Segmentation of cervical cell nuclei in high-resolution microscopic images: A new algorithm and a web-based software framework

► A system for semi-automatic processing of full-resolution whole-slide scans.► A new algorithm for segmenting the nuclei under control of the expert user.► Data storage and interaction of technical and medical experts is facilitated.► Open source software with web-based architecture.. In order to a...

Full description

Saved in:
Bibliographic Details
Published inComputer methods and programs in biomedicine Vol. 107; no. 3; pp. 497 - 512
Main Authors Bergmeir, Christoph, García Silvente, Miguel, Benítez, José Manuel
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ireland Ltd 01.09.2012
Elsevier
Subjects
Online AccessGet full text
ISSN0169-2607
1872-7565
1872-7565
DOI10.1016/j.cmpb.2011.09.017

Cover

Abstract ► A system for semi-automatic processing of full-resolution whole-slide scans.► A new algorithm for segmenting the nuclei under control of the expert user.► Data storage and interaction of technical and medical experts is facilitated.► Open source software with web-based architecture.. In order to automate cervical cancer screening tests, one of the most important and longstanding challenges is the segmentation of cell nuclei in the stained specimens. Though nuclei of isolated cells in high-quality acquisitions often are easy to segment, the problem lies in the segmentation of large numbers of nuclei with various characteristics under differing acquisition conditions in high-resolution scans of the complete microscope slides. We implemented a system that enables processing of full resolution images, and proposes a new algorithm for segmenting the nuclei under adequate control of the expert user. The system can work automatically or interactively guided, to allow for segmentation within the whole range of slide and image characteristics. It facilitates data storage and interaction of technical and medical experts, especially with its web-based architecture. The proposed algorithm localizes cell nuclei using a voting scheme and prior knowledge, before it determines the exact shape of the nuclei by means of an elastic segmentation algorithm. After noise removal with a mean-shift and a median filtering takes place, edges are extracted with a Canny edge detection algorithm. Motivated by the observation that cell nuclei are surrounded by cytoplasm and their shape is roughly elliptical, edges adjacent to the background are removed. A randomized Hough transform for ellipses finds candidate nuclei, which are then processed by a level set algorithm. The algorithm is tested and compared to other algorithms on a database containing 207 images acquired from two different microscope slides, with promising results.
AbstractList ► A system for semi-automatic processing of full-resolution whole-slide scans.► A new algorithm for segmenting the nuclei under control of the expert user.► Data storage and interaction of technical and medical experts is facilitated.► Open source software with web-based architecture.. In order to automate cervical cancer screening tests, one of the most important and longstanding challenges is the segmentation of cell nuclei in the stained specimens. Though nuclei of isolated cells in high-quality acquisitions often are easy to segment, the problem lies in the segmentation of large numbers of nuclei with various characteristics under differing acquisition conditions in high-resolution scans of the complete microscope slides. We implemented a system that enables processing of full resolution images, and proposes a new algorithm for segmenting the nuclei under adequate control of the expert user. The system can work automatically or interactively guided, to allow for segmentation within the whole range of slide and image characteristics. It facilitates data storage and interaction of technical and medical experts, especially with its web-based architecture. The proposed algorithm localizes cell nuclei using a voting scheme and prior knowledge, before it determines the exact shape of the nuclei by means of an elastic segmentation algorithm. After noise removal with a mean-shift and a median filtering takes place, edges are extracted with a Canny edge detection algorithm. Motivated by the observation that cell nuclei are surrounded by cytoplasm and their shape is roughly elliptical, edges adjacent to the background are removed. A randomized Hough transform for ellipses finds candidate nuclei, which are then processed by a level set algorithm. The algorithm is tested and compared to other algorithms on a database containing 207 images acquired from two different microscope slides, with promising results.
Highlights ► A system for semi-automatic processing of full-resolution whole-slide scans.► A new algorithm for segmenting the nuclei under control of the expert user.► Data storage and interaction of technical and medical experts is facilitated.► Open source software with web-based architecture..
In order to automate cervical cancer screening tests, one of the most important and longstanding challenges is the segmentation of cell nuclei in the stained specimens. Though nuclei of isolated cells in high-quality acquisitions often are easy to segment, the problem lies in the segmentation of large numbers of nuclei with various characteristics under differing acquisition conditions in high-resolution scans of the complete microscope slides. We implemented a system that enables processing of full resolution images, and proposes a new algorithm for segmenting the nuclei under adequate control of the expert user. The system can work automatically or interactively guided, to allow for segmentation within the whole range of slide and image characteristics. It facilitates data storage and interaction of technical and medical experts, especially with its web-based architecture. The proposed algorithm localizes cell nuclei using a voting scheme and prior knowledge, before it determines the exact shape of the nuclei by means of an elastic segmentation algorithm. After noise removal with a mean-shift and a median filtering takes place, edges are extracted with a Canny edge detection algorithm. Motivated by the observation that cell nuclei are surrounded by cytoplasm and their shape is roughly elliptical, edges adjacent to the background are removed. A randomized Hough transform for ellipses finds candidate nuclei, which are then processed by a level set algorithm. The algorithm is tested and compared to other algorithms on a database containing 207 images acquired from two different microscope slides, with promising results.In order to automate cervical cancer screening tests, one of the most important and longstanding challenges is the segmentation of cell nuclei in the stained specimens. Though nuclei of isolated cells in high-quality acquisitions often are easy to segment, the problem lies in the segmentation of large numbers of nuclei with various characteristics under differing acquisition conditions in high-resolution scans of the complete microscope slides. We implemented a system that enables processing of full resolution images, and proposes a new algorithm for segmenting the nuclei under adequate control of the expert user. The system can work automatically or interactively guided, to allow for segmentation within the whole range of slide and image characteristics. It facilitates data storage and interaction of technical and medical experts, especially with its web-based architecture. The proposed algorithm localizes cell nuclei using a voting scheme and prior knowledge, before it determines the exact shape of the nuclei by means of an elastic segmentation algorithm. After noise removal with a mean-shift and a median filtering takes place, edges are extracted with a Canny edge detection algorithm. Motivated by the observation that cell nuclei are surrounded by cytoplasm and their shape is roughly elliptical, edges adjacent to the background are removed. A randomized Hough transform for ellipses finds candidate nuclei, which are then processed by a level set algorithm. The algorithm is tested and compared to other algorithms on a database containing 207 images acquired from two different microscope slides, with promising results.
In order to automate cervical cancer screening tests, one of the most important and longstanding challenges is the segmentation of cell nuclei in the stained specimens. Though nuclei of isolated cells in high-quality acquisitions often are easy to segment, the problem lies in the segmentation of large numbers of nuclei with various characteristics under differing acquisition conditions in high-resolution scans of the complete microscope slides. We implemented a system that enables processing of full resolution images, and proposes a new algorithm for segmenting the nuclei under adequate control of the expert user. The system can work automatically or interactively guided, to allow for segmentation within the whole range of slide and image characteristics. It facilitates data storage and interaction of technical and medical experts, especially with its web-based architecture. The proposed algorithm localizes cell nuclei using a voting scheme and prior knowledge, before it determines the exact shape of the nuclei by means of an elastic segmentation algorithm. After noise removal with a mean-shift and a median filtering takes place, edges are extracted with a Canny edge detection algorithm. Motivated by the observation that cell nuclei are surrounded by cytoplasm and their shape is roughly elliptical, edges adjacent to the background are removed. A randomized Hough transform for ellipses finds candidate nuclei, which are then processed by a level set algorithm. The algorithm is tested and compared to other algorithms on a database containing 207 images acquired from two different microscope slides, with promising results.
Author Bergmeir, Christoph
García Silvente, Miguel
Benítez, José Manuel
Author_xml – sequence: 1
  givenname: Christoph
  surname: Bergmeir
  fullname: Bergmeir, Christoph
  email: c.bergmeir@decsai.ugr.es, christoph.bergmeir@gmail.com
– sequence: 2
  givenname: Miguel
  surname: García Silvente
  fullname: García Silvente, Miguel
  email: m.garcia-silvente@decsai.ugr.es
– sequence: 3
  givenname: José Manuel
  surname: Benítez
  fullname: Benítez, José Manuel
  email: j.m.benitez@decsai.ugr.es
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26163661$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22306072$$D View this record in MEDLINE/PubMed
BookMark eNqFkkFr3DAQhUVJaTZJ_0APRZdCL3Yl2ZbtUAIhNG0h0EOas5DH411tbGkr2Vly6W-vnN1QCCQ5SUjfm2HemyNyYJ1FQj5wlnLG5Zd1CsOmSQXjPGV1ynj5hix4VYqkLGRxQBYRqhMhWXlIjkJYM8ZEUch35FCIjMVnsSB_r3E5oB31aJylrqOA_s6A7uOl76mdoEdDjaUrs1wlHoPrpwd0MOBdALcxQM2glxhO6Tm1uKW6XzpvxtVAtW2ppltskkYHbGlw3bjVHmnn9YBb529PyNtO9wHf789jcnP57ffFj-Tq1_efF-dXCeS1GBMUZdbyhuVFy3hVQwOFzlgtZFU1vMxZW2UCoEFEkYsSyryQ8V_rLq-Q60pmx-Tzru7Guz8ThlENJswTaotuCoqzWEvKaEtEP-7RqRmwVRsfx_P36tGzCHzaAzpEo-IsFkz4z0kuMyl55KodNxsVPHYKzM7n0WvTx55qjlGt1RyjmmNUrFYxxigVT6SP1V8Ufd2JMBp5Z9CrAAYtYGs8wqhaZ16Wnz2RQ2_svAq3eI9h7SZvY0SKqyAUU9fzcs27xTljGa_neU-fL_Ba93_8697m
CitedBy_id crossref_primary_10_1016_j_compmedimag_2014_02_001
crossref_primary_10_1007_s12652_021_02899_2
crossref_primary_10_1016_j_compmedimag_2019_01_003
crossref_primary_10_1016_j_neucom_2016_09_070
crossref_primary_10_1016_j_compmedimag_2017_01_002
crossref_primary_10_1016_j_cmpb_2017_05_003
crossref_primary_10_3233_JIFS_212871
crossref_primary_10_32604_iasc_2022_023587
crossref_primary_10_1109_ACCESS_2018_2871153
crossref_primary_10_3390_electronics13163335
crossref_primary_10_1016_j_compbiomed_2022_105500
crossref_primary_10_1371_journal_pone_0283568
crossref_primary_10_2147_CMAR_S279990
crossref_primary_10_1109_ACCESS_2020_2979926
crossref_primary_10_1007_s10462_019_09735_2
crossref_primary_10_1016_j_cmpb_2018_05_034
crossref_primary_10_1049_iet_ipr_2018_6032
crossref_primary_10_1016_j_bspc_2018_09_008
crossref_primary_10_1002_ima_22444
crossref_primary_10_1109_JBHI_2014_2346239
crossref_primary_10_4018_IJISMD_2018100101
crossref_primary_10_1109_ACCESS_2020_2989369
crossref_primary_10_1016_j_compbiomed_2017_04_008
crossref_primary_10_1038_s41377_024_01734_5
crossref_primary_10_1016_j_compbiomed_2019_03_011
crossref_primary_10_1016_j_compmedimag_2017_06_007
crossref_primary_10_1109_TMI_2018_2815013
crossref_primary_10_1002_cyto_a_22407
crossref_primary_10_1155_2014_286856
crossref_primary_10_3233_JCM_181010
crossref_primary_10_1155_2014_842037
crossref_primary_10_1016_j_cmpb_2013_12_012
crossref_primary_10_1109_TBME_2015_2430895
crossref_primary_10_1016_j_cmpb_2013_02_008
crossref_primary_10_1007_s00521_021_05697_1
crossref_primary_10_1016_j_eswa_2016_08_015
crossref_primary_10_1049_iet_ipr_2016_0788
crossref_primary_10_1016_j_neucom_2019_06_005
crossref_primary_10_1155_2014_820214
crossref_primary_10_1016_j_neucom_2017_01_093
crossref_primary_10_1016_j_bspc_2023_105250
crossref_primary_10_1038_s41598_019_57223_y
crossref_primary_10_1007_s11517_020_02135_7
crossref_primary_10_1109_JBHI_2013_2250984
crossref_primary_10_1145_3447238
