Harnessing probabilistic neural network with triple tree seed algorithm-based smart enterprise quantitative risk management framework

Enterprise risk management (ERM) frameworks convey vital principles that help create a consistent risk management culture, irrespective of employee turnover or industry standards. Enterprise Management System (EMS) are becoming a popular research area for assuring a company’s long-term success. Stat...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; pp. 22293 - 22
Main Authors Katib, Iyad, Albassam, Emad, Sharaf, Sanaa A., Ragab, Mahmoud
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 27.09.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-024-73876-w

Cover

Abstract Enterprise risk management (ERM) frameworks convey vital principles that help create a consistent risk management culture, irrespective of employee turnover or industry standards. Enterprise Management System (EMS) are becoming a popular research area for assuring a company’s long-term success. Statistical pattern recognition, federated learning, database administration, visualization technology, and social networking are all used in this field, which includes artificial intelligence (AI), data science, and statistics. Risk assessment in EMS is critical for enterprise decision-making to be effective. Recent advancements in AI, machine learning (ML), and deep learning (DL) concepts have enabled the development of effective risk assessment models for EMS. This special issue seeks groundbreaking research articles that showcase the application of applied probability and statistics to interdisciplinary studies. This study offers Improved Metaheuristics with a Deep Learning Enabled Risk Assessment Model (IMDLRA-SES) for Smart Enterprise Systems. Using feature selection (FS) and DL models, the provided IMDLRA-SES technique estimates business risks. Preprocessing is used in the IMDLRA-SES technique to change the original financial data into a usable format. In addition, an FS technique based on oppositional lion swarm optimization (OLSO) is utilized to find the best subset of features. In addition, the presence or absence of financial hazards in firms is classified using the triple tree seed algorithm (TTSA) with a probabilistic neural network (PNN) model. The TTSA is used as a hyperparameter optimizer to improve the efficiency of the PNN-based categorization. An extensive set of experimental evaluations is performed on German and Australian credit datasets to illustrate the IMDLRA-SES model’s improved performance. The performance validation of the IMDLRA-SES model portrayed a superior accuracy value of 95.70% and 96.09% over existing techniques.
AbstractList Enterprise risk management (ERM) frameworks convey vital principles that help create a consistent risk management culture, irrespective of employee turnover or industry standards. Enterprise Management System (EMS) are becoming a popular research area for assuring a company’s long-term success. Statistical pattern recognition, federated learning, database administration, visualization technology, and social networking are all used in this field, which includes artificial intelligence (AI), data science, and statistics. Risk assessment in EMS is critical for enterprise decision-making to be effective. Recent advancements in AI, machine learning (ML), and deep learning (DL) concepts have enabled the development of effective risk assessment models for EMS. This special issue seeks groundbreaking research articles that showcase the application of applied probability and statistics to interdisciplinary studies. This study offers Improved Metaheuristics with a Deep Learning Enabled Risk Assessment Model (IMDLRA-SES) for Smart Enterprise Systems. Using feature selection (FS) and DL models, the provided IMDLRA-SES technique estimates business risks. Preprocessing is used in the IMDLRA-SES technique to change the original financial data into a usable format. In addition, an FS technique based on oppositional lion swarm optimization (OLSO) is utilized to find the best subset of features. In addition, the presence or absence of financial hazards in firms is classified using the triple tree seed algorithm (TTSA) with a probabilistic neural network (PNN) model. The TTSA is used as a hyperparameter optimizer to improve the efficiency of the PNN-based categorization. An extensive set of experimental evaluations is performed on German and Australian credit datasets to illustrate the IMDLRA-SES model’s improved performance. The performance validation of the IMDLRA-SES model portrayed a superior accuracy value of 95.70% and 96.09% over existing techniques.
Enterprise risk management (ERM) frameworks convey vital principles that help create a consistent risk management culture, irrespective of employee turnover or industry standards. Enterprise Management System (EMS) are becoming a popular research area for assuring a company's long-term success. Statistical pattern recognition, federated learning, database administration, visualization technology, and social networking are all used in this field, which includes artificial intelligence (AI), data science, and statistics. Risk assessment in EMS is critical for enterprise decision-making to be effective. Recent advancements in AI, machine learning (ML), and deep learning (DL) concepts have enabled the development of effective risk assessment models for EMS. This special issue seeks groundbreaking research articles that showcase the application of applied probability and statistics to interdisciplinary studies. This study offers Improved Metaheuristics with a Deep Learning Enabled Risk Assessment Model (IMDLRA-SES) for Smart Enterprise Systems. Using feature selection (FS) and DL models, the provided IMDLRA-SES technique estimates business risks. Preprocessing is used in the IMDLRA-SES technique to change the original financial data into a usable format. In addition, an FS technique based on oppositional lion swarm optimization (OLSO) is utilized to find the best subset of features. In addition, the presence or absence of financial hazards in firms is classified using the triple tree seed algorithm (TTSA) with a probabilistic neural network (PNN) model. The TTSA is used as a hyperparameter optimizer to improve the efficiency of the PNN-based categorization. An extensive set of experimental evaluations is performed on German and Australian credit datasets to illustrate the IMDLRA-SES model's improved performance. The performance validation of the IMDLRA-SES model portrayed a superior accuracy value of 95.70% and 96.09% over existing techniques.Enterprise risk management (ERM) frameworks convey vital principles that help create a consistent risk management culture, irrespective of employee turnover or industry standards. Enterprise Management System (EMS) are becoming a popular research area for assuring a company's long-term success. Statistical pattern recognition, federated learning, database administration, visualization technology, and social networking are all used in this field, which includes artificial intelligence (AI), data science, and statistics. Risk assessment in EMS is critical for enterprise decision-making to be effective. Recent advancements in AI, machine learning (ML), and deep learning (DL) concepts have enabled the development of effective risk assessment models for EMS. This special issue seeks groundbreaking research articles that showcase the application of applied probability and statistics to interdisciplinary studies. This study offers Improved Metaheuristics with a Deep Learning Enabled Risk Assessment Model (IMDLRA-SES) for Smart Enterprise Systems. Using feature selection (FS) and DL models, the provided IMDLRA-SES technique estimates business risks. Preprocessing is used in the IMDLRA-SES technique to change the original financial data into a usable format. In addition, an FS technique based on oppositional lion swarm optimization (OLSO) is utilized to find the best subset of features. In addition, the presence or absence of financial hazards in firms is classified using the triple tree seed algorithm (TTSA) with a probabilistic neural network (PNN) model. The TTSA is used as a hyperparameter optimizer to improve the efficiency of the PNN-based categorization. An extensive set of experimental evaluations is performed on German and Australian credit datasets to illustrate the IMDLRA-SES model's improved performance. The performance validation of the IMDLRA-SES model portrayed a superior accuracy value of 95.70% and 96.09% over existing techniques.
Abstract Enterprise risk management (ERM) frameworks convey vital principles that help create a consistent risk management culture, irrespective of employee turnover or industry standards. Enterprise Management System (EMS) are becoming a popular research area for assuring a company’s long-term success. Statistical pattern recognition, federated learning, database administration, visualization technology, and social networking are all used in this field, which includes artificial intelligence (AI), data science, and statistics. Risk assessment in EMS is critical for enterprise decision-making to be effective. Recent advancements in AI, machine learning (ML), and deep learning (DL) concepts have enabled the development of effective risk assessment models for EMS. This special issue seeks groundbreaking research articles that showcase the application of applied probability and statistics to interdisciplinary studies. This study offers Improved Metaheuristics with a Deep Learning Enabled Risk Assessment Model (IMDLRA-SES) for Smart Enterprise Systems. Using feature selection (FS) and DL models, the provided IMDLRA-SES technique estimates business risks. Preprocessing is used in the IMDLRA-SES technique to change the original financial data into a usable format. In addition, an FS technique based on oppositional lion swarm optimization (OLSO) is utilized to find the best subset of features. In addition, the presence or absence of financial hazards in firms is classified using the triple tree seed algorithm (TTSA) with a probabilistic neural network (PNN) model. The TTSA is used as a hyperparameter optimizer to improve the efficiency of the PNN-based categorization. An extensive set of experimental evaluations is performed on German and Australian credit datasets to illustrate the IMDLRA-SES model’s improved performance. The performance validation of the IMDLRA-SES model portrayed a superior accuracy value of 95.70% and 96.09% over existing techniques.
ArticleNumber 22293
Author Katib, Iyad
Ragab, Mahmoud
Albassam, Emad
Sharaf, Sanaa A.
Author_xml – sequence: 1
  givenname: Iyad
  surname: Katib
  fullname: Katib, Iyad
  organization: Department of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz University
– sequence: 2
  givenname: Emad
  surname: Albassam
  fullname: Albassam, Emad
  organization: Department of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz University
– sequence: 3
  givenname: Sanaa A.
  surname: Sharaf
  fullname: Sharaf, Sanaa A.
  organization: Department of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz University
– sequence: 4
  givenname: Mahmoud
  surname: Ragab
  fullname: Ragab, Mahmoud
  email: mragab@kau.edu.sa
  organization: Information Technology Department, Faculty of Computing and Information Technology, King Abdulaziz University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39333638$$D View this record in MEDLINE/PubMed
BookMark eNqNUstu1TAQjVARLaU_wAJFYsMm4FdiZ4VQBbRSJTawtsbxJPVtYt_aSa_6Afw3vg9KywLhzdgzZ46Pz_hlceSDx6J4Tcl7Srj6kAStW1URJirJlWyqzbPihBFRV4wzdvRof1ycpbQiedWsFbR9URzzlnPecHVS_LyA6DEl54dyHYMB40aXZteVHpcIYw7zJsSbcuPm63KObj1iDohlQrQljEOIuTJVBlI-pwniXKKfMa6jS1jeLuBnN8Ps7rDMmZtyAg8DThlT9hEm3LK_Kp73MCY8O8TT4seXz9_PL6qrb18vzz9dVZ1o2VyBRaUQBGlMAyBqaixlvLbSGlODYrW1BqFndUt7sEQKKbq-5xmGHRAq-Glxuee1AVY6K8xy73UAp3eJEAed9btuRA1UKtMQa9EKYVVjBJWWdagkr_tasszF91yLX8P9BsbxgZASvZ2R3s9I5xnp3Yz0Jnd93HetFzOh7bIN2eUnUp5WvLvWQ7jTNMuXhPHM8O7AEMPtgmnWk0sdjiN4DEvSnFIiOZVZwWnx9i_oKizRZ4d3qFoqTreEbx5LetDy-5NkANsDuhhSitj_30MP9qQM9gPGP3f_o-sXOWPlIA
Cites_doi 10.1007/s10462-020-09948-w
10.1007/s13042-016-0545-8
10.1007/s13198-021-01103-0
10.3390/su11174774
10.1007/978-3-030-44407-5
10.1007/978-3-030-39512-4_167
10.1145/3448748.3448775
10.1155/2021/9370027
10.1016/j.ecoinf.2024.102583
10.1016/j.engappai.2021.104303
10.5753/ladc.2021.18530
10.1109/ACCESS.2017.2765626
10.1155/2015/529724
10.1016/j.eswa.2019.113122
10.1155/2021/6049195
10.3390/app10082944
10.1007/s10614-021-10135-4
10.15688/ek.jvolsu.2021.1.11
10.3233/JIFS-189532
10.1016/j.ins.2023.120081
10.1007/s10489-014-0562-9
10.1080/17517575.2023.2188123
10.1371/journal.pone.0239635
10.23919/JSEE.2020.000050
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1038/s41598-024-73876-w
DatabaseName Springer Nature Open Access Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials Local Electronic Collection Information
Biological Science Database
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database (Proquest)
Biological science database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Publicly Available Content Database


PubMed
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature Open Access Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Statistics
EISSN 2045-2322
EndPage 22
ExternalDocumentID oai_doaj_org_article_a178b60dded44d86b417d2ce8735f572
10.1038/s41598-024-73876-w
PMC11437023
39333638
10_1038_s41598_024_73876_w
Genre Journal Article
GrantInformation_xml – fundername: King Abdulaziz University
  grantid: GPIP-543-611-2024; GPIP-543-611-2024
  funderid: http://dx.doi.org/10.13039/501100004054
– fundername: King Abdulaziz University
  grantid: GPIP-543-611-2024
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
EJD
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c492t-ade88ea406b6aa451bd1235d7dbb5a825ddbeaf2591fad07474cff31bdeca0143
IEDL.DBID M48
ISSN 2045-2322
IngestDate Fri Oct 03 12:46:05 EDT 2025
Sun Oct 26 04:37:59 EDT 2025
Tue Sep 30 17:07:25 EDT 2025
Fri Sep 05 13:49:23 EDT 2025
Tue Oct 07 09:18:26 EDT 2025
Mon Jul 21 05:56:44 EDT 2025
Wed Oct 01 04:02:09 EDT 2025
Fri Feb 21 02:37:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Financial decisions
Deep learning
Feature selection
Metaheuristics
Risk assessment
Classification
Smart enterprise system
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c492t-ade88ea406b6aa451bd1235d7dbb5a825ddbeaf2591fad07474cff31bdeca0143
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-024-73876-w
PMID 39333638
PQID 3110578313
PQPubID 2041939
PageCount 22
ParticipantIDs doaj_primary_oai_doaj_org_article_a178b60dded44d86b417d2ce8735f572
unpaywall_primary_10_1038_s41598_024_73876_w
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11437023
proquest_miscellaneous_3110731710
proquest_journals_3110578313
pubmed_primary_39333638
crossref_primary_10_1038_s41598_024_73876_w
springer_journals_10_1038_s41598_024_73876_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-27
PublicationDateYYYYMMDD 2024-09-27
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-27
  day: 27
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Korobov, S. A., Pshenichnikov, I. V. & Epinina, V. S. Features of the Digital Transformation of the Industrial Enterprise Management System in the Modern Conditions of Economic Development. Vestnik Volgogradskogo gosudarstvennogo universiteta. Ekonomika, pp.131–140 .
Zhang, L., Luo, Y. & Liao, R. February. Integrated Safety Risk Assessment Between Enterprises, Industries and Areas. In International Conference on Intelligent Human Systems Integration (pp. 1101–1106). Springer, Cham. (2020).
Impedovo, D. & Pirlo, G. Artificial intelligence applications to smart cities and smart enterprise. Applied Sciences, 10(8), p.2944. (2020).
ChangTMHsuMFIntegration of incremental filter-wrapper selection strategy with artificial intelligence for enterprise risk managementInt. J. Mach. Learn. Cybernet.20189347748910.1007/s13042-016-0545-8
QianWGeYThe implementation of leisure tourism enterprise management system based on deep learningInt. J. Syst. Assur. Eng. Manage.202112480181210.1007/s13198-021-01103-0
InjadatMMoubayedANassifABShamiAMachine learning towards intelligent systems: applications, challenges, and opportunitiesArtif. Intell. Rev.20215453299334810.1007/s10462-020-09948-w
Xiao, Q., Wan, S., Lu, F. & Li, S. Risk assessment for engagement in sharing economy of manufacturing enterprises: A matter–element extension based approach. Sustainability, 11(17), p.4774. (2019).
Mohan, P. et al. Eagle strategy arithmetic optimization algorithm with optimal deep convolutional forest based fintech application for hyper-automation. Enterprise Information Systems, 17(10), p.2188123. (2023).
Nitsenko, V. S. et al. Automatic information system of risk assessment for agricultural enterprises of Ukraine. (2019).
DaoqingZMingyanJParallel discrete lion swarm optimization algorithm for solving traveling salesman problemJ. Syst. Eng. Electron.202031475176010.23919/JSEE.2020.000050
Agboola, G., Beni, L. H., Elbayoumi, T. & Thompson, G. Optimizing landslide susceptibility mapping using machine learning and geospatial techniques. Ecological Informatics, 81, p.102583. (2024).
Jiang, J., Liu, Y. & Zhao, Z. TriTSA: Triple Tree-Seed Algorithm for dimensional continuous optimization and constrained engineering problems. Engineering Applications of Artificial Intelligence, 104, p.104303. (2021).
Haldorai, A., Ramu, A. & Khan, S. A. R. (eds) Business Intelligence for Enterprise Internet of Things (Springer International Publishing, 2020).
Song, Y. & Wu, R. The Impact of Financial Enterprises’ Excessive Financialization Risk Assessment for Risk Control based on Data Mining and Machine Learning. Computational Economics, pp.1–23. (2021).
Zhang, Y., Li, T., Na, G., Li, G. & Li, Y. Optimized extreme learning machine for power system transient stability prediction using synchrophasors. Mathematical Problems in Engineering, 2015(1), p.529724. (2015).
