Estimation of minimum miscible pressure in carbon dioxide gas injection using machine learning methods

In recent decades, Enhanced Oil Recovery (EOR) has emerged as a primary method to increase reservoir oil recovery rates. One of these methods involves injecting miscible and immiscible gases. In miscible gas injection, the minimum miscibility pressure (MMP) is crucial, representing the critical pres...

Full description

Saved in:
Bibliographic Details
Published inJournal of petroleum exploration and production technology Vol. 15; no. 2; pp. 25 - 24
Main Authors Akbari, Ali, Ranjbar, Ali, Kazemzadeh, Yousef, Mohammadinia, Fatemeh, Borhani, Amirjavad
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.02.2025
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text
ISSN2190-0558
2190-0566
2190-0566
DOI10.1007/s13202-024-01915-3

Cover

Abstract In recent decades, Enhanced Oil Recovery (EOR) has emerged as a primary method to increase reservoir oil recovery rates. One of these methods involves injecting miscible and immiscible gases. In miscible gas injection, the minimum miscibility pressure (MMP) is crucial, representing the critical pressure at which these gases can mix effectively with the oil phase. However, accurately determining the minimum pressure required for CO 2 to miscible combine with the oil phase has always been a significant challenge. Various methods, including slim-tube tests, analytical models, and empirical correlations, are employed to determine MMP. Nevertheless, experimental measurements are time-consuming and costly. At the same time, mathematical models may yield different estimations. This study introduces an innovative approach using machine learning (ML) techniques to determine CO 2 -MMP during CO 2 flooding. These methods produce reliable models, and advanced CO 2 -MMP techniques have demonstrated improved performance, significantly reducing time and costs. Furthermore, ML algorithms such as Artificial Neural Networks (ANN), Bayesian networks, Random Forest (RF), Support Vector Machine (SVM), LSBoost, and Linear Regression (LR) were employed to estimate MMP. Input data for these algorithms include CO 2 , H 2 S, N 2 , C 1 , C 2 , C 3 , C 4 , C 5 , C 6 , C 7+ , MW C5+ , MW C7+ , T, alongside vol/int. Comparative analysis with experimental MMP data revealed that the Glaso method achieves an accuracy of 0.8749, among the most precise methods, while SVM performed best among the mentioned ML algorithms with an accuracy of 0.986 and RMSE of 0.027.
AbstractList In recent decades, Enhanced Oil Recovery (EOR) has emerged as a primary method to increase reservoir oil recovery rates. One of these methods involves injecting miscible and immiscible gases. In miscible gas injection, the minimum miscibility pressure (MMP) is crucial, representing the critical pressure at which these gases can mix effectively with the oil phase. However, accurately determining the minimum pressure required for CO 2 to miscible combine with the oil phase has always been a significant challenge. Various methods, including slim-tube tests, analytical models, and empirical correlations, are employed to determine MMP. Nevertheless, experimental measurements are time-consuming and costly. At the same time, mathematical models may yield different estimations. This study introduces an innovative approach using machine learning (ML) techniques to determine CO 2 -MMP during CO 2 flooding. These methods produce reliable models, and advanced CO 2 -MMP techniques have demonstrated improved performance, significantly reducing time and costs. Furthermore, ML algorithms such as Artificial Neural Networks (ANN), Bayesian networks, Random Forest (RF), Support Vector Machine (SVM), LSBoost, and Linear Regression (LR) were employed to estimate MMP. Input data for these algorithms include CO 2 , H 2 S, N 2 , C 1 , C 2 , C 3 , C 4 , C 5 , C 6 , C 7+ , MW C5+ , MW C7+ , T, alongside vol/int. Comparative analysis with experimental MMP data revealed that the Glaso method achieves an accuracy of 0.8749, among the most precise methods, while SVM performed best among the mentioned ML algorithms with an accuracy of 0.986 and RMSE of 0.027.
In recent decades, Enhanced Oil Recovery (EOR) has emerged as a primary method to increase reservoir oil recovery rates. One of these methods involves injecting miscible and immiscible gases. In miscible gas injection, the minimum miscibility pressure (MMP) is crucial, representing the critical pressure at which these gases can mix effectively with the oil phase. However, accurately determining the minimum pressure required for CO2 to miscible combine with the oil phase has always been a significant challenge. Various methods, including slim-tube tests, analytical models, and empirical correlations, are employed to determine MMP. Nevertheless, experimental measurements are time-consuming and costly. At the same time, mathematical models may yield different estimations. This study introduces an innovative approach using machine learning (ML) techniques to determine CO2-MMP during CO2 flooding. These methods produce reliable models, and advanced CO2-MMP techniques have demonstrated improved performance, significantly reducing time and costs. Furthermore, ML algorithms such as Artificial Neural Networks (ANN), Bayesian networks, Random Forest (RF), Support Vector Machine (SVM), LSBoost, and Linear Regression (LR) were employed to estimate MMP. Input data for these algorithms include CO2, H2S, N2, C1, C2, C3, C4, C5, C6, C7+, MWC5+, MWC7+, T, alongside vol/int. Comparative analysis with experimental MMP data revealed that the Glaso method achieves an accuracy of 0.8749, among the most precise methods, while SVM performed best among the mentioned ML algorithms with an accuracy of 0.986 and RMSE of 0.027.
