Low-cost prototyping of nitinol wires/frames using polymeric cores and sacrificial fixtures with application in individualized frames anchoring through the atrial septum
Self-expanding frames for minimally invasive implants are typically made from nitinol wires and are heat treated to maintain the desired shapes. In the process of heat treatment, nitinol structures are placed in a high-temperature oven, while they are confined by a fixture. During this process, niti...
Saved in:
Published in | Scientific reports Vol. 13; no. 1; pp. 21853 - 11 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
09.12.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/s41598-023-48106-4 |
Cover
Abstract | Self-expanding frames for minimally invasive implants are typically made from nitinol wires and are heat treated to maintain the desired shapes. In the process of heat treatment, nitinol structures are placed in a high-temperature oven, while they are confined by a fixture. During this process, nitinol exerts a high amount of force. Accordingly, a fixture requires high mechanical strength and temperature resistance; this is why fixtures are typically made from metals. The use of metal fixture also increases the turnaround time and cost. However, accelerating this process is beneficial in many applications, such as rapid development of medical implants that are patient-specific. Inspired by the use of sacrificial layers in microfabrication technology, here we propose a novel method for shape setting nitinol wires using a sacrificial metal fixture. In this process, the nitinol wires are first aligned inside copper hypotubes. Next, the forming process is done using hand-held tools to shape complex geometrical structures, annealing the nitinol reinforced by copper, and then selectively etching copper hypotubes in ammonium persulfate solutions. In this process, other sacrificial cores, which are 3D printed or cast from low-cost polymers, are also used. This combination of polymeric cores and minimal use of metals enables reducing the cost and the turnaround time. As a proof of concept, we showed that this process was capable of fabricating springs with mm or sub-mm diameters. The result showed a change of less than 5% in the intended diameter of the nitinol spring with diameters ranging from ~ 0.7 to 1.9 mm, which confirms copper as a suitable sacrificial fixture to obtain the desired complex geometry for nitinol. A metric, based on the elastic strain stored in copper is suggested to predict the possible variation of the intended dimensions in this process. Finally, to demonstrate the potential of this method, as proof of concept, we fabricated NiTi wire frames designed for anchoring through the atrial septum. These frames demonstrated septal defect occluders that were designed based on a patient’s cardiac image available in the public domain. This low-cost rapid fabrication technique is highly beneficial for a variety of applications in engineering and medicine with specific applications in rapid prototyping of medical implants. |
---|---|
AbstractList | Self-expanding frames for minimally invasive implants are typically made from nitinol wires and are heat treated to maintain the desired shapes. In the process of heat treatment, nitinol structures are placed in a high-temperature oven, while they are confined by a fixture. During this process, nitinol exerts a high amount of force. Accordingly, a fixture requires high mechanical strength and temperature resistance; this is why fixtures are typically made from metals. The use of metal fixture also increases the turnaround time and cost. However, accelerating this process is beneficial in many applications, such as rapid development of medical implants that are patient-specific. Inspired by the use of sacrificial layers in microfabrication technology, here we propose a novel method for shape setting nitinol wires using a sacrificial metal fixture. In this process, the nitinol wires are first aligned inside copper hypotubes. Next, the forming process is done using hand-held tools to shape complex geometrical structures, annealing the nitinol reinforced by copper, and then selectively etching copper hypotubes in ammonium persulfate solutions. In this process, other sacrificial cores, which are 3D printed or cast from low-cost polymers, are also used. This combination of polymeric cores and minimal use of metals enables reducing the cost and the turnaround time. As a proof of concept, we showed that this process was capable of fabricating springs with mm or sub-mm diameters. The result showed a change of less than 5% in the intended diameter of the nitinol spring with diameters ranging from ~ 0.7 to 1.9 mm, which confirms copper as a suitable sacrificial fixture to obtain the desired complex geometry for nitinol. A metric, based on the elastic strain stored in copper is suggested to predict the possible variation of the intended dimensions in this process. Finally, to demonstrate the potential of this method, as proof of concept, we fabricated NiTi wire frames designed for anchoring through the atrial septum. These frames demonstrated septal defect occluders that were designed based on a patient's cardiac image available in the public domain. This low-cost rapid fabrication technique is highly beneficial for a variety of applications in engineering and medicine with specific applications in rapid prototyping of medical implants.Self-expanding frames for minimally invasive implants are typically made from nitinol wires and are heat treated to maintain the desired shapes. In the process of heat treatment, nitinol structures are placed in a high-temperature oven, while they are confined by a fixture. During this process, nitinol exerts a high amount of force. Accordingly, a fixture requires high mechanical strength and temperature resistance; this is why fixtures are typically made from metals. The use of metal fixture also increases the turnaround time and cost. However, accelerating this process is beneficial in many applications, such as rapid development of medical implants that are patient-specific. Inspired by the use of sacrificial layers in microfabrication technology, here we propose a novel method for shape setting nitinol wires using a sacrificial metal fixture. In this process, the nitinol wires are first aligned inside copper hypotubes. Next, the forming process is done using hand-held tools to shape complex geometrical structures, annealing the nitinol reinforced by copper, and then selectively etching copper hypotubes in ammonium persulfate solutions. In this process, other sacrificial cores, which are 3D printed or cast from low-cost polymers, are also used. This combination of polymeric cores and minimal use of metals enables reducing the cost and the turnaround time. As a proof of concept, we showed that this process was capable of fabricating springs with mm or sub-mm diameters. The result showed a change of less than 5% in the intended diameter of the nitinol spring with diameters ranging from ~ 0.7 to 1.9 mm, which confirms copper as a suitable sacrificial fixture to obtain the desired complex geometry for nitinol. A metric, based on the elastic strain stored in copper is suggested to predict the possible variation of the intended dimensions in this process. Finally, to demonstrate the potential of this method, as proof of concept, we fabricated NiTi wire frames designed for anchoring through the atrial septum. These frames demonstrated septal defect occluders that were designed based on a patient's cardiac image available in the public domain. This low-cost rapid fabrication technique is highly beneficial for a variety of applications in engineering and medicine with specific applications in rapid prototyping of medical implants. Self-expanding frames for minimally invasive implants are typically made from nitinol wires and are heat treated to maintain the desired shapes. In the process of heat treatment, nitinol structures are placed in a high-temperature oven, while they are confined by a fixture. During this process, nitinol exerts a high amount of force. Accordingly, a fixture requires high mechanical strength and temperature resistance; this is why fixtures are typically made from metals. The use of metal fixture also increases the turnaround time and cost. However, accelerating this process is beneficial in many applications, such as rapid development of medical implants that are patient-specific. Inspired by the use of sacrificial layers in microfabrication technology, here we propose a novel method for shape setting nitinol wires using a sacrificial metal fixture. In this process, the nitinol wires are first aligned inside copper hypotubes. Next, the forming process is done using hand-held tools to shape complex geometrical structures, annealing the nitinol reinforced by copper, and then selectively etching copper hypotubes in ammonium persulfate solutions. In this process, other sacrificial cores, which are 3D printed or cast from low-cost polymers, are also used. This combination of polymeric cores and minimal use of metals enables reducing the cost and the turnaround time. As a proof of concept, we showed that this process was capable of fabricating springs with mm or sub-mm diameters. The result showed a change of less than 5% in the intended diameter of the nitinol spring with diameters ranging from ~ 0.7 to 1.9 mm, which confirms copper as a suitable sacrificial fixture to obtain the desired complex geometry for nitinol. A metric, based on the elastic strain stored in copper is suggested to predict the possible variation of the intended dimensions in this process. Finally, to demonstrate the potential of this method, as proof of concept, we fabricated NiTi wire frames designed for anchoring through the atrial septum. These frames demonstrated septal defect occluders that were designed based on a patient’s cardiac image available in the public domain. This low-cost rapid fabrication technique is highly beneficial for a variety of applications in engineering and medicine with specific applications in rapid prototyping of medical implants. Self-expanding frames for minimally invasive implants are typically made from nitinol wires and are heat treated to maintain the desired shapes. In the process of heat treatment, nitinol structures are placed in a high-temperature oven, while they are confined by a fixture. During this process, nitinol exerts a high amount of force. Accordingly, a fixture requires high mechanical strength and temperature resistance; this is why fixtures are typically made from metals. The use of metal fixture also increases the turnaround time and cost. However, accelerating this process is beneficial in many applications, such as rapid development of medical implants that are patient-specific. Inspired by the use of sacrificial layers in microfabrication technology, here we propose a novel method for shape setting nitinol wires using a sacrificial metal fixture. In this process, the nitinol wires are first aligned inside copper hypotubes. Next, the forming process is done using hand-held tools to shape complex geometrical structures, annealing the nitinol reinforced by copper, and then selectively etching copper hypotubes in ammonium persulfate solutions. In this process, other sacrificial cores, which are 3D printed or cast from low-cost polymers, are also used. This combination of polymeric cores and minimal use of metals enables reducing the cost and the turnaround time. As a proof of concept, we showed that this process was capable of fabricating springs with mm or sub-mm diameters. The result showed a change of less than 5% in the intended diameter of the nitinol spring with diameters ranging from ~ 0.7 to 1.9 mm, which confirms copper as a suitable sacrificial fixture to obtain the desired complex geometry for nitinol. A metric, based on the elastic strain stored in copper is suggested to predict the possible variation of the intended dimensions in this process. Finally, to demonstrate the potential of this method, as proof of concept, we fabricated NiTi wire frames designed for anchoring through the atrial septum. These frames demonstrated septal defect occluders that were designed based on a patient’s cardiac image available in the public domain. This low-cost rapid fabrication technique is highly beneficial for a variety of applications in engineering and medicine with specific applications in rapid prototyping of medical implants. Abstract Self-expanding frames for minimally invasive implants are typically made from nitinol wires and are heat treated to maintain the desired shapes. In the process of heat treatment, nitinol structures are placed in a high-temperature oven, while they are confined by a fixture. During this process, nitinol exerts a high amount of force. Accordingly, a fixture requires high mechanical strength and temperature resistance; this is why fixtures are typically made from metals. The use of metal fixture also increases the turnaround time and cost. However, accelerating this process is beneficial in many applications, such as rapid development of medical implants that are patient-specific. Inspired by the use of sacrificial layers in microfabrication technology, here we propose a novel method for shape setting nitinol wires using a sacrificial metal fixture. In this process, the nitinol wires are first aligned inside copper hypotubes. Next, the forming process is done using hand-held tools to shape complex geometrical structures, annealing the nitinol reinforced by copper, and then selectively etching copper hypotubes in ammonium persulfate solutions. In this process, other sacrificial cores, which are 3D printed or cast from low-cost polymers, are also used. This combination of polymeric cores and minimal use of metals enables reducing the cost and the turnaround time. As a proof of concept, we showed that this process was capable of fabricating springs with mm or sub-mm diameters. The result showed a change of less than 5% in the intended diameter of the nitinol spring with diameters ranging from ~ 0.7 to 1.9 mm, which confirms copper as a suitable sacrificial fixture to obtain the desired complex geometry for nitinol. A metric, based on the elastic strain stored in copper is suggested to predict the possible variation of the intended dimensions in this process. Finally, to demonstrate the potential of this method, as proof of concept, we fabricated NiTi wire frames designed for anchoring through the atrial septum. These frames demonstrated septal defect occluders that were designed based on a patient’s cardiac image available in the public domain. This low-cost rapid fabrication technique is highly beneficial for a variety of applications in engineering and medicine with specific applications in rapid prototyping of medical implants. |
ArticleNumber | 21853 |
Author | Dulal, Hemanta Swan, Trey Alaie, Seyedhamidreza Al’Aref, Subhi J. |
Author_xml | – sequence: 1 givenname: Hemanta surname: Dulal fullname: Dulal, Hemanta organization: Department of Mechanical and Aerospace Engineering, New Mexico State University – sequence: 2 givenname: Trey surname: Swan fullname: Swan, Trey organization: Department of Mechanical and Aerospace Engineering, New Mexico State University – sequence: 3 givenname: Subhi J. surname: Al’Aref fullname: Al’Aref, Subhi J. organization: Division of Cardiovascular Medicine, Department of Internal Medicine , University of Arkansas for Medical Sciences – sequence: 4 givenname: Seyedhamidreza surname: Alaie fullname: Alaie, Seyedhamidreza email: alaie@nmsu.edu organization: Department of Mechanical and Aerospace Engineering, New Mexico State University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38071380$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkstu1DAUhiNURMvQF2CBLLFhE-pbbiuEKi6VRmIDa-vEsWdcOXawnU6HN-ItcTpDaVkgLMtOfM75fPL_eV6cOO9UUbwk-C3BrL2InFRdW2LKSt4SXJf8SXFGMa9Kyig9efB8WpzHeI3zqGjHSfesOGUtbkhezoqfa78rpY8JTcEnn_aTcRvkNXImGect2pmg4oUOMKqI5rhEJ2_3owpGIulzEIEbUAQZjDbSgEXa3KZ5CexM2iKYJmskJOMdMssczI0ZZrDmhxrQEQxObn1Y4Gkb_LzZ5l0hSGHhRTWleXxRPNVgozo_7qvi28cPXy8_l-svn64u369LyTuaShgorzmruWQUK0y7fiB9lkrqWtaMq75nraoG2mPcVFmifNx0vdS4Vfm9wmxVXB24g4drMQUzQtgLD0bcHfiwERCSkVYJOtSSacw7whreawANCqgmDDRTneoyix1Ys5tgvwNr74EEi8VHcfBRZB_FnY-C56p3h6pp7kc1SOVSAPuolccRZ7Zi428ysCGYZ9SqeHMkBP99VjGJ0USprAWn_BwF7bIwNeGE5dTXf6Ve-zm4rLCgbdc1rGmqBfjqYUv3vfz-kXICPSTI4GMMSv_fhx7lidPivQp_7v5H1S-W4vBO |
Cites_doi | 10.1046/j.1525-1594.2000.06504.x 10.1016/S1359-6462(01)01098-3 10.1016/j.matchar.2007.02.007 10.1115/1.4048146 10.1002/jbm.b.35112 10.1016/j.addlet.2023.100146 10.1253/circj.66.1000 10.1002/adem.201901074 10.1109/LRA.2015.2507706 10.1002/elps.200600399 10.1002/jbm.b.34557 10.1002/adfm.201804147 10.1016/j.jacc.2007.02.035 10.1016/j.jmrt.2021.07.126 10.1088/0960-1317/18/7/075034 10.1002/jbm.b.33630 10.1007/s00330-003-2022-5 10.1038/s41551-017-0180-z 10.1007/s11665-009-9498-3 10.1016/j.jacc.2017.09.645 10.1016/j.jmst.2019.07.007 10.1002/ccd.28596 10.1109/JMEMS.2003.820936 10.1371/journal.pone.0178540 10.1007/s00339-011-6609-4 10.1158/0008-5472.CAN-21-0950 10.1002/ccd.23336 10.1016/S0921-5093(99)00294-4 10.1063/1.4824076 10.1097/01.ju.0000129285.59877.b6 10.1007/s40830-022-00365-2 10.1007/s12265-016-9722-0 10.1016/j.msea.2016.10.068 10.1115/1.4062282 10.3390/jfb7040034 10.1007/s40830-015-0029-9 10.1063/1.3676170 10.1088/2053-1583/2/3/035012 10.1016/j.jvs.2010.03.071 10.1071/CH02168 10.1007/s10278-013-9622-7 10.1148/radiol.2021203957 10.1016/B978-0-12-819264-1.00018-2 10.1038/s41598-016-0001-8 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU COVID DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY DOA |
DOI | 10.1038/s41598-023-48106-4 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Coronavirus Research Database ProQuest Central Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall Directory of Open Access Journals - May need to register for free articles |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_2d6c3f0491374bfaafaea2f13af3e9e9 10.1038/s41598-023-48106-4 PMC10710402 38071380 10_1038_s41598_023_48106_4 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Institute Of Biomedical Imaging And Bioengineering of the National Institutes of Health grantid: R21EB030654 – fundername: NIBIB NIH HHS grantid: R21 EB030654 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO CGR CUY CVF ECM EIF NPM 7XB 8FK AARCD COVID K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC EJD IPNFZ RIG UNPAY |
ID | FETCH-LOGICAL-c492t-ad2464364c320e029bd1b159cf6c634ebb38e5d2b0075045f6c79bcf08e750503 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:31:10 EDT 2025 Wed Aug 20 00:06:57 EDT 2025 Tue Sep 30 17:10:48 EDT 2025 Fri Sep 05 02:47:52 EDT 2025 Wed Aug 13 01:47:45 EDT 2025 Mon Jul 21 06:06:36 EDT 2025 Wed Oct 01 04:35:38 EDT 2025 Fri Feb 21 02:39:35 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. cc-by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c492t-ad2464364c320e029bd1b159cf6c634ebb38e5d2b0075045f6c79bcf08e750503 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/2899737752?pq-origsite=%requestingapplication% |
PMID | 38071380 |
PQID | 2899737752 |
PQPubID | 2041939 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2d6c3f0491374bfaafaea2f13af3e9e9 unpaywall_primary_10_1038_s41598_023_48106_4 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10710402 proquest_miscellaneous_2902961413 proquest_journals_2899737752 pubmed_primary_38071380 crossref_primary_10_1038_s41598_023_48106_4 springer_journals_10_1038_s41598_023_48106_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-09 |
PublicationDateYYYYMMDD | 2023-12-09 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-09 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Elsisy (CR11) 2020; 108 Lukasewycz (CR23) 2004; 172 Muhammad (CR32) 2012; 106 Robinson (CR27) 2018 Rahmani (CR33) 2017; 10 CR39 Fedorov (CR37) 2021; 81 CR31 Robinson (CR44) 2017; 70 McQuade, Gable, Pearl, Theune, Black (CR24) 2010; 52 CR30 Gunatillake, Martin, Meijs, McCarthy, Adhikari (CR46) 2003; 56 Shabalovskaya, Rondelli, Rettenmayr (CR42) 2009; 18 Alaie (CR26) 2020; 22 CR4 CR6 Gilbert, Webster (CR9) 2015; 1 CR5 CR7 Kinoshita, Suzuki, Hosokawa, Yokoya (CR34) 2002; 66 CR49 CR48 Bücking (CR38) 2017; 12 Peeni, Lee, Hawkins, Woolley (CR14) 2006; 27 Kumar, Orford, Tobis (CR35) 2020; 96 CR40 Liu, Wang, Yang, Qi (CR3) 2008; 59 Duerig, Pelton, Stöckel (CR1) 1999; 273 Yip (CR8) 2023; 2 Nagaraja, Di Prima, Saylor, Takai (CR58) 2017; 105 Shavelle, Rita Jermyn (CR21) 2016; 28 Di Prima, Saylor, Sivan, Weaver (CR56) 2021; 179 Goettler (CR13) 2011 Nagaraja, Brown, Saylor, Undisz (CR41) 2022; 8 Williams, Gupta, Wasilik (CR16) 2003; 12 Sun (CR15) 2020; 8 Seong, Mohanchandra, Lin, Carman (CR17) 2008; 18 Moghadam (CR51) 2018; 28 CR57 Bechtold, Lima de Miranda, Quandt (CR18) 2015; 1 Zhou (CR36) 2019; 35 CR10 Stoeckel, Pelton, Duerig (CR2) 2004; 14 Sick (CR22) 2007; 49 Kozaczuk (CR54) 2016; 4 Amamou (CR47) 2015; 2 Bagherpour, Qods, Ebrahimi, Miyamoto (CR50) 2017; 679 Alaie (CR12) 2013; 84 Bélanger (CR45) 2000; 24 Shayan, Jankowitz, Shridhar, Chun (CR19) 2016; 7 Saia (CR25) 2012; 79 Matsuzaki (CR55) 2016; 6 Obeidi (CR52) 2021; 14 Mani (CR43) 2022; 110 CR20 Shih, Yu, Kao, Chang (CR29) 2001; 45 Alaie (CR28) 2020; 22 Bhundiya, Cordero (CR53) 2023; 6 K Kozaczuk (48106_CR54) 2016; 4 PB Sick (48106_CR22) 2007; 49 M Elsisy (48106_CR11) 2020; 108 A Fedorov (48106_CR37) 2021; 81 T Duerig (48106_CR1) 1999; 273 C Bechtold (48106_CR18) 2015; 1 D Shavelle (48106_CR21) 2016; 28 G Mani (48106_CR43) 2022; 110 PA Gunatillake (48106_CR46) 2003; 56 KR Williams (48106_CR16) 2003; 12 48106_CR20 S Shabalovskaya (48106_CR42) 2009; 18 S Nagaraja (48106_CR58) 2017; 105 48106_CR7 D Stoeckel (48106_CR2) 2004; 14 48106_CR6 48106_CR5 48106_CR4 M Shayan (48106_CR19) 2016; 7 S Alaie (48106_CR26) 2020; 22 Y Kinoshita (48106_CR34) 2002; 66 HG Bhundiya (48106_CR53) 2023; 6 48106_CR49 TM Bücking (48106_CR38) 2017; 12 MA Obeidi (48106_CR52) 2021; 14 H Sun (48106_CR15) 2020; 8 48106_CR10 48106_CR57 S Lukasewycz (48106_CR23) 2004; 172 K McQuade (48106_CR24) 2010; 52 B Rahmani (48106_CR33) 2017; 10 M Shih (48106_CR29) 2001; 45 SS Robinson (48106_CR27) 2018 48106_CR39 X Zhou (48106_CR36) 2019; 35 N Muhammad (48106_CR32) 2012; 106 DF Goettler (48106_CR13) 2011 MC Yip (48106_CR8) 2023; 2 R Matsuzaki (48106_CR55) 2016; 6 S Robinson (48106_CR44) 2017; 70 W Amamou (48106_CR47) 2015; 2 S Alaie (48106_CR12) 2013; 84 48106_CR48 S Nagaraja (48106_CR41) 2022; 8 E Bagherpour (48106_CR50) 2017; 679 M Di Prima (48106_CR56) 2021; 179 48106_CR40 M Seong (48106_CR17) 2008; 18 S Alaie (48106_CR28) 2020; 22 HB Gilbert (48106_CR9) 2015; 1 BA Peeni (48106_CR14) 2006; 27 48106_CR30 48106_CR31 P Kumar (48106_CR35) 2020; 96 F Saia (48106_CR25) 2012; 79 X Liu (48106_CR3) 2008; 59 M-C Bélanger (48106_CR45) 2000; 24 AAA Moghadam (48106_CR51) 2018; 28 |
References_xml | – volume: 24 start-page: 879 year: 2000 end-page: 888 ident: CR45 article-title: Selection of a polyurethane membrane for the manufacture of ventricles for a totally implantable artificial heart: Blood compatibility and biocompatibility studies publication-title: Artif. Organs doi: 10.1046/j.1525-1594.2000.06504.x – volume: 45 start-page: 793 year: 2001 end-page: 799 ident: CR29 article-title: Microstructure and flow stress of copper deformed to large plastic strains publication-title: Scr. Mater. doi: 10.1016/S1359-6462(01)01098-3 – ident: CR49 – ident: CR4 – ident: CR39 – volume: 59 start-page: 402 year: 2008 end-page: 406 ident: CR3 article-title: The effect of ageing treatment on shape-setting and superelasticity of a nitinol stent publication-title: Mater. Charact. doi: 10.1016/j.matchar.2007.02.007 – volume: 8 start-page: 031003 year: 2020 ident: CR15 article-title: Shape memory alloy bimorph microactuators by lift-off process publication-title: J. Micro Nano-Manuf. doi: 10.1115/1.4048146 – volume: 110 start-page: 2763 year: 2022 end-page: 2778 ident: CR43 article-title: Surface finishing of N itinol for implantable medical devices: A review publication-title: J. Biomed. Mater. Res. Part B Appl. Biomater. doi: 10.1002/jbm.b.35112 – volume: 6 start-page: 100146 year: 2023 ident: CR53 article-title: Bend-forming: A CNC deformation process for fabricating 3D wireframe structures publication-title: Addit. Manuf. Lett. doi: 10.1016/j.addlet.2023.100146 – volume: 28 start-page: 273 year: 2016 end-page: 279 ident: CR21 article-title: The CardioMEMS heart failure sensor: A procedural guide for implanting physicians publication-title: J. Invasive Cardiol. – volume: 66 start-page: 1000 year: 2002 end-page: 1002 ident: CR34 article-title: Usefulness of the SymphonyTM nitinol stent for arteriosclerosis obliterans publication-title: Circ. J. doi: 10.1253/circj.66.1000 – volume: 6 start-page: 1 year: 2016 end-page: 7 ident: CR55 article-title: Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation publication-title: Sci. Rep. UK – volume: 22 start-page: 1901074 year: 2020 ident: CR28 article-title: Advanced manufacturing of patient-specific occluders for the left atrial appendage with minimally invasive delivery publication-title: Adv. Eng. Mater. doi: 10.1002/adem.201901074 – volume: 1 start-page: 98 year: 2015 end-page: 105 ident: CR9 article-title: Rapid, reliable shape setting of superelastic nitinol for prototyping robots publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2015.2507706 – volume: 27 start-page: 4888 year: 2006 end-page: 4895 ident: CR14 article-title: Sacrificial layer microfluidic device fabrication methods publication-title: Electrophoresis doi: 10.1002/elps.200600399 – volume: 108 start-page: 2192 year: 2020 end-page: 2203 ident: CR11 article-title: Comprehensive assessment of mechanical behavior of an extremely long stent graft to control hemorrhage in torso publication-title: J. Biomed. Mater. Res. B Appl. Biomater. doi: 10.1002/jbm.b.34557 – ident: CR57 – volume: 28 start-page: 9 year: 2018 ident: CR51 article-title: Toward development of inflatable stents with application in endovascular treatments publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201804147 – ident: CR5 – volume: 49 start-page: 1490 year: 2007 end-page: 1495 ident: CR22 article-title: Initial worldwide experience with the WATCHMAN left atrial appendage system for stroke prevention in atrial fibrillation publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2007.02.035 – volume: 14 start-page: 2554 year: 2021 end-page: 2570 ident: CR52 article-title: Laser beam powder bed fusion of nitinol shape memory alloy (SMA) publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2021.07.126 – volume: 18 start-page: 075034 year: 2008 ident: CR17 article-title: Development of a ‘bi-layer lift-off’ method for high flow rate and high frequency Nitinol MEMS valve fabrication publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/18/7/075034 – volume: 105 start-page: 1330 year: 2017 end-page: 1341 ident: CR58 article-title: Current practices in corrosion, surface characterization, and nickel leach testing of cardiovascular metallic implants publication-title: J. Biomed. Mater. Res. Part B Appl. Biomater. doi: 10.1002/jbm.b.33630 – volume: 14 start-page: 292 year: 2004 end-page: 301 ident: CR2 article-title: Self-expanding nitinol stents: Material and design considerations publication-title: Eur. Radiol. doi: 10.1007/s00330-003-2022-5 – year: 2018 ident: CR27 article-title: Patient-specific design of a soft occluder for the left atrial appendage publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-017-0180-z – volume: 18 start-page: 470 year: 2009 end-page: 474 ident: CR42 article-title: Nitinol surfaces for implantation publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-009-9498-3 – volume: 179 start-page: 52 year: 2021 end-page: 56 ident: CR56 article-title: FDA GUIDANCE ON MEDICAL DEVICES CONTAINING NITINOL: New FDA guidance for Nitinol used in medical devices includes clarification on the use of computational modeling, as well as corrosion and biocompatibility updates publication-title: Adv. Mater. Process. – volume: 70 start-page: B257 year: 2017 end-page: B257 ident: CR44 article-title: Patient-specific design of an elastomeric left atrial appendage occluder publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2017.09.645 – volume: 35 start-page: 2682 year: 2019 end-page: 2692 ident: CR36 article-title: Development of new endovascular stent-graft system for type B thoracic aortic dissection with finite element analysis and experimental verification publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2019.07.007 – volume: 96 start-page: 219 year: 2020 end-page: 224 ident: CR35 article-title: Two cases of pericardial tamponade due to nitinol wire fracture of a gore septal occluder publication-title: Catheter. Cardiovasc. Interv. doi: 10.1002/ccd.28596 – volume: 12 start-page: 761 year: 2003 end-page: 778 ident: CR16 article-title: Etch rates for micromachining processing: Part II publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2003.820936 – ident: CR30 – volume: 12 start-page: e0178540 year: 2017 ident: CR38 article-title: From medical imaging data to 3D printed anatomical models publication-title: PLoS ONE doi: 10.1371/journal.pone.0178540 – ident: CR10 – ident: CR6 – volume: 106 start-page: 607 year: 2012 end-page: 617 ident: CR32 article-title: Picosecond laser micromachining of nitinol and platinum–iridium alloy for coronary stent applications publication-title: Appl. Phys. A doi: 10.1007/s00339-011-6609-4 – volume: 81 start-page: 4188 year: 2021 ident: CR37 article-title: NCI imaging data commons publication-title: Cancer research doi: 10.1158/0008-5472.CAN-21-0950 – volume: 4 start-page: 52 year: 2016 end-page: 59 ident: CR54 article-title: Automated fiber placement systems overview publication-title: Prace Inst. Lotnictwa – ident: CR40 – volume: 79 start-page: 712 year: 2012 end-page: 719 ident: CR25 article-title: Transcatheter aortic valve implantation with a self-expanding nitinol bioprosthesis: Prediction of the need for permanent pacemaker using simple baseline and procedural characteristics publication-title: Catheter. Cardiovasc. Interv. doi: 10.1002/ccd.23336 – ident: CR48 – volume: 273 start-page: 149 year: 1999 end-page: 160 ident: CR1 article-title: An overview of nitinol medical applications publication-title: Mater. Sci. Eng. A doi: 10.1016/S0921-5093(99)00294-4 – volume: 84 start-page: 105003 year: 2013 ident: CR12 article-title: Microfabricated suspended island platform for the measurement of in-plane thermal conductivity of thin films and nanostructured materials with consideration of contact resistance publication-title: Rev. Sci. Instrum. doi: 10.1063/1.4824076 – ident: CR31 – volume: 172 start-page: 562 year: 2004 end-page: 564 ident: CR23 article-title: Comparison of nitinol tipless stone baskets in an in vitro caliceal model publication-title: J. Urol. doi: 10.1097/01.ju.0000129285.59877.b6 – volume: 22 start-page: 1901074 year: 2020 ident: CR26 article-title: Advanced manufacturing of patient specific occluders for the left atrial appendage with minimally invasive delivery publication-title: Adv. Eng. Mater. doi: 10.1002/adem.201901074 – volume: 8 start-page: 45 year: 2022 end-page: 63 ident: CR41 article-title: Oxide layer formation, corrosion, and biocompatibility of nitinol cardiovascular devices publication-title: Shape Memory Superelast. doi: 10.1007/s40830-022-00365-2 – volume: 10 start-page: 104 year: 2017 end-page: 115 ident: CR33 article-title: In vitro hydrodynamic assessment of a new transcatheter heart valve concept (the TRISKELE) publication-title: J. Cardiovasc. Transl. Res. doi: 10.1007/s12265-016-9722-0 – volume: 679 start-page: 465 year: 2017 end-page: 475 ident: CR50 article-title: Nanostructured pure copper fabricated by simple shear extrusion (SSE): A correlation between microstructure and tensile properties publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2016.10.068 – volume: 2 start-page: 021027 year: 2023 ident: CR8 article-title: Low-cost and rapid shaping of nitinol for medical device prototyping publication-title: ASME Open J. Eng. doi: 10.1115/1.4062282 – volume: 7 start-page: 34 year: 2016 ident: CR19 article-title: Use of micropatterned thin film nitinol in carotid stents to augment embolic protection publication-title: J. Funct. Biomater. doi: 10.3390/jfb7040034 – volume: 1 start-page: 286 year: 2015 end-page: 293 ident: CR18 article-title: Capability of sputtered micro-patterned NiTi thick films publication-title: Shape Memory Superelast. doi: 10.1007/s40830-015-0029-9 – ident: CR7 – year: 2011 ident: CR13 article-title: Realization of a 33 GHz phononic crystal fabricated in a freestanding membrane publication-title: AIP Adv. doi: 10.1063/1.3676170 – volume: 2 start-page: 035012 year: 2015 ident: CR47 article-title: Large area epitaxial germanane for electronic devices publication-title: 2D Mater. doi: 10.1088/2053-1583/2/3/035012 – volume: 52 start-page: 584 year: 2010 end-page: 591.e587 ident: CR24 article-title: Four-year randomized prospective comparison of percutaneous ePTFE/nitinol self-expanding stent graft versus prosthetic femoral-popliteal bypass in the treatment of superficial femoral artery occlusive disease publication-title: J. Vasc. Surg. doi: 10.1016/j.jvs.2010.03.071 – volume: 56 start-page: 545 year: 2003 end-page: 557 ident: CR46 article-title: Designing biostable polyurethane elastomers for biomedical implants publication-title: Aust. J. Chem. doi: 10.1071/CH02168 – ident: CR20 – volume: 679 start-page: 465 year: 2017 ident: 48106_CR50 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2016.10.068 – ident: 48106_CR31 – volume: 28 start-page: 9 year: 2018 ident: 48106_CR51 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201804147 – volume: 28 start-page: 273 year: 2016 ident: 48106_CR21 publication-title: J. Invasive Cardiol. – year: 2018 ident: 48106_CR27 publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-017-0180-z – ident: 48106_CR48 doi: 10.1007/s10278-013-9622-7 – ident: 48106_CR39 – ident: 48106_CR40 – ident: 48106_CR4 – volume: 108 start-page: 2192 year: 2020 ident: 48106_CR11 publication-title: J. Biomed. Mater. Res. B Appl. Biomater. doi: 10.1002/jbm.b.34557 – volume: 70 start-page: B257 year: 2017 ident: 48106_CR44 publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2017.09.645 – volume: 81 start-page: 4188 year: 2021 ident: 48106_CR37 publication-title: Cancer research doi: 10.1158/0008-5472.CAN-21-0950 – ident: 48106_CR57 – volume: 27 start-page: 4888 year: 2006 ident: 48106_CR14 publication-title: Electrophoresis doi: 10.1002/elps.200600399 – volume: 8 start-page: 031003 year: 2020 ident: 48106_CR15 publication-title: J. Micro Nano-Manuf. doi: 10.1115/1.4048146 – volume: 84 start-page: 105003 year: 2013 ident: 48106_CR12 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.4824076 – year: 2011 ident: 48106_CR13 publication-title: AIP Adv. doi: 10.1063/1.3676170 – volume: 12 start-page: e0178540 year: 2017 ident: 48106_CR38 publication-title: PLoS ONE doi: 10.1371/journal.pone.0178540 – volume: 12 start-page: 761 year: 2003 ident: 48106_CR16 publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2003.820936 – volume: 106 start-page: 607 year: 2012 ident: 48106_CR32 publication-title: Appl. Phys. A doi: 10.1007/s00339-011-6609-4 – volume: 110 start-page: 2763 year: 2022 ident: 48106_CR43 publication-title: J. Biomed. Mater. Res. Part B Appl. Biomater. doi: 10.1002/jbm.b.35112 – ident: 48106_CR49 doi: 10.1148/radiol.2021203957 – volume: 79 start-page: 712 year: 2012 ident: 48106_CR25 publication-title: Catheter. Cardiovasc. Interv. doi: 10.1002/ccd.23336 – ident: 48106_CR30 doi: 10.1016/B978-0-12-819264-1.00018-2 – volume: 56 start-page: 545 year: 2003 ident: 48106_CR46 publication-title: Aust. J. Chem. doi: 10.1071/CH02168 – volume: 4 start-page: 52 year: 2016 ident: 48106_CR54 publication-title: Prace Inst. Lotnictwa – volume: 105 start-page: 1330 year: 2017 ident: 48106_CR58 publication-title: J. Biomed. Mater. Res. Part B Appl. Biomater. doi: 10.1002/jbm.b.33630 – volume: 7 start-page: 34 year: 2016 ident: 48106_CR19 publication-title: J. Funct. Biomater. doi: 10.3390/jfb7040034 – volume: 179 start-page: 52 year: 2021 ident: 48106_CR56 publication-title: Adv. Mater. Process. – ident: 48106_CR5 – volume: 6 start-page: 1 year: 2016 ident: 48106_CR55 publication-title: Sci. Rep. UK doi: 10.1038/s41598-016-0001-8 – ident: 48106_CR10 – volume: 1 start-page: 98 year: 2015 ident: 48106_CR9 publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2015.2507706 – volume: 24 start-page: 879 year: 2000 ident: 48106_CR45 publication-title: Artif. Organs doi: 10.1046/j.1525-1594.2000.06504.x – volume: 273 start-page: 149 year: 1999 ident: 48106_CR1 publication-title: Mater. Sci. Eng. A doi: 10.1016/S0921-5093(99)00294-4 – volume: 18 start-page: 075034 year: 2008 ident: 48106_CR17 publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/18/7/075034 – volume: 10 start-page: 104 year: 2017 ident: 48106_CR33 publication-title: J. Cardiovasc. Transl. Res. doi: 10.1007/s12265-016-9722-0 – volume: 49 start-page: 1490 year: 2007 ident: 48106_CR22 publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2007.02.035 – volume: 52 start-page: 584 year: 2010 ident: 48106_CR24 publication-title: J. Vasc. Surg. doi: 10.1016/j.jvs.2010.03.071 – volume: 8 start-page: 45 year: 2022 ident: 48106_CR41 publication-title: Shape Memory Superelast. doi: 10.1007/s40830-022-00365-2 – volume: 66 start-page: 1000 year: 2002 ident: 48106_CR34 publication-title: Circ. J. doi: 10.1253/circj.66.1000 – volume: 35 start-page: 2682 year: 2019 ident: 48106_CR36 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2019.07.007 – volume: 14 start-page: 292 year: 2004 ident: 48106_CR2 publication-title: Eur. Radiol. doi: 10.1007/s00330-003-2022-5 – volume: 96 start-page: 219 year: 2020 ident: 48106_CR35 publication-title: Catheter. Cardiovasc. Interv. doi: 10.1002/ccd.28596 – volume: 2 start-page: 035012 year: 2015 ident: 48106_CR47 publication-title: 2D Mater. doi: 10.1088/2053-1583/2/3/035012 – volume: 45 start-page: 793 year: 2001 ident: 48106_CR29 publication-title: Scr. Mater. doi: 10.1016/S1359-6462(01)01098-3 – ident: 48106_CR6 – volume: 2 start-page: 021027 year: 2023 ident: 48106_CR8 publication-title: ASME Open J. Eng. doi: 10.1115/1.4062282 – volume: 14 start-page: 2554 year: 2021 ident: 48106_CR52 publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2021.07.126 – volume: 59 start-page: 402 year: 2008 ident: 48106_CR3 publication-title: Mater. Charact. doi: 10.1016/j.matchar.2007.02.007 – volume: 1 start-page: 286 year: 2015 ident: 48106_CR18 publication-title: Shape Memory Superelast. doi: 10.1007/s40830-015-0029-9 – volume: 22 start-page: 1901074 year: 2020 ident: 48106_CR28 publication-title: Adv. Eng. Mater. doi: 10.1002/adem.201901074 – ident: 48106_CR20 – volume: 22 start-page: 1901074 year: 2020 ident: 48106_CR26 publication-title: Adv. Eng. Mater. doi: 10.1002/adem.201901074 – volume: 6 start-page: 100146 year: 2023 ident: 48106_CR53 publication-title: Addit. Manuf. Lett. doi: 10.1016/j.addlet.2023.100146 – volume: 172 start-page: 562 year: 2004 ident: 48106_CR23 publication-title: J. Urol. doi: 10.1097/01.ju.0000129285.59877.b6 – volume: 18 start-page: 470 year: 2009 ident: 48106_CR42 publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-009-9498-3 – ident: 48106_CR7 |
SSID | ssj0000529419 |
Score | 2.4151049 |
Snippet | Self-expanding frames for minimally invasive implants are typically made from nitinol wires and are heat treated to maintain the desired shapes. In the process... Abstract Self-expanding frames for minimally invasive implants are typically made from nitinol wires and are heat treated to maintain the desired shapes. In... |
SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 21853 |
SubjectTerms | 639/166/985 639/166/988 Alloys - chemistry Ammonium Atrial Septum Copper Copper - chemistry Cores Etching Fabrication Heat treatment Heat treatments Heavy metals High temperature Humanities and Social Sciences Humans Mechanical properties Metals multidisciplinary Patients Polymers Prostheses and Implants Science Science (multidisciplinary) Septum Temperature requirements |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals - May need to register for free articles dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fi9QwEA5ycKgPcv6unhLBN69sm6Rt8ngnHoeoTx7cW0iaxFtY28V2udv7j_wvnUm7dRdFfRCWLtuGkp350pl0Zr4h5HWReatqZ1MB5jIFe8xSW1c8Ffgm3sjK8Jjy__FTeXYu3l8UF1utvjAnbKAHHgQ3Y66seQA_NueVsMGYYLxhIecmcK98LN0DM7a1mRpYvZkSuRqrZDIuZx1YKqwmYzAPCfugVOxYokjY_zsv89dkySliepfcXjVLs74yi8WWUTo9IPdGb5IeD__iPrnlmwdkf-gvuX5Ivn9or9K67XqKdAxtv8biKNoGihlDTbugSFTczQImaHUUU-C_0GW7WMcoDkWCy46axtHOwLNloJqgYX6NQYeO4htcuhX_pnP8bMq75jfe0fHGAKzLmOdHx65A8O2piQ1DaOeX_errI3J--u7z27N07M2Q1kKxPjWOCXBmSlFzlvmMKetyCxKuQ1mXXHhrufSFYzb6JKKA05Wydcikh99Fxh-TvaZt_FNCwXE2xjPhZFDCVUaGsjDGFoIF5zIpEvJmoye9HCg4dAydc6kHrWrQqo5a1TD6BFU5jUT67HgCQKVHUOm_gSohhxsg6HFNdxq3phVAt2AJeTVdhtWIIRbT-HYFYxSIAjyenCfkyYCbaSZI7Z_DISFyB1E7U9290swvI-N3jo4g7PQTcrQB3895_UkWRxNA_0F0z_6H6J6TOwwXGWb8qEOy139b-Rfgt_X2ZVyiPwAaNEOo priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEA96IuqD-G31lAi-eWXbJP16EhWPQ9QnD_YtJE1yt7C29dLlXP8j_0tn0o-7RTmEZZemaclmfpOZzExmCHmdJVZXtdGxAHEZgzxmsa4LHgu0xKuyUDyE_H_5mh8di0_LbDka3PwYVjmtiWGhNm2NNvIFbgwKeDBjb7sfMVaNQu_qWELjOrmRgqqCqC6WxWxjQS-WSKvxrEzCy4UHeYVnyhiMpoTdUCx25FFI2_8vXfPvkMnZb3qH3No0ndqeq_X6kmg6vEfujjolfTeA4D65ZpsH5OZQZXL7kPz-3J7Hdet7ikkZ2n6LR6Ro6yjGDTXtmmK6Yr9wGKblKQbCn9CuXW-DL4dimktPVWOoV7DCDAknqFv9RNeDp2jHpZe84HSFn-mQ1-qXNXR8McDrNET70bE2EPxaqkLZEOpt12--PyLHhx-_fTiKxwoNcS0q1sfKMAEqTS5qzhKbsEqbVMMM1y6vcy6s1ry0mWE6aCYig-ai0rVLSgvXWcIfk72mbexTQkF9VsoyYUpXCVOo0uWZUjoTzBmTlCIibyY6yW5IxCGDA52XcqCqBKrKQFUJvd8jKeeemEQ7NLRnJ3LkSclMXnMHW6SUF0I7pZyyirmUK8dtZauI7E9AkCNne3mBw4i8mm8DT6KjRTW23UCfCqYC9J6UR-TJgJt5JJjgP4WviJQ7iNoZ6u6dZnUa8n6nqA7Cfj8iBxP4LsZ11VwczAD9j6l7dvW_fk5uM2QfjOip9slef7axL0Av6_XLwHx_AKsJOb0 priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9UwFA9zQ9QH8dvqlAi-ubI2Sdvk8SqOcVFfdLC3kjTJduGuvay9zOt_5H_pOemHuzhEobS0TUM4Hz0nOef8QsjbLHFGVdbEAsxlDPaYxaYqeCxwJV7LQvOQ8v_5S358Iuan2ekOYWMtTEjaD5CW4Tc9ZocdtmBosBiMQTcSpjGxuEX2ZMEZKOPebDb_Op9WVjB2JVI1VMgkXN7w8ZYVCmD9N3mYfyZKTtHSe-TOul7pzZVeLq8ZpKMH5P7gSdJZP_aHZMfVj8jtfm_JzWPy81NzFVdN21GEYmi6DRZG0cZTzBaqmyVFkOL20GNyVksx_f2MrprlJkRwKIJbtlTXlrYa_is9zAT1i-9Is5bi6i29FvumCzzG0q7FD2fp0DEI1XnI8aPDjkBwdVSHzUJo61bd-uIJOTn6-O3DcTzsyxBXQrEu1pYJcGRyUXGWuIQpY1MDFK58XuVcOGO4dJllJvgjIoPHhTKVT6SD-yzhT8lu3dTuOaHgNGvtmLDSK2ELLX2eaW0ywby1iRQReTfyqVz18BtlCJtzWfZcLYGrZeBqCa3fIyunlgidHR40l2flIEols3nFPUyMUl4I47X22mnmU649d8qpiOyPglAO-tyWOC0tQGwzFpE302vQRAyv6No1a2ijgBTg7aQ8Is96uZlGgrD-KZwiIrckamuo22_qxXlA-07RCYRZfkQORuH7Pa6_0eJgEtB_IN2L_-v9JbnLUJ0wr0ftk93ucu1egXfWmdeDOv4Cs_84wQ priority: 102 providerName: Springer Nature |
Title | Low-cost prototyping of nitinol wires/frames using polymeric cores and sacrificial fixtures with application in individualized frames anchoring through the atrial septum |
URI | https://link.springer.com/article/10.1038/s41598-023-48106-4 https://www.ncbi.nlm.nih.gov/pubmed/38071380 https://www.proquest.com/docview/2899737752 https://www.proquest.com/docview/2902961413 https://pubmed.ncbi.nlm.nih.gov/PMC10710402 https://www.nature.com/articles/s41598-023-48106-4.pdf https://doaj.org/article/2d6c3f0491374bfaafaea2f13af3e9e9 |
UnpaywallVersion | publishedVersion |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: HH5 dateStart: 20110101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: ABDBF dateStart: 20121221 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DIK dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: RPM dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAQT databaseName: Nature Free (WRLC) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: NAO dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.nature.com/siteindex/index.html providerName: Nature Publishing – providerCode: PRVPQU databaseName: Health & Medical Collection (ProQuest) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2045-2322 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M48 dateStart: 20110801 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: AAJSJ dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: C6C dateStart: 20111201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1ra9swUPTB2PZh7L1sXdBg7Mvq1pbk14cx0tBSwlrGtkC-GcmW2kBmu7FDm_2j_cvdyXbWsDAKxiaysJV7-O50L0Le-65WcZopR4C4dEAeM0elIXcE7sTLKJTchvyfnQenYzGa-JMt0oXbtgCsNpp22E9qPJ8d3FwtPwPDf2pSxqPDCoQQJooxeEUEJo4jPpRXDjaWQgds22Vjm-yCsGJI-GetBdCU_2axsO0_sC67A_oFa1NrNj95TXzZKv-bVNN_IyxXbtaH5P4iL-XyWs5mtyTZyWPyqFVB6aChmSdkS-dPyb2mKeXyGfn9pbh20qKqKdZwKOolZlTRwlAMM8qLGcXqxtWhwaiuimLc_AUti9nSun4oVsWsqMwzWkn4IDX1KaiZ3qCnoqK47UtvOc3pFI8uJ2z6S2e0fTBQ46UNDqRtKyG4aiptlxFa6bJe_HxOxifHP4anTtvQwUlFzGpHZkyABhSIlDNXuyxWmacAwqkJ0oALrRSPtJ8xZRUZ4cNwGKvUuJGG377LX5CdvMj1K0JB25ZSM5FFJhZZKCMT-FIqXzCTZW4keuRjh6ekbOp2JNbfzqOkwWoCWE0sVhOYfYSoXM3Emtt2oJhfJC0LJywLUm7AovJ4KJSR0kgtmfG4NFzHOu6RvY4Qko6OE7RnQ6B3n_XIu9VtYGH0y8hcFwuYEwMoQE3yeI-8bOhmtRLsB-DBqUeiNYpaW-r6nXx6acuEe6g9ChdevN8R3991_Q8W-ysCvQPoXt_hb70hDxjyEEYBxXtkp54v9FvQ5WrVJ9vhJOyT3cFg9H0E16Pj86_fYHQYDPt2f6Rv-fUPViBOCw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEBo8IO4UBhgJnljUxHZuDwhxmzrW7WmT-hbs2N4qlaQsqUr5R7zwGznHuWwVaOJlUpWqiZs4Pp_POfa5EfIq9I1Kc608AeLSA3nMPJXH3BO4Ey-TWHLn8n9wGI2OxZdJONkgv7tYGHSr7HiiY9S6zHGPfIgLgxj-GLJ38-8eVo1C62pXQqOBxb5ZLWHJVr3d-wT0fc3Y7uejjyOvrSrg5SJltSc1EyCGI5Fz5hufpUoHCoR6bqM84sIoxRMTaqacNBUhnI5TlVs_MfA79Dnc9xq5LrgvMFd_PIn7PR20mokgbWNzfJ4MK5CPGMPG4O0TWH15Yk3-uTIB_9Jt_3bR7O20t8jWopjL1VLOZhdE4e4dcrvVYen7BnR3yYYp7pEbTVXL1X3ya1wuvbysaopJIMp6hSFZtLQU_ZSKckYxPXI1tOgWVlF0vD-h83K2crYjimk1KyoLTSsJHK1JcEHt9AeaOiqK-8b0gtWdTvHTBZVNfxpN2xsDnE-ddyFtaxHBt6HSlSmhlZnXi28PyPGV0O4h2SzKwjwmFNR1KQ0TOrGp0LFMbBRKqULBrNZ-IgbkTUenbN4k_sicwZ4nWUPVDKiaOapm0PoDkrJviUm73Yny7CRreUDGdJRzC0uygMdCWSmtNJLZgEvLTWrSAdnugJC1nKTKznE_IC_7y8AD0LAjC1MuoE0KQwF6VsAH5FGDm74nWFAggMOAJGuIWuvq-pVieuryjAeofgofHrzTge-8X5eNxU4P0P8YuieXv_ULsjU6Ohhn473D_afkJsOphN5E6TbZrM8W5hnohLV67iYiJV-veub_AasddYM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGELcHxHUUBhgJnljUxHZuDwgBo9rYmHhgUt-CHdtbpS4pS6pS_hF_gV_HOc5lq0ATL5OqVE2c1PG52ufzOYS8DH2j0lwrT4C59MAeM0_lMfcErsTLJJbcQf4_H0Q7h-LTOByvkd_dXhiEVXY60SlqXea4Rj7EiUEMN4ZsaFtYxJft0dvZdw8rSGGktSun0bDInlkuYPpWvdndBlq_Ymz08euHHa-tMODlImW1JzUTYJIjkXPmG5-lSgcKDHxuozziwijFExNqppxlFSGcjlOVWz8x8Dv0OTz3Crkac8ERThaP4359ByNoIkjbfTo-T4YV2Ercz8ZgJBKYiXlixRa6kgH_8nP_hmv2Mdtb5Ma8mMnlQk6n58zi6A653fqz9F3DgHfJminukWtNhcvlffJrv1x4eVnVFBNClPUSt2fR0lLELBXllGKq5GpoESJWUQThH9FZOV26OBLFFJsVlYWmlQTt1iS7oHbyA8MeFcU1ZHouAk8n-Ok2mE1-Gk3bBwNrHzukIW3rEsG3odKVLKGVmdXzkwfk8FJo95CsF2VhHhEKrruUhgmd2FToWCY2CqVUoWBWaz8RA_K6o1M2a5KAZC54z5OsoWoGVM0cVTNo_R5J2bfEBN7uRHl6lLX6IGM6yrmF6VnAY6GslFYayWzApeUmNemAbHaMkLVapcrOZGBAXvSXQR9gkEcWppxDmxSGAnyugA_IRsM3fU-wuEAAhwFJVjhqpaurV4rJscs5HqArKnz4462O-c76ddFYbPUM-h9D9_jit35OroPMZ_u7B3tPyE2GkoTAonSTrNenc_MU3MNaPXNySMm3yxb8Px7Geb4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-cost+prototyping+of+nitinol+wires%2Fframes+using+polymeric+cores+and+sacrificial+fixtures+with+application+in+individualized+frames+anchoring+through+the+atrial+septum&rft.jtitle=Scientific+reports&rft.au=Dulal%2C+Hemanta&rft.au=Swan%2C+Trey&rft.au=Al%27Aref%2C+Subhi+J&rft.au=Alaie%2C+Seyedhamidreza&rft.date=2023-12-09&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft.spage=21853&rft_id=info:doi/10.1038%2Fs41598-023-48106-4&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |