Segmentation of cervical cell nuclei in high-resolution microscopic images: A new algorithm and a web-based software framework
► A system for semi-automatic processing of full-resolution whole-slide scans.► A new algorithm for segmenting the nuclei under control of the expert user.► Data storage and interaction of technical and medical experts is facilitated.► Open source software with web-based architecture.. In order to a...
Saved in:
| Published in | Computer methods and programs in biomedicine Vol. 107; no. 3; pp. 497 - 512 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Kidlington
Elsevier Ireland Ltd
01.09.2012
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0169-2607 1872-7565 1872-7565 |
| DOI | 10.1016/j.cmpb.2011.09.017 |
Cover
| Abstract | ► A system for semi-automatic processing of full-resolution whole-slide scans.► A new algorithm for segmenting the nuclei under control of the expert user.► Data storage and interaction of technical and medical experts is facilitated.► Open source software with web-based architecture..
In order to automate cervical cancer screening tests, one of the most important and longstanding challenges is the segmentation of cell nuclei in the stained specimens. Though nuclei of isolated cells in high-quality acquisitions often are easy to segment, the problem lies in the segmentation of large numbers of nuclei with various characteristics under differing acquisition conditions in high-resolution scans of the complete microscope slides. We implemented a system that enables processing of full resolution images, and proposes a new algorithm for segmenting the nuclei under adequate control of the expert user. The system can work automatically or interactively guided, to allow for segmentation within the whole range of slide and image characteristics. It facilitates data storage and interaction of technical and medical experts, especially with its web-based architecture. The proposed algorithm localizes cell nuclei using a voting scheme and prior knowledge, before it determines the exact shape of the nuclei by means of an elastic segmentation algorithm. After noise removal with a mean-shift and a median filtering takes place, edges are extracted with a Canny edge detection algorithm. Motivated by the observation that cell nuclei are surrounded by cytoplasm and their shape is roughly elliptical, edges adjacent to the background are removed. A randomized Hough transform for ellipses finds candidate nuclei, which are then processed by a level set algorithm. The algorithm is tested and compared to other algorithms on a database containing 207 images acquired from two different microscope slides, with promising results. |
|---|---|
| AbstractList | ► A system for semi-automatic processing of full-resolution whole-slide scans.► A new algorithm for segmenting the nuclei under control of the expert user.► Data storage and interaction of technical and medical experts is facilitated.► Open source software with web-based architecture..
In order to automate cervical cancer screening tests, one of the most important and longstanding challenges is the segmentation of cell nuclei in the stained specimens. Though nuclei of isolated cells in high-quality acquisitions often are easy to segment, the problem lies in the segmentation of large numbers of nuclei with various characteristics under differing acquisition conditions in high-resolution scans of the complete microscope slides. We implemented a system that enables processing of full resolution images, and proposes a new algorithm for segmenting the nuclei under adequate control of the expert user. The system can work automatically or interactively guided, to allow for segmentation within the whole range of slide and image characteristics. It facilitates data storage and interaction of technical and medical experts, especially with its web-based architecture. The proposed algorithm localizes cell nuclei using a voting scheme and prior knowledge, before it determines the exact shape of the nuclei by means of an elastic segmentation algorithm. After noise removal with a mean-shift and a median filtering takes place, edges are extracted with a Canny edge detection algorithm. Motivated by the observation that cell nuclei are surrounded by cytoplasm and their shape is roughly elliptical, edges adjacent to the background are removed. A randomized Hough transform for ellipses finds candidate nuclei, which are then processed by a level set algorithm. The algorithm is tested and compared to other algorithms on a database containing 207 images acquired from two different microscope slides, with promising results. Highlights ► A system for semi-automatic processing of full-resolution whole-slide scans.► A new algorithm for segmenting the nuclei under control of the expert user.► Data storage and interaction of technical and medical experts is facilitated.► Open source software with web-based architecture.. In order to automate cervical cancer screening tests, one of the most important and longstanding challenges is the segmentation of cell nuclei in the stained specimens. Though nuclei of isolated cells in high-quality acquisitions often are easy to segment, the problem lies in the segmentation of large numbers of nuclei with various characteristics under differing acquisition conditions in high-resolution scans of the complete microscope slides. We implemented a system that enables processing of full resolution images, and proposes a new algorithm for segmenting the nuclei under adequate control of the expert user. The system can work automatically or interactively guided, to allow for segmentation within the whole range of slide and image characteristics. It facilitates data storage and interaction of technical and medical experts, especially with its web-based architecture. The proposed algorithm localizes cell nuclei using a voting scheme and prior knowledge, before it determines the exact shape of the nuclei by means of an elastic segmentation algorithm. After noise removal with a mean-shift and a median filtering takes place, edges are extracted with a Canny edge detection algorithm. Motivated by the observation that cell nuclei are surrounded by cytoplasm and their shape is roughly elliptical, edges adjacent to the background are removed. A randomized Hough transform for ellipses finds candidate nuclei, which are then processed by a level set algorithm. The algorithm is tested and compared to other algorithms on a database containing 207 images acquired from two different microscope slides, with promising results.In order to automate cervical cancer screening tests, one of the most important and longstanding challenges is the segmentation of cell nuclei in the stained specimens. Though nuclei of isolated cells in high-quality acquisitions often are easy to segment, the problem lies in the segmentation of large numbers of nuclei with various characteristics under differing acquisition conditions in high-resolution scans of the complete microscope slides. We implemented a system that enables processing of full resolution images, and proposes a new algorithm for segmenting the nuclei under adequate control of the expert user. The system can work automatically or interactively guided, to allow for segmentation within the whole range of slide and image characteristics. It facilitates data storage and interaction of technical and medical experts, especially with its web-based architecture. The proposed algorithm localizes cell nuclei using a voting scheme and prior knowledge, before it determines the exact shape of the nuclei by means of an elastic segmentation algorithm. After noise removal with a mean-shift and a median filtering takes place, edges are extracted with a Canny edge detection algorithm. Motivated by the observation that cell nuclei are surrounded by cytoplasm and their shape is roughly elliptical, edges adjacent to the background are removed. A randomized Hough transform for ellipses finds candidate nuclei, which are then processed by a level set algorithm. The algorithm is tested and compared to other algorithms on a database containing 207 images acquired from two different microscope slides, with promising results. In order to automate cervical cancer screening tests, one of the most important and longstanding challenges is the segmentation of cell nuclei in the stained specimens. Though nuclei of isolated cells in high-quality acquisitions often are easy to segment, the problem lies in the segmentation of large numbers of nuclei with various characteristics under differing acquisition conditions in high-resolution scans of the complete microscope slides. We implemented a system that enables processing of full resolution images, and proposes a new algorithm for segmenting the nuclei under adequate control of the expert user. The system can work automatically or interactively guided, to allow for segmentation within the whole range of slide and image characteristics. It facilitates data storage and interaction of technical and medical experts, especially with its web-based architecture. The proposed algorithm localizes cell nuclei using a voting scheme and prior knowledge, before it determines the exact shape of the nuclei by means of an elastic segmentation algorithm. After noise removal with a mean-shift and a median filtering takes place, edges are extracted with a Canny edge detection algorithm. Motivated by the observation that cell nuclei are surrounded by cytoplasm and their shape is roughly elliptical, edges adjacent to the background are removed. A randomized Hough transform for ellipses finds candidate nuclei, which are then processed by a level set algorithm. The algorithm is tested and compared to other algorithms on a database containing 207 images acquired from two different microscope slides, with promising results. |
| Author | Bergmeir, Christoph García Silvente, Miguel Benítez, José Manuel |
| Author_xml | – sequence: 1 givenname: Christoph surname: Bergmeir fullname: Bergmeir, Christoph email: c.bergmeir@decsai.ugr.es, christoph.bergmeir@gmail.com – sequence: 2 givenname: Miguel surname: García Silvente fullname: García Silvente, Miguel email: m.garcia-silvente@decsai.ugr.es – sequence: 3 givenname: José Manuel surname: Benítez fullname: Benítez, José Manuel email: j.m.benitez@decsai.ugr.es |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26163661$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22306072$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkkFr3DAQhUVJaTZJ_0APRZdCL3Yl2ZbtUAIhNG0h0EOas5DH411tbGkr2Vly6W-vnN1QCCQ5SUjfm2HemyNyYJ1FQj5wlnLG5Zd1CsOmSQXjPGV1ynj5hix4VYqkLGRxQBYRqhMhWXlIjkJYM8ZEUch35FCIjMVnsSB_r3E5oB31aJylrqOA_s6A7uOl76mdoEdDjaUrs1wlHoPrpwd0MOBdALcxQM2glxhO6Tm1uKW6XzpvxtVAtW2ppltskkYHbGlw3bjVHmnn9YBb529PyNtO9wHf789jcnP57ffFj-Tq1_efF-dXCeS1GBMUZdbyhuVFy3hVQwOFzlgtZFU1vMxZW2UCoEFEkYsSyryQ8V_rLq-Q60pmx-Tzru7Guz8ThlENJswTaotuCoqzWEvKaEtEP-7RqRmwVRsfx_P36tGzCHzaAzpEo-IsFkz4z0kuMyl55KodNxsVPHYKzM7n0WvTx55qjlGt1RyjmmNUrFYxxigVT6SP1V8Ufd2JMBp5Z9CrAAYtYGs8wqhaZ16Wnz2RQ2_svAq3eI9h7SZvY0SKqyAUU9fzcs27xTljGa_neU-fL_Ba93_8697m |
| CitedBy_id | crossref_primary_10_1016_j_compmedimag_2014_02_001 crossref_primary_10_1007_s12652_021_02899_2 crossref_primary_10_1016_j_compmedimag_2019_01_003 crossref_primary_10_1016_j_neucom_2016_09_070 crossref_primary_10_1016_j_compmedimag_2017_01_002 crossref_primary_10_1016_j_cmpb_2017_05_003 crossref_primary_10_3233_JIFS_212871 crossref_primary_10_32604_iasc_2022_023587 crossref_primary_10_1109_ACCESS_2018_2871153 crossref_primary_10_3390_electronics13163335 crossref_primary_10_1016_j_compbiomed_2022_105500 crossref_primary_10_1371_journal_pone_0283568 crossref_primary_10_2147_CMAR_S279990 crossref_primary_10_1109_ACCESS_2020_2979926 crossref_primary_10_1007_s10462_019_09735_2 crossref_primary_10_1016_j_cmpb_2018_05_034 crossref_primary_10_1049_iet_ipr_2018_6032 crossref_primary_10_1016_j_bspc_2018_09_008 crossref_primary_10_1002_ima_22444 crossref_primary_10_1109_JBHI_2014_2346239 crossref_primary_10_4018_IJISMD_2018100101 crossref_primary_10_1109_ACCESS_2020_2989369 crossref_primary_10_1016_j_compbiomed_2017_04_008 crossref_primary_10_1038_s41377_024_01734_5 crossref_primary_10_1016_j_compbiomed_2019_03_011 crossref_primary_10_1016_j_compmedimag_2017_06_007 crossref_primary_10_1109_TMI_2018_2815013 crossref_primary_10_1002_cyto_a_22407 crossref_primary_10_1155_2014_286856 crossref_primary_10_3233_JCM_181010 crossref_primary_10_1155_2014_842037 crossref_primary_10_1016_j_cmpb_2013_12_012 crossref_primary_10_1109_TBME_2015_2430895 crossref_primary_10_1016_j_cmpb_2013_02_008 crossref_primary_10_1007_s00521_021_05697_1 crossref_primary_10_1016_j_eswa_2016_08_015 crossref_primary_10_1049_iet_ipr_2016_0788 crossref_primary_10_1016_j_neucom_2019_06_005 crossref_primary_10_1155_2014_820214 crossref_primary_10_1016_j_neucom_2017_01_093 crossref_primary_10_1016_j_bspc_2023_105250 crossref_primary_10_1038_s41598_019_57223_y crossref_primary_10_1007_s11517_020_02135_7 crossref_primary_10_1109_JBHI_2013_2250984 crossref_primary_10_1145_3447238 crossref_primary_10_1002_ima_22386 crossref_primary_10_1109_ACCESS_2021_3049165 crossref_primary_10_1109_ACCESS_2020_2984657 crossref_primary_10_1155_2015_586928 crossref_primary_10_1007_s10462_021_10121_0 crossref_primary_10_1109_RBME_2016_2515127 crossref_primary_10_1155_2016_9535027 crossref_primary_10_1515_biol_2022_0770 crossref_primary_10_1016_j_compbiomed_2016_01_025 crossref_primary_10_1155_2015_457906 crossref_primary_10_1155_2016_6090912 crossref_primary_10_1007_s12065_019_00226_5 crossref_primary_10_1016_j_bbe_2020_01_016 crossref_primary_10_1016_j_optcom_2021_126846 crossref_primary_10_1109_TMI_2016_2606380 |
| Cites_doi | 10.1016/S0169-2607(98)00085-6 10.1016/j.patrec.2008.02.024 10.1016/j.cmpb.2009.11.012 10.1007/978-3-540-77413-6_37 10.1109/TSMCB.2007.912940 10.1016/0262-8856(89)90017-6 10.1016/j.patcog.2009.04.003 10.1002/1361-6374(199806)6:2<79::AID-BIO3>3.0.CO;2-# 10.1016/0167-8655(90)90042-Z 10.1016/j.cmpb.2009.04.009 10.1007/s10916-009-9323-4 10.1007/978-3-540-27816-0_24 10.1016/j.eswa.2007.08.089 10.1109/34.1000236 10.1016/j.patcog.2007.04.009 10.1016/S0165-1684(98)00145-5 10.1016/0031-3203(83)90010-9 10.1016/0031-3203(83)90062-6 10.1016/j.cviu.2007.08.003 10.1016/j.patcog.2008.10.029 10.1109/TSMC.1979.4310076 10.1016/j.patrec.2008.05.025 10.1016/j.cmpb.2009.04.004 10.1016/0031-3203(77)90006-1 10.1186/1471-2121-8-40 10.1002/ima.20198 10.1016/j.patrec.2007.05.008 |
| ContentType | Journal Article |
| Copyright | 2011 Elsevier Ireland Ltd Elsevier Ireland Ltd 2015 INIST-CNRS Copyright © 2011 Elsevier Ireland Ltd. All rights reserved. |
| Copyright_xml | – notice: 2011 Elsevier Ireland Ltd – notice: Elsevier Ireland Ltd – notice: 2015 INIST-CNRS – notice: Copyright © 2011 Elsevier Ireland Ltd. All rights reserved. |
| DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.cmpb.2011.09.017 |
| DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1872-7565 |
| EndPage | 512 |
| ExternalDocumentID | 22306072 26163661 10_1016_j_cmpb_2011_09_017 S0169260711003191 1_s2_0_S0169260711003191 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- --K --M -~X .1- .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACLOT ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMK HMO HVGLF HZ~ IHE J1W KOM LG9 M29 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SBC SDF SDG SEL SES SEW SPC SPCBC SSH SSV SSZ T5K UHS WUQ XPP Z5R ZGI ZY4 ~G- ~HD AFCTW AGCQF AGRNS RIG AACTN AAIAV ABLVK ABTAH ABYKQ AFKWA AJBFU AJOXV AMFUW LCYCR AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c492t-e273d1b045d0189cbc5a3092688b1740d832ccbeee2427c7456a30aaf48e1a863 |
| IEDL.DBID | .~1 |
| ISSN | 0169-2607 1872-7565 |
| IngestDate | Thu Oct 02 05:38:23 EDT 2025 Thu Apr 03 07:01:01 EDT 2025 Mon Jul 21 09:14:46 EDT 2025 Thu Oct 02 04:36:11 EDT 2025 Thu Apr 24 23:01:40 EDT 2025 Fri Feb 23 02:26:00 EST 2024 Fri May 16 00:31:31 EDT 2025 Tue Oct 14 19:30:36 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Nucleus segmentation High-resolution microscopic imaging Cervical cell imaging High-resolution microscopic Image resolution Segmentation Image processing imaging Biomedical engineering |
| Language | English |
| License | CC BY 4.0 Copyright © 2011 Elsevier Ireland Ltd. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c492t-e273d1b045d0189cbc5a3092688b1740d832ccbeee2427c7456a30aaf48e1a863 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 22306072 |
| PQID | 1026866230 |
| PQPubID | 23479 |
| PageCount | 16 |
| ParticipantIDs | proquest_miscellaneous_1026866230 pubmed_primary_22306072 pascalfrancis_primary_26163661 crossref_citationtrail_10_1016_j_cmpb_2011_09_017 crossref_primary_10_1016_j_cmpb_2011_09_017 elsevier_sciencedirect_doi_10_1016_j_cmpb_2011_09_017 elsevier_clinicalkeyesjournals_1_s2_0_S0169260711003191 elsevier_clinicalkey_doi_10_1016_j_cmpb_2011_09_017 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-09-01 |
| PublicationDateYYYYMMDD | 2012-09-01 |
| PublicationDate_xml | – month: 09 year: 2012 text: 2012-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Kidlington |
| PublicationPlace_xml | – name: Kidlington – name: Ireland |
| PublicationTitle | Computer methods and programs in biomedicine |
| PublicationTitleAlternate | Comput Methods Programs Biomed |
| PublicationYear | 2012 |
| Publisher | Elsevier Ireland Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ireland Ltd – name: Elsevier |
| References | Hahn, Jung, Han, Hahn (bib0205) 2008; 29 Wu, Gil, Barba (bib0055) 1998; 145 Harandi, Sadri, Moghaddam, Amirfattahi (bib0130) 2010; 34 Yuen, Illingworth, Kittler (bib0220) 1989; 7 Mayer, Meinzer (bib0145) 1999; 58 Otsu (bib0170) 1979; SMC-9 Nguyen, Poulsen, Louis (bib0025) 1983; 16 Chang, Yang, Parvin (bib0115) 2007; 28 Cibas, Ducatman (bib0015) 2009 Comaniciu, Meer (bib0180) 2002; 24 E. Martin, Pap-smear classification, Master's Thesis, Technical University of Denmark (DTU), Oersted, Dept. of Automation, 2003. Comaniciu, Meer (bib0175) 1999 Pratt (bib0165) 2001 Cárdenes, de Luis-García, Bach-Cuadra (bib0235) 2009; 96 Zhang, Fritts, Goldman (bib0230) 2008; 110 Bergmeir, García Silvente, Esquivias López-Cuervo, Benítez (bib0155) 2010; 7623 Dorini, Minetto, Leite (bib0100) 2007 R.F. Walker, Adaptive multi-scale texture analysis with application to automated cytology, PhD Thesis, The University of Queensland, 1997. McLaughlin (bib0190) 1996 World Health Organization (bib0005) 2006 Hahn, Han, Hahn (bib0215) 2007 Ta, Lézoray, Elmoataz, Schüpp (bib0120) 2009; 42 Won, Nam, Choe (bib0095) 2004; 3117 Muench, Schroeter, Meinzer, Engelmann (bib0140) 2006; 1 Mahmoudi, Akhondi-Asl, Rahmani, Faghih-Roohi, Taimouri, Sabouri, Soltanian-Zadeh (bib0150) 2010; 98 Mat-Isa, Mashor, Othman (bib0060) 2005; 13 Tsai, Chan, Lin, Yang-Mao, Huang (bib0065) 2008; 29 Bai, Sun, Zhou (bib0195) 2009; 42 Lin, Fu (bib0020) 1983; 16 Maleike, Nolden, Meinzer, Wolf (bib0135) 2009; 96 Yang-Mao, Chan, Chu (bib0070) 2008; 38 Yang-Mao, Chen, Chan, Tsai, Chu (bib0075) 2008; 4901 Lin, Chan, Chen (bib0085) 2009; 19 Malm, Brun (bib0080) 2009 Comaniciu, Meer (bib0185) 2001 Bradski, Kaehler (bib0160) 2008 Yasnoff, Mui, Bacus (bib0240) 1977; 9 Wang, Chen, Yang, Tsou (bib0010) 1999; 98 Li, Liu, Tarokh, Nie, Guo, Mara, Holley, Wong (bib0110) 2007; 8 Liu, Yin, Liu, Zhang (bib0105) 2007 Sun, Kamel, Wong, Wang (bib0245) 2007; 40 J. Norup, Classification of pap-smear data by transductive neuro-fuzzy methods, Master's Thesis, Technical University of Denmark (DTU), Oersted, Dept. of Automation, 2005. Ibanez, Schroeder, Ng, Cates (bib0225) 2005 Nixon, Aguado (bib0200) January 2008 Marinakis, Marinaki, Dounias (bib0045) 2008; 35 Xu, Oja, Kultanen (bib0210) 1990; 11 Mouroutis, Roberts, Bharath (bib0090) 1998; 6 Bamford, Lovell (bib0050) 1998; 71 Edwards, Hines, Hunt (bib0125) 2008 World Health Organization (10.1016/j.cmpb.2011.09.017_bib0005) 2006 Tsai (10.1016/j.cmpb.2011.09.017_bib0065) 2008; 29 Lin (10.1016/j.cmpb.2011.09.017_bib0085) 2009; 19 Otsu (10.1016/j.cmpb.2011.09.017_bib0170) 1979; SMC-9 Harandi (10.1016/j.cmpb.2011.09.017_bib0130) 2010; 34 McLaughlin (10.1016/j.cmpb.2011.09.017_bib0190) 1996 Hahn (10.1016/j.cmpb.2011.09.017_bib0205) 2008; 29 Bradski (10.1016/j.cmpb.2011.09.017_bib0160) 2008 Xu (10.1016/j.cmpb.2011.09.017_bib0210) 1990; 11 Marinakis (10.1016/j.cmpb.2011.09.017_bib0045) 2008; 35 Mat-Isa (10.1016/j.cmpb.2011.09.017_bib0060) 2005; 13 Won (10.1016/j.cmpb.2011.09.017_bib0095) 2004; 3117 Wang (10.1016/j.cmpb.2011.09.017_bib0010) 1999; 98 Pratt (10.1016/j.cmpb.2011.09.017_bib0165) 2001 Chang (10.1016/j.cmpb.2011.09.017_bib0115) 2007; 28 Liu (10.1016/j.cmpb.2011.09.017_bib0105) 2007 Yang-Mao (10.1016/j.cmpb.2011.09.017_bib0070) 2008; 38 10.1016/j.cmpb.2011.09.017_bib0035 Yuen (10.1016/j.cmpb.2011.09.017_bib0220) 1989; 7 10.1016/j.cmpb.2011.09.017_bib0030 Bai (10.1016/j.cmpb.2011.09.017_bib0195) 2009; 42 Ta (10.1016/j.cmpb.2011.09.017_bib0120) 2009; 42 10.1016/j.cmpb.2011.09.017_bib0040 Bamford (10.1016/j.cmpb.2011.09.017_bib0050) 1998; 71 Comaniciu (10.1016/j.cmpb.2011.09.017_bib0185) 2001 Dorini (10.1016/j.cmpb.2011.09.017_bib0100) 2007 Zhang (10.1016/j.cmpb.2011.09.017_bib0230) 2008; 110 Li (10.1016/j.cmpb.2011.09.017_bib0110) 2007; 8 Cárdenes (10.1016/j.cmpb.2011.09.017_bib0235) 2009; 96 Bergmeir (10.1016/j.cmpb.2011.09.017_bib0155) 2010; 7623 Yang-Mao (10.1016/j.cmpb.2011.09.017_bib0075) 2008; 4901 Nguyen (10.1016/j.cmpb.2011.09.017_bib0025) 1983; 16 Comaniciu (10.1016/j.cmpb.2011.09.017_bib0180) 2002; 24 Sun (10.1016/j.cmpb.2011.09.017_bib0245) 2007; 40 Hahn (10.1016/j.cmpb.2011.09.017_bib0215) 2007 Malm (10.1016/j.cmpb.2011.09.017_bib0080) 2009 Lin (10.1016/j.cmpb.2011.09.017_bib0020) 1983; 16 Edwards (10.1016/j.cmpb.2011.09.017_bib0125) 2008 Comaniciu (10.1016/j.cmpb.2011.09.017_bib0175) 1999 Mahmoudi (10.1016/j.cmpb.2011.09.017_bib0150) 2010; 98 Ibanez (10.1016/j.cmpb.2011.09.017_bib0225) 2005 Maleike (10.1016/j.cmpb.2011.09.017_bib0135) 2009; 96 Nixon (10.1016/j.cmpb.2011.09.017_bib0200) 2008 Wu (10.1016/j.cmpb.2011.09.017_bib0055) 1998; 145 Muench (10.1016/j.cmpb.2011.09.017_bib0140) 2006; 1 Yasnoff (10.1016/j.cmpb.2011.09.017_bib0240) 1977; 9 Mouroutis (10.1016/j.cmpb.2011.09.017_bib0090) 1998; 6 Mayer (10.1016/j.cmpb.2011.09.017_bib0145) 1999; 58 Cibas (10.1016/j.cmpb.2011.09.017_bib0015) 2009 |
| References_xml | – start-page: 5624 year: 2007 end-page: 5627 ident: bib0105 article-title: Automatic segmentation on cell image fusing gray and gradient information publication-title: Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society – volume: 4901 start-page: 290 year: 2008 end-page: 297 ident: bib0075 article-title: Gradient direction edge enhancement based nucleus and cytoplasm contour detector of cervical smear images publication-title: Lecture Notes in Computer Science (LNCS) – reference: J. Norup, Classification of pap-smear data by transductive neuro-fuzzy methods, Master's Thesis, Technical University of Denmark (DTU), Oersted, Dept. of Automation, 2005. – volume: 24 start-page: 603 year: 2002 end-page: 619 ident: bib0180 article-title: Mean shift: a robust approach toward feature space analysis publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – year: 2006 ident: bib0005 article-title: Comprehensive cervical cancer control: a guide to essential practice – year: 2008 ident: bib0160 article-title: Learning OpenCV: Computer Vision with the OpenCV Library – volume: 42 start-page: 2434 year: 2009 end-page: 2446 ident: bib0195 article-title: Splitting touching cells based on concave points and ellipse fitting publication-title: Pattern Recognition – volume: 96 start-page: 108 year: 2009 end-page: 124 ident: bib0235 article-title: A multidimensional segmentation evaluation for medical image data publication-title: Computer Methods and Programs in Biomedicine – volume: 96 start-page: 72 year: 2009 end-page: 83 ident: bib0135 article-title: Interactive segmentation framework of the medical imaging interaction toolkit publication-title: Computer Methods and Programs in Biomedicine – volume: 16 start-page: 69 year: 1983 end-page: 80 ident: bib0020 article-title: Automatic classification of cervical cells using a binary tree classifier publication-title: Pattern Recognition – start-page: 409 year: 1996 end-page: 414 ident: bib0190 article-title: Randomized Hough transform: better ellipse detection publication-title: IEEE Region 10 Annual International Conference, Proceedings/TENCON, vol. 1 – reference: R.F. Walker, Adaptive multi-scale texture analysis with application to automated cytology, PhD Thesis, The University of Queensland, 1997. – volume: 1 start-page: 130 year: 2006 end-page: 132 ident: bib0140 article-title: A web-based approach to distributing medical images for referring physicians outside hospitals without specialised user management publication-title: International Journal of Computer Assisted Radiology and Surgery – start-page: 1197 year: 1999 end-page: 1203 ident: bib0175 article-title: Mean shift analysis and applications publication-title: Proceedings of the IEEE International Conference on Computer Vision, vol. 2 – volume: 9 start-page: 217 year: 1977 end-page: 231 ident: bib0240 article-title: Error measures for scene segmentation publication-title: Pattern Recognition – year: 2007 ident: bib0215 article-title: Ellipse detection using a randomized Hough transform based on edge segment merging scheme publication-title: ISPRA – volume: 42 start-page: 1113 year: 2009 end-page: 1125 ident: bib0120 article-title: Graph-based tools for microscopic cellular image segmentation publication-title: Pattern Recognition – year: 2001 ident: bib0185 article-title: Cell image segmentation for diagnostic pathology publication-title: Advanced Algorithmic Approaches to Medical Image Segmentation: State-of-the-art Applications in Cardiology, Neurology, Mammography and Pathology – volume: 58 start-page: 207 year: 1999 end-page: 217 ident: bib0145 article-title: High performance medical image processing in client/server-environments publication-title: Computer Methods and Programs in Biomedicine – volume: 145 start-page: 50 year: 1998 end-page: 56 ident: bib0055 article-title: Optimal segmentation of cell images publication-title: IEE Proceedings: Vision, Image and Signal Processing – volume: 98 start-page: 500 year: 1999 end-page: 505 ident: bib0010 article-title: Comparison of fluid-based, thin-layer processing and conventional Papanicolaou methods for uterine cervical cytology publication-title: Journal of the Formosan Medical Association – volume: 38 start-page: 353 year: 2008 end-page: 366 ident: bib0070 article-title: Edge enhancement nucleus and cytoplast contour detector of cervical smear images publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics – volume: 28 start-page: 1781 year: 2007 end-page: 1787 ident: bib0115 article-title: Segmentation of heterogeneous blob objects through voting and level set formulation publication-title: Pattern Recognition Letters – volume: 19 start-page: 260 year: 2009 end-page: 270 ident: bib0085 article-title: Detection and segmentation of cervical cell cytoplast and nucleus publication-title: International Journal of Imaging Systems and Technology – volume: 3117 start-page: 281 year: 2004 end-page: 291 ident: bib0095 article-title: Segmenting cell images: a deterministic relaxation approach publication-title: Lecture Notes in Computer Science – start-page: 294 year: 2007 end-page: 301 ident: bib0100 article-title: White blood cell segmentation using morphological operators and scale-space analysis publication-title: Proceedings of SIBGRAPI 2007 – 20th Brazilian Symposium on Computer Graphics and Image Processing – volume: SMC-9 start-page: 62 year: 1979 end-page: 66 ident: bib0170 article-title: Threshold selection method from gray-level histograms publication-title: IEEE Transactions on Systems, Man, and Cybernetics – year: 2005 ident: bib0225 article-title: The ITK Software Guide – volume: 29 start-page: 1836 year: 2008 end-page: 1841 ident: bib0205 article-title: A new algorithm for ellipse detection by curve segments publication-title: Pattern Recognition Letters – volume: 34 start-page: 1043 year: 2010 end-page: 1058 ident: bib0130 article-title: An automated method for segmentation of epithelial cervical cells in images of ThinPrep publication-title: Journal of Medical Systems – volume: 13 start-page: 61 year: 2005 end-page: 70 ident: bib0060 article-title: Seeded region growing features extraction algorithm; its potential use in improving screening for cervical cancer publication-title: International Journal of the Computer, the Internet and Management – reference: E. Martin, Pap-smear classification, Master's Thesis, Technical University of Denmark (DTU), Oersted, Dept. of Automation, 2003. – volume: 35 start-page: 1645 year: 2008 end-page: 1656 ident: bib0045 article-title: Particle swarm optimization for pap-smear diagnosis publication-title: Expert Systems with Applications – volume: 98 start-page: 172 year: 2010 end-page: 182 ident: bib0150 article-title: Web-based interactive 2D/3D medical image processing and visualization software publication-title: Computer Methods and Programs in Biomedicine – volume: 11 start-page: 331 year: 1990 end-page: 338 ident: bib0210 article-title: A new curve detection method: randomized Hough transform (RHT) publication-title: Pattern Recognition Letters – volume: 29 start-page: 1441 year: 2008 end-page: 1453 ident: bib0065 article-title: Nucleus and cytoplast contour detector of cervical smear image publication-title: Pattern Recognition Letters – volume: 6 start-page: 79 year: 1998 end-page: 91 ident: bib0090 article-title: Robust cell nuclei segmentation using statistical modelling publication-title: Bioimaging – year: 2009 ident: bib0015 article-title: Cytology: Diagnostic Principles and Clinical Correlates, Expert Consult Series – volume: 7623 start-page: 76234C year: 2010 ident: bib0155 article-title: Segmentation of cervical cell images using mean-shift filtering and morphological operators publication-title: SPIE – volume: 7 start-page: 31 year: 1989 end-page: 37 ident: bib0220 article-title: Detecting partially occluded ellipses using the Hough transform publication-title: Image and Vision Computing – start-page: 128 year: 2008 end-page: 132 ident: bib0125 article-title: Segmentation of biological cell images for sonification publication-title: Proceedings – 1st International Congress on Image and Signal Processing, CISP 2008, vol.2 – year: January 2008 ident: bib0200 article-title: Feature Extraction & Image Processing – volume: 71 start-page: 203 year: 1998 end-page: 213 ident: bib0050 article-title: Unsupervised cell nucleus segmentation with active contours publication-title: Signal Processing – start-page: 337 year: 2009 end-page: 346 ident: bib0080 article-title: Closing curves with Riemannian dilation: application to segmentation in automated cervical cancer screening publication-title: ISVC ‘09: Proceedings of the 5th International Symposium on Advances in Visual Computing – volume: 40 start-page: 3358 year: 2007 end-page: 3378 ident: bib0245 article-title: Cost-sensitive boosting for classification of imbalanced data publication-title: Pattern Recognition – volume: 16 start-page: 401 year: 1983 end-page: 411 ident: bib0025 article-title: Some new color features and their application to cervical cell classification publication-title: Pattern Recognition – volume: 8 year: 2007 ident: bib0110 article-title: 3D cell nuclei segmentation based on gradient flow tracking publication-title: BMC Cell Biology – volume: 110 start-page: 260 year: 2008 end-page: 280 ident: bib0230 article-title: Image segmentation evaluation: a survey of unsupervised methods publication-title: Computer Vision and Image Understanding – year: 2001 ident: bib0165 article-title: Digital Image Processing: PIKS Inside – ident: 10.1016/j.cmpb.2011.09.017_bib0035 – volume: 58 start-page: 207 issue: 3 year: 1999 ident: 10.1016/j.cmpb.2011.09.017_bib0145 article-title: High performance medical image processing in client/server-environments publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/S0169-2607(98)00085-6 – volume: 29 start-page: 1441 issue: 9 year: 2008 ident: 10.1016/j.cmpb.2011.09.017_bib0065 article-title: Nucleus and cytoplast contour detector of cervical smear image publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2008.02.024 – volume: 98 start-page: 172 issue: 2 year: 2010 ident: 10.1016/j.cmpb.2011.09.017_bib0150 article-title: Web-based interactive 2D/3D medical image processing and visualization software publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2009.11.012 – volume: 4901 start-page: 290 year: 2008 ident: 10.1016/j.cmpb.2011.09.017_bib0075 article-title: Gradient direction edge enhancement based nucleus and cytoplasm contour detector of cervical smear images publication-title: Lecture Notes in Computer Science (LNCS) doi: 10.1007/978-3-540-77413-6_37 – volume: 38 start-page: 353 issue: 2 year: 2008 ident: 10.1016/j.cmpb.2011.09.017_bib0070 article-title: Edge enhancement nucleus and cytoplast contour detector of cervical smear images publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics doi: 10.1109/TSMCB.2007.912940 – volume: 7 start-page: 31 issue: 1 year: 1989 ident: 10.1016/j.cmpb.2011.09.017_bib0220 article-title: Detecting partially occluded ellipses using the Hough transform publication-title: Image and Vision Computing doi: 10.1016/0262-8856(89)90017-6 – year: 2008 ident: 10.1016/j.cmpb.2011.09.017_bib0160 – volume: 42 start-page: 2434 issue: 11 year: 2009 ident: 10.1016/j.cmpb.2011.09.017_bib0195 article-title: Splitting touching cells based on concave points and ellipse fitting publication-title: Pattern Recognition doi: 10.1016/j.patcog.2009.04.003 – volume: 6 start-page: 79 issue: 2 year: 1998 ident: 10.1016/j.cmpb.2011.09.017_bib0090 article-title: Robust cell nuclei segmentation using statistical modelling publication-title: Bioimaging doi: 10.1002/1361-6374(199806)6:2<79::AID-BIO3>3.0.CO;2-# – start-page: 337 year: 2009 ident: 10.1016/j.cmpb.2011.09.017_bib0080 article-title: Closing curves with Riemannian dilation: application to segmentation in automated cervical cancer screening – volume: 145 start-page: 50 issue: 1 year: 1998 ident: 10.1016/j.cmpb.2011.09.017_bib0055 article-title: Optimal segmentation of cell images publication-title: IEE Proceedings: Vision, Image and Signal Processing – volume: 11 start-page: 331 issue: 5 year: 1990 ident: 10.1016/j.cmpb.2011.09.017_bib0210 article-title: A new curve detection method: randomized Hough transform (RHT) publication-title: Pattern Recognition Letters doi: 10.1016/0167-8655(90)90042-Z – volume: 96 start-page: 108 issue: 2 year: 2009 ident: 10.1016/j.cmpb.2011.09.017_bib0235 article-title: A multidimensional segmentation evaluation for medical image data publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2009.04.009 – volume: 34 start-page: 1043 issue: 6 year: 2010 ident: 10.1016/j.cmpb.2011.09.017_bib0130 article-title: An automated method for segmentation of epithelial cervical cells in images of ThinPrep publication-title: Journal of Medical Systems doi: 10.1007/s10916-009-9323-4 – start-page: 1197 year: 1999 ident: 10.1016/j.cmpb.2011.09.017_bib0175 article-title: Mean shift analysis and applications publication-title: Proceedings of the IEEE International Conference on Computer Vision, vol. 2 – volume: 3117 start-page: 281 year: 2004 ident: 10.1016/j.cmpb.2011.09.017_bib0095 article-title: Segmenting cell images: a deterministic relaxation approach publication-title: Lecture Notes in Computer Science doi: 10.1007/978-3-540-27816-0_24 – start-page: 409 year: 1996 ident: 10.1016/j.cmpb.2011.09.017_bib0190 article-title: Randomized Hough transform: better ellipse detection – start-page: 294 year: 2007 ident: 10.1016/j.cmpb.2011.09.017_bib0100 article-title: White blood cell segmentation using morphological operators and scale-space analysis – year: 2001 ident: 10.1016/j.cmpb.2011.09.017_bib0185 article-title: Cell image segmentation for diagnostic pathology – year: 2008 ident: 10.1016/j.cmpb.2011.09.017_bib0200 – volume: 35 start-page: 1645 issue: 4 year: 2008 ident: 10.1016/j.cmpb.2011.09.017_bib0045 article-title: Particle swarm optimization for pap-smear diagnosis publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2007.08.089 – start-page: 5624 year: 2007 ident: 10.1016/j.cmpb.2011.09.017_bib0105 article-title: Automatic segmentation on cell image fusing gray and gradient information – volume: 24 start-page: 603 issue: 5 year: 2002 ident: 10.1016/j.cmpb.2011.09.017_bib0180 article-title: Mean shift: a robust approach toward feature space analysis publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.1000236 – year: 2007 ident: 10.1016/j.cmpb.2011.09.017_bib0215 article-title: Ellipse detection using a randomized Hough transform based on edge segment merging scheme – volume: 40 start-page: 3358 issue: 12 year: 2007 ident: 10.1016/j.cmpb.2011.09.017_bib0245 article-title: Cost-sensitive boosting for classification of imbalanced data publication-title: Pattern Recognition doi: 10.1016/j.patcog.2007.04.009 – start-page: 128 year: 2008 ident: 10.1016/j.cmpb.2011.09.017_bib0125 article-title: Segmentation of biological cell images for sonification – year: 2009 ident: 10.1016/j.cmpb.2011.09.017_bib0015 – volume: 71 start-page: 203 issue: 2 year: 1998 ident: 10.1016/j.cmpb.2011.09.017_bib0050 article-title: Unsupervised cell nucleus segmentation with active contours publication-title: Signal Processing doi: 10.1016/S0165-1684(98)00145-5 – volume: 7623 start-page: 76234C year: 2010 ident: 10.1016/j.cmpb.2011.09.017_bib0155 article-title: Segmentation of cervical cell images using mean-shift filtering and morphological operators publication-title: SPIE – volume: 16 start-page: 69 issue: 1 year: 1983 ident: 10.1016/j.cmpb.2011.09.017_bib0020 article-title: Automatic classification of cervical cells using a binary tree classifier publication-title: Pattern Recognition doi: 10.1016/0031-3203(83)90010-9 – volume: 16 start-page: 401 issue: 4 year: 1983 ident: 10.1016/j.cmpb.2011.09.017_bib0025 article-title: Some new color features and their application to cervical cell classification publication-title: Pattern Recognition doi: 10.1016/0031-3203(83)90062-6 – volume: 110 start-page: 260 issue: 2 year: 2008 ident: 10.1016/j.cmpb.2011.09.017_bib0230 article-title: Image segmentation evaluation: a survey of unsupervised methods publication-title: Computer Vision and Image Understanding doi: 10.1016/j.cviu.2007.08.003 – volume: 42 start-page: 1113 issue: 6 year: 2009 ident: 10.1016/j.cmpb.2011.09.017_bib0120 article-title: Graph-based tools for microscopic cellular image segmentation publication-title: Pattern Recognition doi: 10.1016/j.patcog.2008.10.029 – volume: SMC-9 start-page: 62 issue: 1 year: 1979 ident: 10.1016/j.cmpb.2011.09.017_bib0170 article-title: Threshold selection method from gray-level histograms publication-title: IEEE Transactions on Systems, Man, and Cybernetics doi: 10.1109/TSMC.1979.4310076 – ident: 10.1016/j.cmpb.2011.09.017_bib0030 – volume: 29 start-page: 1836 issue: 13 year: 2008 ident: 10.1016/j.cmpb.2011.09.017_bib0205 article-title: A new algorithm for ellipse detection by curve segments publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2008.05.025 – year: 2005 ident: 10.1016/j.cmpb.2011.09.017_bib0225 – volume: 13 start-page: 61 issue: 1 year: 2005 ident: 10.1016/j.cmpb.2011.09.017_bib0060 article-title: Seeded region growing features extraction algorithm; its potential use in improving screening for cervical cancer publication-title: International Journal of the Computer, the Internet and Management – volume: 96 start-page: 72 issue: 1 year: 2009 ident: 10.1016/j.cmpb.2011.09.017_bib0135 article-title: Interactive segmentation framework of the medical imaging interaction toolkit publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2009.04.004 – ident: 10.1016/j.cmpb.2011.09.017_bib0040 – volume: 9 start-page: 217 issue: 4 year: 1977 ident: 10.1016/j.cmpb.2011.09.017_bib0240 article-title: Error measures for scene segmentation publication-title: Pattern Recognition doi: 10.1016/0031-3203(77)90006-1 – volume: 8 year: 2007 ident: 10.1016/j.cmpb.2011.09.017_bib0110 article-title: 3D cell nuclei segmentation based on gradient flow tracking publication-title: BMC Cell Biology doi: 10.1186/1471-2121-8-40 – volume: 98 start-page: 500 issue: 7 year: 1999 ident: 10.1016/j.cmpb.2011.09.017_bib0010 article-title: Comparison of fluid-based, thin-layer processing and conventional Papanicolaou methods for uterine cervical cytology publication-title: Journal of the Formosan Medical Association – volume: 1 start-page: 130 issue: Suppl. 7 year: 2006 ident: 10.1016/j.cmpb.2011.09.017_bib0140 article-title: A web-based approach to distributing medical images for referring physicians outside hospitals without specialised user management publication-title: International Journal of Computer Assisted Radiology and Surgery – year: 2001 ident: 10.1016/j.cmpb.2011.09.017_bib0165 – volume: 19 start-page: 260 issue: 3 year: 2009 ident: 10.1016/j.cmpb.2011.09.017_bib0085 article-title: Detection and segmentation of cervical cell cytoplast and nucleus publication-title: International Journal of Imaging Systems and Technology doi: 10.1002/ima.20198 – year: 2006 ident: 10.1016/j.cmpb.2011.09.017_bib0005 – volume: 28 start-page: 1781 issue: 13 year: 2007 ident: 10.1016/j.cmpb.2011.09.017_bib0115 article-title: Segmentation of heterogeneous blob objects through voting and level set formulation publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2007.05.008 |
| SSID | ssj0002556 |
| Score | 2.3464055 |
| Snippet | ► A system for semi-automatic processing of full-resolution whole-slide scans.► A new algorithm for segmenting the nuclei under control of the expert user.►... Highlights ► A system for semi-automatic processing of full-resolution whole-slide scans.► A new algorithm for segmenting the nuclei under control of the... In order to automate cervical cancer screening tests, one of the most important and longstanding challenges is the segmentation of cell nuclei in the stained... |
| SourceID | proquest pubmed pascalfrancis crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 497 |
| SubjectTerms | Algorithms Automation Biological and medical sciences Cell Nucleus - metabolism Cervical cell imaging Cytoplasm - metabolism Early Detection of Cancer - methods Female High-resolution microscopic imaging Humans Image Processing, Computer-Assisted - methods Internal Medicine Internet Medical sciences Models, Statistical Nucleus segmentation Other Pattern Recognition, Automated - methods Radiotherapy. Instrumental treatment. Physiotherapy. Reeducation. Rehabilitation, orthophony, crenotherapy. Diet therapy and various other treatments (general aspects) Signal Processing, Computer-Assisted Software Technology. Biomaterials. Equipments. Material. Instrumentation Uterine Cervical Neoplasms - diagnosis Uterine Cervical Neoplasms - physiopathology |
| Title | Segmentation of cervical cell nuclei in high-resolution microscopic images: A new algorithm and a web-based software framework |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0169260711003191 https://www.clinicalkey.es/playcontent/1-s2.0-S0169260711003191 https://dx.doi.org/10.1016/j.cmpb.2011.09.017 https://www.ncbi.nlm.nih.gov/pubmed/22306072 https://www.proquest.com/docview/1026866230 |
| Volume | 107 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-7565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002556 issn: 0169-2607 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1872-7565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002556 issn: 0169-2607 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-7565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002556 issn: 0169-2607 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1872-7565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002556 issn: 0169-2607 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-7565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002556 issn: 0169-2607 databaseCode: AKRWK dateStart: 19850501 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBelgzEYY99ztwUN9jbUyLZiW3sLZSXbaF-6Qt-Evtx51E6IU_bWv713lpxS1nWwR8c-rOhOd79L7n5HyMcKICp26DKZlRkTLiuZtsIxI1MjeCWdG3qrjo6Lxan4djY72yEHYy8MllVG3x98-uCt4yfTuJvTVdNMT5BHJEN6tBQtM3SwixKnGOxf3ZR5IMVW4PeWDJ-OjTOhxsu2KxNpPOU-H4aW3RmcHq90D1tWh1kXfwejQ1A6fEqeRDRJ52HBz8iO756Th0fx__IX5OrEn7exu6ijy5rawTWACP5gTzskM25o01FkLWaQeUdDpC3W6WHHSmNp04LP6T_TOQUITvXF-XLdbH62VHeOagpumGEodLQHj_5brz2tx4Kvl-T08MuPgwWLExeYFTLbMA9gxqUGYJ7jaSWtsTOdc9jlqjKQunAH599a472HyF7aEtAX3Ne6FpVPdVXkr8hut-z8G0JB64WF-yaVQpiy1rlDIpoaW4EK5-uEpONWKxvpyHEqxoUa685-KVSPQvUoLhWoJyGftjKrQMZx79P5qEE1tpmCY1QQK-6VKu-S8n08271KVZ8prv6wv4TMtpK3TPifb5zcMq_tV4PktsgBPyXkw2hvCg4_Goju_PISlgIZdFUAguUJeR0M8UYak0teZnv_uay35BFcZaGe7h3Z3awv_XsAYBszGU7YhDyYf_2-OL4GzCwuDQ |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQldpKVUXfgZa6Um-VWcfJJnFvCIG2LcsFkLhZfgVSkexqs4gbv52ZxFmESqnUa5xRHM945ptk5jMhXwuAqNihy6TIBUudyJm2qWNGxiblhXSu662aHmWT0_Tn2fhsjewNvTBYVhl8f-_TO28drozCao7mVTU6Rh4RgfRoMVomdrA_Sccixwxs5-auzgM5tnqCb8nw9tA50xd52XpuAo-n3OHdqWUPRqcXc93CmpX9YRd_R6NdVDrYIC8DnKS7_YxfkTXfvCZPp-GH-Rtyc-zP69Be1NBZSW3nG0AEv9jTBtmMK1o1FGmLGaTewRJpjYV62LJSWVrV4HTa73SXAgan-vJ8tqiWFzXVjaOagh9mGAsdbcGlX-uFp-VQ8fWWnB7sn-xNWDhygdlUiiXzgGZcbADnOR4X0ho71gmHZS4KA7kLd-AArDXeewjtuc0BfsG41mVa-FgXWfKOrDezxn8gFNSeWRg3sUxTk5c6cchEU2IvUOZ8GZF4WGplAx85HotxqYbCs98K1aNQPYpLBeqJyLeVzLxn43j07mTQoBr6TMEzKggWj0rlD0n5NmzuVsWqFYqrPwwwIuOV5D0b_ucTt--Z1-rVILvNEgBQEfky2JuC3Y8Gohs_u4KpQApdZABheUTe94Z4J43ZJc_F5n9O6zN5NjmZHqrDH0e_tshzGBF9cd1Hsr5cXPlPgMaWZrvbbbeCLC-i |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Segmentation+of+cervical+cell+nuclei+in+high-resolution+microscopic+images%3A+A+new+algorithm+and+a+web-based+software+framework&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Bergmeir%2C+Christoph&rft.au=Garc%C3%ADa+Silvente%2C+Miguel&rft.au=Ben%C3%ADtez%2C+Jos%C3%A9+Manuel&rft.date=2012-09-01&rft.pub=Elsevier+Ireland+Ltd&rft.issn=0169-2607&rft.volume=107&rft.issue=3&rft.spage=497&rft.epage=512&rft_id=info:doi/10.1016%2Fj.cmpb.2011.09.017&rft.externalDocID=S0169260711003191 |
| thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01692607%2FS0169260712X00099%2Fcov150h.gif |