Harnessing probabilistic neural network with triple tree seed algorithm-based smart enterprise quantitative risk management framework
Enterprise risk management (ERM) frameworks convey vital principles that help create a consistent risk management culture, irrespective of employee turnover or industry standards. Enterprise Management System (EMS) are becoming a popular research area for assuring a company’s long-term success. Stat...
        Saved in:
      
    
          | Published in | Scientific reports Vol. 14; no. 1; pp. 22293 - 22 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        London
          Nature Publishing Group UK
    
        27.09.2024
     Nature Publishing Group Nature Portfolio  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2045-2322 2045-2322  | 
| DOI | 10.1038/s41598-024-73876-w | 
Cover
| Abstract | Enterprise risk management (ERM) frameworks convey vital principles that help create a consistent risk management culture, irrespective of employee turnover or industry standards. Enterprise Management System (EMS) are becoming a popular research area for assuring a company’s long-term success. Statistical pattern recognition, federated learning, database administration, visualization technology, and social networking are all used in this field, which includes artificial intelligence (AI), data science, and statistics. Risk assessment in EMS is critical for enterprise decision-making to be effective. Recent advancements in AI, machine learning (ML), and deep learning (DL) concepts have enabled the development of effective risk assessment models for EMS. This special issue seeks groundbreaking research articles that showcase the application of applied probability and statistics to interdisciplinary studies. This study offers Improved Metaheuristics with a Deep Learning Enabled Risk Assessment Model (IMDLRA-SES) for Smart Enterprise Systems. Using feature selection (FS) and DL models, the provided IMDLRA-SES technique estimates business risks. Preprocessing is used in the IMDLRA-SES technique to change the original financial data into a usable format. In addition, an FS technique based on oppositional lion swarm optimization (OLSO) is utilized to find the best subset of features. In addition, the presence or absence of financial hazards in firms is classified using the triple tree seed algorithm (TTSA) with a probabilistic neural network (PNN) model. The TTSA is used as a hyperparameter optimizer to improve the efficiency of the PNN-based categorization. An extensive set of experimental evaluations is performed on German and Australian credit datasets to illustrate the IMDLRA-SES model’s improved performance. The performance validation of the IMDLRA-SES model portrayed a superior accuracy value of 95.70% and 96.09% over existing techniques. | 
    
|---|---|
| AbstractList | Enterprise risk management (ERM) frameworks convey vital principles that help create a consistent risk management culture, irrespective of employee turnover or industry standards. Enterprise Management System (EMS) are becoming a popular research area for assuring a company’s long-term success. Statistical pattern recognition, federated learning, database administration, visualization technology, and social networking are all used in this field, which includes artificial intelligence (AI), data science, and statistics. Risk assessment in EMS is critical for enterprise decision-making to be effective. Recent advancements in AI, machine learning (ML), and deep learning (DL) concepts have enabled the development of effective risk assessment models for EMS. This special issue seeks groundbreaking research articles that showcase the application of applied probability and statistics to interdisciplinary studies. This study offers Improved Metaheuristics with a Deep Learning Enabled Risk Assessment Model (IMDLRA-SES) for Smart Enterprise Systems. Using feature selection (FS) and DL models, the provided IMDLRA-SES technique estimates business risks. Preprocessing is used in the IMDLRA-SES technique to change the original financial data into a usable format. In addition, an FS technique based on oppositional lion swarm optimization (OLSO) is utilized to find the best subset of features. In addition, the presence or absence of financial hazards in firms is classified using the triple tree seed algorithm (TTSA) with a probabilistic neural network (PNN) model. The TTSA is used as a hyperparameter optimizer to improve the efficiency of the PNN-based categorization. An extensive set of experimental evaluations is performed on German and Australian credit datasets to illustrate the IMDLRA-SES model’s improved performance. The performance validation of the IMDLRA-SES model portrayed a superior accuracy value of 95.70% and 96.09% over existing techniques. Enterprise risk management (ERM) frameworks convey vital principles that help create a consistent risk management culture, irrespective of employee turnover or industry standards. Enterprise Management System (EMS) are becoming a popular research area for assuring a company's long-term success. Statistical pattern recognition, federated learning, database administration, visualization technology, and social networking are all used in this field, which includes artificial intelligence (AI), data science, and statistics. Risk assessment in EMS is critical for enterprise decision-making to be effective. Recent advancements in AI, machine learning (ML), and deep learning (DL) concepts have enabled the development of effective risk assessment models for EMS. This special issue seeks groundbreaking research articles that showcase the application of applied probability and statistics to interdisciplinary studies. This study offers Improved Metaheuristics with a Deep Learning Enabled Risk Assessment Model (IMDLRA-SES) for Smart Enterprise Systems. Using feature selection (FS) and DL models, the provided IMDLRA-SES technique estimates business risks. Preprocessing is used in the IMDLRA-SES technique to change the original financial data into a usable format. In addition, an FS technique based on oppositional lion swarm optimization (OLSO) is utilized to find the best subset of features. In addition, the presence or absence of financial hazards in firms is classified using the triple tree seed algorithm (TTSA) with a probabilistic neural network (PNN) model. The TTSA is used as a hyperparameter optimizer to improve the efficiency of the PNN-based categorization. An extensive set of experimental evaluations is performed on German and Australian credit datasets to illustrate the IMDLRA-SES model's improved performance. The performance validation of the IMDLRA-SES model portrayed a superior accuracy value of 95.70% and 96.09% over existing techniques.Enterprise risk management (ERM) frameworks convey vital principles that help create a consistent risk management culture, irrespective of employee turnover or industry standards. Enterprise Management System (EMS) are becoming a popular research area for assuring a company's long-term success. Statistical pattern recognition, federated learning, database administration, visualization technology, and social networking are all used in this field, which includes artificial intelligence (AI), data science, and statistics. Risk assessment in EMS is critical for enterprise decision-making to be effective. Recent advancements in AI, machine learning (ML), and deep learning (DL) concepts have enabled the development of effective risk assessment models for EMS. This special issue seeks groundbreaking research articles that showcase the application of applied probability and statistics to interdisciplinary studies. This study offers Improved Metaheuristics with a Deep Learning Enabled Risk Assessment Model (IMDLRA-SES) for Smart Enterprise Systems. Using feature selection (FS) and DL models, the provided IMDLRA-SES technique estimates business risks. Preprocessing is used in the IMDLRA-SES technique to change the original financial data into a usable format. In addition, an FS technique based on oppositional lion swarm optimization (OLSO) is utilized to find the best subset of features. In addition, the presence or absence of financial hazards in firms is classified using the triple tree seed algorithm (TTSA) with a probabilistic neural network (PNN) model. The TTSA is used as a hyperparameter optimizer to improve the efficiency of the PNN-based categorization. An extensive set of experimental evaluations is performed on German and Australian credit datasets to illustrate the IMDLRA-SES model's improved performance. The performance validation of the IMDLRA-SES model portrayed a superior accuracy value of 95.70% and 96.09% over existing techniques. Abstract Enterprise risk management (ERM) frameworks convey vital principles that help create a consistent risk management culture, irrespective of employee turnover or industry standards. Enterprise Management System (EMS) are becoming a popular research area for assuring a company’s long-term success. Statistical pattern recognition, federated learning, database administration, visualization technology, and social networking are all used in this field, which includes artificial intelligence (AI), data science, and statistics. Risk assessment in EMS is critical for enterprise decision-making to be effective. Recent advancements in AI, machine learning (ML), and deep learning (DL) concepts have enabled the development of effective risk assessment models for EMS. This special issue seeks groundbreaking research articles that showcase the application of applied probability and statistics to interdisciplinary studies. This study offers Improved Metaheuristics with a Deep Learning Enabled Risk Assessment Model (IMDLRA-SES) for Smart Enterprise Systems. Using feature selection (FS) and DL models, the provided IMDLRA-SES technique estimates business risks. Preprocessing is used in the IMDLRA-SES technique to change the original financial data into a usable format. In addition, an FS technique based on oppositional lion swarm optimization (OLSO) is utilized to find the best subset of features. In addition, the presence or absence of financial hazards in firms is classified using the triple tree seed algorithm (TTSA) with a probabilistic neural network (PNN) model. The TTSA is used as a hyperparameter optimizer to improve the efficiency of the PNN-based categorization. An extensive set of experimental evaluations is performed on German and Australian credit datasets to illustrate the IMDLRA-SES model’s improved performance. The performance validation of the IMDLRA-SES model portrayed a superior accuracy value of 95.70% and 96.09% over existing techniques.  | 
    
| ArticleNumber | 22293 | 
    
| Author | Katib, Iyad Ragab, Mahmoud Albassam, Emad Sharaf, Sanaa A.  | 
    
| Author_xml | – sequence: 1 givenname: Iyad surname: Katib fullname: Katib, Iyad organization: Department of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz University – sequence: 2 givenname: Emad surname: Albassam fullname: Albassam, Emad organization: Department of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz University – sequence: 3 givenname: Sanaa A. surname: Sharaf fullname: Sharaf, Sanaa A. organization: Department of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz University – sequence: 4 givenname: Mahmoud surname: Ragab fullname: Ragab, Mahmoud email: mragab@kau.edu.sa organization: Information Technology Department, Faculty of Computing and Information Technology, King Abdulaziz University  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39333638$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNUstu1TAQjVARLaU_wAJFYsMm4FdiZ4VQBbRSJTawtsbxJPVtYt_aSa_6Afw3vg9KywLhzdgzZ46Pz_hlceSDx6J4Tcl7Srj6kAStW1URJirJlWyqzbPihBFRV4wzdvRof1ycpbQiedWsFbR9URzzlnPecHVS_LyA6DEl54dyHYMB40aXZteVHpcIYw7zJsSbcuPm63KObj1iDohlQrQljEOIuTJVBlI-pwniXKKfMa6jS1jeLuBnN8Ps7rDMmZtyAg8DThlT9hEm3LK_Kp73MCY8O8TT4seXz9_PL6qrb18vzz9dVZ1o2VyBRaUQBGlMAyBqaixlvLbSGlODYrW1BqFndUt7sEQKKbq-5xmGHRAq-Glxuee1AVY6K8xy73UAp3eJEAed9btuRA1UKtMQa9EKYVVjBJWWdagkr_tasszF91yLX8P9BsbxgZASvZ2R3s9I5xnp3Yz0Jnd93HetFzOh7bIN2eUnUp5WvLvWQ7jTNMuXhPHM8O7AEMPtgmnWk0sdjiN4DEvSnFIiOZVZwWnx9i_oKizRZ4d3qFoqTreEbx5LetDy-5NkANsDuhhSitj_30MP9qQM9gPGP3f_o-sXOWPlIA | 
    
| Cites_doi | 10.1007/s10462-020-09948-w 10.1007/s13042-016-0545-8 10.1007/s13198-021-01103-0 10.3390/su11174774 10.1007/978-3-030-44407-5 10.1007/978-3-030-39512-4_167 10.1145/3448748.3448775 10.1155/2021/9370027 10.1016/j.ecoinf.2024.102583 10.1016/j.engappai.2021.104303 10.5753/ladc.2021.18530 10.1109/ACCESS.2017.2765626 10.1155/2015/529724 10.1016/j.eswa.2019.113122 10.1155/2021/6049195 10.3390/app10082944 10.1007/s10614-021-10135-4 10.15688/ek.jvolsu.2021.1.11 10.3233/JIFS-189532 10.1016/j.ins.2023.120081 10.1007/s10489-014-0562-9 10.1080/17517575.2023.2188123 10.1371/journal.pone.0239635 10.23919/JSEE.2020.000050  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 2024  | 
    
| Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 2024  | 
    
| DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.1038/s41598-024-73876-w | 
    
| DatabaseName | Springer Nature Open Access Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Local Electronic Collection Information Biological Science Database ProQuest Central Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) Medical Database Science Database (Proquest) Biological science database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed  | 
    
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature Open Access Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Biology Statistics  | 
    
| EISSN | 2045-2322 | 
    
| EndPage | 22 | 
    
| ExternalDocumentID | oai_doaj_org_article_a178b60dded44d86b417d2ce8735f572 10.1038/s41598-024-73876-w PMC11437023 39333638 10_1038_s41598_024_73876_w  | 
    
| Genre | Journal Article | 
    
| GrantInformation_xml | – fundername: King Abdulaziz University grantid: GPIP-543-611-2024; GPIP-543-611-2024 funderid: http://dx.doi.org/10.13039/501100004054 – fundername: King Abdulaziz University grantid: GPIP-543-611-2024  | 
    
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO NPM 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC EJD IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c492t-ade88ea406b6aa451bd1235d7dbb5a825ddbeaf2591fad07474cff31bdeca0143 | 
    
| IEDL.DBID | M48 | 
    
| ISSN | 2045-2322 | 
    
| IngestDate | Fri Oct 03 12:46:05 EDT 2025 Sun Oct 26 04:37:59 EDT 2025 Tue Sep 30 17:07:25 EDT 2025 Fri Sep 05 13:49:23 EDT 2025 Tue Oct 07 09:18:26 EDT 2025 Mon Jul 21 05:56:44 EDT 2025 Wed Oct 01 04:02:09 EDT 2025 Fri Feb 21 02:37:59 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | Financial decisions Deep learning Feature selection Metaheuristics Risk assessment Classification Smart enterprise system  | 
    
| Language | English | 
    
| License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c492t-ade88ea406b6aa451bd1235d7dbb5a825ddbeaf2591fad07474cff31bdeca0143 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-024-73876-w | 
    
| PMID | 39333638 | 
    
| PQID | 3110578313 | 
    
| PQPubID | 2041939 | 
    
| PageCount | 22 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_a178b60dded44d86b417d2ce8735f572 unpaywall_primary_10_1038_s41598_024_73876_w pubmedcentral_primary_oai_pubmedcentral_nih_gov_11437023 proquest_miscellaneous_3110731710 proquest_journals_3110578313 pubmed_primary_39333638 crossref_primary_10_1038_s41598_024_73876_w springer_journals_10_1038_s41598_024_73876_w  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-09-27 | 
    
| PublicationDateYYYYMMDD | 2024-09-27 | 
    
| PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-27 day: 27  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | London | 
    
| PublicationPlace_xml | – name: London – name: England  | 
    
| PublicationTitle | Scientific reports | 
    
| PublicationTitleAbbrev | Sci Rep | 
    
| PublicationTitleAlternate | Sci Rep | 
    
| PublicationYear | 2024 | 
    
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio  | 
    
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio  | 
    
| References | Korobov, S. A., Pshenichnikov, I. V. & Epinina, V. S. Features of the Digital Transformation of the Industrial Enterprise Management System in the Modern Conditions of Economic Development. Vestnik Volgogradskogo gosudarstvennogo universiteta. Ekonomika, pp.131–140 . Zhang, L., Luo, Y. & Liao, R. February. Integrated Safety Risk Assessment Between Enterprises, Industries and Areas. In International Conference on Intelligent Human Systems Integration (pp. 1101–1106). Springer, Cham. (2020). Impedovo, D. & Pirlo, G. Artificial intelligence applications to smart cities and smart enterprise. Applied Sciences, 10(8), p.2944. (2020). ChangTMHsuMFIntegration of incremental filter-wrapper selection strategy with artificial intelligence for enterprise risk managementInt. J. Mach. Learn. Cybernet.20189347748910.1007/s13042-016-0545-8 QianWGeYThe implementation of leisure tourism enterprise management system based on deep learningInt. J. Syst. Assur. Eng. Manage.202112480181210.1007/s13198-021-01103-0 InjadatMMoubayedANassifABShamiAMachine learning towards intelligent systems: applications, challenges, and opportunitiesArtif. Intell. Rev.20215453299334810.1007/s10462-020-09948-w Xiao, Q., Wan, S., Lu, F. & Li, S. Risk assessment for engagement in sharing economy of manufacturing enterprises: A matter–element extension based approach. Sustainability, 11(17), p.4774. (2019). Mohan, P. et al. Eagle strategy arithmetic optimization algorithm with optimal deep convolutional forest based fintech application for hyper-automation. Enterprise Information Systems, 17(10), p.2188123. (2023). Nitsenko, V. S. et al. Automatic information system of risk assessment for agricultural enterprises of Ukraine. (2019). DaoqingZMingyanJParallel discrete lion swarm optimization algorithm for solving traveling salesman problemJ. Syst. Eng. Electron.202031475176010.23919/JSEE.2020.000050 Agboola, G., Beni, L. H., Elbayoumi, T. & Thompson, G. Optimizing landslide susceptibility mapping using machine learning and geospatial techniques. Ecological Informatics, 81, p.102583. (2024). Jiang, J., Liu, Y. & Zhao, Z. TriTSA: Triple Tree-Seed Algorithm for dimensional continuous optimization and constrained engineering problems. Engineering Applications of Artificial Intelligence, 104, p.104303. (2021). Haldorai, A., Ramu, A. & Khan, S. A. R. (eds) Business Intelligence for Enterprise Internet of Things (Springer International Publishing, 2020). Song, Y. & Wu, R. The Impact of Financial Enterprises’ Excessive Financialization Risk Assessment for Risk Control based on Data Mining and Machine Learning. Computational Economics, pp.1–23. (2021). Zhang, Y., Li, T., Na, G., Li, G. & Li, Y. Optimized extreme learning machine for power system transient stability prediction using synchrophasors. Mathematical Problems in Engineering, 2015(1), p.529724. (2015). WangJLiuGXuXXingXCredit risk prediction for small and medium enterprises utilizing adjacent enterprise data and a relational graph attention networkJ. Manage. Sci. Eng.202492177192 LiYYangZApplication of EOS-ELM with binary Jaya-based feature selection to real-time transient stability assessment using PMU dataIEEE Access.201752309223101374995910.1109/ACCESS.2017.2765626 Wei, S. et al. Combining intra-risk and contagion risk for enterprise bankruptcy prediction using graph neural networks. Information Sciences, 659, p.120081. (2024). Chen, Y. & Han, X. January. Research on Crisis Warning Model of Enterprise Finance Based on Deep Learning. In Proceedings of the 2021 International Conference on Bioinformatics and Intelligent Computing (pp. 168–172). (2021). KusyMZajdelRProbabilistic neural network training procedure based on Q (0)-learning algorithm in medical data classificationAppl. Intell.20144183785410.1007/s10489-014-0562-9 LuSEnterprise supply chain risk assessment based on improved neural network algorithm and machine learningJ. Intell. Fuzzy Syst.20214047013702410.3233/JIFS-189532 Schiavone, E., Nostro, N. & Brancati, F. November. A MDE Tool for Security Risk Assessment of Enterprises. In Anais do X Latin-American Symposium on Dependable Computing (pp. 5–7). SBC. (2021). Huang, B., Wei, J., Tang, Y. & Liu, C. Enterprise Risk Assessment Based on Machine Learning. Computational Intelligence and Neuroscience, 2021. (2021). XuXRisk factor analysis combined with deep learning in the risk assessment of overseas investment of enterprisesPlos One20201510e02396351:CAS:528:DC%2BB3cXitVOis7rK10.1371/journal.pone.0239635330069987531995 Ma, D. The Monitoring Method of Enterprise Human Resource Efficiency under the Smart City Management Mode. Advances in Multimedia, 2021. (2021). Tubishat, M., Idris, N., Shuib, L., Abushariah, M. A. & Mirjalili, S. Improved salp swarm algorithm based on opposition based learning and novel local search algorithm for feature selection. Expert Systems with Applications, 145, p.113122. (2020). Tyagi, S. K. S. & Boyang, Q. An Intelligent Internet of Things Aided Financial Crisis Prediction Model in FinTech (IEEE Internet of Things Journal, 2021). Yang, B. & Liao, Y. M. Research on Enterprise risk Knowledge Graph Based on multi-source data Fusionpp.1–14 (Neural Computing and Applications, 2021). 73876_CR7 73876_CR8 S Lu (73876_CR15) 2021; 40 73876_CR3 73876_CR4 73876_CR5 73876_CR6 73876_CR21 Z Daoqing (73876_CR25) 2020; 31 73876_CR22 X Xu (73876_CR9) 2020; 15 73876_CR20 73876_CR26 M Injadat (73876_CR14) 2021; 54 73876_CR24 73876_CR28 M Kusy (73876_CR27) 2014; 41 73876_CR10 73876_CR11 73876_CR1 73876_CR2 73876_CR12 73876_CR18 W Qian (73876_CR17) 2021; 12 TM Chang (73876_CR13) 2018; 9 73876_CR16 J Wang (73876_CR23) 2024; 9 Y Li (73876_CR19) 2017; 5  | 
    
| References_xml | – reference: Mohan, P. et al. Eagle strategy arithmetic optimization algorithm with optimal deep convolutional forest based fintech application for hyper-automation. Enterprise Information Systems, 17(10), p.2188123. (2023). – reference: Jiang, J., Liu, Y. & Zhao, Z. TriTSA: Triple Tree-Seed Algorithm for dimensional continuous optimization and constrained engineering problems. Engineering Applications of Artificial Intelligence, 104, p.104303. (2021). – reference: Zhang, Y., Li, T., Na, G., Li, G. & Li, Y. Optimized extreme learning machine for power system transient stability prediction using synchrophasors. Mathematical Problems in Engineering, 2015(1), p.529724. (2015). – reference: KusyMZajdelRProbabilistic neural network training procedure based on Q (0)-learning algorithm in medical data classificationAppl. Intell.20144183785410.1007/s10489-014-0562-9 – reference: WangJLiuGXuXXingXCredit risk prediction for small and medium enterprises utilizing adjacent enterprise data and a relational graph attention networkJ. Manage. Sci. Eng.202492177192 – reference: Schiavone, E., Nostro, N. & Brancati, F. November. A MDE Tool for Security Risk Assessment of Enterprises. In Anais do X Latin-American Symposium on Dependable Computing (pp. 5–7). SBC. (2021). – reference: Zhang, L., Luo, Y. & Liao, R. February. Integrated Safety Risk Assessment Between Enterprises, Industries and Areas. In International Conference on Intelligent Human Systems Integration (pp. 1101–1106). Springer, Cham. (2020). – reference: ChangTMHsuMFIntegration of incremental filter-wrapper selection strategy with artificial intelligence for enterprise risk managementInt. J. Mach. Learn. Cybernet.20189347748910.1007/s13042-016-0545-8 – reference: Song, Y. & Wu, R. The Impact of Financial Enterprises’ Excessive Financialization Risk Assessment for Risk Control based on Data Mining and Machine Learning. Computational Economics, pp.1–23. (2021). – reference: Chen, Y. & Han, X. January. Research on Crisis Warning Model of Enterprise Finance Based on Deep Learning. In Proceedings of the 2021 International Conference on Bioinformatics and Intelligent Computing (pp. 168–172). (2021). – reference: Tubishat, M., Idris, N., Shuib, L., Abushariah, M. A. & Mirjalili, S. Improved salp swarm algorithm based on opposition based learning and novel local search algorithm for feature selection. Expert Systems with Applications, 145, p.113122. (2020). – reference: Ma, D. The Monitoring Method of Enterprise Human Resource Efficiency under the Smart City Management Mode. Advances in Multimedia, 2021. (2021). – reference: Tyagi, S. K. S. & Boyang, Q. An Intelligent Internet of Things Aided Financial Crisis Prediction Model in FinTech (IEEE Internet of Things Journal, 2021). – reference: Korobov, S. A., Pshenichnikov, I. V. & Epinina, V. S. Features of the Digital Transformation of the Industrial Enterprise Management System in the Modern Conditions of Economic Development. Vestnik Volgogradskogo gosudarstvennogo universiteta. Ekonomika, pp.131–140 . – reference: Xiao, Q., Wan, S., Lu, F. & Li, S. Risk assessment for engagement in sharing economy of manufacturing enterprises: A matter–element extension based approach. Sustainability, 11(17), p.4774. (2019). – reference: QianWGeYThe implementation of leisure tourism enterprise management system based on deep learningInt. J. Syst. Assur. Eng. Manage.202112480181210.1007/s13198-021-01103-0 – reference: Impedovo, D. & Pirlo, G. Artificial intelligence applications to smart cities and smart enterprise. Applied Sciences, 10(8), p.2944. (2020). – reference: DaoqingZMingyanJParallel discrete lion swarm optimization algorithm for solving traveling salesman problemJ. Syst. Eng. Electron.202031475176010.23919/JSEE.2020.000050 – reference: Huang, B., Wei, J., Tang, Y. & Liu, C. Enterprise Risk Assessment Based on Machine Learning. Computational Intelligence and Neuroscience, 2021. (2021). – reference: InjadatMMoubayedANassifABShamiAMachine learning towards intelligent systems: applications, challenges, and opportunitiesArtif. Intell. Rev.20215453299334810.1007/s10462-020-09948-w – reference: Yang, B. & Liao, Y. M. Research on Enterprise risk Knowledge Graph Based on multi-source data Fusionpp.1–14 (Neural Computing and Applications, 2021). – reference: Wei, S. et al. Combining intra-risk and contagion risk for enterprise bankruptcy prediction using graph neural networks. Information Sciences, 659, p.120081. (2024). – reference: Haldorai, A., Ramu, A. & Khan, S. A. R. (eds) Business Intelligence for Enterprise Internet of Things (Springer International Publishing, 2020). – reference: Agboola, G., Beni, L. H., Elbayoumi, T. & Thompson, G. Optimizing landslide susceptibility mapping using machine learning and geospatial techniques. Ecological Informatics, 81, p.102583. (2024). – reference: LiYYangZApplication of EOS-ELM with binary Jaya-based feature selection to real-time transient stability assessment using PMU dataIEEE Access.201752309223101374995910.1109/ACCESS.2017.2765626 – reference: XuXRisk factor analysis combined with deep learning in the risk assessment of overseas investment of enterprisesPlos One20201510e02396351:CAS:528:DC%2BB3cXitVOis7rK10.1371/journal.pone.0239635330069987531995 – reference: LuSEnterprise supply chain risk assessment based on improved neural network algorithm and machine learningJ. Intell. Fuzzy Syst.20214047013702410.3233/JIFS-189532 – reference: Nitsenko, V. S. et al. Automatic information system of risk assessment for agricultural enterprises of Ukraine. (2019). – volume: 54 start-page: 3299 issue: 5 year: 2021 ident: 73876_CR14 publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-020-09948-w – volume: 9 start-page: 477 issue: 3 year: 2018 ident: 73876_CR13 publication-title: Int. J. Mach. Learn. Cybernet. doi: 10.1007/s13042-016-0545-8 – volume: 12 start-page: 801 issue: 4 year: 2021 ident: 73876_CR17 publication-title: Int. J. Syst. Assur. Eng. Manage. doi: 10.1007/s13198-021-01103-0 – ident: 73876_CR10 doi: 10.3390/su11174774 – ident: 73876_CR4 doi: 10.1007/978-3-030-44407-5 – ident: 73876_CR8 doi: 10.1007/978-3-030-39512-4_167 – ident: 73876_CR11 doi: 10.1145/3448748.3448775 – volume: 9 start-page: 177 issue: 2 year: 2024 ident: 73876_CR23 publication-title: J. Manage. Sci. Eng. – ident: 73876_CR2 doi: 10.1155/2021/9370027 – ident: 73876_CR24 doi: 10.1016/j.ecoinf.2024.102583 – ident: 73876_CR28 doi: 10.1016/j.engappai.2021.104303 – ident: 73876_CR6 doi: 10.5753/ladc.2021.18530 – volume: 5 start-page: 23092 year: 2017 ident: 73876_CR19 publication-title: IEEE Access. doi: 10.1109/ACCESS.2017.2765626 – ident: 73876_CR20 doi: 10.1155/2015/529724 – ident: 73876_CR18 – ident: 73876_CR16 – ident: 73876_CR26 doi: 10.1016/j.eswa.2019.113122 – ident: 73876_CR12 doi: 10.1155/2021/6049195 – ident: 73876_CR1 doi: 10.3390/app10082944 – ident: 73876_CR7 doi: 10.1007/s10614-021-10135-4 – ident: 73876_CR3 doi: 10.15688/ek.jvolsu.2021.1.11 – volume: 40 start-page: 7013 issue: 4 year: 2021 ident: 73876_CR15 publication-title: J. Intell. Fuzzy Syst. doi: 10.3233/JIFS-189532 – ident: 73876_CR22 doi: 10.1016/j.ins.2023.120081 – ident: 73876_CR5 – volume: 41 start-page: 837 year: 2014 ident: 73876_CR27 publication-title: Appl. Intell. doi: 10.1007/s10489-014-0562-9 – ident: 73876_CR21 doi: 10.1080/17517575.2023.2188123 – volume: 15 start-page: e0239635 issue: 10 year: 2020 ident: 73876_CR9 publication-title: Plos One doi: 10.1371/journal.pone.0239635 – volume: 31 start-page: 751 issue: 4 year: 2020 ident: 73876_CR25 publication-title: J. Syst. Eng. Electron. doi: 10.23919/JSEE.2020.000050  | 
    
| SSID | ssj0000529419 | 
    
| Score | 2.4657772 | 
    
| Snippet | Enterprise risk management (ERM) frameworks convey vital principles that help create a consistent risk management culture, irrespective of employee turnover or... Abstract Enterprise risk management (ERM) frameworks convey vital principles that help create a consistent risk management culture, irrespective of employee...  | 
    
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref springer  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher  | 
    
| StartPage | 22293 | 
    
| SubjectTerms | 639/705/117 639/705/258 Algorithms Artificial intelligence Classification Decision making Deep learning Enterprise risk management Feature selection Financial decisions Humanities and Social Sciences Machine learning multidisciplinary Neural networks Pattern recognition Probability learning Risk assessment Risk management Science Science (multidisciplinary) Smart enterprise system Social discrimination learning Social organization Statistical analysis Statistics  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hSgg4IN6kLchI3GjUOHZi5wiIaoUEJyr1ZtmxDZV2s-0-tOoP4H8zE2fDrkDAgWvsXTnzdmbmG4DXIsiS11HkddHGXLZB5k0RkCEO3XPQvrYVNQp_-lxPzuXHi-piZ9QX1YQleOBEuFPLlXZ1gVropfS6dpIrX7ZBK1HFSvXWt9DNzmUqoXqXjeTN0CVTCH26RE9F3WSlzJVAE5Bv9jxRD9j_uyjz12LJMWN6D-6suyt7s7HT6Y5TOnsA94dokr1Nb_EQboXuEdxO8yVvHsP3iV2QKcP_YTQ5pkfTJWBmRjCW-MMuFYEz-hrLVgv66M4oTc2W6NSYnX6dL3BllpOv82w5Q3KxkMoUL5eBXa9t1zepoclkVKTOZmM1DYvbsq8ncH724cv7ST7MXchb2ZSr3PqgdbDo6l1tray489RR65V3rrJ4pfTeBRvx4sSj9YTAL9sYBW4LrSW8wKdw0M278ByYj41tC-UKF5UsbNO4SjsuKqeU12WwGbzZ8sBcJXgN06fFhTaJYwY5ZnqOmU0G74hN406Cxu4foMCYQWDM3wQmg-Mtk82gr0sjOM071oKLDF6Ny6hplD6xXZiv0x6F4RYvMniWZGI8iWiEEGjKMtB70rJ31P2V7vJbj-aNF1KhMHLK4GQrWD_P9SdanIzC9w-kO_wfpDuCuyUpECXl1DEcrBbr8AJjspV72avfD_6oN4M priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEB_qFbE-iNav1SoRfLOhu5vsJvsgYqXlEDxELPRtSTbZtnC3d7294-gf4P_tzH7VQym-bkLIZj6TmfkNwHvhZRylpeBpWJRcFl7yLPRIEIvm2WuXmoQKhb9N0vGZ_HqenO_ApK-FobTKXic2itrNC3ojPxIRdaTVIhKfFtecukZRdLVvoWG61gruYwMxdg92Y0LGGsHu8cnk-4_h1YXiWjLKuuqZUOijGi0YVZnFkiuBqoFvtixUA-T_L-_z7yTKIZL6EB6sq4W52Zjp9A9jdfoYHnVeJvvcssUT2PHVPtxv-07e7MMeuZgtQvNT-DU2S9J3uCij9jIN5C6NMcK6xFWqNlOc0ZMtWy3pZZ5RLJvVaPmYmV7gMa0uZ5wMomP1DJmR-TaX8ar27HptqqaSDfUqo0x2NhtSbljZ54Y9g7PTk59fxrxrzsALmcUrbpzX2hv0B2xqjEwi66js1ilnbWLw3umc9abE21VUGkcw_bIoS4HTfGEIVPA5jKp55V8Cc2VmilDZ0JZKhibLbKJtJBKrlNOxNwF86AmSL1oMjryJnQudt-TLkXx5Q758E8Ax0WyYSfjZzYf58iLvxDE3kdI2DVG3OymdTq2MlIsLr5VIykTFARz0FM87oa7zWxYM4N0wjOJIMRZT-fm6naPQJ4vCAF60DDLsRGRCCNR3Aegt1tna6vZIdXXZQH7jrVUodK8COOy57HZfd53F4cCJ_3F0r-7-69ewF5OcUExOHcBotVz7N-iSrezbTs5-A7fuOY4 priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LixQxEC7WWUQ9iG9bV4ngzWns7qQ76eMoLsOAXnRhbyHpJLow07POg2F_gP_bqn5psyJ67TwIXc-kqr4CeM29yNIi8LhIqhCLyou4TDwSxKJ59soVJqdC4Y-fivmZWJzn50cw7WthRvH7Brp7iyaGysAyEUuOshsfbsCxQsZUEziezRafF8ObCkWtRFp2tTG4_O31xSP708D0_8m3vJ4iOcRJ78CtfX1prg5mufzNFJ3eg7udD8lmLdHvw5GvH8DNtqvk1UP4MTcbUmC4D6N-MQ2GLsExMwKvxIV1m_rN6A2W7Tb01M4oOM22aMqYWX5db3BkFZOFc2y7Qu5ivk1OvNh69n1v6qY0DRUlo9R0thpyaFjok70ewdnphy_v53HXbSGuRJntYuO8Ut6ggbeFMSJPraM6WiedtbnBi6Rz1puA16U0GEe4-6IKgeM0XxlCCXwMk3pd-6fAXChNlUib2CBFYsrS5sqmPLdSOpV5E8Gbngb6sgXV0E0wnCvdUkwjxXRDMX2I4B2RaZhJgNjNB-QT3cmXNqlUtkhQWTshnCqsSKXLKo-MkodcZhGc9ETWnZRuNU-py7HiKY_g1TCM8kVBE1P79b6dI9HJSpMInrQ8MZyEl5xzVGARqBG3jI46HqkvvjUY3ngN5RL9pQimPWP9Otff_sV0YL5_-HXP_m_353A7I1GhoJs8gclus_cv0Ofa2ZedqP0E_DwqLQ priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7BVgg48H4ECjISN5qSxE7sHAuiWiFRcWClcrLs2CkVu9mySbQqd_43M0k2sFChco0dyRnPeD5nZr4BeMm9SOKs5GEWFWUoCi_CPPK4IRbds1cuMykVCn84yqYz8f44PR5ocqgWZit-z9XrGh0MFYElIpQcLTdcX4WdLEXcPYGd2dHHg8_UPQ5xSYjQIBmqYi5-ccvzdAT9F6HKv5MjxwjpTbjeVmfmfG3m89-c0OHtvptR3XEXUu7J1_22sfvF9z-YHS_3fXfg1oBF2UGvPHfhiq_uwbW-O-X5ffgxNSs6CHFVjPrOdFy8ROvMiAQTX6z6FHJG_3JZs6Jf9oyC3KxGl8jM_GS5wpFFSJ7SsXqBWsp8n-R4Wnv2rTVVV-KGBy6jFHe2GHNxWLlJGnsAs8N3n95Ow6FrQ1iIPGlC47xS3iBQsJkxIo2to3pcJ521qcELqXPWmxKvXXFpHPH3i6IsOU7zhSG2wYcwqZaVfwzMlbkpImkjW0oRmTy3qbIxT62UTiXeBPBqs6P6rCfn0F1QnSvdC1ajYHUnWL0O4A1t-jiTiLW7B7gferBTbWKpbBbhoe-EcCqzIpYuKbySPC1TmQSwu1EZPVh7rXlM3ZIVj3kAL8ZhtFMKvpjKL9t-jkSwFkcBPOo1bFwJzznneBAGoLZ0b2up2yPV6ZeOCxyvs1wi7gpgb6Omv9b1L1nsjap8CdE9-b_pT-FGQhpNwTu5C5Nm1fpniN0a-3ww2p9wbEBx priority: 102 providerName: Unpaywall  | 
    
| Title | Harnessing probabilistic neural network with triple tree seed algorithm-based smart enterprise quantitative risk management framework | 
    
| URI | https://link.springer.com/article/10.1038/s41598-024-73876-w https://www.ncbi.nlm.nih.gov/pubmed/39333638 https://www.proquest.com/docview/3110578313 https://www.proquest.com/docview/3110731710 https://pubmed.ncbi.nlm.nih.gov/PMC11437023 https://doi.org/10.1038/s41598-024-73876-w https://doaj.org/article/a178b60dded44d86b417d2ce8735f572  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 14 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: HH5 dateStart: 20110101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate (EBSCO) customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: ABDBF dateStart: 20121221 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DIK dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: RPM dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAQT databaseName: Springer Nature - nature.com Journals - Fully Open Access customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: NAO dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.nature.com/siteindex/index.html providerName: Nature Publishing – providerCode: PRVPQU databaseName: Health & Medical Collection (Proquest) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2045-2322 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M48 dateStart: 20110801 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: AAJSJ dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: C6C dateStart: 20111201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_tQ8B4QHxugVEZiTcWSGIndh4Q6qpNVaVVE1CpPEV27IxJbbqlrUr_AP5vzvliFRVCPEWKncjy3fnufHe_A3hLDQv8KKNu5KWZy1LD3NgzSBCF6tkIHcnQFgpfDKP-iA3G4XgHmnZH9QbOt7p2tp_UqJi8_3G7_oQC_7EqGRcf5qiEbKFYwFxOUbrd1S7so6aKbSuHi9rcr7C-g5j5cV07s_3TA7hP0cmnka1YuaOqSkT_bWbon9mUbUj1ITxY5jdyvZKTyR2tdf4YHtXmJulW_PEEdkz-FO5VDSjXz-BnXxb2rMP_ENtapoTbtcjNxOJc4od5lSVO7HUtWRT2Vp7YODaZo9YjcnI1K3Bk6lplqMl8ioxITJXHeD035HYp87KKDc9UYrPYybRNtyFZkxf2HEbnZ197fbduzOCmLA4WrtRGCCPRFlCRlCz0lbYlt5prpUKJPqfWysgMPSs_k9pC9LM0yyhOM6m0gIIvYC-f5eYIiM5imXpceSrjzJNxrEKhfBoqzrUIjHTgXUOD5KbC30jKuDkVSUW8BImXlMRLVg6cWjK1My12dvliVlwltSgm0udCRR6e65oxLSLFfK6D1AhOwyzkgQPHDZGThh8T6tuGyIL61IE37TCKoo2vyNzMltUcjvaY7zlwWPFEu5KGpxwQG9yysdTNkfz6ewn3jR4r5WhaOXDSMNbvdf1tL05a5vuHrXv5_wt7BQeBlSAbq-PHsLcoluY1mmoL1YFdPuYd2O92B18G-Dw9G15-xre9qNcprz86pYTiyGh42f32C3rhR18 | 
    
| linkProvider | Scholars Portal | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4am9DGA4JxCwwwEjyxaEnsxMnDhBhs6thFCG3S3jI7drZJbdo1rar-AP4Wv41zchsVaOJlr7VlufnO1ecG8J5bEfhRzt3Iy3JXZFa4iWcREI3q2cYmUiEVCh8dR71T8e0sPFuCX20tDKVVtjKxEtRmmNEb-Rb3aSJtzH3-aXTt0tQoiq62IzRUM1rBbFctxprCjgM7n6ELV27vf0W8PwTB3u7Jl57bTBlwM5EEE1cZG8dWoWLTkVIi9LWh-lEjjdahQgfKGG1Vjm6CnytD_eZFlucct9lMUXc8PPcerAguEnT-VnZ2j7__6F55KI4m_KSp1vF4vFWixqSqtkC4kqMocmcLGrEaHPAva_fvpM0ucvsAVqfFSM1nqt__QznuPYKHjVXLPtdk-BiWbLEO9-s5l_N1WCOTtu4I_QR-9tSY5CseymicTdXil9YY9dbEU4o6M53REzGbjCkSwCh2zkrUtEz1LxCWyeXAJQVsWDlA4me2zp28Ki27nqqiqpxDOc4oc54NuhQflre5aE_h9E5gegbLxbCwL4CZPFGZJ7Wncyk8lSQ6jLXPQy2liQOrHPjYApKO6p4faRWr53Faw5cifGkFXzpzYIcw63ZSv-7qh-H4Im3YP1W-jHXkoS4xQpg40sKXJshsLHmYhzJwYKNFPG2ESJnekLwD77plZH-K6ajCDqf1Hok2oO858LwmkO4mPOGco3x1IF4gnYWrLq4UV5dVi3H0krlEc86BzZbKbu5127fY7CjxPz7dy9v_9VtY7Z0cHaaH-8cHr2AtIJ6heKDcgOXJeGpfozk40W8anmNwftds_hvbFnkU | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4aQ8B4QDBugQFGgicWNYmd2HlACBhVx2DigUl7C3bsbJPatGtaVf0B_Cl-HeckTUYFmnjZa2xZjr9zs88N4BV3IgqTgvtJkBe-yJ3w08AhIAbVs1M20TElCn89TAZH4vNxfLwBv9pcGAqrbGViLajtOKc38h4PqSOt4iHvFauwiG97_XeTc586SJGntW2n0ZDIgVsu8PpWvd3fQ6xfR1H_0_ePA3_VYcDPRRrNfG2dUk6jUjOJ1iIOjaXcUSutMbHGy5O1xukCrwhhoS3Vmhd5UXCc5nJNlfFw3WtwXXKeUjihPJbd-w550ESYrvJ0Aq56FepKymeLhC85CiF_saYL65YB_7Jz_w7X7Hy2t-HWvJzo5UIPh3-oxf5duLOyZ9n7hgDvwYYrt-FG0-FyuQ1bZMw2taDvw8-BnpJkxUUZNbKpi_vSGKOqmrhK2cSkM3ocZrMp-QAYec1ZhTqW6eEJgjA7Hfmkei2rRkj2zDVRk2eVY-dzXdY5cyjBGcXMs1EX3MOKNgrtARxdCUgPYbMcl-4xMFukOg-kCUwhRaDT1MTKhDw2UloVOe3BmxaQbNJU-8hqLz1XWQNfhvBlNXzZwoMPhFk3kyp11x_G05NsxfiZDqUySYBaxAphVWJEKG2UOyV5XMQy8mCnRTxbiY8quyB2D152w8j45M3RpRvPmzkSrb8w8OBRQyDdTnjKOUfJ6oFaI521ra6PlGendXFxvB9ziYacB7stlV3s67Kz2O0o8T-O7snlf_0CbiJzZ1_2Dw-ewlZELEOOQLkDm7Pp3D1DO3BmntcMx-DHVXP4b6Rqdq4 | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7BVgg48H4ECjISN5qSxE7sHAuiWiFRcWClcrLs2CkVu9mySbQqd_43M0k2sFChco0dyRnPeD5nZr4BeMm9SOKs5GEWFWUoCi_CPPK4IRbds1cuMykVCn84yqYz8f44PR5ocqgWZit-z9XrGh0MFYElIpQcLTdcX4WdLEXcPYGd2dHHg8_UPQ5xSYjQIBmqYi5-ccvzdAT9F6HKv5MjxwjpTbjeVmfmfG3m89-c0OHtvptR3XEXUu7J1_22sfvF9z-YHS_3fXfg1oBF2UGvPHfhiq_uwbW-O-X5ffgxNSs6CHFVjPrOdFy8ROvMiAQTX6z6FHJG_3JZs6Jf9oyC3KxGl8jM_GS5wpFFSJ7SsXqBWsp8n-R4Wnv2rTVVV-KGBy6jFHe2GHNxWLlJGnsAs8N3n95Ow6FrQ1iIPGlC47xS3iBQsJkxIo2to3pcJ521qcELqXPWmxKvXXFpHPH3i6IsOU7zhSG2wYcwqZaVfwzMlbkpImkjW0oRmTy3qbIxT62UTiXeBPBqs6P6rCfn0F1QnSvdC1ajYHUnWL0O4A1t-jiTiLW7B7gferBTbWKpbBbhoe-EcCqzIpYuKbySPC1TmQSwu1EZPVh7rXlM3ZIVj3kAL8ZhtFMKvpjKL9t-jkSwFkcBPOo1bFwJzznneBAGoLZ0b2up2yPV6ZeOCxyvs1wi7gpgb6Omv9b1L1nsjap8CdE9-b_pT-FGQhpNwTu5C5Nm1fpniN0a-3ww2p9wbEBx | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Harnessing+probabilistic+neural+network+with+triple+tree+seed+algorithm-based+smart+enterprise+quantitative+risk+management+framework&rft.jtitle=Scientific+reports&rft.au=Katib%2C+Iyad&rft.au=Albassam%2C+Emad&rft.au=Sharaf%2C+Sanaa+A.&rft.au=Ragab%2C+Mahmoud&rft.date=2024-09-27&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=14&rft_id=info:doi/10.1038%2Fs41598-024-73876-w&rft_id=info%3Apmid%2F39333638&rft.externalDocID=PMC11437023 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |