A density-based MS disease diagnosis model using the capuchin search algorithm and an ensemble of deep neural networks

Multiple sclerosis (MS) is a severe brain disease that permanently destroys brain cells, impacting vision, balance, muscle control, and daily activity. This research employs a weighted combination of deep neural networks and optimization techniques for MS disease diagnosis. This method uses slices o...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; pp. 31721 - 17
Main Authors Bai, LiJuan, Wu, Jiao, Chen, Li, Jiang, Xin, Song, ZhuYin
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 30.12.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-024-82395-7

Cover

Abstract Multiple sclerosis (MS) is a severe brain disease that permanently destroys brain cells, impacting vision, balance, muscle control, and daily activity. This research employs a weighted combination of deep neural networks and optimization techniques for MS disease diagnosis. This method uses slices of magnetic resonance imaging (MRI) images as input. Then, after the pre-processing operation, the process of segmentation and identification of the region of interest (ROI) is performed using a combination of the fuzzy c-means (FCM) algorithm and the capuchin search algorithm (CapSA) algorithm. When the target view is detected, the features of each ROI are extracted through three techniques: local binary pattern (LBP), multi-linear principal component analysis (MPCA), and gray level co-occurrence matrix (GLCM). Each of these features is then processed by a deep neural network. In each deep neural network, the CapSA algorithm is used to determine the optimal topology structure and adjust the weight vector of the neural network. This means that in this process, the vector and topology of the deep neural network are adjusted using the CapSA algorithm in such a way that the training error is minimized. Finally, after creating the trained models, the weighted combination of the outputs of these three models is used for the final diagnosis. The implementation results showed that our method was successful in achieving 100% precision compared to other comparative methods. Also, in the average accuracy criterion, it showed a performance of 99.51%, which shows the high performance of our method in diagnosing patients.
AbstractList Abstract Multiple sclerosis (MS) is a severe brain disease that permanently destroys brain cells, impacting vision, balance, muscle control, and daily activity. This research employs a weighted combination of deep neural networks and optimization techniques for MS disease diagnosis. This method uses slices of magnetic resonance imaging (MRI) images as input. Then, after the pre-processing operation, the process of segmentation and identification of the region of interest (ROI) is performed using a combination of the fuzzy c-means (FCM) algorithm and the capuchin search algorithm (CapSA) algorithm. When the target view is detected, the features of each ROI are extracted through three techniques: local binary pattern (LBP), multi-linear principal component analysis (MPCA), and gray level co-occurrence matrix (GLCM). Each of these features is then processed by a deep neural network. In each deep neural network, the CapSA algorithm is used to determine the optimal topology structure and adjust the weight vector of the neural network. This means that in this process, the vector and topology of the deep neural network are adjusted using the CapSA algorithm in such a way that the training error is minimized. Finally, after creating the trained models, the weighted combination of the outputs of these three models is used for the final diagnosis. The implementation results showed that our method was successful in achieving 100% precision compared to other comparative methods. Also, in the average accuracy criterion, it showed a performance of 99.51%, which shows the high performance of our method in diagnosing patients.
Multiple sclerosis (MS) is a severe brain disease that permanently destroys brain cells, impacting vision, balance, muscle control, and daily activity. This research employs a weighted combination of deep neural networks and optimization techniques for MS disease diagnosis. This method uses slices of magnetic resonance imaging (MRI) images as input. Then, after the pre-processing operation, the process of segmentation and identification of the region of interest (ROI) is performed using a combination of the fuzzy c-means (FCM) algorithm and the capuchin search algorithm (CapSA) algorithm. When the target view is detected, the features of each ROI are extracted through three techniques: local binary pattern (LBP), multi-linear principal component analysis (MPCA), and gray level co-occurrence matrix (GLCM). Each of these features is then processed by a deep neural network. In each deep neural network, the CapSA algorithm is used to determine the optimal topology structure and adjust the weight vector of the neural network. This means that in this process, the vector and topology of the deep neural network are adjusted using the CapSA algorithm in such a way that the training error is minimized. Finally, after creating the trained models, the weighted combination of the outputs of these three models is used for the final diagnosis. The implementation results showed that our method was successful in achieving 100% precision compared to other comparative methods. Also, in the average accuracy criterion, it showed a performance of 99.51%, which shows the high performance of our method in diagnosing patients.
Multiple sclerosis (MS) is a severe brain disease that permanently destroys brain cells, impacting vision, balance, muscle control, and daily activity. This research employs a weighted combination of deep neural networks and optimization techniques for MS disease diagnosis. This method uses slices of magnetic resonance imaging (MRI) images as input. Then, after the pre-processing operation, the process of segmentation and identification of the region of interest (ROI) is performed using a combination of the fuzzy c-means (FCM) algorithm and the capuchin search algorithm (CapSA) algorithm. When the target view is detected, the features of each ROI are extracted through three techniques: local binary pattern (LBP), multi-linear principal component analysis (MPCA), and gray level co-occurrence matrix (GLCM). Each of these features is then processed by a deep neural network. In each deep neural network, the CapSA algorithm is used to determine the optimal topology structure and adjust the weight vector of the neural network. This means that in this process, the vector and topology of the deep neural network are adjusted using the CapSA algorithm in such a way that the training error is minimized. Finally, after creating the trained models, the weighted combination of the outputs of these three models is used for the final diagnosis. The implementation results showed that our method was successful in achieving 100% precision compared to other comparative methods. Also, in the average accuracy criterion, it showed a performance of 99.51%, which shows the high performance of our method in diagnosing patients.Multiple sclerosis (MS) is a severe brain disease that permanently destroys brain cells, impacting vision, balance, muscle control, and daily activity. This research employs a weighted combination of deep neural networks and optimization techniques for MS disease diagnosis. This method uses slices of magnetic resonance imaging (MRI) images as input. Then, after the pre-processing operation, the process of segmentation and identification of the region of interest (ROI) is performed using a combination of the fuzzy c-means (FCM) algorithm and the capuchin search algorithm (CapSA) algorithm. When the target view is detected, the features of each ROI are extracted through three techniques: local binary pattern (LBP), multi-linear principal component analysis (MPCA), and gray level co-occurrence matrix (GLCM). Each of these features is then processed by a deep neural network. In each deep neural network, the CapSA algorithm is used to determine the optimal topology structure and adjust the weight vector of the neural network. This means that in this process, the vector and topology of the deep neural network are adjusted using the CapSA algorithm in such a way that the training error is minimized. Finally, after creating the trained models, the weighted combination of the outputs of these three models is used for the final diagnosis. The implementation results showed that our method was successful in achieving 100% precision compared to other comparative methods. Also, in the average accuracy criterion, it showed a performance of 99.51%, which shows the high performance of our method in diagnosing patients.
ArticleNumber 31721
Author Song, ZhuYin
Bai, LiJuan
Jiang, Xin
Wu, Jiao
Chen, Li
Author_xml – sequence: 1
  givenname: LiJuan
  surname: Bai
  fullname: Bai, LiJuan
  organization: Department of Neurology, The People’s Hospital of Liaoning Province
– sequence: 2
  givenname: Jiao
  surname: Wu
  fullname: Wu, Jiao
  organization: Department of Neurology, The People’s Hospital of Liaoning Province
– sequence: 3
  givenname: Li
  surname: Chen
  fullname: Chen, Li
  organization: Department of Neurology, The Third Affiliated Hospital of Shenzhen University
– sequence: 4
  givenname: Xin
  surname: Jiang
  fullname: Jiang, Xin
  organization: Department of Neurology, The People’s Hospital of Liaoning Province
– sequence: 5
  givenname: ZhuYin
  surname: Song
  fullname: Song, ZhuYin
  email: songzhuyin_0916@163.com
  organization: Department of Neurology, The People’s Hospital of Liaoning Province
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39738590$$D View this record in MEDLINE/PubMed
BookMark eNqNUk1v1DAQjVARLaV_gAOyxIVLwJ-b-ISqqi2VijgAZ2viTLJeEnuxk1b77_F-UFoOCEvWjO03z-P3_LI48sFjUbxm9D2jov6QJFO6LimXZc2FVmX1rDjhVKqSC86PHuXHxVlKK5qH4loy_aI4FroStdL0pLg7Jy365KZN2UDClnz-SlqXMOc5Qu9DcomMocWBzMn5nkxLJBbWs106TzIw2iWBoQ_RTcuRgG_zJJkSx2ZAErrMj2vicY4w5DDdh_gjvSqedzAkPDvE0-L71eW3i0_l7Zfrm4vz29JKzaeysUxY0QCgrdECpZZ2rAGpOrugVlUK8wJ0a3U-R02ZVA1FLRiHmksB4rS42fO2AVZmHd0IcWMCOLPbCLE3ECdnBzTcZrFQSYZdJWkjoWuxaxTtNIiFsm3mEnuu2a9hcw_D8EDIqNmaYvammGyK2Zliqlz1cV-1npsRW4t-ykI8aeXpiXdL04c7w9iiXnCxZXh3YIjh54xpMqNLFocBPIY5GcFUdpbqegt9-xd0Febos8I7FNNKMZ1Rbx639NDL71-RAXwPsDGkFLH7v4ce5EkZ7HuMf-7-R9Uv6QzcgA
