The two-stage detection-after-segmentation model improves the accuracy of identifying subdiaphragmatic lesions
Chest X-rays (CXRs) are primarily used to detect lung lesions. While the abdominal portion of CXRs can sometimes reveal critical conditions, research in this area is limited. To address this, we introduce a two-stage architecture that separates the abdominal region from the CXR and detects abdominal...
Saved in:
| Published in | Scientific reports Vol. 14; no. 1; pp. 25414 - 13 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Nature Publishing Group UK
25.10.2024
Nature Publishing Group Nature Portfolio |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2045-2322 2045-2322 |
| DOI | 10.1038/s41598-024-76450-6 |
Cover
| Abstract | Chest X-rays (CXRs) are primarily used to detect lung lesions. While the abdominal portion of CXRs can sometimes reveal critical conditions, research in this area is limited. To address this, we introduce a two-stage architecture that separates the abdominal region from the CXR and detects abdominal lesions using a specialized dataset. We compared the performance of our method on whole CXRs versus isolated abdominal regions. First, we created masks for the right upper quadrant (RUQ), left upper quadrant (LUQ), and upper abdomen (ABD) regions and trained corresponding segmentation models for each area. For detecting abdominal lesions, we curated a dataset of 5,996 images, categorized into 19 classes based on anatomical locations, air patterns, and levels of stomach or bowel dilation. The detection process was initially conducted on the original images, followed by the three regional areas, RUQ, LUQ, and ABD, extracted by the segmentation models. The results showed that the detection model trained on the entire ABD region achieved the highest accuracy, followed closely by the RUQ and LUQ models. In contrast, the CXR model had the lowest accuracy. This study highlights that the two-stage architecture effectively manages distinct segmentation and detection tasks in CXRs, offering a promising avenue for more accurate diagnoses. It also suggests that an optimal ratio between the sizes of the target lesions and the input images may exist. |
|---|---|
| AbstractList | Chest X-rays (CXRs) are primarily used to detect lung lesions. While the abdominal portion of CXRs can sometimes reveal critical conditions, research in this area is limited. To address this, we introduce a two-stage architecture that separates the abdominal region from the CXR and detects abdominal lesions using a specialized dataset. We compared the performance of our method on whole CXRs versus isolated abdominal regions. First, we created masks for the right upper quadrant (RUQ), left upper quadrant (LUQ), and upper abdomen (ABD) regions and trained corresponding segmentation models for each area. For detecting abdominal lesions, we curated a dataset of 5,996 images, categorized into 19 classes based on anatomical locations, air patterns, and levels of stomach or bowel dilation. The detection process was initially conducted on the original images, followed by the three regional areas, RUQ, LUQ, and ABD, extracted by the segmentation models. The results showed that the detection model trained on the entire ABD region achieved the highest accuracy, followed closely by the RUQ and LUQ models. In contrast, the CXR model had the lowest accuracy. This study highlights that the two-stage architecture effectively manages distinct segmentation and detection tasks in CXRs, offering a promising avenue for more accurate diagnoses. It also suggests that an optimal ratio between the sizes of the target lesions and the input images may exist. Chest X-rays (CXRs) are primarily used to detect lung lesions. While the abdominal portion of CXRs can sometimes reveal critical conditions, research in this area is limited. To address this, we introduce a two-stage architecture that separates the abdominal region from the CXR and detects abdominal lesions using a specialized dataset. We compared the performance of our method on whole CXRs versus isolated abdominal regions. First, we created masks for the right upper quadrant (RUQ), left upper quadrant (LUQ), and upper abdomen (ABD) regions and trained corresponding segmentation models for each area. For detecting abdominal lesions, we curated a dataset of 5,996 images, categorized into 19 classes based on anatomical locations, air patterns, and levels of stomach or bowel dilation. The detection process was initially conducted on the original images, followed by the three regional areas, RUQ, LUQ, and ABD, extracted by the segmentation models. The results showed that the detection model trained on the entire ABD region achieved the highest accuracy, followed closely by the RUQ and LUQ models. In contrast, the CXR model had the lowest accuracy. This study highlights that the two-stage architecture effectively manages distinct segmentation and detection tasks in CXRs, offering a promising avenue for more accurate diagnoses. It also suggests that an optimal ratio between the sizes of the target lesions and the input images may exist.Chest X-rays (CXRs) are primarily used to detect lung lesions. While the abdominal portion of CXRs can sometimes reveal critical conditions, research in this area is limited. To address this, we introduce a two-stage architecture that separates the abdominal region from the CXR and detects abdominal lesions using a specialized dataset. We compared the performance of our method on whole CXRs versus isolated abdominal regions. First, we created masks for the right upper quadrant (RUQ), left upper quadrant (LUQ), and upper abdomen (ABD) regions and trained corresponding segmentation models for each area. For detecting abdominal lesions, we curated a dataset of 5,996 images, categorized into 19 classes based on anatomical locations, air patterns, and levels of stomach or bowel dilation. The detection process was initially conducted on the original images, followed by the three regional areas, RUQ, LUQ, and ABD, extracted by the segmentation models. The results showed that the detection model trained on the entire ABD region achieved the highest accuracy, followed closely by the RUQ and LUQ models. In contrast, the CXR model had the lowest accuracy. This study highlights that the two-stage architecture effectively manages distinct segmentation and detection tasks in CXRs, offering a promising avenue for more accurate diagnoses. It also suggests that an optimal ratio between the sizes of the target lesions and the input images may exist. Abstract Chest X-rays (CXRs) are primarily used to detect lung lesions. While the abdominal portion of CXRs can sometimes reveal critical conditions, research in this area is limited. To address this, we introduce a two-stage architecture that separates the abdominal region from the CXR and detects abdominal lesions using a specialized dataset. We compared the performance of our method on whole CXRs versus isolated abdominal regions. First, we created masks for the right upper quadrant (RUQ), left upper quadrant (LUQ), and upper abdomen (ABD) regions and trained corresponding segmentation models for each area. For detecting abdominal lesions, we curated a dataset of 5,996 images, categorized into 19 classes based on anatomical locations, air patterns, and levels of stomach or bowel dilation. The detection process was initially conducted on the original images, followed by the three regional areas, RUQ, LUQ, and ABD, extracted by the segmentation models. The results showed that the detection model trained on the entire ABD region achieved the highest accuracy, followed closely by the RUQ and LUQ models. In contrast, the CXR model had the lowest accuracy. This study highlights that the two-stage architecture effectively manages distinct segmentation and detection tasks in CXRs, offering a promising avenue for more accurate diagnoses. It also suggests that an optimal ratio between the sizes of the target lesions and the input images may exist. |
| ArticleNumber | 25414 |
| Author | Hsu, Steven H. Hsieh, Kuang-Yu Chen, Chih-Hsiung Huang, Kuo-En Lai, Hsien-Yung |
| Author_xml | – sequence: 1 givenname: Chih-Hsiung surname: Chen fullname: Chen, Chih-Hsiung organization: Department of Critical Care Medicine, Mennonite Christian Hospital – sequence: 2 givenname: Steven H. surname: Hsu fullname: Hsu, Steven H. organization: Department of Critical Care Medicine, University of Texas MD Anderson Cancer Center – sequence: 3 givenname: Kuang-Yu surname: Hsieh fullname: Hsieh, Kuang-Yu organization: Department of Critical Care Medicine, Mennonite Christian Hospital – sequence: 4 givenname: Kuo-En surname: Huang fullname: Huang, Kuo-En organization: Department of Critical Care Medicine, Mennonite Christian Hospital – sequence: 5 givenname: Hsien-Yung surname: Lai fullname: Lai, Hsien-Yung email: hamalai@yahoo.com.tw organization: Department of Anesthesiology, DaChien Health Medical System |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39455821$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUk1v1DAUjFARLaV_gAOKxIVLwN-JTwhVfFSqxKWcrRfnOZtVYgc7abX_Hm93KS0HhGXJ1vPMePzGL4sTHzwWxWtK3lPCmw9JUKmbijBR1UpIUqlnxRkjQlaMM3byaH9aXKS0JXlIpgXVL4pTroWUDaNnhb_ZYLnchSot0GPZ4YJ2GYKvwC0Yq4T9hH6BfamcQodjOUxzDLeYyiUzwdo1gt2VwZVDl5GD2w2-L9PadgPMmwj9lMm2HDFlifSqeO5gTHhxXM-LH18-31x-q66_f726_HRdWaHZUoFFpmkr2tZxqhnH2jHuaqTK2pZpp4Rqa8GZ5ki00o0m4Cy0XGqCEhzl58XVQbcLsDVzHCaIOxNgMPeFEHsDMfsa0RAgsqPO1q1qhBDY2DqXnMizFYp3WYsftFY_w-4OxvFBkBKzD8McwjA5DHMfhlGZ9fHAmtd2ws7m3kQYn1h5euKHjenDraFUUqolzwrvjgox_FwxLWYaksVxBI9hTYZTRonKqe4ve_sXdBvW6HOH9yiitGZCZ9Sbx5YevPz-DRnADgAbQ0oR3f899NielMG-x_jn7n-wfgEOG9l4 |
| Cites_doi | 10.3390/jcm12185841 10.1002/ppul.24431 10.1155/2020/2785464 10.1016/S2589-7500(21)00106-0 10.1007/s10916-022-01870-8 10.1056/ENEJMicm020289 10.3390/diagnostics11050840 10.3390/diagnostics13152582 10.1371/journal.pmed.1002686 10.1038/s41568-024-00694-7 10.1016/j.ijid.2008.06.005 10.3390/jpm13101426 10.3390/s21175813 10.1038/s41562-019-0583-9 10.3978/j.issn.2223-4292.2014.11.20 10.1038/s41597-022-01498-w 10.1016/j.compbiomed.2022.106156 10.7759/cureus.38325 10.1016/j.compbiomed.2022.105233 10.2169/internalmedicine.1763-23 10.1007/s11517-022-02746-2 10.1186/s12880-022-00904-4 10.3390/diagnostics12010101 10.1016/j.ajem.2008.03.004 10.7759/cureus.67641 10.21037/qims-23-187 10.1016/j.compbiomed.2023.106646 10.3390/biomedicines10061323 10.3390/jcm13144180 10.1007/s11547-023-01724-4 10.1097/MCC.0000000000000665 10.1109/CVPR.2017.369 10.48550/arXiv.1901.07031 10.1038/s43856-023-00370-1 10.1038/s41598-024-70165-4 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 2024 |
| Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 2024 |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU COVID DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1038/s41598-024-76450-6 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 6 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 13 |
| ExternalDocumentID | oai_doaj_org_article_0a05d1fc7b68444e8c70a0f40f4b463d 10.1038/s41598-024-76450-6 PMC11511953 39455821 10_1038_s41598_024_76450_6 |
| Genre | Journal Article |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO CGR CUY CVF ECM EIF NPM 7XB 8FK COVID K9. PKEHL PQEST PQUKI Q9U 7X8 5PM ADTOC EJD IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c492t-ace291b4bbf31923e7f23f7e16ccb29f646b743293e0969890afcab3590e5af13 |
| IEDL.DBID | AAJSJ |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:44:30 EDT 2025 Sun Oct 26 04:10:07 EDT 2025 Tue Sep 30 17:07:33 EDT 2025 Fri Sep 05 12:07:48 EDT 2025 Tue Oct 07 07:57:33 EDT 2025 Wed Feb 19 02:11:38 EST 2025 Wed Oct 01 04:02:22 EDT 2025 Fri Feb 21 02:37:16 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c492t-ace291b4bbf31923e7f23f7e16ccb29f646b743293e0969890afcab3590e5af13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doi.org/10.1038%2Fs41598-024-76450-6 |
| PMID | 39455821 |
| PQID | 3120699249 |
| PQPubID | 2041939 |
| PageCount | 13 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_0a05d1fc7b68444e8c70a0f40f4b463d unpaywall_primary_10_1038_s41598_024_76450_6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11511953 proquest_miscellaneous_3121060056 proquest_journals_3120699249 pubmed_primary_39455821 crossref_primary_10_1038_s41598_024_76450_6 springer_journals_10_1038_s41598_024_76450_6 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-10-25 |
| PublicationDateYYYYMMDD | 2024-10-25 |
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-25 day: 25 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2024 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Bhandari, Shahi, Siku, Neupane (CR14) 2022; 150 Caruso (CR24) 2023; 128 Craig, Elliott (CR37) 2004; 350 Visuna, Yang, Garcia-Blas, Carretero (CR40) 2022; 22 Kufel (CR33) 2023; 13 Perez-Lopez, Ghaffari Laleh, Mahmood, Kather (CR6) 2024; 24 CR35 CR32 CR31 Wang (CR20) 2020; 17:2020 Zhao (CR22) 2019; 54 Chen, Hsieh, Huang, Lai (CR5) 2024; 16 Rajaraman, Zamzmi, Folio, Alderson, Antani (CR17) 2021; 11 Nguyen (CR41) 2022; 9 Subramanian, Elharrouss, Al-Maadeed, Chowdhury (CR12) 2022; 143 Pereira (CR2) 2019; 25 Kufel (CR13) 2024; 13 Kim (CR23) 2022; 12 Kufel (CR34) 2023; 12 CR4 Alsultan (CR9) 2023; 15 Rajaraman (CR30) 2022; 10 Rawson, Ahmad, Toumazou, Georgiou, Alison (CR7) 2019; 3 CR8 Jaeger (CR19) 2014; 4 CR29 CR28 CR27 Rajpurkar (CR11) 2018; 15 CR26 Lai, Su, Chang (CR38) 2008; 12 Umair (CR39) 2021; 21 Chiu (CR25) 2009; 27 Yoshida (CR21) 2023; 13 Sato, Okada, Iwatsu, Asayama (CR1) 2024; 63 Seah (CR36) 2021; 3 Kufel (CR3) 2023; 13 Ronneberger, Fischer, Brox (CR18) 2015; 9351 Shamrat (CR16) 2023; 155 Santosh, Allu, Rajaraman, Antani (CR10) 2022; 15 Wang (CR15) 2023; 61 BM Pereira (76450_CR2) 2019; 25 76450_CR35 76450_CR8 TM Rawson (76450_CR7) 2019; 3 J Kufel (76450_CR13) 2024; 13 YH Chiu (76450_CR25) 2009; 27 76450_CR4 FJ Shamrat (76450_CR16) 2023; 155 S Rajaraman (76450_CR17) 2021; 11 S Jaeger (76450_CR19) 2014; 4 R Perez-Lopez (76450_CR6) 2024; 24 O Ronneberger (76450_CR18) 2015; 9351 YG Kim (76450_CR23) 2022; 12 JCY Seah (76450_CR36) 2021; 3 HQ Nguyen (76450_CR41) 2022; 9 J Kufel (76450_CR3) 2023; 13 T Wang (76450_CR15) 2023; 61 K Yoshida (76450_CR21) 2023; 13 J Kufel (76450_CR34) 2023; 12 M Caruso (76450_CR24) 2023; 128 N Subramanian (76450_CR12) 2022; 143 KC Santosh (76450_CR10) 2022; 15 76450_CR27 76450_CR26 76450_CR29 76450_CR28 K Alsultan (76450_CR9) 2023; 15 S Rajaraman (76450_CR30) 2022; 10 W Wang (76450_CR20) 2020; 17:2020 M Umair (76450_CR39) 2021; 21 L Visuna (76450_CR40) 2022; 22 SC Craig (76450_CR37) 2004; 350 CH Chen (76450_CR5) 2024; 16 YC Lai (76450_CR38) 2008; 12 J Kufel (76450_CR33) 2023; 13 H Sato (76450_CR1) 2024; 63 M Bhandari (76450_CR14) 2022; 150 P Rajpurkar (76450_CR11) 2018; 15 76450_CR32 76450_CR31 B Zhao (76450_CR22) 2019; 54 |
| References_xml | – volume: 12 start-page: 5841 year: 2023 ident: CR34 article-title: Chest X-ray foreign objects detection using artificial intelligence publication-title: J. Clin. Med. doi: 10.3390/jcm12185841 – volume: 54 start-page: 1617 year: 2019 end-page: 1626 ident: CR22 article-title: Using deep-learning techniques for pulmonary-thoracic segmentations and improvement of pneumonia diagnosis in pediatric chest radiographs publication-title: Pediatr. Pulmonol. doi: 10.1002/ppul.24431 – volume: 17:2020 start-page: 2785464 year: 2020 ident: CR20 article-title: MDU-Net: A convolutional network for clavicle and rib segmentation from a chest radiograph publication-title: J. Healthc. Eng. doi: 10.1155/2020/2785464 – ident: CR4 – volume: 3 start-page: e496 year: 2021 end-page: e506 ident: CR36 article-title: Effect of a comprehensive deep-learning model on the accuracy of chest x-ray interpretation by radiologists: A retrospective, multireader multicase study publication-title: Lancet Digit. Health doi: 10.1016/S2589-7500(21)00106-0 – volume: 15 start-page: 82 year: 2022 ident: CR10 article-title: Advances in deep learning for tuberculosis screening using chest X-rays: The last 5 years review publication-title: J. Med. Syst. doi: 10.1007/s10916-022-01870-8 – volume: 350 start-page: e3 year: 2004 ident: CR37 article-title: Pneumatosis intestinalis and portal venous gas publication-title: N. Engl. J. Med. doi: 10.1056/ENEJMicm020289 – volume: 11 start-page: 840 year: 2021 ident: CR17 article-title: Chest X-ray bone suppression for improving classification of tuberculosis-consistent findings publication-title: Diagnostics (Basel) doi: 10.3390/diagnostics11050840 – ident: CR35 – ident: CR29 – ident: CR8 – volume: 13 start-page: 2582 issue: 15 year: 2023 ident: CR3 article-title: What is machine learning, artificial neural networks and deep learning? Examples of practical applications in medicine publication-title: Diagnostics (Basel) doi: 10.3390/diagnostics13152582 – volume: 15 start-page: e1002686 year: 2018 ident: CR11 article-title: Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists publication-title: PLoS Med. doi: 10.1371/journal.pmed.1002686 – ident: CR27 – volume: 24 start-page: 427 year: 2024 end-page: 441 ident: CR6 article-title: A guide to artificial intelligence for cancer researchers publication-title: Nat. Rev. Cancer doi: 10.1038/s41568-024-00694-7 – volume: 12 start-page: e95 year: 2008 end-page: e97 ident: CR38 article-title: Ruptured hepatic abscess mimicking perforated viscus publication-title: Int. J. Infect. Dis. doi: 10.1016/j.ijid.2008.06.005 – volume: 13 start-page: 1426 year: 2023 ident: CR33 article-title: Multi-label classification of chest X-ray abnormalities using transfer learning techniques publication-title: J. Pers. Med. doi: 10.3390/jpm13101426 – volume: 21 start-page: 5813 issue: 17 year: 2021 ident: CR39 article-title: Detection of COVID-19 using transfer learning and Grad-CAM visualization on indigenously collected X-ray dataset publication-title: Sensors (Basel) doi: 10.3390/s21175813 – volume: 3 start-page: 543 year: 2019 end-page: 545 ident: CR7 article-title: Artificial intelligence can improve decision-making in infection management publication-title: Nat. Hum. Behav. doi: 10.1038/s41562-019-0583-9 – volume: 4 start-page: 475 year: 2014 end-page: 477 ident: CR19 article-title: Two public chest X-ray datasets for computer-aided screening of pulmonary diseases publication-title: Quant. Imaging Med. Surg. doi: 10.3978/j.issn.2223-4292.2014.11.20 – volume: 9 start-page: 429 year: 2022 ident: CR41 article-title: VinDr-CXR: An open dataset of chest X-rays with radiologist’s annotations publication-title: Sci. Data doi: 10.1038/s41597-022-01498-w – volume: 150 start-page: 106156 year: 2022 ident: CR14 article-title: Explanatory classification of CXR images into COVID-19, pneumonia and tuberculosis using deep learning and XAI publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.106156 – volume: 9351 start-page: 234 year: 2015 end-page: 241 ident: CR18 article-title: U-Net: Convolutional networks for biomedical image segmentation publication-title: Med. Image Comput. Comput. Assist. Interv. – volume: 15 start-page: e38325 issue: 4 year: 2023 ident: CR9 article-title: Awareness of artificial intelligence in medical imaging among radiologists and radiologic technologists publication-title: Cureus doi: 10.7759/cureus.38325 – volume: 143 start-page: 105233 year: 2022 ident: CR12 article-title: A review of deep learning-based detection methods for COVID-19 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.105233 – volume: 63 start-page: 345 year: 2024 end-page: 346 ident: CR1 article-title: Abdominal compartment syndrome due to acute gastric dilation publication-title: Intern. Med. doi: 10.2169/internalmedicine.1763-23 – ident: CR31 – volume: 61 start-page: 1395 year: 2023 end-page: 1408 ident: CR15 article-title: PneuNet: Deep learning for COVID-19 pneumonia diagnosis on chest X-ray image analysis using vision transformer publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-022-02746-2 – volume: 22 start-page: 178 year: 2022 ident: CR40 article-title: Computer-aided diagnostic for classifying chest X-ray images using deep ensemble learning publication-title: BMC Med. Imaging doi: 10.1186/s12880-022-00904-4 – volume: 12 start-page: 101 year: 2022 ident: CR23 article-title: Deep learning-based four-region lung segmentation in chest radiography for COVID-19 diagnosis publication-title: Diagnostics (Basel) doi: 10.3390/diagnostics12010101 – volume: 27 start-page: 320 year: 2009 end-page: 327 ident: CR25 article-title: Reappraisal of radiographic signs of pneumoperitoneum at emergency department publication-title: Am. J. Emerg. Med. doi: 10.1016/j.ajem.2008.03.004 – ident: CR32 – volume: 16 start-page: e67641 issue: 8 year: 2024 ident: CR5 article-title: Comparing vision-capable models, GPT-4 and Gemini, with GPT-3.5 on Taiwan’s pulmonologist exam publication-title: Cureus doi: 10.7759/cureus.67641 – volume: 13 start-page: 6546 year: 2023 end-page: 6554 ident: CR21 article-title: Deep learning-based cardiothoracic ratio measurement on chest radiograph: Accuracy improvement without self-annotation publication-title: Quant. Imaging Med. Surg. doi: 10.21037/qims-23-187 – volume: 155 start-page: 106646 year: 2023 ident: CR16 article-title: High-precision multiclass classification of lung disease through customized MobileNetV2 from chest X-ray images publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2023.106646 – volume: 10 start-page: 1323 year: 2022 ident: CR30 article-title: Uncertainty quantification in segmenting tuberculosis-consistent findings in frontal chest X-rays publication-title: Biomedicines doi: 10.3390/biomedicines10061323 – volume: 13 start-page: 4180 issue: 14 year: 2024 ident: CR13 article-title: Deep learning in cardiothoracic ratio calculation and cardiomegaly detection publication-title: J. Clin. Med. doi: 10.3390/jcm13144180 – volume: 128 start-page: 1447 year: 2023 end-page: 1459 ident: CR24 article-title: Abdominal compartment syndrome: What radiologist needs to know publication-title: Radiol. Med. doi: 10.1007/s11547-023-01724-4 – ident: CR28 – ident: CR26 – volume: 25 start-page: 688 year: 2019 end-page: 696 ident: CR2 article-title: Abdominal compartment syndrome and intra-abdominal hypertension publication-title: Curr. Opin. Crit. Care doi: 10.1097/MCC.0000000000000665 – volume: 63 start-page: 345 year: 2024 ident: 76450_CR1 publication-title: Intern. Med. doi: 10.2169/internalmedicine.1763-23 – volume: 15 start-page: 82 year: 2022 ident: 76450_CR10 publication-title: J. Med. Syst. doi: 10.1007/s10916-022-01870-8 – volume: 24 start-page: 427 year: 2024 ident: 76450_CR6 publication-title: Nat. Rev. Cancer doi: 10.1038/s41568-024-00694-7 – volume: 10 start-page: 1323 year: 2022 ident: 76450_CR30 publication-title: Biomedicines doi: 10.3390/biomedicines10061323 – volume: 3 start-page: e496 year: 2021 ident: 76450_CR36 publication-title: Lancet Digit. Health doi: 10.1016/S2589-7500(21)00106-0 – volume: 27 start-page: 320 year: 2009 ident: 76450_CR25 publication-title: Am. J. Emerg. Med. doi: 10.1016/j.ajem.2008.03.004 – volume: 9 start-page: 429 year: 2022 ident: 76450_CR41 publication-title: Sci. Data doi: 10.1038/s41597-022-01498-w – ident: 76450_CR31 – ident: 76450_CR28 doi: 10.1109/CVPR.2017.369 – volume: 13 start-page: 2582 issue: 15 year: 2023 ident: 76450_CR3 publication-title: Diagnostics (Basel) doi: 10.3390/diagnostics13152582 – volume: 12 start-page: 5841 year: 2023 ident: 76450_CR34 publication-title: J. Clin. Med. doi: 10.3390/jcm12185841 – volume: 128 start-page: 1447 year: 2023 ident: 76450_CR24 publication-title: Radiol. Med. doi: 10.1007/s11547-023-01724-4 – volume: 13 start-page: 1426 year: 2023 ident: 76450_CR33 publication-title: J. Pers. Med. doi: 10.3390/jpm13101426 – volume: 155 start-page: 106646 year: 2023 ident: 76450_CR16 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2023.106646 – volume: 13 start-page: 6546 year: 2023 ident: 76450_CR21 publication-title: Quant. Imaging Med. Surg. doi: 10.21037/qims-23-187 – volume: 3 start-page: 543 year: 2019 ident: 76450_CR7 publication-title: Nat. Hum. Behav. doi: 10.1038/s41562-019-0583-9 – volume: 17:2020 start-page: 2785464 year: 2020 ident: 76450_CR20 publication-title: J. Healthc. Eng. doi: 10.1155/2020/2785464 – ident: 76450_CR27 – volume: 15 start-page: e38325 issue: 4 year: 2023 ident: 76450_CR9 publication-title: Cureus doi: 10.7759/cureus.38325 – volume: 143 start-page: 105233 year: 2022 ident: 76450_CR12 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.105233 – volume: 12 start-page: 101 year: 2022 ident: 76450_CR23 publication-title: Diagnostics (Basel) doi: 10.3390/diagnostics12010101 – ident: 76450_CR29 – volume: 4 start-page: 475 year: 2014 ident: 76450_CR19 publication-title: Quant. Imaging Med. Surg. doi: 10.3978/j.issn.2223-4292.2014.11.20 – volume: 15 start-page: e1002686 year: 2018 ident: 76450_CR11 publication-title: PLoS Med. doi: 10.1371/journal.pmed.1002686 – volume: 13 start-page: 4180 issue: 14 year: 2024 ident: 76450_CR13 publication-title: J. Clin. Med. doi: 10.3390/jcm13144180 – volume: 61 start-page: 1395 year: 2023 ident: 76450_CR15 publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-022-02746-2 – volume: 16 start-page: e67641 issue: 8 year: 2024 ident: 76450_CR5 publication-title: Cureus doi: 10.7759/cureus.67641 – volume: 54 start-page: 1617 year: 2019 ident: 76450_CR22 publication-title: Pediatr. Pulmonol. doi: 10.1002/ppul.24431 – volume: 11 start-page: 840 year: 2021 ident: 76450_CR17 publication-title: Diagnostics (Basel) doi: 10.3390/diagnostics11050840 – volume: 21 start-page: 5813 issue: 17 year: 2021 ident: 76450_CR39 publication-title: Sensors (Basel) doi: 10.3390/s21175813 – ident: 76450_CR35 doi: 10.48550/arXiv.1901.07031 – volume: 25 start-page: 688 year: 2019 ident: 76450_CR2 publication-title: Curr. Opin. Crit. Care doi: 10.1097/MCC.0000000000000665 – volume: 150 start-page: 106156 year: 2022 ident: 76450_CR14 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.106156 – ident: 76450_CR32 – volume: 350 start-page: e3 year: 2004 ident: 76450_CR37 publication-title: N. Engl. J. Med. doi: 10.1056/ENEJMicm020289 – volume: 22 start-page: 178 year: 2022 ident: 76450_CR40 publication-title: BMC Med. Imaging doi: 10.1186/s12880-022-00904-4 – ident: 76450_CR4 doi: 10.1038/s43856-023-00370-1 – volume: 9351 start-page: 234 year: 2015 ident: 76450_CR18 publication-title: Med. Image Comput. Comput. Assist. Interv. – ident: 76450_CR26 – ident: 76450_CR8 doi: 10.1038/s41598-024-70165-4 – volume: 12 start-page: e95 year: 2008 ident: 76450_CR38 publication-title: Int. J. Infect. Dis. doi: 10.1016/j.ijid.2008.06.005 |
| SSID | ssj0000529419 |
| Score | 2.4349346 |
| Snippet | Chest X-rays (CXRs) are primarily used to detect lung lesions. While the abdominal portion of CXRs can sometimes reveal critical conditions, research in this... Abstract Chest X-rays (CXRs) are primarily used to detect lung lesions. While the abdominal portion of CXRs can sometimes reveal critical conditions, research... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 25414 |
| SubjectTerms | 631/114/1564 631/114/2397 692/4020/2199 Abdomen Abdomen - diagnostic imaging Abdomen - pathology Accuracy Algorithms Humanities and Social Sciences Humans Image processing Image Processing, Computer-Assisted - methods Lesions multidisciplinary Radiographic Image Interpretation, Computer-Assisted - methods Radiography, Thoracic - methods Science Science (multidisciplinary) Segmentation |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9QwFA6yIOqDeN_urhLBN7dsm1ubRxWXRdAnF_YtJOnJODB2lm3LMv_ek7RTZ1DUB6FQmpaSnkvznSTnO4S8CWVT1EIEDFNDnQvOeI6X6HhS8aoJJf4P49TA5y_q4lJ8upJXO6W-4p6wkR54FNxZYQvZlMFXTuFLBNS-wqYg8HBC8Sb-fYta7wRTI6s306LUU5ZMweuzDkeqmE3GRF4pITFm2huJEmH_71Dmr5sl5xXTB-Te0F7bza1drXYGpfNH5OGEJum78SsekzvQPiF3x_qSm6ekRSOg_e06Rwi4ANpAnzZetXmqDJ53sPg-pR61NJXEocs0xwAdRVxIrffDjfUbug50mRJ6U1IU7QaHVoVWYBeJ8JWuIM65dc_I5fnHrx8u8qnAQu6FZn1uPTBdOuFc4BHpQRUYDxWUynvHdFBCOUQYiAgAIx1d68IGbx2XugBpQ8mfk4N23cIhoVJAqBvQXnkuCu-0ZgFPChBiiBJYRt5uhW2uRx4Nk9a_eW1G1RhUjUmqMSoj76M-5icjB3ZqQMswk2WYv1lGRk622jSTY3aGl6xQOgadGXk930aXiusktoX1kJ7BQDmSpGbkxaj8uSdcCxlzizNS75nFXlf377TLb4m2G7F35NfjGTndWtDPfv1JFqezlf2D6I7-h-iOyX0WPQXHaCZPyEF_M8BLBF-9e5X87AcM7Cpb priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEB_OPcTzQfy2ekoE37xybZKm7YOIJ3ccgouIB_dWkjRZF9Z2b9ty7H_vJP04F-UQCks_HrKZmeQ3M5nfALyzcRllnFt0U20WckZZiLdoeIlgaWljXA9daODrXJxf8C-XyeUezMdaGHesclwT_UJd1trFyI9ZTCORO2_h4_oqdF2jXHZ1bKEhh9YK5QdPMXYH9qljxprB_snp_Nv3Keri8lo8zofqmYhlxw3uYK7KjPIwFTxBX2pnh_JE_v9Cn38fopwyqffhXlet5fZarlZ_bFZnD-HBgDLJp14tHsGeqR7D3b7v5PYJVKgcpL2uQ4SGC0NK0_oDWVXoO4aHjVn8GkqSKuJb5ZCljz2YhiBeJDgN3UbqLaktWfpCX18sRZpOobahdsiFJ4IlK-Nicc1TuDg7_fH5PBwaL4Sa57QNpTY0jxVXyjKHAE1qKbOpiYXWiuZWcKEQeSBSMOgB5VkeSaulYkkemUTamD2DWVVX5gWQhBublSbXQjMeaYUStPgjDEIPHhsawPtxsot1z69R-Lw4y4peNAWKpvCiKUQAJ04e05eOG9s_qDeLYjC1IpJRUsZWp0qg2nGT6RQfWY6X4oKVARyO0iwGg22KG_UK4O30Gk3N5U9kZerOf4MOtCNPDeB5L_xpJCznias5DiDbUYudoe6-qZY_PZ03YnLHu8cCOBo16GZct83F0aRl_zF1L2__16_ggDobwF2ZJocwazedeY1wq1VvBhv6DQeCKGI priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_OE1EfxG-rp0Twzau2SZo2DyIqHodwPrlwbyVJk3Vhbc9ty7n_vZP0QxcXUSiUNmkJmd90fpN0ZgBeuLRKCs4duqmuiDmjLMZLVLxMsLxyKX4P_dLA2WdxuuCfzrPzA5jKHY0T2O517Xw9qcVm_erH9-1bVPg3Q8h48bpFI-QDxSiPc8EzdIeuwFW0VNKXcjgb6f6Q65tKnsoxdmb_ozv2KaTx38c9__yFct5HvQnX-_pCbS_Vev2bqTq5DbdGjkneDaC4Awe2vgvXhqqT23tQIzRId9nESAyXllS2C79j1XGoFx63dvltDEiqSSiUQ1Zh5cG2BNkiUcb0G2W2pHFkFcJ8Q6gUaXuNWENsqGVIA0vW1q_EtfdhcfLxy4fTeCy7EBsuaRcrY6lMNdfaMc__bO4oc7lNhTGaSie40Mg7kCdY9H9kIRPljNIsk4nNlEvZAzism9o-ApJx64rKSiMM44nRUlKHJ2GRePDU0gheTpNdXgzZNcqwK86KchBNiaIpg2hKEcF7L4-5p8-MHW40m2U5KlqZqCSrUmdyLRB03BYmx1uO46G5YFUER5M0ywltJUtpIqR3RSN4PjejovndE1Xbpg990H32qVMjeDgIfx4JkzzzEccRFDuw2Bnqbku9-hqSeSMj91n3WATHE4J-jetvc3E8o-wfpu7x_739CdygXifQRtPsCA67TW-fIvnq9LOgUT8BliUpTw priority: 102 providerName: Scholars Portal – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fi9QwEB50D1Ef_P2jekoE37yebZKmzeMpHofg4YML51NJ0mRvce0e15Zj_eudpN1q9ZATCkvTLGSn32y-STLfALx2aZUUnDsMU10Rc0ZZjLfoeJlgeeVS_D_0SwOfjsXRnH88yU4GmRyfCzPZv2fF2wYnGJ8ERnmcC55hqHMddkSGvHsGO_PjzwdfffU45CUxUgM6ZMVc_sXJzBME-i9jlX8fjhx3SG_Dza4-U5sLtVr9Ngkd3u2rGTVBu9CfPfm237V63_z4Q9nxar_vHtwZuCg56MFzH67Z-gHc6KtTbh5CjRAi7cU6RgK5sKSybTi2Vcehrnjc2MX3IXGpJqGgDlmGFQrbEGSVRBnTnSuzIWtHliEdOKRUkabTiEnEkFoEuViysn7FrnkE88MPX94fxUN5hthwSdtYGUtlqrnWjnmeaHNHmcttKozRVDrBhUZ-gnzCYpwkC5koZ5RmmUxsplzKHsOsXtf2KZCMW1dUVhphGE-MlpI6_BAWCQpPLY3gzfbVlWe9CkcZds9ZUfYWLNGCZbBgKSJ459_u2NMraIcGNHw5OGSZqCSrUmdyLRCc3BYmxybH8dJcsCqC3S02ysGtm5KlNBHSh6wRvBofo0P6XRZV23UX-mCY7SVWI3jSQ2kcCZM885nJERQTkE2GOn1SL0-D6Dcyd6_OxyLY2-Lx17j-ZYu9EbNXMN2z_-v-HG5RD12cy2m2C7P2vLMvkKS1-uXgnT8BESsylQ priority: 102 providerName: Unpaywall |
| Title | The two-stage detection-after-segmentation model improves the accuracy of identifying subdiaphragmatic lesions |
| URI | https://link.springer.com/article/10.1038/s41598-024-76450-6 https://www.ncbi.nlm.nih.gov/pubmed/39455821 https://www.proquest.com/docview/3120699249 https://www.proquest.com/docview/3121060056 https://pubmed.ncbi.nlm.nih.gov/PMC11511953 https://doi.org/10.1038/s41598-024-76450-6 https://doaj.org/article/0a05d1fc7b68444e8c70a0f40f4b463d |
| UnpaywallVersion | publishedVersion |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: HH5 dateStart: 20110101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate (EBSCOhost) customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: ABDBF dateStart: 20121221 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DIK dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: Biometrika customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: RPM dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAQT databaseName: Springer Nature - nature.com Journals - Fully Open Access customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: NAO dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.nature.com/siteindex/index.html providerName: Nature Publishing – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2045-2322 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M48 dateStart: 20110801 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: AAJSJ dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: C6C dateStart: 20111201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swED7alLHtYez3vHVBg72tZrYky9ZjGlpKoKFsC2RPRpKlNJA5pU4o-e93UhxvoWNsYGIi2Ubou7O-u_OdAD66tEoKzh2aqa6IOaMsxr-oeJlgeeVSfB9618DlWFxM-GiaTQ_gZJcLsxe_D6W7G1xifBoY5XEueIbGziEcFSiYRQ-OBoPR11HnU_FRK57KNjcGb_98_-a99SeU6f8Tt7z_iWQXJ30MD9f1jdrcqcXit6Xo_Ck8aTkkGWxBfwYHtn4OD7a7Sm5eQI3Qk9XdMkbiN7OksqvwuVUdh_3A48bOfrQJRzUJG-GQefAs2IYgGyTKmPWtMhuydGQe0nhDKhRp1hplCbFXs1DmlSys97Q1L2FyfvZteBG32yrEhku6ipWxVKaaa-2Y53c2d5S53KbCGE2lE1xo5BXIAyzaN7KQiXJGaZbJxGbKpewV9Oplbd8Aybh1RWWlEYbxxGgpqcOTsEgseGppBJ92k13ebKtnlCHqzYpyC02J0JQBmlJEcOrx6K70la9DAwpE2SpSmagkq1Jnci1QqLgtTI5NjuOhuWBVBMc7NMtWHZuSpTQR0puaEXzoulGRfHRE1Xa5DtegeexLo0bwegt-NxImeeYziiMo9sRib6j7PfX8OhTrRsbtq-qxCE52EvRrXH-bi5NOyv5h6t7-39PfwSPqdQLXYJodQ291u7bvkVytdB8O82nebzULz6dn46sv2DoUw35wWODvJS-wZzK-Gnz_Cd5BI3g |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB9qi1QfxO9Gq66gTzY02d1skociVluutj1EWuhbutnsngfX5Lzccdw_59_m7F6SeijFl0Ig5IOw2fnNztfODMA7ExZBwrlBM9UkPmeU-XiJjBcJFhcmxPXQugZO-6J3zr9eRBdr8KvNhbHbKts10S3URaWsj3yXhTQQqbUWPo5_-rZrlI2uti00ZNNaodhzJcaaxI5jvZijCVfvHX1Ber-n9PDg7HPPb7oM-IqndOpLpWka5jzPDbPqjo4NZSbWoVAqp6kRXOQoZlEsalT30yQNpFEyZ1Ea6EiakOF378AGZzxF429j_6D_7Xvn5bFxNB6mTbZOwJLdGiWmzWqj3I8Fj9B2W5GIrnHAv7TdvzdtdpHb-7A5K8dyMZej0R_C8fAhPGi0WvJpCcNHsKbLx3B32edy8QRKBCOZzisfVdGBJoWeug1gpe86lPu1Hlw1KVAlca15yND5OnRNUD8lOO2ziVQLUhkydInFLjmL1LMc0Y1olANXeJaMtPX91U_h_FZI8AzWy6rUW0Airk1S6FQJxXigckSMwZPQqOrwUFMPPrSTnY2X9TwyF4dnSbYkTYakyRxpMuHBvqVH96atxe1uVJNB1rB2FsggKkKj4lwgzLlOVIy3DMcj54IVHmy31MyaBaLOruHswdvuMbK2jdfIUlcz9w4a7LZYqwfPl8TvRsJSHtkcZw-SFVisDHX1STn84cqHow1g6_wxD3ZaBF2P66a52OlQ9h9T9-Lmv34Dm72z05Ps5Kh__BLuUcsPqBHQaBvWp5OZfoWq3jR_3fATgcvbZuHf43JllA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwEB4ti3gdEG8CCxgJTmzUxHac5IAQsFS7LKw4sFJvwXHsUqkkpWlU9a_x6xg7j6UCrbisVKlqElWO5xvPewbghQmLIOHcoJlqEp8zynz8iYwXCRYXJsTz0LoGPp-Iw1P-cRJNduBXXwtj0yr7M9Ed1EWlrI98xEIaiNRaCyPTpUV8ORi_Wfz07QQpG2ntx2m0EDnWmzWab_XrowOk9UtKxx--vj_0uwkDvuIpXflSaZqGOc9zw6yqo2NDmYl1KJTKaWoEFzmKWBSJGlX9NEkDaZTMWZQGOpImZPi_l-ByzFhq0wnjSTz4d2wEjYdpV6cTsGRUo6y09WyU-7HgEVptW7LQjQz4l577d7rmELO9AdeaciE3azmf_yEWx7fgZqfPkrctAG_Dji7vwJV2wuXmLpQIQ7JaVz4qoVNNCr1yqV-l72aT-7We_uiKn0rihvKQmfNy6JqgZkqkUs1Sqg2pDJm5kmJXlkXqJkdcIw7l1LWcJXNtvX71PTi9EALch92yKvVDIBHXJil0qoRiPFA5YsXgl9Co5PBQUw9e9ZudLdpOHpmLwLMka0mTIWkyR5pMePDO0mN40nbhdheq5TTrmDoLZBAVoVFxLhDgXCcqxkuG4yfnghUe7PXUzLqjoc7OgOzB8-E2MrWN1MhSV417Bk1126bVgwct8YeVsJRHtrrZg2QLFltL3b5Tzr67xuGo_dsOf8yD_R5BZ-s6by_2B5T9x9Y9Ov-tn8FVZNzs09HJ8WO4Ti07oCpAoz3YXS0b_QR1vFX-1DETgW8Xzb2_ARzJYy4 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fi9QwEB50D1Ef_P2jekoE37yebZKmzeMpHofg4YML51NJ0mRvce0e15Zj_eudpN1q9ZATCkvTLGSn32y-STLfALx2aZUUnDsMU10Rc0ZZjLfoeJlgeeVS_D_0SwOfjsXRnH88yU4GmRyfCzPZv2fF2wYnGJ8ERnmcC55hqHMddkSGvHsGO_PjzwdfffU45CUxUgM6ZMVc_sXJzBME-i9jlX8fjhx3SG_Dza4-U5sLtVr9Ngkd3u2rGTVBu9CfPfm237V63_z4Q9nxar_vHtwZuCg56MFzH67Z-gHc6KtTbh5CjRAi7cU6RgK5sKSybTi2Vcehrnjc2MX3IXGpJqGgDlmGFQrbEGSVRBnTnSuzIWtHliEdOKRUkabTiEnEkFoEuViysn7FrnkE88MPX94fxUN5hthwSdtYGUtlqrnWjnmeaHNHmcttKozRVDrBhUZ-gnzCYpwkC5koZ5RmmUxsplzKHsOsXtf2KZCMW1dUVhphGE-MlpI6_BAWCQpPLY3gzfbVlWe9CkcZds9ZUfYWLNGCZbBgKSJ459_u2NMraIcGNHw5OGSZqCSrUmdyLRCc3BYmxybH8dJcsCqC3S02ysGtm5KlNBHSh6wRvBofo0P6XRZV23UX-mCY7SVWI3jSQ2kcCZM885nJERQTkE2GOn1SL0-D6Dcyd6_OxyLY2-Lx17j-ZYu9EbNXMN2z_-v-HG5RD12cy2m2C7P2vLMvkKS1-uXgnT8BESsylQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+two-stage+detection-after-segmentation+model+improves+the+accuracy+of+identifying+subdiaphragmatic+lesions&rft.jtitle=Scientific+reports&rft.au=Chen%2C+Chih-Hsiung&rft.au=Hsu%2C+Steven+H.&rft.au=Hsieh%2C+Kuang-Yu&rft.au=Huang%2C+Kuo-En&rft.date=2024-10-25&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-024-76450-6&rft.externalDocID=10_1038_s41598_024_76450_6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |