tenagne surname: Delessa fullname: Delessa, Challa Tenagne organization: Institute of Food, Nutrition and Health, Department of Health Sciences and Technology (D-HEST), ETH Zürich, Zurich, Switzerland – sequence: 3 givenname: Robert surname: Augustin fullname: Augustin, Robert organization: Cardiometabolic Diseases Research Department, Boehringer Ingelheim Pharma GmbH and Co., KG, Biberach/Riss, Germany – sequence: 4 givenname: Mostafa surname: Bakhti fullname: Bakhti, Mostafa organization: German Center for Diabetes Research (DZD), Neuherberg, Germany – sequence: 5 givenname: Gustav surname: Colldén fullname: Colldén, Gustav organization: Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany – sequence: 6 givenname: Daniel J. surname: Drucker fullname: Drucker, Daniel J. organization: Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, ON M5G 1X5, Canada – sequence: 7 givenname: Annette surname: Feuchtinger fullname: Feuchtinger, Annette organization: Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany – sequence: 8 givenname: Cristina Garcia surname: Caceres fullname: Caceres, Cristina Garcia organization: Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany – sequence: 9 givenname: Gerald surname: Grandl fullname: Grandl, Gerald organization: Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany – sequence: 10 givenname: Alexandra surname: Harger fullname: Harger, Alexandra organization: Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany – sequence: 11 givenname: Stephan surname: Herzig fullname: Herzig, Stephan organization: German Center for Diabetes Research (DZD), Neuherberg, Germany – sequence: 12 givenname: Susanna surname: Hofmann fullname: Hofmann, Susanna organization: German Center for Diabetes Research (DZD), Neuherberg, Germany – sequence: 13 givenname: Cassie Lynn surname: Holleman fullname: Holleman, Cassie Lynn organization: Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany – sequence: 14 givenname: Martin surname: Jastroch fullname: Jastroch, Martin organization: Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, Stockholm, Sweden – sequence: 15 givenname: Susanne surname: Keipert fullname: Keipert, Susanne organization: Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, Stockholm, Sweden – sequence: 16 givenname: Maximilian surname: Kleinert fullname: Kleinert, Maximilian organization: Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany – sequence: 17 givenname: Patrick J. surname: Knerr fullname: Knerr, Patrick J. organization: Novo Nordisk Research Center Indianapolis, Indianapolis, IN 46241, USA – sequence: 18 givenname: Konxhe surname: Kulaj fullname: Kulaj, Konxhe organization: Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany – sequence: 19 givenname: Beata surname: Legutko fullname: Legutko, Beata organization: Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany – sequence: 20 givenname: Heiko surname: Lickert fullname: Lickert, Heiko organization: German Center for Diabetes Research (DZD), Neuherberg, Germany – sequence: 21 givenname: Xue surname: Liu fullname: Liu, Xue organization: Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany – sequence: 22 givenname: Gerd surname: Luippold fullname: Luippold, Gerd organization: Cardiometabolic Diseases Research Department, Boehringer Ingelheim Pharma GmbH and Co., KG, Biberach/Riss, Germany – sequence: 23 givenname: Dominik surname: Lutter fullname: Lutter, Dominik organization: Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany – sequence: 24 givenname: Emilija surname: Malogajski fullname: Malogajski, Emilija organization: Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany – sequence: 25 givenname: Marta Tarquis surname: Medina fullname: Medina, Marta Tarquis organization: German Center for Diabetes Research (DZD), Neuherberg, Germany – sequence: 26 givenname: Stephanie A. surname: Mowery fullname: Mowery, Stephanie A. organization: Novo Nordisk Research Center Indianapolis, Indianapolis, IN 46241, USA – sequence: 27 givenname: Andreas surname: Blutke fullname: Blutke, Andreas organization: Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany – sequence: 28 givenname: Diego surname: Perez-Tilve fullname: Perez-Tilve, Diego organization: Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA – sequence: 29 givenname: Ciro surname: Salinno fullname: Salinno, Ciro organization: German Center for Diabetes Research (DZD), Neuherberg, Germany – sequence: 30 givenname: Laura surname: Sehrer fullname: Sehrer, Laura organization: Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany – sequence: 31 givenname: Richard D. surname: DiMarchi fullname: DiMarchi, Richard D. organization: Department of Chemistry, Indiana University, Bloomington, IN 47405, USA – sequence: 32 givenname: Matthias H. surname: Tschöp fullname: Tschöp, Matthias H. organization: German Center for Diabetes Research (DZD), Neuherberg, Germany – sequence: 33 givenname: Kerstin surname: Stemmer fullname: Stemmer, Kerstin organization: Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany – sequence: 34 givenname: Brian surname: Finan fullname: Finan, Brian organization: Novo Nordisk Research Center Indianapolis, Indianapolis, IN 46241, USA – sequence: 35 givenname: Christian surname: Wolfrum fullname: Wolfrum, Christian organization: Institute of Food, Nutrition and Health, Department of Health Sciences and Technology (D-HEST), ETH Zürich, Zurich, Switzerland – sequence: 36 givenname: Timo D. surname: Müller fullname: Müller, Timo D. email: timo.mueller@helmholtz-muenchen.de organization: Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33571454$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-194271$$DView record from Swedish Publication Index |
BookMark | eNp9kl1rFDEYhYNU7If-AS8klxWcNR_zCVIoa62FoqLV25BJ3pnNOpuMSWbL_vtm2FasF4UXEsh5zoG85xgdWGcBodeULCih5fv1Qm0gLhhhdEHmKZ6hI9pwllU5IwfpXhQkyymnh-g4hDUhvOQNf4EOOS8qmhf5EQo3K8D9MCkXINMwgtVgIzY2TIOxLno3GoVHN-xGGKPRgE8vr769xR76aZARAm6d3uFbMP0qYmk17pzTiY_yN-CtkXj55UeWkO84mN7KZNq_RM87OQR4dX-eoJ-fLm6Wn7Prr5dXy_PrTOUNixnorq2A6aYrywoKrTQtZVMrWVKpSF1WXVXrolRto4DmbV2XXQudgo5UXd0Q4Cfo3d433MI4tWL0ZiP9TjhpxEfz61w434swCdrkrKJJfraXJ-0GtEr_4OXwiHr8Ys1K9G4rasILUrNkcHpv4N2fCUIUGxMUDIO04KYgWF43rOR5USXpm3-z_oY8LCYJ6r1AeReCh04oE2U0bo42g6BEzB0QazF3QMwdEGSeIqHsP_TB_Unowx6CtJCtAS-CMmAVaONBRaGdeQq_Ax8bzhY |
CitedBy_id | crossref_primary_10_1016_j_soard_2022_08_020 crossref_primary_10_3390_nu14183775 crossref_primary_10_1038_s41574_022_00737_9 crossref_primary_10_1080_14656566_2024_2356254 crossref_primary_10_3390_nu16193245 crossref_primary_10_1080_14656566_2021_1974401 crossref_primary_10_1007_s00125_023_05956_x crossref_primary_10_1016_j_molmet_2022_101533 crossref_primary_10_1152_ajpendo_00236_2023 crossref_primary_10_1016_j_cell_2024_06_003 crossref_primary_10_1016_j_peptides_2024_171198 crossref_primary_10_1038_s41598_022_20343_z crossref_primary_10_1080_13543784_2023_2206560 crossref_primary_10_3390_biom15030408 crossref_primary_10_1021_acs_jmedchem_2c02073 crossref_primary_10_1111_dom_15001 crossref_primary_10_1007_s40265_023_01982_6 crossref_primary_10_4103_1673_5374_389358 crossref_primary_10_1016_j_cmet_2021_12_005 crossref_primary_10_1111_dom_16294 crossref_primary_10_1016_j_lanepe_2024_101100 crossref_primary_10_1093_ajhp_zxad080 crossref_primary_10_1055_a_1904_5552 crossref_primary_10_3724_abbs_2023276 crossref_primary_10_2337_dbi21_0002 crossref_primary_10_1007_s00125_023_05906_7 crossref_primary_10_1016_j_pharmthera_2022_108187 crossref_primary_10_2337_dbi21_0001 crossref_primary_10_1055_a_2102_3927 crossref_primary_10_1152_ajpendo_00371_2023 crossref_primary_10_7570_jomes23032 crossref_primary_10_3390_ph16060836 crossref_primary_10_7570_jomes22067 crossref_primary_10_1016_j_molmet_2024_101945 crossref_primary_10_1007_s00125_023_05929_0 crossref_primary_10_1080_19490976_2022_2068365 crossref_primary_10_3390_nu16183170 crossref_primary_10_1155_2023_5891532 crossref_primary_10_1016_j_cnd_2023_04_005 crossref_primary_10_1111_bph_15894 crossref_primary_10_1038_s41586_024_07419_8 crossref_primary_10_1210_endrev_bnaf006 crossref_primary_10_3390_diagnostics12081984 crossref_primary_10_3389_fendo_2022_887238 crossref_primary_10_1111_dom_14843 crossref_primary_10_1111_dom_16106 crossref_primary_10_1016_j_molmet_2024_102074 crossref_primary_10_4103_ijem_ijem_442_23 crossref_primary_10_2174_0115733998256797231009062744 crossref_primary_10_1016_j_ebiom_2023_104684 crossref_primary_10_1172_jci_insight_164921 crossref_primary_10_18632_aging_205673 crossref_primary_10_1146_annurev_nutr_062320_113625 crossref_primary_10_3389_fnut_2022_1051452 crossref_primary_10_1016_j_cell_2024_06_029 crossref_primary_10_3390_ijms23063339 crossref_primary_10_4093_jkd_2022_23_2_89 crossref_primary_10_1016_j_molmet_2024_101915 crossref_primary_10_3389_fendo_2023_1301017 crossref_primary_10_3390_ijms25073769 crossref_primary_10_1007_s40200_024_01472_w crossref_primary_10_1016_j_molmet_2024_101992 crossref_primary_10_1111_dom_14496 crossref_primary_10_1016_j_molmet_2024_101996 crossref_primary_10_1038_s41574_022_00783_3 crossref_primary_10_1210_clinem_dgac542 crossref_primary_10_1016_j_phrs_2022_106058 crossref_primary_10_1007_s00018_023_05027_9 crossref_primary_10_1186_s12944_024_02092_2 crossref_primary_10_1007_s11883_022_01041_7 crossref_primary_10_2337_dbi21_0026 crossref_primary_10_2337_dci24_0003 crossref_primary_10_1038_s41586_024_08207_0 crossref_primary_10_1016_j_tem_2024_07_022 crossref_primary_10_1016_j_peptides_2023_171003 crossref_primary_10_3389_fendo_2022_838410 crossref_primary_10_1016_j_peptides_2023_171093 crossref_primary_10_1111_dom_15235 crossref_primary_10_1016_j_molmet_2025_102118 crossref_primary_10_1038_s42255_022_00606_9 crossref_primary_10_17925_EE_2022_18_1_10 crossref_primary_10_1016_j_tips_2022_11_001 crossref_primary_10_1002_ptr_7788 crossref_primary_10_1038_s41467_022_30187_w crossref_primary_10_1016_j_bcp_2021_114715 crossref_primary_10_1038_s42255_023_00811_0 crossref_primary_10_1016_j_bbagen_2021_129917 crossref_primary_10_1113_JP280581 crossref_primary_10_2147_DMSO_S415934 crossref_primary_10_1016_j_cmet_2024_11_003 crossref_primary_10_1152_ajpendo_00330_2023 crossref_primary_10_1038_s42255_023_00812_z crossref_primary_10_1111_jdi_13816 crossref_primary_10_1007_s11739_023_03237_4 crossref_primary_10_1038_s41573_021_00337_8 crossref_primary_10_1126_scitranslmed_adh4453 crossref_primary_10_3390_antiox11071309 crossref_primary_10_1111_obr_13663 crossref_primary_10_1016_j_cmet_2024_05_010 crossref_primary_10_3389_fendo_2025_1532076 crossref_primary_10_2337_db23_0172 crossref_primary_10_3390_nu16081166 crossref_primary_10_1152_ajpendo_00374_2023 crossref_primary_10_1016_j_ejphar_2024_177095 crossref_primary_10_1073_pnas_2116506119 crossref_primary_10_1016_j_diabres_2024_111905 crossref_primary_10_1152_physiol_00032_2023 crossref_primary_10_1007_s10304_023_00527_0 crossref_primary_10_1038_s41574_024_00951_7 crossref_primary_10_1152_ajpendo_00360_2023 crossref_primary_10_1016_j_cnd_2024_09_003 crossref_primary_10_1186_s12933_023_01940_2 crossref_primary_10_2337_db21_0848 crossref_primary_10_1111_dme_14699 crossref_primary_10_1007_s00108_023_01530_0 crossref_primary_10_1111_dom_14640 crossref_primary_10_1111_dom_16146 crossref_primary_10_3389_fendo_2023_1095753 crossref_primary_10_1016_S2213_8587_21_00113_3 crossref_primary_10_1080_17460441_2023_2203911 crossref_primary_10_1016_j_cmet_2021_03_010 crossref_primary_10_3389_fcell_2021_749607 crossref_primary_10_1093_ejendo_lvae151 crossref_primary_10_21215_kjfp_2025_15_1_2 crossref_primary_10_1016_j_molmet_2025_102094 crossref_primary_10_1152_ajpendo_00250_2023 crossref_primary_10_2337_db21_0459 crossref_primary_10_3389_fendo_2024_1431292 crossref_primary_10_3389_fendo_2023_1220044 crossref_primary_10_1056_NEJMoa2107519 crossref_primary_10_1016_j_peptides_2024_171212 crossref_primary_10_1038_s42255_023_00931_7 crossref_primary_10_3390_ijms26031142 crossref_primary_10_1016_j_molmet_2023_101831 crossref_primary_10_1038_s41366_024_01473_y crossref_primary_10_4103_jod_jod_102_22 crossref_primary_10_1186_s12933_024_02180_8 crossref_primary_10_3390_ijms24043384 crossref_primary_10_3389_fcvm_2023_1185707 crossref_primary_10_1016_j_molmet_2022_101638 crossref_primary_10_1007_s13300_024_01566_x crossref_primary_10_1016_j_molmet_2021_101350 crossref_primary_10_53941_ijddp_2024_100023 crossref_primary_10_1007_s00210_024_03687_3 crossref_primary_10_1210_endrev_bnab034 crossref_primary_10_1007_s11428_023_01146_w crossref_primary_10_1007_s10787_023_01239_4 crossref_primary_10_1055_a_2102_2436 crossref_primary_10_1186_s12944_024_02416_2 crossref_primary_10_1111_bph_15647 crossref_primary_10_14341_omet13184 crossref_primary_10_1038_s12276_021_00677_w crossref_primary_10_3390_ijms25073832 crossref_primary_10_1016_j_ecoenv_2023_114660 crossref_primary_10_1016_j_cmet_2023_07_010 crossref_primary_10_1210_endocr_bqad153 crossref_primary_10_1016_j_jbc_2024_107473 crossref_primary_10_3390_cells12131801 crossref_primary_10_1016_j_eclinm_2023_101882 crossref_primary_10_1007_s12268_023_1919_6 crossref_primary_10_1016_j_diabres_2023_110770 crossref_primary_10_1080_10408398_2023_2256400 crossref_primary_10_1007_s00018_024_05507_6 crossref_primary_10_1080_13543784_2024_2377319 crossref_primary_10_1111_dom_15796 crossref_primary_10_3390_pharmaceutics16111353 crossref_primary_10_1002_med_22070 crossref_primary_10_1038_s42255_023_00966_w crossref_primary_10_2337_db21_1166 crossref_primary_10_1038_s41401_022_00962_y crossref_primary_10_1002_ncp_11013 |
Cites_doi | 10.1172/JCI116186 10.1016/j.cmet.2017.11.003 10.1242/dev.173849 10.1016/j.molmet.2018.09.009 10.2337/db17-0480 10.1016/j.tem.2020.02.006 10.1016/j.molmet.2018.12.001 10.1126/scitranslmed.aat3392 10.1371/journal.pone.0040156 10.1007/BF02427284 10.1074/jbc.M609088200 10.1242/dmm.009860 10.1016/j.cmet.2013.05.019 10.1159/000177467 10.1194/jlr.M006841 10.1038/nmeth.1806 10.1038/nm727 10.1210/clinem/dgaa327 10.1126/science.1089459 10.1016/j.cmet.2019.07.013 10.2337/diab.28.12.1141 10.1038/ng.3527 10.1038/nm.3997 10.1126/scitranslmed.3007218 10.1172/JCI126107 10.2337/db11-0979 10.2337/db09-0519 10.1016/S0140-6736(18)32260-8 10.1016/j.molmed.2016.03.005 |
ContentType | Journal Article |
Copyright | 2021 The Authors Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved. 2021 The Authors 2021 |
Copyright_xml | – notice: 2021 The Authors – notice: Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved. – notice: 2021 The Authors 2021 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ABAVF ADTPV AOWAS D8T DG7 ZZAVC |
DOI | 10.1016/j.cmet.2021.01.015 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) SWEPUB Stockholms universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Stockholms universitet SwePub Articles full text |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1932-7420 |
EndPage | 844.e5 |
ExternalDocumentID | oai_DiVA_org_su_194271 PMC8035082 33571454 10_1016_j_cmet_2021_01_015 S1550413121000152 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: CIHR grantid: 154321 |
GroupedDBID | --- --K 0R~ 1~5 29B 2WC 4.4 457 4G. 53G 5GY 62- 6I. 6J9 7-5 AACTN AAEDW AAFTH AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS F5P FCP FDB FEDTE FIRID HVGLF IHE IXB J1W JIG M3Z M41 O-L O9- OK1 P2P RCE ROL RPZ SES SSZ TR2 UNMZH WQ6 ZA5 AAEDT AAIKJ AAMRU AAYWO AAYXX ABDGV ACVFH ADCNI ADVLN AEUPX AFPUW AGCQF AGHFR AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION EJD HZ~ OZT RIG CGR CUY CVF ECM EIF NPM 7X8 EFKBS 5PM ABAVF ADTPV AOWAS D8T DG7 ZZAVC |
ID | FETCH-LOGICAL-c492t-edfb7e2d9f667e5dcd16a98ca61ac0867f78d56cb9ce14b886fbefcef07f890e3 |
IEDL.DBID | IXB |
ISSN | 1550-4131 1932-7420 |
IngestDate | Thu Aug 21 06:11:56 EDT 2025 Thu Aug 21 14:11:00 EDT 2025 Sat Sep 27 22:34:27 EDT 2025 Thu Apr 03 07:05:05 EDT 2025 Tue Jul 01 03:58:19 EDT 2025 Thu Apr 24 23:01:25 EDT 2025 Fri Feb 23 02:47:24 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | body weight type 2 diabetes incretin GIPR CNS KO CNS glucose metabolism diet-induced obesity GIP food intake |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c492t-edfb7e2d9f667e5dcd16a98ca61ac0867f78d56cb9ce14b886fbefcef07f890e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead contact |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1550413121000152 |
PMID | 33571454 |
PQID | 2489263457 |
PQPubID | 23479 |
ParticipantIDs | swepub_primary_oai_DiVA_org_su_194271 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8035082 proquest_miscellaneous_2489263457 pubmed_primary_33571454 crossref_citationtrail_10_1016_j_cmet_2021_01_015 crossref_primary_10_1016_j_cmet_2021_01_015 elsevier_sciencedirect_doi_10_1016_j_cmet_2021_01_015 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-06 |
PublicationDateYYYYMMDD | 2021-04-06 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-06 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell metabolism |
PublicationTitleAlternate | Cell Metab |
PublicationYear | 2021 |
Publisher | Elsevier Inc Cell Press |
Publisher_xml | – name: Elsevier Inc – name: Cell Press |
References | Holst, Rosenkilde (bib14) 2020; 105 Bastidas-Ponce, Tritschler, Dony, Scheibner, Tarquis-Medina, Salinno, Schirge, Burtscher, Böttcher, Theis (bib3) 2019; 146 Adriaenssens, Biggs, Darwish, Tadross, Sukthankar, Girish, Polex-Wolf, Lam, Zvetkova, Pan (bib1) 2019; 30 Eckel, Fujimoto, Brunzell (bib8) 1979; 28 Finan, Ma, Ottaway, Müller, Habegger, Heppner, Kirchner, Holland, Hembree, Raver (bib9) 2013; 5 Kim, Nian, Karunakaran, Clee, Isales, McIntosh (bib20) 2012; 7 Christensen, Vedtofte, Holst, Vilsbøll, Knop (bib6) 2011; 60 Campbell, Ussher, Mulvihill, Kolic, Baggio, Cao, Liu, Lamont, Morii, Streutker (bib5) 2016; 22 Mroz, Finan, Gelfanov, Yang, Tschöp, DiMarchi, Perez-Tilve (bib22) 2019; 20 Miyawaki, Yamada, Ban, Ihara, Tsukiyama, Zhou, Fujimoto, Oku, Tsuda, Toyokuni (bib21) 2002; 8 Nauck, Heimesaat, Orskov, Holst, Ebert, Creutzfeldt (bib23) 1993; 91 Killion, Wang, Yie, Shi, Bates, Min, Komorowski, Hager, Deng, Atangan (bib17) 2018; 10 Speakman, Fletcher, Vaanholt (bib27) 2013; 6 Huypens, Sass, Wu, Dyckhoff, Tschöp, Theis, Marschall, Hrabě de Angelis, Beckers (bib15) 2016; 48 Coskun, Sloop, Loghin, Alsina-Fernandez, Urva, Bokvist, Cui, Briere, Cabrera, Roell (bib7) 2018; 18 Frias, Nauck, Van, Kutner, Cui, Benson, Urva, Gimeno, Milicevic, Robins, Haupt (bib11) 2018; 392 Kim, Nian, McIntosh (bib18) 2007; 282 Samms, Coghlan, Sloop (bib26) 2020; 31 Harno, Cottrell, White (bib12) 2013; 18 Kim, Nian, McIntosh (bib19) 2010; 51 Beck, Max (bib4) 1986; 29 Renner, Fehlings, Herbach, Hofmann, von Waldthausen, Kessler, Ulrichs, Chodnevskaja, Moskalenko, Amselgruber (bib25) 2010; 59 Kaneko, Fu, Lin, Cordonier, Mo, Gao, Yao, Naylor, Howard, Saito (bib16) 2019; 129 Tschöp, Speakman, Arch, Auwerx, Brüning, Chan, Eckel, Farese, Galgani, Hambly (bib28) 2011; 9 Asmar, Asmar, Simonsen, Gasbjerg, Sparre-Ulrich, Rosenkilde, Hartmann, Dela, Holst, Bülow (bib2) 2017; 66 Ussher, Campbell, Mulvihill, Baggio, Bates, McLean, Gopal, Capozzi, Yusta, Cao (bib29) 2018; 27 Hauner, Glatting, Kaminska, Pfeiffer (bib13) 1988; 32 Finan, Müller, Clemmensen, Perez-Tilve, DiMarchi, Tschöp (bib10) 2016; 22 Pinto, Roseberry, Liu, Diano, Shanabrough, Cai, Friedman, Horvath (bib24) 2004; 304 Asmar (10.1016/j.cmet.2021.01.015_bib2) 2017; 66 Speakman (10.1016/j.cmet.2021.01.015_bib27) 2013; 6 Coskun (10.1016/j.cmet.2021.01.015_bib7) 2018; 18 Mroz (10.1016/j.cmet.2021.01.015_bib22) 2019; 20 Tschöp (10.1016/j.cmet.2021.01.015_bib28) 2011; 9 Eckel (10.1016/j.cmet.2021.01.015_bib8) 1979; 28 Kaneko (10.1016/j.cmet.2021.01.015_bib16) 2019; 129 Finan (10.1016/j.cmet.2021.01.015_bib10) 2016; 22 Hauner (10.1016/j.cmet.2021.01.015_bib13) 1988; 32 Samms (10.1016/j.cmet.2021.01.015_bib26) 2020; 31 Killion (10.1016/j.cmet.2021.01.015_bib17) 2018; 10 Harno (10.1016/j.cmet.2021.01.015_bib12) 2013; 18 Kim (10.1016/j.cmet.2021.01.015_bib20) 2012; 7 Finan (10.1016/j.cmet.2021.01.015_bib9) 2013; 5 Ussher (10.1016/j.cmet.2021.01.015_bib29) 2018; 27 Adriaenssens (10.1016/j.cmet.2021.01.015_bib1) 2019; 30 Bastidas-Ponce (10.1016/j.cmet.2021.01.015_bib3) 2019; 146 Kim (10.1016/j.cmet.2021.01.015_bib18) 2007; 282 Frias (10.1016/j.cmet.2021.01.015_bib11) 2018; 392 Holst (10.1016/j.cmet.2021.01.015_bib14) 2020; 105 Huypens (10.1016/j.cmet.2021.01.015_bib15) 2016; 48 Kim (10.1016/j.cmet.2021.01.015_bib19) 2010; 51 Miyawaki (10.1016/j.cmet.2021.01.015_bib21) 2002; 8 Pinto (10.1016/j.cmet.2021.01.015_bib24) 2004; 304 Beck (10.1016/j.cmet.2021.01.015_bib4) 1986; 29 Campbell (10.1016/j.cmet.2021.01.015_bib5) 2016; 22 Renner (10.1016/j.cmet.2021.01.015_bib25) 2010; 59 Christensen (10.1016/j.cmet.2021.01.015_bib6) 2011; 60 Nauck (10.1016/j.cmet.2021.01.015_bib23) 1993; 91 |
References_xml | – volume: 28 start-page: 1141 year: 1979 end-page: 1142 ident: bib8 article-title: Gastric inhibitory polypeptide enhanced lipoprotein lipase activity in cultured preadipocytes publication-title: Diabetes – volume: 282 start-page: 8557 year: 2007 end-page: 8567 ident: bib18 article-title: Activation of lipoprotein lipase by glucose-dependent insulinotropic polypeptide in adipocytes. A role for a protein kinase B, LKB1, and AMP-activated protein kinase cascade publication-title: J. Biol. Chem. – volume: 31 start-page: 410 year: 2020 end-page: 421 ident: bib26 article-title: How may GIP enhance the therapeutic efficacy of GLP-1? publication-title: Trends Endocrinol. Metab. – volume: 6 start-page: 293 year: 2013 end-page: 301 ident: bib27 article-title: The ‘39 steps’: an algorithm for performing statistical analysis of data on energy intake and expenditure publication-title: Dis. Model. Mech. – volume: 59 start-page: 1228 year: 2010 end-page: 1238 ident: bib25 article-title: Glucose intolerance and reduced proliferation of pancreatic beta-cells in transgenic pigs with impaired glucose-dependent insulinotropic polypeptide function publication-title: Diabetes – volume: 66 start-page: 2363 year: 2017 end-page: 2371 ident: bib2 article-title: The gluco- and liporegulatory and vasodilatory effects of glucose-dependent insulinotropic polypeptide (GIP) are abolished by an antagonist of the human GIP receptor publication-title: Diabetes – volume: 27 start-page: 450 year: 2018 end-page: 460.e6 ident: bib29 article-title: Inactivation of the glucose-dependent insulinotropic polypeptide receptor improves outcomes following experimental myocardial infarction publication-title: Cell Metab. – volume: 60 start-page: 3103 year: 2011 end-page: 3109 ident: bib6 article-title: Glucose-dependent insulinotropic polypeptide: a bifunctional glucose-dependent regulator of glucagon and insulin secretion in humans publication-title: Diabetes – volume: 32 start-page: 282 year: 1988 end-page: 288 ident: bib13 article-title: Effects of gastric inhibitory polypeptide on glucose and lipid metabolism of isolated rat adipocytes publication-title: Ann. Nutr. Metab. – volume: 30 start-page: 987 year: 2019 end-page: 996.e6 ident: bib1 article-title: Glucose-dependent insulinotropic polypeptide receptor-expressing cells in the hypothalamus regulate food intake publication-title: Cell Metab. – volume: 8 start-page: 738 year: 2002 end-page: 742 ident: bib21 article-title: Inhibition of gastric inhibitory polypeptide signaling prevents obesity publication-title: Nat. Med. – volume: 20 start-page: 51 year: 2019 end-page: 62 ident: bib22 article-title: Optimized GIP analogs promote body weight lowering in mice through GIPR agonism not antagonism publication-title: Mol. Metab. – volume: 91 start-page: 301 year: 1993 end-page: 307 ident: bib23 article-title: Preserved incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus publication-title: J. Clin. Invest. – volume: 22 start-page: 359 year: 2016 end-page: 376 ident: bib10 article-title: Reappraisal of GIP pharmacology for metabolic diseases publication-title: Trends Mol. Med. – volume: 392 start-page: 2180 year: 2018 end-page: 2193 ident: bib11 article-title: Efficacy and safety of LY3298176, a novel dual GIP and GLP-1 receptor agonist, in patients with type 2 diabetes: a randomised, placebo-controlled and active comparator-controlled phase 2 trial publication-title: Lancet – volume: 5 start-page: 209ra151 year: 2013 ident: bib9 article-title: Unimolecular dual incretins maximize metabolic benefits in rodents, monkeys, and humans publication-title: Sci. Transl. Med. – volume: 22 start-page: 84 year: 2016 end-page: 90 ident: bib5 article-title: TCF1 links GIPR signaling to the control of beta cell function and survival publication-title: Nat. Med. – volume: 304 start-page: 110 year: 2004 end-page: 115 ident: bib24 article-title: Rapid rewiring of arcuate nucleus feeding circuits by leptin publication-title: Science – volume: 10 start-page: eaat3392 year: 2018 ident: bib17 article-title: Anti-obesity effects of GIPR antagonists alone and in combination with GLP-1R agonists in preclinical models publication-title: Sci. Transl. Med. – volume: 29 start-page: 68 year: 1986 ident: bib4 article-title: Direct metabolic effects of gastric inhibitory polypeptide (GIP): dissociation at physiological levels of effects on insulin-stimulated fatty acid and glucose incorporation in rat adipose tissue publication-title: Diabetologia – volume: 146 start-page: dev173849 year: 2019 ident: bib3 article-title: Comprehensive single cell mRNA profiling reveals a detailed roadmap for pancreatic endocrinogenesis publication-title: Development – volume: 105 start-page: e2710 year: 2020 end-page: e2716 ident: bib14 article-title: GIP as a therapeutic target in diabetes and obesity: insight from incretin co-agonists publication-title: J. Clin. Endocrinol. Metab. – volume: 48 start-page: 497 year: 2016 end-page: 499 ident: bib15 article-title: Epigenetic germline inheritance of diet-induced obesity and insulin resistance publication-title: Nat. Genet. – volume: 51 start-page: 3145 year: 2010 end-page: 3157 ident: bib19 article-title: GIP increases human adipocyte LPL expression through CREB and TORC2-mediated trans-activation of the LPL gene publication-title: J. Lipid Res. – volume: 129 start-page: 3786 year: 2019 end-page: 3791 ident: bib16 article-title: Gut-derived GIP activates central Rap1 to impair neural leptin sensitivity during overnutrition publication-title: J. Clin. Invest. – volume: 7 start-page: e40156 year: 2012 ident: bib20 article-title: GIP-overexpressing mice demonstrate reduced diet-induced obesity and steatosis, and improved glucose homeostasis publication-title: PLoS One – volume: 18 start-page: 3 year: 2018 end-page: 14 ident: bib7 article-title: LY3298176, a novel dual GIP and GLP-1 receptor agonist for the treatment of type 2 diabetes mellitus: from discovery to clinical proof of concept publication-title: Mol. Metab. – volume: 9 start-page: 57 year: 2011 end-page: 63 ident: bib28 article-title: A guide to analysis of mouse energy metabolism publication-title: Nat. Methods – volume: 18 start-page: 21 year: 2013 end-page: 28 ident: bib12 article-title: Metabolic pitfalls of CNS Cre-based technology publication-title: Cell Metab. – volume: 91 start-page: 301 year: 1993 ident: 10.1016/j.cmet.2021.01.015_bib23 article-title: Preserved incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus publication-title: J. Clin. Invest. doi: 10.1172/JCI116186 – volume: 27 start-page: 450 year: 2018 ident: 10.1016/j.cmet.2021.01.015_bib29 article-title: Inactivation of the glucose-dependent insulinotropic polypeptide receptor improves outcomes following experimental myocardial infarction publication-title: Cell Metab. doi: 10.1016/j.cmet.2017.11.003 – volume: 146 start-page: dev173849 year: 2019 ident: 10.1016/j.cmet.2021.01.015_bib3 article-title: Comprehensive single cell mRNA profiling reveals a detailed roadmap for pancreatic endocrinogenesis publication-title: Development doi: 10.1242/dev.173849 – volume: 18 start-page: 3 year: 2018 ident: 10.1016/j.cmet.2021.01.015_bib7 article-title: LY3298176, a novel dual GIP and GLP-1 receptor agonist for the treatment of type 2 diabetes mellitus: from discovery to clinical proof of concept publication-title: Mol. Metab. doi: 10.1016/j.molmet.2018.09.009 – volume: 66 start-page: 2363 year: 2017 ident: 10.1016/j.cmet.2021.01.015_bib2 article-title: The gluco- and liporegulatory and vasodilatory effects of glucose-dependent insulinotropic polypeptide (GIP) are abolished by an antagonist of the human GIP receptor publication-title: Diabetes doi: 10.2337/db17-0480 – volume: 31 start-page: 410 year: 2020 ident: 10.1016/j.cmet.2021.01.015_bib26 article-title: How may GIP enhance the therapeutic efficacy of GLP-1? publication-title: Trends Endocrinol. Metab. doi: 10.1016/j.tem.2020.02.006 – volume: 20 start-page: 51 year: 2019 ident: 10.1016/j.cmet.2021.01.015_bib22 article-title: Optimized GIP analogs promote body weight lowering in mice through GIPR agonism not antagonism publication-title: Mol. Metab. doi: 10.1016/j.molmet.2018.12.001 – volume: 10 start-page: eaat3392 year: 2018 ident: 10.1016/j.cmet.2021.01.015_bib17 article-title: Anti-obesity effects of GIPR antagonists alone and in combination with GLP-1R agonists in preclinical models publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aat3392 – volume: 7 start-page: e40156 year: 2012 ident: 10.1016/j.cmet.2021.01.015_bib20 article-title: GIP-overexpressing mice demonstrate reduced diet-induced obesity and steatosis, and improved glucose homeostasis publication-title: PLoS One doi: 10.1371/journal.pone.0040156 – volume: 29 start-page: 68 year: 1986 ident: 10.1016/j.cmet.2021.01.015_bib4 article-title: Direct metabolic effects of gastric inhibitory polypeptide (GIP): dissociation at physiological levels of effects on insulin-stimulated fatty acid and glucose incorporation in rat adipose tissue publication-title: Diabetologia doi: 10.1007/BF02427284 – volume: 282 start-page: 8557 year: 2007 ident: 10.1016/j.cmet.2021.01.015_bib18 article-title: Activation of lipoprotein lipase by glucose-dependent insulinotropic polypeptide in adipocytes. A role for a protein kinase B, LKB1, and AMP-activated protein kinase cascade publication-title: J. Biol. Chem. doi: 10.1074/jbc.M609088200 – volume: 6 start-page: 293 year: 2013 ident: 10.1016/j.cmet.2021.01.015_bib27 article-title: The ‘39 steps’: an algorithm for performing statistical analysis of data on energy intake and expenditure publication-title: Dis. Model. Mech. doi: 10.1242/dmm.009860 – volume: 18 start-page: 21 year: 2013 ident: 10.1016/j.cmet.2021.01.015_bib12 article-title: Metabolic pitfalls of CNS Cre-based technology publication-title: Cell Metab. doi: 10.1016/j.cmet.2013.05.019 – volume: 32 start-page: 282 year: 1988 ident: 10.1016/j.cmet.2021.01.015_bib13 article-title: Effects of gastric inhibitory polypeptide on glucose and lipid metabolism of isolated rat adipocytes publication-title: Ann. Nutr. Metab. doi: 10.1159/000177467 – volume: 51 start-page: 3145 year: 2010 ident: 10.1016/j.cmet.2021.01.015_bib19 article-title: GIP increases human adipocyte LPL expression through CREB and TORC2-mediated trans-activation of the LPL gene publication-title: J. Lipid Res. doi: 10.1194/jlr.M006841 – volume: 9 start-page: 57 year: 2011 ident: 10.1016/j.cmet.2021.01.015_bib28 article-title: A guide to analysis of mouse energy metabolism publication-title: Nat. Methods doi: 10.1038/nmeth.1806 – volume: 8 start-page: 738 year: 2002 ident: 10.1016/j.cmet.2021.01.015_bib21 article-title: Inhibition of gastric inhibitory polypeptide signaling prevents obesity publication-title: Nat. Med. doi: 10.1038/nm727 – volume: 105 start-page: e2710 year: 2020 ident: 10.1016/j.cmet.2021.01.015_bib14 article-title: GIP as a therapeutic target in diabetes and obesity: insight from incretin co-agonists publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/clinem/dgaa327 – volume: 304 start-page: 110 year: 2004 ident: 10.1016/j.cmet.2021.01.015_bib24 article-title: Rapid rewiring of arcuate nucleus feeding circuits by leptin publication-title: Science doi: 10.1126/science.1089459 – volume: 30 start-page: 987 year: 2019 ident: 10.1016/j.cmet.2021.01.015_bib1 article-title: Glucose-dependent insulinotropic polypeptide receptor-expressing cells in the hypothalamus regulate food intake publication-title: Cell Metab. doi: 10.1016/j.cmet.2019.07.013 – volume: 28 start-page: 1141 year: 1979 ident: 10.1016/j.cmet.2021.01.015_bib8 article-title: Gastric inhibitory polypeptide enhanced lipoprotein lipase activity in cultured preadipocytes publication-title: Diabetes doi: 10.2337/diab.28.12.1141 – volume: 48 start-page: 497 year: 2016 ident: 10.1016/j.cmet.2021.01.015_bib15 article-title: Epigenetic germline inheritance of diet-induced obesity and insulin resistance publication-title: Nat. Genet. doi: 10.1038/ng.3527 – volume: 22 start-page: 84 year: 2016 ident: 10.1016/j.cmet.2021.01.015_bib5 article-title: TCF1 links GIPR signaling to the control of beta cell function and survival publication-title: Nat. Med. doi: 10.1038/nm.3997 – volume: 5 start-page: 209ra151 year: 2013 ident: 10.1016/j.cmet.2021.01.015_bib9 article-title: Unimolecular dual incretins maximize metabolic benefits in rodents, monkeys, and humans publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3007218 – volume: 129 start-page: 3786 year: 2019 ident: 10.1016/j.cmet.2021.01.015_bib16 article-title: Gut-derived GIP activates central Rap1 to impair neural leptin sensitivity during overnutrition publication-title: J. Clin. Invest. doi: 10.1172/JCI126107 – volume: 60 start-page: 3103 year: 2011 ident: 10.1016/j.cmet.2021.01.015_bib6 article-title: Glucose-dependent insulinotropic polypeptide: a bifunctional glucose-dependent regulator of glucagon and insulin secretion in humans publication-title: Diabetes doi: 10.2337/db11-0979 – volume: 59 start-page: 1228 year: 2010 ident: 10.1016/j.cmet.2021.01.015_bib25 article-title: Glucose intolerance and reduced proliferation of pancreatic beta-cells in transgenic pigs with impaired glucose-dependent insulinotropic polypeptide function publication-title: Diabetes doi: 10.2337/db09-0519 – volume: 392 start-page: 2180 year: 2018 ident: 10.1016/j.cmet.2021.01.015_bib11 article-title: Efficacy and safety of LY3298176, a novel dual GIP and GLP-1 receptor agonist, in patients with type 2 diabetes: a randomised, placebo-controlled and active comparator-controlled phase 2 trial publication-title: Lancet doi: 10.1016/S0140-6736(18)32260-8 – volume: 22 start-page: 359 year: 2016 ident: 10.1016/j.cmet.2021.01.015_bib10 article-title: Reappraisal of GIP pharmacology for metabolic diseases publication-title: Trends Mol. Med. doi: 10.1016/j.molmed.2016.03.005 |
SSID | ssj0036393 |
Score | 2.683102 |
Snippet | Uncertainty exists as to whether the glucose-dependent insulinotropic polypeptide receptor (GIPR) should be activated or inhibited for the treatment of... |
SourceID | swepub pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 833 |
SubjectTerms | Animals body weight Body Weight - drug effects Central Nervous System - metabolism CNS Diet, High-Fat diet-induced obesity Eating - drug effects food intake Gastric Inhibitory Polypeptide - chemistry Gastric Inhibitory Polypeptide - pharmacology GIP GIPR CNS KO Glucagon-Like Peptide 1 - pharmacology glucose metabolism Humans Hypothalamus - metabolism incretin Male Mice Mice, Inbred C57BL Mice, Transgenic Obesity - metabolism Obesity - pathology Obesity - prevention & control Proto-Oncogene Proteins c-fos - metabolism Receptors, Gastrointestinal Hormone - deficiency Receptors, Gastrointestinal Hormone - genetics Receptors, Gastrointestinal Hormone - metabolism Signal Transduction - drug effects type 2 diabetes |
Title | The glucose-dependent insulinotropic polypeptide (GIP) regulates body weight and food intake via CNS-GIPR signaling |
URI | https://dx.doi.org/10.1016/j.cmet.2021.01.015 https://www.ncbi.nlm.nih.gov/pubmed/33571454 https://www.proquest.com/docview/2489263457 https://pubmed.ncbi.nlm.nih.gov/PMC8035082 https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-194271 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ra9RAEF9KQfCL-DZWywoKioRLdjf7-FhPa6tYxFq5b8tmHxpbk-Mup_S_dyePg1DpByEEkszAZmcyM5v9zQxCz6WQMUxgNvUsNykrZZEaIVUM5EqbKeFNyCB3-NMJPzpjHxbFYgfNx1wYgFUOtr-36Z21Hu7MhtmcLatqdgrBdTTBUAELPD_YYcgqhSS-xZvRGtPogTuQfSROgXpInOkxXvaXBzwlybvSndAa99_O6WrweRVDOak02nmnw9vo1hBW4oN-5HfQjq_voht9o8nLe2gdtQEP6PR07Hvb4gGI3rSrZllZvGwu4qo02hDn8cv3x59f4VXfqd6vcdm4S_yn-4-KTe1waBoX-Vtz7vHvyuD5yWkaWb5gAIQYyHG_j84O332dH6VDu4XUMkXa1LtQCk-cCpwLXzjrcm6UtIbnxsaVjwhCuoLbUlmfR6lKHkofrA-ZCFJlnj5Au3VT-0cIU2q9dYErVhomeDwLJxQhnpacEiUTlI_zrO1QixxaYlzoEXT2U4NsNMhGZ3AUCXq95Vn2lTiupS5G8emJPunoKq7lezbKWscPDXZPTO2bzVoTJhXhlBUiQQ972W_HQWkhclawBImJVmwJoIj39Eld_eiKeUvY2pUkQS96_ZmwvK2-Hehm9V2vNzpXjIj88X--1x66CVcd5og_QbvtauOfxnCqLffjQuL443731fwFPDEhkA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELemIQQviG_Cp5FAAqGoieP443EURgtbhdiG-mY59hmyjaRqU9D-e-x8VKqG9oAU5SG-kxLf-e4c_-4OoVeCCx8mUBMDTXVMC5HHmgvpA7nCJJKDdknIHT6csckJ_TzP5ztoPOTCBFhlb_s7m95a6_7JqJ_N0aIsR0chuPYmOFTACp7f2-FrPhpIAq5rOn8_mOPMu-AWZe-p40DeZ850IC_zCwKgkqRt7c7QG_ff3uly9HkZRLlVarR1T_u30a0-rsR73avfQTtQ3UXXu06TF_fQyqsD7uHp8dD4tsE9Er1ulvWiNHhRn_ttqTciFvCbT9Ovb_Gya1UPK1zU9gL_aX-kYl1Z7Oraev5GnwH-XWo8nh3FnuUbDogQHZLc76OT_Y_H40nc91uIDZWkicG6ggOx0jHGIbfGpkxLYTRLtfFbH-64sDkzhTSQerEK5gpwBlzCnZAJZA_QblVX8AjhLDNgrGOSFppy5u_cckkIZAXLiBQRSod5VqYvRh56YpyrAXV2qoJsVJCNSsKVR-jdhmfRleK4kjofxKe2FEp5X3El38tB1sqvtHB8oiuo1ytFqJCEZTTnEXrYyX7zHlmW85TmNEJ8Sys2BKGK9_ZIVf5sq3mLcLYrSIRed_qzxfKh_L6n6uUPtVqrVFLC08f_-V0v0I3J8eGBOpjOvjxBN8NIC0BiT9Fus1zDMx9bNcXzdu38BfigI7k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+glucose-dependent+insulinotropic+polypeptide+%28GIP%29+regulates+body+weight+and+food+intake+via+CNS-GIPR+signaling&rft.jtitle=Cell+metabolism&rft.au=Zhang%2C+Qian&rft.au=Delessa%2C+Challa+Tenagne&rft.au=Augustin%2C+Robert&rft.au=Bakhti%2C+Mostafa&rft.date=2021-04-06&rft.pub=Elsevier+Inc&rft.issn=1550-4131&rft.eissn=1932-7420&rft.volume=33&rft.issue=4&rft.spage=833&rft.epage=844.e5&rft_id=info:doi/10.1016%2Fj.cmet.2021.01.015&rft.externalDocID=S1550413121000152 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-4131&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-4131&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-4131&client=summon |