crossref_primary_10_1002_ima_22386
crossref_primary_10_1109_ACCESS_2021_3049165
crossref_primary_10_1109_ACCESS_2020_2984657
crossref_primary_10_1155_2015_586928
crossref_primary_10_1007_s10462_021_10121_0
crossref_primary_10_1109_RBME_2016_2515127
crossref_primary_10_1155_2016_9535027
crossref_primary_10_1515_biol_2022_0770
crossref_primary_10_1016_j_compbiomed_2016_01_025
crossref_primary_10_1155_2015_457906
crossref_primary_10_1155_2016_6090912
crossref_primary_10_1007_s12065_019_00226_5
crossref_primary_10_1016_j_bbe_2020_01_016
crossref_primary_10_1016_j_optcom_2021_126846
crossref_primary_10_1109_TMI_2016_2606380
Cites_doi 10.1016/S0169-2607(98)00085-6
10.1016/j.patrec.2008.02.024
10.1016/j.cmpb.2009.11.012
10.1007/978-3-540-77413-6_37
10.1109/TSMCB.2007.912940
10.1016/0262-8856(89)90017-6
10.1016/j.patcog.2009.04.003
10.1002/1361-6374(199806)6:2<79::AID-BIO3>3.0.CO;2-#
10.1016/0167-8655(90)90042-Z
10.1016/j.cmpb.2009.04.009
10.1007/s10916-009-9323-4
10.1007/978-3-540-27816-0_24
10.1016/j.eswa.2007.08.089
10.1109/34.1000236
10.1016/j.patcog.2007.04.009
10.1016/S0165-1684(98)00145-5
10.1016/0031-3203(83)90010-9
10.1016/0031-3203(83)90062-6
10.1016/j.cviu.2007.08.003
10.1016/j.patcog.2008.10.029
10.1109/TSMC.1979.4310076
10.1016/j.patrec.2008.05.025
10.1016/j.cmpb.2009.04.004
10.1016/0031-3203(77)90006-1
10.1186/1471-2121-8-40
10.1002/ima.20198
10.1016/j.patrec.2007.05.008
ContentType Journal Article
Copyright 2011 Elsevier Ireland Ltd
Elsevier Ireland Ltd
2015 INIST-CNRS
Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Copyright_xml – notice: 2011 Elsevier Ireland Ltd
– notice: Elsevier Ireland Ltd
– notice: 2015 INIST-CNRS
– notice: Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.cmpb.2011.09.017
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-7565
EndPage 512
ExternalDocumentID 22306072
26163661
10_1016_j_cmpb_2011_09_017
S0169260711003191
1_s2_0_S0169260711003191
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LG9
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SBC
SDF
SDG
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WUQ
XPP
Z5R
ZGI
ZY4
~G-
~HD
AFCTW
AGCQF
AGRNS
RIG
AACTN
AAIAV
ABLVK
ABTAH
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
LCYCR
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c492t-e273d1b045d0189cbc5a3092688b1740d832ccbeee2427c7456a30aaf48e1a863
IEDL.DBID .~1
ISSN 0169-2607
1872-7565
IngestDate Thu Oct 02 05:38:23 EDT 2025
Thu Apr 03 07:01:01 EDT 2025
Mon Jul 21 09:14:46 EDT 2025
Thu Oct 02 04:36:11 EDT 2025
Thu Apr 24 23:01:40 EDT 2025
Fri Feb 23 02:26:00 EST 2024
Fri May 16 00:31:31 EDT 2025
Tue Oct 14 19:30:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Nucleus segmentation
High-resolution microscopic imaging
Cervical cell imaging
High-resolution microscopic
Image resolution
Segmentation
Image processing
imaging
Biomedical engineering
Language English
License CC BY 4.0
Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c492t-e273d1b045d0189cbc5a3092688b1740d832ccbeee2427c7456a30aaf48e1a863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 22306072
PQID 1026866230
PQPubID 23479
PageCount 16
ParticipantIDs proquest_miscellaneous_1026866230
pubmed_primary_22306072
pascalfrancis_primary_26163661
crossref_citationtrail_10_1016_j_cmpb_2011_09_017
crossref_primary_10_1016_j_cmpb_2011_09_017
elsevier_sciencedirect_doi_10_1016_j_cmpb_2011_09_017
elsevier_clinicalkeyesjournals_1_s2_0_S0169260711003191
elsevier_clinicalkey_doi_10_1016_j_cmpb_2011_09_017
PublicationCentury 2000
PublicationDate 2012-09-01
PublicationDateYYYYMMDD 2012-09-01
PublicationDate_xml – month: 09
  year: 2012
  text: 2012-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
– name: Ireland
PublicationTitle Computer methods and programs in biomedicine
PublicationTitleAlternate Comput Methods Programs Biomed
PublicationYear 2012
Publisher Elsevier Ireland Ltd
Elsevier
Publisher_xml – name: Elsevier Ireland Ltd
– name: Elsevier
References Hahn, Jung, Han, Hahn (bib0205) 2008; 29
Wu, Gil, Barba (bib0055) 1998; 145
Harandi, Sadri, Moghaddam, Amirfattahi (bib0130) 2010; 34
Yuen, Illingworth, Kittler (bib0220) 1989; 7
Mayer, Meinzer (bib0145) 1999; 58
Otsu (bib0170) 1979; SMC-9
Nguyen, Poulsen, Louis (bib0025) 1983; 16
Chang, Yang, Parvin (bib0115) 2007; 28
Cibas, Ducatman (bib0015) 2009
Comaniciu, Meer (bib0180) 2002; 24
E. Martin, Pap-smear classification, Master's Thesis, Technical University of Denmark (DTU), Oersted, Dept. of Automation, 2003.
Comaniciu, Meer (bib0175) 1999
Pratt (bib0165) 2001
Cárdenes, de Luis-García, Bach-Cuadra (bib0235) 2009; 96
Zhang, Fritts, Goldman (bib0230) 2008; 110
Bergmeir, García Silvente, Esquivias López-Cuervo, Benítez (bib0155) 2010; 7623
Dorini, Minetto, Leite (bib0100) 2007
R.F. Walker, Adaptive multi-scale texture analysis with application to automated cytology, PhD Thesis, The University of Queensland, 1997.
McLaughlin (bib0190) 1996
World Health Organization (bib0005) 2006
Hahn, Han, Hahn (bib0215) 2007
Ta, Lézoray, Elmoataz, Schüpp (bib0120) 2009; 42
Won, Nam, Choe (bib0095) 2004; 3117
Muench, Schroeter, Meinzer, Engelmann (bib0140) 2006; 1
Mahmoudi, Akhondi-Asl, Rahmani, Faghih-Roohi, Taimouri, Sabouri, Soltanian-Zadeh (bib0150) 2010; 98
Mat-Isa, Mashor, Othman (bib0060) 2005; 13
Tsai, Chan, Lin, Yang-Mao, Huang (bib0065) 2008; 29
Bai, Sun, Zhou (bib0195) 2009; 42
Lin, Fu (bib0020) 1983; 16
Maleike, Nolden, Meinzer, Wolf (bib0135) 2009; 96
Yang-Mao, Chan, Chu (bib0070) 2008; 38
Yang-Mao, Chen, Chan, Tsai, Chu (bib0075) 2008; 4901
Lin, Chan, Chen (bib0085) 2009; 19
Malm, Brun (bib0080) 2009
Comaniciu, Meer (bib0185) 2001
Bradski, Kaehler (bib0160) 2008
Yasnoff, Mui, Bacus (bib0240) 1977; 9
Wang, Chen, Yang, Tsou (bib0010) 1999; 98
Li, Liu, Tarokh, Nie, Guo, Mara, Holley, Wong (bib0110) 2007; 8
Liu, Yin, Liu, Zhang (bib0105) 2007
Sun, Kamel, Wong, Wang (bib0245) 2007; 40
J. Norup, Classification of pap-smear data by transductive neuro-fuzzy methods, Master's Thesis, Technical University of Denmark (DTU), Oersted, Dept. of Automation, 2005.
Ibanez, Schroeder, Ng, Cates (bib0225) 2005
Nixon, Aguado (bib0200) January 2008
Marinakis, Marinaki, Dounias (bib0045) 2008; 35
Xu, Oja, Kultanen (bib0210) 1990; 11
Mouroutis, Roberts, Bharath (bib0090) 1998; 6
Bamford, Lovell (bib0050) 1998; 71
Edwards, Hines, Hunt (bib0125) 2008
World Health Organization (10.1016/j.cmpb.2011.09.017_bib0005) 2006
Tsai (10.1016/j.cmpb.2011.09.017_bib0065) 2008; 29
Lin (10.1016/j.cmpb.2011.09.017_bib0085) 2009; 19
Otsu (10.1016/j.cmpb.2011.09.017_bib0170) 1979; SMC-9
Harandi (10.1016/j.cmpb.2011.09.017_bib0130) 2010; 34
McLaughlin (10.1016/j.cmpb.2011.09.017_bib0190) 1996
Hahn (10.1016/j.cmpb.2011.09.017_bib0205) 2008; 29
Bradski (10.1016/j.cmpb.2011.09.017_bib0160) 2008
Xu (10.1016/j.cmpb.2011.09.017_bib0210) 1990; 11
Marinakis (10.1016/j.cmpb.2011.09.017_bib0045) 2008; 35
Mat-Isa (10.1016/j.cmpb.2011.09.017_bib0060) 2005; 13
Won (10.1016/j.cmpb.2011.09.017_bib0095) 2004; 3117
Wang (10.1016/j.cmpb.2011.09.017_bib0010) 1999; 98
Pratt (10.1016/j.cmpb.2011.09.017_bib0165) 2001
Chang (10.1016/j.cmpb.2011.09.017_bib0115) 2007; 28
Liu (10.1016/j.cmpb.2011.09.017_bib0105) 2007
Yang-Mao (10.1016/j.cmpb.2011.09.017_bib0070) 2008; 38
10.1016/j.cmpb.2011.09.017_bib0035
Yuen (10.1016/j.cmpb.2011.09.017_bib0220) 1989; 7
10.1016/j.cmpb.2011.09.017_bib0030
Bai (10.1016/j.cmpb.2011.09.017_bib0195) 2009; 42
Ta (10.1016/j.cmpb.2011.09.017_bib0120) 2009; 42
10.1016/j.cmpb.2011.09.017_bib0040
Bamford (10.1016/j.cmpb.2011.09.017_bib0050) 1998; 71
Comaniciu (10.1016/j.cmpb.2011.09.017_bib0185) 2001
Dorini (10.1016/j.cmpb.2011.09.017_bib0100) 2007
Zhang (10.1016/j.cmpb.2011.09.017_bib0230) 2008; 110
Li (10.1016/j.cmpb.2011.09.017_bib0110) 2007; 8
Cárdenes (10.1016/j.cmpb.2011.09.017_bib0235) 2009; 96
Bergmeir (10.1016/j.cmpb.2011.09.017_bib0155) 2010; 7623
Yang-Mao (10.1016/j.cmpb.2011.09.017_bib0075) 2008; 4901
Nguyen (10.1016/j.cmpb.2011.09.017_bib0025) 1983; 16
Comaniciu (10.1016/j.cmpb.2011.09.017_bib0180) 2002; 24
Sun (10.1016/j.cmpb.2011.09.017_bib0245) 2007; 40
Hahn (10.1016/j.cmpb.2011.09.017_bib0215) 2007
Malm (10.1016/j.cmpb.2011.09.017_bib0080) 2009
Lin (10.1016/j.cmpb.2011.09.017_bib0020) 1983; 16
Edwards (10.1016/j.cmpb.2011.09.017_bib0125) 2008
Comaniciu (10.1016/j.cmpb.2011.09.017_bib0175) 1999
Mahmoudi (10.1016/j.cmpb.2011.09.017_bib0150) 2010; 98
Ibanez (10.1016/j.cmpb.2011.09.017_bib0225) 2005
Maleike (10.1016/j.cmpb.2011.09.017_bib0135) 2009; 96
Nixon (10.1016/j.cmpb.2011.09.017_bib0200) 2008
Wu (10.1016/j.cmpb.2011.09.017_bib0055) 1998; 145
Muench (10.1016/j.cmpb.2011.09.017_bib0140) 2006; 1
Yasnoff (10.1016/j.cmpb.2011.09.017_bib0240) 1977; 9
Mouroutis (10.1016/j.cmpb.2011.09.017_bib0090) 1998; 6
Mayer (10.1016/j.cmpb.2011.09.017_bib0145) 1999; 58
Cibas (10.1016/j.cmpb.2011.09.017_bib0015) 2009
References_xml – start-page: 5624
  year: 2007
  end-page: 5627
  ident: bib0105
  article-title: Automatic segmentation on cell image fusing gray and gradient information
  publication-title: Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society
– volume: 4901
  start-page: 290
  year: 2008
  end-page: 297
  ident: bib0075
  article-title: Gradient direction edge enhancement based nucleus and cytoplasm contour detector of cervical smear images
  publication-title: Lecture Notes in Computer Science (LNCS)
– reference: J. Norup, Classification of pap-smear data by transductive neuro-fuzzy methods, Master's Thesis, Technical University of Denmark (DTU), Oersted, Dept. of Automation, 2005.
– volume: 24
  start-page: 603
  year: 2002
  end-page: 619
  ident: bib0180
  article-title: Mean shift: a robust approach toward feature space analysis
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– year: 2006
  ident: bib0005
  article-title: Comprehensive cervical cancer control: a guide to essential practice
– year: 2008
  ident: bib0160
  article-title: Learning OpenCV: Computer Vision with the OpenCV Library
– volume: 42
  start-page: 2434
  year: 2009
  end-page: 2446
  ident: bib0195
  article-title: Splitting touching cells based on concave points and ellipse fitting
  publication-title: Pattern Recognition
– volume: 96
  start-page: 108
  year: 2009
  end-page: 124
  ident: bib0235
  article-title: A multidimensional segmentation evaluation for medical image data
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 96
  start-page: 72
  year: 2009
  end-page: 83
  ident: bib0135
  article-title: Interactive segmentation framework of the medical imaging interaction toolkit
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 16
  start-page: 69
  year: 1983
  end-page: 80
  ident: bib0020
  article-title: Automatic classification of cervical cells using a binary tree classifier
  publication-title: Pattern Recognition
– start-page: 409
  year: 1996
  end-page: 414
  ident: bib0190
  article-title: Randomized Hough transform: better ellipse detection
  publication-title: IEEE Region 10 Annual International Conference, Proceedings/TENCON, vol. 1
– reference: R.F. Walker, Adaptive multi-scale texture analysis with application to automated cytology, PhD Thesis, The University of Queensland, 1997.
– volume: 1
  start-page: 130
  year: 2006
  end-page: 132
  ident: bib0140
  article-title: A web-based approach to distributing medical images for referring physicians outside hospitals without specialised user management
  publication-title: International Journal of Computer Assisted Radiology and Surgery
– start-page: 1197
  year: 1999
  end-page: 1203
  ident: bib0175
  article-title: Mean shift analysis and applications
  publication-title: Proceedings of the IEEE International Conference on Computer Vision, vol. 2
– volume: 9
  start-page: 217
  year: 1977
  end-page: 231
  ident: bib0240
  article-title: Error measures for scene segmentation
  publication-title: Pattern Recognition
– year: 2007
  ident: bib0215
  article-title: Ellipse detection using a randomized Hough transform based on edge segment merging scheme
  publication-title: ISPRA
– volume: 42
  start-page: 1113
  year: 2009
  end-page: 1125
  ident: bib0120
  article-title: Graph-based tools for microscopic cellular image segmentation
  publication-title: Pattern Recognition
– year: 2001
  ident: bib0185
  article-title: Cell image segmentation for diagnostic pathology
  publication-title: Advanced Algorithmic Approaches to Medical Image Segmentation: State-of-the-art Applications in Cardiology, Neurology, Mammography and Pathology
– volume: 58
  start-page: 207
  year: 1999
  end-page: 217
  ident: bib0145
  article-title: High performance medical image processing in client/server-environments
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 145
  start-page: 50
  year: 1998
  end-page: 56
  ident: bib0055
  article-title: Optimal segmentation of cell images
  publication-title: IEE Proceedings: Vision, Image and Signal Processing
– volume: 98
  start-page: 500
  year: 1999
  end-page: 505
  ident: bib0010
  article-title: Comparison of fluid-based, thin-layer processing and conventional Papanicolaou methods for uterine cervical cytology
  publication-title: Journal of the Formosan Medical Association
– volume: 38
  start-page: 353
  year: 2008
  end-page: 366
  ident: bib0070
  article-title: Edge enhancement nucleus and cytoplast contour detector of cervical smear images
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics
– volume: 28
  start-page: 1781
  year: 2007
  end-page: 1787
  ident: bib0115
  article-title: Segmentation of heterogeneous blob objects through voting and level set formulation
  publication-title: Pattern Recognition Letters
– volume: 19
  start-page: 260
  year: 2009
  end-page: 270
  ident: bib0085
  article-title: Detection and segmentation of cervical cell cytoplast and nucleus
  publication-title: International Journal of Imaging Systems and Technology
– volume: 3117
  start-page: 281
  year: 2004
  end-page: 291
  ident: bib0095
  article-title: Segmenting cell images: a deterministic relaxation approach
  publication-title: Lecture Notes in Computer Science
– start-page: 294
  year: 2007
  end-page: 301
  ident: bib0100
  article-title: White blood cell segmentation using morphological operators and scale-space analysis
  publication-title: Proceedings of SIBGRAPI 2007 – 20th Brazilian Symposium on Computer Graphics and Image Processing
– volume: SMC-9
  start-page: 62
  year: 1979
  end-page: 66
  ident: bib0170
  article-title: Threshold selection method from gray-level histograms
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
– year: 2005
  ident: bib0225
  article-title: The ITK Software Guide
– volume: 29
  start-page: 1836
  year: 2008
  end-page: 1841
  ident: bib0205
  article-title: A new algorithm for ellipse detection by curve segments
  publication-title: Pattern Recognition Letters
– volume: 34
  start-page: 1043
  year: 2010
  end-page: 1058
  ident: bib0130
  article-title: An automated method for segmentation of epithelial cervical cells in images of ThinPrep
  publication-title: Journal of Medical Systems
– volume: 13
  start-page: 61
  year: 2005
  end-page: 70
  ident: bib0060
  article-title: Seeded region growing features extraction algorithm; its potential use in improving screening for cervical cancer
  publication-title: International Journal of the Computer, the Internet and Management
– reference: E. Martin, Pap-smear classification, Master's Thesis, Technical University of Denmark (DTU), Oersted, Dept. of Automation, 2003.
– volume: 35
  start-page: 1645
  year: 2008
  end-page: 1656
  ident: bib0045
  article-title: Particle swarm optimization for pap-smear diagnosis
  publication-title: Expert Systems with Applications
– volume: 98
  start-page: 172
  year: 2010
  end-page: 182
  ident: bib0150
  article-title: Web-based interactive 2D/3D medical image processing and visualization software
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 11
  start-page: 331
  year: 1990
  end-page: 338
  ident: bib0210
  article-title: A new curve detection method: randomized Hough transform (RHT)
  publication-title: Pattern Recognition Letters
– volume: 29
  start-page: 1441
  year: 2008
  end-page: 1453
  ident: bib0065
  article-title: Nucleus and cytoplast contour detector of cervical smear image
  publication-title: Pattern Recognition Letters
– volume: 6
  start-page: 79
  year: 1998
  end-page: 91
  ident: bib0090
  article-title: Robust cell nuclei segmentation using statistical modelling
  publication-title: Bioimaging
– year: 2009
  ident: bib0015
  article-title: Cytology: Diagnostic Principles and Clinical Correlates, Expert Consult Series
– volume: 7623
  start-page: 76234C
  year: 2010
  ident: bib0155
  article-title: Segmentation of cervical cell images using mean-shift filtering and morphological operators
  publication-title: SPIE
– volume: 7
  start-page: 31
  year: 1989
  end-page: 37
  ident: bib0220
  article-title: Detecting partially occluded ellipses using the Hough transform
  publication-title: Image and Vision Computing
– start-page: 128
  year: 2008
  end-page: 132
  ident: bib0125
  article-title: Segmentation of biological cell images for sonification
  publication-title: Proceedings – 1st International Congress on Image and Signal Processing, CISP 2008, vol.2
– year: January 2008
  ident: bib0200
  article-title: Feature Extraction & Image Processing
– volume: 71
  start-page: 203
  year: 1998
  end-page: 213
  ident: bib0050
  article-title: Unsupervised cell nucleus segmentation with active contours
  publication-title: Signal Processing
– start-page: 337
  year: 2009
  end-page: 346
  ident: bib0080
  article-title: Closing curves with Riemannian dilation: application to segmentation in automated cervical cancer screening
  publication-title: ISVC ‘09: Proceedings of the 5th International Symposium on Advances in Visual Computing
– volume: 40
  start-page: 3358
  year: 2007
  end-page: 3378
  ident: bib0245
  article-title: Cost-sensitive boosting for classification of imbalanced data
  publication-title: Pattern Recognition
– volume: 16
  start-page: 401
  year: 1983
  end-page: 411
  ident: bib0025
  article-title: Some new color features and their application to cervical cell classification
  publication-title: Pattern Recognition
– volume: 8
  year: 2007
  ident: bib0110
  article-title: 3D cell nuclei segmentation based on gradient flow tracking
  publication-title: BMC Cell Biology
– volume: 110
  start-page: 260
  year: 2008
  end-page: 280
  ident: bib0230
  article-title: Image segmentation evaluation: a survey of unsupervised methods
  publication-title: Computer Vision and Image Understanding
– year: 2001
  ident: bib0165
  article-title: Digital Image Processing: PIKS Inside
– ident: 10.1016/j.cmpb.2011.09.017_bib0035
– volume: 58
  start-page: 207
  issue: 3
  year: 1999
  ident: 10.1016/j.cmpb.2011.09.017_bib0145
  article-title: High performance medical image processing in client/server-environments
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/S0169-2607(98)00085-6
– volume: 29
  start-page: 1441
  issue: 9
  year: 2008
  ident: 10.1016/j.cmpb.2011.09.017_bib0065
  article-title: Nucleus and cytoplast contour detector of cervical smear image
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2008.02.024
– volume: 98
  start-page: 172
  issue: 2
  year: 2010
  ident: 10.1016/j.cmpb.2011.09.017_bib0150
  article-title: Web-based interactive 2D/3D medical image processing and visualization software
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2009.11.012
– volume: 4901
  start-page: 290
  year: 2008
  ident: 10.1016/j.cmpb.2011.09.017_bib0075
  article-title: Gradient direction edge enhancement based nucleus and cytoplasm contour detector of cervical smear images
  publication-title: Lecture Notes in Computer Science (LNCS)
  doi: 10.1007/978-3-540-77413-6_37
– volume: 38
  start-page: 353
  issue: 2
  year: 2008
  ident: 10.1016/j.cmpb.2011.09.017_bib0070
  article-title: Edge enhancement nucleus and cytoplast contour detector of cervical smear images
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics
  doi: 10.1109/TSMCB.2007.912940
– volume: 7
  start-page: 31
  issue: 1
  year: 1989
  ident: 10.1016/j.cmpb.2011.09.017_bib0220
  article-title: Detecting partially occluded ellipses using the Hough transform
  publication-title: Image and Vision Computing
  doi: 10.1016/0262-8856(89)90017-6
– year: 2008
  ident: 10.1016/j.cmpb.2011.09.017_bib0160
– volume: 42
  start-page: 2434
  issue: 11
  year: 2009
  ident: 10.1016/j.cmpb.2011.09.017_bib0195
  article-title: Splitting touching cells based on concave points and ellipse fitting
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2009.04.003
– volume: 6
  start-page: 79
  issue: 2
  year: 1998
  ident: 10.1016/j.cmpb.2011.09.017_bib0090
  article-title: Robust cell nuclei segmentation using statistical modelling
  publication-title: Bioimaging
  doi: 10.1002/1361-6374(199806)6:2<79::AID-BIO3>3.0.CO;2-#
– start-page: 337
  year: 2009
  ident: 10.1016/j.cmpb.2011.09.017_bib0080
  article-title: Closing curves with Riemannian dilation: application to segmentation in automated cervical cancer screening
– volume: 145
  start-page: 50
  issue: 1
  year: 1998
  ident: 10.1016/j.cmpb.2011.09.017_bib0055
  article-title: Optimal segmentation of cell images
  publication-title: IEE Proceedings: Vision, Image and Signal Processing
– volume: 11
  start-page: 331
  issue: 5
  year: 1990
  ident: 10.1016/j.cmpb.2011.09.017_bib0210
  article-title: A new curve detection method: randomized Hough transform (RHT)
  publication-title: Pattern Recognition Letters
  doi: 10.1016/0167-8655(90)90042-Z
– volume: 96
  start-page: 108
  issue: 2
  year: 2009
  ident: 10.1016/j.cmpb.2011.09.017_bib0235
  article-title: A multidimensional segmentation evaluation for medical image data
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2009.04.009
– volume: 34
  start-page: 1043
  issue: 6
  year: 2010
  ident: 10.1016/j.cmpb.2011.09.017_bib0130
  article-title: An automated method for segmentation of epithelial cervical cells in images of ThinPrep
  publication-title: Journal of Medical Systems
  doi: 10.1007/s10916-009-9323-4
– start-page: 1197
  year: 1999
  ident: 10.1016/j.cmpb.2011.09.017_bib0175
  article-title: Mean shift analysis and applications
  publication-title: Proceedings of the IEEE International Conference on Computer Vision, vol. 2
– volume: 3117
  start-page: 281
  year: 2004
  ident: 10.1016/j.cmpb.2011.09.017_bib0095
  article-title: Segmenting cell images: a deterministic relaxation approach
  publication-title: Lecture Notes in Computer Science
  doi: 10.1007/978-3-540-27816-0_24
– start-page: 409
  year: 1996
  ident: 10.1016/j.cmpb.2011.09.017_bib0190
  article-title: Randomized Hough transform: better ellipse detection
– start-page: 294
  year: 2007
  ident: 10.1016/j.cmpb.2011.09.017_bib0100
  article-title: White blood cell segmentation using morphological operators and scale-space analysis
– year: 2001
  ident: 10.1016/j.cmpb.2011.09.017_bib0185
  article-title: Cell image segmentation for diagnostic pathology
– year: 2008
  ident: 10.1016/j.cmpb.2011.09.017_bib0200
– volume: 35
  start-page: 1645
  issue: 4
  year: 2008
  ident: 10.1016/j.cmpb.2011.09.017_bib0045
  article-title: Particle swarm optimization for pap-smear diagnosis
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2007.08.089
– start-page: 5624
  year: 2007
  ident: 10.1016/j.cmpb.2011.09.017_bib0105
  article-title: Automatic segmentation on cell image fusing gray and gradient information
– volume: 24
  start-page: 603
  issue: 5
  year: 2002
  ident: 10.1016/j.cmpb.2011.09.017_bib0180
  article-title: Mean shift: a robust approach toward feature space analysis
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.1000236
– year: 2007
  ident: 10.1016/j.cmpb.2011.09.017_bib0215
  article-title: Ellipse detection using a randomized Hough transform based on edge segment merging scheme
– volume: 40
  start-page: 3358
  issue: 12
  year: 2007
  ident: 10.1016/j.cmpb.2011.09.017_bib0245
  article-title: Cost-sensitive boosting for classification of imbalanced data
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2007.04.009
– start-page: 128
  year: 2008
  ident: 10.1016/j.cmpb.2011.09.017_bib0125
  article-title: Segmentation of biological cell images for sonification
– year: 2009
  ident: 10.1016/j.cmpb.2011.09.017_bib0015
– volume: 71
  start-page: 203
  issue: 2
  year: 1998
  ident: 10.1016/j.cmpb.2011.09.017_bib0050
  article-title: Unsupervised cell nucleus segmentation with active contours
  publication-title: Signal Processing
  doi: 10.1016/S0165-1684(98)00145-5
– volume: 7623
  start-page: 76234C
  year: 2010
  ident: 10.1016/j.cmpb.2011.09.017_bib0155
  article-title: Segmentation of cervical cell images using mean-shift filtering and morphological operators
  publication-title: SPIE
– volume: 16
  start-page: 69
  issue: 1
  year: 1983
  ident: 10.1016/j.cmpb.2011.09.017_bib0020
  article-title: Automatic classification of cervical cells using a binary tree classifier
  publication-title: Pattern Recognition
  doi: 10.1016/0031-3203(83)90010-9
– volume: 16
  start-page: 401
  issue: 4
  year: 1983
  ident: 10.1016/j.cmpb.2011.09.017_bib0025
  article-title: Some new color features and their application to cervical cell classification
  publication-title: Pattern Recognition
  doi: 10.1016/0031-3203(83)90062-6
– volume: 110
  start-page: 260
  issue: 2
  year: 2008
  ident: 10.1016/j.cmpb.2011.09.017_bib0230
  article-title: Image segmentation evaluation: a survey of unsupervised methods
  publication-title: Computer Vision and Image Understanding
  doi: 10.1016/j.cviu.2007.08.003
– volume: 42
  start-page: 1113
  issue: 6
  year: 2009
  ident: 10.1016/j.cmpb.2011.09.017_bib0120
  article-title: Graph-based tools for microscopic cellular image segmentation
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2008.10.029
– volume: SMC-9
  start-page: 62
  issue: 1
  year: 1979
  ident: 10.1016/j.cmpb.2011.09.017_bib0170
  article-title: Threshold selection method from gray-level histograms
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
  doi: 10.1109/TSMC.1979.4310076
– ident: 10.1016/j.cmpb.2011.09.017_bib0030
– volume: 29
  start-page: 1836
  issue: 13
  year: 2008
  ident: 10.1016/j.cmpb.2011.09.017_bib0205
  article-title: A new algorithm for ellipse detection by curve segments
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2008.05.025
– year: 2005
  ident: 10.1016/j.cmpb.2011.09.017_bib0225
– volume: 13
  start-page: 61
  issue: 1
  year: 2005
  ident: 10.1016/j.cmpb.2011.09.017_bib0060
  article-title: Seeded region growing features extraction algorithm; its potential use in improving screening for cervical cancer
  publication-title: International Journal of the Computer, the Internet and Management
– volume: 96
  start-page: 72
  issue: 1
  year: 2009
  ident: 10.1016/j.cmpb.2011.09.017_bib0135
  article-title: Interactive segmentation framework of the medical imaging interaction toolkit
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2009.04.004
– ident: 10.1016/j.cmpb.2011.09.017_bib0040
– volume: 9
  start-page: 217
  issue: 4
  year: 1977
  ident: 10.1016/j.cmpb.2011.09.017_bib0240
  article-title: Error measures for scene segmentation
  publication-title: Pattern Recognition
  doi: 10.1016/0031-3203(77)90006-1
– volume: 8
  year: 2007
  ident: 10.1016/j.cmpb.2011.09.017_bib0110
  article-title: 3D cell nuclei segmentation based on gradient flow tracking
  publication-title: BMC Cell Biology
  doi: 10.1186/1471-2121-8-40
– volume: 98
  start-page: 500
  issue: 7
  year: 1999
  ident: 10.1016/j.cmpb.2011.09.017_bib0010
  article-title: Comparison of fluid-based, thin-layer processing and conventional Papanicolaou methods for uterine cervical cytology
  publication-title: Journal of the Formosan Medical Association
– volume: 1
  start-page: 130
  issue: Suppl. 7
  year: 2006
  ident: 10.1016/j.cmpb.2011.09.017_bib0140
  article-title: A web-based approach to distributing medical images for referring physicians outside hospitals without specialised user management
  publication-title: International Journal of Computer Assisted Radiology and Surgery
– year: 2001
  ident: 10.1016/j.cmpb.2011.09.017_bib0165
– volume: 19
  start-page: 260
  issue: 3
  year: 2009
  ident: 10.1016/j.cmpb.2011.09.017_bib0085
  article-title: Detection and segmentation of cervical cell cytoplast and nucleus
  publication-title: International Journal of Imaging Systems and Technology
  doi: 10.1002/ima.20198
– year: 2006
  ident: 10.1016/j.cmpb.2011.09.017_bib0005
– volume: 28
  start-page: 1781
  issue: 13
  year: 2007
  ident: 10.1016/j.cmpb.2011.09.017_bib0115
  article-title: Segmentation of heterogeneous blob objects through voting and level set formulation
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2007.05.008
SSID ssj0002556
Score 2.3464055
Snippet ► A system for semi-automatic processing of full-resolution whole-slide scans.► A new algorithm for segmenting the nuclei under control of the expert user.►...
