A density-based MS disease diagnosis model using the capuchin search algorithm and an ensemble of deep neural networks
Multiple sclerosis (MS) is a severe brain disease that permanently destroys brain cells, impacting vision, balance, muscle control, and daily activity. This research employs a weighted combination of deep neural networks and optimization techniques for MS disease diagnosis. This method uses slices o...
        Saved in:
      
    
          | Published in | Scientific reports Vol. 14; no. 1; pp. 31721 - 17 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        London
          Nature Publishing Group UK
    
        30.12.2024
     Nature Publishing Group Nature Portfolio  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2045-2322 2045-2322  | 
| DOI | 10.1038/s41598-024-82395-7 | 
Cover
| Abstract | Multiple sclerosis (MS) is a severe brain disease that permanently destroys brain cells, impacting vision, balance, muscle control, and daily activity. This research employs a weighted combination of deep neural networks and optimization techniques for MS disease diagnosis. This method uses slices of magnetic resonance imaging (MRI) images as input. Then, after the pre-processing operation, the process of segmentation and identification of the region of interest (ROI) is performed using a combination of the fuzzy c-means (FCM) algorithm and the capuchin search algorithm (CapSA) algorithm. When the target view is detected, the features of each ROI are extracted through three techniques: local binary pattern (LBP), multi-linear principal component analysis (MPCA), and gray level co-occurrence matrix (GLCM). Each of these features is then processed by a deep neural network. In each deep neural network, the CapSA algorithm is used to determine the optimal topology structure and adjust the weight vector of the neural network. This means that in this process, the vector and topology of the deep neural network are adjusted using the CapSA algorithm in such a way that the training error is minimized. Finally, after creating the trained models, the weighted combination of the outputs of these three models is used for the final diagnosis. The implementation results showed that our method was successful in achieving 100% precision compared to other comparative methods. Also, in the average accuracy criterion, it showed a performance of 99.51%, which shows the high performance of our method in diagnosing patients. | 
    
|---|---|
| AbstractList | Abstract Multiple sclerosis (MS) is a severe brain disease that permanently destroys brain cells, impacting vision, balance, muscle control, and daily activity. This research employs a weighted combination of deep neural networks and optimization techniques for MS disease diagnosis. This method uses slices of magnetic resonance imaging (MRI) images as input. Then, after the pre-processing operation, the process of segmentation and identification of the region of interest (ROI) is performed using a combination of the fuzzy c-means (FCM) algorithm and the capuchin search algorithm (CapSA) algorithm. When the target view is detected, the features of each ROI are extracted through three techniques: local binary pattern (LBP), multi-linear principal component analysis (MPCA), and gray level co-occurrence matrix (GLCM). Each of these features is then processed by a deep neural network. In each deep neural network, the CapSA algorithm is used to determine the optimal topology structure and adjust the weight vector of the neural network. This means that in this process, the vector and topology of the deep neural network are adjusted using the CapSA algorithm in such a way that the training error is minimized. Finally, after creating the trained models, the weighted combination of the outputs of these three models is used for the final diagnosis. The implementation results showed that our method was successful in achieving 100% precision compared to other comparative methods. Also, in the average accuracy criterion, it showed a performance of 99.51%, which shows the high performance of our method in diagnosing patients. Multiple sclerosis (MS) is a severe brain disease that permanently destroys brain cells, impacting vision, balance, muscle control, and daily activity. This research employs a weighted combination of deep neural networks and optimization techniques for MS disease diagnosis. This method uses slices of magnetic resonance imaging (MRI) images as input. Then, after the pre-processing operation, the process of segmentation and identification of the region of interest (ROI) is performed using a combination of the fuzzy c-means (FCM) algorithm and the capuchin search algorithm (CapSA) algorithm. When the target view is detected, the features of each ROI are extracted through three techniques: local binary pattern (LBP), multi-linear principal component analysis (MPCA), and gray level co-occurrence matrix (GLCM). Each of these features is then processed by a deep neural network. In each deep neural network, the CapSA algorithm is used to determine the optimal topology structure and adjust the weight vector of the neural network. This means that in this process, the vector and topology of the deep neural network are adjusted using the CapSA algorithm in such a way that the training error is minimized. Finally, after creating the trained models, the weighted combination of the outputs of these three models is used for the final diagnosis. The implementation results showed that our method was successful in achieving 100% precision compared to other comparative methods. Also, in the average accuracy criterion, it showed a performance of 99.51%, which shows the high performance of our method in diagnosing patients. Multiple sclerosis (MS) is a severe brain disease that permanently destroys brain cells, impacting vision, balance, muscle control, and daily activity. This research employs a weighted combination of deep neural networks and optimization techniques for MS disease diagnosis. This method uses slices of magnetic resonance imaging (MRI) images as input. Then, after the pre-processing operation, the process of segmentation and identification of the region of interest (ROI) is performed using a combination of the fuzzy c-means (FCM) algorithm and the capuchin search algorithm (CapSA) algorithm. When the target view is detected, the features of each ROI are extracted through three techniques: local binary pattern (LBP), multi-linear principal component analysis (MPCA), and gray level co-occurrence matrix (GLCM). Each of these features is then processed by a deep neural network. In each deep neural network, the CapSA algorithm is used to determine the optimal topology structure and adjust the weight vector of the neural network. This means that in this process, the vector and topology of the deep neural network are adjusted using the CapSA algorithm in such a way that the training error is minimized. Finally, after creating the trained models, the weighted combination of the outputs of these three models is used for the final diagnosis. The implementation results showed that our method was successful in achieving 100% precision compared to other comparative methods. Also, in the average accuracy criterion, it showed a performance of 99.51%, which shows the high performance of our method in diagnosing patients.Multiple sclerosis (MS) is a severe brain disease that permanently destroys brain cells, impacting vision, balance, muscle control, and daily activity. This research employs a weighted combination of deep neural networks and optimization techniques for MS disease diagnosis. This method uses slices of magnetic resonance imaging (MRI) images as input. Then, after the pre-processing operation, the process of segmentation and identification of the region of interest (ROI) is performed using a combination of the fuzzy c-means (FCM) algorithm and the capuchin search algorithm (CapSA) algorithm. When the target view is detected, the features of each ROI are extracted through three techniques: local binary pattern (LBP), multi-linear principal component analysis (MPCA), and gray level co-occurrence matrix (GLCM). Each of these features is then processed by a deep neural network. In each deep neural network, the CapSA algorithm is used to determine the optimal topology structure and adjust the weight vector of the neural network. This means that in this process, the vector and topology of the deep neural network are adjusted using the CapSA algorithm in such a way that the training error is minimized. Finally, after creating the trained models, the weighted combination of the outputs of these three models is used for the final diagnosis. The implementation results showed that our method was successful in achieving 100% precision compared to other comparative methods. Also, in the average accuracy criterion, it showed a performance of 99.51%, which shows the high performance of our method in diagnosing patients.  | 
    
| ArticleNumber | 31721 | 
    
| Author | Song, ZhuYin Bai, LiJuan Jiang, Xin Wu, Jiao Chen, Li  | 
    
| Author_xml | – sequence: 1 givenname: LiJuan surname: Bai fullname: Bai, LiJuan organization: Department of Neurology, The People’s Hospital of Liaoning Province – sequence: 2 givenname: Jiao surname: Wu fullname: Wu, Jiao organization: Department of Neurology, The People’s Hospital of Liaoning Province – sequence: 3 givenname: Li surname: Chen fullname: Chen, Li organization: Department of Neurology, The Third Affiliated Hospital of Shenzhen University – sequence: 4 givenname: Xin surname: Jiang fullname: Jiang, Xin organization: Department of Neurology, The People’s Hospital of Liaoning Province – sequence: 5 givenname: ZhuYin surname: Song fullname: Song, ZhuYin email: songzhuyin_0916@163.com organization: Department of Neurology, The People’s Hospital of Liaoning Province  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39738590$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNUk1v1DAQjVARLaV_gAOyxIVLwJ-b-ISqqi2VijgAZ2viTLJeEnuxk1b77_F-UFoOCEvWjO03z-P3_LI48sFjUbxm9D2jov6QJFO6LimXZc2FVmX1rDjhVKqSC86PHuXHxVlKK5qH4loy_aI4FroStdL0pLg7Jy365KZN2UDClnz-SlqXMOc5Qu9DcomMocWBzMn5nkxLJBbWs106TzIw2iWBoQ_RTcuRgG_zJJkSx2ZAErrMj2vicY4w5DDdh_gjvSqedzAkPDvE0-L71eW3i0_l7Zfrm4vz29JKzaeysUxY0QCgrdECpZZ2rAGpOrugVlUK8wJ0a3U-R02ZVA1FLRiHmksB4rS42fO2AVZmHd0IcWMCOLPbCLE3ECdnBzTcZrFQSYZdJWkjoWuxaxTtNIiFsm3mEnuu2a9hcw_D8EDIqNmaYvammGyK2Zliqlz1cV-1npsRW4t-ykI8aeXpiXdL04c7w9iiXnCxZXh3YIjh54xpMqNLFocBPIY5GcFUdpbqegt9-xd0Febos8I7FNNKMZ1Rbx639NDL71-RAXwPsDGkFLH7v4ce5EkZ7HuMf-7-R9Uv6QzcgA | 
    
| Cites_doi | 10.3390/s22207856 10.1109/TNN.2007.901277 10.1109/CogInfoCom47531.2019.9089962 10.1007/s11682-018-9926-9 10.1007/s10916-019-1368-4 10.1016/j.nicl.2018.11.003 10.4249/scholarpedia.9775 10.1016/j.ins.2011.10.011 10.1016/j.rse.2020.111666 10.1109/TCDS.2021.3081605 10.1007/978-3-319-62395-5_11 10.1016/j.clinimag.2020.11.006 10.1109/ACCESS.2016.2620996 10.4108/eetel.4389 10.1212/WNL.0000000000000560 10.31436/ijpcc.v10i1.460 10.4018/978-1-6684-7544-7.ch033 10.1016/j.msard.2019.101452 10.3390/ijerph20054261 10.1016/j.nicl.2022.103065 10.17632/8bctsm8jz7.1 10.1016/j.msard.2021.102989 10.1007/s42452-020-2699-y 10.1109/EBBT.2017.7956784 10.1016/j.compbiomed.2021.104697 10.1109/MIUCC52538.2021.9447657 10.1016/j.bspc.2024.106325 10.1016/j.lpm.2015.01.001 10.1007/s10072-020-04950-0 10.1049/iet-ipr.2019.0366 10.1002/ima.22492 10.1007/s00521-020-05145-6  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) 2024 corrected publication 2025 2024. The Author(s). Copyright Nature Publishing Group 2024 The Author(s) 2024 2024  | 
    
| Copyright_xml | – notice: The Author(s) 2024 corrected publication 2025 – notice: 2024. The Author(s). – notice: Copyright Nature Publishing Group 2024 – notice: The Author(s) 2024 2024  | 
    
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.1038/s41598-024-82395-7 | 
    
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest SciTech Premium Collection Natural Science Collection Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE  | 
    
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 6 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Biology | 
    
| EISSN | 2045-2322 | 
    
| EndPage | 17 | 
    
| ExternalDocumentID | oai_doaj_org_article_2c232e541ef740b4afdefb50f9a365cd 10.1038/s41598-024-82395-7 PMC11686237 39738590 10_1038_s41598_024_82395_7  | 
    
| Genre | Journal Article | 
    
| GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M48 M7P M~E NAO OK1 PHGZT PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AAYXX CITATION PHGZM PJZUB PPXIY PQGLB PUEGO CGR CUY CVF ECM EIF NPM 3V. 7XB 88A 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC EJD IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c492t-bc13c3baaec8eca00c0f1ba45fc60c575eba4a9dc9c8ee90145b0e9312a8243a3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 2045-2322 | 
    
| IngestDate | Tue Oct 14 19:02:19 EDT 2025 Sun Oct 26 02:59:35 EDT 2025 Tue Sep 30 17:06:29 EDT 2025 Fri Sep 05 14:31:21 EDT 2025 Tue Oct 07 09:10:14 EDT 2025 Tue May 06 01:31:51 EDT 2025 Wed Oct 01 06:32:59 EDT 2025 Sat May 03 01:19:06 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | Capuchin search algorithm Multiple sclerosis Magnetic resonance imaging Deep ensemble learning  | 
    
| Language | English | 
    
| License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. cc-by-nc-nd  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c492t-bc13c3baaec8eca00c0f1ba45fc60c575eba4a9dc9c8ee90145b0e9312a8243a3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.nature.com/articles/s41598-024-82395-7.pdf | 
    
| PMID | 39738590 | 
    
| PQID | 3150195519 | 
    
| PQPubID | 2041939 | 
    
| PageCount | 17 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_2c232e541ef740b4afdefb50f9a365cd unpaywall_primary_10_1038_s41598_024_82395_7 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11686237 proquest_miscellaneous_3150520987 proquest_journals_3150195519 pubmed_primary_39738590 crossref_primary_10_1038_s41598_024_82395_7 springer_journals_10_1038_s41598_024_82395_7  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-12-30 | 
    
| PublicationDateYYYYMMDD | 2024-12-30 | 
    
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-30 day: 30  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | London | 
    
| PublicationPlace_xml | – name: London – name: England  | 
    
| PublicationTitle | Scientific reports | 
    
| PublicationTitleAbbrev | Sci Rep | 
    
| PublicationTitleAlternate | Sci Rep | 
    
| PublicationYear | 2024 | 
    
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio  | 
    
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio  | 
    
| References | BU Meinen (82395_CR26) 2020; 239 N Aslam (82395_CR4) 2022; 22 M Braik (82395_CR28) 2021; 33 A Soltani (82395_CR23) 2020; 14 PG Rajan (82395_CR27) 2019; 43 X Lladó (82395_CR7) 2012; 186 82395_CR20 A Rezaee (82395_CR16) 2020; 2 82395_CR3 M Pietikäinen (82395_CR29) 2010; 5 82395_CR19 SH Wang (82395_CR9) 2016; 4 82395_CR10 SO Olatunji (82395_CR1) 2023; 20 82395_CR33 82395_CR12 Y Peng (82395_CR18) 2021; 53 82395_CR13 SNM Ashtiani (82395_CR22) 2021; 14 82395_CR15 FD Lublin (82395_CR2) 2014; 83 82395_CR17 L Bonanno (82395_CR21) 2021; 72 A Alijamaat (82395_CR25) 2021; 9 V Saccà (82395_CR14) 2019; 13 82395_CR31 AR Ismail (82395_CR34) 2024; 10 O Berezsky (82395_CR32) 2024; 95 P Wildner (82395_CR6) 2020; 37 A Shoeibi (82395_CR11) 2021; 136 A Alijamaat (82395_CR24) 2021; 31 H Lu (82395_CR30) 2008; 19 V Pantazou (82395_CR5) 2015; 44 P Baneke (82395_CR8) 2013; 19 40312473 - Sci Rep. 2025 May 1;15(1):15305. doi: 10.1038/s41598-025-00481-w.  | 
    
| References_xml | – volume: 22 start-page: 7856 issue: 20 year: 2022 ident: 82395_CR4 publication-title: Sensors doi: 10.3390/s22207856 – volume: 19 start-page: 18 issue: 1 year: 2008 ident: 82395_CR30 publication-title: IEEE Trans. Neural Networks doi: 10.1109/TNN.2007.901277 – ident: 82395_CR15 doi: 10.1109/CogInfoCom47531.2019.9089962 – volume: 13 start-page: 1103 year: 2019 ident: 82395_CR14 publication-title: Brain Imaging Behav. doi: 10.1007/s11682-018-9926-9 – volume: 43 start-page: 1 year: 2019 ident: 82395_CR27 publication-title: J. Med. Syst. doi: 10.1007/s10916-019-1368-4 – ident: 82395_CR13 doi: 10.1016/j.nicl.2018.11.003 – volume: 5 start-page: 9775 issue: 3 year: 2010 ident: 82395_CR29 publication-title: Scholarpedia doi: 10.4249/scholarpedia.9775 – volume: 186 start-page: 164 issue: 1 year: 2012 ident: 82395_CR7 publication-title: Inf. Sci. doi: 10.1016/j.ins.2011.10.011 – volume: 239 start-page: 111666 year: 2020 ident: 82395_CR26 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111666 – volume: 14 start-page: 926 issue: 3 year: 2021 ident: 82395_CR22 publication-title: IEEE Trans. Cogn. Dev. Syst. doi: 10.1109/TCDS.2021.3081605 – ident: 82395_CR10 doi: 10.1007/978-3-319-62395-5_11 – volume: 72 start-page: 162 year: 2021 ident: 82395_CR21 publication-title: Clin. Imaging doi: 10.1016/j.clinimag.2020.11.006 – volume: 4 start-page: 7567 year: 2016 ident: 82395_CR9 publication-title: IEEE Access. doi: 10.1109/ACCESS.2016.2620996 – ident: 82395_CR33 doi: 10.4108/eetel.4389 – volume: 83 start-page: 278 issue: 3 year: 2014 ident: 82395_CR2 publication-title: Neurology doi: 10.1212/WNL.0000000000000560 – volume: 10 start-page: 113 issue: 1 year: 2024 ident: 82395_CR34 publication-title: Int. J. Perceptive Cogn. Comput. doi: 10.31436/ijpcc.v10i1.460 – ident: 82395_CR20 doi: 10.4018/978-1-6684-7544-7.ch033 – volume: 37 start-page: 101452 year: 2020 ident: 82395_CR6 publication-title: Multiple Scler. Relat. Disorders doi: 10.1016/j.msard.2019.101452 – volume: 9 start-page: 161 issue: 2 year: 2021 ident: 82395_CR25 publication-title: J. AI Data Min. – volume: 20 start-page: 4261 issue: 5 year: 2023 ident: 82395_CR1 publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph20054261 – ident: 82395_CR12 doi: 10.1016/j.nicl.2022.103065 – ident: 82395_CR31 doi: 10.17632/8bctsm8jz7.1 – volume: 53 start-page: 102989 year: 2021 ident: 82395_CR18 publication-title: Multiple Scler. Relat. Disorders doi: 10.1016/j.msard.2021.102989 – volume: 2 start-page: 1 year: 2020 ident: 82395_CR16 publication-title: SN Appl. Sci. doi: 10.1007/s42452-020-2699-y – ident: 82395_CR3 doi: 10.1109/EBBT.2017.7956784 – volume: 19 start-page: 652 issue: 5 year: 2013 ident: 82395_CR8 publication-title: Mult. Scler. – volume: 136 start-page: 104697 year: 2021 ident: 82395_CR11 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.104697 – ident: 82395_CR19 doi: 10.1109/MIUCC52538.2021.9447657 – volume: 95 start-page: 106325 year: 2024 ident: 82395_CR32 publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2024.106325 – volume: 44 start-page: e113 issue: 4 year: 2015 ident: 82395_CR5 publication-title: La. Presse Médicale doi: 10.1016/j.lpm.2015.01.001 – ident: 82395_CR17 doi: 10.1007/s10072-020-04950-0 – volume: 14 start-page: 4507 issue: 17 year: 2020 ident: 82395_CR23 publication-title: IET Image Proc. doi: 10.1049/iet-ipr.2019.0366 – volume: 31 start-page: 778 issue: 2 year: 2021 ident: 82395_CR24 publication-title: Int. J. Imaging Syst. Technol. doi: 10.1002/ima.22492 – volume: 33 start-page: 2515 year: 2021 ident: 82395_CR28 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-05145-6 – reference: 40312473 - Sci Rep. 2025 May 1;15(1):15305. doi: 10.1038/s41598-025-00481-w.  | 
    
| SSID | ssj0000529419 | 
    
| Score | 2.440445 | 
    
| Snippet | Multiple sclerosis (MS) is a severe brain disease that permanently destroys brain cells, impacting vision, balance, muscle control, and daily activity. This... Abstract Multiple sclerosis (MS) is a severe brain disease that permanently destroys brain cells, impacting vision, balance, muscle control, and daily...  | 
    
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref springer  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher  | 
    
| StartPage | 31721 | 
    
| SubjectTerms | 639/166 639/705 Algorithms Brain - diagnostic imaging Brain - pathology Capuchin search algorithm Deep ensemble learning Diagnosis Humanities and Social Sciences Humans Image processing Image Processing, Computer-Assisted - methods Magnetic resonance imaging Magnetic Resonance Imaging - methods Medical diagnosis multidisciplinary Multiple sclerosis Multiple Sclerosis - diagnosis Multiple Sclerosis - diagnostic imaging Multiple Sclerosis - pathology Neural networks Neural Networks, Computer Neuroimaging Optimization techniques Principal Component Analysis Principal components analysis Science Science (multidisciplinary) Topology  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUNoeSvp2khYVemtMZD1s6ZiEhlBIL20gN6FnsrDxLllvy_77jCyvu0tL20MPxtgSYjwPzydmNIPQB2EaEr00pWqChw2K9aVtrCpZjNRSa03dt_O5-FKfX_LPV-Jqo9VXygnL5YEz446oA58fBK9CbGApbqIP0QoSlWG1cD79fYlUG5upXNWbKl6p4ZQMYfJoAZ4qnSajvJSUKVE2W56oL9j_O5T5a7LkGDF9gh4t27lZ_TDT6YZTOttFTwc0iY_zVzxDD0L7HD3M_SVXL9D3Y-xTgnq3KpO38vjiKx4iMnDvc-wmC9w3w8EpAf4aAxzEzsxTh5QWZyvAZno9u5t0N7fYtB4uDEuGWzsNeBZh_TDHqSgmkNHmlPLFS3R59unb6Xk5NFooHVe0K62rmGPWmOBkcIYQR2JlDRfR1cQBoAvwYJR3CsZDCrwKS4JiFTWScmbYK7TTztrwBmGuPGsYBxmBuJQUlnkRa29ZQ2MNDrlAH9dM1_NcT0P3cXAmdRaRBhHpXkS6KdBJkss4M9XC7l-AhuhBQ_TfNKRAB2up6sFAF5oBEK4UwEVVoPfjMJhWipeYNsyWeU7KEpJAx-usBCMlAOOYFIoUSG6pxxap2yPt5KYv311V6VQOg0UP15r0k64_8eJw1LZ_YN3e_2DdPnpMk8WkwpbkAO10d8vwFkBYZ9_19nYPESowng priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1ra9RAcKlXRP0gvqqnVVbwmw3d7CPJfhBppaUIPUQt9FvY57VwTWIvp9y_d3bzqIdS_BBCssvuZGdmZ7LzQuidUDnxtlCJzJ2FHxRtE51rmTDvqaZaqyyW8zmdZSdn_PO5ON9CsyEWJrhVDnti3KhtbcIZ-T4DzSWVIN_lx-ZHEqpGBevqUEJD9aUV7IeYYuwO2qYhM9YEbR8ezb58HU9dgl2Lp7KPniGs2F-CBAtRZpQnBWVSJPmGhIqJ_P-lff7tRDlaUh-ge6uqUetfarH4Q1gdP0IPey0TH3Rk8RhtueoJutvVnVw_RT8PsA2O6-06CVLM4tNvuLfUwD363l0ucSySg4Nj_ByDmoiNakLllAp33IHVYg4L1F5cYVVZuDAM6a70wuHaw_iuwSFZJoBRda7my2fo7Pjo-6eTpC_AkBguaZtokzLDtFLOFM4oQgzxqVZceJMRA4qegwclrZHQ7oJBVmjiJEupKihniu2gSVVX7gXCXFqWM26d9zmXhdDMCp9ZzXLqMxDUU_R-WPSy6fJslNE-zoqyQ1EJKCojisp8ig4DXsaeIUd2fFFfz8ue5UpqQFt0gqcOpiSaKw-za0G8VCwTxk7R7oDVsmfcZXlDZlP0dmwGlgt2FFW5etX1Cd5DBcDxvCOCERJQ71ghJJmiYoM8NkDdbKkuL2Ja7zQN0ToMBt0bKOkGrtvWYm-ktv9Yupe3f_UrdJ8GXgipLMkumrTXK_ca1K5Wv-l56TeiIi1z priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKEVAOiDeBgozEjaYkfiT2AaGCqCqk5QIr9Rb5uV0pTZbdLLD_nnFedMWCOERRYsceeWYynzXjGYRecZUn3goVy9xZ2KBoG-tcy5h6TzTRWmVtOZ_J5-xsyj6d8_M9NJQ76hdwtXNrF-pJTZfl8c9vm3eg8G-7I-PizQqMUDgoRlgsCJU8zq-h62CpZCjlMOnhfpfrm0iWyv7szO5PD9BNMNFU8PCXvmKq2oz-u2Don9GUo0v1Nrq1rhZq80OV5RWrdXoX3enhJj7p5OMe2nPVfXSjK0C5eYC-n2AbItibTRzMmcWTL7h32cC9DcKbr3BbLQeHCPkZBryIjVqEEioV7tQEq3JWL-fNxSVWlYULw5DuUpcO1x7GdwscsmYCGVUXc756iKanH79-OIv7SgyxYZI0sTYpNVQr5YxwRiWJSXyqFePeZIkBxOfgQUlrJLS74JnlOnGSpkQJwqiij9B-VVfuCcJMWppTZp33OZOCa2q5z6ymOfEZWOwIvR4WvVh0CTeK1lFORdFxqwBuFS23ijxC7wNfxp4hWXb7ol7Oil73CmIANjrOUgdTJpopD7NrnnipaMaNjdDhwNViEMCCAlJOJeBJGaGXYzPoXnCoqMrV665PCCMSQMfjTghGSgYhipDYEo8tUrdbqvlFm987TcOxHQqDHg2S9Juuf63F0Sht_7F0T_9K8jN0QIJGhHSWySHab5Zr9xygV6NftPr0CzPOKhg priority: 102 providerName: Scholars Portal – databaseName: HAS SpringerNature Open Access 2022 dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEF_qFVEfxG-jVVbwzQtu9iPZfTzFUg7qSy30bdnP9uCaO3o55f57Z5NcNFREH0JI9mvYmWF-yczOIPRemIpEL02uquDhA8X63FZW5SxGaqm1pmzL-Zx-LU_O-fxCXByg6f4szMh_36bu3oCJScfAKM8lZUrk1R10KEEw5QQdzmbzs_nwTyV5rXih-rMxMPzj7cEj-9Om6f8TtrwdIjn4SR-ge9t6bXY_zHL5myk6foQe9hgSzzqmP0YHoX6C7nZVJXdP0fcZ9iksvdnlyUZ5fHqGez8M3NvIusUGtyVwcAp7v8QAArEz61QXpcad7GOzvFzdLJqra2xqDxeGKcO1XQa8ijB_WOOUChPIqLtA8s0zdH785dvnk7wvr5A7rmiTW1cwx6wxwcngDCGOxMIaLqIriQMYF-DBKO8UtIfkbhWWBMUKaiTlzLDnaFKv6vASYa48qxj3IcaKKyks8yKW3rKKxhLMcIY-7Dddr7ssGrr1fjOpOxZpYJFuWaSrDH1KfBl6pgzY7QsQDN0rlKYOsGAQvAiwJLHcRFjdChKVYaVwPkNHe67qXi03mgH8LRSARJWhd0MzKFTykpg6rLZdnxQbJIGOF50QDJQAeGNSKJIhORKPEanjlnpx1SbtLop0FofBpNO9JP2i6297MR2k7R-27tX_zf4a3adJN1LiSnKEJs3NNrwBkNXYt71u_QQ_VyHE priority: 102 providerName: Springer Nature  | 
    
| Title | A density-based MS disease diagnosis model using the capuchin search algorithm and an ensemble of deep neural networks | 
    
| URI | https://link.springer.com/article/10.1038/s41598-024-82395-7 https://www.ncbi.nlm.nih.gov/pubmed/39738590 https://www.proquest.com/docview/3150195519 https://www.proquest.com/docview/3150520987 https://pubmed.ncbi.nlm.nih.gov/PMC11686237 https://www.nature.com/articles/s41598-024-82395-7.pdf https://doaj.org/article/2c232e541ef740b4afdefb50f9a365cd  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 14 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: HH5 dateStart: 20110101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: ABDBF dateStart: 20121221 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DIK dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: RPM dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAQT databaseName: Springer Nature - nature.com Journals - Fully Open Access customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: NAO dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.nature.com/siteindex/index.html providerName: Nature Publishing – providerCode: PRVPQU databaseName: Health & Medical Collection (Proquest) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2045-2322 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M48 dateStart: 20110801 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: AAJSJ dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: C6C dateStart: 20111201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9owELda0LTtYd8fbB3ypL2tYUkcJ_EjRa0qJFC1Do09Rf6kaDRBEDaxv35nJ2Fjq6b1ASJi41zO59wP7uc7hN5RnvhGpdxjiVbwA0UoTySCecSYUIRC8NiV8xmN4_NJNJzS6QGKm70wjrTvUlq6x3TDDvuwBkdjN4OFkZeGhFEv6S2VOUTtmAIGb6H2ZHzR_2IryQFG8QAmhPUOGZ-kN3x5zwu5ZP03Icy_iZK7aOl9dHeTL_n2O18sfnNIZw_R5-ZWKh7K196mFD35448sj7e_10foQY1Rcb_q-Rgd6PwJulNVrdw-Rd_6WFnae7n1rA9UeHSJ6zgPHB1zb77GrsQOtrT6GQaQiSVf2rorOa7WFuaLWbGal1fXmOcKXhiG1NdioXFhYHy9xDbVJoiRV0T19TM0OTv9NDj36vINnoxYWHpCBkQSwbmWqZbc96VvAsEjamTsS4CJGj5wpiSDdm3DuVT4mpEg5GkYEU6eo1Ze5PolwhFTJCGR0sYkEUupIIqaWAmShCYGN99B75vpzJZVlo7MRddJmlXazECbmdNmlnTQiZ3xXU-bYdudKFazrJ6FLJRgRJpGgYZL-iLiBq4uqG8YJzGVqoOOGnvJ6mW_zgjA64ABCGUd9HbXDAvWRmF4rotN1cdyj1KQ40VlXjtJABySlDK_g9I9w9sTdb8ln1-5pOBBYPf6EBj0uLHRX3L9SxfHOzv-D9W9ul331-heaM3YJsb0j1CrXG30GwBxpeiiw2SadFG73x9eDuF4cjq--AhnB_Gg6_4YgfdRlHbrlf0TaMhLFw | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZbxMxELZKK1R4QNwEChgJnuiqXtt7-KFCPZXSJkLQSn0zPtNK6SY0CVX-HL-N8V4lAlW89CGKsl55J54Zz-edC6H3icqIt7mKROYsHFC0jXSmRcS8p5pqrdKynU-vn3ZP-OfT5HQJ_WpyYUJYZbMnlhu1HZnwjnyDAXKJBdh38Wn8Iwpdo4J3tWmhoerWCnazLDFWJ3YcuvkVHOEmmwe7wO8PlO7vHe90o7rLQGS4oNNIm5gZppVyJndGEWKIj7XiiTcpMYBmHPxQwhoB4y54HRNNnGAxVTnlTDGY9w5a4YwLOPytbO_1v3xt3_IEPxqPRZ2tQ1i-MQGLGbLaKI9yykQSZQsWsWwc8C-0-3fQZuu5vY9WZ8VYza_UcPiHcdx_iB7UqBZvVWL4CC254jG6W_W5nD9BP7ewDYHy03kUrKbFvW-49gzBdxnrdz7BZVMeHALxBxhgKTZqHDq1FLhaZqyGA2DI9OwCq8LCB8OU7kIPHR55mN-NcSjOCWQUVWj75Ck6uRVWPEPLxahwLxDmwrKMceu8z7jIE81s4lOrWUZ9CsCggz42iy7HVV0PWfrjWS4rFklgkSxZJLMO2g58ae8MNbnLC6PLgaxVXFID6NQlPHbwSKK58vB0nRAvFEsTYztoreGqrDeKibwW6w561w6Dige_jSrcaFbdE6KVcqDjeSUELSUAJ1meCNJB-YJ4LJC6OFKcn5VlxOM4ZAcxmHS9kaRrum5ai_VW2v5j6V7e_K_fotXuce9IHh30D1-hezToRSijSdbQ8vRy5l4D5JvqN7VeYfT9tlX5N3rcbIU | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKEa8D4k2ggJHgRFfx2t71-oBQoUQtpRUSVMrN-JlWSjehSajy1_h1jPdVIlDFpYdolXjXO5mH59ud8QxCrzItSHCFTqTwDh5QjEuMMDJhIVBDjdF51c5n_yDfOeSfhtlwDf1q98LEtMp2TawWajex8R15nwFySSX4d9kPTVrEl-3Bu-mPJHaQipHWtp1GrSJ7fnkGj2-zt7vbIOvXlA4-fvuwkzQdBhLLJZ0nxqbMMqO1t4W3mhBLQmo0z4LNiQUk4-GLls5KGPcx4pgZ4iVLqS4oZ5rBvFfQVcGYjOmEYii69zsxgsZT2ezTIazoz8BXxv1slCcFhQsSseILq5YB_8K5f6drdjHbW-jGopzq5Zkej_9wi4M76HaDZ_FWrYB30Zov76FrdYfL5X30cwu7mCI_XybRXzq8_xU3MSE4Vll-xzNctePBMQV_hAGQYqunsUdLiWsmYz0eAfvnRydYlw4-GKb0J2bs8STA_H6KY1lOIKOsk9pnD9DhpQjiIVovJ6V_jDCXjgnGnQ9BcFlkhrks5M4wQUMOkKCH3rRMV9O6ooeqIvGsULWIFIhIVSJSoofeR7l0Z8Zq3NUPk9ORaoxbUQu41Gc89XBLYrgOcHeTkSA1yzPremijlapqloiZOlfoHnrZDYNxx4iNLv1kUZ8T85QKoONRrQQdJQAkWZFJ0kPFinqskLo6Uh4fVQXE0zTuC2Iw6WarSed0XcSLzU7b_oN1Ty7-1y_QdTBg9Xn3YO8pukmjWcT6mWQDrc9PF_4ZYL25eV4ZFUbfL9uKfwOKoWof | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdGJwQ88M1WGMhIvLF0jh0n8WNBTBPSJiSoGE-RP7uKLonaFFT-es5OUihMiD1EVWrXvpzPuV91P98h9IrLjDiTy0hk1sAfFGUilSkRMeeookrJNJTzOT1LTybJ-3N-voPS_ixMIO2HlJbhNd2zw46W4Gj8YTCaRDllgkfZqDbuBtpNOWDwAdqdnH0Yf_GV5ACjRAATaHdChrD8ih9veaGQrP8qhPk3UXITLb2Dbq3KWq6_y_n8N4d0fA997h-l5aF8Ha0aNdI__sjyeP1nvY_udhgVj9ueD9COLR-im23VyvUj9G2Mjae9N-vI-0CDTz_iLs4Dn4G5N1viUGIHe1r9FAPIxFrWvu5Kidu9heV8Wi1mzcUllqWBC8OQ9lLNLa4cjG9r7FNtghhlS1RfPkaT43ef3p5EXfmGSCeCNpHSMdNMSWl1brUkRBMXK5lwp1OiASZauJHCaAHt1odzuSJWsJjKnCZMsidoUFal3Uc4EYZlLDHWuSwROVfMcJcaxTLqUnDzQ_S6X86ibrN0FCG6zvKi1WYB2iyCNotsiN74Fd_09Bm2wxfVYlp0q1BQDUZkeRJbmJKoRDqYXXHihGQp12aIDnp7KbptvywYwOtYAAgVQ_Ry0wwb1kdhZGmrVdvHc49ykGOvNa-NJAAOWc4FGaJ8y_C2RN1uKWcXISl4HPuzPgwGPext9Jdc_9LF4caO_0N1T6_X_Rm6Tb0Z-8SY5AANmsXKPgcQ16gX3Y79CT-0RF4 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+density-based+MS+disease+diagnosis+model+using+the+capuchin+search+algorithm+and+an+ensemble+of+deep+neural+networks&rft.jtitle=Scientific+reports&rft.au=Bai%2C+LiJuan&rft.au=Wu%2C+Jiao&rft.au=Chen%2C+Li&rft.au=Jiang%2C+Xin&rft.date=2024-12-30&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=31721&rft_id=info:doi/10.1038%2Fs41598-024-82395-7&rft_id=info%3Apmid%2F39738590&rft.externalDocID=39738590 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |