Machine learning-based interpretation of non-contrast feature tracking strain analysis and T1/T2 mapping for assessing myocardial viability

Assessing myocardial viability is crucial for managing ischemic heart disease. While late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) is the gold standard for viability evaluation, it has limitations, including contraindications in patients with renal dysfunction and lengthy...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 15; no. 1; pp. 753 - 18
Main Authors GhaffariJolfayi, Amir, Salmanipour, Alireza, Heshmat-Ghahdarijani, Kiyan, MozafaryBazargany, MohammadHossein, Azimi, Amir, Pirouzi, Pirouz, Mohammadzadeh, Ali
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 04.01.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-024-85029-0

Cover

Abstract Assessing myocardial viability is crucial for managing ischemic heart disease. While late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) is the gold standard for viability evaluation, it has limitations, including contraindications in patients with renal dysfunction and lengthy scan times. This study investigates the potential of non-contrast CMR techniques—feature tracking strain analysis and T1/T2 mapping—combined with machine learning (ML) models, as an alternative to LGE-CMR for myocardial viability assessment. A retrospective analysis was conducted on 79 patients with myocardial infarction (MI) 2–4 weeks post-event. Patients with prior ischemia or poor imaging quality were excluded to ensure robust data acquisition. Various ML algorithms were applied to data from LGE-CMR and non-contrast CMR techniques. Random forest (RF) demonstrated the highest predictive accuracy, with area under the curve (AUC) values of 0.89, 0.90, and 0.92 for left anterior descending (LAD), right coronary artery (RCA), and left circumflex (LCX) coronary artery territories, respectively. For the LAD territory, RF, k-nearest neighbors (KNN), and logistic regression were the top performers, while RCA showed the best results from RF, neural networks (NN), and KNN. In the LCX territory, RF, NN, and logistic regression were most effective. The integration of T1/T2 mapping and strain analysis significantly enhanced myocardial viability prediction, positioning these non-contrast techniques as promising alternatives to LGE-CMR. ML models, particularly RF, provided superior diagnostic accuracy across coronary territories. Future studies should validate these findings across diverse populations and clinical settings.
AbstractList Assessing myocardial viability is crucial for managing ischemic heart disease. While late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) is the gold standard for viability evaluation, it has limitations, including contraindications in patients with renal dysfunction and lengthy scan times. This study investigates the potential of non-contrast CMR techniques—feature tracking strain analysis and T1/T2 mapping—combined with machine learning (ML) models, as an alternative to LGE-CMR for myocardial viability assessment. A retrospective analysis was conducted on 79 patients with myocardial infarction (MI) 2–4 weeks post-event. Patients with prior ischemia or poor imaging quality were excluded to ensure robust data acquisition. Various ML algorithms were applied to data from LGE-CMR and non-contrast CMR techniques. Random forest (RF) demonstrated the highest predictive accuracy, with area under the curve (AUC) values of 0.89, 0.90, and 0.92 for left anterior descending (LAD), right coronary artery (RCA), and left circumflex (LCX) coronary artery territories, respectively. For the LAD territory, RF, k-nearest neighbors (KNN), and logistic regression were the top performers, while RCA showed the best results from RF, neural networks (NN), and KNN. In the LCX territory, RF, NN, and logistic regression were most effective. The integration of T1/T2 mapping and strain analysis significantly enhanced myocardial viability prediction, positioning these non-contrast techniques as promising alternatives to LGE-CMR. ML models, particularly RF, provided superior diagnostic accuracy across coronary territories. Future studies should validate these findings across diverse populations and clinical settings.
Abstract Assessing myocardial viability is crucial for managing ischemic heart disease. While late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) is the gold standard for viability evaluation, it has limitations, including contraindications in patients with renal dysfunction and lengthy scan times. This study investigates the potential of non-contrast CMR techniques—feature tracking strain analysis and T1/T2 mapping—combined with machine learning (ML) models, as an alternative to LGE-CMR for myocardial viability assessment. A retrospective analysis was conducted on 79 patients with myocardial infarction (MI) 2–4 weeks post-event. Patients with prior ischemia or poor imaging quality were excluded to ensure robust data acquisition. Various ML algorithms were applied to data from LGE-CMR and non-contrast CMR techniques. Random forest (RF) demonstrated the highest predictive accuracy, with area under the curve (AUC) values of 0.89, 0.90, and 0.92 for left anterior descending (LAD), right coronary artery (RCA), and left circumflex (LCX) coronary artery territories, respectively. For the LAD territory, RF, k-nearest neighbors (KNN), and logistic regression were the top performers, while RCA showed the best results from RF, neural networks (NN), and KNN. In the LCX territory, RF, NN, and logistic regression were most effective. The integration of T1/T2 mapping and strain analysis significantly enhanced myocardial viability prediction, positioning these non-contrast techniques as promising alternatives to LGE-CMR. ML models, particularly RF, provided superior diagnostic accuracy across coronary territories. Future studies should validate these findings across diverse populations and clinical settings.