Highlights ► A system for semi-automatic processing of full-resolution whole-slide scans.► A new algorithm for segmenting the nuclei under control of the...
In order to automate cervical cancer screening tests, one of the most important and longstanding challenges is the segmentation of cell nuclei in the stained...
SourceID proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 497
SubjectTerms Algorithms
Automation
Biological and medical sciences
Cell Nucleus - metabolism
Cervical cell imaging
Cytoplasm - metabolism
Early Detection of Cancer - methods
Female
High-resolution microscopic imaging
Humans
Image Processing, Computer-Assisted - methods
Internal Medicine
Internet
Medical sciences
Models, Statistical
Nucleus segmentation
Other
Pattern Recognition, Automated - methods
Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects)
Signal Processing, Computer-Assisted
Software
Technology. Biomaterials. Equipments. Material. Instrumentation
Uterine Cervical Neoplasms - diagnosis
Uterine Cervical Neoplasms - physiopathology
Title Segmentation of cervical cell nuclei in high-resolution microscopic images: A new algorithm and a web-based software framework
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0169260711003191
https://www.clinicalkey.es/playcontent/1-s2.0-S0169260711003191
https://dx.doi.org/10.1016/j.cmpb.2011.09.017
https://www.ncbi.nlm.nih.gov/pubmed/22306072
https://www.proquest.com/docview/1026866230
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: AKRWK
  dateStart: 19850501
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBelgzEYY99ztwUN9jbUyLZiW3sLZSXbaF-6Qt-Evtx51E6IU_bWv713lpxS1nWwR8c-rOhOd79L7n5HyMcKICp26DKZlRkTLiuZtsIxI1MjeCWdG3qrjo6Lxan4djY72yEHYy8MllVG3x98-uCt4yfTuJvTVdNMT5BHJEN6tBQtM3SwixKnGOxf3ZR5IMVW4PeWDJ-OjTOhxsu2KxNpPOU-H4aW3RmcHq90D1tWh1kXfwejQ1A6fEqeRDRJ52HBz8iO756Th0fx__IX5OrEn7exu6ijy5rawTWACP5gTzskM25o01FkLWaQeUdDpC3W6WHHSmNp04LP6T_TOQUITvXF-XLdbH62VHeOagpumGEodLQHj_5brz2tx4Kvl-T08MuPgwWLExeYFTLbMA9gxqUGYJ7jaSWtsTOdc9jlqjKQunAH599a472HyF7aEtAX3Ne6FpVPdVXkr8hut-z8G0JB64WF-yaVQpiy1rlDIpoaW4EK5-uEpONWKxvpyHEqxoUa685-KVSPQvUoLhWoJyGftjKrQMZx79P5qEE1tpmCY1QQK-6VKu-S8n08271KVZ8prv6wv4TMtpK3TPifb5zcMq_tV4PktsgBPyXkw2hvCg4_Goju_PISlgIZdFUAguUJeR0M8UYak0teZnv_uay35BFcZaGe7h3Z3awv_XsAYBszGU7YhDyYf_2-OL4GzCwuDQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQldpKVUXfgZa6Um-VWcfJJnFvCIG2LcsFkLhZfgVSkexqs4gbv52ZxFmESqnUa5xRHM945ptk5jMhXwuAqNihy6TIBUudyJm2qWNGxiblhXSu662aHmWT0_Tn2fhsjewNvTBYVhl8f-_TO28drozCao7mVTU6Rh4RgfRoMVomdrA_Sccixwxs5-auzgM5tnqCb8nw9tA50xd52XpuAo-n3OHdqWUPRqcXc93CmpX9YRd_R6NdVDrYIC8DnKS7_YxfkTXfvCZPp-GH-Rtyc-zP69Be1NBZSW3nG0AEv9jTBtmMK1o1FGmLGaTewRJpjYV62LJSWVrV4HTa73SXAgan-vJ8tqiWFzXVjaOagh9mGAsdbcGlX-uFp-VQ8fWWnB7sn-xNWDhygdlUiiXzgGZcbADnOR4X0ho71gmHZS4KA7kLd-AArDXeewjtuc0BfsG41mVa-FgXWfKOrDezxn8gFNSeWRg3sUxTk5c6cchEU2IvUOZ8GZF4WGplAx85HotxqYbCs98K1aNQPYpLBeqJyLeVzLxn43j07mTQoBr6TMEzKggWj0rlD0n5NmzuVsWqFYqrPwwwIuOV5D0b_ucTt--Z1-rVILvNEgBQEfky2JuC3Y8Gohs_u4KpQApdZABheUTe94Z4J43ZJc_F5n9O6zN5NjmZHqrDH0e_tshzGBF9cd1Hsr5cXPlPgMaWZrvbbbeCLC-i
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Segmentation+of+cervical+cell+nuclei+in+high-resolution+microscopic+images%3A+A+new+algorithm+and+a+web-based+software+framework&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Bergmeir%2C+Christoph&rft.au=Garc%C3%ADa+Silvente%2C+Miguel&rft.au=Ben%C3%ADtez%2C+Jos%C3%A9+Manuel&rft.date=2012-09-01&rft.pub=Elsevier+Ireland+Ltd&rft.issn=0169-2607&rft.volume=107&rft.issue=3&rft.spage=497&rft.epage=512&rft_id=info:doi/10.1016%2Fj.cmpb.2011.09.017&rft.externalDocID=S0169260711003191
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01692607%2FS0169260712X00099%2Fcov150h.gif