WangJLiuGXuXXingXCredit risk prediction for small and medium enterprises utilizing adjacent enterprise data and a relational graph attention networkJ. Manage. Sci. Eng.202492177192
LiYYangZApplication of EOS-ELM with binary Jaya-based feature selection to real-time transient stability assessment using PMU dataIEEE Access.201752309223101374995910.1109/ACCESS.2017.2765626
Wei, S. et al. Combining intra-risk and contagion risk for enterprise bankruptcy prediction using graph neural networks. Information Sciences, 659, p.120081. (2024).
Chen, Y. & Han, X. January. Research on Crisis Warning Model of Enterprise Finance Based on Deep Learning. In Proceedings of the 2021 International Conference on Bioinformatics and Intelligent Computing (pp. 168–172). (2021).
KusyMZajdelRProbabilistic neural network training procedure based on Q (0)-learning algorithm in medical data classificationAppl. Intell.20144183785410.1007/s10489-014-0562-9
LuSEnterprise supply chain risk assessment based on improved neural network algorithm and machine learningJ. Intell. Fuzzy Syst.20214047013702410.3233/JIFS-189532
Schiavone, E., Nostro, N. & Brancati, F. November. A MDE Tool for Security Risk Assessment of Enterprises. In Anais do X Latin-American Symposium on Dependable Computing (pp. 5–7). SBC. (2021).
Huang, B., Wei, J., Tang, Y. & Liu, C. Enterprise Risk Assessment Based on Machine Learning. Computational Intelligence and Neuroscience, 2021. (2021).
XuXRisk factor analysis combined with deep learning in the risk assessment of overseas investment of enterprisesPlos One20201510e02396351:CAS:528:DC%2BB3cXitVOis7rK10.1371/journal.pone.0239635330069987531995
Ma, D. The Monitoring Method of Enterprise Human Resource Efficiency under the Smart City Management Mode. Advances in Multimedia, 2021. (2021).
Tubishat, M., Idris, N., Shuib, L., Abushariah, M. A. & Mirjalili, S. Improved salp swarm algorithm based on opposition based learning and novel local search algorithm for feature selection. Expert Systems with Applications, 145, p.113122. (2020).
Tyagi, S. K. S. & Boyang, Q. An Intelligent Internet of Things Aided Financial Crisis Prediction Model in FinTech (IEEE Internet of Things Journal, 2021).
Yang, B. & Liao, Y. M. Research on Enterprise risk Knowledge Graph Based on multi-source data Fusionpp.1–14 (Neural Computing and Applications, 2021).
73876_CR7
73876_CR8
S Lu (73876_CR15) 2021; 40
73876_CR3
73876_CR4
73876_CR5
73876_CR6
73876_CR21
Z Daoqing (73876_CR25) 2020; 31
73876_CR22
X Xu (73876_CR9) 2020; 15
73876_CR20
73876_CR26
M Injadat (73876_CR14) 2021; 54
73876_CR24
73876_CR28
M Kusy (73876_CR27) 2014; 41
73876_CR10
73876_CR11
73876_CR1
73876_CR2
73876_CR12
73876_CR18
W Qian (73876_CR17) 2021; 12
TM Chang (73876_CR13) 2018; 9
73876_CR16
J Wang (73876_CR23) 2024; 9
Y Li (73876_CR19) 2017; 5
References_xml – reference: Mohan, P. et al. Eagle strategy arithmetic optimization algorithm with optimal deep convolutional forest based fintech application for hyper-automation. Enterprise Information Systems, 17(10), p.2188123. (2023).
– reference: Jiang, J., Liu, Y. & Zhao, Z. TriTSA: Triple Tree-Seed Algorithm for dimensional continuous optimization and constrained engineering problems. Engineering Applications of Artificial Intelligence, 104, p.104303. (2021).
– reference: Zhang, Y., Li, T., Na, G., Li, G. & Li, Y. Optimized extreme learning machine for power system transient stability prediction using synchrophasors. Mathematical Problems in Engineering, 2015(1), p.529724. (2015).
– reference: KusyMZajdelRProbabilistic neural network training procedure based on Q (0)-learning algorithm in medical data classificationAppl. Intell.20144183785410.1007/s10489-014-0562-9
– reference: WangJLiuGXuXXingXCredit risk prediction for small and medium enterprises utilizing adjacent enterprise data and a relational graph attention networkJ. Manage. Sci. Eng.202492177192
– reference: Schiavone, E., Nostro, N. & Brancati, F. November. A MDE Tool for Security Risk Assessment of Enterprises. In Anais do X Latin-American Symposium on Dependable Computing (pp. 5–7). SBC. (2021).
– reference: Zhang, L., Luo, Y. & Liao, R. February. Integrated Safety Risk Assessment Between Enterprises, Industries and Areas. In International Conference on Intelligent Human Systems Integration (pp. 1101–1106). Springer, Cham. (2020).
– reference: ChangTMHsuMFIntegration of incremental filter-wrapper selection strategy with artificial intelligence for enterprise risk managementInt. J. Mach. Learn. Cybernet.20189347748910.1007/s13042-016-0545-8
– reference: Song, Y. & Wu, R. The Impact of Financial Enterprises’ Excessive Financialization Risk Assessment for Risk Control based on Data Mining and Machine Learning. Computational Economics, pp.1–23. (2021).
– reference: Chen, Y. & Han, X. January. Research on Crisis Warning Model of Enterprise Finance Based on Deep Learning. In Proceedings of the 2021 International Conference on Bioinformatics and Intelligent Computing (pp. 168–172). (2021).
– reference: Tubishat, M., Idris, N., Shuib, L., Abushariah, M. A. & Mirjalili, S. Improved salp swarm algorithm based on opposition based learning and novel local search algorithm for feature selection. Expert Systems with Applications, 145, p.113122. (2020).
– reference: Ma, D. The Monitoring Method of Enterprise Human Resource Efficiency under the Smart City Management Mode. Advances in Multimedia, 2021. (2021).
– reference: Tyagi, S. K. S. & Boyang, Q. An Intelligent Internet of Things Aided Financial Crisis Prediction Model in FinTech (IEEE Internet of Things Journal, 2021).
– reference: Korobov, S. A., Pshenichnikov, I. V. & Epinina, V. S. Features of the Digital Transformation of the Industrial Enterprise Management System in the Modern Conditions of Economic Development. Vestnik Volgogradskogo gosudarstvennogo universiteta. Ekonomika, pp.131–140 .
– reference: Xiao, Q., Wan, S., Lu, F. & Li, S. Risk assessment for engagement in sharing economy of manufacturing enterprises: A matter–element extension based approach. Sustainability, 11(17), p.4774. (2019).
– reference: QianWGeYThe implementation of leisure tourism enterprise management system based on deep learningInt. J. Syst. Assur. Eng. Manage.202112480181210.1007/s13198-021-01103-0
– reference: Impedovo, D. & Pirlo, G. Artificial intelligence applications to smart cities and smart enterprise. Applied Sciences, 10(8), p.2944. (2020).
– reference: DaoqingZMingyanJParallel discrete lion swarm optimization algorithm for solving traveling salesman problemJ. Syst. Eng. Electron.202031475176010.23919/JSEE.2020.000050
– reference: Huang, B., Wei, J., Tang, Y. & Liu, C. Enterprise Risk Assessment Based on Machine Learning. Computational Intelligence and Neuroscience, 2021. (2021).
– reference: InjadatMMoubayedANassifABShamiAMachine learning towards intelligent systems: applications, challenges, and opportunitiesArtif. Intell. Rev.20215453299334810.1007/s10462-020-09948-w
– reference: Yang, B. & Liao, Y. M. Research on Enterprise risk Knowledge Graph Based on multi-source data Fusionpp.1–14 (Neural Computing and Applications, 2021).
– reference: Wei, S. et al. Combining intra-risk and contagion risk for enterprise bankruptcy prediction using graph neural networks. Information Sciences, 659, p.120081. (2024).
– reference: Haldorai, A., Ramu, A. & Khan, S. A. R. (eds) Business Intelligence for Enterprise Internet of Things (Springer International Publishing, 2020).
– reference: Agboola, G., Beni, L. H., Elbayoumi, T. & Thompson, G. Optimizing landslide susceptibility mapping using machine learning and geospatial techniques. Ecological Informatics, 81, p.102583. (2024).
– reference: LiYYangZApplication of EOS-ELM with binary Jaya-based feature selection to real-time transient stability assessment using PMU dataIEEE Access.201752309223101374995910.1109/ACCESS.2017.2765626
– reference: XuXRisk factor analysis combined with deep learning in the risk assessment of overseas investment of enterprisesPlos One20201510e02396351:CAS:528:DC%2BB3cXitVOis7rK10.1371/journal.pone.0239635330069987531995
– reference: LuSEnterprise supply chain risk assessment based on improved neural network algorithm and machine learningJ. Intell. Fuzzy Syst.20214047013702410.3233/JIFS-189532
– reference: Nitsenko, V. S. et al. Automatic information system of risk assessment for agricultural enterprises of Ukraine. (2019).
– volume: 54
  start-page: 3299
  issue: 5
  year: 2021
  ident: 73876_CR14
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-020-09948-w
– volume: 9
  start-page: 477
  issue: 3
  year: 2018
  ident: 73876_CR13
  publication-title: Int. J. Mach. Learn. Cybernet.
  doi: 10.1007/s13042-016-0545-8
– volume: 12
  start-page: 801
  issue: 4
  year: 2021
  ident: 73876_CR17
  publication-title: Int. J. Syst. Assur. Eng. Manage.
  doi: 10.1007/s13198-021-01103-0
– ident: 73876_CR10
  doi: 10.3390/su11174774
– ident: 73876_CR4
  doi: 10.1007/978-3-030-44407-5
– ident: 73876_CR8
  doi: 10.1007/978-3-030-39512-4_167
– ident: 73876_CR11
  doi: 10.1145/3448748.3448775
– volume: 9
  start-page: 177
  issue: 2
  year: 2024
  ident: 73876_CR23
  publication-title: J. Manage. Sci. Eng.
– ident: 73876_CR2
  doi: 10.1155/2021/9370027
– ident: 73876_CR24
  doi: 10.1016/j.ecoinf.2024.102583
– ident: 73876_CR28
  doi: 10.1016/j.engappai.2021.104303
– ident: 73876_CR6
  doi: 10.5753/ladc.2021.18530
– volume: 5
  start-page: 23092
  year: 2017
  ident: 73876_CR19
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2017.2765626
– ident: 73876_CR20
  doi: 10.1155/2015/529724
– ident: 73876_CR18
– ident: 73876_CR16
– ident: 73876_CR26
  doi: 10.1016/j.eswa.2019.113122
– ident: 73876_CR12
  doi: 10.1155/2021/6049195
– ident: 73876_CR1
  doi: 10.3390/app10082944
– ident: 73876_CR7
  doi: 10.1007/s10614-021-10135-4
– ident: 73876_CR3
  doi: 10.15688/ek.jvolsu.2021.1.11
– volume: 40
  start-page: 7013
  issue: 4
  year: 2021
  ident: 73876_CR15
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.3233/JIFS-189532
– ident: 73876_CR22
  doi: 10.1016/j.ins.2023.120081
– ident: 73876_CR5
– volume: 41
  start-page: 837
  year: 2014
  ident: 73876_CR27
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-014-0562-9
– ident: 73876_CR21
  doi: 10.1080/17517575.2023.2188123
– volume: 15
  start-page: e0239635
  issue: 10
  year: 2020
  ident: 73876_CR9
  publication-title: Plos One
  doi: 10.1371/journal.pone.0239635
– volume: 31
  start-page: 751
  issue: 4
  year: 2020
  ident: 73876_CR25
  publication-title: J. Syst. Eng. Electron.
  doi: 10.23919/JSEE.2020.000050
SSID ssj0000529419
Score 2.4657772
Snippet Enterprise risk management (ERM) frameworks convey vital principles that help create a consistent risk management culture, irrespective of employee turnover or...
Abstract Enterprise risk management (ERM) frameworks convey vital principles that help create a consistent risk management culture, irrespective of employee...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 22293
SubjectTerms 639/705/117
639/705/258
Algorithms
Artificial intelligence
Classification
Decision making
Deep learning
Enterprise risk management
Feature selection
Financial decisions
Humanities and Social Sciences
Machine learning
multidisciplinary
Neural networks
Pattern recognition
Probability learning
Risk assessment
Risk management
Science
Science (multidisciplinary)
Smart enterprise system
Social discrimination learning
Social organization
Statistical analysis
Statistics
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hSgg4IN6kLchI3GjUOHZi5wiIaoUEJyr1ZtmxDZV2s-0-tOoP4H8zE2fDrkDAgWvsXTnzdmbmG4DXIsiS11HkddHGXLZB5k0RkCEO3XPQvrYVNQp_-lxPzuXHi-piZ9QX1YQleOBEuFPLlXZ1gVropfS6dpIrX7ZBK1HFSvXWt9DNzmUqoXqXjeTN0CVTCH26RE9F3WSlzJVAE5Bv9jxRD9j_uyjz12LJMWN6D-6suyt7s7HT6Y5TOnsA94dokr1Nb_EQboXuEdxO8yVvHsP3iV2QKcP_YTQ5pkfTJWBmRjCW-MMuFYEz-hrLVgv66M4oTc2W6NSYnX6dL3BllpOv82w5Q3KxkMoUL5eBXa9t1zepoclkVKTOZmM1DYvbsq8ncH724cv7ST7MXchb2ZSr3PqgdbDo6l1tray489RR65V3rrJ4pfTeBRvx4sSj9YTAL9sYBW4LrSW8wKdw0M278ByYj41tC-UKF5UsbNO4SjsuKqeU12WwGbzZ8sBcJXgN06fFhTaJYwY5ZnqOmU0G74hN406Cxu4foMCYQWDM3wQmg-Mtk82gr0sjOM071oKLDF6Ny6hplD6xXZiv0x6F4RYvMniWZGI8iWiEEGjKMtB70rJ31P2V7vJbj-aNF1KhMHLK4GQrWD_P9SdanIzC9w-kO_wfpDuCuyUpECXl1DEcrBbr8AJjspV72avfD_6oN4M
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEB_qFbE-iNav1SoRfLOhu5vsJvsgYqXlEDxELPRtSTbZtnC3d7294-gf4P_tzH7VQym-bkLIZj6TmfkNwHvhZRylpeBpWJRcFl7yLPRIEIvm2WuXmoQKhb9N0vGZ_HqenO_ApK-FobTKXic2itrNC3ojPxIRdaTVIhKfFtecukZRdLVvoWG61gruYwMxdg92Y0LGGsHu8cnk-4_h1YXiWjLKuuqZUOijGi0YVZnFkiuBqoFvtixUA-T_L-_z7yTKIZL6EB6sq4W52Zjp9A9jdfoYHnVeJvvcssUT2PHVPtxv-07e7MMeuZgtQvNT-DU2S9J3uCij9jIN5C6NMcK6xFWqNlOc0ZMtWy3pZZ5RLJvVaPmYmV7gMa0uZ5wMomP1DJmR-TaX8ar27HptqqaSDfUqo0x2NhtSbljZ54Y9g7PTk59fxrxrzsALmcUrbpzX2hv0B2xqjEwi66js1ilnbWLw3umc9abE21VUGkcw_bIoS4HTfGEIVPA5jKp55V8Cc2VmilDZ0JZKhibLbKJtJBKrlNOxNwF86AmSL1oMjryJnQudt-TLkXx5Q758E8Ax0WyYSfjZzYf58iLvxDE3kdI2DVG3OymdTq2MlIsLr5VIykTFARz0FM87oa7zWxYM4N0wjOJIMRZT-fm6naPQJ4vCAF60DDLsRGRCCNR3Aegt1tna6vZIdXXZQH7jrVUodK8COOy57HZfd53F4cCJ_3F0r-7-69ewF5OcUExOHcBotVz7N-iSrezbTs5-A7fuOY4
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LixQxEC7WWUQ9iG9bV4ngzWns7qQ76eMoLsOAXnRhbyHpJLow07POg2F_gP_bqn5psyJ67TwIXc-kqr4CeM29yNIi8LhIqhCLyou4TDwSxKJ59soVJqdC4Y-fivmZWJzn50cw7WthRvH7Brp7iyaGysAyEUuOshsfbsCxQsZUEziezRafF8ObCkWtRFp2tTG4_O31xSP708D0_8m3vJ4iOcRJ78CtfX1prg5mufzNFJ3eg7udD8lmLdHvw5GvH8DNtqvk1UP4MTcbUmC4D6N-MQ2GLsExMwKvxIV1m_rN6A2W7Tb01M4oOM22aMqYWX5db3BkFZOFc2y7Qu5ivk1OvNh69n1v6qY0DRUlo9R0thpyaFjok70ewdnphy_v53HXbSGuRJntYuO8Ut6ggbeFMSJPraM6WiedtbnBi6Rz1puA16U0GEe4-6IKgeM0XxlCCXwMk3pd-6fAXChNlUib2CBFYsrS5sqmPLdSOpV5E8Gbngb6sgXV0E0wnCvdUkwjxXRDMX2I4B2RaZhJgNjNB-QT3cmXNqlUtkhQWTshnCqsSKXLKo-MkodcZhGc9ETWnZRuNU-py7HiKY_g1TCM8kVBE1P79b6dI9HJSpMInrQ8MZyEl5xzVGARqBG3jI46HqkvvjUY3ngN5RL9pQimPWP9Otff_sV0YL5_-HXP_m_353A7I1GhoJs8gclus_cv0Ofa2ZedqP0E_DwqLQ
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7BVgg48H4ECjISN5qSxE7sHAuiWiFRcWClcrLs2CkVu9mySbQqd_43M0k2sFChco0dyRnPeD5nZr4BeMm9SOKs5GEWFWUoCi_CPPK4IRbds1cuMykVCn84yqYz8f44PR5ocqgWZit-z9XrGh0MFYElIpQcLTdcX4WdLEXcPYGd2dHHg8_UPQ5xSYjQIBmqYi5-ccvzdAT9F6HKv5MjxwjpTbjeVmfmfG3m89-c0OHtvptR3XEXUu7J1_22sfvF9z-YHS_3fXfg1oBF2UGvPHfhiq_uwbW-O-X5ffgxNSs6CHFVjPrOdFy8ROvMiAQTX6z6FHJG_3JZs6Jf9oyC3KxGl8jM_GS5wpFFSJ7SsXqBWsp8n-R4Wnv2rTVVV-KGBy6jFHe2GHNxWLlJGnsAs8N3n95Ow6FrQ1iIPGlC47xS3iBQsJkxIo2to3pcJ521qcELqXPWmxKvXXFpHPH3i6IsOU7zhSG2wYcwqZaVfwzMlbkpImkjW0oRmTy3qbIxT62UTiXeBPBqs6P6rCfn0F1QnSvdC1ajYHUnWL0O4A1t-jiTiLW7B7gferBTbWKpbBbhoe-EcCqzIpYuKbySPC1TmQSwu1EZPVh7rXlM3ZIVj3kAL8ZhtFMKvpjKL9t-jkSwFkcBPOo1bFwJzznneBAGoLZ0b2up2yPV6ZeOCxyvs1wi7gpgb6Omv9b1L1nsjap8CdE9-b_pT-FGQhpNwTu5C5Nm1fpniN0a-3ww2p9wbEBx
  priority: 102
  providerName: Unpaywall
Title Harnessing probabilistic neural network with triple tree seed algorithm-based smart enterprise quantitative risk management framework
URI https://link.springer.com/article/10.1038/s41598-024-73876-w
https://www.ncbi.nlm.nih.gov/pubmed/39333638
https://www.proquest.com/docview/3110578313
https://www.proquest.com/docview/3110731710
https://pubmed.ncbi.nlm.nih.gov/PMC11437023
https://doi.org/10.1038/s41598-024-73876-w
https://doaj.org/article/a178b60dded44d86b417d2ce8735f572
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: HH5
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate (EBSCO)
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: ABDBF
  dateStart: 20121221
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DIK
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAQT
  databaseName: Springer Nature - nature.com Journals - Fully Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: NAO
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.nature.com/siteindex/index.html
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (Proquest)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M48
  dateStart: 20110801
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: AAJSJ
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: C6C
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_tQ8B4QHxugVEZiTcWSGIndh4Q6qpNVaVVE1CpPEV27IxJbbqlrUr_AP5vzvliFRVCPEWKncjy3fnufHe_A3hLDQv8KKNu5KWZy1LD3NgzSBCF6tkIHcnQFgpfDKP-iA3G4XgHmnZH9QbOt7p2tp_UqJi8_3G7_oQC_7EqGRcf5qiEbKFYwFxOUbrd1S7so6aKbSuHi9rcr7C-g5j5cV07s_3TA7hP0cmnka1YuaOqSkT_bWbon9mUbUj1ITxY5jdyvZKTyR2tdf4YHtXmJulW_PEEdkz-FO5VDSjXz-BnXxb2rMP_ENtapoTbtcjNxOJc4od5lSVO7HUtWRT2Vp7YODaZo9YjcnI1K3Bk6lplqMl8ioxITJXHeD035HYp87KKDc9UYrPYybRNtyFZkxf2HEbnZ197fbduzOCmLA4WrtRGCCPRFlCRlCz0lbYlt5prpUKJPqfWysgMPSs_k9pC9LM0yyhOM6m0gIIvYC-f5eYIiM5imXpceSrjzJNxrEKhfBoqzrUIjHTgXUOD5KbC30jKuDkVSUW8BImXlMRLVg6cWjK1My12dvliVlwltSgm0udCRR6e65oxLSLFfK6D1AhOwyzkgQPHDZGThh8T6tuGyIL61IE37TCKoo2vyNzMltUcjvaY7zlwWPFEu5KGpxwQG9yysdTNkfz6ewn3jR4r5WhaOXDSMNbvdf1tL05a5vuHrXv5_wt7BQeBlSAbq-PHsLcoluY1mmoL1YFdPuYd2O92B18G-Dw9G15-xre9qNcprz86pYTiyGh42f32C3rhR18
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4am9DGA4JxCwwwEjyxaEnsxMnDhBhs6thFCG3S3jI7drZJbdo1rar-AP4Wv41zchsVaOJlr7VlufnO1ecG8J5bEfhRzt3Iy3JXZFa4iWcREI3q2cYmUiEVCh8dR71T8e0sPFuCX20tDKVVtjKxEtRmmNEb-Rb3aSJtzH3-aXTt0tQoiq62IzRUM1rBbFctxprCjgM7n6ELV27vf0W8PwTB3u7Jl57bTBlwM5EEE1cZG8dWoWLTkVIi9LWh-lEjjdahQgfKGG1Vjm6CnytD_eZFlucct9lMUXc8PPcerAguEnT-VnZ2j7__6F55KI4m_KSp1vF4vFWixqSqtkC4kqMocmcLGrEaHPAva_fvpM0ucvsAVqfFSM1nqt__QznuPYKHjVXLPtdk-BiWbLEO9-s5l_N1WCOTtu4I_QR-9tSY5CseymicTdXil9YY9dbEU4o6M53REzGbjCkSwCh2zkrUtEz1LxCWyeXAJQVsWDlA4me2zp28Ki27nqqiqpxDOc4oc54NuhQflre5aE_h9E5gegbLxbCwL4CZPFGZJ7Wncyk8lSQ6jLXPQy2liQOrHPjYApKO6p4faRWr53Faw5cifGkFXzpzYIcw63ZSv-7qh-H4Im3YP1W-jHXkoS4xQpg40sKXJshsLHmYhzJwYKNFPG2ESJnekLwD77plZH-K6ajCDqf1Hok2oO858LwmkO4mPOGco3x1IF4gnYWrLq4UV5dVi3H0krlEc86BzZbKbu5127fY7CjxPz7dy9v_9VtY7Z0cHaaH-8cHr2AtIJ6heKDcgOXJeGpfozk40W8anmNwftds_hvbFnkU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4aQ8B4QDBugQFGgicWNYmd2HlACBhVx2DigUl7C3bsbJPatGtaVf0B_Cl-HeckTUYFmnjZa2xZjr9zs88N4BV3IgqTgvtJkBe-yJ3w08AhIAbVs1M20TElCn89TAZH4vNxfLwBv9pcGAqrbGViLajtOKc38h4PqSOt4iHvFauwiG97_XeTc586SJGntW2n0ZDIgVsu8PpWvd3fQ6xfR1H_0_ePA3_VYcDPRRrNfG2dUk6jUjOJ1iIOjaXcUSutMbHGy5O1xukCrwhhoS3Vmhd5UXCc5nJNlfFw3WtwXXKeUjihPJbd-w550ESYrvJ0Aq56FepKymeLhC85CiF_saYL65YB_7Jz_w7X7Hy2t-HWvJzo5UIPh3-oxf5duLOyZ9n7hgDvwYYrt-FG0-FyuQ1bZMw2taDvw8-BnpJkxUUZNbKpi_vSGKOqmrhK2cSkM3ocZrMp-QAYec1ZhTqW6eEJgjA7Hfmkei2rRkj2zDVRk2eVY-dzXdY5cyjBGcXMs1EX3MOKNgrtARxdCUgPYbMcl-4xMFukOg-kCUwhRaDT1MTKhDw2UloVOe3BmxaQbNJU-8hqLz1XWQNfhvBlNXzZwoMPhFk3kyp11x_G05NsxfiZDqUySYBaxAphVWJEKG2UOyV5XMQy8mCnRTxbiY8quyB2D152w8j45M3RpRvPmzkSrb8w8OBRQyDdTnjKOUfJ6oFaI521ra6PlGendXFxvB9ziYacB7stlV3s67Kz2O0o8T-O7snlf_0CbiJzZ1_2Dw-ewlZELEOOQLkDm7Pp3D1DO3BmntcMx-DHVXP4b6Rqdq4
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7BVgg48H4ECjISN5qSxE7sHAuiWiFRcWClcrLs2CkVu9mySbQqd_43M0k2sFChco0dyRnPeD5nZr4BeMm9SOKs5GEWFWUoCi_CPPK4IRbds1cuMykVCn84yqYz8f44PR5ocqgWZit-z9XrGh0MFYElIpQcLTdcX4WdLEXcPYGd2dHHg8_UPQ5xSYjQIBmqYi5-ccvzdAT9F6HKv5MjxwjpTbjeVmfmfG3m89-c0OHtvptR3XEXUu7J1_22sfvF9z-YHS_3fXfg1oBF2UGvPHfhiq_uwbW-O-X5ffgxNSs6CHFVjPrOdFy8ROvMiAQTX6z6FHJG_3JZs6Jf9oyC3KxGl8jM_GS5wpFFSJ7SsXqBWsp8n-R4Wnv2rTVVV-KGBy6jFHe2GHNxWLlJGnsAs8N3n95Ow6FrQ1iIPGlC47xS3iBQsJkxIo2to3pcJ521qcELqXPWmxKvXXFpHPH3i6IsOU7zhSG2wYcwqZaVfwzMlbkpImkjW0oRmTy3qbIxT62UTiXeBPBqs6P6rCfn0F1QnSvdC1ajYHUnWL0O4A1t-jiTiLW7B7gferBTbWKpbBbhoe-EcCqzIpYuKbySPC1TmQSwu1EZPVh7rXlM3ZIVj3kAL8ZhtFMKvpjKL9t-jkSwFkcBPOo1bFwJzznneBAGoLZ0b2up2yPV6ZeOCxyvs1wi7gpgb6Omv9b1L1nsjap8CdE9-b_pT-FGQhpNwTu5C5Nm1fpniN0a-3ww2p9wbEBx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Harnessing+probabilistic+neural+network+with+triple+tree+seed+algorithm-based+smart+enterprise+quantitative+risk+management+framework&rft.jtitle=Scientific+reports&rft.au=Katib%2C+Iyad&rft.au=Albassam%2C+Emad&rft.au=Sharaf%2C+Sanaa+A.&rft.au=Ragab%2C+Mahmoud&rft.date=2024-09-27&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=14&rft_id=info:doi/10.1038%2Fs41598-024-73876-w&rft_id=info%3Apmid%2F39333638&rft.externalDocID=PMC11437023
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon