Mobilization of Iron by Plant-Borne Coumarins

Iron is one of the most abundant elements in soils, but its low phytoavailability at high pH restricts plant communities on alkaline soils to taxa that have evolved efficient strategies to increase iron solubility. Recent evidence provides support for a previously underestimated role of root-secrete...

Full description

Saved in:
Bibliographic Details
Published inTrends in plant science Vol. 22; no. 6; pp. 538 - 548
Main Authors Tsai, Huei Hsuan, Schmidt, Wolfgang
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.06.2017
Elsevier BV
Subjects
Online AccessGet full text
ISSN1360-1385
1878-4372
1878-4372
DOI10.1016/j.tplants.2017.03.008

Cover

Abstract Iron is one of the most abundant elements in soils, but its low phytoavailability at high pH restricts plant communities on alkaline soils to taxa that have evolved efficient strategies to increase iron solubility. Recent evidence provides support for a previously underestimated role of root-secreted coumarins in mobilizing iron through reduction and chelation as part of an orchestrated strategy evolved to improve the acquisition of iron from recalcitrant pools. Understanding the mechanisms that tune the production of iron-mobilizing coumarins and their intricate interplay with other biosynthesis pathways could yield clues for deciphering the molecular basis of ‘iron efficiency’ – the ability of plants to thrive on soils with limited iron availability – and may open avenues for generating iron-fortified crops. Recent studies have uncovered a crucial role of secreted coumarins in the acquisition of iron, particularly under alkaline conditions. The importance of coumarins in iron acquisition has been widely underestimated in previous studies that have typically been carried out under acidic conditions, thereby masking the role of coumarins. The efficiency of coumarin-aided mobilization of iron from recalcitrant iron pools may have important consequences for the structure of natural ecosystems, and could be a limiting factor for the yield and nutritional quality of crops grown on alkaline soils. Iron deficiency-induced coumarin biosynthesis is subject to sophisticated regulation and is interlinked with other biosynthesis and signaling pathways to allow an orchestrated response to developmental and environmental cues.
AbstractList Iron is one of the most abundant elements in soils, but its low phytoavailability at high pH restricts plant communities on alkaline soils to taxa that have evolved efficient strategies to increase iron solubility. Recent evidence provides support for a previously underestimated role of root-secreted coumarins in mobilizing iron through reduction and chelation as part of an orchestrated strategy evolved to improve the acquisition of iron from recalcitrant pools. Understanding the mechanisms that tune the production of iron-mobilizing coumarins and their intricate interplay with other biosynthesis pathways could yield clues for deciphering the molecular basis of ‘iron efficiency’ – the ability of plants to thrive on soils with limited iron availability – and may open avenues for generating iron-fortified crops.
Iron is one of the most abundant elements in soils, but its low phytoavailability at high pH restricts plant communities on alkaline soils to taxa that have evolved efficient strategies to increase iron solubility. Recent evidence provides support for a previously underestimated role of root-secreted coumarins in mobilizing iron through reduction and chelation as part of an orchestrated strategy evolved to improve the acquisition of iron from recalcitrant pools. Understanding the mechanisms that tune the production of iron-mobilizing coumarins and their intricate interplay with other biosynthesis pathways could yield clues for deciphering the molecular basis of 'iron efficiency' - the ability of plants to thrive on soils with limited iron availability - and may open avenues for generating iron-fortified crops.Iron is one of the most abundant elements in soils, but its low phytoavailability at high pH restricts plant communities on alkaline soils to taxa that have evolved efficient strategies to increase iron solubility. Recent evidence provides support for a previously underestimated role of root-secreted coumarins in mobilizing iron through reduction and chelation as part of an orchestrated strategy evolved to improve the acquisition of iron from recalcitrant pools. Understanding the mechanisms that tune the production of iron-mobilizing coumarins and their intricate interplay with other biosynthesis pathways could yield clues for deciphering the molecular basis of 'iron efficiency' - the ability of plants to thrive on soils with limited iron availability - and may open avenues for generating iron-fortified crops.
Iron is one of the most abundant elements in soils, but its low phytoavailability at high pH restricts plant communities on alkaline soils to taxa that have evolved efficient strategies to increase iron solubility. Recent evidence provides support for a previously underestimated role of root-secreted coumarins in mobilizing iron through reduction and chelation as part of an orchestrated strategy evolved to improve the acquisition of iron from recalcitrant pools. Understanding the mechanisms that tune the production of iron-mobilizing coumarins and their intricate interplay with other biosynthesis pathways could yield clues for deciphering the molecular basis of ‘iron efficiency’ – the ability of plants to thrive on soils with limited iron availability – and may open avenues for generating iron-fortified crops. Recent studies have uncovered a crucial role of secreted coumarins in the acquisition of iron, particularly under alkaline conditions. The importance of coumarins in iron acquisition has been widely underestimated in previous studies that have typically been carried out under acidic conditions, thereby masking the role of coumarins. The efficiency of coumarin-aided mobilization of iron from recalcitrant iron pools may have important consequences for the structure of natural ecosystems, and could be a limiting factor for the yield and nutritional quality of crops grown on alkaline soils. Iron deficiency-induced coumarin biosynthesis is subject to sophisticated regulation and is interlinked with other biosynthesis and signaling pathways to allow an orchestrated response to developmental and environmental cues.
Author Schmidt, Wolfgang
Tsai, Huei Hsuan
Author_xml – sequence: 1
  givenname: Huei Hsuan
  surname: Tsai
  fullname: Tsai, Huei Hsuan
  organization: Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei 11529, Taiwan
– sequence: 2
  givenname: Wolfgang
  surname: Schmidt
  fullname: Schmidt, Wolfgang
  email: wosh@gate.sinica.edu.tw
  organization: Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei 11529, Taiwan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28385337$$D View this record in MEDLINE/PubMed
BookMark eNqFUU1L7DAUDaL4_ROUATduWnObNB-4EB3eU0HRha5D2t5Chk4zJq2gv_6lb8aNm1ndEM45955zjshu73sk5AxoDhTE1SIfVp3th5gXFGROWU6p2iGHoKTKOJPFbnozQTNgqjwgRzEuKKUSlNgnB4VKn4zJQ5I9-8p17tsOzvcz384eQ5rV1-x1Es_ufOhxNvfj0gbXxxOy19ou4ulmHpP3v3_e5g_Z08v94_z2Kau5LoasAspAt6LGFopStA2UlFdCqFaUSkgpsOSN5RY0YKsqpeR0pG6YtcgtL9gxuVzrroL_GDEOZulijV26Cf0YTZGscA1a861QUEmZS8FZgl78gi78GPpkxIAuGdWSwbT7fIMaqyU2ZhVcMv9lfjJLgOs1oA4-xoCtqd3wP78hWNcZoGZqyCzMpiEzNWQoM6mhxC5_sX8WbOPdrHmYcv90GEysHfY1Ni5gPZjGuy0K_wDeU6pq
CitedBy_id crossref_primary_10_1016_j_copbio_2018_11_012
crossref_primary_10_1038_s41477_018_0266_y
crossref_primary_10_1111_nph_16775
crossref_primary_10_1016_j_eurpolymj_2021_110962
crossref_primary_10_1016_j_tplants_2023_03_007
crossref_primary_10_1094_MPMI_11_21_0281_FI
crossref_primary_10_3389_fpls_2020_586470
crossref_primary_10_15835_nbha49212258
crossref_primary_10_1016_j_tplants_2018_07_005
crossref_primary_10_1016_j_plantsci_2023_111793
crossref_primary_10_1007_s11104_021_05152_z
crossref_primary_10_3389_fpls_2019_01741
crossref_primary_10_1016_j_tplants_2019_09_010
crossref_primary_10_3390_ijms222011032
crossref_primary_10_1111_tpj_16130
crossref_primary_10_3390_ijms241612617
crossref_primary_10_1093_aobpla_plab041
crossref_primary_10_1093_jxb_eraa424
crossref_primary_10_1111_nph_16005
crossref_primary_10_1007_s11104_019_04190_y
crossref_primary_10_1111_pce_13627
crossref_primary_10_1186_s43014_022_00096_y
crossref_primary_10_3390_f15030515
crossref_primary_10_38211_joarps_2023_04_02_168
crossref_primary_10_1016_j_rhisph_2020_100274
crossref_primary_10_1016_j_tplants_2022_03_012
crossref_primary_10_1016_j_plantsci_2020_110471
crossref_primary_10_14202_vetworld_2020_2484_2492
crossref_primary_10_1016_j_micres_2023_127368
crossref_primary_10_3389_fsufs_2021_606815
crossref_primary_10_1002_tpg2_20411
crossref_primary_10_1093_pcp_pcz076
crossref_primary_10_1016_j_plantsci_2020_110808
crossref_primary_10_1371_journal_pone_0239075
crossref_primary_10_3389_fpls_2019_00287
crossref_primary_10_1093_jxb_erae251
crossref_primary_10_1016_j_plantsci_2020_110526
crossref_primary_10_1073_pnas_1907971116
crossref_primary_10_1007_s11032_019_1077_1
crossref_primary_10_1016_j_tplants_2020_09_008
crossref_primary_10_1111_nph_18096
crossref_primary_10_3390_ijms23179854
crossref_primary_10_1016_S1002_0160_19_60810_6
crossref_primary_10_1074_jbc_REV120_010856
crossref_primary_10_1111_ppl_13333
crossref_primary_10_1016_j_jplph_2017_07_007
crossref_primary_10_1016_j_envexpbot_2021_104552
crossref_primary_10_1093_jxb_erab531
crossref_primary_10_3389_fpls_2022_1035233
crossref_primary_10_1016_j_envexpbot_2021_104778
crossref_primary_10_1073_pnas_2304171120
crossref_primary_10_1016_j_scitotenv_2022_153144
crossref_primary_10_1042_BCJ20190188
crossref_primary_10_1186_s12870_024_04906_y
crossref_primary_10_3390_jof9020258
crossref_primary_10_1080_0028825X_2024_2393294
crossref_primary_10_3390_ijms221910455
crossref_primary_10_3389_fpls_2019_00605
crossref_primary_10_1038_s41467_023_37188_3
crossref_primary_10_1007_s12517_021_07978_4
crossref_primary_10_3390_ijms22073319
crossref_primary_10_1111_pce_14025
crossref_primary_10_3390_plants10020200
crossref_primary_10_1111_tpj_16191
crossref_primary_10_2139_ssrn_3272237
crossref_primary_10_1093_aob_mcz160
crossref_primary_10_3390_ijms22147305
crossref_primary_10_1093_jxb_erac014
crossref_primary_10_3389_fnut_2022_897982
crossref_primary_10_3390_ijms221910826
crossref_primary_10_1007_s11104_021_04873_5
crossref_primary_10_1007_s00344_019_10029_8
crossref_primary_10_1021_acs_jafc_4c10038
crossref_primary_10_1016_j_tibs_2022_07_001
crossref_primary_10_1111_tpj_14426
crossref_primary_10_1016_j_soilbio_2021_108453
crossref_primary_10_1016_j_isci_2022_104168
crossref_primary_10_1186_s12864_019_6062_x
crossref_primary_10_1007_s10681_020_02599_6
crossref_primary_10_3390_microorganisms9030575
crossref_primary_10_1016_j_plaphy_2023_108318
crossref_primary_10_1038_s41467_023_43911_x
crossref_primary_10_1016_j_pbi_2017_06_004
crossref_primary_10_1128_aem_01601_22
crossref_primary_10_1093_femsre_fuad066
crossref_primary_10_1016_j_tplants_2020_10_008
crossref_primary_10_3389_fpls_2022_960750
crossref_primary_10_1093_pcp_pcab166
crossref_primary_10_3389_fpls_2019_00909
crossref_primary_10_1007_s00468_018_1743_7
crossref_primary_10_1007_s11356_021_15838_7
crossref_primary_10_1016_j_plantsci_2023_111868
crossref_primary_10_3389_fpls_2021_704000
crossref_primary_10_1039_C7MT00136C
crossref_primary_10_3389_fpls_2022_878809
crossref_primary_10_1093_jxb_ery221
crossref_primary_10_1016_j_tplants_2021_08_003
crossref_primary_10_1093_pcp_pcz038
crossref_primary_10_1016_j_lwt_2021_112351
crossref_primary_10_1093_jxb_erab069
crossref_primary_10_3390_d17010062
crossref_primary_10_1007_s11103_021_01143_x
crossref_primary_10_1093_jxb_erac316
crossref_primary_10_1007_s11104_023_05943_6
crossref_primary_10_1186_s12870_024_04854_7
crossref_primary_10_1016_j_jplph_2022_153898
crossref_primary_10_3390_ijms25115729
crossref_primary_10_3390_plants11192610
crossref_primary_10_1021_acsearthspacechem_3c00199
crossref_primary_10_3390_ijms231911370
crossref_primary_10_1093_jxb_eraa535
crossref_primary_10_1016_j_copbio_2024_103150
crossref_primary_10_1093_bbb_zbab180
crossref_primary_10_1016_j_copbio_2021_06_015
crossref_primary_10_1111_ppl_70134
crossref_primary_10_1016_j_plaphy_2022_11_017
crossref_primary_10_1093_pcp_pcac038
crossref_primary_10_3389_fpls_2021_796893
crossref_primary_10_1016_j_cj_2023_06_011
crossref_primary_10_1111_tpj_16678
crossref_primary_10_1007_s10725_023_01006_z
crossref_primary_10_1186_s12870_020_02601_2
crossref_primary_10_3389_fpls_2018_01112
crossref_primary_10_1007_s11104_024_06783_8
crossref_primary_10_3390_ijms22179312
crossref_primary_10_1007_s00344_020_10232_y
crossref_primary_10_1071_FP19144
crossref_primary_10_1093_hr_uhad099
Cites_doi 10.1038/sj.cr.7290331
10.1371/journal.pone.0102444
10.1093/mp/ssp106
10.1093/pcp/pcq095
10.1006/abio.1997.2522
10.1080/00380768.1976.10433004
10.1111/j.1469-8137.2008.02458.x
10.1104/pp.107.095794
10.1104/pp.109.152728
10.1016/j.febslet.2005.11.014
10.1002/(SICI)1097-0010(20000515)80:7<861::AID-JSFA601>3.0.CO;2-P
10.1074/jbc.M111.221168
10.1093/pcp/pcp174
10.1016/j.phytochem.2014.10.003
10.2134/agronj1973.00021962006500020037x
10.1080/07352689.2011.616039
10.2136/sssaj1993.03615995005700050016x
10.1104/pp.114.250837
10.1111/j.1469-8137.2008.02738.x
10.1016/j.pbi.2016.06.017
10.1105/tpc.111.084715
10.1111/nph.12471
10.1038/17800
10.1105/tpc.104.024315
10.1111/nph.12860
10.1046/j.1365-313X.2002.01381.x
10.1104/pp.113.228544
10.1073/pnas.0701954104
10.1073/pnas.1523580113
10.1016/j.febslet.2004.10.062
10.3389/fpls.2016.00735
10.1104/pp.78.1.115
10.1016/j.plaphy.2016.04.025
10.1104/pp.114.249136
10.1038/srep29033
10.1111/tpj.12440
10.1199/tab.0152
10.1073/pnas.93.11.5624
10.1104/pp.80.1.175
10.1007/s11104-009-0266-9
10.1080/00380768.2011.637305
10.1046/j.1365-313X.1996.10050835.x
10.1105/tpc.113.119644
10.1105/tpc.010436
10.1080/01904168409363213
10.1371/journal.pgen.1003953
10.1080/00380768.2014.945390
10.1104/pp.107.113829
10.1016/j.molp.2015.09.010
10.1146/annurev-arplant-042811-105522
10.1074/mcp.M115.048520
10.1105/tpc.001388
10.1111/j.1365-313X.2011.04565.x
10.1104/pp.113.220426
10.1023/A:1019942200164
10.1093/mp/ssr065
10.1016/j.cell.2015.12.021
10.1038/nature11336
10.1111/j.1365-3040.2009.01926.x
10.1073/pnas.1321597111
10.1016/j.molp.2014.11.001
10.1038/ncomms3792
10.1080/01904168409363231
10.1016/j.tplants.2016.01.009
10.1046/j.1469-8137.1999.00331.x
10.1111/tpj.12995
10.1111/nph.12980
10.1105/tpc.110.074096
10.1038/nature11237
10.1104/pp.71.4.949
10.3389/fpls.2016.01711
10.1104/pp.110.169508
10.1104/pp.50.2.208
10.1111/nph.13633
10.1016/j.tplants.2013.11.006
10.1093/aob/mct249
10.1016/j.biochi.2010.03.025
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright © 2017 Elsevier Ltd. All rights reserved.
Copyright Elsevier BV Jun 2017
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright © 2017 Elsevier Ltd. All rights reserved.
– notice: Copyright Elsevier BV Jun 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7QR
7T7
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1016/j.tplants.2017.03.008
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE
MEDLINE - Academic

Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Botany
EISSN 1878-4372
EndPage 548
ExternalDocumentID 28385337
10_1016_j_tplants_2017_03_008
S1360138517300481
Genre Journal Article
Review
GroupedDBID ---
--K
--M
-DZ
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
53G
5VS
7-5
71M
8P~
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABGSF
ABJNI
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIWK
ACPRK
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RCE
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSA
SSU
SSZ
T5K
TWZ
VQA
XPP
Y6R
ZCA
~G-
~KM
AAHBH
AAMRU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
BNPGV
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7QL
7QO
7QR
7T7
7TM
7U9
8FD
AGCQF
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c492t-b10319f6cef1256fd1504b668f6586776e54da4a191ef8b88713859d3aae4a423
IEDL.DBID .~1
ISSN 1360-1385
1878-4372
IngestDate Sun Sep 28 00:33:53 EDT 2025
Sun Sep 28 04:26:23 EDT 2025
Wed Aug 13 09:37:14 EDT 2025
Thu Apr 03 07:06:35 EDT 2025
Wed Oct 01 01:42:39 EDT 2025
Thu Apr 24 23:02:12 EDT 2025
Fri Feb 23 02:26:40 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords iron deficiency
phenylpropanoid pathway
root exudates
phenolics
rhizosphere
Language English
License Copyright © 2017 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c492t-b10319f6cef1256fd1504b668f6586776e54da4a191ef8b88713859d3aae4a423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
PMID 28385337
PQID 1953097312
PQPubID 2045386
PageCount 11
ParticipantIDs proquest_miscellaneous_2000491994
proquest_miscellaneous_1885947643
proquest_journals_1953097312
pubmed_primary_28385337
crossref_citationtrail_10_1016_j_tplants_2017_03_008
crossref_primary_10_1016_j_tplants_2017_03_008
elsevier_sciencedirect_doi_10_1016_j_tplants_2017_03_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2017
2017-06-00
2017-Jun
20170601
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 06
  year: 2017
  text: June 2017
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Kidlington
PublicationTitle Trends in plant science
PublicationTitleAlternate Trends Plant Sci
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Varotto (bib0140) 2002; 31
Schlaeppi (bib0295) 2014; 111
Zamioudis (bib0360) 2015; 84
Zhou (bib0365) 2016; 105
Mommer (bib0090) 2016; 21
Fraser, Chapple (bib0375) 2011; 9
Bashir (bib0230) 2011; 57
Fourcroy (bib0220) 2014; 201
Barberon (bib0335) 2016; 164
Takagi (bib0025) 1984; 7
Brown, Ambler (bib0205) 1973; 65
Lan (bib0235) 2011; 155
Ducos (bib0255) 2005; 579
Ishimaru (bib0225) 2011; 286
Li (bib0085) 2016; 113
Badri (bib0095) 2008; 179
Chaney (bib0115) 1972; 50
Ivanov (bib0165) 2012; 5
Vert (bib0145) 2002; 14
Yang (bib0180) 2014; 77
Gnonlonfin (bib0340) 2012; 31
Schmid (bib0070) 2014; 164
Bulgarelli (bib0285) 2012; 488
Römheld, Marschner (bib0035) 1986; 80
Strehmel (bib0045) 2014; 108
Lingam (bib0175) 2011; 23
Baetz, Martinoia (bib0105) 2014; 19
Lundberg (bib0290) 2012; 488
Palmer (bib0355) 2013; 9
Grime, Hodgson (bib0110) 1969
Long (bib0190) 2010; 22
Sivitz (bib0170) 2011; 66
Frossard (bib0005) 2000; 80
Van der Ent (bib0350) 2008; 146
Vogt (bib0370) 2010; 3
Sisó-Terraza (bib0265) 2016; 7
Hether (bib0210) 1984; 7
Pan (bib0240) 2015; 14
Jin (bib0215) 2007; 144
Robinson (bib0125) 1999; 397
Römheld, Marschner (bib0315) 1983; 71
Mladenka (bib0305) 2010; 92
Zhang, Liu (bib0380) 2015; 8
Kobayashi (bib0200) 2013; 4
Kobayashi, Nishizawa (bib0030) 2012; 63
Le Roy (bib0270) 2016; 7
White, Broadley (bib0015) 2009; 182
Ahn (bib0275) 2010; 51
Cesco (bib0055) 2010; 329
Selote (bib0195) 2015; 167
Zamioudis (bib0280) 2014; 204
Tawaraya (bib0050) 2014; 60
Eide (bib0130) 1996; 93
Yuan (bib0160) 2005; 15
Jakoby (bib0155) 2004; 577
Sijmons (bib0330) 1985; 78
Schmidt (bib0260) 2014; 9
Takagi (bib0020) 1976; 22
Sisó-Terraza (bib0310) 2016; 209
Schmidt (bib0320) 1999; 141
Rodríguez-Celma (bib0250) 2013; 162
Zhang (bib0385) 2013; 25
Colangelo, Guerinot (bib0150) 2004; 16
Zhang (bib0390) 2015; 167
Ohkama-Ohtsu, Wasaki (bib0060) 2010; 51
Fourcroy (bib0325) 2016; 9
Feder (bib0395) 2015; 169
Rasmann, Turlings (bib0075) 2016; 32
Yang (bib0245) 2010; 152
Zhang (bib0185) 2014; 203
Mönchgesang (bib0080) 2016; 6
Guerinot (bib0010) 2007; 104
Jin (bib0065) 2014; 113
Yoshino, Murakami (bib0300) 1998; 257
Yi, Guerinot (bib0120) 1996; 10
Henriques (bib0135) 2002; 50
Badri, Vivanco (bib0100) 2009; 32
Inoue (bib0040) 1993; 57
Chong (bib0345) 2002; 14
Feder (10.1016/j.tplants.2017.03.008_bib0395) 2015; 169
Rasmann (10.1016/j.tplants.2017.03.008_bib0075) 2016; 32
Mönchgesang (10.1016/j.tplants.2017.03.008_bib0080) 2016; 6
Yang (10.1016/j.tplants.2017.03.008_bib0180) 2014; 77
Frossard (10.1016/j.tplants.2017.03.008_bib0005) 2000; 80
Guerinot (10.1016/j.tplants.2017.03.008_bib0010) 2007; 104
Long (10.1016/j.tplants.2017.03.008_bib0190) 2010; 22
Römheld (10.1016/j.tplants.2017.03.008_bib0315) 1983; 71
Fraser (10.1016/j.tplants.2017.03.008_bib0375) 2011; 9
Palmer (10.1016/j.tplants.2017.03.008_bib0355) 2013; 9
Takagi (10.1016/j.tplants.2017.03.008_bib0025) 1984; 7
Eide (10.1016/j.tplants.2017.03.008_bib0130) 1996; 93
Fourcroy (10.1016/j.tplants.2017.03.008_bib0325) 2016; 9
Pan (10.1016/j.tplants.2017.03.008_bib0240) 2015; 14
Mommer (10.1016/j.tplants.2017.03.008_bib0090) 2016; 21
Mladenka (10.1016/j.tplants.2017.03.008_bib0305) 2010; 92
Kobayashi (10.1016/j.tplants.2017.03.008_bib0200) 2013; 4
Vert (10.1016/j.tplants.2017.03.008_bib0145) 2002; 14
Ducos (10.1016/j.tplants.2017.03.008_bib0255) 2005; 579
Schmid (10.1016/j.tplants.2017.03.008_bib0070) 2014; 164
Badri (10.1016/j.tplants.2017.03.008_bib0100) 2009; 32
Yuan (10.1016/j.tplants.2017.03.008_bib0160) 2005; 15
Selote (10.1016/j.tplants.2017.03.008_bib0195) 2015; 167
Chaney (10.1016/j.tplants.2017.03.008_bib0115) 1972; 50
Schmidt (10.1016/j.tplants.2017.03.008_bib0260) 2014; 9
Grime (10.1016/j.tplants.2017.03.008_bib0110) 1969
Lundberg (10.1016/j.tplants.2017.03.008_bib0290) 2012; 488
Varotto (10.1016/j.tplants.2017.03.008_bib0140) 2002; 31
Zamioudis (10.1016/j.tplants.2017.03.008_bib0280) 2014; 204
Hether (10.1016/j.tplants.2017.03.008_bib0210) 1984; 7
Fourcroy (10.1016/j.tplants.2017.03.008_bib0220) 2014; 201
Schmidt (10.1016/j.tplants.2017.03.008_bib0320) 1999; 141
Gnonlonfin (10.1016/j.tplants.2017.03.008_bib0340) 2012; 31
Vogt (10.1016/j.tplants.2017.03.008_bib0370) 2010; 3
Rodríguez-Celma (10.1016/j.tplants.2017.03.008_bib0250) 2013; 162
Ahn (10.1016/j.tplants.2017.03.008_bib0275) 2010; 51
Sisó-Terraza (10.1016/j.tplants.2017.03.008_bib0310) 2016; 209
Tawaraya (10.1016/j.tplants.2017.03.008_bib0050) 2014; 60
Yi (10.1016/j.tplants.2017.03.008_bib0120) 1996; 10
Le Roy (10.1016/j.tplants.2017.03.008_bib0270) 2016; 7
Inoue (10.1016/j.tplants.2017.03.008_bib0040) 1993; 57
Yoshino (10.1016/j.tplants.2017.03.008_bib0300) 1998; 257
Sijmons (10.1016/j.tplants.2017.03.008_bib0330) 1985; 78
Strehmel (10.1016/j.tplants.2017.03.008_bib0045) 2014; 108
Yang (10.1016/j.tplants.2017.03.008_bib0245) 2010; 152
Zhou (10.1016/j.tplants.2017.03.008_bib0365) 2016; 105
Schlaeppi (10.1016/j.tplants.2017.03.008_bib0295) 2014; 111
Zhang (10.1016/j.tplants.2017.03.008_bib0185) 2014; 203
Sisó-Terraza (10.1016/j.tplants.2017.03.008_bib0265) 2016; 7
Kobayashi (10.1016/j.tplants.2017.03.008_bib0030) 2012; 63
Lingam (10.1016/j.tplants.2017.03.008_bib0175) 2011; 23
Zhang (10.1016/j.tplants.2017.03.008_bib0390) 2015; 167
Takagi (10.1016/j.tplants.2017.03.008_bib0020) 1976; 22
Baetz (10.1016/j.tplants.2017.03.008_bib0105) 2014; 19
Ohkama-Ohtsu (10.1016/j.tplants.2017.03.008_bib0060) 2010; 51
Jin (10.1016/j.tplants.2017.03.008_bib0065) 2014; 113
Brown (10.1016/j.tplants.2017.03.008_bib0205) 1973; 65
Ivanov (10.1016/j.tplants.2017.03.008_bib0165) 2012; 5
Römheld (10.1016/j.tplants.2017.03.008_bib0035) 1986; 80
Henriques (10.1016/j.tplants.2017.03.008_bib0135) 2002; 50
Cesco (10.1016/j.tplants.2017.03.008_bib0055) 2010; 329
Lan (10.1016/j.tplants.2017.03.008_bib0235) 2011; 155
Robinson (10.1016/j.tplants.2017.03.008_bib0125) 1999; 397
Sivitz (10.1016/j.tplants.2017.03.008_bib0170) 2011; 66
Chong (10.1016/j.tplants.2017.03.008_bib0345) 2002; 14
White (10.1016/j.tplants.2017.03.008_bib0015) 2009; 182
Colangelo (10.1016/j.tplants.2017.03.008_bib0150) 2004; 16
Zamioudis (10.1016/j.tplants.2017.03.008_bib0360) 2015; 84
Bulgarelli (10.1016/j.tplants.2017.03.008_bib0285) 2012; 488
Van der Ent (10.1016/j.tplants.2017.03.008_bib0350) 2008; 146
Zhang (10.1016/j.tplants.2017.03.008_bib0380) 2015; 8
Li (10.1016/j.tplants.2017.03.008_bib0085) 2016; 113
Badri (10.1016/j.tplants.2017.03.008_bib0095) 2008; 179
Jin (10.1016/j.tplants.2017.03.008_bib0215) 2007; 144
Zhang (10.1016/j.tplants.2017.03.008_bib0385) 2013; 25
Ishimaru (10.1016/j.tplants.2017.03.008_bib0225) 2011; 286
Barberon (10.1016/j.tplants.2017.03.008_bib0335) 2016; 164
Jakoby (10.1016/j.tplants.2017.03.008_bib0155) 2004; 577
Bashir (10.1016/j.tplants.2017.03.008_bib0230) 2011; 57
References_xml – volume: 32
  start-page: 62
  year: 2016
  end-page: 68
  ident: bib0075
  article-title: Root signals that mediate mutualistic interactions in the rhizosphere
  publication-title: Curr Opin. Plant Biol.
– volume: 65
  start-page: 311
  year: 1973
  end-page: 314
  ident: bib0205
  article-title: ‘Reductants’ released by roots of Fe-deficient soybeans
  publication-title: Agron. J.
– volume: 167
  start-page: 273
  year: 2015
  end-page: 286
  ident: bib0195
  article-title: Iron-binding E3 ligase mediates iron response in plants by targeting basic helix-loop-helix transcription factors
  publication-title: Plant Physiol.
– volume: 4
  start-page: 2792
  year: 2013
  ident: bib0200
  article-title: Iron-binding haemerythrin RING ubiquitin ligases regulate plant iron responses and accumulation
  publication-title: Nat. Commun.
– volume: 80
  start-page: 175
  year: 1986
  end-page: 180
  ident: bib0035
  article-title: Evidence for a specific uptake system for iron phytosiderophores in roots of grasses
  publication-title: Plant Physiol.
– volume: 77
  start-page: 838
  year: 2014
  end-page: 851
  ident: bib0180
  article-title: The
  publication-title: Plant J.
– volume: 22
  start-page: 2219
  year: 2010
  end-page: 2236
  ident: bib0190
  article-title: The bHLH transcription factor POPEYE regulates response to iron deficiency in
  publication-title: Plant Cell
– volume: 15
  start-page: 613
  year: 2005
  end-page: 621
  ident: bib0160
  article-title: AtbHLH29 of
  publication-title: Cell Res.
– volume: 209
  start-page: 733
  year: 2016
  end-page: 745
  ident: bib0310
  article-title: Flavins secreted by roots of iron-deficient
  publication-title: New Phytol.
– volume: 57
  start-page: 803
  year: 2011
  end-page: 812
  ident: bib0230
  article-title: Rice phenolics efflux transporter 2 (PEZ2) plays an important role in solubilizing apoplasmic iron
  publication-title: Soil Sci. Plant Nutr.
– volume: 25
  start-page: 4994
  year: 2013
  end-page: 5010
  ident: bib0385
  article-title: Kelch repeat F-box proteins regulate phenylpropanoid biosynthesis via controlling the turnover of phenylalanine ammonia-lyase
  publication-title: Plant Cell
– volume: 50
  start-page: 587
  year: 2002
  end-page: 597
  ident: bib0135
  article-title: Knock-out of
  publication-title: Plant Mol. Biol.
– volume: 144
  start-page: 278
  year: 2007
  end-page: 285
  ident: bib0215
  article-title: Iron deficiency-induced secretion of phenolics facilitates the reutilization of root apoplastic iron in red clover
  publication-title: Plant Physiol.
– volume: 257
  start-page: 40
  year: 1998
  end-page: 44
  ident: bib0300
  article-title: Interaction of iron with polyphenolic compounds: application to antioxidant characterization
  publication-title: Anal. Biochem.
– volume: 179
  start-page: 209
  year: 2008
  end-page: 223
  ident: bib0095
  article-title: Transcriptome analysis of
  publication-title: New Phytol.
– volume: 7
  start-page: 667
  year: 1984
  end-page: 676
  ident: bib0210
  article-title: Chemical identification of iron reductants exuded by plant roots
  publication-title: J. Plant Nutr.
– volume: 9
  start-page: e102444
  year: 2014
  ident: bib0260
  article-title: Metabolome analysis of
  publication-title: Plos One
– volume: 488
  start-page: 91
  year: 2012
  end-page: 95
  ident: bib0285
  article-title: Revealing structure and assembly cues for
  publication-title: Nature
– volume: 286
  start-page: 24649
  year: 2011
  end-page: 24655
  ident: bib0225
  article-title: A rice phenolic efflux transporter is essential for solubilizing precipitated apoplasmic iron in the plant stele
  publication-title: J. Biol. Chem.
– volume: 182
  start-page: 49
  year: 2009
  end-page: 84
  ident: bib0015
  article-title: Biofortification of crops with seven mineral elements often lacking in human diets – iron, zinc, copper, calcium, magnesium, selenium and iodine
  publication-title: New Phytol.
– volume: 80
  start-page: 861
  year: 2000
  end-page: 879
  ident: bib0005
  article-title: Potential for increasing the content and bioavailability of Fe, Zn and Ca in plants for human nutrition
  publication-title: J. Sci. Food Agric.
– volume: 51
  start-page: 1255
  year: 2010
  end-page: 1264
  ident: bib0060
  article-title: Recent progress in plant nutrition research: cross-talk between nutrients, plant physiology and soil microorganisms
  publication-title: Plant Cell Physiol.
– volume: 14
  start-page: 1093
  year: 2002
  end-page: 1107
  ident: bib0345
  article-title: Downregulation of a pathogen-responsive tobacco UDP-Glc: phenylpropanoid glucosyltransferase reduces scopoletin glucoside accumulation, enhances oxidative stress, and weakens virus resistance
  publication-title: Plant Cell
– volume: 577
  start-page: 528
  year: 2004
  end-page: 534
  ident: bib0155
  article-title: FRU (BHLH029) is required for induction of iron mobilization genes in
  publication-title: FEBS Lett.
– volume: 152
  start-page: 2130
  year: 2010
  end-page: 2141
  ident: bib0245
  article-title: Transcriptional profiling of the
  publication-title: Plant Physiol.
– volume: 22
  start-page: 423
  year: 1976
  end-page: 433
  ident: bib0020
  article-title: Naturally occurring iron-chelating compounds in oat-and rice-root washings: I. Activity measurement and preliminary characterization
  publication-title: Soil Sci. Plant Nutr.
– volume: 105
  start-page: 162
  year: 2016
  end-page: 173
  ident: bib0365
  article-title: BFKC01 enhances plant iron absorption via improved root systems and activated iron acquisition mechanisms
  publication-title: Plant Physiol. Biochem.
– volume: 203
  start-page: 770
  year: 2014
  end-page: 783
  ident: bib0185
  article-title: Mediator subunit 16 functions in the regulation of iron uptake gene expression in
  publication-title: New Phytol.
– volume: 10
  start-page: 835
  year: 1996
  end-page: 844
  ident: bib0120
  article-title: Genetic evidence that induction of root Fe(III) chelate reductase activity is necessary for iron uptake under iron deficiency
  publication-title: Plant J.
– volume: 7
  start-page: 469
  year: 1984
  end-page: 477
  ident: bib0025
  article-title: Physiological aspect of mugineic acid, a possible phytosiderophore of graminaceous plants
  publication-title: J. Plant Nutr.
– volume: 71
  start-page: 949
  year: 1983
  end-page: 954
  ident: bib0315
  article-title: Mechanism of iron uptake by peanut plants. 1. FeIII reduction, chelate splitting, and release of phenolics
  publication-title: Plant Physiol.
– start-page: 67
  year: 1969
  end-page: 99
  ident: bib0110
  article-title: An investigation of the ecological significance of lime-chlorosis by means of large-scale comparative experiments
  publication-title: Ecological Aspects of Mineral Nutrition of Plants
– volume: 66
  start-page: 1044
  year: 2011
  end-page: 1052
  ident: bib0170
  article-title: Proteasome-mediated turnover of the transcriptional activator FIT is required for plant iron-deficiency responses
  publication-title: Plant J.
– volume: 32
  start-page: 666
  year: 2009
  end-page: 681
  ident: bib0100
  article-title: Regulation and function of root exudates
  publication-title: Plant, Cell & Environ.
– volume: 141
  start-page: 1
  year: 1999
  end-page: 26
  ident: bib0320
  article-title: Mechanisms and regulation of reduction-based iron uptake in plants
  publication-title: New Phytol.
– volume: 93
  start-page: 5624
  year: 1996
  end-page: 5628
  ident: bib0130
  article-title: A novel iron-regulated metal transporter from plants identified by functional expression in yeast
  publication-title: Proc. Nat. Acad. Sci. U.S.A.
– volume: 111
  start-page: 585
  year: 2014
  end-page: 592
  ident: bib0295
  article-title: Quantitative divergence of the bacterial root microbiota in
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 16
  start-page: 3400
  year: 2004
  end-page: 3412
  ident: bib0150
  article-title: The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response
  publication-title: Plant Cell
– volume: 3
  start-page: 2
  year: 2010
  end-page: 20
  ident: bib0370
  article-title: Phenylpropanoid biosynthesis
  publication-title: Mol. Plant
– volume: 162
  start-page: 1473
  year: 2013
  end-page: 1485
  ident: bib0250
  article-title: Mutually exclusive alterations in secondary metabolism are critical for the uptake of insoluble iron compounds by
  publication-title: Plant Physiol.
– volume: 14
  start-page: 1223
  year: 2002
  end-page: 1233
  ident: bib0145
  article-title: IRT1, an
  publication-title: Plant Cell
– volume: 164
  start-page: 447
  year: 2016
  end-page: 459
  ident: bib0335
  article-title: Adaptation of root function by nutrient-induced plasticity of endodermal differentiation
  publication-title: Cell
– volume: 5
  start-page: 27
  year: 2012
  end-page: 42
  ident: bib0165
  article-title: Fitting into the harsh reality: regulation of iron-deficiency responses in dicotyledonous plants
  publication-title: Mol. Plant
– volume: 155
  start-page: 821
  year: 2011
  end-page: 834
  ident: bib0235
  article-title: iTRAQ protein profile analysis of
  publication-title: Plant Physiol.
– volume: 9
  start-page: e1003953
  year: 2013
  ident: bib0355
  article-title: MYB10 and MYB72 are required for growth under iron-limiting conditions
  publication-title: Plos Genet
– volume: 23
  start-page: 1815
  year: 2011
  end-page: 1829
  ident: bib0175
  article-title: Interaction between the bHLH transcription factor FIT and ETHYLENE INSENSITIVE3/ETHYLENE INSENSITIVE3-LIKE1 reveals molecular linkage between the regulation of iron acquisition and ethylene signaling in
  publication-title: Plant Cell
– volume: 7
  start-page: 735
  year: 2016
  ident: bib0270
  article-title: Glycosylation is a major regulator of phenylpropanoid availability and biological activity in plants
  publication-title: Front. Plant Sci.
– volume: 201
  start-page: 155
  year: 2014
  end-page: 167
  ident: bib0220
  article-title: Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by
  publication-title: New Phytol.
– volume: 108
  start-page: 35
  year: 2014
  end-page: 46
  ident: bib0045
  article-title: Profiling of secondary metabolites in root exudates of
  publication-title: Phytochemistry
– volume: 8
  start-page: 17
  year: 2015
  end-page: 27
  ident: bib0380
  article-title: Multifaceted regulations of gateway enzyme phenylalanine ammonia-lyase in the biosynthesis of phenylpropanoids
  publication-title: Mol. Plant
– volume: 329
  start-page: 1
  year: 2010
  end-page: 25
  ident: bib0055
  article-title: Release of plant-borne flavonoids into the rhizosphere and their role in plant nutrition
  publication-title: Plant Soil
– volume: 7
  start-page: 1711
  year: 2016
  ident: bib0265
  article-title: Accumulation and secretion of coumarinolignans and other coumarins in
  publication-title: Front. Plant Sci.
– volume: 113
  start-page: 7
  year: 2014
  end-page: 18
  ident: bib0065
  article-title: An underground tale: contribution of microbial activity to plant iron acquisition via ecological processes
  publication-title: Ann. Bot.
– volume: 92
  start-page: 1108
  year: 2010
  end-page: 1114
  ident: bib0305
  article-title: interactions of coumarins with iron
  publication-title: Biochimie
– volume: 9
  start-page: 485
  year: 2016
  end-page: 488
  ident: bib0325
  article-title: Facilitated Fe nutrition by phenolic compounds excreted by the
  publication-title: Mol. Plant
– volume: 60
  start-page: 679
  year: 2014
  end-page: 694
  ident: bib0050
  article-title: Metabolite profiling of soybean root exudates under phosphorus deficiency
  publication-title: Soil Sci. Plant Nutr.
– volume: 14
  start-page: 2733
  year: 2015
  end-page: 2752
  ident: bib0240
  article-title: Post-transcriptional coordination of the
  publication-title: Mol. Cell. Proteomics
– volume: 579
  start-page: 6791
  year: 2005
  end-page: 6795
  ident: bib0255
  article-title: NtPDR3, an iron-deficiency inducible ABC transporter in
  publication-title: FEBS Lett.
– volume: 104
  start-page: 7311
  year: 2007
  end-page: 7312
  ident: bib0010
  article-title: It’s elementary: Enhancing Fe3+ reduction improves rice yields
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 21
  start-page: 209
  year: 2016
  end-page: 217
  ident: bib0090
  article-title: Root–root interactions: towards a rhizosphere framework
  publication-title: Trends Plant Sci.
– volume: 78
  start-page: 115
  year: 1985
  end-page: 120
  ident: bib0330
  article-title: Iron-deficiency decreases suberization in bean roots through a decrease in suberin-specific peroxidase-activity
  publication-title: Plant Physiol.
– volume: 63
  start-page: 131
  year: 2012
  end-page: 152
  ident: bib0030
  article-title: Iron uptake, translocation, and regulation in higher plants
  publication-title: Annu. Rev. Plant Biol.
– volume: 19
  start-page: 90
  year: 2014
  end-page: 98
  ident: bib0105
  article-title: Root exudates: the hidden part of plant defense
  publication-title: Trends Plant Sci.
– volume: 397
  start-page: 694
  year: 1999
  end-page: 697
  ident: bib0125
  article-title: A ferric-chelate reductase for iron uptake from soils
  publication-title: Nature
– volume: 6
  start-page: 29033
  year: 2016
  ident: bib0080
  article-title: Natural variation of root exudates in
  publication-title: Sci. Rep.
– volume: 169
  start-page: 1714
  year: 2015
  end-page: 1726
  ident: bib0395
  article-title: A Kelch domain-containing F-box coding gene negatively regulates flavonoid accumulation in
  publication-title: Plant Physiol.
– volume: 488
  start-page: 86
  year: 2012
  end-page: 90
  ident: bib0290
  article-title: Defining the core
  publication-title: Nature
– volume: 31
  start-page: 47
  year: 2012
  end-page: 56
  ident: bib0340
  article-title: Scopoletin – a coumarin phytoalexin with medicinal properties
  publication-title: Crit. Rev. Plant Sci.
– volume: 9
  start-page: e0152
  year: 2011
  ident: bib0375
  article-title: The phenylpropanoid pathway in
  publication-title: The
– volume: 57
  start-page: 1254
  year: 1993
  end-page: 1260
  ident: bib0040
  article-title: Interaction of mugineic acid with synthetically produced iron oxides
  publication-title: Soil Sci. Soc. Am. J.
– volume: 164
  start-page: 160
  year: 2014
  end-page: 172
  ident: bib0070
  article-title: Feruloyl-CoA 6'-hydroxylase1-dependent coumarins mediate iron acquisition from alkaline substrates in
  publication-title: Plant Physiol.
– volume: 167
  start-page: 337
  year: 2015
  end-page: 350
  ident: bib0390
  article-title: Down-regulation of Kelch domain-containing F-box protein in
  publication-title: Plant Physiol.
– volume: 84
  start-page: 309
  year: 2015
  end-page: 322
  ident: bib0360
  article-title: Rhizobacterial volatiles and photosynthesis-related signals coordinate MYB72 expression in
  publication-title: Plant J.
– volume: 204
  start-page: 368
  year: 2014
  end-page: 379
  ident: bib0280
  article-title: β-Glucosidase BGLU42 is a MYB72-dependent key regulator of rhizobacteria-induced systemic resistance and modulates iron deficiency responses in
  publication-title: New Phytol.
– volume: 146
  start-page: 1293
  year: 2008
  end-page: 1304
  ident: bib0350
  article-title: MYB72 is required in early signaling steps of rhizobacteria-induced systemic resistance in
  publication-title: Plant Physiol.
– volume: 51
  start-page: 132
  year: 2010
  end-page: 143
  ident: bib0275
  article-title: Scopolin-hydrolyzing beta-glucosidases in roots of
  publication-title: Plant Cell Physiol.
– volume: 50
  start-page: 208
  year: 1972
  end-page: 2013
  ident: bib0115
  article-title: Obligatory reduction of ferric chelates in iron uptake by soybeans
  publication-title: Plant Physiol.
– volume: 31
  start-page: 589
  year: 2002
  end-page: 599
  ident: bib0140
  article-title: The metal ion transporter IRT1 is necessary for iron homeostasis and efficient photosynthesis in
  publication-title: Plant J.
– volume: 113
  start-page: 6496
  year: 2016
  end-page: 6501
  ident: bib0085
  article-title: Root exudates drive interspecific facilitation by enhancing nodulation and N
  publication-title: Proc. Nat. Acad. Sci. U.S.A.
– volume: 15
  start-page: 613
  year: 2005
  ident: 10.1016/j.tplants.2017.03.008_bib0160
  article-title: AtbHLH29 of Arabidopsis thaliana is a functional ortholog of tomato FER involved in controlling iron acquisition in strategy I plants
  publication-title: Cell Res.
  doi: 10.1038/sj.cr.7290331
– volume: 9
  start-page: e102444
  year: 2014
  ident: 10.1016/j.tplants.2017.03.008_bib0260
  article-title: Metabolome analysis of Arabidopsis thaliana roots identifies a key metabolic pathway for iron acquisition
  publication-title: Plos One
  doi: 10.1371/journal.pone.0102444
– volume: 3
  start-page: 2
  year: 2010
  ident: 10.1016/j.tplants.2017.03.008_bib0370
  article-title: Phenylpropanoid biosynthesis
  publication-title: Mol. Plant
  doi: 10.1093/mp/ssp106
– volume: 51
  start-page: 1255
  year: 2010
  ident: 10.1016/j.tplants.2017.03.008_bib0060
  article-title: Recent progress in plant nutrition research: cross-talk between nutrients, plant physiology and soil microorganisms
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcq095
– volume: 257
  start-page: 40
  year: 1998
  ident: 10.1016/j.tplants.2017.03.008_bib0300
  article-title: Interaction of iron with polyphenolic compounds: application to antioxidant characterization
  publication-title: Anal. Biochem.
  doi: 10.1006/abio.1997.2522
– volume: 22
  start-page: 423
  year: 1976
  ident: 10.1016/j.tplants.2017.03.008_bib0020
  article-title: Naturally occurring iron-chelating compounds in oat-and rice-root washings: I. Activity measurement and preliminary characterization
  publication-title: Soil Sci. Plant Nutr.
  doi: 10.1080/00380768.1976.10433004
– volume: 179
  start-page: 209
  year: 2008
  ident: 10.1016/j.tplants.2017.03.008_bib0095
  article-title: Transcriptome analysis of Arabidopsis roots treated with signaling compounds: a focus on signal transduction, metabolic regulation and secretion
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2008.02458.x
– volume: 144
  start-page: 278
  year: 2007
  ident: 10.1016/j.tplants.2017.03.008_bib0215
  article-title: Iron deficiency-induced secretion of phenolics facilitates the reutilization of root apoplastic iron in red clover
  publication-title: Plant Physiol.
  doi: 10.1104/pp.107.095794
– volume: 152
  start-page: 2130
  year: 2010
  ident: 10.1016/j.tplants.2017.03.008_bib0245
  article-title: Transcriptional profiling of the Arabidopsis iron deficiency response reveals conserved transition metal homeostasis networks
  publication-title: Plant Physiol.
  doi: 10.1104/pp.109.152728
– volume: 579
  start-page: 6791
  year: 2005
  ident: 10.1016/j.tplants.2017.03.008_bib0255
  article-title: NtPDR3, an iron-deficiency inducible ABC transporter in Nicotiana tabacum
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2005.11.014
– volume: 80
  start-page: 861
  year: 2000
  ident: 10.1016/j.tplants.2017.03.008_bib0005
  article-title: Potential for increasing the content and bioavailability of Fe, Zn and Ca in plants for human nutrition
  publication-title: J. Sci. Food Agric.
  doi: 10.1002/(SICI)1097-0010(20000515)80:7<861::AID-JSFA601>3.0.CO;2-P
– volume: 286
  start-page: 24649
  year: 2011
  ident: 10.1016/j.tplants.2017.03.008_bib0225
  article-title: A rice phenolic efflux transporter is essential for solubilizing precipitated apoplasmic iron in the plant stele
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.221168
– volume: 51
  start-page: 132
  year: 2010
  ident: 10.1016/j.tplants.2017.03.008_bib0275
  article-title: Scopolin-hydrolyzing beta-glucosidases in roots of Arabidopsis
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcp174
– volume: 108
  start-page: 35
  year: 2014
  ident: 10.1016/j.tplants.2017.03.008_bib0045
  article-title: Profiling of secondary metabolites in root exudates of Arabidopsis thaliana
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2014.10.003
– volume: 65
  start-page: 311
  year: 1973
  ident: 10.1016/j.tplants.2017.03.008_bib0205
  article-title: ‘Reductants’ released by roots of Fe-deficient soybeans
  publication-title: Agron. J.
  doi: 10.2134/agronj1973.00021962006500020037x
– volume: 31
  start-page: 47
  year: 2012
  ident: 10.1016/j.tplants.2017.03.008_bib0340
  article-title: Scopoletin – a coumarin phytoalexin with medicinal properties
  publication-title: Crit. Rev. Plant Sci.
  doi: 10.1080/07352689.2011.616039
– volume: 57
  start-page: 1254
  year: 1993
  ident: 10.1016/j.tplants.2017.03.008_bib0040
  article-title: Interaction of mugineic acid with synthetically produced iron oxides
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1993.03615995005700050016x
– volume: 167
  start-page: 273
  year: 2015
  ident: 10.1016/j.tplants.2017.03.008_bib0195
  article-title: Iron-binding E3 ligase mediates iron response in plants by targeting basic helix-loop-helix transcription factors
  publication-title: Plant Physiol.
  doi: 10.1104/pp.114.250837
– volume: 182
  start-page: 49
  year: 2009
  ident: 10.1016/j.tplants.2017.03.008_bib0015
  article-title: Biofortification of crops with seven mineral elements often lacking in human diets – iron, zinc, copper, calcium, magnesium, selenium and iodine
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2008.02738.x
– start-page: 67
  year: 1969
  ident: 10.1016/j.tplants.2017.03.008_bib0110
  article-title: An investigation of the ecological significance of lime-chlorosis by means of large-scale comparative experiments
– volume: 32
  start-page: 62
  year: 2016
  ident: 10.1016/j.tplants.2017.03.008_bib0075
  article-title: Root signals that mediate mutualistic interactions in the rhizosphere
  publication-title: Curr Opin. Plant Biol.
  doi: 10.1016/j.pbi.2016.06.017
– volume: 23
  start-page: 1815
  year: 2011
  ident: 10.1016/j.tplants.2017.03.008_bib0175
  article-title: Interaction between the bHLH transcription factor FIT and ETHYLENE INSENSITIVE3/ETHYLENE INSENSITIVE3-LIKE1 reveals molecular linkage between the regulation of iron acquisition and ethylene signaling in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.111.084715
– volume: 201
  start-page: 155
  year: 2014
  ident: 10.1016/j.tplants.2017.03.008_bib0220
  article-title: Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency
  publication-title: New Phytol.
  doi: 10.1111/nph.12471
– volume: 397
  start-page: 694
  year: 1999
  ident: 10.1016/j.tplants.2017.03.008_bib0125
  article-title: A ferric-chelate reductase for iron uptake from soils
  publication-title: Nature
  doi: 10.1038/17800
– volume: 16
  start-page: 3400
  year: 2004
  ident: 10.1016/j.tplants.2017.03.008_bib0150
  article-title: The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response
  publication-title: Plant Cell
  doi: 10.1105/tpc.104.024315
– volume: 203
  start-page: 770
  year: 2014
  ident: 10.1016/j.tplants.2017.03.008_bib0185
  article-title: Mediator subunit 16 functions in the regulation of iron uptake gene expression in Arabidopsis
  publication-title: New Phytol.
  doi: 10.1111/nph.12860
– volume: 31
  start-page: 589
  year: 2002
  ident: 10.1016/j.tplants.2017.03.008_bib0140
  article-title: The metal ion transporter IRT1 is necessary for iron homeostasis and efficient photosynthesis in Arabidopsis thaliana
  publication-title: Plant J.
  doi: 10.1046/j.1365-313X.2002.01381.x
– volume: 164
  start-page: 160
  year: 2014
  ident: 10.1016/j.tplants.2017.03.008_bib0070
  article-title: Feruloyl-CoA 6'-hydroxylase1-dependent coumarins mediate iron acquisition from alkaline substrates in Arabidopsis
  publication-title: Plant Physiol.
  doi: 10.1104/pp.113.228544
– volume: 104
  start-page: 7311
  year: 2007
  ident: 10.1016/j.tplants.2017.03.008_bib0010
  article-title: It’s elementary: Enhancing Fe3+ reduction improves rice yields
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0701954104
– volume: 113
  start-page: 6496
  year: 2016
  ident: 10.1016/j.tplants.2017.03.008_bib0085
  article-title: Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation
  publication-title: Proc. Nat. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1523580113
– volume: 577
  start-page: 528
  year: 2004
  ident: 10.1016/j.tplants.2017.03.008_bib0155
  article-title: FRU (BHLH029) is required for induction of iron mobilization genes in Arabidopsis thaliana
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2004.10.062
– volume: 7
  start-page: 735
  year: 2016
  ident: 10.1016/j.tplants.2017.03.008_bib0270
  article-title: Glycosylation is a major regulator of phenylpropanoid availability and biological activity in plants
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.00735
– volume: 78
  start-page: 115
  year: 1985
  ident: 10.1016/j.tplants.2017.03.008_bib0330
  article-title: Iron-deficiency decreases suberization in bean roots through a decrease in suberin-specific peroxidase-activity
  publication-title: Plant Physiol.
  doi: 10.1104/pp.78.1.115
– volume: 105
  start-page: 162
  year: 2016
  ident: 10.1016/j.tplants.2017.03.008_bib0365
  article-title: Paenibacillus polymyxa BFKC01 enhances plant iron absorption via improved root systems and activated iron acquisition mechanisms
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2016.04.025
– volume: 167
  start-page: 337
  year: 2015
  ident: 10.1016/j.tplants.2017.03.008_bib0390
  article-title: Down-regulation of Kelch domain-containing F-box protein in Arabidopsis enhances the production of (poly)phenols and tolerance to ultraviolet radiation
  publication-title: Plant Physiol.
  doi: 10.1104/pp.114.249136
– volume: 6
  start-page: 29033
  year: 2016
  ident: 10.1016/j.tplants.2017.03.008_bib0080
  article-title: Natural variation of root exudates in Arabidopsis thaliana-linking metabolomic and genomic data
  publication-title: Sci. Rep.
  doi: 10.1038/srep29033
– volume: 77
  start-page: 838
  year: 2014
  ident: 10.1016/j.tplants.2017.03.008_bib0180
  article-title: The Arabidopsis Mediator subunit MED16 regulates iron homeostasis by associating with EIN3/EIL1 through subunit MED25
  publication-title: Plant J.
  doi: 10.1111/tpj.12440
– volume: 9
  start-page: e0152
  year: 2011
  ident: 10.1016/j.tplants.2017.03.008_bib0375
  article-title: The phenylpropanoid pathway in Arabidopsis
  publication-title: The Arabidopsis Book
  doi: 10.1199/tab.0152
– volume: 93
  start-page: 5624
  year: 1996
  ident: 10.1016/j.tplants.2017.03.008_bib0130
  article-title: A novel iron-regulated metal transporter from plants identified by functional expression in yeast
  publication-title: Proc. Nat. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.93.11.5624
– volume: 80
  start-page: 175
  year: 1986
  ident: 10.1016/j.tplants.2017.03.008_bib0035
  article-title: Evidence for a specific uptake system for iron phytosiderophores in roots of grasses
  publication-title: Plant Physiol.
  doi: 10.1104/pp.80.1.175
– volume: 329
  start-page: 1
  year: 2010
  ident: 10.1016/j.tplants.2017.03.008_bib0055
  article-title: Release of plant-borne flavonoids into the rhizosphere and their role in plant nutrition
  publication-title: Plant Soil
  doi: 10.1007/s11104-009-0266-9
– volume: 57
  start-page: 803
  year: 2011
  ident: 10.1016/j.tplants.2017.03.008_bib0230
  article-title: Rice phenolics efflux transporter 2 (PEZ2) plays an important role in solubilizing apoplasmic iron
  publication-title: Soil Sci. Plant Nutr.
  doi: 10.1080/00380768.2011.637305
– volume: 10
  start-page: 835
  year: 1996
  ident: 10.1016/j.tplants.2017.03.008_bib0120
  article-title: Genetic evidence that induction of root Fe(III) chelate reductase activity is necessary for iron uptake under iron deficiency
  publication-title: Plant J.
  doi: 10.1046/j.1365-313X.1996.10050835.x
– volume: 25
  start-page: 4994
  year: 2013
  ident: 10.1016/j.tplants.2017.03.008_bib0385
  article-title: Arabidopsis Kelch repeat F-box proteins regulate phenylpropanoid biosynthesis via controlling the turnover of phenylalanine ammonia-lyase
  publication-title: Plant Cell
  doi: 10.1105/tpc.113.119644
– volume: 14
  start-page: 1093
  year: 2002
  ident: 10.1016/j.tplants.2017.03.008_bib0345
  article-title: Downregulation of a pathogen-responsive tobacco UDP-Glc: phenylpropanoid glucosyltransferase reduces scopoletin glucoside accumulation, enhances oxidative stress, and weakens virus resistance
  publication-title: Plant Cell
  doi: 10.1105/tpc.010436
– volume: 7
  start-page: 469
  year: 1984
  ident: 10.1016/j.tplants.2017.03.008_bib0025
  article-title: Physiological aspect of mugineic acid, a possible phytosiderophore of graminaceous plants
  publication-title: J. Plant Nutr.
  doi: 10.1080/01904168409363213
– volume: 9
  start-page: e1003953
  year: 2013
  ident: 10.1016/j.tplants.2017.03.008_bib0355
  article-title: MYB10 and MYB72 are required for growth under iron-limiting conditions
  publication-title: Plos Genet
  doi: 10.1371/journal.pgen.1003953
– volume: 60
  start-page: 679
  year: 2014
  ident: 10.1016/j.tplants.2017.03.008_bib0050
  article-title: Metabolite profiling of soybean root exudates under phosphorus deficiency
  publication-title: Soil Sci. Plant Nutr.
  doi: 10.1080/00380768.2014.945390
– volume: 146
  start-page: 1293
  year: 2008
  ident: 10.1016/j.tplants.2017.03.008_bib0350
  article-title: MYB72 is required in early signaling steps of rhizobacteria-induced systemic resistance in Arabidopsis
  publication-title: Plant Physiol.
  doi: 10.1104/pp.107.113829
– volume: 9
  start-page: 485
  year: 2016
  ident: 10.1016/j.tplants.2017.03.008_bib0325
  article-title: Facilitated Fe nutrition by phenolic compounds excreted by the Arabidopsis ABCG37/PDR9 transporter requires the IRT1/FRO2 high-affinity root Fe2+ transport system
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2015.09.010
– volume: 63
  start-page: 131
  year: 2012
  ident: 10.1016/j.tplants.2017.03.008_bib0030
  article-title: Iron uptake, translocation, and regulation in higher plants
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-042811-105522
– volume: 14
  start-page: 2733
  year: 2015
  ident: 10.1016/j.tplants.2017.03.008_bib0240
  article-title: Post-transcriptional coordination of the Arabidopsis iron deficiency response is partially dependent on the E3 ligases RING DOMAIN LIGASE1 (RGLG1) and RING DOMAIN LIGASE2 (RGLG2)
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M115.048520
– volume: 14
  start-page: 1223
  year: 2002
  ident: 10.1016/j.tplants.2017.03.008_bib0145
  article-title: IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth
  publication-title: Plant Cell
  doi: 10.1105/tpc.001388
– volume: 66
  start-page: 1044
  year: 2011
  ident: 10.1016/j.tplants.2017.03.008_bib0170
  article-title: Proteasome-mediated turnover of the transcriptional activator FIT is required for plant iron-deficiency responses
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2011.04565.x
– volume: 162
  start-page: 1473
  year: 2013
  ident: 10.1016/j.tplants.2017.03.008_bib0250
  article-title: Mutually exclusive alterations in secondary metabolism are critical for the uptake of insoluble iron compounds by Arabidopsis and Medicago truncatula
  publication-title: Plant Physiol.
  doi: 10.1104/pp.113.220426
– volume: 50
  start-page: 587
  year: 2002
  ident: 10.1016/j.tplants.2017.03.008_bib0135
  article-title: Knock-out of Arabidopsis metal transporter gene IRT1 results in iron deficiency accompanied by cell differentiation defects
  publication-title: Plant Mol. Biol.
  doi: 10.1023/A:1019942200164
– volume: 5
  start-page: 27
  year: 2012
  ident: 10.1016/j.tplants.2017.03.008_bib0165
  article-title: Fitting into the harsh reality: regulation of iron-deficiency responses in dicotyledonous plants
  publication-title: Mol. Plant
  doi: 10.1093/mp/ssr065
– volume: 164
  start-page: 447
  year: 2016
  ident: 10.1016/j.tplants.2017.03.008_bib0335
  article-title: Adaptation of root function by nutrient-induced plasticity of endodermal differentiation
  publication-title: Cell
  doi: 10.1016/j.cell.2015.12.021
– volume: 488
  start-page: 91
  year: 2012
  ident: 10.1016/j.tplants.2017.03.008_bib0285
  article-title: Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota
  publication-title: Nature
  doi: 10.1038/nature11336
– volume: 32
  start-page: 666
  year: 2009
  ident: 10.1016/j.tplants.2017.03.008_bib0100
  article-title: Regulation and function of root exudates
  publication-title: Plant, Cell & Environ.
  doi: 10.1111/j.1365-3040.2009.01926.x
– volume: 111
  start-page: 585
  year: 2014
  ident: 10.1016/j.tplants.2017.03.008_bib0295
  article-title: Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1321597111
– volume: 8
  start-page: 17
  year: 2015
  ident: 10.1016/j.tplants.2017.03.008_bib0380
  article-title: Multifaceted regulations of gateway enzyme phenylalanine ammonia-lyase in the biosynthesis of phenylpropanoids
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2014.11.001
– volume: 4
  start-page: 2792
  year: 2013
  ident: 10.1016/j.tplants.2017.03.008_bib0200
  article-title: Iron-binding haemerythrin RING ubiquitin ligases regulate plant iron responses and accumulation
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3792
– volume: 7
  start-page: 667
  year: 1984
  ident: 10.1016/j.tplants.2017.03.008_bib0210
  article-title: Chemical identification of iron reductants exuded by plant roots
  publication-title: J. Plant Nutr.
  doi: 10.1080/01904168409363231
– volume: 21
  start-page: 209
  year: 2016
  ident: 10.1016/j.tplants.2017.03.008_bib0090
  article-title: Root–root interactions: towards a rhizosphere framework
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2016.01.009
– volume: 141
  start-page: 1
  year: 1999
  ident: 10.1016/j.tplants.2017.03.008_bib0320
  article-title: Mechanisms and regulation of reduction-based iron uptake in plants
  publication-title: New Phytol.
  doi: 10.1046/j.1469-8137.1999.00331.x
– volume: 84
  start-page: 309
  year: 2015
  ident: 10.1016/j.tplants.2017.03.008_bib0360
  article-title: Rhizobacterial volatiles and photosynthesis-related signals coordinate MYB72 expression in Arabidopsis roots during onset of induced systemic resistance and iron-deficiency responses
  publication-title: Plant J.
  doi: 10.1111/tpj.12995
– volume: 169
  start-page: 1714
  year: 2015
  ident: 10.1016/j.tplants.2017.03.008_bib0395
  article-title: A Kelch domain-containing F-box coding gene negatively regulates flavonoid accumulation in Cucumis melo L
  publication-title: Plant Physiol.
– volume: 204
  start-page: 368
  year: 2014
  ident: 10.1016/j.tplants.2017.03.008_bib0280
  article-title: β-Glucosidase BGLU42 is a MYB72-dependent key regulator of rhizobacteria-induced systemic resistance and modulates iron deficiency responses in Arabidopsis roots
  publication-title: New Phytol.
  doi: 10.1111/nph.12980
– volume: 22
  start-page: 2219
  year: 2010
  ident: 10.1016/j.tplants.2017.03.008_bib0190
  article-title: The bHLH transcription factor POPEYE regulates response to iron deficiency in Arabidopsis roots
  publication-title: Plant Cell
  doi: 10.1105/tpc.110.074096
– volume: 488
  start-page: 86
  issue: 2012
  year: 2012
  ident: 10.1016/j.tplants.2017.03.008_bib0290
  article-title: Defining the core Arabidopsis thaliana root microbiome
  publication-title: Nature
  doi: 10.1038/nature11237
– volume: 71
  start-page: 949
  year: 1983
  ident: 10.1016/j.tplants.2017.03.008_bib0315
  article-title: Mechanism of iron uptake by peanut plants. 1. FeIII reduction, chelate splitting, and release of phenolics
  publication-title: Plant Physiol.
  doi: 10.1104/pp.71.4.949
– volume: 7
  start-page: 1711
  year: 2016
  ident: 10.1016/j.tplants.2017.03.008_bib0265
  article-title: Accumulation and secretion of coumarinolignans and other coumarins in Arabidopsis thaliana roots in response to iron deficiency at high pH
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.01711
– volume: 155
  start-page: 821
  year: 2011
  ident: 10.1016/j.tplants.2017.03.008_bib0235
  article-title: iTRAQ protein profile analysis of Arabidopsis roots reveals new aspects critical for Fe homeostasis
  publication-title: Plant Physiol.
  doi: 10.1104/pp.110.169508
– volume: 50
  start-page: 208
  year: 1972
  ident: 10.1016/j.tplants.2017.03.008_bib0115
  article-title: Obligatory reduction of ferric chelates in iron uptake by soybeans
  publication-title: Plant Physiol.
  doi: 10.1104/pp.50.2.208
– volume: 209
  start-page: 733
  year: 2016
  ident: 10.1016/j.tplants.2017.03.008_bib0310
  article-title: Flavins secreted by roots of iron-deficient Beta vulgaris enable mining of ferric oxide via reductive mechanisms
  publication-title: New Phytol.
  doi: 10.1111/nph.13633
– volume: 19
  start-page: 90
  year: 2014
  ident: 10.1016/j.tplants.2017.03.008_bib0105
  article-title: Root exudates: the hidden part of plant defense
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2013.11.006
– volume: 113
  start-page: 7
  year: 2014
  ident: 10.1016/j.tplants.2017.03.008_bib0065
  article-title: An underground tale: contribution of microbial activity to plant iron acquisition via ecological processes
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mct249
– volume: 92
  start-page: 1108
  year: 2010
  ident: 10.1016/j.tplants.2017.03.008_bib0305
  article-title: In vitro interactions of coumarins with iron
  publication-title: Biochimie
  doi: 10.1016/j.biochi.2010.03.025
SSID ssj0007186
Score 2.5732687
SecondaryResourceType review_article
Snippet Iron is one of the most abundant elements in soils, but its low phytoavailability at high pH restricts plant communities on alkaline soils to taxa that have...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 538
SubjectTerms Alkaline soils
Biosynthesis
Chelation
coumarins
Coumarins - metabolism
crops
Flowers & plants
Iron
Iron - deficiency
Iron - metabolism
Iron and steel making
pH effects
phenolics
phenylpropanoid pathway
Plant communities
Plant Exudates - metabolism
Plant Roots - metabolism
Plants (botany)
Rhizosphere
root exudates
solubility
Title Mobilization of Iron by Plant-Borne Coumarins
URI https://dx.doi.org/10.1016/j.tplants.2017.03.008
https://www.ncbi.nlm.nih.gov/pubmed/28385337
https://www.proquest.com/docview/1953097312
https://www.proquest.com/docview/1885947643
https://www.proquest.com/docview/2000491994
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1878-4372
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007186
  issn: 1360-1385
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1878-4372
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007186
  issn: 1360-1385
  databaseCode: ACRLP
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1878-4372
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007186
  issn: 1360-1385
  databaseCode: .~1
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1878-4372
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007186
  issn: 1360-1385
  databaseCode: AIKHN
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1878-4372
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007186
  issn: 1360-1385
  databaseCode: AKRWK
  dateStart: 19960101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6hwgAD4k15VEFiTR-J46RjW1G1IFigEptlJ7ZUhJKqTYcu_HbuEqfAUFViihLbUnK2z5_j774DuDdxxNsmbrsRk_S3ikWuDFXshgaxtZcoRL0F2-KFjybs8T1434FBFQtDtErr-0ufXnhr-6RlrdmaTaet147P6Zgt6JDkOivCr0n9C8d08-uH5oG-l5exV23S2wt-onhaH8189klsE2J4hVbrdNP6tAl_FuvQ8AgOLYB0euU7HsOOTk9gr58hyFudwMEvfcFTcJ8z4r6WkZZOZpzxHK9q5VCqotztZ_NUO4OMWNbTdHEGk-HD22Dk2vwIbsy6Xu4qStHQNTzWBmEKNwmCO6Y4jwzCCh6GXAcskUzilkybSKE7IQN0E19KzSTiqHOopVmqL8GJuZ9og-WhYkxS3k4vCbhUXQR0no55HVhlFRFb8XDKYfEpKpbYh7DGFGRM0fYFGrMOzXWzWamesa1BVJlc_BkGAj38tqY3VRcJOw8Xgg4JSZCo49Xhbl2MM4iORWSqsyXWidAoLERotrmOV2ylSEe5Dhdl968_CAEaYh4_vPr_u1_DPt2VFLQbqOXzpb5FsJOrRjGaG7DbGz-NXr4BaNX7ew
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_IJqgH8dv5WcFr3damaXecw7H5sYsK3kLSJrAh7ZjdYf-977Xp1MMYeCo0CaS_JC-_NL_3HsCtiSPeMnHLjZikv1UscmWoYjc0yK29RCHrLdQWIz54Z48fwccG9CpfGJJVWttf2vTCWts3TYtmczoeN1_bPqdrtqBNIdcZuV_XWYA2uQb17vBpMFoaZDS_vHS_alHIveDHkac5ucunnyQ4IZFXaMOdrtqiVlHQYivq78Gu5ZBOt-zmPmzo9AA27zPkeYsD2PkVYvAQ3JeM5K-ls6WTGWc4w6daOJStKHfvs1mqnV5GQutx-nUE7_2Ht97AtSkS3Jh1vNxVlKWhY3isDTIVbhLkd0xxHhlkFjwMuQ5YIpnEU5k2kUKLQgB0El9KzSRSqWOopVmqT8GJuZ9og-WhYkxS6k4vCbhUHeR0no55A1iFioht_HBKY_EpKqHYRFgwBYEpWr5AMBtwt2w2LQNorGsQVZCLPzNBoJFf1_SiGiJhl-KXoHtCiknU9hpwsyzGRUQ3IzLV2RzrRAgKC5Gdra7jFacpCqXcgJNy-JcfhBwNaY8fnv2_79ewNXh7eRbPw9HTOWxTSalIu4BaPpvrS-Q-ubqyc_sb-Ln-Jg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mobilization+of+Iron+by+Plant-Borne+Coumarins&rft.jtitle=Trends+in+plant+science&rft.au=Tsai%2C+Huei+Hsuan&rft.au=Schmidt%2C+Wolfgang&rft.date=2017-06-01&rft.pub=Elsevier+Ltd&rft.issn=1360-1385&rft.eissn=1878-4372&rft.volume=22&rft.issue=6&rft.spage=538&rft.epage=548&rft_id=info:doi/10.1016%2Fj.tplants.2017.03.008&rft.externalDocID=S1360138517300481
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1360-1385&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1360-1385&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1360-1385&client=summon