Cites_doi 10.3390/s22207856
10.1109/TNN.2007.901277
10.1109/CogInfoCom47531.2019.9089962
10.1007/s11682-018-9926-9
10.1007/s10916-019-1368-4
10.1016/j.nicl.2018.11.003
10.4249/scholarpedia.9775
10.1016/j.ins.2011.10.011
10.1016/j.rse.2020.111666
10.1109/TCDS.2021.3081605
10.1007/978-3-319-62395-5_11
10.1016/j.clinimag.2020.11.006
10.1109/ACCESS.2016.2620996
10.4108/eetel.4389
10.1212/WNL.0000000000000560
10.31436/ijpcc.v10i1.460
10.4018/978-1-6684-7544-7.ch033
10.1016/j.msard.2019.101452
10.3390/ijerph20054261
10.1016/j.nicl.2022.103065
10.17632/8bctsm8jz7.1
10.1016/j.msard.2021.102989
10.1007/s42452-020-2699-y
10.1109/EBBT.2017.7956784
10.1016/j.compbiomed.2021.104697
10.1109/MIUCC52538.2021.9447657
10.1016/j.bspc.2024.106325
10.1016/j.lpm.2015.01.001
10.1007/s10072-020-04950-0
10.1049/iet-ipr.2019.0366
10.1002/ima.22492
10.1007/s00521-020-05145-6
ContentType Journal Article
Copyright The Author(s) 2024 corrected publication 2025
2024. The Author(s).
Copyright Nature Publishing Group 2024
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024 corrected publication 2025
– notice: 2024. The Author(s).
– notice: Copyright Nature Publishing Group 2024
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1038/s41598-024-82395-7
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest SciTech Premium Collection Natural Science Collection Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
Publicly Available Content Database

MEDLINE
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 17
ExternalDocumentID oai_doaj_org_article_2c232e541ef740b4afdefb50f9a365cd
10.1038/s41598-024-82395-7
PMC11686237
39738590
10_1038_s41598_024_82395_7
Genre Journal Article
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M48
M7P
M~E
NAO
OK1
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
CITATION
PHGZM
PJZUB
PPXIY
PQGLB
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
88A
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
EJD
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c492t-bc13c3baaec8eca00c0f1ba45fc60c575eba4a9dc9c8ee90145b0e9312a8243a3
IEDL.DBID UNPAY
ISSN 2045-2322
IngestDate Tue Oct 14 19:02:19 EDT 2025
Sun Oct 26 02:59:35 EDT 2025
Tue Sep 30 17:06:29 EDT 2025
Fri Sep 05 14:31:21 EDT 2025
Tue Oct 07 09:10:14 EDT 2025
Tue May 06 01:31:51 EDT 2025
Wed Oct 01 06:32:59 EDT 2025
Sat May 03 01:19:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Capuchin search algorithm
Multiple sclerosis
Magnetic resonance imaging
Deep ensemble learning
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c492t-bc13c3baaec8eca00c0f1ba45fc60c575eba4a9dc9c8ee90145b0e9312a8243a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.nature.com/articles/s41598-024-82395-7.pdf
PMID 39738590
PQID 3150195519
PQPubID 2041939
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_2c232e541ef740b4afdefb50f9a365cd
unpaywall_primary_10_1038_s41598_024_82395_7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11686237
proquest_miscellaneous_3150520987
proquest_journals_3150195519
pubmed_primary_39738590
crossref_primary_10_1038_s41598_024_82395_7
springer_journals_10_1038_s41598_024_82395_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-30
PublicationDateYYYYMMDD 2024-12-30
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-30
  day: 30
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References BU Meinen (82395_CR26) 2020; 239
N Aslam (82395_CR4) 2022; 22
M Braik (82395_CR28) 2021; 33
A Soltani (82395_CR23) 2020; 14
PG Rajan (82395_CR27) 2019; 43
X Lladó (82395_CR7) 2012; 186
82395_CR20
A Rezaee (82395_CR16) 2020; 2
82395_CR3
M Pietikäinen (82395_CR29) 2010; 5
82395_CR19
SH Wang (82395_CR9) 2016; 4
82395_CR10
SO Olatunji (82395_CR1) 2023; 20
82395_CR33
82395_CR12
Y Peng (82395_CR18) 2021; 53
82395_CR13
SNM Ashtiani (82395_CR22) 2021; 14
82395_CR15
FD Lublin (82395_CR2) 2014; 83
82395_CR17
L Bonanno (82395_CR21) 2021; 72
A Alijamaat (82395_CR25) 2021; 9
V Saccà (82395_CR14) 2019; 13
82395_CR31
AR Ismail (82395_CR34) 2024; 10
O Berezsky (82395_CR32) 2024; 95
P Wildner (82395_CR6) 2020; 37
A Shoeibi (82395_CR11) 2021; 136
A Alijamaat (82395_CR24) 2021; 31
H Lu (82395_CR30) 2008; 19
V Pantazou (82395_CR5) 2015; 44
P Baneke (82395_CR8) 2013; 19
40312473 - Sci Rep. 2025 May 1;15(1):15305. doi: 10.1038/s41598-025-00481-w.
References_xml – volume: 22
  start-page: 7856
  issue: 20
  year: 2022
  ident: 82395_CR4
  publication-title: Sensors
  doi: 10.3390/s22207856
– volume: 19
  start-page: 18
  issue: 1
  year: 2008
  ident: 82395_CR30
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/TNN.2007.901277
– ident: 82395_CR15
  doi: 10.1109/CogInfoCom47531.2019.9089962
– volume: 13
  start-page: 1103
  year: 2019
  ident: 82395_CR14
  publication-title: Brain Imaging Behav.
  doi: 10.1007/s11682-018-9926-9
– volume: 43
  start-page: 1
  year: 2019
  ident: 82395_CR27
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-019-1368-4
– ident: 82395_CR13
  doi: 10.1016/j.nicl.2018.11.003
– volume: 5
  start-page: 9775
  issue: 3
  year: 2010
  ident: 82395_CR29
  publication-title: Scholarpedia
  doi: 10.4249/scholarpedia.9775
– volume: 186
  start-page: 164
  issue: 1
  year: 2012
  ident: 82395_CR7
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2011.10.011
– volume: 239
  start-page: 111666
  year: 2020
  ident: 82395_CR26
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111666
– volume: 14
  start-page: 926
  issue: 3
  year: 2021
  ident: 82395_CR22
  publication-title: IEEE Trans. Cogn. Dev. Syst.
  doi: 10.1109/TCDS.2021.3081605
– ident: 82395_CR10
  doi: 10.1007/978-3-319-62395-5_11
– volume: 72
  start-page: 162
  year: 2021
  ident: 82395_CR21
  publication-title: Clin. Imaging
  doi: 10.1016/j.clinimag.2020.11.006
– volume: 4
  start-page: 7567
  year: 2016
  ident: 82395_CR9
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2016.2620996
– ident: 82395_CR33
  doi: 10.4108/eetel.4389
– volume: 83
  start-page: 278
  issue: 3
  year: 2014
  ident: 82395_CR2
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000000560
– volume: 10
  start-page: 113
  issue: 1
  year: 2024
  ident: 82395_CR34
  publication-title: Int. J. Perceptive Cogn. Comput.
  doi: 10.31436/ijpcc.v10i1.460
– ident: 82395_CR20
  doi: 10.4018/978-1-6684-7544-7.ch033
– volume: 37
  start-page: 101452
  year: 2020
  ident: 82395_CR6
  publication-title: Multiple Scler. Relat. Disorders
  doi: 10.1016/j.msard.2019.101452
– volume: 9
  start-page: 161
  issue: 2
  year: 2021
  ident: 82395_CR25
  publication-title: J. AI Data Min.
– volume: 20
  start-page: 4261
  issue: 5
  year: 2023
  ident: 82395_CR1
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph20054261
– ident: 82395_CR12
  doi: 10.1016/j.nicl.2022.103065
– ident: 82395_CR31
  doi: 10.17632/8bctsm8jz7.1
– volume: 53
  start-page: 102989
  year: 2021
  ident: 82395_CR18
  publication-title: Multiple Scler. Relat. Disorders
  doi: 10.1016/j.msard.2021.102989
– volume: 2
  start-page: 1
  year: 2020
  ident: 82395_CR16
  publication-title: SN Appl. Sci.
  doi: 10.1007/s42452-020-2699-y
– ident: 82395_CR3
  doi: 10.1109/EBBT.2017.7956784
– volume: 19
  start-page: 652
  issue: 5
  year: 2013
  ident: 82395_CR8
  publication-title: Mult. Scler.
– volume: 136
  start-page: 104697
  year: 2021
  ident: 82395_CR11
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104697
– ident: 82395_CR19
  doi: 10.1109/MIUCC52538.2021.9447657
– volume: 95
  start-page: 106325
  year: 2024
  ident: 82395_CR32
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2024.106325
– volume: 44
  start-page: e113
  issue: 4
  year: 2015
  ident: 82395_CR5
  publication-title: La. Presse Médicale
  doi: 10.1016/j.lpm.2015.01.001
– ident: 82395_CR17
  doi: 10.1007/s10072-020-04950-0
– volume: 14
  start-page: 4507
  issue: 17
  year: 2020
  ident: 82395_CR23
  publication-title: IET Image Proc.
  doi: 10.1049/iet-ipr.2019.0366
– volume: 31
  start-page: 778
  issue: 2
  year: 2021
  ident: 82395_CR24
  publication-title: Int. J. Imaging Syst. Technol.
  doi: 10.1002/ima.22492
– volume: 33
  start-page: 2515
  year: 2021
  ident: 82395_CR28
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-05145-6
– reference: 40312473 - Sci Rep. 2025 May 1;15(1):15305. doi: 10.1038/s41598-025-00481-w.
SSID ssj0000529419
Score 2.440445
Snippet Multiple sclerosis (MS) is a severe brain disease that permanently destroys brain cells, impacting vision, balance, muscle control, and daily activity. This...
Abstract Multiple sclerosis (MS) is a severe brain disease that permanently destroys brain cells, impacting vision, balance, muscle control, and daily...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 31721
SubjectTerms 639/166
639/705
Algorithms
Brain - diagnostic imaging
Brain - pathology
Capuchin search algorithm
Deep ensemble learning
Diagnosis
Humanities and Social Sciences
Humans
Image processing
Image Processing, Computer-Assisted - methods
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Medical diagnosis
multidisciplinary
Multiple sclerosis
Multiple Sclerosis - diagnosis
Multiple Sclerosis - diagnostic imaging
Multiple Sclerosis - pathology
Neural networks
Neural Networks, Computer
Neuroimaging
Optimization techniques
Principal Component Analysis
Principal components analysis
Science
Science (multidisciplinary)
Topology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUNoeSvp2khYVemtMZD1s6ZiEhlBIL20gN6FnsrDxLllvy_77jCyvu0tL20MPxtgSYjwPzydmNIPQB2EaEr00pWqChw2K9aVtrCpZjNRSa03dt_O5-FKfX_LPV-Jqo9VXygnL5YEz446oA58fBK9CbGApbqIP0QoSlWG1cD79fYlUG5upXNWbKl6p4ZQMYfJoAZ4qnSajvJSUKVE2W56oL9j_O5T5a7LkGDF9gh4t27lZ_TDT6YZTOttFTwc0iY_zVzxDD0L7HD3M_SVXL9D3Y-xTgnq3KpO38vjiKx4iMnDvc-wmC9w3w8EpAf4aAxzEzsxTh5QWZyvAZno9u5t0N7fYtB4uDEuGWzsNeBZh_TDHqSgmkNHmlPLFS3R59unb6Xk5NFooHVe0K62rmGPWmOBkcIYQR2JlDRfR1cQBoAvwYJR3CsZDCrwKS4JiFTWScmbYK7TTztrwBmGuPGsYBxmBuJQUlnkRa29ZQ2MNDrlAH9dM1_NcT0P3cXAmdRaRBhHpXkS6KdBJkss4M9XC7l-AhuhBQ_TfNKRAB2up6sFAF5oBEK4UwEVVoPfjMJhWipeYNsyWeU7KEpJAx-usBCMlAOOYFIoUSG6pxxap2yPt5KYv311V6VQOg0UP15r0k64_8eJw1LZ_YN3e_2DdPnpMk8WkwpbkAO10d8vwFkBYZ9_19nYPESowng
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1ra9RAcKlXRP0gvqqnVVbwmw3d7CPJfhBppaUIPUQt9FvY57VwTWIvp9y_d3bzqIdS_BBCssvuZGdmZ7LzQuidUDnxtlCJzJ2FHxRtE51rmTDvqaZaqyyW8zmdZSdn_PO5ON9CsyEWJrhVDnti3KhtbcIZ-T4DzSWVIN_lx-ZHEqpGBevqUEJD9aUV7IeYYuwO2qYhM9YEbR8ezb58HU9dgl2Lp7KPniGs2F-CBAtRZpQnBWVSJPmGhIqJ_P-lff7tRDlaUh-ge6uqUetfarH4Q1gdP0IPey0TH3Rk8RhtueoJutvVnVw_RT8PsA2O6-06CVLM4tNvuLfUwD363l0ucSySg4Nj_ByDmoiNakLllAp33IHVYg4L1F5cYVVZuDAM6a70wuHaw_iuwSFZJoBRda7my2fo7Pjo-6eTpC_AkBguaZtokzLDtFLOFM4oQgzxqVZceJMRA4qegwclrZHQ7oJBVmjiJEupKihniu2gSVVX7gXCXFqWM26d9zmXhdDMCp9ZzXLqMxDUU_R-WPSy6fJslNE-zoqyQ1EJKCojisp8ig4DXsaeIUd2fFFfz8ue5UpqQFt0gqcOpiSaKw-za0G8VCwTxk7R7oDVsmfcZXlDZlP0dmwGlgt2FFW5etX1Cd5DBcDxvCOCERJQ71ghJJmiYoM8NkDdbKkuL2Ja7zQN0ToMBt0bKOkGrtvWYm-ktv9Yupe3f_UrdJ8GXgipLMkumrTXK_ca1K5Wv-l56TeiIi1z
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKEVAOiDeBgozEjaYkfiT2AaGCqCqk5QIr9Rb5uV0pTZbdLLD_nnFedMWCOERRYsceeWYynzXjGYRecZUn3goVy9xZ2KBoG-tcy5h6TzTRWmVtOZ_J5-xsyj6d8_M9NJQ76hdwtXNrF-pJTZfl8c9vm3eg8G-7I-PizQqMUDgoRlgsCJU8zq-h62CpZCjlMOnhfpfrm0iWyv7szO5PD9BNMNFU8PCXvmKq2oz-u2Don9GUo0v1Nrq1rhZq80OV5RWrdXoX3enhJj7p5OMe2nPVfXSjK0C5eYC-n2AbItibTRzMmcWTL7h32cC9DcKbr3BbLQeHCPkZBryIjVqEEioV7tQEq3JWL-fNxSVWlYULw5DuUpcO1x7GdwscsmYCGVUXc756iKanH79-OIv7SgyxYZI0sTYpNVQr5YxwRiWJSXyqFePeZIkBxOfgQUlrJLS74JnlOnGSpkQJwqiij9B-VVfuCcJMWppTZp33OZOCa2q5z6ymOfEZWOwIvR4WvVh0CTeK1lFORdFxqwBuFS23ijxC7wNfxp4hWXb7ol7Oil73CmIANjrOUgdTJpopD7NrnnipaMaNjdDhwNViEMCCAlJOJeBJGaGXYzPoXnCoqMrV665PCCMSQMfjTghGSgYhipDYEo8tUrdbqvlFm987TcOxHQqDHg2S9Juuf63F0Sht_7F0T_9K8jN0QIJGhHSWySHab5Zr9xygV6NftPr0CzPOKhg
  priority: 102
  providerName: Scholars Portal
– databaseName: HAS SpringerNature Open Access 2022
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEF_qFVEfxG-jVVbwzQtu9iPZfTzFUg7qSy30bdnP9uCaO3o55f57Z5NcNFREH0JI9mvYmWF-yczOIPRemIpEL02uquDhA8X63FZW5SxGaqm1pmzL-Zx-LU_O-fxCXByg6f4szMh_36bu3oCJScfAKM8lZUrk1R10KEEw5QQdzmbzs_nwTyV5rXih-rMxMPzj7cEj-9Om6f8TtrwdIjn4SR-ge9t6bXY_zHL5myk6foQe9hgSzzqmP0YHoX6C7nZVJXdP0fcZ9iksvdnlyUZ5fHqGez8M3NvIusUGtyVwcAp7v8QAArEz61QXpcad7GOzvFzdLJqra2xqDxeGKcO1XQa8ijB_WOOUChPIqLtA8s0zdH785dvnk7wvr5A7rmiTW1cwx6wxwcngDCGOxMIaLqIriQMYF-DBKO8UtIfkbhWWBMUKaiTlzLDnaFKv6vASYa48qxj3IcaKKyks8yKW3rKKxhLMcIY-7Dddr7ssGrr1fjOpOxZpYJFuWaSrDH1KfBl6pgzY7QsQDN0rlKYOsGAQvAiwJLHcRFjdChKVYaVwPkNHe67qXi03mgH8LRSARJWhd0MzKFTykpg6rLZdnxQbJIGOF50QDJQAeGNSKJIhORKPEanjlnpx1SbtLop0FofBpNO9JP2i6297MR2k7R-27tX_zf4a3adJN1LiSnKEJs3NNrwBkNXYt71u_QQ_VyHE
  priority: 102
  providerName: Springer Nature
Title A density-based MS disease diagnosis model using the capuchin search algorithm and an ensemble of deep neural networks
URI https://link.springer.com/article/10.1038/s41598-024-82395-7
https://www.ncbi.nlm.nih.gov/pubmed/39738590
https://www.proquest.com/docview/3150195519
https://www.proquest.com/docview/3150520987
https://pubmed.ncbi.nlm.nih.gov/PMC11686237
https://www.nature.com/articles/s41598-024-82395-7.pdf
https://doaj.org/article/2c232e541ef740b4afdefb50f9a365cd
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: HH5
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: ABDBF
  dateStart: 20121221
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DIK
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAQT
  databaseName: Springer Nature - nature.com Journals - Fully Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: NAO
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.nature.com/siteindex/index.html
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (Proquest)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M48
  dateStart: 20110801
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: AAJSJ
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: C6C
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9owELda0LTtYd8fbB3ypL2tYUkcJ_EjRa0qJFC1Do09Rf6kaDRBEDaxv35nJ2Fjq6b1ASJi41zO59wP7uc7hN5RnvhGpdxjiVbwA0UoTySCecSYUIRC8NiV8xmN4_NJNJzS6QGKm70wjrTvUlq6x3TDDvuwBkdjN4OFkZeGhFEv6S2VOUTtmAIGb6H2ZHzR_2IryQFG8QAmhPUOGZ-kN3x5zwu5ZP03Icy_iZK7aOl9dHeTL_n2O18sfnNIZw_R5-ZWKh7K196mFD35448sj7e_10foQY1Rcb_q-Rgd6PwJulNVrdw-Rd_6WFnae7n1rA9UeHSJ6zgPHB1zb77GrsQOtrT6GQaQiSVf2rorOa7WFuaLWbGal1fXmOcKXhiG1NdioXFhYHy9xDbVJoiRV0T19TM0OTv9NDj36vINnoxYWHpCBkQSwbmWqZbc96VvAsEjamTsS4CJGj5wpiSDdm3DuVT4mpEg5GkYEU6eo1Ze5PolwhFTJCGR0sYkEUupIIqaWAmShCYGN99B75vpzJZVlo7MRddJmlXazECbmdNmlnTQiZ3xXU-bYdudKFazrJ6FLJRgRJpGgYZL-iLiBq4uqG8YJzGVqoOOGnvJ6mW_zgjA64ABCGUd9HbXDAvWRmF4rotN1cdyj1KQ40VlXjtJABySlDK_g9I9w9sTdb8ln1-5pOBBYPf6EBj0uLHRX3L9SxfHOzv-D9W9ul331-heaM3YJsb0j1CrXG30GwBxpeiiw2SadFG73x9eDuF4cjq--AhnB_Gg6_4YgfdRlHbrlf0TaMhLFw
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZbxMxELZKK1R4QNwEChgJnuiqXtt7-KFCPZXSJkLQSn0zPtNK6SY0CVX-HL-N8V4lAlW89CGKsl55J54Zz-edC6H3icqIt7mKROYsHFC0jXSmRcS8p5pqrdKynU-vn3ZP-OfT5HQJ_WpyYUJYZbMnlhu1HZnwjnyDAXKJBdh38Wn8Iwpdo4J3tWmhoerWCnazLDFWJ3YcuvkVHOEmmwe7wO8PlO7vHe90o7rLQGS4oNNIm5gZppVyJndGEWKIj7XiiTcpMYBmHPxQwhoB4y54HRNNnGAxVTnlTDGY9w5a4YwLOPytbO_1v3xt3_IEPxqPRZ2tQ1i-MQGLGbLaKI9yykQSZQsWsWwc8C-0-3fQZuu5vY9WZ8VYza_UcPiHcdx_iB7UqBZvVWL4CC254jG6W_W5nD9BP7ewDYHy03kUrKbFvW-49gzBdxnrdz7BZVMeHALxBxhgKTZqHDq1FLhaZqyGA2DI9OwCq8LCB8OU7kIPHR55mN-NcSjOCWQUVWj75Ck6uRVWPEPLxahwLxDmwrKMceu8z7jIE81s4lOrWUZ9CsCggz42iy7HVV0PWfrjWS4rFklgkSxZJLMO2g58ae8MNbnLC6PLgaxVXFID6NQlPHbwSKK58vB0nRAvFEsTYztoreGqrDeKibwW6w561w6Dige_jSrcaFbdE6KVcqDjeSUELSUAJ1meCNJB-YJ4LJC6OFKcn5VlxOM4ZAcxmHS9kaRrum5ai_VW2v5j6V7e_K_fotXuce9IHh30D1-hezToRSijSdbQ8vRy5l4D5JvqN7VeYfT9tlX5N3rcbIU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKEa8D4k2ggJHgRFfx2t71-oBQoUQtpRUSVMrN-JlWSjehSajy1_h1jPdVIlDFpYdolXjXO5mH59ud8QxCrzItSHCFTqTwDh5QjEuMMDJhIVBDjdF51c5n_yDfOeSfhtlwDf1q98LEtMp2TawWajex8R15nwFySSX4d9kPTVrEl-3Bu-mPJHaQipHWtp1GrSJ7fnkGj2-zt7vbIOvXlA4-fvuwkzQdBhLLJZ0nxqbMMqO1t4W3mhBLQmo0z4LNiQUk4-GLls5KGPcx4pgZ4iVLqS4oZ5rBvFfQVcGYjOmEYii69zsxgsZT2ezTIazoz8BXxv1slCcFhQsSseILq5YB_8K5f6drdjHbW-jGopzq5Zkej_9wi4M76HaDZ_FWrYB30Zov76FrdYfL5X30cwu7mCI_XybRXzq8_xU3MSE4Vll-xzNctePBMQV_hAGQYqunsUdLiWsmYz0eAfvnRydYlw4-GKb0J2bs8STA_H6KY1lOIKOsk9pnD9DhpQjiIVovJ6V_jDCXjgnGnQ9BcFlkhrks5M4wQUMOkKCH3rRMV9O6ooeqIvGsULWIFIhIVSJSoofeR7l0Z8Zq3NUPk9ORaoxbUQu41Gc89XBLYrgOcHeTkSA1yzPremijlapqloiZOlfoHnrZDYNxx4iNLv1kUZ8T85QKoONRrQQdJQAkWZFJ0kPFinqskLo6Uh4fVQXE0zTuC2Iw6WarSed0XcSLzU7b_oN1Ty7-1y_QdTBg9Xn3YO8pukmjWcT6mWQDrc9PF_4ZYL25eV4ZFUbfL9uKfwOKoWof
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdGJwQ88M1WGMhIvLF0jh0n8WNBTBPSJiSoGE-RP7uKLonaFFT-es5OUihMiD1EVWrXvpzPuV91P98h9IrLjDiTy0hk1sAfFGUilSkRMeeookrJNJTzOT1LTybJ-3N-voPS_ixMIO2HlJbhNd2zw46W4Gj8YTCaRDllgkfZqDbuBtpNOWDwAdqdnH0Yf_GV5ACjRAATaHdChrD8ih9veaGQrP8qhPk3UXITLb2Dbq3KWq6_y_n8N4d0fA997h-l5aF8Ha0aNdI__sjyeP1nvY_udhgVj9ueD9COLR-im23VyvUj9G2Mjae9N-vI-0CDTz_iLs4Dn4G5N1viUGIHe1r9FAPIxFrWvu5Kidu9heV8Wi1mzcUllqWBC8OQ9lLNLa4cjG9r7FNtghhlS1RfPkaT43ef3p5EXfmGSCeCNpHSMdNMSWl1brUkRBMXK5lwp1OiASZauJHCaAHt1odzuSJWsJjKnCZMsidoUFal3Uc4EYZlLDHWuSwROVfMcJcaxTLqUnDzQ_S6X86ibrN0FCG6zvKi1WYB2iyCNotsiN74Fd_09Bm2wxfVYlp0q1BQDUZkeRJbmJKoRDqYXXHihGQp12aIDnp7KbptvywYwOtYAAgVQ_Ry0wwb1kdhZGmrVdvHc49ykGOvNa-NJAAOWc4FGaJ8y_C2RN1uKWcXISl4HPuzPgwGPext9Jdc_9LF4caO_0N1T6_X_Rm6Tb0Z-8SY5AANmsXKPgcQ16gX3Y79CT-0RF4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+density-based+MS+disease+diagnosis+model+using+the+capuchin+search+algorithm+and+an+ensemble+of+deep+neural+networks&rft.jtitle=Scientific+reports&rft.au=Bai%2C+LiJuan&rft.au=Wu%2C+Jiao&rft.au=Chen%2C+Li&rft.au=Jiang%2C+Xin&rft.date=2024-12-30&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=31721&rft_id=info:doi/10.1038%2Fs41598-024-82395-7&rft_id=info%3Apmid%2F39738590&rft.externalDocID=39738590
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon