Estimation of minimum miscible pressure in carbon dioxide gas injection using machine learning methods
In recent decades, Enhanced Oil Recovery (EOR) has emerged as a primary method to increase reservoir oil recovery rates. One of these methods involves injecting miscible and immiscible gases. In miscible gas injection, the minimum miscibility pressure (MMP) is crucial, representing the critical pres...
Saved in:
| Published in | Journal of petroleum exploration and production technology Vol. 15; no. 2; pp. 25 - 24 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Cham
Springer International Publishing
01.02.2025
Springer Nature B.V SpringerOpen |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2190-0558 2190-0566 2190-0566 |
| DOI | 10.1007/s13202-024-01915-3 |
Cover
| Abstract | In recent decades, Enhanced Oil Recovery (EOR) has emerged as a primary method to increase reservoir oil recovery rates. One of these methods involves injecting miscible and immiscible gases. In miscible gas injection, the minimum miscibility pressure (MMP) is crucial, representing the critical pressure at which these gases can mix effectively with the oil phase. However, accurately determining the minimum pressure required for CO
2
to miscible combine with the oil phase has always been a significant challenge. Various methods, including slim-tube tests, analytical models, and empirical correlations, are employed to determine MMP. Nevertheless, experimental measurements are time-consuming and costly. At the same time, mathematical models may yield different estimations. This study introduces an innovative approach using machine learning (ML) techniques to determine CO
2
-MMP during CO
2
flooding. These methods produce reliable models, and advanced CO
2
-MMP techniques have demonstrated improved performance, significantly reducing time and costs. Furthermore, ML algorithms such as Artificial Neural Networks (ANN), Bayesian networks, Random Forest (RF), Support Vector Machine (SVM), LSBoost, and Linear Regression (LR) were employed to estimate MMP. Input data for these algorithms include CO
2
, H
2
S, N
2
, C
1
, C
2
, C
3
, C
4
, C
5
, C
6
, C
7+
, MW
C5+
, MW
C7+
, T, alongside vol/int. Comparative analysis with experimental MMP data revealed that the Glaso method achieves an accuracy of 0.8749, among the most precise methods, while SVM performed best among the mentioned ML algorithms with an accuracy of 0.986 and RMSE of 0.027. |
|---|---|
| AbstractList | In recent decades, Enhanced Oil Recovery (EOR) has emerged as a primary method to increase reservoir oil recovery rates. One of these methods involves injecting miscible and immiscible gases. In miscible gas injection, the minimum miscibility pressure (MMP) is crucial, representing the critical pressure at which these gases can mix effectively with the oil phase. However, accurately determining the minimum pressure required for CO
2
to miscible combine with the oil phase has always been a significant challenge. Various methods, including slim-tube tests, analytical models, and empirical correlations, are employed to determine MMP. Nevertheless, experimental measurements are time-consuming and costly. At the same time, mathematical models may yield different estimations. This study introduces an innovative approach using machine learning (ML) techniques to determine CO
2
-MMP during CO
2
flooding. These methods produce reliable models, and advanced CO
2
-MMP techniques have demonstrated improved performance, significantly reducing time and costs. Furthermore, ML algorithms such as Artificial Neural Networks (ANN), Bayesian networks, Random Forest (RF), Support Vector Machine (SVM), LSBoost, and Linear Regression (LR) were employed to estimate MMP. Input data for these algorithms include CO
2
, H
2
S, N
2
, C
1
, C
2
, C
3
, C
4
, C
5
, C
6
, C
7+
, MW
C5+
, MW
C7+
, T, alongside vol/int. Comparative analysis with experimental MMP data revealed that the Glaso method achieves an accuracy of 0.8749, among the most precise methods, while SVM performed best among the mentioned ML algorithms with an accuracy of 0.986 and RMSE of 0.027. In recent decades, Enhanced Oil Recovery (EOR) has emerged as a primary method to increase reservoir oil recovery rates. One of these methods involves injecting miscible and immiscible gases. In miscible gas injection, the minimum miscibility pressure (MMP) is crucial, representing the critical pressure at which these gases can mix effectively with the oil phase. However, accurately determining the minimum pressure required for CO2 to miscible combine with the oil phase has always been a significant challenge. Various methods, including slim-tube tests, analytical models, and empirical correlations, are employed to determine MMP. Nevertheless, experimental measurements are time-consuming and costly. At the same time, mathematical models may yield different estimations. This study introduces an innovative approach using machine learning (ML) techniques to determine CO2-MMP during CO2 flooding. These methods produce reliable models, and advanced CO2-MMP techniques have demonstrated improved performance, significantly reducing time and costs. Furthermore, ML algorithms such as Artificial Neural Networks (ANN), Bayesian networks, Random Forest (RF), Support Vector Machine (SVM), LSBoost, and Linear Regression (LR) were employed to estimate MMP. Input data for these algorithms include CO2, H2S, N2, C1, C2, C3, C4, C5, C6, C7+, MWC5+, MWC7+, T, alongside vol/int. Comparative analysis with experimental MMP data revealed that the Glaso method achieves an accuracy of 0.8749, among the most precise methods, while SVM performed best among the mentioned ML algorithms with an accuracy of 0.986 and RMSE of 0.027. Abstract In recent decades, Enhanced Oil Recovery (EOR) has emerged as a primary method to increase reservoir oil recovery rates. One of these methods involves injecting miscible and immiscible gases. In miscible gas injection, the minimum miscibility pressure (MMP) is crucial, representing the critical pressure at which these gases can mix effectively with the oil phase. However, accurately determining the minimum pressure required for CO2 to miscible combine with the oil phase has always been a significant challenge. Various methods, including slim-tube tests, analytical models, and empirical correlations, are employed to determine MMP. Nevertheless, experimental measurements are time-consuming and costly. At the same time, mathematical models may yield different estimations. This study introduces an innovative approach using machine learning (ML) techniques to determine CO2-MMP during CO2 flooding. These methods produce reliable models, and advanced CO2-MMP techniques have demonstrated improved performance, significantly reducing time and costs. Furthermore, ML algorithms such as Artificial Neural Networks (ANN), Bayesian networks, Random Forest (RF), Support Vector Machine (SVM), LSBoost, and Linear Regression (LR) were employed to estimate MMP. Input data for these algorithms include CO2, H2S, N2, C1, C2, C3, C4, C5, C6, C7+, MWC5+, MWC7+, T, alongside vol/int. Comparative analysis with experimental MMP data revealed that the Glaso method achieves an accuracy of 0.8749, among the most precise methods, while SVM performed best among the mentioned ML algorithms with an accuracy of 0.986 and RMSE of 0.027. |
| ArticleNumber | 25 |
| Author | Ranjbar, Ali Akbari, Ali Kazemzadeh, Yousef Borhani, Amirjavad Mohammadinia, Fatemeh |
| Author_xml | – sequence: 1 givenname: Ali surname: Akbari fullname: Akbari, Ali organization: Department of Petroleum Engineering, Faculty of Petroleum, Gas, and Petrochemical Engineering, Persian Gulf University – sequence: 2 givenname: Ali surname: Ranjbar fullname: Ranjbar, Ali organization: Department of Petroleum Engineering, Faculty of Petroleum, Gas, and Petrochemical Engineering, Persian Gulf University – sequence: 3 givenname: Yousef orcidid: 0000-0002-5021-1856 surname: Kazemzadeh fullname: Kazemzadeh, Yousef email: yusefkazemzade@yahoo.com organization: Department of Petroleum Engineering, Faculty of Petroleum, Gas, and Petrochemical Engineering, Persian Gulf University – sequence: 4 givenname: Fatemeh surname: Mohammadinia fullname: Mohammadinia, Fatemeh organization: Department of Petroleum Engineering, Faculty of Petroleum, Gas, and Petrochemical Engineering, Persian Gulf University – sequence: 5 givenname: Amirjavad surname: Borhani fullname: Borhani, Amirjavad organization: Department of Petroleum Engineering, Faculty of Petroleum, Gas, and Petrochemical Engineering, Persian Gulf University |
| BookMark | eNqNkEtLxTAQhYMo-PwDrgquq3knXYr4AsGNrkPaTq65tMk1aVH_vfFWdCeuZjic8zFzDtFuiAEQOiX4nGCsLjJhFNMaU15j0hBRsx10QEmDayyk3P3Zhd5HJzn7FnPKsWooO0DuOk9-tJOPoYquGn3w4zyWmTvfDlBtEuQ8J6h8qDqb2mLrfXz3PVQrm4u6hm4bnrMPq2q03YsPUA1gU9gKML3EPh-jPWeHDCff8wg931w_Xd3VD4-391eXD3XHGzrVjeBOApGCCMfaFpwAy5VstWuJwCCwawXnrifcsk4LLjHVmiltdS9lgzE7QvcLt492bTapvJY-TLTebIWYVsamyXcDGCoV44QS0ijghHPNNHMNZ0I7JZ2yhcUW1hw29uPNDsMPkGDz1bxZmjelebNt3rCSOltSmxRfZ8iTWcc5hfK0YUQyJqlSvLjo4upSzDmB-x_6-6BczGEF6Rf9R-oTagajDA |
| Cites_doi | 10.2523/89359-MS 10.1016/j.ejpe.2014.08.002 10.1016/j.fuel.2015.08.075 10.2118/12893-PA 10.1016/j.fuel.2013.04.036 10.2118/169715-MS 10.2118/200326-MS 10.1080/15567036.2015.1089338 10.2118/4736-PA 10.3390/su131810010 10.2118/200326-PA 10.2118/35385-PA 10.2118/179673-MS 10.1061/(ASCE)0887-3801(2001)15:3(208) 10.1021/ci034160g 10.1016/j.compgeo.2007.06.014 10.2118/2543-PA 10.2118/595-PA 10.2118/165966-MS 10.2118/12648-PA 10.2118/521-G 10.1021/ie9803016 10.2118/89-04-03 10.1016/j.petrol.2006.12.001 10.2118/75806-PA 10.1093/ecco-jcc/jjaa098 10.2118/90-06-06 10.1016/j.fuel.2016.05.124 10.1016/j.fuel.2022.127194 10.1016/j.pecs.2008.05.001 10.2118/30771-PA 10.2118/211424-MS 10.1016/S0920-4105(02)00312-1 10.1016/j.jcou.2016.11.004 10.1016/j.ptlrs.2022.08.001 10.1016/j.fuel.2016.02.021 10.1021/ef940212f 10.2118/7477-PA 10.1016/j.geoderma.2014.09.019 10.2516/ogst/2019028 10.2118/74367-MS 10.2118/11959-PA 10.2118/84-05-12 10.1016/S0378-3812(97)00180-5 10.1016/j.fuel.2017.10.121 10.1016/j.fuel.2020.120048 10.2118/11125-PA 10.5419/bjpg2023-0012 10.47852/bonviewJDSIS42022111 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 Copyright Springer Nature B.V. Feb 2025 |
| Copyright_xml | – notice: The Author(s) 2025 – notice: Copyright Springer Nature B.V. Feb 2025 |
| DBID | C6C AAYXX CITATION 3V. 7TN 7WY 7WZ 7XB 87Z 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BEZIV BGLVJ BHPHI BKSAR CCPQU DWQXO F1W FR3 FRNLG F~G H96 HCIFZ K60 K6~ KR7 L.- L.G L6V M0C M7S PCBAR PHGZM PHGZT PIMPY PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U ADTOC UNPAY DOA |
| DOI | 10.1007/s13202-024-01915-3 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Oceanic Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection (via ProQuest SciTech Premium Collection) Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection (via ProQuest) ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Civil Engineering Abstracts ABI/INFORM Professional Advanced Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection ABI/INFORM Global Engineering Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Business (UW System Shared) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ABI/INFORM Complete ProQuest Central Earth, Atmospheric & Aquatic Science Collection ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) Engineering Collection Business Premium Collection Civil Engineering Abstracts ABI/INFORM Global Engineering Database ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Business (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature Open Access Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology Engineering |
| EISSN | 2190-0566 |
| EndPage | 24 |
| ExternalDocumentID | oai_doaj_org_article_26734121197e41448383f94358f76f7a 10.1007/s13202-024-01915-3 10_1007_s13202_024_01915_3 |
| GroupedDBID | -A0 0R~ 2VQ 3V. 4.4 40G 5VS 7WY 8FE 8FG 8FH 8FL AAFWJ AAJSJ AAKKN ABEEZ ABJCF ABUWG ACACY ACGFS ACIWK ACULB ADBBV ADDVE ADINQ AEUYN AFGXO AFKRA AFPKN AHBYD AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP ARCSS BCNDV BENPR BEZIV BGLVJ BHPHI BKSAR BPHCQ C24 C6C CCPQU DWQXO EBLON EBS EJD FRNLG GROUPED_DOAJ HCIFZ HH5 HZ~ IAO IPNFZ ISR ITC K60 K6~ KQ8 L6V L8X LK5 M0C M7R M7S M~E N95 O9- OK1 PCBAR PIMPY PQBIZ PQBZA PQQKQ PROAC PTHSS RIG RNS RSV SEV SOJ TUS U2A AASML AAYXX ABJIA CITATION PHGZM PHGZT PQGLB PUEGO 7TN 7XB 8FD 8FK AZQEC F1W FR3 H96 KR7 L.- L.G PKEHL PQEST PQUKI PRINS Q9U ADTOC UNPAY |
| ID | FETCH-LOGICAL-c492t-954f6e16515f3bbef5ea476b8fb150e50fb544fd14a3c85460288378a8d669003 |
| IEDL.DBID | UNPAY |
| ISSN | 2190-0558 2190-0566 |
| IngestDate | Tue Oct 14 18:56:56 EDT 2025 Sun Sep 07 10:48:17 EDT 2025 Sat Oct 18 22:52:31 EDT 2025 Wed Oct 01 06:52:28 EDT 2025 Wed Feb 26 08:56:18 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Issue | 2 |
| Keywords | Experimental methods ) Machine learning (ML) Gas injection Miscible pressure (MMP) Carbon dioxide gas (CO |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c492t-954f6e16515f3bbef5ea476b8fb150e50fb544fd14a3c85460288378a8d669003 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5021-1856 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1007/s13202-024-01915-3 |
| PQID | 3163362774 |
| PQPubID | 2034707 |
| PageCount | 24 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_26734121197e41448383f94358f76f7a unpaywall_primary_10_1007_s13202_024_01915_3 proquest_journals_3163362774 crossref_primary_10_1007_s13202_024_01915_3 springer_journals_10_1007_s13202_024_01915_3 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20250200 2025-02-00 20250201 2025-02-01 |
| PublicationDateYYYYMMDD | 2025-02-01 |
| PublicationDate_xml | – month: 2 year: 2025 text: 20250200 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Heidelberg |
| PublicationTitle | Journal of petroleum exploration and production technology |
| PublicationTitleAbbrev | J Petrol Explor Prod Technol |
| PublicationYear | 2025 |
| Publisher | Springer International Publishing Springer Nature B.V SpringerOpen |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: SpringerOpen |
| References | RJ Sen (1915_CR48) 2008; 34 J-N Jaubert (1915_CR29) 1998; 37 S Heidary (1915_CR24) 2016; 38 F Orr (1915_CR40) 1984; 24 R Wu (1915_CR61) 1990 W Cui (1915_CR10) 2023; 8 K Zhang (1915_CR66) 2016; 175 AM Elsharkawy (1915_CR18) 1996; 10 1915_CR65 1915_CR22 R Alston (1915_CR3) 1985; 25 R Czarnota (1915_CR11) 2017; 17 1915_CR26 H Wang (1915_CR58) 2021; 13 1915_CR2 H Ramsay Jr (1915_CR41) 1964; 16 Y Huang (1915_CR28) 2003; 37 1915_CR9 DL Flock (1915_CR20) 1984 1915_CR8 H Stone (1915_CR53) 1956; 207 A Shokrollahi (1915_CR50) 2013; 112 1915_CR39 Ø Glasø (1915_CR21) 1985; 25 H Chen (1915_CR7) 2021; 290 PJ Samui (1915_CR46) 2008; 35 W Yellig (1915_CR64) 1980; 32 DNJF Rao (1915_CR43) 1997; 139 EME-MJ Shokir (1915_CR49) 2007; 58 V Svetnik (1915_CR54) 2003; 43 J Wang (1915_CR59) 2015; 162 1915_CR32 B Dindoruk (1915_CR16) 1997; 2 1915_CR36 LH Hamel (1915_CR23) 2011 A Rostami (1915_CR44) 2018; 214 H Sebastian (1915_CR47) 1985; 37 1915_CR51 JJ Taber (1915_CR55) 1997; 12 V Karamnia (1915_CR31) 2021; 10 L Messadeg (1915_CR38) 2020; 14 A Bigdeli (1915_CR5) 2024 CW Brungard (1915_CR6) 2015; 239 1915_CR60 R Johns (1915_CR30) 2002; 5 YB Dibike (1915_CR14) 2001; 15 L Holm (1915_CR25) 1974; 26 T Randall (1915_CR42) 1989 L Yarborough (1915_CR62) 1970; 10 AM Maklavani (1915_CR37) 2010; 4 C Huang (1915_CR27) 2023; 337 1915_CR17 U Sinha (1915_CR52) 2021; 26 JC von Hohendorff Filho (1915_CR57) 2023; 17 1915_CR12 AH Fath (1915_CR19) 2014; 23 1915_CR13 M Abdurrahman (1915_CR1) 2019; 74 X-Q Bian (1915_CR4) 2016; 182 |
| References_xml | – ident: 1915_CR60 – ident: 1915_CR65 doi: 10.2523/89359-MS – volume: 23 start-page: 255 issue: 3 year: 2014 ident: 1915_CR19 publication-title: Egypt J Pet doi: 10.1016/j.ejpe.2014.08.002 – volume: 162 start-page: 55 year: 2015 ident: 1915_CR59 publication-title: Fuel doi: 10.1016/j.fuel.2015.08.075 – ident: 1915_CR9 – volume: 25 start-page: 927 issue: 06 year: 1985 ident: 1915_CR21 publication-title: Soc Pet Eng J doi: 10.2118/12893-PA – volume: 112 start-page: 375 year: 2013 ident: 1915_CR50 publication-title: Feul doi: 10.1016/j.fuel.2013.04.036 – ident: 1915_CR13 doi: 10.2118/169715-MS – ident: 1915_CR51 doi: 10.2118/200326-MS – volume: 38 start-page: 2217 issue: 15 year: 2016 ident: 1915_CR24 publication-title: Energy Sour Part A Recov Util Environ Effect doi: 10.1080/15567036.2015.1089338 – volume: 26 start-page: 1427 issue: 12 year: 1974 ident: 1915_CR25 publication-title: J Pet Technol doi: 10.2118/4736-PA – volume: 13 start-page: 10010 issue: 18 year: 2021 ident: 1915_CR58 publication-title: Sustainability doi: 10.3390/su131810010 – volume: 26 start-page: 1666 issue: 04 year: 2021 ident: 1915_CR52 publication-title: SPE J doi: 10.2118/200326-PA – volume: 12 start-page: 189 issue: 03 year: 1997 ident: 1915_CR55 publication-title: SPE Reservoir Eng doi: 10.2118/35385-PA – ident: 1915_CR2 doi: 10.2118/179673-MS – volume: 15 start-page: 208 issue: 3 year: 2001 ident: 1915_CR14 publication-title: J Comput Civ Eng doi: 10.1061/(ASCE)0887-3801(2001)15:3(208) – volume: 43 start-page: 1947 issue: 6 year: 2003 ident: 1915_CR54 publication-title: J Chem Inf Comput Sci doi: 10.1021/ci034160g – volume: 35 start-page: 419 issue: 3 year: 2008 ident: 1915_CR46 publication-title: Comput Geotech doi: 10.1016/j.compgeo.2007.06.014 – volume: 10 start-page: 298 issue: 03 year: 1970 ident: 1915_CR62 publication-title: Soc Pet Eng J doi: 10.2118/2543-PA – volume: 16 start-page: 25 issue: 01 year: 1964 ident: 1915_CR41 publication-title: J Pet Technol doi: 10.2118/595-PA – ident: 1915_CR17 doi: 10.2118/165966-MS – ident: 1915_CR8 – volume: 37 start-page: 2076 issue: 11 year: 1985 ident: 1915_CR47 publication-title: J Pet Technol doi: 10.2118/12648-PA – volume-title: Knowledge discovery with support vector machines year: 2011 ident: 1915_CR23 – volume: 207 start-page: 105 issue: 01 year: 1956 ident: 1915_CR53 publication-title: Trans AIME doi: 10.2118/521-G – volume: 37 start-page: 4860 issue: 12 year: 1998 ident: 1915_CR29 publication-title: Ind Eng Chem Res doi: 10.1021/ie9803016 – year: 1989 ident: 1915_CR42 publication-title: J Can Pet Technol doi: 10.2118/89-04-03 – volume: 58 start-page: 173 issue: 1–2 year: 2007 ident: 1915_CR49 publication-title: J Pet Sci Eng doi: 10.1016/j.petrol.2006.12.001 – volume: 5 start-page: 4 issue: 01 year: 2002 ident: 1915_CR30 publication-title: SPE Reservoir Eval Eng doi: 10.2118/75806-PA – volume: 14 start-page: 1524 issue: 11 year: 2020 ident: 1915_CR38 publication-title: J Crohn Colit doi: 10.1093/ecco-jcc/jjaa098 – year: 1990 ident: 1915_CR61 publication-title: J Can Pet Technol doi: 10.2118/90-06-06 – volume: 4 start-page: 11 issue: 1 year: 2010 ident: 1915_CR37 publication-title: Braz J Pet Gas – volume: 182 start-page: 550 year: 2016 ident: 1915_CR4 publication-title: Feul doi: 10.1016/j.fuel.2016.05.124 – volume: 337 year: 2023 ident: 1915_CR27 publication-title: Feul doi: 10.1016/j.fuel.2022.127194 – volume: 34 start-page: 714 issue: 6 year: 2008 ident: 1915_CR48 publication-title: Prog Energy Combust Sci doi: 10.1016/j.pecs.2008.05.001 – volume: 2 start-page: 268 issue: 03 year: 1997 ident: 1915_CR16 publication-title: SPE J doi: 10.2118/30771-PA – ident: 1915_CR22 doi: 10.2118/211424-MS – volume: 37 start-page: 83 issue: 1-2 year: 2003 ident: 1915_CR28 publication-title: J Pet Sci Eng doi: 10.1016/S0920-4105(02)00312-1 – ident: 1915_CR36 – volume: 17 start-page: 32 year: 2017 ident: 1915_CR11 publication-title: J Co2 Util doi: 10.1016/j.jcou.2016.11.004 – volume: 8 start-page: 1 issue: 1 year: 2023 ident: 1915_CR10 publication-title: Pet Res doi: 10.1016/j.ptlrs.2022.08.001 – volume: 175 start-page: 172 year: 2016 ident: 1915_CR66 publication-title: Fuel doi: 10.1016/j.fuel.2016.02.021 – ident: 1915_CR12 doi: 10.2118/169715-MS – ident: 1915_CR26 – volume: 10 start-page: 443 issue: 2 year: 1996 ident: 1915_CR18 publication-title: Energy Fuels doi: 10.1021/ef940212f – volume: 32 start-page: 160 issue: 01 year: 1980 ident: 1915_CR64 publication-title: J Pet Technol doi: 10.2118/7477-PA – volume: 239 start-page: 68 year: 2015 ident: 1915_CR6 publication-title: Geoderma doi: 10.1016/j.geoderma.2014.09.019 – volume: 74 start-page: 55 year: 2019 ident: 1915_CR1 publication-title: Oil Gas Sci Technol-Revue d’IFP Energies Nouvelles doi: 10.2516/ogst/2019028 – ident: 1915_CR39 doi: 10.2118/74367-MS – volume: 10 start-page: 107 issue: 1 year: 2021 ident: 1915_CR31 publication-title: J Sci Technol – volume: 25 start-page: 268 issue: 02 year: 1985 ident: 1915_CR3 publication-title: Soc Pet Eng J doi: 10.2118/11959-PA – year: 1984 ident: 1915_CR20 publication-title: J Can Pet Technol doi: 10.2118/84-05-12 – ident: 1915_CR32 – volume: 139 start-page: 311 issue: 1–2 year: 1997 ident: 1915_CR43 publication-title: Fluid Phase Equilib doi: 10.1016/S0378-3812(97)00180-5 – volume: 214 start-page: 73 year: 2018 ident: 1915_CR44 publication-title: Feul doi: 10.1016/j.fuel.2017.10.121 – volume: 290 year: 2021 ident: 1915_CR7 publication-title: Feul doi: 10.1016/j.fuel.2020.120048 – volume: 24 start-page: 485 issue: 05 year: 1984 ident: 1915_CR40 publication-title: Soc Pet Eng J doi: 10.2118/11125-PA – volume: 17 start-page: 179 issue: 4 year: 2023 ident: 1915_CR57 publication-title: Braz J Pet Gas doi: 10.5419/bjpg2023-0012 – year: 2024 ident: 1915_CR5 publication-title: J Data Sci Intell Syst. doi: 10.47852/bonviewJDSIS42022111 |
| SSID | ssib042407923 ssj0000941014 |
| Score | 2.001339 |
| Snippet | In recent decades, Enhanced Oil Recovery (EOR) has emerged as a primary method to increase reservoir oil recovery rates. One of these methods involves... Abstract In recent decades, Enhanced Oil Recovery (EOR) has emerged as a primary method to increase reservoir oil recovery rates. One of these methods involves... |
| SourceID | doaj unpaywall proquest crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 25 |
| SubjectTerms | Accuracy Algorithms Artificial neural networks Bayesian analysis Carbon dioxide Carbon dioxide gas (CO2) Comparative analysis Critical pressure Earth and Environmental Science Earth Sciences Energy Systems Enhanced oil recovery Experimental methods Gas injection Geology Hydrogen sulfide Industrial and Production Engineering Industrial Chemistry/Chemical Engineering Injection Machine learning Machine learning (ML) Mathematical models Miscibility Miscible pressure (MMP) Monitoring/Environmental Analysis Offshore Engineering Oil recovery Original Paper - Production Engineering Pressure Probability theory Support vector machines Time measurement |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQF2BAfIpCQR7YaETa-CsjIBBCggmkbpad2KioTau2EfDvuXPSEhZgYIrkeIjP59y75O49Qs7wFNoe_vLPfRIx5nikMi-iHGbH3sZSSmxOfngUd8_sfsAHDakvrAmr6IErw130hYQXLfKQSccA_StIqXwKQV55KbwM0ChWaSOZAk9imKcsE4PXqn4ORWlRaQ57p2POVd1BU_XRoYp4BOEKMuu0x6PkW5QKZP7fEOjqp-kmWS-Lqfl4M6NRIy7dbpOtGlDSy2ohO2TNFbtks0EzuEf8DZzjqkWRTjxFNpFxOYYrhD87cjTUwpYzR4cFzczMwrR8OHkf5o6-mDmMvoZ6rYJikfwLHYf6S0drwQkYCCrU833yfHvzdH0X1foKUcbS_iJKOfPC9VAM3SfWOs-dYVJY5S3ARMdhrzhjPu8xk2SKMxGjNLFURuVC4BfQA9IqJoU7JDQB3GekFSYHiGMgKfNMgQcYi_mPsaxNzpf21NOKRkN_ESaj9TVYXwfr66RNrtDkq5lIgR0GwDF07Rj6N8dok85yw3R9Luc6AfgJIRswb5t0l5v4dfunR-quNvoPKzj6jxUck40-qg2HGvEOaS1mpTsBCLSwp8HbPwGuF_ey priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LaxsxEB5S59DmUPokTtOiQ2-NqO3Vy4dSkuAQCjWlNJCbkHYl42Dvun7Q5N9nRrtrJ5fQk0EWrD0aab5ZzXwfwGfahb5PV_5FzLgQQXKTR8ULnN2Lvqe1pubkn2N1eSV-XMvrPRi3vTBUVtmeiemgLqqc3pF_zRA44GGLaOX74i8n1Si6XW0lNFwjrVB8SxRjz2B_QMxYHdg_G41__W49TFD-0iYMN3VdHYnVkgId9VT3pDRNZ03dX0fq4hzDGGbcw77k2aPolUj-HyHT7WXqATzflAt398_NZg_i1cUreNkATXZae8Zr2AvlGzh4QD_4FuII93fdusiqyIhlZL6Z4yeGRT8LLNXIbpaBTUuWu6XHacW0up0WgU3cCkdvUh1Xyah4fsLmqS4zsEaIAgeSOvXqHVxdjP6cX_JGd4HnYjhY86EUUYU-iaTHzPsQZXBCK2-iR_gYJK6hFCIWfeGy3EiheiRZrI0zhVL0ZvQ9dMqqDIfAMsSDTnvlCoQ-DpO1KAx6hvOUFzkvuvCltadd1PQadkekTNa3aH2brG-zLpyRybcziRo7DVTLiW12mh0ojZGZiOt0EJguGszB4xBRoYlaRe26cNwumG3268ruvKsLJ-0i7r5-6iedbBf6P_7B0dMP_wAvBqQvnKrCj6GzXm7CRwQ9a_-p8eR7dxH4EQ priority: 102 providerName: ProQuest – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB58IOpBfGJ9kYM3XWi7efWoUhVBTxa8haSblEq7lT5Q_70z6W5bQURPC9kQdjMzO99sZuYDOCcrdDU68s9CmnDuRaLbQSYZzq4GV1VKUXHy45O8b_GHF_FSFIWNymz38kgyfqnnxW5E9Z2gT8Hwt1ETSboMq4LaeaEWt-pXpRZxilHKoOB1mjtHhLTEMkd101UhdFE98_Oy3zxUbOT_DX3ODkw3YX2Sv9nPd9vrLfik223YKsAku5pKfweWfL4LmwstBndh7S5S937uQWiiNU8LFdkgMOop0p_08YpO0PU8ixmxk6Fn3Zy17dDhtKw7-OhmnnXsCEdfY9ZWzihVvsP6MQvTs4J2AgciF_VoH1q3zeeb-6RgWUjavFEfJw3Bg_Q1okQPqXM-CG-5kk4Hh2DRC5SY4DxkNW7TthZcVomgWGmrMynpP-gBrOSD3B8CSxH9WeWkzRDoWAzNAteoB9ZRFGQdr8BFubPmbdpMw8zbJpMcDMrBRDmYtALXtPmzmdQIOw4Mhh1T2JWpS4V-mNrUKc8xONQYcYcGYkAdlAzKVuCkFJ0prHNkUgSh6LgR-VbgshTn_PZvj3Q5E_kf3uDof6sfw0ad2IVjTvgJrIyHE3-KkGfszqKGfwEuLPFN priority: 102 providerName: Springer Nature |
| Title | Estimation of minimum miscible pressure in carbon dioxide gas injection using machine learning methods |
| URI | https://link.springer.com/article/10.1007/s13202-024-01915-3 https://www.proquest.com/docview/3163362774 https://doi.org/10.1007/s13202-024-01915-3 https://doaj.org/article/26734121197e41448383f94358f76f7a |
| UnpaywallVersion | publishedVersion |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 2190-0566 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000941014 issn: 2190-0566 databaseCode: HH5 dateStart: 20110101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2190-0566 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000941014 issn: 2190-0566 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2190-0566 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000941014 issn: 2190-0566 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2190-0566 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000941014 issn: 2190-0566 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2190-0566 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000941014 issn: 2190-0566 databaseCode: BENPR dateStart: 20250101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2190-0566 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000941014 issn: 2190-0566 databaseCode: 8FG dateStart: 20121001 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 2190-0566 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000941014 issn: 2190-0566 databaseCode: AAJSJ dateStart: 20110501 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature Open Access Journals customDbUrl: eissn: 2190-0566 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000941014 issn: 2190-0566 databaseCode: C6C dateStart: 20110501 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Open Access Hybrid - NESLI2 2011-2012 customDbUrl: eissn: 2190-0566 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000941014 issn: 2190-0566 databaseCode: 40G dateStart: 20110101 isFulltext: true titleUrlDefault: http://link.springer.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 2190-0566 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000941014 issn: 2190-0566 databaseCode: U2A dateStart: 20110501 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 2190-0566 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000941014 issn: 2190-0566 databaseCode: C24 dateStart: 20110501 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swEBdr8jD60H3TjLboYW-rO8fWVx7TkKwEFsq2QPckJFsq2RKnxDFr99f3TnbSD8boXk5GFsb6OO4n6e53hHxALbRdvPLPfRox5nikMi-iHFrH3sZSSgxO_jIRZ1M2vuAXDU0OxsI8ur__VGKIL3wpQV-JXpdH6Q5pCw64u0Xa08l5_wdmj8N46JiHZJzNsxBNhMzfP_LACgWy_gcIc3spukueV8WVuflt5vN7dmf0ok5gVAa6QnQ3-XVSre1J9ucRmePTuvSS7DXwk_br9fKKPHPFa7J7j5TwDfFD0Po6oJEuPUXukUW1gBKMpZ07Gjxnq5Wjs4JmZmWhWT5bXs9yRy9NCbU_g3dXQdGl_pIugremo016CqgIOavLt2Q6Gn4fnEVNNoYoY71kHfU488J1MXW6T611njvDpLDKWwCVjsPMcsZ83mUmzRRnIsZExlIZlQuB56XvSKtYFm6f0BRQopFWmBwAkYEtnGcK1ouxuFsylnXIx83s6KuadEPf0Svj6GkYPR1GT6cdcooTuG2JhNmhAgZdN_qnEyHBXiOdnXQMNpEKdua-B1hReSm8NB1ysJl-3WhxqVMAq2DgASF3yPFmSdy9_tcvHW-XzRN68P7_mh-Q1npVuUNAQ2t7RHZY_BmkGoFs9_vjb2MoT4eT869QO0gYSjE4CqcNIKcJyFp1bgHauATN |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9lB6QDxFoMAe4EQtEnsfzqFCFFKltI0QaqXell17N0qV2CEPlf45fhszaztpLxWXniJtVn7MzM5-452ZD-A9rULboSP_3CcR505EaeZllOPstrdtpRQVJ58OZP-cf78QFxvwt6mFobTKxicGR52XGX0j_5QgcEBni2jl8_R3RKxRdLraUGiYmloh3w8txurCjmN3fYUh3Hz_6Bvq-0McH_bOvvajmmUgyng3XkRdwb10HaIE94m1zgtnuJI29RbBkhP4xIJzn3e4SbJUcNkmgl6VmjSXkr4D4nUfwBZPeBeDv62D3uDHz8aiOcVLTYByWeXxETkuMd5RDXdbiLSu5Knq-YjNPMJtEyP8bkdEya3dMpAK3ELCq8PbHdheFlNzfWXG4xv74-FjeFQDW_alssQnsOGKp7Bzo93hM_A99CdVqSQrPaOuJpPlBH9xG7Zjx0JO7nLm2KhgmZlZnJaPyj-j3LGhmePoZcgbKxgl6w_ZJOSBOlYTX-BAYMOeP4fze9HAC9gsysK9BJYg_jTKSpMj1DIYHHqeoiUaS3GYsbwFHxt56mnVzkOvGzeT9DVKXwfp66QFByTy1UxqxR0GytlQ1ytbx1IhEqBGecpxDE9TjPl9F1Fo6pX0yrRgt1GYrv3DXK-tuQV7jRLXf9_1SHsrRf_HG7y6--bvYLt_dnqiT44Gx6_hYUzcxiEjfRc2F7Ole4OAa2Hf1lbN4Nd9L6R_D1kz4A |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgE9IJ5ioYAPcKJRdxO_9oAQ0C4thYoDlXozdmKvttpNln2o9K_x65hxkt32UnHpKZJj5TEej7-xZ-YDeEOz0PXoyL8IWcK5F4nOg0wK7N0NrquUouTk78fy4IR_PRWnG_C3zYWhsMrWJkZDXVQ57ZHvZggc0NgiWtkNTVjEj73Bh-nvhBik6KS1pdOoVeTIX5yj-zZ_f7iHY_02TQf7Pz8fJA3DQJLzfrpI-oIH6XtEBx4y53wQ3nIlnQ4OgZIX-LWC81D0uM1yLbjsEjmv0lYXUtIeID73FtxWVMWdstQHX1pd5uQpta7JWR3BR7S4xHVH2dtdIXSTw1Nn8hGPeYILJvr2_Z5IsivrZKQTuIKBV8e2W3B3WU7txbkdjy-tjIMHcL-BtOxjrYMPYcOXj2DrUqHDxxD20ZLUSZKsCozqmUyWE7ziAuzGnsVo3OXMs1HJcjtz2K0YVX9GhWdDO8fWsxgxVjIK0x-ySYwA9ayhvMCGyIM9fwInNyL_p7BZVqV_BixD5GmVk7ZAkGXRLQxcow5aRx6YdbwD71p5mmldyMOsSzaT9A1K30Tpm6wDn0jkq55UhDs2VLOhaea0SaVCDEAl8pTn6Jhq9PZDH_GnDkoGZTuw3Q6YaSzD3Kz1uAM77SCub1_3STurgf6PP3h-_ctfwx2cPubb4fHRC7iXEqlxDEXfhs3FbOlfItJauFdRpRn8uuk59A98FzF6 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB7RcKg4tJRSEUSrPfRWDEm8D-cIKBFCAnFoJDitdu1dFEicKI7Vll_fmc0mPIQQnGytV5Z3HppvvTPfAPwkL7RtOvIvfJpw7kSS5V4mBc5uedtSSlFx8vmFPB3wsytxFWlyqBbm2fn9YUUlvvimDuVKdNsiST_AuhSIuxuwPri4PLqm7nFUD90SoRlnvJcyVsi8_JInUSiQ9T9BmKtD0Q34WJdT8--PGY0exZ3-50UDoyrQFVK6yd1BPbcH-f0zMse3LWkTPkX4yY4W9vIF1ly5BRuPSAm_gu-h1y8KGtnEM-IeGddjvGKwtCPHQuZsPXNsWLLczCxOK4aTv8PCsRtT4ehtyO4qGaXU37BxyNZ0LLanwIHQs7rahkG_9_vkNIndGJKcdzvzpCu4l65NrdN9aq3zwhmupM28RVDpBGpWcO6LNjdpngkuW9TIWGUmK6Sk_6XfoFFOSrcDLEWUaJSVpkBAZHAL53mG9mIs7ZaM5U34tdSOni5IN_QDvTJJT6P0dJCeTptwTApczSTC7DCAQtfR_3RHKozXRGenHMdNZIY7c99FrJh5Jb0yTdhbql9HL650imAVAzwi5CbsL03i4fFrn7S_Mps3rGD3fdP3oDGf1e47oqG5_RHd4D_SJ_xh |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+minimum+miscible+pressure+in+carbon+dioxide+gas+injection+using+machine+learning+methods&rft.jtitle=Journal+of+petroleum+exploration+and+production+technology&rft.au=Akbari%2C+Ali&rft.au=Ranjbar%2C+Ali&rft.au=Kazemzadeh%2C+Yousef&rft.au=Mohammadinia%2C+Fatemeh&rft.date=2025-02-01&rft.pub=Springer+International+Publishing&rft.issn=2190-0558&rft.eissn=2190-0566&rft.volume=15&rft.issue=2&rft_id=info:doi/10.1007%2Fs13202-024-01915-3&rft.externalDocID=10_1007_s13202_024_01915_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2190-0558&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2190-0558&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2190-0558&client=summon |