Abstract In recent decades, Enhanced Oil Recovery (EOR) has emerged as a primary method to increase reservoir oil recovery rates. One of these methods involves injecting miscible and immiscible gases. In miscible gas injection, the minimum miscibility pressure (MMP) is crucial, representing the critical pressure at which these gases can mix effectively with the oil phase. However, accurately determining the minimum pressure required for CO2 to miscible combine with the oil phase has always been a significant challenge. Various methods, including slim-tube tests, analytical models, and empirical correlations, are employed to determine MMP. Nevertheless, experimental measurements are time-consuming and costly. At the same time, mathematical models may yield different estimations. This study introduces an innovative approach using machine learning (ML) techniques to determine CO2-MMP during CO2 flooding. These methods produce reliable models, and advanced CO2-MMP techniques have demonstrated improved performance, significantly reducing time and costs. Furthermore, ML algorithms such as Artificial Neural Networks (ANN), Bayesian networks, Random Forest (RF), Support Vector Machine (SVM), LSBoost, and Linear Regression (LR) were employed to estimate MMP. Input data for these algorithms include CO2, H2S, N2, C1, C2, C3, C4, C5, C6, C7+, MWC5+, MWC7+, T, alongside vol/int. Comparative analysis with experimental MMP data revealed that the Glaso method achieves an accuracy of 0.8749, among the most precise methods, while SVM performed best among the mentioned ML algorithms with an accuracy of 0.986 and RMSE of 0.027.
ArticleNumber 25
Author Ranjbar, Ali
Akbari, Ali
Kazemzadeh, Yousef
Borhani, Amirjavad
Mohammadinia, Fatemeh
Author_xml – sequence: 1
  givenname: Ali
  surname: Akbari
  fullname: Akbari, Ali
  organization: Department of Petroleum Engineering, Faculty of Petroleum, Gas, and Petrochemical Engineering, Persian Gulf University
– sequence: 2
  givenname: Ali
  surname: Ranjbar
  fullname: Ranjbar, Ali
  organization: Department of Petroleum Engineering, Faculty of Petroleum, Gas, and Petrochemical Engineering, Persian Gulf University
– sequence: 3
  givenname: Yousef
  orcidid: 0000-0002-5021-1856
  surname: Kazemzadeh
  fullname: Kazemzadeh, Yousef
  email: yusefkazemzade@yahoo.com
  organization: Department of Petroleum Engineering, Faculty of Petroleum, Gas, and Petrochemical Engineering, Persian Gulf University
– sequence: 4
  givenname: Fatemeh
  surname: Mohammadinia
  fullname: Mohammadinia, Fatemeh
  organization: Department of Petroleum Engineering, Faculty of Petroleum, Gas, and Petrochemical Engineering, Persian Gulf University
– sequence: 5
  givenname: Amirjavad
  surname: Borhani
  fullname: Borhani, Amirjavad
  organization: Department of Petroleum Engineering, Faculty of Petroleum, Gas, and Petrochemical Engineering, Persian Gulf University
BookMark eNqNkEtLxTAQhYMo-PwDrgquq3knXYr4AsGNrkPaTq65tMk1aVH_vfFWdCeuZjic8zFzDtFuiAEQOiX4nGCsLjJhFNMaU15j0hBRsx10QEmDayyk3P3Zhd5HJzn7FnPKsWooO0DuOk9-tJOPoYquGn3w4zyWmTvfDlBtEuQ8J6h8qDqb2mLrfXz3PVQrm4u6hm4bnrMPq2q03YsPUA1gU9gKML3EPh-jPWeHDCff8wg931w_Xd3VD4-391eXD3XHGzrVjeBOApGCCMfaFpwAy5VstWuJwCCwawXnrifcsk4LLjHVmiltdS9lgzE7QvcLt492bTapvJY-TLTebIWYVsamyXcDGCoV44QS0ijghHPNNHMNZ0I7JZ2yhcUW1hw29uPNDsMPkGDz1bxZmjelebNt3rCSOltSmxRfZ8iTWcc5hfK0YUQyJqlSvLjo4upSzDmB-x_6-6BczGEF6Rf9R-oTagajDA
Cites_doi 10.2523/89359-MS
10.1016/j.ejpe.2014.08.002
10.1016/j.fuel.2015.08.075
10.2118/12893-PA
10.1016/j.fuel.2013.04.036
10.2118/169715-MS
10.2118/200326-MS
10.1080/15567036.2015.1089338
10.2118/4736-PA
10.3390/su131810010
10.2118/200326-PA
10.2118/35385-PA
10.2118/179673-MS
10.1061/(ASCE)0887-3801(2001)15:3(208)
10.1021/ci034160g
10.1016/j.compgeo.2007.06.014
10.2118/2543-PA
10.2118/595-PA
10.2118/165966-MS
10.2118/12648-PA
10.2118/521-G
10.1021/ie9803016
10.2118/89-04-03
10.1016/j.petrol.2006.12.001
10.2118/75806-PA
10.1093/ecco-jcc/jjaa098
10.2118/90-06-06
10.1016/j.fuel.2016.05.124
10.1016/j.fuel.2022.127194
10.1016/j.pecs.2008.05.001
10.2118/30771-PA
10.2118/211424-MS
10.1016/S0920-4105(02)00312-1
10.1016/j.jcou.2016.11.004
10.1016/j.ptlrs.2022.08.001
10.1016/j.fuel.2016.02.021
10.1021/ef940212f
10.2118/7477-PA
10.1016/j.geoderma.2014.09.019
10.2516/ogst/2019028
10.2118/74367-MS
10.2118/11959-PA
10.2118/84-05-12
10.1016/S0378-3812(97)00180-5
10.1016/j.fuel.2017.10.121
10.1016/j.fuel.2020.120048
10.2118/11125-PA
10.5419/bjpg2023-0012
10.47852/bonviewJDSIS42022111
ContentType Journal Article
Copyright The Author(s) 2025
Copyright Springer Nature B.V. Feb 2025
Copyright_xml – notice: The Author(s) 2025
– notice: Copyright Springer Nature B.V. Feb 2025
DBID C6C
AAYXX
CITATION
3V.
7TN
7WY
7WZ
7XB
87Z
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BEZIV
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
F1W
FR3
FRNLG
F~G
H96
HCIFZ
K60
K6~
KR7
L.-
L.G
L6V
M0C
M7S
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
ADTOC
UNPAY
DOA
DOI 10.1007/s13202-024-01915-3
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Oceanic Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection (via ProQuest SciTech Premium Collection)
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection (via ProQuest)
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
ABI/INFORM Global
Engineering Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Engineering Collection
Business Premium Collection
Civil Engineering Abstracts
ABI/INFORM Global
Engineering Database
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature Open Access Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Engineering
EISSN 2190-0566
EndPage 24
ExternalDocumentID oai_doaj_org_article_26734121197e41448383f94358f76f7a
10.1007/s13202-024-01915-3
10_1007_s13202_024_01915_3
GroupedDBID -A0
0R~
2VQ
3V.
4.4
40G
5VS
7WY
8FE
8FG
8FH
8FL
AAFWJ
AAJSJ
AAKKN
ABEEZ
ABJCF
ABUWG
ACACY
ACGFS
ACIWK
ACULB
ADBBV
ADDVE
ADINQ
AEUYN
AFGXO
AFKRA
AFPKN
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARCSS
BCNDV
BENPR
BEZIV
BGLVJ
BHPHI
BKSAR
BPHCQ
C24
C6C
CCPQU
DWQXO
EBLON
EBS
EJD
FRNLG
GROUPED_DOAJ
HCIFZ
HH5
HZ~
IAO
IPNFZ
ISR
ITC
K60
K6~
KQ8
L6V
L8X
LK5
M0C
M7R
M7S
M~E
N95
O9-
OK1
PCBAR
PIMPY
PQBIZ
PQBZA
PQQKQ
PROAC
PTHSS
RIG
RNS
RSV
SEV
SOJ
TUS
U2A
AASML
AAYXX
ABJIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7TN
7XB
8FD
8FK
AZQEC
F1W
FR3
H96
KR7
L.-
L.G
PKEHL
PQEST
PQUKI
PRINS
Q9U
ADTOC
UNPAY
ID FETCH-LOGICAL-c492t-954f6e16515f3bbef5ea476b8fb150e50fb544fd14a3c85460288378a8d669003
IEDL.DBID UNPAY
ISSN 2190-0558
2190-0566
IngestDate Tue Oct 14 18:56:56 EDT 2025
Sun Sep 07 10:48:17 EDT 2025
Sat Oct 18 22:52:31 EDT 2025
Wed Oct 01 06:52:28 EDT 2025
Wed Feb 26 08:56:18 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 2
Keywords Experimental methods
)
Machine learning (ML)
Gas injection
Miscible pressure (MMP)
Carbon dioxide gas (CO
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c492t-954f6e16515f3bbef5ea476b8fb150e50fb544fd14a3c85460288378a8d669003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5021-1856
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1007/s13202-024-01915-3
PQID 3163362774
PQPubID 2034707
PageCount 24
ParticipantIDs doaj_primary_oai_doaj_org_article_26734121197e41448383f94358f76f7a
unpaywall_primary_10_1007_s13202_024_01915_3
proquest_journals_3163362774
crossref_primary_10_1007_s13202_024_01915_3
springer_journals_10_1007_s13202_024_01915_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250200
2025-02-00
20250201
2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 2
  year: 2025
  text: 20250200
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Journal of petroleum exploration and production technology
PublicationTitleAbbrev J Petrol Explor Prod Technol
PublicationYear 2025
Publisher Springer International Publishing
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: SpringerOpen
References RJ Sen (1915_CR48) 2008; 34
J-N Jaubert (1915_CR29) 1998; 37
S Heidary (1915_CR24) 2016; 38
F Orr (1915_CR40) 1984; 24
R Wu (1915_CR61) 1990
W Cui (1915_CR10) 2023; 8
K Zhang (1915_CR66) 2016; 175
AM Elsharkawy (1915_CR18) 1996; 10
1915_CR65
1915_CR22
R Alston (1915_CR3) 1985; 25
R Czarnota (1915_CR11) 2017; 17
1915_CR26
H Wang (1915_CR58) 2021; 13
1915_CR2
H Ramsay Jr (1915_CR41) 1964; 16
Y Huang (1915_CR28) 2003; 37
1915_CR9
DL Flock (1915_CR20) 1984
1915_CR8
H Stone (1915_CR53) 1956; 207
A Shokrollahi (1915_CR50) 2013; 112
1915_CR39
Ø Glasø (1915_CR21) 1985; 25
H Chen (1915_CR7) 2021; 290
PJ Samui (1915_CR46) 2008; 35
W Yellig (1915_CR64) 1980; 32
DNJF Rao (1915_CR43) 1997; 139
EME-MJ Shokir (1915_CR49) 2007; 58
V Svetnik (1915_CR54) 2003; 43
J Wang (1915_CR59) 2015; 162
1915_CR32
B Dindoruk (1915_CR16) 1997; 2
1915_CR36
LH Hamel (1915_CR23) 2011
A Rostami (1915_CR44) 2018; 214
H Sebastian (1915_CR47) 1985; 37
1915_CR51
JJ Taber (1915_CR55) 1997; 12
V Karamnia (1915_CR31) 2021; 10
L Messadeg (1915_CR38) 2020; 14
A Bigdeli (1915_CR5) 2024
CW Brungard (1915_CR6) 2015; 239
1915_CR60
R Johns (1915_CR30) 2002; 5
YB Dibike (1915_CR14) 2001; 15
L Holm (1915_CR25) 1974; 26
T Randall (1915_CR42) 1989
L Yarborough (1915_CR62) 1970; 10
AM Maklavani (1915_CR37) 2010; 4
C Huang (1915_CR27) 2023; 337
1915_CR17
U Sinha (1915_CR52) 2021; 26
JC von Hohendorff Filho (1915_CR57) 2023; 17
1915_CR12
AH Fath (1915_CR19) 2014; 23
1915_CR13
M Abdurrahman (1915_CR1) 2019; 74
X-Q Bian (1915_CR4) 2016; 182
References_xml – ident: 1915_CR60
– ident: 1915_CR65
  doi: 10.2523/89359-MS
– volume: 23
  start-page: 255
  issue: 3
  year: 2014
  ident: 1915_CR19
  publication-title: Egypt J Pet
  doi: 10.1016/j.ejpe.2014.08.002
– volume: 162
  start-page: 55
  year: 2015
  ident: 1915_CR59
  publication-title: Fuel
  doi: 10.1016/j.fuel.2015.08.075
– ident: 1915_CR9
– volume: 25
  start-page: 927
  issue: 06
  year: 1985
  ident: 1915_CR21
  publication-title: Soc Pet Eng J
  doi: 10.2118/12893-PA
– volume: 112
  start-page: 375
  year: 2013
  ident: 1915_CR50
  publication-title: Feul
  doi: 10.1016/j.fuel.2013.04.036
– ident: 1915_CR13
  doi: 10.2118/169715-MS
– ident: 1915_CR51
  doi: 10.2118/200326-MS
– volume: 38
  start-page: 2217
  issue: 15
  year: 2016
  ident: 1915_CR24
  publication-title: Energy Sour Part A Recov Util Environ Effect
  doi: 10.1080/15567036.2015.1089338
– volume: 26
  start-page: 1427
  issue: 12
  year: 1974
  ident: 1915_CR25
  publication-title: J Pet Technol
  doi: 10.2118/4736-PA
– volume: 13
  start-page: 10010
  issue: 18
  year: 2021
  ident: 1915_CR58
  publication-title: Sustainability
  doi: 10.3390/su131810010
– volume: 26
  start-page: 1666
  issue: 04
  year: 2021
  ident: 1915_CR52
  publication-title: SPE J
  doi: 10.2118/200326-PA
– volume: 12
  start-page: 189
  issue: 03
  year: 1997
  ident: 1915_CR55
  publication-title: SPE Reservoir Eng
  doi: 10.2118/35385-PA
– ident: 1915_CR2
  doi: 10.2118/179673-MS
– volume: 15
  start-page: 208
  issue: 3
  year: 2001
  ident: 1915_CR14
  publication-title: J Comput Civ Eng
  doi: 10.1061/(ASCE)0887-3801(2001)15:3(208)
– volume: 43
  start-page: 1947
  issue: 6
  year: 2003
  ident: 1915_CR54
  publication-title: J Chem Inf Comput Sci
  doi: 10.1021/ci034160g
– volume: 35
  start-page: 419
  issue: 3
  year: 2008
  ident: 1915_CR46
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2007.06.014
– volume: 10
  start-page: 298
  issue: 03
  year: 1970
  ident: 1915_CR62
  publication-title: Soc Pet Eng J
  doi: 10.2118/2543-PA
– volume: 16
  start-page: 25
  issue: 01
  year: 1964
  ident: 1915_CR41
  publication-title: J Pet Technol
  doi: 10.2118/595-PA
– ident: 1915_CR17
  doi: 10.2118/165966-MS
– ident: 1915_CR8
– volume: 37
  start-page: 2076
  issue: 11
  year: 1985
  ident: 1915_CR47
  publication-title: J Pet Technol
  doi: 10.2118/12648-PA
– volume-title: Knowledge discovery with support vector machines
  year: 2011
  ident: 1915_CR23
– volume: 207
  start-page: 105
  issue: 01
  year: 1956
  ident: 1915_CR53
  publication-title: Trans AIME
  doi: 10.2118/521-G
– volume: 37
  start-page: 4860
  issue: 12
  year: 1998
  ident: 1915_CR29
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie9803016
– year: 1989
  ident: 1915_CR42
  publication-title: J Can Pet Technol
  doi: 10.2118/89-04-03
– volume: 58
  start-page: 173
  issue: 1–2
  year: 2007
  ident: 1915_CR49
  publication-title: J Pet Sci Eng
  doi: 10.1016/j.petrol.2006.12.001
– volume: 5
  start-page: 4
  issue: 01
  year: 2002
  ident: 1915_CR30
  publication-title: SPE Reservoir Eval Eng
  doi: 10.2118/75806-PA
– volume: 14
  start-page: 1524
  issue: 11
  year: 2020
  ident: 1915_CR38
  publication-title: J Crohn Colit
  doi: 10.1093/ecco-jcc/jjaa098
– year: 1990
  ident: 1915_CR61
  publication-title: J Can Pet Technol
  doi: 10.2118/90-06-06
– volume: 4
  start-page: 11
  issue: 1
  year: 2010
  ident: 1915_CR37
  publication-title: Braz J Pet Gas
– volume: 182
  start-page: 550
  year: 2016
  ident: 1915_CR4
  publication-title: Feul
  doi: 10.1016/j.fuel.2016.05.124
– volume: 337
  year: 2023
  ident: 1915_CR27
  publication-title: Feul
  doi: 10.1016/j.fuel.2022.127194
– volume: 34
  start-page: 714
  issue: 6
  year: 2008
  ident: 1915_CR48
  publication-title: Prog Energy Combust Sci
  doi: 10.1016/j.pecs.2008.05.001
– volume: 2
  start-page: 268
  issue: 03
  year: 1997
  ident: 1915_CR16
  publication-title: SPE J
  doi: 10.2118/30771-PA
– ident: 1915_CR22
  doi: 10.2118/211424-MS
– volume: 37
  start-page: 83
  issue: 1-2
  year: 2003
  ident: 1915_CR28
  publication-title: J Pet Sci Eng
  doi: 10.1016/S0920-4105(02)00312-1
– ident: 1915_CR36
– volume: 17
  start-page: 32
  year: 2017
  ident: 1915_CR11
  publication-title: J Co2 Util
  doi: 10.1016/j.jcou.2016.11.004
– volume: 8
  start-page: 1
  issue: 1
  year: 2023
  ident: 1915_CR10
  publication-title: Pet Res
  doi: 10.1016/j.ptlrs.2022.08.001
– volume: 175
  start-page: 172
  year: 2016
  ident: 1915_CR66
  publication-title: Fuel
  doi: 10.1016/j.fuel.2016.02.021
– ident: 1915_CR12
  doi: 10.2118/169715-MS
– ident: 1915_CR26
– volume: 10
  start-page: 443
  issue: 2
  year: 1996
  ident: 1915_CR18
  publication-title: Energy Fuels
  doi: 10.1021/ef940212f
– volume: 32
  start-page: 160
  issue: 01
  year: 1980
  ident: 1915_CR64
  publication-title: J Pet Technol
  doi: 10.2118/7477-PA
– volume: 239
  start-page: 68
  year: 2015
  ident: 1915_CR6
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.09.019
– volume: 74
  start-page: 55
  year: 2019
  ident: 1915_CR1
  publication-title: Oil Gas Sci Technol-Revue d’IFP Energies Nouvelles
  doi: 10.2516/ogst/2019028
– ident: 1915_CR39
  doi: 10.2118/74367-MS
– volume: 10
  start-page: 107
  issue: 1
  year: 2021
  ident: 1915_CR31
  publication-title: J Sci Technol
– volume: 25
  start-page: 268
  issue: 02
  year: 1985
  ident: 1915_CR3
  publication-title: Soc Pet Eng J
  doi: 10.2118/11959-PA
– year: 1984
  ident: 1915_CR20
  publication-title: J Can Pet Technol
  doi: 10.2118/84-05-12
– ident: 1915_CR32
– volume: 139
  start-page: 311
  issue: 1–2
  year: 1997
  ident: 1915_CR43
  publication-title: Fluid Phase Equilib
  doi: 10.1016/S0378-3812(97)00180-5
– volume: 214
  start-page: 73
  year: 2018
  ident: 1915_CR44
  publication-title: Feul
  doi: 10.1016/j.fuel.2017.10.121
– volume: 290
  year: 2021
  ident: 1915_CR7
  publication-title: Feul
  doi: 10.1016/j.fuel.2020.120048
– volume: 24
  start-page: 485
  issue: 05
  year: 1984
  ident: 1915_CR40
  publication-title: Soc Pet Eng J
  doi: 10.2118/11125-PA
– volume: 17
  start-page: 179
  issue: 4
  year: 2023
  ident: 1915_CR57
  publication-title: Braz J Pet Gas
  doi: 10.5419/bjpg2023-0012
– year: 2024
  ident: 1915_CR5
  publication-title: J Data Sci Intell Syst.
  doi: 10.47852/bonviewJDSIS42022111
SSID ssib042407923
ssj0000941014
Score 2.001339
Snippet In recent decades, Enhanced Oil Recovery (EOR) has emerged as a primary method to increase reservoir oil recovery rates. One of these methods involves...
Abstract In recent decades, Enhanced Oil Recovery (EOR) has emerged as a primary method to increase reservoir oil recovery rates. One of these methods involves...
SourceID doaj
unpaywall
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 25
SubjectTerms Accuracy
Algorithms
Artificial neural networks
Bayesian analysis
Carbon dioxide
Carbon dioxide gas (CO2)
Comparative analysis
Critical pressure
Earth and Environmental Science
Earth Sciences
Energy Systems
Enhanced oil recovery
Experimental methods
Gas injection
Geology
Hydrogen sulfide
Industrial and Production Engineering
Industrial Chemistry/Chemical Engineering
Injection
Machine learning
Machine learning (ML)
Mathematical models
Miscibility
Miscible pressure (MMP)
Monitoring/Environmental Analysis
Offshore Engineering
Oil recovery
Original Paper - Production Engineering
Pressure
Probability theory
Support vector machines
Time measurement
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQF2BAfIpCQR7YaETa-CsjIBBCggmkbpad2KioTau2EfDvuXPSEhZgYIrkeIjP59y75O49Qs7wFNoe_vLPfRIx5nikMi-iHGbH3sZSSmxOfngUd8_sfsAHDakvrAmr6IErw130hYQXLfKQSccA_StIqXwKQV55KbwM0ChWaSOZAk9imKcsE4PXqn4ORWlRaQ57p2POVd1BU_XRoYp4BOEKMuu0x6PkW5QKZP7fEOjqp-kmWS-Lqfl4M6NRIy7dbpOtGlDSy2ohO2TNFbtks0EzuEf8DZzjqkWRTjxFNpFxOYYrhD87cjTUwpYzR4cFzczMwrR8OHkf5o6-mDmMvoZ6rYJikfwLHYf6S0drwQkYCCrU833yfHvzdH0X1foKUcbS_iJKOfPC9VAM3SfWOs-dYVJY5S3ARMdhrzhjPu8xk2SKMxGjNLFURuVC4BfQA9IqJoU7JDQB3GekFSYHiGMgKfNMgQcYi_mPsaxNzpf21NOKRkN_ESaj9TVYXwfr66RNrtDkq5lIgR0GwDF07Rj6N8dok85yw3R9Luc6AfgJIRswb5t0l5v4dfunR-quNvoPKzj6jxUck40-qg2HGvEOaS1mpTsBCLSwp8HbPwGuF_ey
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LaxsxEB5S59DmUPokTtOiQ2-NqO3Vy4dSkuAQCjWlNJCbkHYl42Dvun7Q5N9nRrtrJ5fQk0EWrD0aab5ZzXwfwGfahb5PV_5FzLgQQXKTR8ULnN2Lvqe1pubkn2N1eSV-XMvrPRi3vTBUVtmeiemgLqqc3pF_zRA44GGLaOX74i8n1Si6XW0lNFwjrVB8SxRjz2B_QMxYHdg_G41__W49TFD-0iYMN3VdHYnVkgId9VT3pDRNZ03dX0fq4hzDGGbcw77k2aPolUj-HyHT7WXqATzflAt398_NZg_i1cUreNkATXZae8Zr2AvlGzh4QD_4FuII93fdusiqyIhlZL6Z4yeGRT8LLNXIbpaBTUuWu6XHacW0up0WgU3cCkdvUh1Xyah4fsLmqS4zsEaIAgeSOvXqHVxdjP6cX_JGd4HnYjhY86EUUYU-iaTHzPsQZXBCK2-iR_gYJK6hFCIWfeGy3EiheiRZrI0zhVL0ZvQ9dMqqDIfAMsSDTnvlCoQ-DpO1KAx6hvOUFzkvuvCltadd1PQadkekTNa3aH2brG-zLpyRybcziRo7DVTLiW12mh0ojZGZiOt0EJguGszB4xBRoYlaRe26cNwumG3268ruvKsLJ-0i7r5-6iedbBf6P_7B0dMP_wAvBqQvnKrCj6GzXm7CRwQ9a_-p8eR7dxH4EQ
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB58IOpBfGJ9kYM3XWi7efWoUhVBTxa8haSblEq7lT5Q_70z6W5bQURPC9kQdjMzO99sZuYDOCcrdDU68s9CmnDuRaLbQSYZzq4GV1VKUXHy45O8b_GHF_FSFIWNymz38kgyfqnnxW5E9Z2gT8Hwt1ETSboMq4LaeaEWt-pXpRZxilHKoOB1mjtHhLTEMkd101UhdFE98_Oy3zxUbOT_DX3ODkw3YX2Sv9nPd9vrLfik223YKsAku5pKfweWfL4LmwstBndh7S5S937uQWiiNU8LFdkgMOop0p_08YpO0PU8ixmxk6Fn3Zy17dDhtKw7-OhmnnXsCEdfY9ZWzihVvsP6MQvTs4J2AgciF_VoH1q3zeeb-6RgWUjavFEfJw3Bg_Q1okQPqXM-CG-5kk4Hh2DRC5SY4DxkNW7TthZcVomgWGmrMynpP-gBrOSD3B8CSxH9WeWkzRDoWAzNAteoB9ZRFGQdr8BFubPmbdpMw8zbJpMcDMrBRDmYtALXtPmzmdQIOw4Mhh1T2JWpS4V-mNrUKc8xONQYcYcGYkAdlAzKVuCkFJ0prHNkUgSh6LgR-VbgshTn_PZvj3Q5E_kf3uDof6sfw0ad2IVjTvgJrIyHE3-KkGfszqKGfwEuLPFN
  priority: 102
  providerName: Springer Nature
Title Estimation of minimum miscible pressure in carbon dioxide gas injection using machine learning methods
URI https://link.springer.com/article/10.1007/s13202-024-01915-3
https://www.proquest.com/docview/3163362774
https://doi.org/10.1007/s13202-024-01915-3
https://doaj.org/article/26734121197e41448383f94358f76f7a
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 2190-0566
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000941014
  issn: 2190-0566
  databaseCode: HH5
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2190-0566
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000941014
  issn: 2190-0566
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2190-0566
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000941014
  issn: 2190-0566
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2190-0566
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000941014
  issn: 2190-0566
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2190-0566
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000941014
  issn: 2190-0566
  databaseCode: BENPR
  dateStart: 20250101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2190-0566
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000941014
  issn: 2190-0566
  databaseCode: 8FG
  dateStart: 20121001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 2190-0566
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000941014
  issn: 2190-0566
  databaseCode: AAJSJ
  dateStart: 20110501
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature Open Access Journals
  customDbUrl:
  eissn: 2190-0566
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000941014
  issn: 2190-0566
  databaseCode: C6C
  dateStart: 20110501
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Open Access Hybrid - NESLI2 2011-2012
  customDbUrl:
  eissn: 2190-0566
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000941014
  issn: 2190-0566
  databaseCode: 40G
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://link.springer.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 2190-0566
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000941014
  issn: 2190-0566
  databaseCode: U2A
  dateStart: 20110501
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 2190-0566
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000941014
  issn: 2190-0566
  databaseCode: C24
  dateStart: 20110501
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swEBdr8jD60H3TjLboYW-rO8fWVx7TkKwEFsq2QPckJFsq2RKnxDFr99f3TnbSD8boXk5GFsb6OO4n6e53hHxALbRdvPLPfRox5nikMi-iHFrH3sZSSgxO_jIRZ1M2vuAXDU0OxsI8ur__VGKIL3wpQV-JXpdH6Q5pCw64u0Xa08l5_wdmj8N46JiHZJzNsxBNhMzfP_LACgWy_gcIc3spukueV8WVuflt5vN7dmf0ok5gVAa6QnQ3-XVSre1J9ucRmePTuvSS7DXwk_br9fKKPHPFa7J7j5TwDfFD0Po6oJEuPUXukUW1gBKMpZ07Gjxnq5Wjs4JmZmWhWT5bXs9yRy9NCbU_g3dXQdGl_pIugremo016CqgIOavLt2Q6Gn4fnEVNNoYoY71kHfU488J1MXW6T611njvDpLDKWwCVjsPMcsZ83mUmzRRnIsZExlIZlQuB56XvSKtYFm6f0BRQopFWmBwAkYEtnGcK1ouxuFsylnXIx83s6KuadEPf0Svj6GkYPR1GT6cdcooTuG2JhNmhAgZdN_qnEyHBXiOdnXQMNpEKdua-B1hReSm8NB1ysJl-3WhxqVMAq2DgASF3yPFmSdy9_tcvHW-XzRN68P7_mh-Q1npVuUNAQ2t7RHZY_BmkGoFs9_vjb2MoT4eT869QO0gYSjE4CqcNIKcJyFp1bgHauATN
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9lB6QDxFoMAe4EQtEnsfzqFCFFKltI0QaqXell17N0qV2CEPlf45fhszaztpLxWXniJtVn7MzM5-452ZD-A9rULboSP_3CcR505EaeZllOPstrdtpRQVJ58OZP-cf78QFxvwt6mFobTKxicGR52XGX0j_5QgcEBni2jl8_R3RKxRdLraUGiYmloh3w8txurCjmN3fYUh3Hz_6Bvq-0McH_bOvvajmmUgyng3XkRdwb10HaIE94m1zgtnuJI29RbBkhP4xIJzn3e4SbJUcNkmgl6VmjSXkr4D4nUfwBZPeBeDv62D3uDHz8aiOcVLTYByWeXxETkuMd5RDXdbiLSu5Knq-YjNPMJtEyP8bkdEya3dMpAK3ELCq8PbHdheFlNzfWXG4xv74-FjeFQDW_alssQnsOGKp7Bzo93hM_A99CdVqSQrPaOuJpPlBH9xG7Zjx0JO7nLm2KhgmZlZnJaPyj-j3LGhmePoZcgbKxgl6w_ZJOSBOlYTX-BAYMOeP4fze9HAC9gsysK9BJYg_jTKSpMj1DIYHHqeoiUaS3GYsbwFHxt56mnVzkOvGzeT9DVKXwfp66QFByTy1UxqxR0GytlQ1ytbx1IhEqBGecpxDE9TjPl9F1Fo6pX0yrRgt1GYrv3DXK-tuQV7jRLXf9_1SHsrRf_HG7y6--bvYLt_dnqiT44Gx6_hYUzcxiEjfRc2F7Ole4OAa2Hf1lbN4Nd9L6R_D1kz4A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgE9IJ5ioYAPcKJRdxO_9oAQ0C4thYoDlXozdmKvttpNln2o9K_x65hxkt32UnHpKZJj5TEej7-xZ-YDeEOz0PXoyL8IWcK5F4nOg0wK7N0NrquUouTk78fy4IR_PRWnG_C3zYWhsMrWJkZDXVQ57ZHvZggc0NgiWtkNTVjEj73Bh-nvhBik6KS1pdOoVeTIX5yj-zZ_f7iHY_02TQf7Pz8fJA3DQJLzfrpI-oIH6XtEBx4y53wQ3nIlnQ4OgZIX-LWC81D0uM1yLbjsEjmv0lYXUtIeID73FtxWVMWdstQHX1pd5uQpta7JWR3BR7S4xHVH2dtdIXSTw1Nn8hGPeYILJvr2_Z5IsivrZKQTuIKBV8e2W3B3WU7txbkdjy-tjIMHcL-BtOxjrYMPYcOXj2DrUqHDxxD20ZLUSZKsCozqmUyWE7ziAuzGnsVo3OXMs1HJcjtz2K0YVX9GhWdDO8fWsxgxVjIK0x-ySYwA9ayhvMCGyIM9fwInNyL_p7BZVqV_BixD5GmVk7ZAkGXRLQxcow5aRx6YdbwD71p5mmldyMOsSzaT9A1K30Tpm6wDn0jkq55UhDs2VLOhaea0SaVCDEAl8pTn6Jhq9PZDH_GnDkoGZTuw3Q6YaSzD3Kz1uAM77SCub1_3STurgf6PP3h-_ctfwx2cPubb4fHRC7iXEqlxDEXfhs3FbOlfItJauFdRpRn8uuk59A98FzF6
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB7RcKg4tJRSEUSrPfRWDEm8D-cIKBFCAnFoJDitdu1dFEicKI7Vll_fmc0mPIQQnGytV5Z3HppvvTPfAPwkL7RtOvIvfJpw7kSS5V4mBc5uedtSSlFx8vmFPB3wsytxFWlyqBbm2fn9YUUlvvimDuVKdNsiST_AuhSIuxuwPri4PLqm7nFUD90SoRlnvJcyVsi8_JInUSiQ9T9BmKtD0Q34WJdT8--PGY0exZ3-50UDoyrQFVK6yd1BPbcH-f0zMse3LWkTPkX4yY4W9vIF1ly5BRuPSAm_gu-h1y8KGtnEM-IeGddjvGKwtCPHQuZsPXNsWLLczCxOK4aTv8PCsRtT4ehtyO4qGaXU37BxyNZ0LLanwIHQs7rahkG_9_vkNIndGJKcdzvzpCu4l65NrdN9aq3zwhmupM28RVDpBGpWcO6LNjdpngkuW9TIWGUmK6Sk_6XfoFFOSrcDLEWUaJSVpkBAZHAL53mG9mIs7ZaM5U34tdSOni5IN_QDvTJJT6P0dJCeTptwTApczSTC7DCAQtfR_3RHKozXRGenHMdNZIY7c99FrJh5Jb0yTdhbql9HL650imAVAzwi5CbsL03i4fFrn7S_Mps3rGD3fdP3oDGf1e47oqG5_RHd4D_SJ_xh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+minimum+miscible+pressure+in+carbon+dioxide+gas+injection+using+machine+learning+methods&rft.jtitle=Journal+of+petroleum+exploration+and+production+technology&rft.au=Akbari%2C+Ali&rft.au=Ranjbar%2C+Ali&rft.au=Kazemzadeh%2C+Yousef&rft.au=Mohammadinia%2C+Fatemeh&rft.date=2025-02-01&rft.pub=Springer+International+Publishing&rft.issn=2190-0558&rft.eissn=2190-0566&rft.volume=15&rft.issue=2&rft_id=info:doi/10.1007%2Fs13202-024-01915-3&rft.externalDocID=10_1007_s13202_024_01915_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2190-0558&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2190-0558&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2190-0558&client=summon