Mobilization of Iron by Plant-Borne Coumarins
Iron is one of the most abundant elements in soils, but its low phytoavailability at high pH restricts plant communities on alkaline soils to taxa that have evolved efficient strategies to increase iron solubility. Recent evidence provides support for a previously underestimated role of root-secrete...
Saved in:
Published in | Trends in plant science Vol. 22; no. 6; pp. 538 - 548 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.06.2017
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 1360-1385 1878-4372 1878-4372 |
DOI | 10.1016/j.tplants.2017.03.008 |
Cover
Abstract | Iron is one of the most abundant elements in soils, but its low phytoavailability at high pH restricts plant communities on alkaline soils to taxa that have evolved efficient strategies to increase iron solubility. Recent evidence provides support for a previously underestimated role of root-secreted coumarins in mobilizing iron through reduction and chelation as part of an orchestrated strategy evolved to improve the acquisition of iron from recalcitrant pools. Understanding the mechanisms that tune the production of iron-mobilizing coumarins and their intricate interplay with other biosynthesis pathways could yield clues for deciphering the molecular basis of ‘iron efficiency’ – the ability of plants to thrive on soils with limited iron availability – and may open avenues for generating iron-fortified crops.
Recent studies have uncovered a crucial role of secreted coumarins in the acquisition of iron, particularly under alkaline conditions. The importance of coumarins in iron acquisition has been widely underestimated in previous studies that have typically been carried out under acidic conditions, thereby masking the role of coumarins.
The efficiency of coumarin-aided mobilization of iron from recalcitrant iron pools may have important consequences for the structure of natural ecosystems, and could be a limiting factor for the yield and nutritional quality of crops grown on alkaline soils.
Iron deficiency-induced coumarin biosynthesis is subject to sophisticated regulation and is interlinked with other biosynthesis and signaling pathways to allow an orchestrated response to developmental and environmental cues. |
---|---|
AbstractList | Iron is one of the most abundant elements in soils, but its low phytoavailability at high pH restricts plant communities on alkaline soils to taxa that have evolved efficient strategies to increase iron solubility. Recent evidence provides support for a previously underestimated role of root-secreted coumarins in mobilizing iron through reduction and chelation as part of an orchestrated strategy evolved to improve the acquisition of iron from recalcitrant pools. Understanding the mechanisms that tune the production of iron-mobilizing coumarins and their intricate interplay with other biosynthesis pathways could yield clues for deciphering the molecular basis of ‘iron efficiency’ – the ability of plants to thrive on soils with limited iron availability – and may open avenues for generating iron-fortified crops. Iron is one of the most abundant elements in soils, but its low phytoavailability at high pH restricts plant communities on alkaline soils to taxa that have evolved efficient strategies to increase iron solubility. Recent evidence provides support for a previously underestimated role of root-secreted coumarins in mobilizing iron through reduction and chelation as part of an orchestrated strategy evolved to improve the acquisition of iron from recalcitrant pools. Understanding the mechanisms that tune the production of iron-mobilizing coumarins and their intricate interplay with other biosynthesis pathways could yield clues for deciphering the molecular basis of 'iron efficiency' - the ability of plants to thrive on soils with limited iron availability - and may open avenues for generating iron-fortified crops.Iron is one of the most abundant elements in soils, but its low phytoavailability at high pH restricts plant communities on alkaline soils to taxa that have evolved efficient strategies to increase iron solubility. Recent evidence provides support for a previously underestimated role of root-secreted coumarins in mobilizing iron through reduction and chelation as part of an orchestrated strategy evolved to improve the acquisition of iron from recalcitrant pools. Understanding the mechanisms that tune the production of iron-mobilizing coumarins and their intricate interplay with other biosynthesis pathways could yield clues for deciphering the molecular basis of 'iron efficiency' - the ability of plants to thrive on soils with limited iron availability - and may open avenues for generating iron-fortified crops. Iron is one of the most abundant elements in soils, but its low phytoavailability at high pH restricts plant communities on alkaline soils to taxa that have evolved efficient strategies to increase iron solubility. Recent evidence provides support for a previously underestimated role of root-secreted coumarins in mobilizing iron through reduction and chelation as part of an orchestrated strategy evolved to improve the acquisition of iron from recalcitrant pools. Understanding the mechanisms that tune the production of iron-mobilizing coumarins and their intricate interplay with other biosynthesis pathways could yield clues for deciphering the molecular basis of ‘iron efficiency’ – the ability of plants to thrive on soils with limited iron availability – and may open avenues for generating iron-fortified crops. Recent studies have uncovered a crucial role of secreted coumarins in the acquisition of iron, particularly under alkaline conditions. The importance of coumarins in iron acquisition has been widely underestimated in previous studies that have typically been carried out under acidic conditions, thereby masking the role of coumarins. The efficiency of coumarin-aided mobilization of iron from recalcitrant iron pools may have important consequences for the structure of natural ecosystems, and could be a limiting factor for the yield and nutritional quality of crops grown on alkaline soils. Iron deficiency-induced coumarin biosynthesis is subject to sophisticated regulation and is interlinked with other biosynthesis and signaling pathways to allow an orchestrated response to developmental and environmental cues. |
Author | Schmidt, Wolfgang Tsai, Huei Hsuan |
Author_xml | – sequence: 1 givenname: Huei Hsuan surname: Tsai fullname: Tsai, Huei Hsuan organization: Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei 11529, Taiwan – sequence: 2 givenname: Wolfgang surname: Schmidt fullname: Schmidt, Wolfgang email: wosh@gate.sinica.edu.tw organization: Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei 11529, Taiwan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28385337$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUU1L7DAUDaL4_ROUATduWnObNB-4EB3eU0HRha5D2t5Chk4zJq2gv_6lb8aNm1ndEM45955zjshu73sk5AxoDhTE1SIfVp3th5gXFGROWU6p2iGHoKTKOJPFbnozQTNgqjwgRzEuKKUSlNgnB4VKn4zJQ5I9-8p17tsOzvcz384eQ5rV1-x1Es_ufOhxNvfj0gbXxxOy19ou4ulmHpP3v3_e5g_Z08v94_z2Kau5LoasAspAt6LGFopStA2UlFdCqFaUSkgpsOSN5RY0YKsqpeR0pG6YtcgtL9gxuVzrroL_GDEOZulijV26Cf0YTZGscA1a861QUEmZS8FZgl78gi78GPpkxIAuGdWSwbT7fIMaqyU2ZhVcMv9lfjJLgOs1oA4-xoCtqd3wP78hWNcZoGZqyCzMpiEzNWQoM6mhxC5_sX8WbOPdrHmYcv90GEysHfY1Ni5gPZjGuy0K_wDeU6pq |
CitedBy_id | crossref_primary_10_1016_j_copbio_2018_11_012 crossref_primary_10_1038_s41477_018_0266_y crossref_primary_10_1111_nph_16775 crossref_primary_10_1016_j_eurpolymj_2021_110962 crossref_primary_10_1016_j_tplants_2023_03_007 crossref_primary_10_1094_MPMI_11_21_0281_FI crossref_primary_10_3389_fpls_2020_586470 crossref_primary_10_15835_nbha49212258 crossref_primary_10_1016_j_tplants_2018_07_005 crossref_primary_10_1016_j_plantsci_2023_111793 crossref_primary_10_1007_s11104_021_05152_z crossref_primary_10_3389_fpls_2019_01741 crossref_primary_10_1016_j_tplants_2019_09_010 crossref_primary_10_3390_ijms222011032 crossref_primary_10_1111_tpj_16130 crossref_primary_10_3390_ijms241612617 crossref_primary_10_1093_aobpla_plab041 crossref_primary_10_1093_jxb_eraa424 crossref_primary_10_1111_nph_16005 crossref_primary_10_1007_s11104_019_04190_y crossref_primary_10_1111_pce_13627 crossref_primary_10_1186_s43014_022_00096_y crossref_primary_10_3390_f15030515 crossref_primary_10_38211_joarps_2023_04_02_168 crossref_primary_10_1016_j_rhisph_2020_100274 crossref_primary_10_1016_j_tplants_2022_03_012 crossref_primary_10_1016_j_plantsci_2020_110471 crossref_primary_10_14202_vetworld_2020_2484_2492 crossref_primary_10_1016_j_micres_2023_127368 crossref_primary_10_3389_fsufs_2021_606815 crossref_primary_10_1002_tpg2_20411 crossref_primary_10_1093_pcp_pcz076 crossref_primary_10_1016_j_plantsci_2020_110808 crossref_primary_10_1371_journal_pone_0239075 crossref_primary_10_3389_fpls_2019_00287 crossref_primary_10_1093_jxb_erae251 crossref_primary_10_1016_j_plantsci_2020_110526 crossref_primary_10_1073_pnas_1907971116 crossref_primary_10_1007_s11032_019_1077_1 crossref_primary_10_1016_j_tplants_2020_09_008 crossref_primary_10_1111_nph_18096 crossref_primary_10_3390_ijms23179854 crossref_primary_10_1016_S1002_0160_19_60810_6 crossref_primary_10_1074_jbc_REV120_010856 crossref_primary_10_1111_ppl_13333 crossref_primary_10_1016_j_jplph_2017_07_007 crossref_primary_10_1016_j_envexpbot_2021_104552 crossref_primary_10_1093_jxb_erab531 crossref_primary_10_3389_fpls_2022_1035233 crossref_primary_10_1016_j_envexpbot_2021_104778 crossref_primary_10_1073_pnas_2304171120 crossref_primary_10_1016_j_scitotenv_2022_153144 crossref_primary_10_1042_BCJ20190188 crossref_primary_10_1186_s12870_024_04906_y crossref_primary_10_3390_jof9020258 crossref_primary_10_1080_0028825X_2024_2393294 crossref_primary_10_3390_ijms221910455 crossref_primary_10_3389_fpls_2019_00605 crossref_primary_10_1038_s41467_023_37188_3 crossref_primary_10_1007_s12517_021_07978_4 crossref_primary_10_3390_ijms22073319 crossref_primary_10_1111_pce_14025 crossref_primary_10_3390_plants10020200 crossref_primary_10_1111_tpj_16191 crossref_primary_10_2139_ssrn_3272237 crossref_primary_10_1093_aob_mcz160 crossref_primary_10_3390_ijms22147305 crossref_primary_10_1093_jxb_erac014 crossref_primary_10_3389_fnut_2022_897982 crossref_primary_10_3390_ijms221910826 crossref_primary_10_1007_s11104_021_04873_5 crossref_primary_10_1007_s00344_019_10029_8 crossref_primary_10_1021_acs_jafc_4c10038 crossref_primary_10_1016_j_tibs_2022_07_001 crossref_primary_10_1111_tpj_14426 crossref_primary_10_1016_j_soilbio_2021_108453 crossref_primary_10_1016_j_isci_2022_104168 crossref_primary_10_1186_s12864_019_6062_x crossref_primary_10_1007_s10681_020_02599_6 crossref_primary_10_3390_microorganisms9030575 crossref_primary_10_1016_j_plaphy_2023_108318 crossref_primary_10_1038_s41467_023_43911_x crossref_primary_10_1016_j_pbi_2017_06_004 crossref_primary_10_1128_aem_01601_22 crossref_primary_10_1093_femsre_fuad066 crossref_primary_10_1016_j_tplants_2020_10_008 crossref_primary_10_3389_fpls_2022_960750 crossref_primary_10_1093_pcp_pcab166 crossref_primary_10_3389_fpls_2019_00909 crossref_primary_10_1007_s00468_018_1743_7 crossref_primary_10_1007_s11356_021_15838_7 crossref_primary_10_1016_j_plantsci_2023_111868 crossref_primary_10_3389_fpls_2021_704000 crossref_primary_10_1039_C7MT00136C crossref_primary_10_3389_fpls_2022_878809 crossref_primary_10_1093_jxb_ery221 crossref_primary_10_1016_j_tplants_2021_08_003 crossref_primary_10_1093_pcp_pcz038 crossref_primary_10_1016_j_lwt_2021_112351 crossref_primary_10_1093_jxb_erab069 crossref_primary_10_3390_d17010062 crossref_primary_10_1007_s11103_021_01143_x crossref_primary_10_1093_jxb_erac316 crossref_primary_10_1007_s11104_023_05943_6 crossref_primary_10_1186_s12870_024_04854_7 crossref_primary_10_1016_j_jplph_2022_153898 crossref_primary_10_3390_ijms25115729 crossref_primary_10_3390_plants11192610 crossref_primary_10_1021_acsearthspacechem_3c00199 crossref_primary_10_3390_ijms231911370 crossref_primary_10_1093_jxb_eraa535 crossref_primary_10_1016_j_copbio_2024_103150 crossref_primary_10_1093_bbb_zbab180 crossref_primary_10_1016_j_copbio_2021_06_015 crossref_primary_10_1111_ppl_70134 crossref_primary_10_1016_j_plaphy_2022_11_017 crossref_primary_10_1093_pcp_pcac038 crossref_primary_10_3389_fpls_2021_796893 crossref_primary_10_1016_j_cj_2023_06_011 crossref_primary_10_1111_tpj_16678 crossref_primary_10_1007_s10725_023_01006_z crossref_primary_10_1186_s12870_020_02601_2 crossref_primary_10_3389_fpls_2018_01112 crossref_primary_10_1007_s11104_024_06783_8 crossref_primary_10_3390_ijms22179312 crossref_primary_10_1007_s00344_020_10232_y crossref_primary_10_1071_FP19144 crossref_primary_10_1093_hr_uhad099 |
Cites_doi | 10.1038/sj.cr.7290331 10.1371/journal.pone.0102444 10.1093/mp/ssp106 10.1093/pcp/pcq095 10.1006/abio.1997.2522 10.1080/00380768.1976.10433004 10.1111/j.1469-8137.2008.02458.x 10.1104/pp.107.095794 10.1104/pp.109.152728 10.1016/j.febslet.2005.11.014 10.1002/(SICI)1097-0010(20000515)80:7<861::AID-JSFA601>3.0.CO;2-P 10.1074/jbc.M111.221168 10.1093/pcp/pcp174 10.1016/j.phytochem.2014.10.003 10.2134/agronj1973.00021962006500020037x 10.1080/07352689.2011.616039 10.2136/sssaj1993.03615995005700050016x 10.1104/pp.114.250837 10.1111/j.1469-8137.2008.02738.x 10.1016/j.pbi.2016.06.017 10.1105/tpc.111.084715 10.1111/nph.12471 10.1038/17800 10.1105/tpc.104.024315 10.1111/nph.12860 10.1046/j.1365-313X.2002.01381.x 10.1104/pp.113.228544 10.1073/pnas.0701954104 10.1073/pnas.1523580113 10.1016/j.febslet.2004.10.062 10.3389/fpls.2016.00735 10.1104/pp.78.1.115 10.1016/j.plaphy.2016.04.025 10.1104/pp.114.249136 10.1038/srep29033 10.1111/tpj.12440 10.1199/tab.0152 10.1073/pnas.93.11.5624 10.1104/pp.80.1.175 10.1007/s11104-009-0266-9 10.1080/00380768.2011.637305 10.1046/j.1365-313X.1996.10050835.x 10.1105/tpc.113.119644 10.1105/tpc.010436 10.1080/01904168409363213 10.1371/journal.pgen.1003953 10.1080/00380768.2014.945390 10.1104/pp.107.113829 10.1016/j.molp.2015.09.010 10.1146/annurev-arplant-042811-105522 10.1074/mcp.M115.048520 10.1105/tpc.001388 10.1111/j.1365-313X.2011.04565.x 10.1104/pp.113.220426 10.1023/A:1019942200164 10.1093/mp/ssr065 10.1016/j.cell.2015.12.021 10.1038/nature11336 10.1111/j.1365-3040.2009.01926.x 10.1073/pnas.1321597111 10.1016/j.molp.2014.11.001 10.1038/ncomms3792 10.1080/01904168409363231 10.1016/j.tplants.2016.01.009 10.1046/j.1469-8137.1999.00331.x 10.1111/tpj.12995 10.1111/nph.12980 10.1105/tpc.110.074096 10.1038/nature11237 10.1104/pp.71.4.949 10.3389/fpls.2016.01711 10.1104/pp.110.169508 10.1104/pp.50.2.208 10.1111/nph.13633 10.1016/j.tplants.2013.11.006 10.1093/aob/mct249 10.1016/j.biochi.2010.03.025 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd Copyright © 2017 Elsevier Ltd. All rights reserved. Copyright Elsevier BV Jun 2017 |
Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright © 2017 Elsevier Ltd. All rights reserved. – notice: Copyright Elsevier BV Jun 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QO 7QR 7T7 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 |
DOI | 10.1016/j.tplants.2017.03.008 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Biotechnology Research Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Botany |
EISSN | 1878-4372 |
EndPage | 548 |
ExternalDocumentID | 28385337 10_1016_j_tplants_2017_03_008 S1360138517300481 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M -DZ .~1 0R~ 123 186 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 53G 5VS 7-5 71M 8P~ AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFRF ABGRD ABGSF ABJNI ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIWK ACPRK ACRLP ADBBV ADEZE ADMUD ADQTV ADUVX AEBSH AEFWE AEHWI AEKER AENEX AEQOU AFKWA AFRAH AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RCE RIG ROL RPZ SCC SDF SDG SDP SES SEW SPCBC SSA SSU SSZ T5K TWZ VQA XPP Y6R ZCA ~G- ~KM AAHBH AAMRU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD BNPGV CGR CUY CVF ECM EIF NPM SSH 7QL 7QO 7QR 7T7 7TM 7U9 8FD AGCQF C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c492t-b10319f6cef1256fd1504b668f6586776e54da4a191ef8b88713859d3aae4a423 |
IEDL.DBID | .~1 |
ISSN | 1360-1385 1878-4372 |
IngestDate | Sun Sep 28 00:33:53 EDT 2025 Sun Sep 28 04:26:23 EDT 2025 Wed Aug 13 09:37:14 EDT 2025 Thu Apr 03 07:06:35 EDT 2025 Wed Oct 01 01:42:39 EDT 2025 Thu Apr 24 23:02:12 EDT 2025 Fri Feb 23 02:26:40 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | iron deficiency phenylpropanoid pathway root exudates phenolics rhizosphere |
Language | English |
License | Copyright © 2017 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c492t-b10319f6cef1256fd1504b668f6586776e54da4a191ef8b88713859d3aae4a423 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
PMID | 28385337 |
PQID | 1953097312 |
PQPubID | 2045386 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2000491994 proquest_miscellaneous_1885947643 proquest_journals_1953097312 pubmed_primary_28385337 crossref_citationtrail_10_1016_j_tplants_2017_03_008 crossref_primary_10_1016_j_tplants_2017_03_008 elsevier_sciencedirect_doi_10_1016_j_tplants_2017_03_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2017 2017-06-00 2017-Jun 20170601 |
PublicationDateYYYYMMDD | 2017-06-01 |
PublicationDate_xml | – month: 06 year: 2017 text: June 2017 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Kidlington |
PublicationTitle | Trends in plant science |
PublicationTitleAlternate | Trends Plant Sci |
PublicationYear | 2017 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Varotto (bib0140) 2002; 31 Schlaeppi (bib0295) 2014; 111 Zamioudis (bib0360) 2015; 84 Zhou (bib0365) 2016; 105 Mommer (bib0090) 2016; 21 Fraser, Chapple (bib0375) 2011; 9 Bashir (bib0230) 2011; 57 Fourcroy (bib0220) 2014; 201 Barberon (bib0335) 2016; 164 Takagi (bib0025) 1984; 7 Brown, Ambler (bib0205) 1973; 65 Lan (bib0235) 2011; 155 Ducos (bib0255) 2005; 579 Ishimaru (bib0225) 2011; 286 Li (bib0085) 2016; 113 Badri (bib0095) 2008; 179 Chaney (bib0115) 1972; 50 Ivanov (bib0165) 2012; 5 Vert (bib0145) 2002; 14 Yang (bib0180) 2014; 77 Gnonlonfin (bib0340) 2012; 31 Schmid (bib0070) 2014; 164 Bulgarelli (bib0285) 2012; 488 Römheld, Marschner (bib0035) 1986; 80 Strehmel (bib0045) 2014; 108 Lingam (bib0175) 2011; 23 Baetz, Martinoia (bib0105) 2014; 19 Lundberg (bib0290) 2012; 488 Palmer (bib0355) 2013; 9 Grime, Hodgson (bib0110) 1969 Long (bib0190) 2010; 22 Sivitz (bib0170) 2011; 66 Frossard (bib0005) 2000; 80 Van der Ent (bib0350) 2008; 146 Vogt (bib0370) 2010; 3 Sisó-Terraza (bib0265) 2016; 7 Hether (bib0210) 1984; 7 Pan (bib0240) 2015; 14 Jin (bib0215) 2007; 144 Robinson (bib0125) 1999; 397 Römheld, Marschner (bib0315) 1983; 71 Mladenka (bib0305) 2010; 92 Zhang, Liu (bib0380) 2015; 8 Kobayashi (bib0200) 2013; 4 Kobayashi, Nishizawa (bib0030) 2012; 63 Le Roy (bib0270) 2016; 7 White, Broadley (bib0015) 2009; 182 Ahn (bib0275) 2010; 51 Cesco (bib0055) 2010; 329 Selote (bib0195) 2015; 167 Zamioudis (bib0280) 2014; 204 Tawaraya (bib0050) 2014; 60 Eide (bib0130) 1996; 93 Yuan (bib0160) 2005; 15 Jakoby (bib0155) 2004; 577 Sijmons (bib0330) 1985; 78 Schmidt (bib0260) 2014; 9 Takagi (bib0020) 1976; 22 Sisó-Terraza (bib0310) 2016; 209 Schmidt (bib0320) 1999; 141 Rodríguez-Celma (bib0250) 2013; 162 Zhang (bib0385) 2013; 25 Colangelo, Guerinot (bib0150) 2004; 16 Zhang (bib0390) 2015; 167 Ohkama-Ohtsu, Wasaki (bib0060) 2010; 51 Fourcroy (bib0325) 2016; 9 Feder (bib0395) 2015; 169 Rasmann, Turlings (bib0075) 2016; 32 Yang (bib0245) 2010; 152 Zhang (bib0185) 2014; 203 Mönchgesang (bib0080) 2016; 6 Guerinot (bib0010) 2007; 104 Jin (bib0065) 2014; 113 Yoshino, Murakami (bib0300) 1998; 257 Yi, Guerinot (bib0120) 1996; 10 Henriques (bib0135) 2002; 50 Badri, Vivanco (bib0100) 2009; 32 Inoue (bib0040) 1993; 57 Chong (bib0345) 2002; 14 Feder (10.1016/j.tplants.2017.03.008_bib0395) 2015; 169 Rasmann (10.1016/j.tplants.2017.03.008_bib0075) 2016; 32 Mönchgesang (10.1016/j.tplants.2017.03.008_bib0080) 2016; 6 Yang (10.1016/j.tplants.2017.03.008_bib0180) 2014; 77 Frossard (10.1016/j.tplants.2017.03.008_bib0005) 2000; 80 Guerinot (10.1016/j.tplants.2017.03.008_bib0010) 2007; 104 Long (10.1016/j.tplants.2017.03.008_bib0190) 2010; 22 Römheld (10.1016/j.tplants.2017.03.008_bib0315) 1983; 71 Fraser (10.1016/j.tplants.2017.03.008_bib0375) 2011; 9 Palmer (10.1016/j.tplants.2017.03.008_bib0355) 2013; 9 Takagi (10.1016/j.tplants.2017.03.008_bib0025) 1984; 7 Eide (10.1016/j.tplants.2017.03.008_bib0130) 1996; 93 Fourcroy (10.1016/j.tplants.2017.03.008_bib0325) 2016; 9 Pan (10.1016/j.tplants.2017.03.008_bib0240) 2015; 14 Mommer (10.1016/j.tplants.2017.03.008_bib0090) 2016; 21 Mladenka (10.1016/j.tplants.2017.03.008_bib0305) 2010; 92 Kobayashi (10.1016/j.tplants.2017.03.008_bib0200) 2013; 4 Vert (10.1016/j.tplants.2017.03.008_bib0145) 2002; 14 Ducos (10.1016/j.tplants.2017.03.008_bib0255) 2005; 579 Schmid (10.1016/j.tplants.2017.03.008_bib0070) 2014; 164 Badri (10.1016/j.tplants.2017.03.008_bib0100) 2009; 32 Yuan (10.1016/j.tplants.2017.03.008_bib0160) 2005; 15 Selote (10.1016/j.tplants.2017.03.008_bib0195) 2015; 167 Chaney (10.1016/j.tplants.2017.03.008_bib0115) 1972; 50 Schmidt (10.1016/j.tplants.2017.03.008_bib0260) 2014; 9 Grime (10.1016/j.tplants.2017.03.008_bib0110) 1969 Lundberg (10.1016/j.tplants.2017.03.008_bib0290) 2012; 488 Varotto (10.1016/j.tplants.2017.03.008_bib0140) 2002; 31 Zamioudis (10.1016/j.tplants.2017.03.008_bib0280) 2014; 204 Hether (10.1016/j.tplants.2017.03.008_bib0210) 1984; 7 Fourcroy (10.1016/j.tplants.2017.03.008_bib0220) 2014; 201 Schmidt (10.1016/j.tplants.2017.03.008_bib0320) 1999; 141 Gnonlonfin (10.1016/j.tplants.2017.03.008_bib0340) 2012; 31 Vogt (10.1016/j.tplants.2017.03.008_bib0370) 2010; 3 Rodríguez-Celma (10.1016/j.tplants.2017.03.008_bib0250) 2013; 162 Ahn (10.1016/j.tplants.2017.03.008_bib0275) 2010; 51 Sisó-Terraza (10.1016/j.tplants.2017.03.008_bib0310) 2016; 209 Tawaraya (10.1016/j.tplants.2017.03.008_bib0050) 2014; 60 Yi (10.1016/j.tplants.2017.03.008_bib0120) 1996; 10 Le Roy (10.1016/j.tplants.2017.03.008_bib0270) 2016; 7 Inoue (10.1016/j.tplants.2017.03.008_bib0040) 1993; 57 Yoshino (10.1016/j.tplants.2017.03.008_bib0300) 1998; 257 Sijmons (10.1016/j.tplants.2017.03.008_bib0330) 1985; 78 Strehmel (10.1016/j.tplants.2017.03.008_bib0045) 2014; 108 Yang (10.1016/j.tplants.2017.03.008_bib0245) 2010; 152 Zhou (10.1016/j.tplants.2017.03.008_bib0365) 2016; 105 Schlaeppi (10.1016/j.tplants.2017.03.008_bib0295) 2014; 111 Zhang (10.1016/j.tplants.2017.03.008_bib0185) 2014; 203 Sisó-Terraza (10.1016/j.tplants.2017.03.008_bib0265) 2016; 7 Kobayashi (10.1016/j.tplants.2017.03.008_bib0030) 2012; 63 Lingam (10.1016/j.tplants.2017.03.008_bib0175) 2011; 23 Zhang (10.1016/j.tplants.2017.03.008_bib0390) 2015; 167 Takagi (10.1016/j.tplants.2017.03.008_bib0020) 1976; 22 Baetz (10.1016/j.tplants.2017.03.008_bib0105) 2014; 19 Ohkama-Ohtsu (10.1016/j.tplants.2017.03.008_bib0060) 2010; 51 Jin (10.1016/j.tplants.2017.03.008_bib0065) 2014; 113 Brown (10.1016/j.tplants.2017.03.008_bib0205) 1973; 65 Ivanov (10.1016/j.tplants.2017.03.008_bib0165) 2012; 5 Römheld (10.1016/j.tplants.2017.03.008_bib0035) 1986; 80 Henriques (10.1016/j.tplants.2017.03.008_bib0135) 2002; 50 Cesco (10.1016/j.tplants.2017.03.008_bib0055) 2010; 329 Lan (10.1016/j.tplants.2017.03.008_bib0235) 2011; 155 Robinson (10.1016/j.tplants.2017.03.008_bib0125) 1999; 397 Sivitz (10.1016/j.tplants.2017.03.008_bib0170) 2011; 66 Chong (10.1016/j.tplants.2017.03.008_bib0345) 2002; 14 White (10.1016/j.tplants.2017.03.008_bib0015) 2009; 182 Colangelo (10.1016/j.tplants.2017.03.008_bib0150) 2004; 16 Zamioudis (10.1016/j.tplants.2017.03.008_bib0360) 2015; 84 Bulgarelli (10.1016/j.tplants.2017.03.008_bib0285) 2012; 488 Van der Ent (10.1016/j.tplants.2017.03.008_bib0350) 2008; 146 Zhang (10.1016/j.tplants.2017.03.008_bib0380) 2015; 8 Li (10.1016/j.tplants.2017.03.008_bib0085) 2016; 113 Badri (10.1016/j.tplants.2017.03.008_bib0095) 2008; 179 Jin (10.1016/j.tplants.2017.03.008_bib0215) 2007; 144 Zhang (10.1016/j.tplants.2017.03.008_bib0385) 2013; 25 Ishimaru (10.1016/j.tplants.2017.03.008_bib0225) 2011; 286 Barberon (10.1016/j.tplants.2017.03.008_bib0335) 2016; 164 Jakoby (10.1016/j.tplants.2017.03.008_bib0155) 2004; 577 Bashir (10.1016/j.tplants.2017.03.008_bib0230) 2011; 57 |
References_xml | – volume: 32 start-page: 62 year: 2016 end-page: 68 ident: bib0075 article-title: Root signals that mediate mutualistic interactions in the rhizosphere publication-title: Curr Opin. Plant Biol. – volume: 65 start-page: 311 year: 1973 end-page: 314 ident: bib0205 article-title: ‘Reductants’ released by roots of Fe-deficient soybeans publication-title: Agron. J. – volume: 167 start-page: 273 year: 2015 end-page: 286 ident: bib0195 article-title: Iron-binding E3 ligase mediates iron response in plants by targeting basic helix-loop-helix transcription factors publication-title: Plant Physiol. – volume: 4 start-page: 2792 year: 2013 ident: bib0200 article-title: Iron-binding haemerythrin RING ubiquitin ligases regulate plant iron responses and accumulation publication-title: Nat. Commun. – volume: 80 start-page: 175 year: 1986 end-page: 180 ident: bib0035 article-title: Evidence for a specific uptake system for iron phytosiderophores in roots of grasses publication-title: Plant Physiol. – volume: 77 start-page: 838 year: 2014 end-page: 851 ident: bib0180 article-title: The publication-title: Plant J. – volume: 22 start-page: 2219 year: 2010 end-page: 2236 ident: bib0190 article-title: The bHLH transcription factor POPEYE regulates response to iron deficiency in publication-title: Plant Cell – volume: 15 start-page: 613 year: 2005 end-page: 621 ident: bib0160 article-title: AtbHLH29 of publication-title: Cell Res. – volume: 209 start-page: 733 year: 2016 end-page: 745 ident: bib0310 article-title: Flavins secreted by roots of iron-deficient publication-title: New Phytol. – volume: 57 start-page: 803 year: 2011 end-page: 812 ident: bib0230 article-title: Rice phenolics efflux transporter 2 (PEZ2) plays an important role in solubilizing apoplasmic iron publication-title: Soil Sci. Plant Nutr. – volume: 25 start-page: 4994 year: 2013 end-page: 5010 ident: bib0385 article-title: Kelch repeat F-box proteins regulate phenylpropanoid biosynthesis via controlling the turnover of phenylalanine ammonia-lyase publication-title: Plant Cell – volume: 50 start-page: 587 year: 2002 end-page: 597 ident: bib0135 article-title: Knock-out of publication-title: Plant Mol. Biol. – volume: 144 start-page: 278 year: 2007 end-page: 285 ident: bib0215 article-title: Iron deficiency-induced secretion of phenolics facilitates the reutilization of root apoplastic iron in red clover publication-title: Plant Physiol. – volume: 257 start-page: 40 year: 1998 end-page: 44 ident: bib0300 article-title: Interaction of iron with polyphenolic compounds: application to antioxidant characterization publication-title: Anal. Biochem. – volume: 179 start-page: 209 year: 2008 end-page: 223 ident: bib0095 article-title: Transcriptome analysis of publication-title: New Phytol. – volume: 7 start-page: 667 year: 1984 end-page: 676 ident: bib0210 article-title: Chemical identification of iron reductants exuded by plant roots publication-title: J. Plant Nutr. – volume: 9 start-page: e102444 year: 2014 ident: bib0260 article-title: Metabolome analysis of publication-title: Plos One – volume: 488 start-page: 91 year: 2012 end-page: 95 ident: bib0285 article-title: Revealing structure and assembly cues for publication-title: Nature – volume: 286 start-page: 24649 year: 2011 end-page: 24655 ident: bib0225 article-title: A rice phenolic efflux transporter is essential for solubilizing precipitated apoplasmic iron in the plant stele publication-title: J. Biol. Chem. – volume: 182 start-page: 49 year: 2009 end-page: 84 ident: bib0015 article-title: Biofortification of crops with seven mineral elements often lacking in human diets – iron, zinc, copper, calcium, magnesium, selenium and iodine publication-title: New Phytol. – volume: 80 start-page: 861 year: 2000 end-page: 879 ident: bib0005 article-title: Potential for increasing the content and bioavailability of Fe, Zn and Ca in plants for human nutrition publication-title: J. Sci. Food Agric. – volume: 51 start-page: 1255 year: 2010 end-page: 1264 ident: bib0060 article-title: Recent progress in plant nutrition research: cross-talk between nutrients, plant physiology and soil microorganisms publication-title: Plant Cell Physiol. – volume: 14 start-page: 1093 year: 2002 end-page: 1107 ident: bib0345 article-title: Downregulation of a pathogen-responsive tobacco UDP-Glc: phenylpropanoid glucosyltransferase reduces scopoletin glucoside accumulation, enhances oxidative stress, and weakens virus resistance publication-title: Plant Cell – volume: 577 start-page: 528 year: 2004 end-page: 534 ident: bib0155 article-title: FRU (BHLH029) is required for induction of iron mobilization genes in publication-title: FEBS Lett. – volume: 152 start-page: 2130 year: 2010 end-page: 2141 ident: bib0245 article-title: Transcriptional profiling of the publication-title: Plant Physiol. – volume: 22 start-page: 423 year: 1976 end-page: 433 ident: bib0020 article-title: Naturally occurring iron-chelating compounds in oat-and rice-root washings: I. Activity measurement and preliminary characterization publication-title: Soil Sci. Plant Nutr. – volume: 105 start-page: 162 year: 2016 end-page: 173 ident: bib0365 article-title: BFKC01 enhances plant iron absorption via improved root systems and activated iron acquisition mechanisms publication-title: Plant Physiol. Biochem. – volume: 203 start-page: 770 year: 2014 end-page: 783 ident: bib0185 article-title: Mediator subunit 16 functions in the regulation of iron uptake gene expression in publication-title: New Phytol. – volume: 10 start-page: 835 year: 1996 end-page: 844 ident: bib0120 article-title: Genetic evidence that induction of root Fe(III) chelate reductase activity is necessary for iron uptake under iron deficiency publication-title: Plant J. – volume: 7 start-page: 469 year: 1984 end-page: 477 ident: bib0025 article-title: Physiological aspect of mugineic acid, a possible phytosiderophore of graminaceous plants publication-title: J. Plant Nutr. – volume: 71 start-page: 949 year: 1983 end-page: 954 ident: bib0315 article-title: Mechanism of iron uptake by peanut plants. 1. FeIII reduction, chelate splitting, and release of phenolics publication-title: Plant Physiol. – start-page: 67 year: 1969 end-page: 99 ident: bib0110 article-title: An investigation of the ecological significance of lime-chlorosis by means of large-scale comparative experiments publication-title: Ecological Aspects of Mineral Nutrition of Plants – volume: 66 start-page: 1044 year: 2011 end-page: 1052 ident: bib0170 article-title: Proteasome-mediated turnover of the transcriptional activator FIT is required for plant iron-deficiency responses publication-title: Plant J. – volume: 32 start-page: 666 year: 2009 end-page: 681 ident: bib0100 article-title: Regulation and function of root exudates publication-title: Plant, Cell & Environ. – volume: 141 start-page: 1 year: 1999 end-page: 26 ident: bib0320 article-title: Mechanisms and regulation of reduction-based iron uptake in plants publication-title: New Phytol. – volume: 93 start-page: 5624 year: 1996 end-page: 5628 ident: bib0130 article-title: A novel iron-regulated metal transporter from plants identified by functional expression in yeast publication-title: Proc. Nat. Acad. Sci. U.S.A. – volume: 111 start-page: 585 year: 2014 end-page: 592 ident: bib0295 article-title: Quantitative divergence of the bacterial root microbiota in publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 16 start-page: 3400 year: 2004 end-page: 3412 ident: bib0150 article-title: The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response publication-title: Plant Cell – volume: 3 start-page: 2 year: 2010 end-page: 20 ident: bib0370 article-title: Phenylpropanoid biosynthesis publication-title: Mol. Plant – volume: 162 start-page: 1473 year: 2013 end-page: 1485 ident: bib0250 article-title: Mutually exclusive alterations in secondary metabolism are critical for the uptake of insoluble iron compounds by publication-title: Plant Physiol. – volume: 14 start-page: 1223 year: 2002 end-page: 1233 ident: bib0145 article-title: IRT1, an publication-title: Plant Cell – volume: 164 start-page: 447 year: 2016 end-page: 459 ident: bib0335 article-title: Adaptation of root function by nutrient-induced plasticity of endodermal differentiation publication-title: Cell – volume: 5 start-page: 27 year: 2012 end-page: 42 ident: bib0165 article-title: Fitting into the harsh reality: regulation of iron-deficiency responses in dicotyledonous plants publication-title: Mol. Plant – volume: 155 start-page: 821 year: 2011 end-page: 834 ident: bib0235 article-title: iTRAQ protein profile analysis of publication-title: Plant Physiol. – volume: 9 start-page: e1003953 year: 2013 ident: bib0355 article-title: MYB10 and MYB72 are required for growth under iron-limiting conditions publication-title: Plos Genet – volume: 23 start-page: 1815 year: 2011 end-page: 1829 ident: bib0175 article-title: Interaction between the bHLH transcription factor FIT and ETHYLENE INSENSITIVE3/ETHYLENE INSENSITIVE3-LIKE1 reveals molecular linkage between the regulation of iron acquisition and ethylene signaling in publication-title: Plant Cell – volume: 7 start-page: 735 year: 2016 ident: bib0270 article-title: Glycosylation is a major regulator of phenylpropanoid availability and biological activity in plants publication-title: Front. Plant Sci. – volume: 201 start-page: 155 year: 2014 end-page: 167 ident: bib0220 article-title: Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by publication-title: New Phytol. – volume: 108 start-page: 35 year: 2014 end-page: 46 ident: bib0045 article-title: Profiling of secondary metabolites in root exudates of publication-title: Phytochemistry – volume: 8 start-page: 17 year: 2015 end-page: 27 ident: bib0380 article-title: Multifaceted regulations of gateway enzyme phenylalanine ammonia-lyase in the biosynthesis of phenylpropanoids publication-title: Mol. Plant – volume: 329 start-page: 1 year: 2010 end-page: 25 ident: bib0055 article-title: Release of plant-borne flavonoids into the rhizosphere and their role in plant nutrition publication-title: Plant Soil – volume: 7 start-page: 1711 year: 2016 ident: bib0265 article-title: Accumulation and secretion of coumarinolignans and other coumarins in publication-title: Front. Plant Sci. – volume: 113 start-page: 7 year: 2014 end-page: 18 ident: bib0065 article-title: An underground tale: contribution of microbial activity to plant iron acquisition via ecological processes publication-title: Ann. Bot. – volume: 92 start-page: 1108 year: 2010 end-page: 1114 ident: bib0305 article-title: interactions of coumarins with iron publication-title: Biochimie – volume: 9 start-page: 485 year: 2016 end-page: 488 ident: bib0325 article-title: Facilitated Fe nutrition by phenolic compounds excreted by the publication-title: Mol. Plant – volume: 60 start-page: 679 year: 2014 end-page: 694 ident: bib0050 article-title: Metabolite profiling of soybean root exudates under phosphorus deficiency publication-title: Soil Sci. Plant Nutr. – volume: 14 start-page: 2733 year: 2015 end-page: 2752 ident: bib0240 article-title: Post-transcriptional coordination of the publication-title: Mol. Cell. Proteomics – volume: 579 start-page: 6791 year: 2005 end-page: 6795 ident: bib0255 article-title: NtPDR3, an iron-deficiency inducible ABC transporter in publication-title: FEBS Lett. – volume: 104 start-page: 7311 year: 2007 end-page: 7312 ident: bib0010 article-title: It’s elementary: Enhancing Fe3+ reduction improves rice yields publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 21 start-page: 209 year: 2016 end-page: 217 ident: bib0090 article-title: Root–root interactions: towards a rhizosphere framework publication-title: Trends Plant Sci. – volume: 78 start-page: 115 year: 1985 end-page: 120 ident: bib0330 article-title: Iron-deficiency decreases suberization in bean roots through a decrease in suberin-specific peroxidase-activity publication-title: Plant Physiol. – volume: 63 start-page: 131 year: 2012 end-page: 152 ident: bib0030 article-title: Iron uptake, translocation, and regulation in higher plants publication-title: Annu. Rev. Plant Biol. – volume: 19 start-page: 90 year: 2014 end-page: 98 ident: bib0105 article-title: Root exudates: the hidden part of plant defense publication-title: Trends Plant Sci. – volume: 397 start-page: 694 year: 1999 end-page: 697 ident: bib0125 article-title: A ferric-chelate reductase for iron uptake from soils publication-title: Nature – volume: 6 start-page: 29033 year: 2016 ident: bib0080 article-title: Natural variation of root exudates in publication-title: Sci. Rep. – volume: 169 start-page: 1714 year: 2015 end-page: 1726 ident: bib0395 article-title: A Kelch domain-containing F-box coding gene negatively regulates flavonoid accumulation in publication-title: Plant Physiol. – volume: 488 start-page: 86 year: 2012 end-page: 90 ident: bib0290 article-title: Defining the core publication-title: Nature – volume: 31 start-page: 47 year: 2012 end-page: 56 ident: bib0340 article-title: Scopoletin – a coumarin phytoalexin with medicinal properties publication-title: Crit. Rev. Plant Sci. – volume: 9 start-page: e0152 year: 2011 ident: bib0375 article-title: The phenylpropanoid pathway in publication-title: The – volume: 57 start-page: 1254 year: 1993 end-page: 1260 ident: bib0040 article-title: Interaction of mugineic acid with synthetically produced iron oxides publication-title: Soil Sci. Soc. Am. J. – volume: 164 start-page: 160 year: 2014 end-page: 172 ident: bib0070 article-title: Feruloyl-CoA 6'-hydroxylase1-dependent coumarins mediate iron acquisition from alkaline substrates in publication-title: Plant Physiol. – volume: 167 start-page: 337 year: 2015 end-page: 350 ident: bib0390 article-title: Down-regulation of Kelch domain-containing F-box protein in publication-title: Plant Physiol. – volume: 84 start-page: 309 year: 2015 end-page: 322 ident: bib0360 article-title: Rhizobacterial volatiles and photosynthesis-related signals coordinate MYB72 expression in publication-title: Plant J. – volume: 204 start-page: 368 year: 2014 end-page: 379 ident: bib0280 article-title: β-Glucosidase BGLU42 is a MYB72-dependent key regulator of rhizobacteria-induced systemic resistance and modulates iron deficiency responses in publication-title: New Phytol. – volume: 146 start-page: 1293 year: 2008 end-page: 1304 ident: bib0350 article-title: MYB72 is required in early signaling steps of rhizobacteria-induced systemic resistance in publication-title: Plant Physiol. – volume: 51 start-page: 132 year: 2010 end-page: 143 ident: bib0275 article-title: Scopolin-hydrolyzing beta-glucosidases in roots of publication-title: Plant Cell Physiol. – volume: 50 start-page: 208 year: 1972 end-page: 2013 ident: bib0115 article-title: Obligatory reduction of ferric chelates in iron uptake by soybeans publication-title: Plant Physiol. – volume: 31 start-page: 589 year: 2002 end-page: 599 ident: bib0140 article-title: The metal ion transporter IRT1 is necessary for iron homeostasis and efficient photosynthesis in publication-title: Plant J. – volume: 113 start-page: 6496 year: 2016 end-page: 6501 ident: bib0085 article-title: Root exudates drive interspecific facilitation by enhancing nodulation and N publication-title: Proc. Nat. Acad. Sci. U.S.A. – volume: 15 start-page: 613 year: 2005 ident: 10.1016/j.tplants.2017.03.008_bib0160 article-title: AtbHLH29 of Arabidopsis thaliana is a functional ortholog of tomato FER involved in controlling iron acquisition in strategy I plants publication-title: Cell Res. doi: 10.1038/sj.cr.7290331 – volume: 9 start-page: e102444 year: 2014 ident: 10.1016/j.tplants.2017.03.008_bib0260 article-title: Metabolome analysis of Arabidopsis thaliana roots identifies a key metabolic pathway for iron acquisition publication-title: Plos One doi: 10.1371/journal.pone.0102444 – volume: 3 start-page: 2 year: 2010 ident: 10.1016/j.tplants.2017.03.008_bib0370 article-title: Phenylpropanoid biosynthesis publication-title: Mol. Plant doi: 10.1093/mp/ssp106 – volume: 51 start-page: 1255 year: 2010 ident: 10.1016/j.tplants.2017.03.008_bib0060 article-title: Recent progress in plant nutrition research: cross-talk between nutrients, plant physiology and soil microorganisms publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcq095 – volume: 257 start-page: 40 year: 1998 ident: 10.1016/j.tplants.2017.03.008_bib0300 article-title: Interaction of iron with polyphenolic compounds: application to antioxidant characterization publication-title: Anal. Biochem. doi: 10.1006/abio.1997.2522 – volume: 22 start-page: 423 year: 1976 ident: 10.1016/j.tplants.2017.03.008_bib0020 article-title: Naturally occurring iron-chelating compounds in oat-and rice-root washings: I. Activity measurement and preliminary characterization publication-title: Soil Sci. Plant Nutr. doi: 10.1080/00380768.1976.10433004 – volume: 179 start-page: 209 year: 2008 ident: 10.1016/j.tplants.2017.03.008_bib0095 article-title: Transcriptome analysis of Arabidopsis roots treated with signaling compounds: a focus on signal transduction, metabolic regulation and secretion publication-title: New Phytol. doi: 10.1111/j.1469-8137.2008.02458.x – volume: 144 start-page: 278 year: 2007 ident: 10.1016/j.tplants.2017.03.008_bib0215 article-title: Iron deficiency-induced secretion of phenolics facilitates the reutilization of root apoplastic iron in red clover publication-title: Plant Physiol. doi: 10.1104/pp.107.095794 – volume: 152 start-page: 2130 year: 2010 ident: 10.1016/j.tplants.2017.03.008_bib0245 article-title: Transcriptional profiling of the Arabidopsis iron deficiency response reveals conserved transition metal homeostasis networks publication-title: Plant Physiol. doi: 10.1104/pp.109.152728 – volume: 579 start-page: 6791 year: 2005 ident: 10.1016/j.tplants.2017.03.008_bib0255 article-title: NtPDR3, an iron-deficiency inducible ABC transporter in Nicotiana tabacum publication-title: FEBS Lett. doi: 10.1016/j.febslet.2005.11.014 – volume: 80 start-page: 861 year: 2000 ident: 10.1016/j.tplants.2017.03.008_bib0005 article-title: Potential for increasing the content and bioavailability of Fe, Zn and Ca in plants for human nutrition publication-title: J. Sci. Food Agric. doi: 10.1002/(SICI)1097-0010(20000515)80:7<861::AID-JSFA601>3.0.CO;2-P – volume: 286 start-page: 24649 year: 2011 ident: 10.1016/j.tplants.2017.03.008_bib0225 article-title: A rice phenolic efflux transporter is essential for solubilizing precipitated apoplasmic iron in the plant stele publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.221168 – volume: 51 start-page: 132 year: 2010 ident: 10.1016/j.tplants.2017.03.008_bib0275 article-title: Scopolin-hydrolyzing beta-glucosidases in roots of Arabidopsis publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcp174 – volume: 108 start-page: 35 year: 2014 ident: 10.1016/j.tplants.2017.03.008_bib0045 article-title: Profiling of secondary metabolites in root exudates of Arabidopsis thaliana publication-title: Phytochemistry doi: 10.1016/j.phytochem.2014.10.003 – volume: 65 start-page: 311 year: 1973 ident: 10.1016/j.tplants.2017.03.008_bib0205 article-title: ‘Reductants’ released by roots of Fe-deficient soybeans publication-title: Agron. J. doi: 10.2134/agronj1973.00021962006500020037x – volume: 31 start-page: 47 year: 2012 ident: 10.1016/j.tplants.2017.03.008_bib0340 article-title: Scopoletin – a coumarin phytoalexin with medicinal properties publication-title: Crit. Rev. Plant Sci. doi: 10.1080/07352689.2011.616039 – volume: 57 start-page: 1254 year: 1993 ident: 10.1016/j.tplants.2017.03.008_bib0040 article-title: Interaction of mugineic acid with synthetically produced iron oxides publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1993.03615995005700050016x – volume: 167 start-page: 273 year: 2015 ident: 10.1016/j.tplants.2017.03.008_bib0195 article-title: Iron-binding E3 ligase mediates iron response in plants by targeting basic helix-loop-helix transcription factors publication-title: Plant Physiol. doi: 10.1104/pp.114.250837 – volume: 182 start-page: 49 year: 2009 ident: 10.1016/j.tplants.2017.03.008_bib0015 article-title: Biofortification of crops with seven mineral elements often lacking in human diets – iron, zinc, copper, calcium, magnesium, selenium and iodine publication-title: New Phytol. doi: 10.1111/j.1469-8137.2008.02738.x – start-page: 67 year: 1969 ident: 10.1016/j.tplants.2017.03.008_bib0110 article-title: An investigation of the ecological significance of lime-chlorosis by means of large-scale comparative experiments – volume: 32 start-page: 62 year: 2016 ident: 10.1016/j.tplants.2017.03.008_bib0075 article-title: Root signals that mediate mutualistic interactions in the rhizosphere publication-title: Curr Opin. Plant Biol. doi: 10.1016/j.pbi.2016.06.017 – volume: 23 start-page: 1815 year: 2011 ident: 10.1016/j.tplants.2017.03.008_bib0175 article-title: Interaction between the bHLH transcription factor FIT and ETHYLENE INSENSITIVE3/ETHYLENE INSENSITIVE3-LIKE1 reveals molecular linkage between the regulation of iron acquisition and ethylene signaling in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.111.084715 – volume: 201 start-page: 155 year: 2014 ident: 10.1016/j.tplants.2017.03.008_bib0220 article-title: Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency publication-title: New Phytol. doi: 10.1111/nph.12471 – volume: 397 start-page: 694 year: 1999 ident: 10.1016/j.tplants.2017.03.008_bib0125 article-title: A ferric-chelate reductase for iron uptake from soils publication-title: Nature doi: 10.1038/17800 – volume: 16 start-page: 3400 year: 2004 ident: 10.1016/j.tplants.2017.03.008_bib0150 article-title: The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response publication-title: Plant Cell doi: 10.1105/tpc.104.024315 – volume: 203 start-page: 770 year: 2014 ident: 10.1016/j.tplants.2017.03.008_bib0185 article-title: Mediator subunit 16 functions in the regulation of iron uptake gene expression in Arabidopsis publication-title: New Phytol. doi: 10.1111/nph.12860 – volume: 31 start-page: 589 year: 2002 ident: 10.1016/j.tplants.2017.03.008_bib0140 article-title: The metal ion transporter IRT1 is necessary for iron homeostasis and efficient photosynthesis in Arabidopsis thaliana publication-title: Plant J. doi: 10.1046/j.1365-313X.2002.01381.x – volume: 164 start-page: 160 year: 2014 ident: 10.1016/j.tplants.2017.03.008_bib0070 article-title: Feruloyl-CoA 6'-hydroxylase1-dependent coumarins mediate iron acquisition from alkaline substrates in Arabidopsis publication-title: Plant Physiol. doi: 10.1104/pp.113.228544 – volume: 104 start-page: 7311 year: 2007 ident: 10.1016/j.tplants.2017.03.008_bib0010 article-title: It’s elementary: Enhancing Fe3+ reduction improves rice yields publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0701954104 – volume: 113 start-page: 6496 year: 2016 ident: 10.1016/j.tplants.2017.03.008_bib0085 article-title: Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation publication-title: Proc. Nat. Acad. Sci. U.S.A. doi: 10.1073/pnas.1523580113 – volume: 577 start-page: 528 year: 2004 ident: 10.1016/j.tplants.2017.03.008_bib0155 article-title: FRU (BHLH029) is required for induction of iron mobilization genes in Arabidopsis thaliana publication-title: FEBS Lett. doi: 10.1016/j.febslet.2004.10.062 – volume: 7 start-page: 735 year: 2016 ident: 10.1016/j.tplants.2017.03.008_bib0270 article-title: Glycosylation is a major regulator of phenylpropanoid availability and biological activity in plants publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.00735 – volume: 78 start-page: 115 year: 1985 ident: 10.1016/j.tplants.2017.03.008_bib0330 article-title: Iron-deficiency decreases suberization in bean roots through a decrease in suberin-specific peroxidase-activity publication-title: Plant Physiol. doi: 10.1104/pp.78.1.115 – volume: 105 start-page: 162 year: 2016 ident: 10.1016/j.tplants.2017.03.008_bib0365 article-title: Paenibacillus polymyxa BFKC01 enhances plant iron absorption via improved root systems and activated iron acquisition mechanisms publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2016.04.025 – volume: 167 start-page: 337 year: 2015 ident: 10.1016/j.tplants.2017.03.008_bib0390 article-title: Down-regulation of Kelch domain-containing F-box protein in Arabidopsis enhances the production of (poly)phenols and tolerance to ultraviolet radiation publication-title: Plant Physiol. doi: 10.1104/pp.114.249136 – volume: 6 start-page: 29033 year: 2016 ident: 10.1016/j.tplants.2017.03.008_bib0080 article-title: Natural variation of root exudates in Arabidopsis thaliana-linking metabolomic and genomic data publication-title: Sci. Rep. doi: 10.1038/srep29033 – volume: 77 start-page: 838 year: 2014 ident: 10.1016/j.tplants.2017.03.008_bib0180 article-title: The Arabidopsis Mediator subunit MED16 regulates iron homeostasis by associating with EIN3/EIL1 through subunit MED25 publication-title: Plant J. doi: 10.1111/tpj.12440 – volume: 9 start-page: e0152 year: 2011 ident: 10.1016/j.tplants.2017.03.008_bib0375 article-title: The phenylpropanoid pathway in Arabidopsis publication-title: The Arabidopsis Book doi: 10.1199/tab.0152 – volume: 93 start-page: 5624 year: 1996 ident: 10.1016/j.tplants.2017.03.008_bib0130 article-title: A novel iron-regulated metal transporter from plants identified by functional expression in yeast publication-title: Proc. Nat. Acad. Sci. U.S.A. doi: 10.1073/pnas.93.11.5624 – volume: 80 start-page: 175 year: 1986 ident: 10.1016/j.tplants.2017.03.008_bib0035 article-title: Evidence for a specific uptake system for iron phytosiderophores in roots of grasses publication-title: Plant Physiol. doi: 10.1104/pp.80.1.175 – volume: 329 start-page: 1 year: 2010 ident: 10.1016/j.tplants.2017.03.008_bib0055 article-title: Release of plant-borne flavonoids into the rhizosphere and their role in plant nutrition publication-title: Plant Soil doi: 10.1007/s11104-009-0266-9 – volume: 57 start-page: 803 year: 2011 ident: 10.1016/j.tplants.2017.03.008_bib0230 article-title: Rice phenolics efflux transporter 2 (PEZ2) plays an important role in solubilizing apoplasmic iron publication-title: Soil Sci. Plant Nutr. doi: 10.1080/00380768.2011.637305 – volume: 10 start-page: 835 year: 1996 ident: 10.1016/j.tplants.2017.03.008_bib0120 article-title: Genetic evidence that induction of root Fe(III) chelate reductase activity is necessary for iron uptake under iron deficiency publication-title: Plant J. doi: 10.1046/j.1365-313X.1996.10050835.x – volume: 25 start-page: 4994 year: 2013 ident: 10.1016/j.tplants.2017.03.008_bib0385 article-title: Arabidopsis Kelch repeat F-box proteins regulate phenylpropanoid biosynthesis via controlling the turnover of phenylalanine ammonia-lyase publication-title: Plant Cell doi: 10.1105/tpc.113.119644 – volume: 14 start-page: 1093 year: 2002 ident: 10.1016/j.tplants.2017.03.008_bib0345 article-title: Downregulation of a pathogen-responsive tobacco UDP-Glc: phenylpropanoid glucosyltransferase reduces scopoletin glucoside accumulation, enhances oxidative stress, and weakens virus resistance publication-title: Plant Cell doi: 10.1105/tpc.010436 – volume: 7 start-page: 469 year: 1984 ident: 10.1016/j.tplants.2017.03.008_bib0025 article-title: Physiological aspect of mugineic acid, a possible phytosiderophore of graminaceous plants publication-title: J. Plant Nutr. doi: 10.1080/01904168409363213 – volume: 9 start-page: e1003953 year: 2013 ident: 10.1016/j.tplants.2017.03.008_bib0355 article-title: MYB10 and MYB72 are required for growth under iron-limiting conditions publication-title: Plos Genet doi: 10.1371/journal.pgen.1003953 – volume: 60 start-page: 679 year: 2014 ident: 10.1016/j.tplants.2017.03.008_bib0050 article-title: Metabolite profiling of soybean root exudates under phosphorus deficiency publication-title: Soil Sci. Plant Nutr. doi: 10.1080/00380768.2014.945390 – volume: 146 start-page: 1293 year: 2008 ident: 10.1016/j.tplants.2017.03.008_bib0350 article-title: MYB72 is required in early signaling steps of rhizobacteria-induced systemic resistance in Arabidopsis publication-title: Plant Physiol. doi: 10.1104/pp.107.113829 – volume: 9 start-page: 485 year: 2016 ident: 10.1016/j.tplants.2017.03.008_bib0325 article-title: Facilitated Fe nutrition by phenolic compounds excreted by the Arabidopsis ABCG37/PDR9 transporter requires the IRT1/FRO2 high-affinity root Fe2+ transport system publication-title: Mol. Plant doi: 10.1016/j.molp.2015.09.010 – volume: 63 start-page: 131 year: 2012 ident: 10.1016/j.tplants.2017.03.008_bib0030 article-title: Iron uptake, translocation, and regulation in higher plants publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-042811-105522 – volume: 14 start-page: 2733 year: 2015 ident: 10.1016/j.tplants.2017.03.008_bib0240 article-title: Post-transcriptional coordination of the Arabidopsis iron deficiency response is partially dependent on the E3 ligases RING DOMAIN LIGASE1 (RGLG1) and RING DOMAIN LIGASE2 (RGLG2) publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M115.048520 – volume: 14 start-page: 1223 year: 2002 ident: 10.1016/j.tplants.2017.03.008_bib0145 article-title: IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth publication-title: Plant Cell doi: 10.1105/tpc.001388 – volume: 66 start-page: 1044 year: 2011 ident: 10.1016/j.tplants.2017.03.008_bib0170 article-title: Proteasome-mediated turnover of the transcriptional activator FIT is required for plant iron-deficiency responses publication-title: Plant J. doi: 10.1111/j.1365-313X.2011.04565.x – volume: 162 start-page: 1473 year: 2013 ident: 10.1016/j.tplants.2017.03.008_bib0250 article-title: Mutually exclusive alterations in secondary metabolism are critical for the uptake of insoluble iron compounds by Arabidopsis and Medicago truncatula publication-title: Plant Physiol. doi: 10.1104/pp.113.220426 – volume: 50 start-page: 587 year: 2002 ident: 10.1016/j.tplants.2017.03.008_bib0135 article-title: Knock-out of Arabidopsis metal transporter gene IRT1 results in iron deficiency accompanied by cell differentiation defects publication-title: Plant Mol. Biol. doi: 10.1023/A:1019942200164 – volume: 5 start-page: 27 year: 2012 ident: 10.1016/j.tplants.2017.03.008_bib0165 article-title: Fitting into the harsh reality: regulation of iron-deficiency responses in dicotyledonous plants publication-title: Mol. Plant doi: 10.1093/mp/ssr065 – volume: 164 start-page: 447 year: 2016 ident: 10.1016/j.tplants.2017.03.008_bib0335 article-title: Adaptation of root function by nutrient-induced plasticity of endodermal differentiation publication-title: Cell doi: 10.1016/j.cell.2015.12.021 – volume: 488 start-page: 91 year: 2012 ident: 10.1016/j.tplants.2017.03.008_bib0285 article-title: Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota publication-title: Nature doi: 10.1038/nature11336 – volume: 32 start-page: 666 year: 2009 ident: 10.1016/j.tplants.2017.03.008_bib0100 article-title: Regulation and function of root exudates publication-title: Plant, Cell & Environ. doi: 10.1111/j.1365-3040.2009.01926.x – volume: 111 start-page: 585 year: 2014 ident: 10.1016/j.tplants.2017.03.008_bib0295 article-title: Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1321597111 – volume: 8 start-page: 17 year: 2015 ident: 10.1016/j.tplants.2017.03.008_bib0380 article-title: Multifaceted regulations of gateway enzyme phenylalanine ammonia-lyase in the biosynthesis of phenylpropanoids publication-title: Mol. Plant doi: 10.1016/j.molp.2014.11.001 – volume: 4 start-page: 2792 year: 2013 ident: 10.1016/j.tplants.2017.03.008_bib0200 article-title: Iron-binding haemerythrin RING ubiquitin ligases regulate plant iron responses and accumulation publication-title: Nat. Commun. doi: 10.1038/ncomms3792 – volume: 7 start-page: 667 year: 1984 ident: 10.1016/j.tplants.2017.03.008_bib0210 article-title: Chemical identification of iron reductants exuded by plant roots publication-title: J. Plant Nutr. doi: 10.1080/01904168409363231 – volume: 21 start-page: 209 year: 2016 ident: 10.1016/j.tplants.2017.03.008_bib0090 article-title: Root–root interactions: towards a rhizosphere framework publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2016.01.009 – volume: 141 start-page: 1 year: 1999 ident: 10.1016/j.tplants.2017.03.008_bib0320 article-title: Mechanisms and regulation of reduction-based iron uptake in plants publication-title: New Phytol. doi: 10.1046/j.1469-8137.1999.00331.x – volume: 84 start-page: 309 year: 2015 ident: 10.1016/j.tplants.2017.03.008_bib0360 article-title: Rhizobacterial volatiles and photosynthesis-related signals coordinate MYB72 expression in Arabidopsis roots during onset of induced systemic resistance and iron-deficiency responses publication-title: Plant J. doi: 10.1111/tpj.12995 – volume: 169 start-page: 1714 year: 2015 ident: 10.1016/j.tplants.2017.03.008_bib0395 article-title: A Kelch domain-containing F-box coding gene negatively regulates flavonoid accumulation in Cucumis melo L publication-title: Plant Physiol. – volume: 204 start-page: 368 year: 2014 ident: 10.1016/j.tplants.2017.03.008_bib0280 article-title: β-Glucosidase BGLU42 is a MYB72-dependent key regulator of rhizobacteria-induced systemic resistance and modulates iron deficiency responses in Arabidopsis roots publication-title: New Phytol. doi: 10.1111/nph.12980 – volume: 22 start-page: 2219 year: 2010 ident: 10.1016/j.tplants.2017.03.008_bib0190 article-title: The bHLH transcription factor POPEYE regulates response to iron deficiency in Arabidopsis roots publication-title: Plant Cell doi: 10.1105/tpc.110.074096 – volume: 488 start-page: 86 issue: 2012 year: 2012 ident: 10.1016/j.tplants.2017.03.008_bib0290 article-title: Defining the core Arabidopsis thaliana root microbiome publication-title: Nature doi: 10.1038/nature11237 – volume: 71 start-page: 949 year: 1983 ident: 10.1016/j.tplants.2017.03.008_bib0315 article-title: Mechanism of iron uptake by peanut plants. 1. FeIII reduction, chelate splitting, and release of phenolics publication-title: Plant Physiol. doi: 10.1104/pp.71.4.949 – volume: 7 start-page: 1711 year: 2016 ident: 10.1016/j.tplants.2017.03.008_bib0265 article-title: Accumulation and secretion of coumarinolignans and other coumarins in Arabidopsis thaliana roots in response to iron deficiency at high pH publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.01711 – volume: 155 start-page: 821 year: 2011 ident: 10.1016/j.tplants.2017.03.008_bib0235 article-title: iTRAQ protein profile analysis of Arabidopsis roots reveals new aspects critical for Fe homeostasis publication-title: Plant Physiol. doi: 10.1104/pp.110.169508 – volume: 50 start-page: 208 year: 1972 ident: 10.1016/j.tplants.2017.03.008_bib0115 article-title: Obligatory reduction of ferric chelates in iron uptake by soybeans publication-title: Plant Physiol. doi: 10.1104/pp.50.2.208 – volume: 209 start-page: 733 year: 2016 ident: 10.1016/j.tplants.2017.03.008_bib0310 article-title: Flavins secreted by roots of iron-deficient Beta vulgaris enable mining of ferric oxide via reductive mechanisms publication-title: New Phytol. doi: 10.1111/nph.13633 – volume: 19 start-page: 90 year: 2014 ident: 10.1016/j.tplants.2017.03.008_bib0105 article-title: Root exudates: the hidden part of plant defense publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2013.11.006 – volume: 113 start-page: 7 year: 2014 ident: 10.1016/j.tplants.2017.03.008_bib0065 article-title: An underground tale: contribution of microbial activity to plant iron acquisition via ecological processes publication-title: Ann. Bot. doi: 10.1093/aob/mct249 – volume: 92 start-page: 1108 year: 2010 ident: 10.1016/j.tplants.2017.03.008_bib0305 article-title: In vitro interactions of coumarins with iron publication-title: Biochimie doi: 10.1016/j.biochi.2010.03.025 |
SSID | ssj0007186 |
Score | 2.5732687 |
SecondaryResourceType | review_article |
Snippet | Iron is one of the most abundant elements in soils, but its low phytoavailability at high pH restricts plant communities on alkaline soils to taxa that have... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 538 |
SubjectTerms | Alkaline soils Biosynthesis Chelation coumarins Coumarins - metabolism crops Flowers & plants Iron Iron - deficiency Iron - metabolism Iron and steel making pH effects phenolics phenylpropanoid pathway Plant communities Plant Exudates - metabolism Plant Roots - metabolism Plants (botany) Rhizosphere root exudates solubility |
Title | Mobilization of Iron by Plant-Borne Coumarins |
URI | https://dx.doi.org/10.1016/j.tplants.2017.03.008 https://www.ncbi.nlm.nih.gov/pubmed/28385337 https://www.proquest.com/docview/1953097312 https://www.proquest.com/docview/1885947643 https://www.proquest.com/docview/2000491994 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1878-4372 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007186 issn: 1360-1385 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1878-4372 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007186 issn: 1360-1385 databaseCode: ACRLP dateStart: 19960101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1878-4372 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007186 issn: 1360-1385 databaseCode: .~1 dateStart: 19960101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1878-4372 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007186 issn: 1360-1385 databaseCode: AIKHN dateStart: 19960101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1878-4372 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007186 issn: 1360-1385 databaseCode: AKRWK dateStart: 19960101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6hwgAD4k15VEFiTR-J46RjW1G1IFigEptlJ7ZUhJKqTYcu_HbuEqfAUFViihLbUnK2z5_j774DuDdxxNsmbrsRk_S3ikWuDFXshgaxtZcoRL0F2-KFjybs8T1434FBFQtDtErr-0ufXnhr-6RlrdmaTaet147P6Zgt6JDkOivCr0n9C8d08-uH5oG-l5exV23S2wt-onhaH8189klsE2J4hVbrdNP6tAl_FuvQ8AgOLYB0euU7HsOOTk9gr58hyFudwMEvfcFTcJ8z4r6WkZZOZpzxHK9q5VCqotztZ_NUO4OMWNbTdHEGk-HD22Dk2vwIbsy6Xu4qStHQNTzWBmEKNwmCO6Y4jwzCCh6GXAcskUzilkybSKE7IQN0E19KzSTiqHOopVmqL8GJuZ9og-WhYkxS3k4vCbhUXQR0no55HVhlFRFb8XDKYfEpKpbYh7DGFGRM0fYFGrMOzXWzWamesa1BVJlc_BkGAj38tqY3VRcJOw8Xgg4JSZCo49Xhbl2MM4iORWSqsyXWidAoLERotrmOV2ylSEe5Dhdl968_CAEaYh4_vPr_u1_DPt2VFLQbqOXzpb5FsJOrRjGaG7DbGz-NXr4BaNX7ew |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_IJqgH8dv5WcFr3damaXecw7H5sYsK3kLSJrAh7ZjdYf-977Xp1MMYeCo0CaS_JC-_NL_3HsCtiSPeMnHLjZikv1UscmWoYjc0yK29RCHrLdQWIz54Z48fwccG9CpfGJJVWttf2vTCWts3TYtmczoeN1_bPqdrtqBNIdcZuV_XWYA2uQb17vBpMFoaZDS_vHS_alHIveDHkac5ucunnyQ4IZFXaMOdrtqiVlHQYivq78Gu5ZBOt-zmPmzo9AA27zPkeYsD2PkVYvAQ3JeM5K-ls6WTGWc4w6daOJStKHfvs1mqnV5GQutx-nUE7_2Ht97AtSkS3Jh1vNxVlKWhY3isDTIVbhLkd0xxHhlkFjwMuQ5YIpnEU5k2kUKLQgB0El9KzSRSqWOopVmqT8GJuZ9og-WhYkxS6k4vCbhUHeR0no55A1iFioht_HBKY_EpKqHYRFgwBYEpWr5AMBtwt2w2LQNorGsQVZCLPzNBoJFf1_SiGiJhl-KXoHtCiknU9hpwsyzGRUQ3IzLV2RzrRAgKC5Gdra7jFacpCqXcgJNy-JcfhBwNaY8fnv2_79ewNXh7eRbPw9HTOWxTSalIu4BaPpvrS-Q-ubqyc_sb-Ln-Jg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mobilization+of+Iron+by+Plant-Borne+Coumarins&rft.jtitle=Trends+in+plant+science&rft.au=Tsai%2C+Huei+Hsuan&rft.au=Schmidt%2C+Wolfgang&rft.date=2017-06-01&rft.pub=Elsevier+Ltd&rft.issn=1360-1385&rft.eissn=1878-4372&rft.volume=22&rft.issue=6&rft.spage=538&rft.epage=548&rft_id=info:doi/10.1016%2Fj.tplants.2017.03.008&rft.externalDocID=S1360138517300481 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1360-1385&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1360-1385&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1360-1385&client=summon |