Assessing myocardial viability is crucial for managing ischemic heart disease. While late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) is the gold standard for viability evaluation, it has limitations, including contraindications in patients with renal dysfunction and lengthy scan times. This study investigates the potential of non-contrast CMR techniques-feature tracking strain analysis and T1/T2 mapping-combined with machine learning (ML) models, as an alternative to LGE-CMR for myocardial viability assessment. A retrospective analysis was conducted on 79 patients with myocardial infarction (MI) 2-4 weeks post-event. Patients with prior ischemia or poor imaging quality were excluded to ensure robust data acquisition. Various ML algorithms were applied to data from LGE-CMR and non-contrast CMR techniques. Random forest (RF) demonstrated the highest predictive accuracy, with area under the curve (AUC) values of 0.89, 0.90, and 0.92 for left anterior descending (LAD), right coronary artery (RCA), and left circumflex (LCX) coronary artery territories, respectively. For the LAD territory, RF, k-nearest neighbors (KNN), and logistic regression were the top performers, while RCA showed the best results from RF, neural networks (NN), and KNN. In the LCX territory, RF, NN, and logistic regression were most effective. The integration of T1/T2 mapping and strain analysis significantly enhanced myocardial viability prediction, positioning these non-contrast techniques as promising alternatives to LGE-CMR. ML models, particularly RF, provided superior diagnostic accuracy across coronary territories. Future studies should validate these findings across diverse populations and clinical settings.Assessing myocardial viability is crucial for managing ischemic heart disease. While late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) is the gold standard for viability evaluation, it has limitations, including contraindications in patients with renal dysfunction and lengthy scan times. This study investigates the potential of non-contrast CMR techniques-feature tracking strain analysis and T1/T2 mapping-combined with machine learning (ML) models, as an alternative to LGE-CMR for myocardial viability assessment. A retrospective analysis was conducted on 79 patients with myocardial infarction (MI) 2-4 weeks post-event. Patients with prior ischemia or poor imaging quality were excluded to ensure robust data acquisition. Various ML algorithms were applied to data from LGE-CMR and non-contrast CMR techniques. Random forest (RF) demonstrated the highest predictive accuracy, with area under the curve (AUC) values of 0.89, 0.90, and 0.92 for left anterior descending (LAD), right coronary artery (RCA), and left circumflex (LCX) coronary artery territories, respectively. For the LAD territory, RF, k-nearest neighbors (KNN), and logistic regression were the top performers, while RCA showed the best results from RF, neural networks (NN), and KNN. In the LCX territory, RF, NN, and logistic regression were most effective. The integration of T1/T2 mapping and strain analysis significantly enhanced myocardial viability prediction, positioning these non-contrast techniques as promising alternatives to LGE-CMR. ML models, particularly RF, provided superior diagnostic accuracy across coronary territories. Future studies should validate these findings across diverse populations and clinical settings.
ArticleNumber 753
Author Mohammadzadeh, Ali
GhaffariJolfayi, Amir
Pirouzi, Pirouz
Heshmat-Ghahdarijani, Kiyan
Azimi, Amir
Salmanipour, Alireza
MozafaryBazargany, MohammadHossein
Author_xml – sequence: 1
  givenname: Amir
  surname: GhaffariJolfayi
  fullname: GhaffariJolfayi, Amir
  organization: Cardiovascular Research Center, Rajaie Cardiovascular, Medical, and Research Center, University of Medical Sciences
– sequence: 2
  givenname: Alireza
  surname: Salmanipour
  fullname: Salmanipour, Alireza
  organization: Cardiovascular Research Center, Rajaie Cardiovascular, Medical, and Research Center, University of Medical Sciences
– sequence: 3
  givenname: Kiyan
  surname: Heshmat-Ghahdarijani
  fullname: Heshmat-Ghahdarijani, Kiyan
  organization: Cardiovascular Research Center, Rajaie Cardiovascular, Medical, and Research Center, University of Medical Sciences, Heart Failure Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences
– sequence: 4
  givenname: MohammadHossein
  surname: MozafaryBazargany
  fullname: MozafaryBazargany, MohammadHossein
  organization: Cardiovascular Research Center, Rajaie Cardiovascular, Medical, and Research Center, University of Medical Sciences
– sequence: 5
  givenname: Amir
  surname: Azimi
  fullname: Azimi, Amir
  organization: Cardiovascular Research Center, Rajaie Cardiovascular, Medical, and Research Center, University of Medical Sciences
– sequence: 6
  givenname: Pirouz
  surname: Pirouzi
  fullname: Pirouzi, Pirouz
  organization: Cardiovascular Research Center, Rajaie Cardiovascular, Medical, and Research Center, University of Medical Sciences
– sequence: 7
  givenname: Ali
  surname: Mohammadzadeh
  fullname: Mohammadzadeh, Ali
  email: mralimohammadzadeh@yahoo.com
  organization: Cardiovascular Research Center, Rajaie Cardiovascular, Medical, and Research Center, University of Medical Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39755814$$D View this record in MEDLINE/PubMed
BookMark eNqNUstu1TAQjVARLaU_wAJZYsMm1M88VghVPCoVsbmsrYlj3_riawc7aZVv4KdxmktpWSC88Rn7zJnxHD8vjnzwuiheEvyWYNacJ05E25SY8rIRmLYlflKcUMxFSRmlRw_wcXGW0g7nJWjLSfusOGZtLURD-Enx8wuoa-s1chqit35bdpB0j6wfdRyiHmG0waNgUK5fquDHCGlERsM4RY1ypL7nLJQysh6BBzcnmzLo0YacbyjawzAsDBMigpR0Sku0n4OC2Ftw6MZCZ50d5xfFUwMu6bPDflp8-_hhc_G5vPr66fLi_VWpeEvHUlWGC0UxqypS1R2vdd3RnrcZGNIaU2GOddtjbqjiomJgWN313GDVi6YDzE6Ly1W3D7CTQ7R7iLMMYOXdQYhbCXG0ymnZAO1V32mjmOANaxvVGl6TuqkZ5QKzrMVWrckPMN-Cc_eCBMvFKbk6JbNT8s4puXTwbs0apm6ve6WXsbpHrTy-8fZabsONJKTGmOAqK7w5KMTwY9JplHublHYOvA5TkowIIppceaG-_ou6C1PMRq0sXouqEpn16mFL9738_iqZQFeCiiGlqM3_PfQwnpTJfqvjn9r_yPoFLpDjKw
Cites_doi 10.1093/ehjci/jez041
10.1109/TII.2024.3359454
10.1007/s11886-021-01546-8
10.1186/s12968-015-0155-8
10.1016/j.jacc.2009.07.027
10.1161/CIR.0000000000001168
10.1016/j.amjcard.2007.04.029
10.1016/j.ejrad.2017.04.024
10.1023/B:CAIM.0000014045.62343.9b
10.1016/j.ins.2019.05.048
10.1109/TIM.2024.3384565
10.1093/ehjci/jeac129
10.4330/wjc.v10.i11.210
10.3389/fcvm.2022.894503
10.1016/j.compbiomed.2021.105145
10.1007/s40134-022-00407-8
10.3389/fcvm.2022.754609
10.1016/j.neucom.2020.07.008
10.1016/j.media.2019.101568
10.1161/CIRCIMAGING.115.004077
10.1161/CIRCULATIONAHA.108.811547
10.1186/s12968-016-0269-7
10.1093/ehjci/jev006
10.1148/radiol.2017170213
10.1007/s40620-020-00842-w
10.1161/CIRCULATIONAHA.122.060137
10.1055/s-0042-1748760
10.1155/2019/2860165
10.1097/RTI.0000000000000584
10.1016/j.jacc.2020.11.010
10.3390/diagnostics13122061
10.1007/s11897-021-00515-0
10.1161/HCI.0000000000000053
10.1016/j.jacc.2007.10.066
10.1109/ISBI53787.2023.10230541
10.1007/s10554-020-02018-w
10.1016/j.media.2017.07.005
10.1148/rg.346140030
10.1016/j.compbiomed.2024.108210
10.1007/s10554-018-1467-1
10.1186/1532-429X-14-43
10.1016/j.compbiomed.2022.105885
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
Copyright Nature Publishing Group 2025
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: Copyright Nature Publishing Group 2025
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1038/s41598-024-85029-0
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Central Health & Medical Collection (via ProQuest)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection (UHCL Subscription)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Biological science database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Open Access Full Text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
Publicly Available Content Database
MEDLINE

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 18
ExternalDocumentID oai_doaj_org_article_8a2dcdbefc3548398c9f471787324503
10.1038/s41598-024-85029-0
PMC11700106
39755814
10_1038_s41598_024_85029_0
Genre Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
EJD
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c492t-c6f45c20366167b47e7b2d4947ef19ff6040e9d04f2c4563af37bd4f0cd58ba03
IEDL.DBID DOA
ISSN 2045-2322
IngestDate Fri Oct 03 12:44:57 EDT 2025
Sun Oct 26 04:03:21 EDT 2025
Tue Sep 30 17:06:11 EDT 2025
Fri Sep 05 09:24:20 EDT 2025
Tue Oct 07 08:11:17 EDT 2025
Sat Mar 29 01:29:30 EDT 2025
Wed Oct 01 02:45:51 EDT 2025
Fri Feb 21 02:35:19 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords T1/T2 mapping
Myocardial viability
Cardiovascular magnetic resonance
Feature tracking strain analysis
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c492t-c6f45c20366167b47e7b2d4947ef19ff6040e9d04f2c4563af37bd4f0cd58ba03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/8a2dcdbefc3548398c9f471787324503
PMID 39755814
PQID 3151475665
PQPubID 2041939
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_8a2dcdbefc3548398c9f471787324503
unpaywall_primary_10_1038_s41598_024_85029_0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11700106
proquest_miscellaneous_3151584156
proquest_journals_3151475665
pubmed_primary_39755814
crossref_primary_10_1038_s41598_024_85029_0
springer_journals_10_1038_s41598_024_85029_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-04
PublicationDateYYYYMMDD 2025-01-04
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-04
  day: 04
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References S Kelle (85029_CR4) 2009; 54
MJ Garcia (85029_CR16) 2020; 13
SS Virani (85029_CR17) 2023; 148
A Schuster (85029_CR13) 2016; 9
A Larroza (85029_CR11) 2017; 92
J Kihlberg (85029_CR26) 2015; 17
R Cau (85029_CR8) 2021; 36
M Becker (85029_CR29) 2008; 51
X Fei (85029_CR38) 2020; 413
B Shi (85029_CR39) 2022; 148
P Rouzrokh (85029_CR32) 2023; 11
SD Roes (85029_CR3) 2007; 100
E Avard (85029_CR10) 2022; 141
T Lange (85029_CR28) 2021; 18
D Muser (85029_CR14) 2018; 10
SA Hamlin (85029_CR19) 2014; 34
G Litjens (85029_CR36) 2017; 42
SW Tantawy (85029_CR6) 2021; 37
X Jin (85029_CR41) 2019; 2019
RJ Taylor (85029_CR35) 2015; 16
W Wen (85029_CR44) 2024; 171
AG Dastidar (85029_CR7) 2019; 35
85029_CR33
C Xu (85029_CR24) 2020; 59
M Abdulkareem (85029_CR25) 2022; 9
A Azzu (85029_CR31) 2023; 24
Z Chen (85029_CR23) 2022; 9
B Baessler (85029_CR9) 2018; 286
Q Zhang (85029_CR2) 2022; 146
MS Amzulescu (85029_CR12) 2019; 20
M-R Chen (85029_CR40) 2019; 498
J Taylor Andrew (85029_CR18) 2016; 9
LJ Laffin (85029_CR22) 2021; 23
G Li (85029_CR30) 2004; 20
PD Chudgar (85029_CR34) 2022; 32
G Morton (85029_CR27) 2012; 14
A Giovanni (85029_CR1) 2020; 76
G Deferrari (85029_CR21) 2021; 34
85029_CR20
85029_CR42
85029_CR43
G Pedrizzetti (85029_CR15) 2016; 18
R Cau (85029_CR5) 2023; 13
DJ Pennell (85029_CR37) 2010; 121
References_xml – volume: 20
  start-page: 605
  issue: 6
  year: 2019
  ident: 85029_CR12
  publication-title: Eur. Heart J. Cardiovasc. Imaging
  doi: 10.1093/ehjci/jez041
– ident: 85029_CR42
  doi: 10.1109/TII.2024.3359454
– volume: 23
  start-page: 117
  issue: 9
  year: 2021
  ident: 85029_CR22
  publication-title: Curr. Cardiol. Rep.
  doi: 10.1007/s11886-021-01546-8
– volume: 17
  start-page: 50
  issue: 1
  year: 2015
  ident: 85029_CR26
  publication-title: J. Cardiovasc. Magn. Reson.
  doi: 10.1186/s12968-015-0155-8
– volume: 54
  start-page: 1770
  issue: 19
  year: 2009
  ident: 85029_CR4
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2009.07.027
– volume: 148
  start-page: e9
  issue: 9
  year: 2023
  ident: 85029_CR17
  publication-title: Circulation
  doi: 10.1161/CIR.0000000000001168
– volume: 100
  start-page: 930
  issue: 6
  year: 2007
  ident: 85029_CR3
  publication-title: Am. J. Cardiol.
  doi: 10.1016/j.amjcard.2007.04.029
– volume: 92
  start-page: 78
  year: 2017
  ident: 85029_CR11
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2017.04.024
– volume: 20
  start-page: 135
  issue: 2
  year: 2004
  ident: 85029_CR30
  publication-title: Int. J. Cardiovasc. Imaging
  doi: 10.1023/B:CAIM.0000014045.62343.9b
– volume: 498
  start-page: 62
  year: 2019
  ident: 85029_CR40
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.05.048
– ident: 85029_CR43
  doi: 10.1109/TIM.2024.3384565
– volume: 24
  start-page: 503
  issue: 4
  year: 2023
  ident: 85029_CR31
  publication-title: Eur. Heart J. Cardiovasc. Imaging
  doi: 10.1093/ehjci/jeac129
– volume: 10
  start-page: 210
  issue: 11
  year: 2018
  ident: 85029_CR14
  publication-title: World J. Cardiol.
  doi: 10.4330/wjc.v10.i11.210
– volume: 9
  start-page: 894503
  year: 2022
  ident: 85029_CR25
  publication-title: Front. Cardiovasc. Med.
  doi: 10.3389/fcvm.2022.894503
– volume: 141
  start-page: 105145
  year: 2022
  ident: 85029_CR10
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.105145
– volume: 11
  start-page: 34
  issue: 2
  year: 2023
  ident: 85029_CR32
  publication-title: Curr. Radiol. Rep.
  doi: 10.1007/s40134-022-00407-8
– volume: 9
  start-page: 754609
  year: 2022
  ident: 85029_CR23
  publication-title: Front. Cardiovasc. Med.
  doi: 10.3389/fcvm.2022.754609
– volume: 413
  start-page: 271
  year: 2020
  ident: 85029_CR38
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.07.008
– volume: 59
  start-page: 101568
  year: 2020
  ident: 85029_CR24
  publication-title: Med. Image. Anal.
  doi: 10.1016/j.media.2019.101568
– volume: 9
  start-page: e004077
  issue: 4
  year: 2016
  ident: 85029_CR13
  publication-title: Circ. Cardiovasc. Imaging
  doi: 10.1161/CIRCIMAGING.115.004077
– ident: 85029_CR20
  doi: 10.1161/CIRCIMAGING.115.004077
– volume: 121
  start-page: 692
  issue: 5
  year: 2010
  ident: 85029_CR37
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.108.811547
– volume: 18
  start-page: 51
  issue: 1
  year: 2016
  ident: 85029_CR15
  publication-title: J. Cardiovasc. Magn. Reson.
  doi: 10.1186/s12968-016-0269-7
– volume: 16
  start-page: 871
  issue: 8
  year: 2015
  ident: 85029_CR35
  publication-title: Eur. Heart J. Cardiovasc. Imaging
  doi: 10.1093/ehjci/jev006
– volume: 286
  start-page: 103
  issue: 1
  year: 2018
  ident: 85029_CR9
  publication-title: Radiology
  doi: 10.1148/radiol.2017170213
– volume: 34
  start-page: 137
  issue: 1
  year: 2021
  ident: 85029_CR21
  publication-title: J. Nephrol.
  doi: 10.1007/s40620-020-00842-w
– volume: 146
  start-page: 1492
  issue: 20
  year: 2022
  ident: 85029_CR2
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.122.060137
– volume: 32
  start-page: 479
  issue: 4
  year: 2022
  ident: 85029_CR34
  publication-title: Indian J. Radiol. Imaging
  doi: 10.1055/s-0042-1748760
– volume: 2019
  start-page: 1
  year: 2019
  ident: 85029_CR41
  publication-title: EURASIP J. Wirel. Commun. Netw.
  doi: 10.1155/2019/2860165
– volume: 36
  start-page: 142
  issue: 3
  year: 2021
  ident: 85029_CR8
  publication-title: J. Thorac. Imaging.
  doi: 10.1097/RTI.0000000000000584
– volume: 76
  start-page: 2982
  issue: 25
  year: 2020
  ident: 85029_CR1
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2020.11.010
– volume: 13
  start-page: 2061
  issue: 12
  year: 2023
  ident: 85029_CR5
  publication-title: Diagnostics
  doi: 10.3390/diagnostics13122061
– volume: 18
  start-page: 225
  issue: 4
  year: 2021
  ident: 85029_CR28
  publication-title: Curr. Heart Fail. Rep.
  doi: 10.1007/s11897-021-00515-0
– volume: 13
  start-page: e000053
  issue: 7
  year: 2020
  ident: 85029_CR16
  publication-title: Circ. Cardiovasc. Imaging
  doi: 10.1161/HCI.0000000000000053
– volume: 51
  start-page: 1473
  issue: 15
  year: 2008
  ident: 85029_CR29
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2007.10.066
– ident: 85029_CR33
  doi: 10.1109/ISBI53787.2023.10230541
– volume: 37
  start-page: 587
  issue: 2
  year: 2021
  ident: 85029_CR6
  publication-title: Int. J. Cardiovasc. Imaging
  doi: 10.1007/s10554-020-02018-w
– volume: 42
  start-page: 60
  year: 2017
  ident: 85029_CR36
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.07.005
– volume: 9
  start-page: 67
  issue: 1
  year: 2016
  ident: 85029_CR18
  publication-title: JACC: Cardiovasc. Imaging
– volume: 34
  start-page: 1594
  issue: 6
  year: 2014
  ident: 85029_CR19
  publication-title: RadioGraphics
  doi: 10.1148/rg.346140030
– volume: 171
  start-page: 108210
  year: 2024
  ident: 85029_CR44
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2024.108210
– volume: 35
  start-page: 517
  year: 2019
  ident: 85029_CR7
  publication-title: Int. J. Cardiovasc. Imaging
  doi: 10.1007/s10554-018-1467-1
– volume: 14
  start-page: 34
  issue: 1
  year: 2012
  ident: 85029_CR27
  publication-title: J. Cardiovasc. Magn. Reson.
  doi: 10.1186/1532-429X-14-43
– volume: 148
  start-page: 105885
  year: 2022
  ident: 85029_CR39
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105885
SSID ssj0000529419
Score 2.4578958
Snippet Assessing myocardial viability is crucial for managing ischemic heart disease. While late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR)...
Abstract Assessing myocardial viability is crucial for managing ischemic heart disease. While late gadolinium enhancement (LGE) cardiovascular magnetic...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 753
SubjectTerms 692/4019/2776
692/4019/592
Aged
Algorithms
Cardiovascular diseases
Cardiovascular magnetic resonance
Contrast Media
Coronary artery
Coronary vessels
Data acquisition
Feature tracking strain analysis
Female
Gadolinium
Heart diseases
Humanities and Social Sciences
Humans
Image Interpretation, Computer-Assisted - methods
Ischemia
Learning algorithms
Machine Learning
Magnetic Resonance Imaging - methods
Male
Mapping
Middle Aged
multidisciplinary
Myocardial infarction
Myocardial Infarction - diagnostic imaging
Myocardial viability
Myocardium - pathology
Neural networks
Population studies
Regression analysis
Renal function
Retrospective Studies
Science
Science (multidisciplinary)
T1/T2 mapping
Viability
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZaxRBEG7iBlEfxNvRKC34Zpqd6WOOBxEjCUHIIrKBvA09fawLm5k1u6vsb_BPW9VzxEUJvs3F0DNV3fV1V_X3EfIWEILR3McsE8oxWTnJdMItAzAuMoiPzmrcKHw2SU_P5ecLdbFHJv1eGCyr7MfEMFDbxuAa-VhAaJIZvFp9WH5nqBqF2dVeQkN30gr2faAYu0X2OTJjjcj-0fHky9dh1QXzWjIput0zscjHK4hguMuMS5YrrAWJdyJUIPL_F_r8u4hyyKTeI3c29VJvf-rF4o9gdfKA3O9QJv3YusVDsufqR-R2qzu5fUx-nYUSSkc7zYgZw2Bm6XynApE2ntZNzUI1u16tqXeBBZTCmcEVdroKAhNUd8QmcGDpNBlPOb3UyPswowCJqQ55ZTy73ELkRI9c0B_zliB8-4ScnxxPP52yTpWBGVnwNTOpl8pg_jJN0qySmcsqbmUBBz4pvE9hWHCFjaXnBtCZ0F5klZU-NlbllY7FUzKCxrvnhHLvrbO51wAakUetqIpUF5VStoq5dUlE3vWWKJct-UYZkuYiL1u7lWC3MtitjCNyhMYankTi7HChuZqVXT8sc82tsZXzRsBcTRS5KTzEZxi2AFmqWETkoDd12fXmVXntexF5M9yGfojJFV27ZtM-A2AOpsMRedZ6xtASwHxK5YmMSL7jMztN3b1Tz78Frm8UBsJpe0QOe_e6btdN_-JwcMH_-HUvbv7ql-QuR9ljXHmSB2S0vtq4V4DF1tXrroP9BuyPM1Y
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEG6WFVEP4tvoKi14c-Mm_UjSBxEVl0UYTzOwt6afswOzmXUean6Df9rqzkODg3jwlic0XdWpr1LV34fQS0AIRhGfpSXlLmXasVTlxKYAxmkJ8dFZFTYKTz4XZzP26ZyfH6Be7qibwM3e1C7oSc3Wy9ffvzRvYcG_abeMVycbCEJhoxhhacVDOwek8NcgUokg5TDp4H7L9U0Ey0W3d2b_q6P4FGn892HPP1sohzrqLXRjV1-p5ptaLn8LVad30O0OY-J3rVPcRQeuvoeut6qTzX30YxIbKB3uFCPmaQhlFi9G_Yd45XG9qtPYy642W-xd5ADFcGbC_3W8ifISWHW0JnBg8TQ_mRJ8qQLrwxwDIMYqVpXD2WUDcTP44xJ_XbT04M0DNDv9OP1wlnaaDKlhgmxTU3jGTaheFnlRala6UhPLBBz4XHhfwEfBCZsxTwxgM6o8LbVlPjOWV1pl9CE6hMG7xwgT762zlVcAGQOLmtCiUEJzbnVGrMsT9Kq3hLxqqTdkLJnTSrZ2k2A3Ge0mswS9D8Yangy02fHCaj2X3SqUlSLWWO28oZCpUVEZ4SE6w0cLcCXPaIKOelPL3hUlBVDESnBqnqAXw21YhaG0omq32rXPAJSDZDhBj1rPGEYCiI_zKmcJqkY-Mxrq-E69uIhM30EWKCTtCTru3evXuP42F8eDC_7D1D35H1P3FN0kQRo5_J1iR-hwu965Z4DXtvp5XIQ_AX71PL0
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VWyHggHiWQEFG4sZGTfxI7OOCqKqVyoWt1Jtlx3ZZabut2F2q_Q3904ydbCAqQnDLW5ZnJvONZ_wNwHtECI2hochrJnzOree5KanLEYyzGv2jdyZuFD79Up2c8em5ON-D8W4vzCB_n6i7V-hi4jYwynMpYrEGBuj7EhVTjmB_Mpl-nfZrKjFrxUvV7Y3B14_uvjzwP4mm_0_Y8m6JZJ8nfQj3N8trs70xi8Vvruj4MTzqMCSZtEJ_Ant--RTutV0lt8_g9jQVSHrSdYS4yKOrcmQ-qC8kV4Fg6J-nWnWzWpPgE8cnwbMmrp-TVWofQUxHW4IHjszKoxkllyayOlwQBLzEpKxxPLvcol-M-rYgP-Yt_ff2OZwdf559Osm7ngt5wxVd500VuGhidrIqq9ry2teWOq7wIJQqhAqN3itX8EAbxF7MBFZbx0PROCGtKdgLGOHg_UsgNATnnQwGIWFkSVNWVUZZIZwtqPNlBh92ktDXLbWGTilxJnUrN41y00luusjgYxRW_2SkxU4XUFt0Z2VaGuoaZ31oGEZiTMlGBfS--FNC3CgKlsHhTtS6s9WVZgh6eI1KKzJ4199GK4upE7P0V5v2GYRqGOxmcNBqRj8SRHRCyJJnIAc6Mxjq8M5y_i0xece2PzEoz2C8U69f4_rbXIx7FfyHqXv1f19_DQ9obHIc15n4IYzW3zf-DSKvtX3bGdxPfc4niw
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB6VVAg48H4YClokbtSpvQ8_jgVRVUitOCSinKx9hojUiZoEFP4Cf5rZtR0wVIjedu21NB7P7nzrmf0G4BUiBC2pS-KcCRtzZXksU2piBOMsR_9ojfQHhU9Os-Mxf38mznYg687ChKT9QGkZlukuO-xgiY7GHwajPC6ET9lIhgvjrsFuJhCDD2B3fPrh8JOvJIcYJUaYQNsTMgkrLnm454UCWf9lCPPvRMlttPQW3FjXC7n5Jmez3xzS0R342L1Kk4fyZbheqaH-_gfL49Xf9S7cbjEqOWxG3oMdW9-H603Vys0D-HESEjAtaStOTGLvCg2Z9vIXydyRel7HIRdeLlfE2SAEwZ72_-fJMpSnILKlRcGGIaP0YETJufSsEROCgJrIEJX2vfMN-l1vzzPyddrQi28ewvjo3ejtcdzWdIg1L-kq1pnjQvvoZ5ZmueK5zRU1vMSGS0vnMlxUbGkS7qhGbMekY7ky3CXaiELJhD2CAQpvnwChzhlrCicRcnoWtlKVmSyVEEYl1Ng0gtfdN64WDXVHFULurKgaFVeo4iqouEoieOPNYDvS026HC_OLSdV-mqqQ1GijrNMMd3qsLHTp0Lvjooe4VCQsgr3OiKp2LVhWDEEVz3FSiAhebm_jLPahGVnb-boZg1AQN9MRPG5sbisJIkYhipRHUPSssSdq_049_RyYwn1ZIb_pj2C_M9xfcv1LF_tb4_4P1T292vBncJP6Isr-Pxbfg8HqYm2fI7JbqRftNP4J52hKGw
  priority: 102
  providerName: Unpaywall
Title Machine learning-based interpretation of non-contrast feature tracking strain analysis and T1/T2 mapping for assessing myocardial viability
URI https://link.springer.com/article/10.1038/s41598-024-85029-0
https://www.ncbi.nlm.nih.gov/pubmed/39755814
https://www.proquest.com/docview/3151475665
https://www.proquest.com/docview/3151584156
https://pubmed.ncbi.nlm.nih.gov/PMC11700106
https://www.nature.com/articles/s41598-024-85029-0.pdf
https://doaj.org/article/8a2dcdbefc3548398c9f471787324503
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: HH5
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: ABDBF
  dateStart: 20121221
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals - Free Access to All
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DIK
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAQT
  databaseName: Springer Nature - nature.com Journals - Fully Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: NAO
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.nature.com/siteindex/index.html
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Health & Medical Collection (via ProQuest)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M48
  dateStart: 20110801
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: AAJSJ
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: C6C
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwEB3BIgQcEN8ElspI3NioiWMn9rFb7WpVqdUKWqmcIie2l0rddEVbUH8Df5qxnZZWIODAJU3iHFzPc-Y5M34D8A4ZQq2oTeIi4yZmlWGxSqmOkYxnBfpHo5XbKDwc5RcTNpjy6V6pL5cTFuSBw8B1haK61pWxdYbkOpOilhZfqIgzpAI86HwmQu4tpoKqN5Usle0umSQT3SV6KrebjLJYcJfzkRx4Ii_Y_zuW-Wuy5C5i-gDurZsbtfmm5vM9p3T-CB62bJL0wr94DLdM8wTuhvqSm6fwfehTJQ1pa0Ncxc5paTI7yDQkC0uaRRP7rHW1XBFrvNonwavafUknS19IgqhWwARPNBmn3TEl18rpO1wRpL5E-fixu7reoId0yJuTr7MgBL55BpPzs3H_Im6rL8Q1k3QV17llvHZxyjzNi4oVpqioZhJPbCqtzXH6G6kTZmmNLCxTNisqzWxSay4qlWTP4Qg7b14CodZqo4VVSA6dXpqsZK5kxbmuEqpNGsH7rSXKmyCyUfrgeCbKYLcS7VZ6u5VJBKfOWLsnnUC2v4GwKVvYlH-DTQTHW1OX7axdlhnSH1YgfHkEb3fNON9cEEU1ZrEOzyBpw2VvBC8CMnY9QW7HuUhZBOIAMwddPWxpZp-9prcrAOSW5xGcbOH1s19_GouTHQT_Yehe_Y-hew33qSuC7L5DsWM4Wn1ZmzfIzFZVB24X06IDd3q9wccB_p6ejS4_4N1-3u_4CYrHIRPYMhld9j79AJszPEE
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4am9DgAY17YICR4IlFTWzn9jAhNjZ1bK0Q6qS9GSe2S6UuLWvL1N_Af-K3cexcRgWaeNlbboqcnGOfz-f2AbxBhFBIagI_YZH2ea65L0OqfATjLEH7qJW0hcK9ftw95Z_OorM1-NXUwti0ymZNdAu1mhTWR95haJp4gq-O3k-_-5Y1ykZXGwoNWVMrqF3XYqwu7DjWy0vcws12jz6ivN9Sengw2O_6NcuAX_CMzv0iNjwqbDwuDuMk54lOcqp4hgcmzIyJUc11pgJuaIFog0nDklxxExQqSnMZMHzvLdjgjGe4-dvYO-h__tJ6eWwcjYdZXa0TsLQzQ4tpq9oo99PI5p4EKxbREQf8C-3-nbTZRm7vwuainMrlpRyP_zCOh1twr0a15EOlhvdhTZcP4HbFc7l8CD97LmVTk5qjYuhb46nIaCXjkUwMKSel77Ln5WxOjHZdRwmeFdajT2aO0ILIupEKHigyCDsDSs6l7TMxJAjBiXRxbHt2vkRLbWfAmPwYVQ3Jl4_g9Ebk8xjWcfD6KRBqjNIqNRJBqu3bluVZLLM8ilQeUKVDD941khDTqtmHcEF6lopKbgLlJpzcRODBnhVW-6Rt1O0uTC6Gop73IpVUFSrXpmC4N2RZWmQG8QAuk4hko4B5sN2IWtSrx0xc6boHr9vbOO9tMEeWerKonkHwiNtvD55UmtGOBDFmFKUh9yBd0ZmVoa7eKUffXG9xS0Rk3QQe7DTqdTWu6_7FTquC__Hrnl3_1a9gszvonYiTo_7xc7hDLeWy9XrxbVifXyz0C8SB8_xlPdkIfL3p-f0bqyNwIg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIl4HxBtDgUWCE7Vi765fB4SAErWUVhxSKTd37d0NkVInNAlVfgP_iF_HzPpRIlDFpTe_ZK093-x8OzM7A_AKGUKpuA38RETGl4WRvgq59pGMiwTto9GKNgofHMa7R_LzMBpuwK92LwylVbZzopuo9bQkH3lPoGmSCb466tkmLeLrTv_d7LtPHaQo0tq206ghsm9WZ7h8m7_d20FZv-a8_2nwcddvOgz4pcz4wi9jK6OSYnFxGCeFTExScC0zPLBhZm2MEDeZDqTlJTINoaxICi1tUOooLVQg8L1X4GoiREbphMkw6fw7FEGTYdbs0wlE2pujraT9bFz6aURZJ8GaLXQtA_7Fc_9O1-xitrfgxrKaqdWZmkz-MIv9O3C74bPsfQ3Au7Bhqntwre5wuboPPw9csqZhTXeKkU9mU7PxWq4jm1pWTSvf5c2r-YJZ4-qNMjwryZfP5q6VBVNNCRU80GwQ9gacnSiqMDFiSL6ZchFsOjtZoY0m7E_Yj3Fdinz1AI4uRToPYRMHbx4D49Zqo1OrkJ5SxbasyGKVFVGki4BrE3rwppVEPqvLfOQuPC_SvJZbjnLLndzywIMPJKzuSSrR7S5MT0d5o_F5qrgudWFsKXBVKLK0zCwyAZwgkcNGgfBgqxV13swb8_wc5R687G6jxlMYR1VmuqyfQdqIC28PHtXI6EaC7DKK0lB6kK5hZm2o63eq8TdXVZxaEJGDwIPtFl7n47roX2x3EPyPX_fk4q9-AddRq_Mve4f7T-Emp17L5O6SW7C5OF2aZ0gAF8Vzp2kMji9btX8DlwltvA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB6VVAg48H4YClokbtSpvQ8_jgVRVUitOCSinKx9hojUiZoEFP4Cf5rZtR0wVIjedu21NB7P7nzrmf0G4BUiBC2pS-KcCRtzZXksU2piBOMsR_9ojfQHhU9Os-Mxf38mznYg687ChKT9QGkZlukuO-xgiY7GHwajPC6ET9lIhgvjrsFuJhCDD2B3fPrh8JOvJIcYJUaYQNsTMgkrLnm454UCWf9lCPPvRMlttPQW3FjXC7n5Jmez3xzS0R342L1Kk4fyZbheqaH-_gfL49Xf9S7cbjEqOWxG3oMdW9-H603Vys0D-HESEjAtaStOTGLvCg2Z9vIXydyRel7HIRdeLlfE2SAEwZ72_-fJMpSnILKlRcGGIaP0YETJufSsEROCgJrIEJX2vfMN-l1vzzPyddrQi28ewvjo3ejtcdzWdIg1L-kq1pnjQvvoZ5ZmueK5zRU1vMSGS0vnMlxUbGkS7qhGbMekY7ky3CXaiELJhD2CAQpvnwChzhlrCicRcnoWtlKVmSyVEEYl1Ng0gtfdN64WDXVHFULurKgaFVeo4iqouEoieOPNYDvS026HC_OLSdV-mqqQ1GijrNMMd3qsLHTp0Lvjooe4VCQsgr3OiKp2LVhWDEEVz3FSiAhebm_jLPahGVnb-boZg1AQN9MRPG5sbisJIkYhipRHUPSssSdq_049_RyYwn1ZIb_pj2C_M9xfcv1LF_tb4_4P1T292vBncJP6Isr-Pxbfg8HqYm2fI7JbqRftNP4J52hKGw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning-based+interpretation+of+non-contrast+feature+tracking+strain+analysis+and+T1%2FT2+mapping+for+assessing+myocardial+viability&rft.jtitle=Scientific+reports&rft.au=Amir+GhaffariJolfayi&rft.au=Alireza+Salmanipour&rft.au=Kiyan+Heshmat-Ghahdarijani&rft.au=MohammadHossein+MozafaryBazargany&rft.date=2025-01-04&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=1&rft.epage=18&rft_id=info:doi/10.1038%2Fs41598-024-85029-0&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8a2dcdbefc3548398c9f471787324503
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon