Conceptual understanding and cognitive patterns construction for physical education teaching based on deep learning algorithms
To improve students’ understanding of physical education teaching concepts and help teachers analyze students’ cognitive patterns, the study proposes an association learning-based method for understanding physical education teaching concepts using deep learning algorithms, which extracts image featu...
Saved in:
| Published in | Scientific reports Vol. 14; no. 1; pp. 31409 - 13 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Nature Publishing Group UK
28.12.2024
Nature Publishing Group Nature Portfolio |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2045-2322 2045-2322 |
| DOI | 10.1038/s41598-024-83028-9 |
Cover
| Abstract | To improve students’ understanding of physical education teaching concepts and help teachers analyze students’ cognitive patterns, the study proposes an association learning-based method for understanding physical education teaching concepts using deep learning algorithms, which extracts image features related to teaching concepts using convolutional neural networks. Moreover, a neurocognitive diagnostic model based on hypergraph convolution is constructed to mine the data of students’ long-term learning sequences and identify students’ cognitive outcomes. The findings revealed that the highest accuracy of the association graph convolutional neural network was 0.84 when the number of training samples was 90,000. In each of the three datasets, the cognitive diagnostic model’s accuracy was 0.76, 0.77, and 0.75, respectively. The use of the association graph convolutional neural network model resulted in an increase of 29% in the mastery of students in the concepts and knowledge of sports. The predictive accuracy of the cognitive schema diagnostic model ranged from 0.6 to 1.0 with a mean value of 0.81. The study reveals that the model proposed in the study has high accuracy and stability in predicting cognitive patterns, which can better identify students’ cognitive states and provide strong support for instructional guidance and personalized learning. |
|---|---|
| AbstractList | To improve students’ understanding of physical education teaching concepts and help teachers analyze students’ cognitive patterns, the study proposes an association learning-based method for understanding physical education teaching concepts using deep learning algorithms, which extracts image features related to teaching concepts using convolutional neural networks. Moreover, a neurocognitive diagnostic model based on hypergraph convolution is constructed to mine the data of students’ long-term learning sequences and identify students’ cognitive outcomes. The findings revealed that the highest accuracy of the association graph convolutional neural network was 0.84 when the number of training samples was 90,000. In each of the three datasets, the cognitive diagnostic model’s accuracy was 0.76, 0.77, and 0.75, respectively. The use of the association graph convolutional neural network model resulted in an increase of 29% in the mastery of students in the concepts and knowledge of sports. The predictive accuracy of the cognitive schema diagnostic model ranged from 0.6 to 1.0 with a mean value of 0.81. The study reveals that the model proposed in the study has high accuracy and stability in predicting cognitive patterns, which can better identify students’ cognitive states and provide strong support for instructional guidance and personalized learning. Abstract To improve students’ understanding of physical education teaching concepts and help teachers analyze students’ cognitive patterns, the study proposes an association learning-based method for understanding physical education teaching concepts using deep learning algorithms, which extracts image features related to teaching concepts using convolutional neural networks. Moreover, a neurocognitive diagnostic model based on hypergraph convolution is constructed to mine the data of students’ long-term learning sequences and identify students’ cognitive outcomes. The findings revealed that the highest accuracy of the association graph convolutional neural network was 0.84 when the number of training samples was 90,000. In each of the three datasets, the cognitive diagnostic model’s accuracy was 0.76, 0.77, and 0.75, respectively. The use of the association graph convolutional neural network model resulted in an increase of 29% in the mastery of students in the concepts and knowledge of sports. The predictive accuracy of the cognitive schema diagnostic model ranged from 0.6 to 1.0 with a mean value of 0.81. The study reveals that the model proposed in the study has high accuracy and stability in predicting cognitive patterns, which can better identify students’ cognitive states and provide strong support for instructional guidance and personalized learning. To improve students' understanding of physical education teaching concepts and help teachers analyze students' cognitive patterns, the study proposes an association learning-based method for understanding physical education teaching concepts using deep learning algorithms, which extracts image features related to teaching concepts using convolutional neural networks. Moreover, a neurocognitive diagnostic model based on hypergraph convolution is constructed to mine the data of students' long-term learning sequences and identify students' cognitive outcomes. The findings revealed that the highest accuracy of the association graph convolutional neural network was 0.84 when the number of training samples was 90,000. In each of the three datasets, the cognitive diagnostic model's accuracy was 0.76, 0.77, and 0.75, respectively. The use of the association graph convolutional neural network model resulted in an increase of 29% in the mastery of students in the concepts and knowledge of sports. The predictive accuracy of the cognitive schema diagnostic model ranged from 0.6 to 1.0 with a mean value of 0.81. The study reveals that the model proposed in the study has high accuracy and stability in predicting cognitive patterns, which can better identify students' cognitive states and provide strong support for instructional guidance and personalized learning.To improve students' understanding of physical education teaching concepts and help teachers analyze students' cognitive patterns, the study proposes an association learning-based method for understanding physical education teaching concepts using deep learning algorithms, which extracts image features related to teaching concepts using convolutional neural networks. Moreover, a neurocognitive diagnostic model based on hypergraph convolution is constructed to mine the data of students' long-term learning sequences and identify students' cognitive outcomes. The findings revealed that the highest accuracy of the association graph convolutional neural network was 0.84 when the number of training samples was 90,000. In each of the three datasets, the cognitive diagnostic model's accuracy was 0.76, 0.77, and 0.75, respectively. The use of the association graph convolutional neural network model resulted in an increase of 29% in the mastery of students in the concepts and knowledge of sports. The predictive accuracy of the cognitive schema diagnostic model ranged from 0.6 to 1.0 with a mean value of 0.81. The study reveals that the model proposed in the study has high accuracy and stability in predicting cognitive patterns, which can better identify students' cognitive states and provide strong support for instructional guidance and personalized learning. |
| ArticleNumber | 31409 |
| Author | Shao, Weining Zhao, Long Wu, Guoping Ma, Xu |
| Author_xml | – sequence: 1 givenname: Long surname: Zhao fullname: Zhao, Long organization: Faculty of Medicine and Health, Al-Farabi Kazakh National University – sequence: 2 givenname: Guoping surname: Wu fullname: Wu, Guoping organization: Department of Public Sports, Yantai Early Childhood Normal College – sequence: 3 givenname: Weining surname: Shao fullname: Shao, Weining organization: Ground Services Department, Shandong Provincial Airport Management Group Jinan International Airport Company Limited – sequence: 4 givenname: Xu surname: Ma fullname: Ma, Xu email: maxukeyan@163.com organization: School of Marxism, China University of Political Science and Law (CUPL) |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39732971$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUstuFDEQHKEgEkJ-gAMaiQuXgfFr7T4htOIRKRIXOFseT--sV7P2YHsS7YVvx_sgJBwQvrRVrip3u_y8OvPBY1W9JO1b0jL1LnEiQDUt5Y1iLVUNPKkuaMtFQxmlZw_259VVSpu2LEGBE3hWnTOQjIIkF9XPZfAWpzybsZ59jzFl43vnh7qU2obBu-xusZ5Mzhh9KpBPOc42u-DrVYj1tN4lZ4sc-9maA5zR2PXeozMJ-7ogPeJUj2iiP1iPQ4gur7fpRfV0ZcaEV6d6WX3_9PHb8ktz8_Xz9fLDTWM50NwYI0AgkZbxlUCrOiEZIbyTqmOUI0iBAnFhFF1AEXQSFpz0spO9tGgYY5fV9dG3D2ajp-i2Ju50ME4fgBAHbWJ2dkTNAJm0KyMUSG5AdMgJWhDCAgVC--LFjl6zn8zuzozjvSFp9T4cfQxHl3D0IRwNRfX-qJrmbou9RZ-jGR-18vjEu7Uewq0mZKFoC_sZ3pwcYvgxY8p665LFcTQew5w0IxyUorzlhfr6L-omzNGXFz6wJAAVqrBePWzpvpffv6MQ6JFgY0gp4ur_Bj09TypkP2D8c_c_VL8ALH_fbA |
| Cites_doi | 10.4103/NRR.NRR-D-23-02084 10.1002/joc.8056 10.1007/s00521-023-09010-0 10.1007/s11423-022-10081-4 10.1002/sim.9140 10.1080/16184742.2021.2009897 10.1049/ote2.12060 10.1109/TETCI.2022.3220812 10.4103/1673-5374.393103 10.1504/IJGUC.2023.131016 10.1080/17408989.2021.1958177 10.47852/bonviewAAES32021220 10.1049/sil2.12201 10.1108/CI-02-2020-0017 10.1111/jcal.12781 10.1007/s11276-023-03431-4 10.1049/ipr2.12752 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 2024. The Author(s). Copyright Nature Publishing Group 2024 The Author(s) 2024 2024 |
| Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: Copyright Nature Publishing Group 2024 – notice: The Author(s) 2024 2024 |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1038/s41598-024-83028-9 |
| DatabaseName | SpringerOpen Free (Free internet resource, activated by CARLI) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection Proquest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection PML(ProQuest Medical Library) Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals (WRLC) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 6 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 13 |
| ExternalDocumentID | oai_doaj_org_article_39e37cfa58974a95be41ec955c92912d 10.1038/s41598-024-83028-9 PMC11682093 39732971 10_1038_s41598_024_83028_9 |
| Genre | Journal Article |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC EJD IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c492t-aa595e17c34f5ec8b573114b78b324e975e5ee6a8269492b79641d7b7d7cea333 |
| IEDL.DBID | M48 |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:53:23 EDT 2025 Sun Oct 26 04:15:00 EDT 2025 Tue Sep 30 17:06:38 EDT 2025 Wed Oct 01 17:25:42 EDT 2025 Tue Oct 07 09:05:45 EDT 2025 Thu Apr 03 07:01:36 EDT 2025 Wed Oct 01 02:45:40 EDT 2025 Fri Feb 21 02:36:06 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Deep learning Conceptual understanding Hypergraphic convolution Physical education Association learning Cognitive patterns |
| Language | English |
| License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c492t-aa595e17c34f5ec8b573114b78b324e975e5ee6a8269492b79641d7b7d7cea333 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-024-83028-9 |
| PMID | 39732971 |
| PQID | 3149799258 |
| PQPubID | 2041939 |
| PageCount | 13 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_39e37cfa58974a95be41ec955c92912d unpaywall_primary_10_1038_s41598_024_83028_9 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11682093 proquest_miscellaneous_3149882404 proquest_journals_3149799258 pubmed_primary_39732971 crossref_primary_10_1038_s41598_024_83028_9 springer_journals_10_1038_s41598_024_83028_9 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-28 |
| PublicationDateYYYYMMDD | 2024-12-28 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-28 day: 28 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2024 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | B Shen (83028_CR10) 2023; 14 Y Zhao (83028_CR3) 2023; 17 T Kesavavarthini (83028_CR4) 2023; 43 FJ Bustos (83028_CR20) 2024; 20 M Szatkowski (83028_CR1) 2022; 22 A MacPhail (83028_CR11) 2023; 28 C Liu (83028_CR7) 2022; 22 W Zhou (83028_CR5) 2023; 29 MA Amirabadi (83028_CR8) 2022; 16 H Ma (83028_CR13) 2022; 1992 S Yang (83028_CR16) 2023; 7 H Yang (83028_CR19) 2021; 40 J Purohit (83028_CR21) 2023; 1 V Shah (83028_CR17) 2022; 70 L Liu (83028_CR15) 2022; 18 L Zhang (83028_CR12) 2022; 22 O Arif (83028_CR9) 2024; 36 L Guo (83028_CR14) 2023; 39 T Tang (83028_CR6) 2023; 17 T De Bock (83028_CR2) 2023; 23 Z Ou (83028_CR18) 2024; 20 |
| References_xml | – volume: 20 start-page: 186 issue: 1 year: 2024 ident: 83028_CR20 publication-title: Neural Regen. Res. doi: 10.4103/NRR.NRR-D-23-02084 – volume: 43 start-page: 3749 issue: 8 year: 2023 ident: 83028_CR4 publication-title: Int. J. Climatol. doi: 10.1002/joc.8056 – volume: 36 start-page: 365 issue: 1 year: 2024 ident: 83028_CR9 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-023-09010-0 – volume: 70 start-page: 263 issue: 1 year: 2022 ident: 83028_CR17 publication-title: Educ. Tech. Res. Dev. doi: 10.1007/s11423-022-10081-4 – volume: 40 start-page: 5547 issue: 25 year: 2021 ident: 83028_CR19 publication-title: Stat. Med. doi: 10.1002/sim.9140 – volume: 18 start-page: 134 issue: 1 year: 2022 ident: 83028_CR15 publication-title: Int. J. Inform. Commun. Technol. Educ.: Offi. Pub. Inform. Resour. Manage. Assoc. – volume: 23 start-page: 1328 issue: 5 year: 2023 ident: 83028_CR2 publication-title: Eur. Sport Manage. Q. doi: 10.1080/16184742.2021.2009897 – volume: 22 start-page: 829 issue: 3 year: 2022 ident: 83028_CR1 publication-title: J. Phys. Educ. Sport – volume: 16 start-page: 93 issue: 3 year: 2022 ident: 83028_CR8 publication-title: IET Optoelectron. doi: 10.1049/ote2.12060 – volume: 7 start-page: 829 issue: 3 year: 2023 ident: 83028_CR16 publication-title: IEEE Trans. Emerg. Top. Comput. Intell. doi: 10.1109/TETCI.2022.3220812 – volume: 20 start-page: 234 issue: 1 year: 2024 ident: 83028_CR18 publication-title: Neural Regen. Res. doi: 10.4103/1673-5374.393103 – volume: 14 start-page: 146 issue: 2 year: 2023 ident: 83028_CR10 publication-title: Int. J. Grid Util. Comput. doi: 10.1504/IJGUC.2023.131016 – volume: 28 start-page: 153 issue: 2 year: 2023 ident: 83028_CR11 publication-title: Phys. Educ. Sport Pedag. doi: 10.1080/17408989.2021.1958177 – volume: 1 start-page: 11 issue: 1 year: 2023 ident: 83028_CR21 publication-title: Arch. Adv. Eng. Sci. doi: 10.47852/bonviewAAES32021220 – volume: 17 start-page: 12201 issue: 4 year: 2023 ident: 83028_CR3 publication-title: IET Signal Proc. doi: 10.1049/sil2.12201 – volume: 22 start-page: 141 issue: 1 year: 2022 ident: 83028_CR7 publication-title: Constr. innovation: Inform. process. Manage. doi: 10.1108/CI-02-2020-0017 – volume: 39 start-page: 984 issue: 3 year: 2023 ident: 83028_CR14 publication-title: J. Comput. Assist. Learn. doi: 10.1111/jcal.12781 – volume: 29 start-page: 3679 issue: 8 year: 2023 ident: 83028_CR5 publication-title: Wirel. Netw. doi: 10.1007/s11276-023-03431-4 – volume: 22 start-page: 373 issue: 2 year: 2022 ident: 83028_CR12 publication-title: J. Comput. methods Sci. Eng. – volume: 17 start-page: 1752 issue: 1 year: 2023 ident: 83028_CR6 publication-title: IET Image Process. doi: 10.1049/ipr2.12752 – volume: 1992 start-page: 22197 issue: 2 year: 2022 ident: 83028_CR13 publication-title: J. Phys.: Conf. Ser. |
| SSID | ssj0000529419 |
| Score | 2.4460325 |
| Snippet | To improve students’ understanding of physical education teaching concepts and help teachers analyze students’ cognitive patterns, the study proposes an... To improve students' understanding of physical education teaching concepts and help teachers analyze students' cognitive patterns, the study proposes an... Abstract To improve students’ understanding of physical education teaching concepts and help teachers analyze students’ cognitive patterns, the study proposes... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 31409 |
| SubjectTerms | 639/166 639/301 639/705 Accuracy Algorithms Association learning Associative learning Cognition Cognition - physiology Cognitive patterns Comprehension - physiology Conceptual understanding Data mining Deep Learning Humanities and Social Sciences Humans Hypergraphic convolution Learning algorithms multidisciplinary Neural networks Neural Networks, Computer Physical education Physical Education and Training - methods Science Science (multidisciplinary) Students Students - psychology Teaching |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEB_kQNQH8dvqKRF888o1X03yqIfHIeiTB_cWmnTWO1i7xd1F7uX-9ps03d4uivrgUyENJZ35TWbCzPwC8DaEKtZo6lIHG0qFIpTBSV3WkqsgUGg59Fd8_lKfnKpPZ_ps66qvVBOW6YGz4A6lQ2nirNGWIt_G6YCKY3RaR3LsXLRp962s2zpMZVZv4RR3Y5dMJe3hkjxV6iYTqkyUV2TlO55oIOz_XZT5a7HklDG9B3fWXd9c_mzm8y2ndPwA7o_RJHuf_-Ih3MLuEdzO90tePoaro9yUuKY56-0uFkYPNlUOsX4g2eyWNHRDKMsonGX9qEaGm0IQthrrL1lygC2jkRaxZ-P1E_Tp-bfFj4vV-fflEzg9_vj16KQcL1woo3JiVTaNdhq5iVLNNEYbtJF0XgrGBoq70BmNGrFubGp_dSKkNlbemmBaE7GRUj6FvW7R4XNgVT2z5BVrHm2rrA5By9haI1vaYWi2KeDdRvi-z7wafsiHS-uzqjypyg-q8q6AD0k_08zEiT0MEFL8iBT_N6QUsL_Rrh8NdekJkimxKbQt4M30mkws5U2aDhfrPIcOIqpSBTzLYJhWIhPbkTO8ALsDk52l7r7pLs4HGm_Oawq_nCzgYIOom3X9SRYHE-r-QXQv_ofoXsJdkSyHp1b-fdgjJOIrCsZW4fVgd9enGzCK priority: 102 providerName: Directory of Open Access Journals – databaseName: Proquest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEB_qFbE-iJ91tUoE3-zSy9cmeRCxpaUIHiIW-hY2H9cWzr3Vu0P64t_uZL-uh1J8Wshml2xmJpnszO83AG-dG_siqiKXTrtcROZyZ7jMC06FY5FJ3uArPk-K0zPx6Vyeb8Gkx8KktMp-TWwW6jD36R_5AT6bIlBM6g_1jzxVjUrR1b6ERtmVVgjvG4qxO7DNEjPWCLYPjydfvg5_XVJcS1DToWfGXB8scAdLKDMm8kSFhda_sUM1RP7_8j7_TqIcIqn34d6qqsvrX-VsdmOzOnkIDzovk3xs1eIRbMXqMdxt605eP4HfRy1YcYV9VjfRLQQvZMgoInVDvlktsGlNNEvQzSV1J14S-wQRsuzyMknaGAPBlhBjTbqyFPjq2QXO5_Ly--IpnJ0cfzs6zbtCDLkXhi3zspRGRqo8F1MZvXZScTxHOaUd-mPRKBlljEWpEyzWMJfgrTQop4LyseScP4NRNa_icyDjYqpRNAX1OggtnZPcB614wJUHe6sM3vWTb-uWb8M2cXKubSsqi6KyjaisyeAwyWfombiym4b5zwvbmZ7lJnLlp6XUeHYqjXRR0OiNlB5dQ8pCBnu9dG1nwAu7VrcM3gy30fRSPKWs4nzV9sEDihiLDHZbZRhGwhMLklE0A72hJhtD3bxTXV029N6UFuiWGZ7Bfq9R63HdNhf7g9b9x9S9uP2rX8IOSzZBE3h_D0aoY_EVul9L97qzqT_R9S7B priority: 102 providerName: ProQuest – databaseName: HAS SpringerNature Open Access 2022 dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB_qFbE-iN-uVongm7d42SSb5PEslnKgL1roW9hk52zh3Fu8O0pf_Nud7Fe7VESfFrKTEDIzO5Od_H4BeOf9LOSo81R541OJmU-9FSrNBZc-w0yJBl_x-Ut-cioXZ-psD6Y9FmZUv2-ouzcUYiIMLJNp5Koi97wD-4YM00xgfz5ffF0M_1Ri1Upy22FjqPuH251H8aeh6f9Tbnn7iORQJ70P93ZVXVxdFqvVjVB0_BAedDkkm7dKfwR7WD2Gu-2tkldP4NdRC0XckczuJnaF0YMN54VY3VBrVhtquqaRZZTEsrpTHsP--AfbdqcuWQx7JaOWErFm3aUTNPTq-_rnxfb8x-YpnB5_-nZ0knbXLKRB2mybFoWyCrkOQi4VBuOVFrRL8tp4yrbQaoUKMS9MBL3azEfwKi-116UOWAghnsGkWlf4AtgsXxqKhTkPppRGea9EKElXJX1XSFon8L5ffFe3bBquqYIL41pVOVKVa1TlbAIfo34GyciE3TSQgbjOsZywKHRYFsrQzqiwyqPkGKxSgRI_npUJHPbadZ17bhwZYixnZsok8HZ4TY4VqyVFhetdK0PbDzmTCTxvjWGYiYgcR1bzBMzITEZTHb-pLs4b8m7Oc0q6rEhg2lvU9bz-thbTwer-Yele_t_or-Agiz7CI1T_ECZkc_iakq2tf9P52G_RYSLm priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrRBw4P0IFGQkbjTb9ds-loqqQqLiwIpyimLH21Ys2ai7ESoHfjvjvNqFCtFTJGcSOePPmc_yzGeAN85NvApapdIZl4rAXOosl6niVDgWmORNfcXHQ3UwFR-O5NEGqL4WpknabyQtm990nx22s8RAE4vBmEijYhVO0nFVzG7AppLIwUewOT38tPs1niSHHCVFmsC6CpkJN1c8vBaFGrH-qxjm34mSw27pHbhVl1V-_iOfzy8FpP178KX_lDYP5du4Xrmx__mHyuP1v_U-3O04KtltLR_ARigfws321MrzR_Brry11rNGmvlwbQ_BChnwkUjXSneUSmy5kagmSZFJ14CChTy8hqy6rk8SwWhBsKUKoSHeoBb56frw4O12dfF8-hun--897B2l3jEPqhWWrNM-llYFqz8VMBm-c1BxXYU4bh2wuWC2DDEHlJhbVWuZicSwttNOF9iHnnD-BUbkowzMgEzUzGGsV9aYQRjonuS-M5gX-t9BaJ_C2H9asatU6smaXnZus9WqGXs0ar2Y2gXdx5AfLqLTdNCzOjrNuNDJuA9d-lkuDK6_cShcEDd5K6ZFYUlYksNXjJuum_zJDoMftUiZNAq-H2zhx425MXoZF3drg8kZMRAJPW5gNPeFRQ8lqmoBZA-BaV9fvlKcnjTg4pQpJneUJbPdYvejXv3yxPeD5P1z3_HrmL-A2i3CmUQpgC0aIufASydzKvepm7m96I0V8 priority: 102 providerName: Unpaywall |
| Title | Conceptual understanding and cognitive patterns construction for physical education teaching based on deep learning algorithms |
| URI | https://link.springer.com/article/10.1038/s41598-024-83028-9 https://www.ncbi.nlm.nih.gov/pubmed/39732971 https://www.proquest.com/docview/3149799258 https://www.proquest.com/docview/3149882404 https://pubmed.ncbi.nlm.nih.gov/PMC11682093 https://www.nature.com/articles/s41598-024-83028-9.pdf https://doaj.org/article/39e37cfa58974a95be41ec955c92912d |
| UnpaywallVersion | publishedVersion |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: HH5 dateStart: 20110101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: ABDBF dateStart: 20121221 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DIK dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: RPM dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAQT databaseName: Springer Nature - nature.com Journals - Fully Open Access customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: NAO dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.nature.com/siteindex/index.html providerName: Nature Publishing – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M48 dateStart: 20110801 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: AAJSJ dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals (WRLC) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: C6C dateStart: 20111201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED_6wdj2MPZdb13QYOxl9RZZkiU9jJGGlhJoKNsC2ZOxZKUdpI7bJGx52d--k7_asFD2ZJCEUe4jd-e7-x3AO2O6NnYyDoVRJuQuMqHRTIQxo9xELhKs7K84HcYnIz4Yi_EWNOW2NQHnG0M7P09qdD39-Ptq9QUV_nPVMq4-zdEI-UaxiIcezQoV-H1xFfrBUj4BW0_Z2IZdNF7aT3c4rSOACv470pzqup1m89vWTFaJ7L_JHf23qrJNrT6E-8u8SFe_0un0lvU6fgyPareT9Co5eQJbLn8K96pBlKtn8KdfdS8u8czydrsLwQdpS4xIUaJx5nNcukGeJej3kqLmN3FNxQhZ1IWaxFvKjOBK5lxB6jkV-OrpOVJvcXE5fw6j46Pv_ZOwnswQWq6jRZimQgtHpWV8IpxVRkiGgZWRyqCD5rQUTjgXp8r3yerI-H5XmkkjM2ldyhh7ATv5LHd7QLrxRKH5jKlVGVfCGMFspiTL8K8IT8sAPjTET4oKgCMpE-dMJRWrEmRVUrIq0QEcev60Jz14drkwuz5Pal1MmHZM2kkqFAZTqRbGceqsFsKir0ijLID9hrtJI5AJyq7PgEZCBfC23UZd9AmWNHezZXUGIxbe5QG8rIShvQnzsEha0gDUmpisXXV9J_95UeJ9Uxqjn6ZZAAeNRN3c6y5aHLRS9x-ke3X3r34NDyKvE9R38-_DDsqYe4P-2MJ0YFuOZQd2e73BtwE-D4-GZ19xtR_3O-U3jk6pc7gzGp71fvwF7w46eg |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH-aNqHBAfFNYICR4MSiNf6I7cOE2NjUsa1CaJN2C7HjbkglDbTV1At_Gn8bz4mTrgJNXHaK5LiR6_dpv_d-D-CNMT2bOpnGwigTc0dNbDQTccoSbqijgtX1FceDtH_KP52JsxX43dbC-LTKVifWiroYW39HvoW_9REoKtT76kfsu0b56GrbQiMPrRWK7RpiLBR2HLr5JR7hJtsHH5Hebynd3zvZ7cehy0BsuabTOM-FFi6RlvGhcFYZIRkeEoxUBp0Np6Vwwrk0V77mU1PjazeTQhpZSOty5i9E0QSscYbrW4W1nb3B5y_dLY-Po_FEh2qdHlNbE7SYvqqN8thDb6G2WbKIdeOAf3m7fydtdpHbO7A-K6t8fpmPRleM4_49uBu8WvKhYcP7sOLKB3Cr6XM5fwi_dpviyBnOmV2tpiH4IF0GE6lqsM9ygkMLYFuCbjWpAjsR1yakkGnIAyXeEBcERwrnKhLaYOCnR-dIv-nF98kjOL0RkjyG1XJcuqdAeulQoXVOE6sKroQxgtlCSVagpsPZMoJ37eZnVYPvkdVxeaayhlQZkiqrSZXpCHY8fbqZHpu7Hhj_PM-CqGdMOybtMBcKz2q5FsbxxFkthEVXNKFFBBstdbOgMCbZgr0jeN29RlH38Zu8dONZMwcPRLzHI3jSMEO3EuZRl7RMIlBLbLK01OU35beLGk48SVJ0AzWLYLPlqMW6rtuLzY7r_mPrnl3_r1_Bev_k-Cg7OhgcPofb1MtH4oEDNmAV-c29QNdval4G-SLw9aZF-g_aGGr_ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JbxMxFH6qitgOiJ2BAkaCEx0ltsdj-4AQtEQthYoDlXJzxx6nRQqTgUlU5cIP49fxPFsagSouPY3kcUaO3_cW-20AL60dutTLNBZW2TjxzMZWcxGnnCaWeSZ4nV_x-TDdO0o-jsV4A353uTAhrLKTibWgzmcu3JEP8LfBA8WEGkzasIgvu6O35Y84dJAKntaunUYDkQO_PMPjW_Vmfxdp_Yqx0YevO3tx22Egdolm8zjLhBaeSseTifBOWSE5HhCsVBYNDa-l8ML7NFMh31MzG_I2aS6tzKXzGQ-XoSj-r0jOdQgnlGPZ3-8ED1pCdZunM-RqUKGuDPlsLIlD0S2UM2u6sG4Z8C879-9wzd5nexOuL4oyW55l0-k5tTi6Dbdae5a8awB4BzZ8cReuNh0ul_fg106TFrnAOYvzeTQEH6SPXSJlXeazqHBoVdKWoEFNyhZIxHehKGTeRoCSoIJzgiO59yVpG2Dgp6cnSK356ffqPhxdCkEewGYxK_wjIMN0olAvp9SpPFHCWsFdriTPUcbhbBnB627zTdlU9jC1R54r05DKIKlMTSqjI3gf6NPPDFW564HZzxPTMrnh2nPpJplQeErLtLA-od5pIRwaoZTlEWx11DWtqKjMCtgRvOhfI5MHz01W-NmimYNHoWSYRPCwAUO_Eh7qLWlJI1BrMFlb6vqb4ttpXUic0hQNQM0j2O4QtVrXRXux3aPuP7bu8cX_-jlcQ0Y2n_YPD57ADRbYg4aKAVuwiXDzT9Hmm9tnNXMROL5sbv4D57JomQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrRBw4P0IFGQkbjTb9ds-loqqQqLiwIpyimLH21Ys2ai7ESoHfjvjvNqFCtFTJGcSOePPmc_yzGeAN85NvApapdIZl4rAXOosl6niVDgWmORNfcXHQ3UwFR-O5NEGqL4WpknabyQtm990nx22s8RAE4vBmEijYhVO0nFVzG7AppLIwUewOT38tPs1niSHHCVFmsC6CpkJN1c8vBaFGrH-qxjm34mSw27pHbhVl1V-_iOfzy8FpP178KX_lDYP5du4Xrmx__mHyuP1v_U-3O04KtltLR_ARigfws321MrzR_Brry11rNGmvlwbQ_BChnwkUjXSneUSmy5kagmSZFJ14CChTy8hqy6rk8SwWhBsKUKoSHeoBb56frw4O12dfF8-hun--897B2l3jEPqhWWrNM-llYFqz8VMBm-c1BxXYU4bh2wuWC2DDEHlJhbVWuZicSwttNOF9iHnnD-BUbkowzMgEzUzGGsV9aYQRjonuS-M5gX-t9BaJ_C2H9asatU6smaXnZus9WqGXs0ar2Y2gXdx5AfLqLTdNCzOjrNuNDJuA9d-lkuDK6_cShcEDd5K6ZFYUlYksNXjJuum_zJDoMftUiZNAq-H2zhx425MXoZF3drg8kZMRAJPW5gNPeFRQ8lqmoBZA-BaV9fvlKcnjTg4pQpJneUJbPdYvejXv3yxPeD5P1z3_HrmL-A2i3CmUQpgC0aIufASydzKvepm7m96I0V8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conceptual+understanding+and+cognitive+patterns+construction+for+physical+education+teaching+based+on+deep+learning+algorithms&rft.jtitle=Scientific+reports&rft.date=2024-12-28&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=31409&rft_id=info:doi/10.1038%2Fs41598-024-83028-9&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |