The two-stage detection-after-segmentation model improves the accuracy of identifying subdiaphragmatic lesions

Chest X-rays (CXRs) are primarily used to detect lung lesions. While the abdominal portion of CXRs can sometimes reveal critical conditions, research in this area is limited. To address this, we introduce a two-stage architecture that separates the abdominal region from the CXR and detects abdominal...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; pp. 25414 - 13
Main Authors Chen, Chih-Hsiung, Hsu, Steven H., Hsieh, Kuang-Yu, Huang, Kuo-En, Lai, Hsien-Yung
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 25.10.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-024-76450-6

Cover

Abstract Chest X-rays (CXRs) are primarily used to detect lung lesions. While the abdominal portion of CXRs can sometimes reveal critical conditions, research in this area is limited. To address this, we introduce a two-stage architecture that separates the abdominal region from the CXR and detects abdominal lesions using a specialized dataset. We compared the performance of our method on whole CXRs versus isolated abdominal regions. First, we created masks for the right upper quadrant (RUQ), left upper quadrant (LUQ), and upper abdomen (ABD) regions and trained corresponding segmentation models for each area. For detecting abdominal lesions, we curated a dataset of 5,996 images, categorized into 19 classes based on anatomical locations, air patterns, and levels of stomach or bowel dilation. The detection process was initially conducted on the original images, followed by the three regional areas, RUQ, LUQ, and ABD, extracted by the segmentation models. The results showed that the detection model trained on the entire ABD region achieved the highest accuracy, followed closely by the RUQ and LUQ models. In contrast, the CXR model had the lowest accuracy. This study highlights that the two-stage architecture effectively manages distinct segmentation and detection tasks in CXRs, offering a promising avenue for more accurate diagnoses. It also suggests that an optimal ratio between the sizes of the target lesions and the input images may exist.
AbstractList Chest X-rays (CXRs) are primarily used to detect lung lesions. While the abdominal portion of CXRs can sometimes reveal critical conditions, research in this area is limited. To address this, we introduce a two-stage architecture that separates the abdominal region from the CXR and detects abdominal lesions using a specialized dataset. We compared the performance of our method on whole CXRs versus isolated abdominal regions. First, we created masks for the right upper quadrant (RUQ), left upper quadrant (LUQ), and upper abdomen (ABD) regions and trained corresponding segmentation models for each area. For detecting abdominal lesions, we curated a dataset of 5,996 images, categorized into 19 classes based on anatomical locations, air patterns, and levels of stomach or bowel dilation. The detection process was initially conducted on the original images, followed by the three regional areas, RUQ, LUQ, and ABD, extracted by the segmentation models. The results showed that the detection model trained on the entire ABD region achieved the highest accuracy, followed closely by the RUQ and LUQ models. In contrast, the CXR model had the lowest accuracy. This study highlights that the two-stage architecture effectively manages distinct segmentation and detection tasks in CXRs, offering a promising avenue for more accurate diagnoses. It also suggests that an optimal ratio between the sizes of the target lesions and the input images may exist.
Chest X-rays (CXRs) are primarily used to detect lung lesions. While the abdominal portion of CXRs can sometimes reveal critical conditions, research in this area is limited. To address this, we introduce a two-stage architecture that separates the abdominal region from the CXR and detects abdominal lesions using a specialized dataset. We compared the performance of our method on whole CXRs versus isolated abdominal regions. First, we created masks for the right upper quadrant (RUQ), left upper quadrant (LUQ), and upper abdomen (ABD) regions and trained corresponding segmentation models for each area. For detecting abdominal lesions, we curated a dataset of 5,996 images, categorized into 19 classes based on anatomical locations, air patterns, and levels of stomach or bowel dilation. The detection process was initially conducted on the original images, followed by the three regional areas, RUQ, LUQ, and ABD, extracted by the segmentation models. The results showed that the detection model trained on the entire ABD region achieved the highest accuracy, followed closely by the RUQ and LUQ models. In contrast, the CXR model had the lowest accuracy. This study highlights that the two-stage architecture effectively manages distinct segmentation and detection tasks in CXRs, offering a promising avenue for more accurate diagnoses. It also suggests that an optimal ratio between the sizes of the target lesions and the input images may exist.Chest X-rays (CXRs) are primarily used to detect lung lesions. While the abdominal portion of CXRs can sometimes reveal critical conditions, research in this area is limited. To address this, we introduce a two-stage architecture that separates the abdominal region from the CXR and detects abdominal lesions using a specialized dataset. We compared the performance of our method on whole CXRs versus isolated abdominal regions. First, we created masks for the right upper quadrant (RUQ), left upper quadrant (LUQ), and upper abdomen (ABD) regions and trained corresponding segmentation models for each area. For detecting abdominal lesions, we curated a dataset of 5,996 images, categorized into 19 classes based on anatomical locations, air patterns, and levels of stomach or bowel dilation. The detection process was initially conducted on the original images, followed by the three regional areas, RUQ, LUQ, and ABD, extracted by the segmentation models. The results showed that the detection model trained on the entire ABD region achieved the highest accuracy, followed closely by the RUQ and LUQ models. In contrast, the CXR model had the lowest accuracy. This study highlights that the two-stage architecture effectively manages distinct segmentation and detection tasks in CXRs, offering a promising avenue for more accurate diagnoses. It also suggests that an optimal ratio between the sizes of the target lesions and the input images may exist.
Abstract Chest X-rays (CXRs) are primarily used to detect lung lesions. While the abdominal portion of CXRs can sometimes reveal critical conditions, research in this area is limited. To address this, we introduce a two-stage architecture that separates the abdominal region from the CXR and detects abdominal lesions using a specialized dataset. We compared the performance of our method on whole CXRs versus isolated abdominal regions. First, we created masks for the right upper quadrant (RUQ), left upper quadrant (LUQ), and upper abdomen (ABD) regions and trained corresponding segmentation models for each area. For detecting abdominal lesions, we curated a dataset of 5,996 images, categorized into 19 classes based on anatomical locations, air patterns, and levels of stomach or bowel dilation. The detection process was initially conducted on the original images, followed by the three regional areas, RUQ, LUQ, and ABD, extracted by the segmentation models. The results showed that the detection model trained on the entire ABD region achieved the highest accuracy, followed closely by the RUQ and LUQ models. In contrast, the CXR model had the lowest accuracy. This study highlights that the two-stage architecture effectively manages distinct segmentation and detection tasks in CXRs, offering a promising avenue for more accurate diagnoses. It also suggests that an optimal ratio between the sizes of the target lesions and the input images may exist.
ArticleNumber 25414
Author Hsu, Steven H.
Hsieh, Kuang-Yu
Chen, Chih-Hsiung
Huang, Kuo-En
Lai, Hsien-Yung
Author_xml – sequence: 1
  givenname: Chih-Hsiung
  surname: Chen
  fullname: Chen, Chih-Hsiung
  organization: Department of Critical Care Medicine, Mennonite Christian Hospital
– sequence: 2
  givenname: Steven H.
  surname: Hsu
  fullname: Hsu, Steven H.
  organization: Department of Critical Care Medicine, University of Texas MD Anderson Cancer Center
– sequence: 3
  givenname: Kuang-Yu
  surname: Hsieh
  fullname: Hsieh, Kuang-Yu
  organization: Department of Critical Care Medicine, Mennonite Christian Hospital
– sequence: 4
  givenname: Kuo-En
  surname: Huang
  fullname: Huang, Kuo-En
  organization: Department of Critical Care Medicine, Mennonite Christian Hospital
– sequence: 5
  givenname: Hsien-Yung
  surname: Lai
  fullname: Lai, Hsien-Yung
  email: hamalai@yahoo.com.tw
  organization: Department of Anesthesiology, DaChien Health Medical System
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39455821$$D View this record in MEDLINE/PubMed
BookMark eNqNUk1v1DAUjFARLaV_gAOKxIVLwN-JTwhVfFSqxKWcrRfnOZtVYgc7abX_Hm93KS0HhGXJ1vPMePzGL4sTHzwWxWtK3lPCmw9JUKmbijBR1UpIUqlnxRkjQlaMM3byaH9aXKS0JXlIpgXVL4pTroWUDaNnhb_ZYLnchSot0GPZ4YJ2GYKvwC0Yq4T9hH6BfamcQodjOUxzDLeYyiUzwdo1gt2VwZVDl5GD2w2-L9PadgPMmwj9lMm2HDFlifSqeO5gTHhxXM-LH18-31x-q66_f726_HRdWaHZUoFFpmkr2tZxqhnH2jHuaqTK2pZpp4Rqa8GZ5ki00o0m4Cy0XGqCEhzl58XVQbcLsDVzHCaIOxNgMPeFEHsDMfsa0RAgsqPO1q1qhBDY2DqXnMizFYp3WYsftFY_w-4OxvFBkBKzD8McwjA5DHMfhlGZ9fHAmtd2ws7m3kQYn1h5euKHjenDraFUUqolzwrvjgox_FwxLWYaksVxBI9hTYZTRonKqe4ve_sXdBvW6HOH9yiitGZCZ9Sbx5YevPz-DRnADgAbQ0oR3f899NielMG-x_jn7n-wfgEOG9l4
Cites_doi 10.3390/jcm12185841
10.1002/ppul.24431
10.1155/2020/2785464
10.1016/S2589-7500(21)00106-0
10.1007/s10916-022-01870-8
10.1056/ENEJMicm020289
10.3390/diagnostics11050840
10.3390/diagnostics13152582
10.1371/journal.pmed.1002686
10.1038/s41568-024-00694-7
10.1016/j.ijid.2008.06.005
10.3390/jpm13101426
10.3390/s21175813
10.1038/s41562-019-0583-9
10.3978/j.issn.2223-4292.2014.11.20
10.1038/s41597-022-01498-w
10.1016/j.compbiomed.2022.106156
10.7759/cureus.38325
10.1016/j.compbiomed.2022.105233
10.2169/internalmedicine.1763-23
10.1007/s11517-022-02746-2
10.1186/s12880-022-00904-4
10.3390/diagnostics12010101
10.1016/j.ajem.2008.03.004
10.7759/cureus.67641
10.21037/qims-23-187
10.1016/j.compbiomed.2023.106646
10.3390/biomedicines10061323
10.3390/jcm13144180
10.1007/s11547-023-01724-4
10.1097/MCC.0000000000000665
10.1109/CVPR.2017.369
10.48550/arXiv.1901.07031
10.1038/s43856-023-00370-1
10.1038/s41598-024-70165-4
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1038/s41598-024-76450-6
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

Publicly Available Content Database
MEDLINE

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 13
ExternalDocumentID oai_doaj_org_article_0a05d1fc7b68444e8c70a0f40f4b463d
10.1038/s41598-024-76450-6
PMC11511953
39455821
10_1038_s41598_024_76450_6
Genre Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
COVID
K9.
PKEHL
PQEST
PQUKI
Q9U
7X8
5PM
ADTOC
EJD
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c492t-ace291b4bbf31923e7f23f7e16ccb29f646b743293e0969890afcab3590e5af13
IEDL.DBID AAJSJ
ISSN 2045-2322
IngestDate Fri Oct 03 12:44:30 EDT 2025
Sun Oct 26 04:10:07 EDT 2025
Tue Sep 30 17:07:33 EDT 2025
Fri Sep 05 12:07:48 EDT 2025
Tue Oct 07 07:57:33 EDT 2025
Wed Feb 19 02:11:38 EST 2025
Wed Oct 01 04:02:22 EDT 2025
Fri Feb 21 02:37:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c492t-ace291b4bbf31923e7f23f7e16ccb29f646b743293e0969890afcab3590e5af13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doi.org/10.1038%2Fs41598-024-76450-6
PMID 39455821
PQID 3120699249
PQPubID 2041939
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_0a05d1fc7b68444e8c70a0f40f4b463d
unpaywall_primary_10_1038_s41598_024_76450_6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11511953
proquest_miscellaneous_3121060056
proquest_journals_3120699249
pubmed_primary_39455821
crossref_primary_10_1038_s41598_024_76450_6
springer_journals_10_1038_s41598_024_76450_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-25
PublicationDateYYYYMMDD 2024-10-25
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-25
  day: 25
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Bhandari, Shahi, Siku, Neupane (CR14) 2022; 150
Caruso (CR24) 2023; 128
Craig, Elliott (CR37) 2004; 350
Visuna, Yang, Garcia-Blas, Carretero (CR40) 2022; 22
Kufel (CR33) 2023; 13
Perez-Lopez, Ghaffari Laleh, Mahmood, Kather (CR6) 2024; 24
CR35
CR32
CR31
Wang (CR20) 2020; 17:2020
Zhao (CR22) 2019; 54
Chen, Hsieh, Huang, Lai (CR5) 2024; 16
Rajaraman, Zamzmi, Folio, Alderson, Antani (CR17) 2021; 11
Nguyen (CR41) 2022; 9
Subramanian, Elharrouss, Al-Maadeed, Chowdhury (CR12) 2022; 143
Pereira (CR2) 2019; 25
Kufel (CR13) 2024; 13
Kim (CR23) 2022; 12
Kufel (CR34) 2023; 12
CR4
Alsultan (CR9) 2023; 15
Rajaraman (CR30) 2022; 10
Rawson, Ahmad, Toumazou, Georgiou, Alison (CR7) 2019; 3
CR8
Jaeger (CR19) 2014; 4
CR29
CR28
CR27
Rajpurkar (CR11) 2018; 15
CR26
Lai, Su, Chang (CR38) 2008; 12
Umair (CR39) 2021; 21
Chiu (CR25) 2009; 27
Yoshida (CR21) 2023; 13
Sato, Okada, Iwatsu, Asayama (CR1) 2024; 63
Seah (CR36) 2021; 3
Kufel (CR3) 2023; 13
Ronneberger, Fischer, Brox (CR18) 2015; 9351
Shamrat (CR16) 2023; 155
Santosh, Allu, Rajaraman, Antani (CR10) 2022; 15
Wang (CR15) 2023; 61
BM Pereira (76450_CR2) 2019; 25
76450_CR35
76450_CR8
TM Rawson (76450_CR7) 2019; 3
J Kufel (76450_CR13) 2024; 13
YH Chiu (76450_CR25) 2009; 27
76450_CR4
FJ Shamrat (76450_CR16) 2023; 155
S Rajaraman (76450_CR17) 2021; 11
S Jaeger (76450_CR19) 2014; 4
R Perez-Lopez (76450_CR6) 2024; 24
O Ronneberger (76450_CR18) 2015; 9351
YG Kim (76450_CR23) 2022; 12
JCY Seah (76450_CR36) 2021; 3
HQ Nguyen (76450_CR41) 2022; 9
J Kufel (76450_CR3) 2023; 13
T Wang (76450_CR15) 2023; 61
K Yoshida (76450_CR21) 2023; 13
J Kufel (76450_CR34) 2023; 12
M Caruso (76450_CR24) 2023; 128
N Subramanian (76450_CR12) 2022; 143
KC Santosh (76450_CR10) 2022; 15
76450_CR27
76450_CR26
76450_CR29
76450_CR28
K Alsultan (76450_CR9) 2023; 15
S Rajaraman (76450_CR30) 2022; 10
W Wang (76450_CR20) 2020; 17:2020
M Umair (76450_CR39) 2021; 21
L Visuna (76450_CR40) 2022; 22
SC Craig (76450_CR37) 2004; 350
CH Chen (76450_CR5) 2024; 16
YC Lai (76450_CR38) 2008; 12
J Kufel (76450_CR33) 2023; 13
H Sato (76450_CR1) 2024; 63
M Bhandari (76450_CR14) 2022; 150
P Rajpurkar (76450_CR11) 2018; 15
76450_CR32
76450_CR31
B Zhao (76450_CR22) 2019; 54
References_xml – volume: 12
  start-page: 5841
  year: 2023
  ident: CR34
  article-title: Chest X-ray foreign objects detection using artificial intelligence
  publication-title: J. Clin. Med.
  doi: 10.3390/jcm12185841
– volume: 54
  start-page: 1617
  year: 2019
  end-page: 1626
  ident: CR22
  article-title: Using deep-learning techniques for pulmonary-thoracic segmentations and improvement of pneumonia diagnosis in pediatric chest radiographs
  publication-title: Pediatr. Pulmonol.
  doi: 10.1002/ppul.24431
– volume: 17:2020
  start-page: 2785464
  year: 2020
  ident: CR20
  article-title: MDU-Net: A convolutional network for clavicle and rib segmentation from a chest radiograph
  publication-title: J. Healthc. Eng.
  doi: 10.1155/2020/2785464
– ident: CR4
– volume: 3
  start-page: e496
  year: 2021
  end-page: e506
  ident: CR36
  article-title: Effect of a comprehensive deep-learning model on the accuracy of chest x-ray interpretation by radiologists: A retrospective, multireader multicase study
  publication-title: Lancet Digit. Health
  doi: 10.1016/S2589-7500(21)00106-0
– volume: 15
  start-page: 82
  year: 2022
  ident: CR10
  article-title: Advances in deep learning for tuberculosis screening using chest X-rays: The last 5 years review
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-022-01870-8
– volume: 350
  start-page: e3
  year: 2004
  ident: CR37
  article-title: Pneumatosis intestinalis and portal venous gas
  publication-title: N. Engl. J. Med.
  doi: 10.1056/ENEJMicm020289
– volume: 11
  start-page: 840
  year: 2021
  ident: CR17
  article-title: Chest X-ray bone suppression for improving classification of tuberculosis-consistent findings
  publication-title: Diagnostics (Basel)
  doi: 10.3390/diagnostics11050840
– ident: CR35
– ident: CR29
– ident: CR8
– volume: 13
  start-page: 2582
  issue: 15
  year: 2023
  ident: CR3
  article-title: What is machine learning, artificial neural networks and deep learning? Examples of practical applications in medicine
  publication-title: Diagnostics (Basel)
  doi: 10.3390/diagnostics13152582
– volume: 15
  start-page: e1002686
  year: 2018
  ident: CR11
  article-title: Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists
  publication-title: PLoS Med.
  doi: 10.1371/journal.pmed.1002686
– ident: CR27
– volume: 24
  start-page: 427
  year: 2024
  end-page: 441
  ident: CR6
  article-title: A guide to artificial intelligence for cancer researchers
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/s41568-024-00694-7
– volume: 12
  start-page: e95
  year: 2008
  end-page: e97
  ident: CR38
  article-title: Ruptured hepatic abscess mimicking perforated viscus
  publication-title: Int. J. Infect. Dis.
  doi: 10.1016/j.ijid.2008.06.005
– volume: 13
  start-page: 1426
  year: 2023
  ident: CR33
  article-title: Multi-label classification of chest X-ray abnormalities using transfer learning techniques
  publication-title: J. Pers. Med.
  doi: 10.3390/jpm13101426
– volume: 21
  start-page: 5813
  issue: 17
  year: 2021
  ident: CR39
  article-title: Detection of COVID-19 using transfer learning and Grad-CAM visualization on indigenously collected X-ray dataset
  publication-title: Sensors (Basel)
  doi: 10.3390/s21175813
– volume: 3
  start-page: 543
  year: 2019
  end-page: 545
  ident: CR7
  article-title: Artificial intelligence can improve decision-making in infection management
  publication-title: Nat. Hum. Behav.
  doi: 10.1038/s41562-019-0583-9
– volume: 4
  start-page: 475
  year: 2014
  end-page: 477
  ident: CR19
  article-title: Two public chest X-ray datasets for computer-aided screening of pulmonary diseases
  publication-title: Quant. Imaging Med. Surg.
  doi: 10.3978/j.issn.2223-4292.2014.11.20
– volume: 9
  start-page: 429
  year: 2022
  ident: CR41
  article-title: VinDr-CXR: An open dataset of chest X-rays with radiologist’s annotations
  publication-title: Sci. Data
  doi: 10.1038/s41597-022-01498-w
– volume: 150
  start-page: 106156
  year: 2022
  ident: CR14
  article-title: Explanatory classification of CXR images into COVID-19, pneumonia and tuberculosis using deep learning and XAI
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.106156
– volume: 9351
  start-page: 234
  year: 2015
  end-page: 241
  ident: CR18
  article-title: U-Net: Convolutional networks for biomedical image segmentation
  publication-title: Med. Image Comput. Comput. Assist. Interv.
– volume: 15
  start-page: e38325
  issue: 4
  year: 2023
  ident: CR9
  article-title: Awareness of artificial intelligence in medical imaging among radiologists and radiologic technologists
  publication-title: Cureus
  doi: 10.7759/cureus.38325
– volume: 143
  start-page: 105233
  year: 2022
  ident: CR12
  article-title: A review of deep learning-based detection methods for COVID-19
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105233
– volume: 63
  start-page: 345
  year: 2024
  end-page: 346
  ident: CR1
  article-title: Abdominal compartment syndrome due to acute gastric dilation
  publication-title: Intern. Med.
  doi: 10.2169/internalmedicine.1763-23
– ident: CR31
– volume: 61
  start-page: 1395
  year: 2023
  end-page: 1408
  ident: CR15
  article-title: PneuNet: Deep learning for COVID-19 pneumonia diagnosis on chest X-ray image analysis using vision transformer
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-022-02746-2
– volume: 22
  start-page: 178
  year: 2022
  ident: CR40
  article-title: Computer-aided diagnostic for classifying chest X-ray images using deep ensemble learning
  publication-title: BMC Med. Imaging
  doi: 10.1186/s12880-022-00904-4
– volume: 12
  start-page: 101
  year: 2022
  ident: CR23
  article-title: Deep learning-based four-region lung segmentation in chest radiography for COVID-19 diagnosis
  publication-title: Diagnostics (Basel)
  doi: 10.3390/diagnostics12010101
– volume: 27
  start-page: 320
  year: 2009
  end-page: 327
  ident: CR25
  article-title: Reappraisal of radiographic signs of pneumoperitoneum at emergency department
  publication-title: Am. J. Emerg. Med.
  doi: 10.1016/j.ajem.2008.03.004
– ident: CR32
– volume: 16
  start-page: e67641
  issue: 8
  year: 2024
  ident: CR5
  article-title: Comparing vision-capable models, GPT-4 and Gemini, with GPT-3.5 on Taiwan’s pulmonologist exam
  publication-title: Cureus
  doi: 10.7759/cureus.67641
– volume: 13
  start-page: 6546
  year: 2023
  end-page: 6554
  ident: CR21
  article-title: Deep learning-based cardiothoracic ratio measurement on chest radiograph: Accuracy improvement without self-annotation
  publication-title: Quant. Imaging Med. Surg.
  doi: 10.21037/qims-23-187
– volume: 155
  start-page: 106646
  year: 2023
  ident: CR16
  article-title: High-precision multiclass classification of lung disease through customized MobileNetV2 from chest X-ray images
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2023.106646
– volume: 10
  start-page: 1323
  year: 2022
  ident: CR30
  article-title: Uncertainty quantification in segmenting tuberculosis-consistent findings in frontal chest X-rays
  publication-title: Biomedicines
  doi: 10.3390/biomedicines10061323
– volume: 13
  start-page: 4180
  issue: 14
  year: 2024
  ident: CR13
  article-title: Deep learning in cardiothoracic ratio calculation and cardiomegaly detection
  publication-title: J. Clin. Med.
  doi: 10.3390/jcm13144180
– volume: 128
  start-page: 1447
  year: 2023
  end-page: 1459
  ident: CR24
  article-title: Abdominal compartment syndrome: What radiologist needs to know
  publication-title: Radiol. Med.
  doi: 10.1007/s11547-023-01724-4
– ident: CR28
– ident: CR26
– volume: 25
  start-page: 688
  year: 2019
  end-page: 696
  ident: CR2
  article-title: Abdominal compartment syndrome and intra-abdominal hypertension
  publication-title: Curr. Opin. Crit. Care
  doi: 10.1097/MCC.0000000000000665
– volume: 63
  start-page: 345
  year: 2024
  ident: 76450_CR1
  publication-title: Intern. Med.
  doi: 10.2169/internalmedicine.1763-23
– volume: 15
  start-page: 82
  year: 2022
  ident: 76450_CR10
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-022-01870-8
– volume: 24
  start-page: 427
  year: 2024
  ident: 76450_CR6
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/s41568-024-00694-7
– volume: 10
  start-page: 1323
  year: 2022
  ident: 76450_CR30
  publication-title: Biomedicines
  doi: 10.3390/biomedicines10061323
– volume: 3
  start-page: e496
  year: 2021
  ident: 76450_CR36
  publication-title: Lancet Digit. Health
  doi: 10.1016/S2589-7500(21)00106-0
– volume: 27
  start-page: 320
  year: 2009
  ident: 76450_CR25
  publication-title: Am. J. Emerg. Med.
  doi: 10.1016/j.ajem.2008.03.004
– volume: 9
  start-page: 429
  year: 2022
  ident: 76450_CR41
  publication-title: Sci. Data
  doi: 10.1038/s41597-022-01498-w
– ident: 76450_CR31
– ident: 76450_CR28
  doi: 10.1109/CVPR.2017.369
– volume: 13
  start-page: 2582
  issue: 15
  year: 2023
  ident: 76450_CR3
  publication-title: Diagnostics (Basel)
  doi: 10.3390/diagnostics13152582
– volume: 12
  start-page: 5841
  year: 2023
  ident: 76450_CR34
  publication-title: J. Clin. Med.
  doi: 10.3390/jcm12185841
– volume: 128
  start-page: 1447
  year: 2023
  ident: 76450_CR24
  publication-title: Radiol. Med.
  doi: 10.1007/s11547-023-01724-4
– volume: 13
  start-page: 1426
  year: 2023
  ident: 76450_CR33
  publication-title: J. Pers. Med.
  doi: 10.3390/jpm13101426
– volume: 155
  start-page: 106646
  year: 2023
  ident: 76450_CR16
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2023.106646
– volume: 13
  start-page: 6546
  year: 2023
  ident: 76450_CR21
  publication-title: Quant. Imaging Med. Surg.
  doi: 10.21037/qims-23-187
– volume: 3
  start-page: 543
  year: 2019
  ident: 76450_CR7
  publication-title: Nat. Hum. Behav.
  doi: 10.1038/s41562-019-0583-9
– volume: 17:2020
  start-page: 2785464
  year: 2020
  ident: 76450_CR20
  publication-title: J. Healthc. Eng.
  doi: 10.1155/2020/2785464
– ident: 76450_CR27
– volume: 15
  start-page: e38325
  issue: 4
  year: 2023
  ident: 76450_CR9
  publication-title: Cureus
  doi: 10.7759/cureus.38325
– volume: 143
  start-page: 105233
  year: 2022
  ident: 76450_CR12
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105233
– volume: 12
  start-page: 101
  year: 2022
  ident: 76450_CR23
  publication-title: Diagnostics (Basel)
  doi: 10.3390/diagnostics12010101
– ident: 76450_CR29
– volume: 4
  start-page: 475
  year: 2014
  ident: 76450_CR19
  publication-title: Quant. Imaging Med. Surg.
  doi: 10.3978/j.issn.2223-4292.2014.11.20
– volume: 15
  start-page: e1002686
  year: 2018
  ident: 76450_CR11
  publication-title: PLoS Med.
  doi: 10.1371/journal.pmed.1002686
– volume: 13
  start-page: 4180
  issue: 14
  year: 2024
  ident: 76450_CR13
  publication-title: J. Clin. Med.
  doi: 10.3390/jcm13144180
– volume: 61
  start-page: 1395
  year: 2023
  ident: 76450_CR15
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-022-02746-2
– volume: 16
  start-page: e67641
  issue: 8
  year: 2024
  ident: 76450_CR5
  publication-title: Cureus
  doi: 10.7759/cureus.67641
– volume: 54
  start-page: 1617
  year: 2019
  ident: 76450_CR22
  publication-title: Pediatr. Pulmonol.
  doi: 10.1002/ppul.24431
– volume: 11
  start-page: 840
  year: 2021
  ident: 76450_CR17
  publication-title: Diagnostics (Basel)
  doi: 10.3390/diagnostics11050840
– volume: 21
  start-page: 5813
  issue: 17
  year: 2021
  ident: 76450_CR39
  publication-title: Sensors (Basel)
  doi: 10.3390/s21175813
– ident: 76450_CR35
  doi: 10.48550/arXiv.1901.07031
– volume: 25
  start-page: 688
  year: 2019
  ident: 76450_CR2
  publication-title: Curr. Opin. Crit. Care
  doi: 10.1097/MCC.0000000000000665
– volume: 150
  start-page: 106156
  year: 2022
  ident: 76450_CR14
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.106156
– ident: 76450_CR32
– volume: 350
  start-page: e3
  year: 2004
  ident: 76450_CR37
  publication-title: N. Engl. J. Med.
  doi: 10.1056/ENEJMicm020289
– volume: 22
  start-page: 178
  year: 2022
  ident: 76450_CR40
  publication-title: BMC Med. Imaging
  doi: 10.1186/s12880-022-00904-4
– ident: 76450_CR4
  doi: 10.1038/s43856-023-00370-1
– volume: 9351
  start-page: 234
  year: 2015
  ident: 76450_CR18
  publication-title: Med. Image Comput. Comput. Assist. Interv.
– ident: 76450_CR26
– ident: 76450_CR8
  doi: 10.1038/s41598-024-70165-4
– volume: 12
  start-page: e95
  year: 2008
  ident: 76450_CR38
  publication-title: Int. J. Infect. Dis.
  doi: 10.1016/j.ijid.2008.06.005
SSID ssj0000529419
Score 2.4349346
Snippet Chest X-rays (CXRs) are primarily used to detect lung lesions. While the abdominal portion of CXRs can sometimes reveal critical conditions, research in this...
Abstract Chest X-rays (CXRs) are primarily used to detect lung lesions. While the abdominal portion of CXRs can sometimes reveal critical conditions, research...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 25414
SubjectTerms 631/114/1564
631/114/2397
692/4020/2199
Abdomen
Abdomen - diagnostic imaging
Abdomen - pathology
Accuracy
Algorithms
Humanities and Social Sciences
Humans
Image processing
Image Processing, Computer-Assisted - methods
Lesions
multidisciplinary
Radiographic Image Interpretation, Computer-Assisted - methods
Radiography, Thoracic - methods
Science
Science (multidisciplinary)
Segmentation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9QwFA6yIOqDeN_urhLBN7dsm1ubRxWXRdAnF_YtJOnJODB2lm3LMv_ek7RTZ1DUB6FQmpaSnkvznSTnO4S8CWVT1EIEDFNDnQvOeI6X6HhS8aoJJf4P49TA5y_q4lJ8upJXO6W-4p6wkR54FNxZYQvZlMFXTuFLBNS-wqYg8HBC8Sb-fYta7wRTI6s306LUU5ZMweuzDkeqmE3GRF4pITFm2huJEmH_71Dmr5sl5xXTB-Te0F7bza1drXYGpfNH5OGEJum78SsekzvQPiF3x_qSm6ekRSOg_e06Rwi4ANpAnzZetXmqDJ53sPg-pR61NJXEocs0xwAdRVxIrffDjfUbug50mRJ6U1IU7QaHVoVWYBeJ8JWuIM65dc_I5fnHrx8u8qnAQu6FZn1uPTBdOuFc4BHpQRUYDxWUynvHdFBCOUQYiAgAIx1d68IGbx2XugBpQ8mfk4N23cIhoVJAqBvQXnkuCu-0ZgFPChBiiBJYRt5uhW2uRx4Nk9a_eW1G1RhUjUmqMSoj76M-5icjB3ZqQMswk2WYv1lGRk622jSTY3aGl6xQOgadGXk930aXiusktoX1kJ7BQDmSpGbkxaj8uSdcCxlzizNS75nFXlf377TLb4m2G7F35NfjGTndWtDPfv1JFqezlf2D6I7-h-iOyX0WPQXHaCZPyEF_M8BLBF-9e5X87AcM7Cpb
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEB_OPcTzQfy2ekoE37xybZKm7YOIJ3ccgouIB_dWkjRZF9Z2b9ty7H_vJP04F-UQCks_HrKZmeQ3M5nfALyzcRllnFt0U20WckZZiLdoeIlgaWljXA9daODrXJxf8C-XyeUezMdaGHesclwT_UJd1trFyI9ZTCORO2_h4_oqdF2jXHZ1bKEhh9YK5QdPMXYH9qljxprB_snp_Nv3Keri8lo8zofqmYhlxw3uYK7KjPIwFTxBX2pnh_JE_v9Cn38fopwyqffhXlet5fZarlZ_bFZnD-HBgDLJp14tHsGeqR7D3b7v5PYJVKgcpL2uQ4SGC0NK0_oDWVXoO4aHjVn8GkqSKuJb5ZCljz2YhiBeJDgN3UbqLaktWfpCX18sRZpOobahdsiFJ4IlK-Nicc1TuDg7_fH5PBwaL4Sa57QNpTY0jxVXyjKHAE1qKbOpiYXWiuZWcKEQeSBSMOgB5VkeSaulYkkemUTamD2DWVVX5gWQhBublSbXQjMeaYUStPgjDEIPHhsawPtxsot1z69R-Lw4y4peNAWKpvCiKUQAJ04e05eOG9s_qDeLYjC1IpJRUsZWp0qg2nGT6RQfWY6X4oKVARyO0iwGg22KG_UK4O30Gk3N5U9kZerOf4MOtCNPDeB5L_xpJCznias5DiDbUYudoe6-qZY_PZ03YnLHu8cCOBo16GZct83F0aRl_zF1L2__16_ggDobwF2ZJocwazedeY1wq1VvBhv6DQeCKGI
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_OE1EfxG-rp0Twzau2SZo2DyIqHodwPrlwbyVJk3Vhbc9ty7n_vZP0QxcXUSiUNmkJmd90fpN0ZgBeuLRKCs4duqmuiDmjLMZLVLxMsLxyKX4P_dLA2WdxuuCfzrPzA5jKHY0T2O517Xw9qcVm_erH9-1bVPg3Q8h48bpFI-QDxSiPc8EzdIeuwFW0VNKXcjgb6f6Q65tKnsoxdmb_ozv2KaTx38c9__yFct5HvQnX-_pCbS_Vev2bqTq5DbdGjkneDaC4Awe2vgvXhqqT23tQIzRId9nESAyXllS2C79j1XGoFx63dvltDEiqSSiUQ1Zh5cG2BNkiUcb0G2W2pHFkFcJ8Q6gUaXuNWENsqGVIA0vW1q_EtfdhcfLxy4fTeCy7EBsuaRcrY6lMNdfaMc__bO4oc7lNhTGaSie40Mg7kCdY9H9kIRPljNIsk4nNlEvZAzism9o-ApJx64rKSiMM44nRUlKHJ2GRePDU0gheTpNdXgzZNcqwK86KchBNiaIpg2hKEcF7L4-5p8-MHW40m2U5KlqZqCSrUmdyLRB03BYmx1uO46G5YFUER5M0ywltJUtpIqR3RSN4PjejovndE1Xbpg990H32qVMjeDgIfx4JkzzzEccRFDuw2Bnqbku9-hqSeSMj91n3WATHE4J-jetvc3E8o-wfpu7x_739CdygXifQRtPsCA67TW-fIvnq9LOgUT8BliUpTw
  priority: 102
  providerName: Scholars Portal
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fi9QwEB50D1Ef_P2jekoE37yebZKmzeMpHofg4YML51NJ0mRvce0e15Zj_eudpN1q9ZATCkvTLGSn32y-STLfALx2aZUUnDsMU10Rc0ZZjLfoeJlgeeVS_D_0SwOfjsXRnH88yU4GmRyfCzPZv2fF2wYnGJ8ERnmcC55hqHMddkSGvHsGO_PjzwdfffU45CUxUgM6ZMVc_sXJzBME-i9jlX8fjhx3SG_Dza4-U5sLtVr9Ngkd3u2rGTVBu9CfPfm237V63_z4Q9nxar_vHtwZuCg56MFzH67Z-gHc6KtTbh5CjRAi7cU6RgK5sKSybTi2Vcehrnjc2MX3IXGpJqGgDlmGFQrbEGSVRBnTnSuzIWtHliEdOKRUkabTiEnEkFoEuViysn7FrnkE88MPX94fxUN5hthwSdtYGUtlqrnWjnmeaHNHmcttKozRVDrBhUZ-gnzCYpwkC5koZ5RmmUxsplzKHsOsXtf2KZCMW1dUVhphGE-MlpI6_BAWCQpPLY3gzfbVlWe9CkcZds9ZUfYWLNGCZbBgKSJ459_u2NMraIcGNHw5OGSZqCSrUmdyLRCc3BYmxybH8dJcsCqC3S02ysGtm5KlNBHSh6wRvBofo0P6XRZV23UX-mCY7SVWI3jSQ2kcCZM885nJERQTkE2GOn1SL0-D6Dcyd6_OxyLY2-Lx17j-ZYu9EbNXMN2z_-v-HG5RD12cy2m2C7P2vLMvkKS1-uXgnT8BESsylQ
  priority: 102
  providerName: Unpaywall
Title The two-stage detection-after-segmentation model improves the accuracy of identifying subdiaphragmatic lesions
URI https://link.springer.com/article/10.1038/s41598-024-76450-6
https://www.ncbi.nlm.nih.gov/pubmed/39455821
https://www.proquest.com/docview/3120699249
https://www.proquest.com/docview/3121060056
https://pubmed.ncbi.nlm.nih.gov/PMC11511953
https://doi.org/10.1038/s41598-024-76450-6
https://doaj.org/article/0a05d1fc7b68444e8c70a0f40f4b463d
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: HH5
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate (EBSCOhost)
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: ABDBF
  dateStart: 20121221
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DIK
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: Biometrika
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAQT
  databaseName: Springer Nature - nature.com Journals - Fully Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: NAO
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.nature.com/siteindex/index.html
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M48
  dateStart: 20110801
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: AAJSJ
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: C6C
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swED7alLHtYez3vHVBg72tZrYky9ZjGlpKoKFsC2RPRpKlNJA5pU4o-e93UhxvoWNsYGIi2Ubou7O-u_OdAD66tEoKzh2aqa6IOaMsxr-oeJlgeeVSfB9618DlWFxM-GiaTQ_gZJcLsxe_D6W7G1xifBoY5XEueIbGziEcFSiYRQ-OBoPR11HnU_FRK57KNjcGb_98_-a99SeU6f8Tt7z_iWQXJ30MD9f1jdrcqcXit6Xo_Ck8aTkkGWxBfwYHtn4OD7a7Sm5eQI3Qk9XdMkbiN7OksqvwuVUdh_3A48bOfrQJRzUJG-GQefAs2IYgGyTKmPWtMhuydGQe0nhDKhRp1hplCbFXs1DmlSys97Q1L2FyfvZteBG32yrEhku6ipWxVKaaa-2Y53c2d5S53KbCGE2lE1xo5BXIAyzaN7KQiXJGaZbJxGbKpewV9Oplbd8Aybh1RWWlEYbxxGgpqcOTsEgseGppBJ92k13ebKtnlCHqzYpyC02J0JQBmlJEcOrx6K70la9DAwpE2SpSmagkq1Jnci1QqLgtTI5NjuOhuWBVBMc7NMtWHZuSpTQR0puaEXzoulGRfHRE1Xa5DtegeexLo0bwegt-NxImeeYziiMo9sRib6j7PfX8OhTrRsbtq-qxCE52EvRrXH-bi5NOyv5h6t7-39PfwSPqdQLXYJodQ291u7bvkVytdB8O82nebzULz6dn46sv2DoUw35wWODvJS-wZzK-Gnz_Cd5BI3g
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB9qi1QfxO9Gq66gTzY02d1skociVluutj1EWuhbutnsngfX5Lzccdw_59_m7F6SeijFl0Ig5IOw2fnNztfODMA7ExZBwrlBM9UkPmeU-XiJjBcJFhcmxPXQugZO-6J3zr9eRBdr8KvNhbHbKts10S3URaWsj3yXhTQQqbUWPo5_-rZrlI2uti00ZNNaodhzJcaaxI5jvZijCVfvHX1Ber-n9PDg7HPPb7oM-IqndOpLpWka5jzPDbPqjo4NZSbWoVAqp6kRXOQoZlEsalT30yQNpFEyZ1Ea6EiakOF378AGZzxF429j_6D_7Xvn5bFxNB6mTbZOwJLdGiWmzWqj3I8Fj9B2W5GIrnHAv7TdvzdtdpHb-7A5K8dyMZej0R_C8fAhPGi0WvJpCcNHsKbLx3B32edy8QRKBCOZzisfVdGBJoWeug1gpe86lPu1Hlw1KVAlca15yND5OnRNUD8lOO2ziVQLUhkydInFLjmL1LMc0Y1olANXeJaMtPX91U_h_FZI8AzWy6rUW0Airk1S6FQJxXigckSMwZPQqOrwUFMPPrSTnY2X9TwyF4dnSbYkTYakyRxpMuHBvqVH96atxe1uVJNB1rB2FsggKkKj4lwgzLlOVIy3DMcj54IVHmy31MyaBaLOruHswdvuMbK2jdfIUlcz9w4a7LZYqwfPl8TvRsJSHtkcZw-SFVisDHX1STn84cqHow1g6_wxD3ZaBF2P66a52OlQ9h9T9-Lmv34Dm72z05Ps5Kh__BLuUcsPqBHQaBvWp5OZfoWq3jR_3fATgcvbZuHf43JllA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwEB4ti3gdEG8CCxgJTmzUxHac5IAQsFS7LKw4sFJvwXHsUqkkpWlU9a_x6xg7j6UCrbisVKlqElWO5xvPewbghQmLIOHcoJlqEp8zynz8iYwXCRYXJsTz0LoGPp-Iw1P-cRJNduBXXwtj0yr7M9Ed1EWlrI98xEIaiNRaCyPTpUV8ORi_Wfz07QQpG2ntx2m0EDnWmzWab_XrowOk9UtKxx--vj_0uwkDvuIpXflSaZqGOc9zw6yqo2NDmYl1KJTKaWoEFzmKWBSJGlX9NEkDaZTMWZQGOpImZPi_l-ByzFhq0wnjSTz4d2wEjYdpV6cTsGRUo6y09WyU-7HgEVptW7LQjQz4l577d7rmELO9AdeaciE3azmf_yEWx7fgZqfPkrctAG_Dji7vwJV2wuXmLpQIQ7JaVz4qoVNNCr1yqV-l72aT-7We_uiKn0rihvKQmfNy6JqgZkqkUs1Sqg2pDJm5kmJXlkXqJkdcIw7l1LWcJXNtvX71PTi9EALch92yKvVDIBHXJil0qoRiPFA5YsXgl9Co5PBQUw9e9ZudLdpOHpmLwLMka0mTIWkyR5pMePDO0mN40nbhdheq5TTrmDoLZBAVoVFxLhDgXCcqxkuG4yfnghUe7PXUzLqjoc7OgOzB8-E2MrWN1MhSV417Bk1126bVgwct8YeVsJRHtrrZg2QLFltL3b5Tzr67xuGo_dsOf8yD_R5BZ-s6by_2B5T9x9Y9Ov-tn8FVZNzs09HJ8WO4Ti07oCpAoz3YXS0b_QR1vFX-1DETgW8Xzb2_ARzJYy4
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fi9QwEB50D1Ef_P2jekoE37yebZKmzeMpHofg4YML51NJ0mRvce0e15Zj_eudpN1q9ZATCkvTLGSn32y-STLfALx2aZUUnDsMU10Rc0ZZjLfoeJlgeeVS_D_0SwOfjsXRnH88yU4GmRyfCzPZv2fF2wYnGJ8ERnmcC55hqHMddkSGvHsGO_PjzwdfffU45CUxUgM6ZMVc_sXJzBME-i9jlX8fjhx3SG_Dza4-U5sLtVr9Ngkd3u2rGTVBu9CfPfm237V63_z4Q9nxar_vHtwZuCg56MFzH67Z-gHc6KtTbh5CjRAi7cU6RgK5sKSybTi2Vcehrnjc2MX3IXGpJqGgDlmGFQrbEGSVRBnTnSuzIWtHliEdOKRUkabTiEnEkFoEuViysn7FrnkE88MPX94fxUN5hthwSdtYGUtlqrnWjnmeaHNHmcttKozRVDrBhUZ-gnzCYpwkC5koZ5RmmUxsplzKHsOsXtf2KZCMW1dUVhphGE-MlpI6_BAWCQpPLY3gzfbVlWe9CkcZds9ZUfYWLNGCZbBgKSJ459_u2NMraIcGNHw5OGSZqCSrUmdyLRCc3BYmxybH8dJcsCqC3S02ysGtm5KlNBHSh6wRvBofo0P6XRZV23UX-mCY7SVWI3jSQ2kcCZM885nJERQTkE2GOn1SL0-D6Dcyd6_OxyLY2-Lx17j-ZYu9EbNXMN2z_-v-HG5RD12cy2m2C7P2vLMvkKS1-uXgnT8BESsylQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+two-stage+detection-after-segmentation+model+improves+the+accuracy+of+identifying+subdiaphragmatic+lesions&rft.jtitle=Scientific+reports&rft.au=Chen%2C+Chih-Hsiung&rft.au=Hsu%2C+Steven+H.&rft.au=Hsieh%2C+Kuang-Yu&rft.au=Huang%2C+Kuo-En&rft.date=2024-10-25&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-024-76450-6&rft.externalDocID=10_1038_s41598_024_76450_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon