Machine learning-based interpretation of non-contrast feature tracking strain analysis and T1/T2 mapping for assessing myocardial viability
Assessing myocardial viability is crucial for managing ischemic heart disease. While late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) is the gold standard for viability evaluation, it has limitations, including contraindications in patients with renal dysfunction and lengthy...
Saved in:
| Published in | Scientific reports Vol. 15; no. 1; pp. 753 - 18 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Nature Publishing Group UK
04.01.2025
Nature Publishing Group Nature Portfolio |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2045-2322 2045-2322 |
| DOI | 10.1038/s41598-024-85029-0 |
Cover
| Abstract | Assessing myocardial viability is crucial for managing ischemic heart disease. While late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) is the gold standard for viability evaluation, it has limitations, including contraindications in patients with renal dysfunction and lengthy scan times. This study investigates the potential of non-contrast CMR techniques—feature tracking strain analysis and T1/T2 mapping—combined with machine learning (ML) models, as an alternative to LGE-CMR for myocardial viability assessment. A retrospective analysis was conducted on 79 patients with myocardial infarction (MI) 2–4 weeks post-event. Patients with prior ischemia or poor imaging quality were excluded to ensure robust data acquisition. Various ML algorithms were applied to data from LGE-CMR and non-contrast CMR techniques. Random forest (RF) demonstrated the highest predictive accuracy, with area under the curve (AUC) values of 0.89, 0.90, and 0.92 for left anterior descending (LAD), right coronary artery (RCA), and left circumflex (LCX) coronary artery territories, respectively. For the LAD territory, RF, k-nearest neighbors (KNN), and logistic regression were the top performers, while RCA showed the best results from RF, neural networks (NN), and KNN. In the LCX territory, RF, NN, and logistic regression were most effective. The integration of T1/T2 mapping and strain analysis significantly enhanced myocardial viability prediction, positioning these non-contrast techniques as promising alternatives to LGE-CMR. ML models, particularly RF, provided superior diagnostic accuracy across coronary territories. Future studies should validate these findings across diverse populations and clinical settings. |
|---|---|
| AbstractList | Assessing myocardial viability is crucial for managing ischemic heart disease. While late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) is the gold standard for viability evaluation, it has limitations, including contraindications in patients with renal dysfunction and lengthy scan times. This study investigates the potential of non-contrast CMR techniques—feature tracking strain analysis and T1/T2 mapping—combined with machine learning (ML) models, as an alternative to LGE-CMR for myocardial viability assessment. A retrospective analysis was conducted on 79 patients with myocardial infarction (MI) 2–4 weeks post-event. Patients with prior ischemia or poor imaging quality were excluded to ensure robust data acquisition. Various ML algorithms were applied to data from LGE-CMR and non-contrast CMR techniques. Random forest (RF) demonstrated the highest predictive accuracy, with area under the curve (AUC) values of 0.89, 0.90, and 0.92 for left anterior descending (LAD), right coronary artery (RCA), and left circumflex (LCX) coronary artery territories, respectively. For the LAD territory, RF, k-nearest neighbors (KNN), and logistic regression were the top performers, while RCA showed the best results from RF, neural networks (NN), and KNN. In the LCX territory, RF, NN, and logistic regression were most effective. The integration of T1/T2 mapping and strain analysis significantly enhanced myocardial viability prediction, positioning these non-contrast techniques as promising alternatives to LGE-CMR. ML models, particularly RF, provided superior diagnostic accuracy across coronary territories. Future studies should validate these findings across diverse populations and clinical settings. Abstract Assessing myocardial viability is crucial for managing ischemic heart disease. While late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) is the gold standard for viability evaluation, it has limitations, including contraindications in patients with renal dysfunction and lengthy scan times. This study investigates the potential of non-contrast CMR techniques—feature tracking strain analysis and T1/T2 mapping—combined with machine learning (ML) models, as an alternative to LGE-CMR for myocardial viability assessment. A retrospective analysis was conducted on 79 patients with myocardial infarction (MI) 2–4 weeks post-event. Patients with prior ischemia or poor imaging quality were excluded to ensure robust data acquisition. Various ML algorithms were applied to data from LGE-CMR and non-contrast CMR techniques. Random forest (RF) demonstrated the highest predictive accuracy, with area under the curve (AUC) values of 0.89, 0.90, and 0.92 for left anterior descending (LAD), right coronary artery (RCA), and left circumflex (LCX) coronary artery territories, respectively. For the LAD territory, RF, k-nearest neighbors (KNN), and logistic regression were the top performers, while RCA showed the best results from RF, neural networks (NN), and KNN. In the LCX territory, RF, NN, and logistic regression were most effective. The integration of T1/T2 mapping and strain analysis significantly enhanced myocardial viability prediction, positioning these non-contrast techniques as promising alternatives to LGE-CMR. ML models, particularly RF, provided superior diagnostic accuracy across coronary territories. Future studies should validate these findings across diverse populations and clinical settings. Assessing myocardial viability is crucial for managing ischemic heart disease. While late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) is the gold standard for viability evaluation, it has limitations, including contraindications in patients with renal dysfunction and lengthy scan times. This study investigates the potential of non-contrast CMR techniques-feature tracking strain analysis and T1/T2 mapping-combined with machine learning (ML) models, as an alternative to LGE-CMR for myocardial viability assessment. A retrospective analysis was conducted on 79 patients with myocardial infarction (MI) 2-4 weeks post-event. Patients with prior ischemia or poor imaging quality were excluded to ensure robust data acquisition. Various ML algorithms were applied to data from LGE-CMR and non-contrast CMR techniques. Random forest (RF) demonstrated the highest predictive accuracy, with area under the curve (AUC) values of 0.89, 0.90, and 0.92 for left anterior descending (LAD), right coronary artery (RCA), and left circumflex (LCX) coronary artery territories, respectively. For the LAD territory, RF, k-nearest neighbors (KNN), and logistic regression were the top performers, while RCA showed the best results from RF, neural networks (NN), and KNN. In the LCX territory, RF, NN, and logistic regression were most effective. The integration of T1/T2 mapping and strain analysis significantly enhanced myocardial viability prediction, positioning these non-contrast techniques as promising alternatives to LGE-CMR. ML models, particularly RF, provided superior diagnostic accuracy across coronary territories. Future studies should validate these findings across diverse populations and clinical settings.Assessing myocardial viability is crucial for managing ischemic heart disease. While late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) is the gold standard for viability evaluation, it has limitations, including contraindications in patients with renal dysfunction and lengthy scan times. This study investigates the potential of non-contrast CMR techniques-feature tracking strain analysis and T1/T2 mapping-combined with machine learning (ML) models, as an alternative to LGE-CMR for myocardial viability assessment. A retrospective analysis was conducted on 79 patients with myocardial infarction (MI) 2-4 weeks post-event. Patients with prior ischemia or poor imaging quality were excluded to ensure robust data acquisition. Various ML algorithms were applied to data from LGE-CMR and non-contrast CMR techniques. Random forest (RF) demonstrated the highest predictive accuracy, with area under the curve (AUC) values of 0.89, 0.90, and 0.92 for left anterior descending (LAD), right coronary artery (RCA), and left circumflex (LCX) coronary artery territories, respectively. For the LAD territory, RF, k-nearest neighbors (KNN), and logistic regression were the top performers, while RCA showed the best results from RF, neural networks (NN), and KNN. In the LCX territory, RF, NN, and logistic regression were most effective. The integration of T1/T2 mapping and strain analysis significantly enhanced myocardial viability prediction, positioning these non-contrast techniques as promising alternatives to LGE-CMR. ML models, particularly RF, provided superior diagnostic accuracy across coronary territories. Future studies should validate these findings across diverse populations and clinical settings. |
| ArticleNumber | 753 |
| Author | Mohammadzadeh, Ali GhaffariJolfayi, Amir Pirouzi, Pirouz Heshmat-Ghahdarijani, Kiyan Azimi, Amir Salmanipour, Alireza MozafaryBazargany, MohammadHossein |
| Author_xml | – sequence: 1 givenname: Amir surname: GhaffariJolfayi fullname: GhaffariJolfayi, Amir organization: Cardiovascular Research Center, Rajaie Cardiovascular, Medical, and Research Center, University of Medical Sciences – sequence: 2 givenname: Alireza surname: Salmanipour fullname: Salmanipour, Alireza organization: Cardiovascular Research Center, Rajaie Cardiovascular, Medical, and Research Center, University of Medical Sciences – sequence: 3 givenname: Kiyan surname: Heshmat-Ghahdarijani fullname: Heshmat-Ghahdarijani, Kiyan organization: Cardiovascular Research Center, Rajaie Cardiovascular, Medical, and Research Center, University of Medical Sciences, Heart Failure Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences – sequence: 4 givenname: MohammadHossein surname: MozafaryBazargany fullname: MozafaryBazargany, MohammadHossein organization: Cardiovascular Research Center, Rajaie Cardiovascular, Medical, and Research Center, University of Medical Sciences – sequence: 5 givenname: Amir surname: Azimi fullname: Azimi, Amir organization: Cardiovascular Research Center, Rajaie Cardiovascular, Medical, and Research Center, University of Medical Sciences – sequence: 6 givenname: Pirouz surname: Pirouzi fullname: Pirouzi, Pirouz organization: Cardiovascular Research Center, Rajaie Cardiovascular, Medical, and Research Center, University of Medical Sciences – sequence: 7 givenname: Ali surname: Mohammadzadeh fullname: Mohammadzadeh, Ali email: mralimohammadzadeh@yahoo.com organization: Cardiovascular Research Center, Rajaie Cardiovascular, Medical, and Research Center, University of Medical Sciences |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39755814$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUstu1TAQjVARLaU_wAJZYsMm1M88VghVPCoVsbmsrYlj3_riawc7aZVv4KdxmktpWSC88Rn7zJnxHD8vjnzwuiheEvyWYNacJ05E25SY8rIRmLYlflKcUMxFSRmlRw_wcXGW0g7nJWjLSfusOGZtLURD-Enx8wuoa-s1chqit35bdpB0j6wfdRyiHmG0waNgUK5fquDHCGlERsM4RY1ypL7nLJQysh6BBzcnmzLo0YacbyjawzAsDBMigpR0Sku0n4OC2Ftw6MZCZ50d5xfFUwMu6bPDflp8-_hhc_G5vPr66fLi_VWpeEvHUlWGC0UxqypS1R2vdd3RnrcZGNIaU2GOddtjbqjiomJgWN313GDVi6YDzE6Ly1W3D7CTQ7R7iLMMYOXdQYhbCXG0ymnZAO1V32mjmOANaxvVGl6TuqkZ5QKzrMVWrckPMN-Cc_eCBMvFKbk6JbNT8s4puXTwbs0apm6ve6WXsbpHrTy-8fZabsONJKTGmOAqK7w5KMTwY9JplHublHYOvA5TkowIIppceaG-_ou6C1PMRq0sXouqEpn16mFL9738_iqZQFeCiiGlqM3_PfQwnpTJfqvjn9r_yPoFLpDjKw |
| Cites_doi | 10.1093/ehjci/jez041 10.1109/TII.2024.3359454 10.1007/s11886-021-01546-8 10.1186/s12968-015-0155-8 10.1016/j.jacc.2009.07.027 10.1161/CIR.0000000000001168 10.1016/j.amjcard.2007.04.029 10.1016/j.ejrad.2017.04.024 10.1023/B:CAIM.0000014045.62343.9b 10.1016/j.ins.2019.05.048 10.1109/TIM.2024.3384565 10.1093/ehjci/jeac129 10.4330/wjc.v10.i11.210 10.3389/fcvm.2022.894503 10.1016/j.compbiomed.2021.105145 10.1007/s40134-022-00407-8 10.3389/fcvm.2022.754609 10.1016/j.neucom.2020.07.008 10.1016/j.media.2019.101568 10.1161/CIRCIMAGING.115.004077 10.1161/CIRCULATIONAHA.108.811547 10.1186/s12968-016-0269-7 10.1093/ehjci/jev006 10.1148/radiol.2017170213 10.1007/s40620-020-00842-w 10.1161/CIRCULATIONAHA.122.060137 10.1055/s-0042-1748760 10.1155/2019/2860165 10.1097/RTI.0000000000000584 10.1016/j.jacc.2020.11.010 10.3390/diagnostics13122061 10.1007/s11897-021-00515-0 10.1161/HCI.0000000000000053 10.1016/j.jacc.2007.10.066 10.1109/ISBI53787.2023.10230541 10.1007/s10554-020-02018-w 10.1016/j.media.2017.07.005 10.1148/rg.346140030 10.1016/j.compbiomed.2024.108210 10.1007/s10554-018-1467-1 10.1186/1532-429X-14-43 10.1016/j.compbiomed.2022.105885 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 2024. The Author(s). Copyright Nature Publishing Group 2025 The Author(s) 2024 2024 |
| Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: Copyright Nature Publishing Group 2025 – notice: The Author(s) 2024 2024 |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1038/s41598-024-85029-0 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Central Health & Medical Collection (via ProQuest) ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection (UHCL Subscription) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) Medical Database Science Database Biological science database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Open Access Full Text |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 6 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 18 |
| ExternalDocumentID | oai_doaj_org_article_8a2dcdbefc3548398c9f471787324503 10.1038/s41598-024-85029-0 PMC11700106 39755814 10_1038_s41598_024_85029_0 |
| Genre | Journal Article |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC EJD IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c492t-c6f45c20366167b47e7b2d4947ef19ff6040e9d04f2c4563af37bd4f0cd58ba03 |
| IEDL.DBID | DOA |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:44:57 EDT 2025 Sun Oct 26 04:03:21 EDT 2025 Tue Sep 30 17:06:11 EDT 2025 Fri Sep 05 09:24:20 EDT 2025 Tue Oct 07 08:11:17 EDT 2025 Sat Mar 29 01:29:30 EDT 2025 Wed Oct 01 02:45:51 EDT 2025 Fri Feb 21 02:35:19 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | T1/T2 mapping Myocardial viability Cardiovascular magnetic resonance Feature tracking strain analysis |
| Language | English |
| License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c492t-c6f45c20366167b47e7b2d4947ef19ff6040e9d04f2c4563af37bd4f0cd58ba03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/8a2dcdbefc3548398c9f471787324503 |
| PMID | 39755814 |
| PQID | 3151475665 |
| PQPubID | 2041939 |
| PageCount | 18 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_8a2dcdbefc3548398c9f471787324503 unpaywall_primary_10_1038_s41598_024_85029_0 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11700106 proquest_miscellaneous_3151584156 proquest_journals_3151475665 pubmed_primary_39755814 crossref_primary_10_1038_s41598_024_85029_0 springer_journals_10_1038_s41598_024_85029_0 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-04 |
| PublicationDateYYYYMMDD | 2025-01-04 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-04 day: 04 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2025 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | S Kelle (85029_CR4) 2009; 54 MJ Garcia (85029_CR16) 2020; 13 SS Virani (85029_CR17) 2023; 148 A Schuster (85029_CR13) 2016; 9 A Larroza (85029_CR11) 2017; 92 J Kihlberg (85029_CR26) 2015; 17 R Cau (85029_CR8) 2021; 36 M Becker (85029_CR29) 2008; 51 X Fei (85029_CR38) 2020; 413 B Shi (85029_CR39) 2022; 148 P Rouzrokh (85029_CR32) 2023; 11 SD Roes (85029_CR3) 2007; 100 E Avard (85029_CR10) 2022; 141 T Lange (85029_CR28) 2021; 18 D Muser (85029_CR14) 2018; 10 SA Hamlin (85029_CR19) 2014; 34 G Litjens (85029_CR36) 2017; 42 SW Tantawy (85029_CR6) 2021; 37 X Jin (85029_CR41) 2019; 2019 RJ Taylor (85029_CR35) 2015; 16 W Wen (85029_CR44) 2024; 171 AG Dastidar (85029_CR7) 2019; 35 85029_CR33 C Xu (85029_CR24) 2020; 59 M Abdulkareem (85029_CR25) 2022; 9 A Azzu (85029_CR31) 2023; 24 Z Chen (85029_CR23) 2022; 9 B Baessler (85029_CR9) 2018; 286 Q Zhang (85029_CR2) 2022; 146 MS Amzulescu (85029_CR12) 2019; 20 M-R Chen (85029_CR40) 2019; 498 J Taylor Andrew (85029_CR18) 2016; 9 LJ Laffin (85029_CR22) 2021; 23 G Li (85029_CR30) 2004; 20 PD Chudgar (85029_CR34) 2022; 32 G Morton (85029_CR27) 2012; 14 A Giovanni (85029_CR1) 2020; 76 G Deferrari (85029_CR21) 2021; 34 85029_CR20 85029_CR42 85029_CR43 G Pedrizzetti (85029_CR15) 2016; 18 R Cau (85029_CR5) 2023; 13 DJ Pennell (85029_CR37) 2010; 121 |
| References_xml | – volume: 20 start-page: 605 issue: 6 year: 2019 ident: 85029_CR12 publication-title: Eur. Heart J. Cardiovasc. Imaging doi: 10.1093/ehjci/jez041 – ident: 85029_CR42 doi: 10.1109/TII.2024.3359454 – volume: 23 start-page: 117 issue: 9 year: 2021 ident: 85029_CR22 publication-title: Curr. Cardiol. Rep. doi: 10.1007/s11886-021-01546-8 – volume: 17 start-page: 50 issue: 1 year: 2015 ident: 85029_CR26 publication-title: J. Cardiovasc. Magn. Reson. doi: 10.1186/s12968-015-0155-8 – volume: 54 start-page: 1770 issue: 19 year: 2009 ident: 85029_CR4 publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2009.07.027 – volume: 148 start-page: e9 issue: 9 year: 2023 ident: 85029_CR17 publication-title: Circulation doi: 10.1161/CIR.0000000000001168 – volume: 100 start-page: 930 issue: 6 year: 2007 ident: 85029_CR3 publication-title: Am. J. Cardiol. doi: 10.1016/j.amjcard.2007.04.029 – volume: 92 start-page: 78 year: 2017 ident: 85029_CR11 publication-title: Eur. J. Radiol. doi: 10.1016/j.ejrad.2017.04.024 – volume: 20 start-page: 135 issue: 2 year: 2004 ident: 85029_CR30 publication-title: Int. J. Cardiovasc. Imaging doi: 10.1023/B:CAIM.0000014045.62343.9b – volume: 498 start-page: 62 year: 2019 ident: 85029_CR40 publication-title: Inf. Sci. doi: 10.1016/j.ins.2019.05.048 – ident: 85029_CR43 doi: 10.1109/TIM.2024.3384565 – volume: 24 start-page: 503 issue: 4 year: 2023 ident: 85029_CR31 publication-title: Eur. Heart J. Cardiovasc. Imaging doi: 10.1093/ehjci/jeac129 – volume: 10 start-page: 210 issue: 11 year: 2018 ident: 85029_CR14 publication-title: World J. Cardiol. doi: 10.4330/wjc.v10.i11.210 – volume: 9 start-page: 894503 year: 2022 ident: 85029_CR25 publication-title: Front. Cardiovasc. Med. doi: 10.3389/fcvm.2022.894503 – volume: 141 start-page: 105145 year: 2022 ident: 85029_CR10 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.105145 – volume: 11 start-page: 34 issue: 2 year: 2023 ident: 85029_CR32 publication-title: Curr. Radiol. Rep. doi: 10.1007/s40134-022-00407-8 – volume: 9 start-page: 754609 year: 2022 ident: 85029_CR23 publication-title: Front. Cardiovasc. Med. doi: 10.3389/fcvm.2022.754609 – volume: 413 start-page: 271 year: 2020 ident: 85029_CR38 publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.07.008 – volume: 59 start-page: 101568 year: 2020 ident: 85029_CR24 publication-title: Med. Image. Anal. doi: 10.1016/j.media.2019.101568 – volume: 9 start-page: e004077 issue: 4 year: 2016 ident: 85029_CR13 publication-title: Circ. Cardiovasc. Imaging doi: 10.1161/CIRCIMAGING.115.004077 – ident: 85029_CR20 doi: 10.1161/CIRCIMAGING.115.004077 – volume: 121 start-page: 692 issue: 5 year: 2010 ident: 85029_CR37 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.108.811547 – volume: 18 start-page: 51 issue: 1 year: 2016 ident: 85029_CR15 publication-title: J. Cardiovasc. Magn. Reson. doi: 10.1186/s12968-016-0269-7 – volume: 16 start-page: 871 issue: 8 year: 2015 ident: 85029_CR35 publication-title: Eur. Heart J. Cardiovasc. Imaging doi: 10.1093/ehjci/jev006 – volume: 286 start-page: 103 issue: 1 year: 2018 ident: 85029_CR9 publication-title: Radiology doi: 10.1148/radiol.2017170213 – volume: 34 start-page: 137 issue: 1 year: 2021 ident: 85029_CR21 publication-title: J. Nephrol. doi: 10.1007/s40620-020-00842-w – volume: 146 start-page: 1492 issue: 20 year: 2022 ident: 85029_CR2 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.122.060137 – volume: 32 start-page: 479 issue: 4 year: 2022 ident: 85029_CR34 publication-title: Indian J. Radiol. Imaging doi: 10.1055/s-0042-1748760 – volume: 2019 start-page: 1 year: 2019 ident: 85029_CR41 publication-title: EURASIP J. Wirel. Commun. Netw. doi: 10.1155/2019/2860165 – volume: 36 start-page: 142 issue: 3 year: 2021 ident: 85029_CR8 publication-title: J. Thorac. Imaging. doi: 10.1097/RTI.0000000000000584 – volume: 76 start-page: 2982 issue: 25 year: 2020 ident: 85029_CR1 publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2020.11.010 – volume: 13 start-page: 2061 issue: 12 year: 2023 ident: 85029_CR5 publication-title: Diagnostics doi: 10.3390/diagnostics13122061 – volume: 18 start-page: 225 issue: 4 year: 2021 ident: 85029_CR28 publication-title: Curr. Heart Fail. Rep. doi: 10.1007/s11897-021-00515-0 – volume: 13 start-page: e000053 issue: 7 year: 2020 ident: 85029_CR16 publication-title: Circ. Cardiovasc. Imaging doi: 10.1161/HCI.0000000000000053 – volume: 51 start-page: 1473 issue: 15 year: 2008 ident: 85029_CR29 publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2007.10.066 – ident: 85029_CR33 doi: 10.1109/ISBI53787.2023.10230541 – volume: 37 start-page: 587 issue: 2 year: 2021 ident: 85029_CR6 publication-title: Int. J. Cardiovasc. Imaging doi: 10.1007/s10554-020-02018-w – volume: 42 start-page: 60 year: 2017 ident: 85029_CR36 publication-title: Med. Image Anal. doi: 10.1016/j.media.2017.07.005 – volume: 9 start-page: 67 issue: 1 year: 2016 ident: 85029_CR18 publication-title: JACC: Cardiovasc. Imaging – volume: 34 start-page: 1594 issue: 6 year: 2014 ident: 85029_CR19 publication-title: RadioGraphics doi: 10.1148/rg.346140030 – volume: 171 start-page: 108210 year: 2024 ident: 85029_CR44 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2024.108210 – volume: 35 start-page: 517 year: 2019 ident: 85029_CR7 publication-title: Int. J. Cardiovasc. Imaging doi: 10.1007/s10554-018-1467-1 – volume: 14 start-page: 34 issue: 1 year: 2012 ident: 85029_CR27 publication-title: J. Cardiovasc. Magn. Reson. doi: 10.1186/1532-429X-14-43 – volume: 148 start-page: 105885 year: 2022 ident: 85029_CR39 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.105885 |
| SSID | ssj0000529419 |
| Score | 2.4578958 |
| Snippet | Assessing myocardial viability is crucial for managing ischemic heart disease. While late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR)... Abstract Assessing myocardial viability is crucial for managing ischemic heart disease. While late gadolinium enhancement (LGE) cardiovascular magnetic... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 753 |
| SubjectTerms | 692/4019/2776 692/4019/592 Aged Algorithms Cardiovascular diseases Cardiovascular magnetic resonance Contrast Media Coronary artery Coronary vessels Data acquisition Feature tracking strain analysis Female Gadolinium Heart diseases Humanities and Social Sciences Humans Image Interpretation, Computer-Assisted - methods Ischemia Learning algorithms Machine Learning Magnetic Resonance Imaging - methods Male Mapping Middle Aged multidisciplinary Myocardial infarction Myocardial Infarction - diagnostic imaging Myocardial viability Myocardium - pathology Neural networks Population studies Regression analysis Renal function Retrospective Studies Science Science (multidisciplinary) T1/T2 mapping Viability |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZaxRBEG7iBlEfxNvRKC34Zpqd6WOOBxEjCUHIIrKBvA09fawLm5k1u6vsb_BPW9VzxEUJvs3F0DNV3fV1V_X3EfIWEILR3McsE8oxWTnJdMItAzAuMoiPzmrcKHw2SU_P5ecLdbFHJv1eGCyr7MfEMFDbxuAa-VhAaJIZvFp9WH5nqBqF2dVeQkN30gr2faAYu0X2OTJjjcj-0fHky9dh1QXzWjIput0zscjHK4hguMuMS5YrrAWJdyJUIPL_F_r8u4hyyKTeI3c29VJvf-rF4o9gdfKA3O9QJv3YusVDsufqR-R2qzu5fUx-nYUSSkc7zYgZw2Bm6XynApE2ntZNzUI1u16tqXeBBZTCmcEVdroKAhNUd8QmcGDpNBlPOb3UyPswowCJqQ55ZTy73ELkRI9c0B_zliB8-4ScnxxPP52yTpWBGVnwNTOpl8pg_jJN0qySmcsqbmUBBz4pvE9hWHCFjaXnBtCZ0F5klZU-NlbllY7FUzKCxrvnhHLvrbO51wAakUetqIpUF5VStoq5dUlE3vWWKJct-UYZkuYiL1u7lWC3MtitjCNyhMYankTi7HChuZqVXT8sc82tsZXzRsBcTRS5KTzEZxi2AFmqWETkoDd12fXmVXntexF5M9yGfojJFV27ZtM-A2AOpsMRedZ6xtASwHxK5YmMSL7jMztN3b1Tz78Frm8UBsJpe0QOe_e6btdN_-JwcMH_-HUvbv7ql-QuR9ljXHmSB2S0vtq4V4DF1tXrroP9BuyPM1Y priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEG6WFVEP4tvoKi14c-Mm_UjSBxEVl0UYTzOwt6afswOzmXUean6Df9rqzkODg3jwlic0XdWpr1LV34fQS0AIRhGfpSXlLmXasVTlxKYAxmkJ8dFZFTYKTz4XZzP26ZyfH6Be7qibwM3e1C7oSc3Wy9ffvzRvYcG_abeMVycbCEJhoxhhacVDOwek8NcgUokg5TDp4H7L9U0Ey0W3d2b_q6P4FGn892HPP1sohzrqLXRjV1-p5ptaLn8LVad30O0OY-J3rVPcRQeuvoeut6qTzX30YxIbKB3uFCPmaQhlFi9G_Yd45XG9qtPYy642W-xd5ADFcGbC_3W8ifISWHW0JnBg8TQ_mRJ8qQLrwxwDIMYqVpXD2WUDcTP44xJ_XbT04M0DNDv9OP1wlnaaDKlhgmxTU3jGTaheFnlRala6UhPLBBz4XHhfwEfBCZsxTwxgM6o8LbVlPjOWV1pl9CE6hMG7xwgT762zlVcAGQOLmtCiUEJzbnVGrMsT9Kq3hLxqqTdkLJnTSrZ2k2A3Ge0mswS9D8Yangy02fHCaj2X3SqUlSLWWO28oZCpUVEZ4SE6w0cLcCXPaIKOelPL3hUlBVDESnBqnqAXw21YhaG0omq32rXPAJSDZDhBj1rPGEYCiI_zKmcJqkY-Mxrq-E69uIhM30EWKCTtCTru3evXuP42F8eDC_7D1D35H1P3FN0kQRo5_J1iR-hwu965Z4DXtvp5XIQ_AX71PL0 priority: 102 providerName: Scholars Portal – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VWyHggHiWQEFG4sZGTfxI7OOCqKqVyoWt1Jtlx3ZZabut2F2q_Q3904ydbCAqQnDLW5ZnJvONZ_wNwHtECI2hochrJnzOree5KanLEYyzGv2jdyZuFD79Up2c8em5ON-D8W4vzCB_n6i7V-hi4jYwynMpYrEGBuj7EhVTjmB_Mpl-nfZrKjFrxUvV7Y3B14_uvjzwP4mm_0_Y8m6JZJ8nfQj3N8trs70xi8Vvruj4MTzqMCSZtEJ_Ant--RTutV0lt8_g9jQVSHrSdYS4yKOrcmQ-qC8kV4Fg6J-nWnWzWpPgE8cnwbMmrp-TVWofQUxHW4IHjszKoxkllyayOlwQBLzEpKxxPLvcol-M-rYgP-Yt_ff2OZwdf559Osm7ngt5wxVd500VuGhidrIqq9ry2teWOq7wIJQqhAqN3itX8EAbxF7MBFZbx0PROCGtKdgLGOHg_UsgNATnnQwGIWFkSVNWVUZZIZwtqPNlBh92ktDXLbWGTilxJnUrN41y00luusjgYxRW_2SkxU4XUFt0Z2VaGuoaZ31oGEZiTMlGBfS--FNC3CgKlsHhTtS6s9WVZgh6eI1KKzJ4199GK4upE7P0V5v2GYRqGOxmcNBqRj8SRHRCyJJnIAc6Mxjq8M5y_i0xece2PzEoz2C8U69f4_rbXIx7FfyHqXv1f19_DQ9obHIc15n4IYzW3zf-DSKvtX3bGdxPfc4niw priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB6VVAg48H4YClokbtSpvQ8_jgVRVUitOCSinKx9hojUiZoEFP4Cf5rZtR0wVIjedu21NB7P7nzrmf0G4BUiBC2pS-KcCRtzZXksU2piBOMsR_9ojfQHhU9Os-Mxf38mznYg687ChKT9QGkZlukuO-xgiY7GHwajPC6ET9lIhgvjrsFuJhCDD2B3fPrh8JOvJIcYJUaYQNsTMgkrLnm454UCWf9lCPPvRMlttPQW3FjXC7n5Jmez3xzS0R342L1Kk4fyZbheqaH-_gfL49Xf9S7cbjEqOWxG3oMdW9-H603Vys0D-HESEjAtaStOTGLvCg2Z9vIXydyRel7HIRdeLlfE2SAEwZ72_-fJMpSnILKlRcGGIaP0YETJufSsEROCgJrIEJX2vfMN-l1vzzPyddrQi28ewvjo3ejtcdzWdIg1L-kq1pnjQvvoZ5ZmueK5zRU1vMSGS0vnMlxUbGkS7qhGbMekY7ky3CXaiELJhD2CAQpvnwChzhlrCicRcnoWtlKVmSyVEEYl1Ng0gtfdN64WDXVHFULurKgaFVeo4iqouEoieOPNYDvS026HC_OLSdV-mqqQ1GijrNMMd3qsLHTp0Lvjooe4VCQsgr3OiKp2LVhWDEEVz3FSiAhebm_jLPahGVnb-boZg1AQN9MRPG5sbisJIkYhipRHUPSssSdq_049_RyYwn1ZIb_pj2C_M9xfcv1LF_tb4_4P1T292vBncJP6Isr-Pxbfg8HqYm2fI7JbqRftNP4J52hKGw priority: 102 providerName: Unpaywall |
| Title | Machine learning-based interpretation of non-contrast feature tracking strain analysis and T1/T2 mapping for assessing myocardial viability |
| URI | https://link.springer.com/article/10.1038/s41598-024-85029-0 https://www.ncbi.nlm.nih.gov/pubmed/39755814 https://www.proquest.com/docview/3151475665 https://www.proquest.com/docview/3151584156 https://pubmed.ncbi.nlm.nih.gov/PMC11700106 https://www.nature.com/articles/s41598-024-85029-0.pdf https://doaj.org/article/8a2dcdbefc3548398c9f471787324503 |
| UnpaywallVersion | publishedVersion |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: HH5 dateStart: 20110101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: ABDBF dateStart: 20121221 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals - Free Access to All customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DIK dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: RPM dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAQT databaseName: Springer Nature - nature.com Journals - Fully Open Access customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: NAO dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.nature.com/siteindex/index.html providerName: Nature Publishing – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central Health & Medical Collection (via ProQuest) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2045-2322 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M48 dateStart: 20110801 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: AAJSJ dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: C6C dateStart: 20111201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwEB3BIgQcEN8ElspI3NioiWMn9rFb7WpVqdUKWqmcIie2l0rddEVbUH8Df5qxnZZWIODAJU3iHFzPc-Y5M34D8A4ZQq2oTeIi4yZmlWGxSqmOkYxnBfpHo5XbKDwc5RcTNpjy6V6pL5cTFuSBw8B1haK61pWxdYbkOpOilhZfqIgzpAI86HwmQu4tpoKqN5Usle0umSQT3SV6KrebjLJYcJfzkRx4Ii_Y_zuW-Wuy5C5i-gDurZsbtfmm5vM9p3T-CB62bJL0wr94DLdM8wTuhvqSm6fwfehTJQ1pa0Ncxc5paTI7yDQkC0uaRRP7rHW1XBFrvNonwavafUknS19IgqhWwARPNBmn3TEl18rpO1wRpL5E-fixu7reoId0yJuTr7MgBL55BpPzs3H_Im6rL8Q1k3QV17llvHZxyjzNi4oVpqioZhJPbCqtzXH6G6kTZmmNLCxTNisqzWxSay4qlWTP4Qg7b14CodZqo4VVSA6dXpqsZK5kxbmuEqpNGsH7rSXKmyCyUfrgeCbKYLcS7VZ6u5VJBKfOWLsnnUC2v4GwKVvYlH-DTQTHW1OX7axdlhnSH1YgfHkEb3fNON9cEEU1ZrEOzyBpw2VvBC8CMnY9QW7HuUhZBOIAMwddPWxpZp-9prcrAOSW5xGcbOH1s19_GouTHQT_Yehe_Y-hew33qSuC7L5DsWM4Wn1ZmzfIzFZVB24X06IDd3q9wccB_p6ejS4_4N1-3u_4CYrHIRPYMhld9j79AJszPEE |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4am9DgAY17YICR4IlFTWzn9jAhNjZ1bK0Q6qS9GSe2S6UuLWvL1N_Af-K3cexcRgWaeNlbboqcnGOfz-f2AbxBhFBIagI_YZH2ea65L0OqfATjLEH7qJW0hcK9ftw95Z_OorM1-NXUwti0ymZNdAu1mhTWR95haJp4gq-O3k-_-5Y1ykZXGwoNWVMrqF3XYqwu7DjWy0vcws12jz6ivN9Sengw2O_6NcuAX_CMzv0iNjwqbDwuDuMk54lOcqp4hgcmzIyJUc11pgJuaIFog0nDklxxExQqSnMZMHzvLdjgjGe4-dvYO-h__tJ6eWwcjYdZXa0TsLQzQ4tpq9oo99PI5p4EKxbREQf8C-3-nbTZRm7vwuainMrlpRyP_zCOh1twr0a15EOlhvdhTZcP4HbFc7l8CD97LmVTk5qjYuhb46nIaCXjkUwMKSel77Ln5WxOjHZdRwmeFdajT2aO0ILIupEKHigyCDsDSs6l7TMxJAjBiXRxbHt2vkRLbWfAmPwYVQ3Jl4_g9Ebk8xjWcfD6KRBqjNIqNRJBqu3bluVZLLM8ilQeUKVDD941khDTqtmHcEF6lopKbgLlJpzcRODBnhVW-6Rt1O0uTC6Gop73IpVUFSrXpmC4N2RZWmQG8QAuk4hko4B5sN2IWtSrx0xc6boHr9vbOO9tMEeWerKonkHwiNtvD55UmtGOBDFmFKUh9yBd0ZmVoa7eKUffXG9xS0Rk3QQe7DTqdTWu6_7FTquC__Hrnl3_1a9gszvonYiTo_7xc7hDLeWy9XrxbVifXyz0C8SB8_xlPdkIfL3p-f0bqyNwIg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIl4HxBtDgUWCE7Vi765fB4SAErWUVhxSKTd37d0NkVInNAlVfgP_iF_HzPpRIlDFpTe_ZK093-x8OzM7A_AKGUKpuA38RETGl4WRvgq59pGMiwTto9GKNgofHMa7R_LzMBpuwK92LwylVbZzopuo9bQkH3lPoGmSCb466tkmLeLrTv_d7LtPHaQo0tq206ghsm9WZ7h8m7_d20FZv-a8_2nwcddvOgz4pcz4wi9jK6OSYnFxGCeFTExScC0zPLBhZm2MEDeZDqTlJTINoaxICi1tUOooLVQg8L1X4GoiREbphMkw6fw7FEGTYdbs0wlE2pujraT9bFz6aURZJ8GaLXQtA_7Fc_9O1-xitrfgxrKaqdWZmkz-MIv9O3C74bPsfQ3Au7Bhqntwre5wuboPPw9csqZhTXeKkU9mU7PxWq4jm1pWTSvf5c2r-YJZ4-qNMjwryZfP5q6VBVNNCRU80GwQ9gacnSiqMDFiSL6ZchFsOjtZoY0m7E_Yj3Fdinz1AI4uRToPYRMHbx4D49Zqo1OrkJ5SxbasyGKVFVGki4BrE3rwppVEPqvLfOQuPC_SvJZbjnLLndzywIMPJKzuSSrR7S5MT0d5o_F5qrgudWFsKXBVKLK0zCwyAZwgkcNGgfBgqxV13swb8_wc5R687G6jxlMYR1VmuqyfQdqIC28PHtXI6EaC7DKK0lB6kK5hZm2o63eq8TdXVZxaEJGDwIPtFl7n47roX2x3EPyPX_fk4q9-AddRq_Mve4f7T-Emp17L5O6SW7C5OF2aZ0gAF8Vzp2kMji9btX8DlwltvA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB6VVAg48H4YClokbtSpvQ8_jgVRVUitOCSinKx9hojUiZoEFP4Cf5rZtR0wVIjedu21NB7P7nzrmf0G4BUiBC2pS-KcCRtzZXksU2piBOMsR_9ojfQHhU9Os-Mxf38mznYg687ChKT9QGkZlukuO-xgiY7GHwajPC6ET9lIhgvjrsFuJhCDD2B3fPrh8JOvJIcYJUaYQNsTMgkrLnm454UCWf9lCPPvRMlttPQW3FjXC7n5Jmez3xzS0R342L1Kk4fyZbheqaH-_gfL49Xf9S7cbjEqOWxG3oMdW9-H603Vys0D-HESEjAtaStOTGLvCg2Z9vIXydyRel7HIRdeLlfE2SAEwZ72_-fJMpSnILKlRcGGIaP0YETJufSsEROCgJrIEJX2vfMN-l1vzzPyddrQi28ewvjo3ejtcdzWdIg1L-kq1pnjQvvoZ5ZmueK5zRU1vMSGS0vnMlxUbGkS7qhGbMekY7ky3CXaiELJhD2CAQpvnwChzhlrCicRcnoWtlKVmSyVEEYl1Ng0gtfdN64WDXVHFULurKgaFVeo4iqouEoieOPNYDvS026HC_OLSdV-mqqQ1GijrNMMd3qsLHTp0Lvjooe4VCQsgr3OiKp2LVhWDEEVz3FSiAhebm_jLPahGVnb-boZg1AQN9MRPG5sbisJIkYhipRHUPSssSdq_049_RyYwn1ZIb_pj2C_M9xfcv1LF_tb4_4P1T292vBncJP6Isr-Pxbfg8HqYm2fI7JbqRftNP4J52hKGw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning-based+interpretation+of+non-contrast+feature+tracking+strain+analysis+and+T1%2FT2+mapping+for+assessing+myocardial+viability&rft.jtitle=Scientific+reports&rft.au=Amir+GhaffariJolfayi&rft.au=Alireza+Salmanipour&rft.au=Kiyan+Heshmat-Ghahdarijani&rft.au=MohammadHossein+MozafaryBazargany&rft.date=2025-01-04&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft.spage=1&rft.epage=18&rft_id=info:doi/10.1038%2Fs41598-024-85029-0&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8a2dcdbefc3548398c9f471787324503 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |