High order ghost-cell immersed boundary method for generalized boundary conditions

•High order ghost cell IBM method for scalar transport subject to different boundary conditions.•The accuracy test shows at least second order of accuracy in L1,L2 and L∞ norms of error.•Method tested for several transport and flow scenarios. Flow and reactive transport problems in engineering, medi...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of heat and mass transfer Vol. 137; no. C; pp. 585 - 598
Main Authors Yousefzadeh, Mehrdad, Battiato, Ilenia
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.07.2019
Elsevier BV
Elsevier
Subjects
Online AccessGet full text
ISSN0017-9310
1879-2189
1879-2189
DOI10.1016/j.ijheatmasstransfer.2019.03.061

Cover

Abstract •High order ghost cell IBM method for scalar transport subject to different boundary conditions.•The accuracy test shows at least second order of accuracy in L1,L2 and L∞ norms of error.•Method tested for several transport and flow scenarios. Flow and reactive transport problems in engineering, medical and environmental applications often involve complex geometries. Grid based methods (e.g. finite volume, finite element, etc.) are a vital tool for studying such problems. Cartesian grids are one of the most attractive options as they possess simple discretization stencils and are usually straightforward to generate at roughly no computational cost. The Immersed Boundary Method, a Cartesian based methodology, maintains most of the useful features of structured grids, while it exhibits a great resilience in dealing with complex geometries. These features make it increasingly more attractive to model transport in evolving porous media as the cost of grid generation reduces greatly. Yet, stability issues due to the geometry of the interpolation stencil combined with limited studies on the implementation of Neumann (constant flux) and linear Robin (e.g. reaction) boundary conditions have significantly limited its applicability to transport in complex topologies. We develop a high-order compact Cartesian model based on ghost cell immersed boundary method for incompressible flow and scalar transport subject to different boundary conditions. The accuracy test shows at least second order of accuracy in L1,L2 and L∞ norms of error. The proposed method is capable of accurately capturing the transport physics near the boundaries for Dirichlet, Neumann and Robin boundary conditions. We tested the method for several transport and flow scenarios, including heat transfer close to an immersed object and mass transport over reactive surfaces.
AbstractList •High order ghost cell IBM method for scalar transport subject to different boundary conditions.•The accuracy test shows at least second order of accuracy in L1,L2 and L∞ norms of error.•Method tested for several transport and flow scenarios. Flow and reactive transport problems in engineering, medical and environmental applications often involve complex geometries. Grid based methods (e.g. finite volume, finite element, etc.) are a vital tool for studying such problems. Cartesian grids are one of the most attractive options as they possess simple discretization stencils and are usually straightforward to generate at roughly no computational cost. The Immersed Boundary Method, a Cartesian based methodology, maintains most of the useful features of structured grids, while it exhibits a great resilience in dealing with complex geometries. These features make it increasingly more attractive to model transport in evolving porous media as the cost of grid generation reduces greatly. Yet, stability issues due to the geometry of the interpolation stencil combined with limited studies on the implementation of Neumann (constant flux) and linear Robin (e.g. reaction) boundary conditions have significantly limited its applicability to transport in complex topologies. We develop a high-order compact Cartesian model based on ghost cell immersed boundary method for incompressible flow and scalar transport subject to different boundary conditions. The accuracy test shows at least second order of accuracy in L1,L2 and L∞ norms of error. The proposed method is capable of accurately capturing the transport physics near the boundaries for Dirichlet, Neumann and Robin boundary conditions. We tested the method for several transport and flow scenarios, including heat transfer close to an immersed object and mass transport over reactive surfaces.
Flow and reactive transport problems in engineering, medical and environmental applications often involve complex geometries. Grid based methods (e.g. finite volume, finite element, etc.) are a vital tool for studying such problems. Cartesian grids are one of the most attractive options as they possess simple discretization stencils and are usually straightforward to generate at roughly no computational cost. The Immersed Boundary Method, a Cartesian based methodology, maintains most of the useful features of structured grids, while it exhibits a great resilience in dealing with complex geometries. These features make it increasingly more attractive to model transport in evolving porous media as the cost of grid generation reduces greatly. Yet, stability issues due to the geometry of the interpolation stencil combined with limited studies on the implementation of Neumann (constant flux) and linear Robin (e.g. reaction) boundary conditions have significantly limited its applicability to transport in complex topologies. We develop a high-order compact Cartesian model based on ghost cell immersed boundary method for incompressible flow and scalar transport subject to different boundary conditions. The accuracy test shows at least second order of accuracy in L1, L2 and L∞ norms of error. The proposed method is capable of accurately capturing the transport physics near the boundaries for Dirichlet, Neumann and Robin boundary conditions. We tested the method for several transport and flow scenarios, including heat transfer close to an immersed object and mass transport over reactive surfaces.
Author Battiato, Ilenia
Yousefzadeh, Mehrdad
Author_xml – sequence: 1
  givenname: Mehrdad
  surname: Yousefzadeh
  fullname: Yousefzadeh, Mehrdad
– sequence: 2
  givenname: Ilenia
  surname: Battiato
  fullname: Battiato, Ilenia
  email: ibattiat@stanford.edu
BackLink https://www.osti.gov/biblio/1547484$$D View this record in Osti.gov
BookMark eNqdkMFuFSEUhompibfVd5joxs2MMHAH2Nk0ttU0MTG6Jlw4dJjMwBW4mvr0MpkujG7UFTk5Xz7O_5-jsxADIPSa4I5gMryZOj-NoMuicy5Jh-wgdT0mssO0wwN5gnZEcNn2RMgztMOY8FZSgp-h85yndcRs2KFPt_5-bGKykJr7MebSGpjnxi8LpAy2OcRTsDo9NAuUMdrGxcpBgKRn_-PXvYnB-uJjyM_RU6fnDC8e3wv05frd56vb9u7jzfury7vWMNmXVjJijXXSaesw53tgkmgBB2EdEa6XYuB7SSkzlNqD4MCtwFZYPmiGYRAHeoEuN-8pHPXDdz3P6pj8Uo9RBKu1JDWpP0tSa0kKU1VLqo6Xm6Mm9yobX8CMNUoAUxTZM84Eq9CrDTqm-PUEuagpnlKo2VTfUy4qJPaVut4ok2LOCZyqNr02Un_287_c9PY30X_E-rApoPb_zddtjQbBgPVpTWaj_3vZTwZjx-o
CitedBy_id crossref_primary_10_1016_j_compfluid_2020_104794
crossref_primary_10_1016_j_icheatmasstransfer_2022_106424
crossref_primary_10_1115_1_4047509
crossref_primary_10_3390_axioms12030298
crossref_primary_10_1016_j_cma_2023_116564
crossref_primary_10_1002_fld_5326
crossref_primary_10_1016_j_compfluid_2020_104711
crossref_primary_10_1360_SSPMA_2023_0147
crossref_primary_10_1016_j_fuel_2022_125474
crossref_primary_10_1063_5_0250209
crossref_primary_10_1029_2019WR025960
crossref_primary_10_1016_j_compfluid_2024_106241
crossref_primary_10_1016_j_jcp_2023_111958
crossref_primary_10_1146_annurev_chembioeng_092920_102703
crossref_primary_10_1016_j_jcp_2021_110198
crossref_primary_10_1016_j_jcp_2023_112667
crossref_primary_10_1016_j_icheatmasstransfer_2022_106292
crossref_primary_10_1016_j_oceaneng_2022_113526
crossref_primary_10_1515_revce_2019_0076
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125508
crossref_primary_10_1016_j_jcp_2022_111447
crossref_primary_10_1016_j_ijmecsci_2023_108694
Cites_doi 10.1016/j.ijheatmasstransfer.2014.03.048
10.1080/10407790590935975
10.1080/10407790500290709
10.1016/j.advwatres.2011.01.012
10.1137/070691097
10.2514/6.2004-80
10.1016/0021-9991(72)90065-4
10.1016/j.jcp.2008.01.028
10.1016/j.cherd.2014.06.027
10.1002/aic.15487
10.1016/j.ijheatmasstransfer.2016.08.010
10.1016/S0045-7930(03)00058-6
10.1016/0045-7825(79)90034-3
10.1007/BF02990875
10.1016/0021-9991(92)90177-Z
10.1016/j.jcp.2017.04.055
10.1146/annurev.fluid.37.061903.175743
10.1080/10407790.2012.670560
10.1023/A:1018981505752
10.1090/S0025-5718-1995-1297477-5
10.1016/j.jcp.2006.12.007
10.1063/1.1761178
10.1016/0021-9991(77)90100-0
10.1016/j.ijheatmasstransfer.2012.09.010
10.1016/j.cpc.2010.08.022
10.1016/j.ijheatmasstransfer.2015.09.024
10.1115/1.2764083
10.1016/S0021-9045(02)00023-0
10.1016/j.powtec.2016.09.088
10.1017/jfm.2017.499
10.1016/j.ijheatmasstransfer.2013.05.020
10.1017/S0022112080000419
10.1007/BF01399308
10.1016/j.ijheatfluidflow.2008.08.009
10.1080/01495728408961817
10.1016/j.jcp.2003.07.024
10.1007/s00231-006-0155-1
10.1016/j.ijheatmasstransfer.2009.03.048
10.1109/MCSE.2005.56
10.1017/S0962492902000077
10.1016/j.ijheatmasstransfer.2013.09.017
10.1006/jcph.2000.6484
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier BV Jul 2019
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier BV Jul 2019
DBID AAYXX
CITATION
7TB
8FD
FR3
H8D
KR7
L7M
OTOTI
ADTOC
UNPAY
DOI 10.1016/j.ijheatmasstransfer.2019.03.061
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
OSTI.GOV
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2189
EndPage 598
ExternalDocumentID oai:osti.gov:1547484
1547484
10_1016_j_ijheatmasstransfer_2019_03_061
S0017931018357636
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABDMP
ABFNM
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
T9H
TN5
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7TB
8FD
AFXIZ
AGCQF
AGRNS
FR3
H8D
KR7
L7M
SSH
AALMO
AAPBV
ABPIF
ABPTK
OTOTI
ADTOC
UNPAY
ID FETCH-LOGICAL-c492t-941dcdf9fadf0775e491a8eb8df18f2986759334c33db87e7d80d8d76a40e68b3
IEDL.DBID UNPAY
ISSN 0017-9310
1879-2189
IngestDate Sun Oct 26 04:09:58 EDT 2025
Fri May 19 01:04:03 EDT 2023
Mon Jul 14 08:33:45 EDT 2025
Thu Apr 24 23:11:31 EDT 2025
Wed Oct 01 05:21:44 EDT 2025
Fri Feb 23 02:22:43 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords Robin boundary condition
Fluid-solid interaction
Immersed boundary method
High order discretization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c492t-941dcdf9fadf0775e491a8eb8df18f2986759334c33db87e7d80d8d76a40e68b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.osti.gov/biblio/1547484
PQID 2237874885
PQPubID 2045464
PageCount 14
ParticipantIDs unpaywall_primary_10_1016_j_ijheatmasstransfer_2019_03_061
osti_scitechconnect_1547484
proquest_journals_2237874885
crossref_citationtrail_10_1016_j_ijheatmasstransfer_2019_03_061
crossref_primary_10_1016_j_ijheatmasstransfer_2019_03_061
elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2019_03_061
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: United Kingdom
PublicationTitle International journal of heat and mass transfer
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
– name: Elsevier
References Tartakovsky, Tartakovsky, Scheibe, Meakin (b0080) 2008; 30
Versteeg, Malalasekera (b0165) 2007
Soulaine, Roman, Kovscek, Tchelepi (b0235) 2017; 827
Fadlun, Verzicco, Orlandi, Mohd-Yusof (b0110) 2000; 161
Hayase, Humphrey, Greif (b0185) 1992; 98
Bojanov, Xu (b0195) 2003; 120
Mohd-Yusof (b0105) 1997
Peskin (b0015) 2002; 11
Zhang, Zheng, Eckels (b0030) 2008; 29
Ryan, Tartakovsky, Amon (b0075) 2010; 181
Yousefzadeh, Battiato (b0065) 2017; 344
Ghias, Mittal, Dong (b0135) 2007; 225
Kim, Choi (b0025) 2004; 18
Bell, Byrne, Whiteley, Waters (b0060) 2014; 68
Xia, Luo, Fan (b0140) 2014; 75
Harlow, Welch (b0170) 1965; 8
Mittal, Dong, Bozkurttas, Najjar, Vargas, von Loebbecke (b0190) 2008; 227
Fornberg (b0220) 1980; 98
Pan (b0090) 2012; 61
Alexander, Garcia, Tartakovsky (b0230) 2005; 7
Mark, Svenning, Edelvik (b0035) 2013; 56
Pacheco, Pacheco-Vega, Rodić, Peck (b0055) 2005; 48
Majumdar, Iaccarino, Durbin (b0120) 2001
Pacheco-Vega, Pacheco, Rodić (b0085) 2007; 129
Gasca, Maeztu (b0215) 1982; 39
Bharti, Chhabra, Eswaran (b0225) 2007; 43
R. Ghias, R. Mittal, T.S. Lund, A non-body conformal grid method for simulation of compressible flows with complex immersed boundaries, AIAA paper 80 (2004) (2004) 6.
Ferziger, Peric (b0160) 2012
Wang, Fan, Luo, Cen (b0040) 2009; 52
Luo, Zhuang, Fan, Haugen (b0095) 2016; 92
Gasca, Sauer (b0200) 2000; 12
Pan (b0050) 2006; 49
Battiato, Tartakovsky, Tartakovsky, Scheibe (b0070) 2011; 34
Luo, Mao, Zhuang, Fan, Haugen (b0100) 2017; 104
Peskin (b0010) 1977; 25
Peskin (b0005) 1972; 10
Van Doormaal, Raithby (b0175) 1984; 7
Tseng, Ferziger (b0125) 2003; 192
Derksen, Reynolds, Crampton, Huang, Booth (b0155) 2015; 93
Mittal, Iaccarino (b0020) 2005; 37
Ren, Shu, Yang (b0045) 2013; 64
Das, Deen, Kuipers (b0145) 2017; 63
Balaras (b0115) 2004; 33
Sauer, Xu (b0205) 1995; 64
Leonard (b0180) 1979; 19
Kincaid, Cheney (b0210) 2002; vol. 2
Tavassoli, Peters, Kuipers (b0150) 2017; 314
Fadlun (10.1016/j.ijheatmasstransfer.2019.03.061_b0110) 2000; 161
Bojanov (10.1016/j.ijheatmasstransfer.2019.03.061_b0195) 2003; 120
10.1016/j.ijheatmasstransfer.2019.03.061_b0130
Peskin (10.1016/j.ijheatmasstransfer.2019.03.061_b0015) 2002; 11
Sauer (10.1016/j.ijheatmasstransfer.2019.03.061_b0205) 1995; 64
Wang (10.1016/j.ijheatmasstransfer.2019.03.061_b0040) 2009; 52
Luo (10.1016/j.ijheatmasstransfer.2019.03.061_b0095) 2016; 92
Ferziger (10.1016/j.ijheatmasstransfer.2019.03.061_b0160) 2012
Hayase (10.1016/j.ijheatmasstransfer.2019.03.061_b0185) 1992; 98
Gasca (10.1016/j.ijheatmasstransfer.2019.03.061_b0215) 1982; 39
Das (10.1016/j.ijheatmasstransfer.2019.03.061_b0145) 2017; 63
Peskin (10.1016/j.ijheatmasstransfer.2019.03.061_b0005) 1972; 10
Harlow (10.1016/j.ijheatmasstransfer.2019.03.061_b0170) 1965; 8
Peskin (10.1016/j.ijheatmasstransfer.2019.03.061_b0010) 1977; 25
Pan (10.1016/j.ijheatmasstransfer.2019.03.061_b0050) 2006; 49
Balaras (10.1016/j.ijheatmasstransfer.2019.03.061_b0115) 2004; 33
Pan (10.1016/j.ijheatmasstransfer.2019.03.061_b0090) 2012; 61
Bharti (10.1016/j.ijheatmasstransfer.2019.03.061_b0225) 2007; 43
Tavassoli (10.1016/j.ijheatmasstransfer.2019.03.061_b0150) 2017; 314
Mark (10.1016/j.ijheatmasstransfer.2019.03.061_b0035) 2013; 56
Mohd-Yusof (10.1016/j.ijheatmasstransfer.2019.03.061_b0105) 1997
Ren (10.1016/j.ijheatmasstransfer.2019.03.061_b0045) 2013; 64
Alexander (10.1016/j.ijheatmasstransfer.2019.03.061_b0230) 2005; 7
Xia (10.1016/j.ijheatmasstransfer.2019.03.061_b0140) 2014; 75
Versteeg (10.1016/j.ijheatmasstransfer.2019.03.061_b0165) 2007
Ghias (10.1016/j.ijheatmasstransfer.2019.03.061_b0135) 2007; 225
Kim (10.1016/j.ijheatmasstransfer.2019.03.061_b0025) 2004; 18
Leonard (10.1016/j.ijheatmasstransfer.2019.03.061_b0180) 1979; 19
Tseng (10.1016/j.ijheatmasstransfer.2019.03.061_b0125) 2003; 192
Luo (10.1016/j.ijheatmasstransfer.2019.03.061_b0100) 2017; 104
Soulaine (10.1016/j.ijheatmasstransfer.2019.03.061_b0235) 2017; 827
Mittal (10.1016/j.ijheatmasstransfer.2019.03.061_b0020) 2005; 37
Pacheco-Vega (10.1016/j.ijheatmasstransfer.2019.03.061_b0085) 2007; 129
Majumdar (10.1016/j.ijheatmasstransfer.2019.03.061_b0120) 2001
Kincaid (10.1016/j.ijheatmasstransfer.2019.03.061_b0210) 2002; vol. 2
Yousefzadeh (10.1016/j.ijheatmasstransfer.2019.03.061_b0065) 2017; 344
Tartakovsky (10.1016/j.ijheatmasstransfer.2019.03.061_b0080) 2008; 30
Ryan (10.1016/j.ijheatmasstransfer.2019.03.061_b0075) 2010; 181
Mittal (10.1016/j.ijheatmasstransfer.2019.03.061_b0190) 2008; 227
Battiato (10.1016/j.ijheatmasstransfer.2019.03.061_b0070) 2011; 34
Van Doormaal (10.1016/j.ijheatmasstransfer.2019.03.061_b0175) 1984; 7
Fornberg (10.1016/j.ijheatmasstransfer.2019.03.061_b0220) 1980; 98
Pacheco (10.1016/j.ijheatmasstransfer.2019.03.061_b0055) 2005; 48
Bell (10.1016/j.ijheatmasstransfer.2019.03.061_b0060) 2014; 68
Zhang (10.1016/j.ijheatmasstransfer.2019.03.061_b0030) 2008; 29
Derksen (10.1016/j.ijheatmasstransfer.2019.03.061_b0155) 2015; 93
Gasca (10.1016/j.ijheatmasstransfer.2019.03.061_b0200) 2000; 12
References_xml – volume: 344
  start-page: 320
  year: 2017
  end-page: 338
  ident: b0065
  article-title: Physics-based hybrid method for multiscale transport in porous media
  publication-title: J. Comput. Phys.
– volume: 92
  start-page: 708
  year: 2016
  end-page: 717
  ident: b0095
  article-title: A ghost-cell immersed boundary method for simulations of heat transfer in compressible flows under different boundary conditions
  publication-title: Int. J. Heat Mass Transfer
– volume: 18
  start-page: 1026
  year: 2004
  end-page: 1035
  ident: b0025
  article-title: An immersed-boundary finite-volume method for simulation of heat transfer in complex geometries
  publication-title: KSME Int. J.
– volume: 10
  start-page: 252
  year: 1972
  end-page: 271
  ident: b0005
  article-title: Flow patterns around heart valves: a numerical method
  publication-title: J. Comput. Phys.
– volume: 64
  start-page: 1147
  year: 1995
  end-page: 1170
  ident: b0205
  article-title: On multivariate lagrange interpolation
  publication-title: Math. Comput.
– volume: 314
  start-page: 291
  year: 2017
  end-page: 298
  ident: b0150
  article-title: Direct numerical simulation of non-isothermal flow through dense bidisperse random arrays of spheres
  publication-title: Powder Technol.
– year: 2012
  ident: b0160
  article-title: Computational Methods for Fluid Dynamics
– volume: 75
  start-page: 302
  year: 2014
  end-page: 312
  ident: b0140
  article-title: A ghost-cell based high-order immersed boundary method for inter-phase heat transfer simulation
  publication-title: Int. J. Heat Mass Transfer
– reference: R. Ghias, R. Mittal, T.S. Lund, A non-body conformal grid method for simulation of compressible flows with complex immersed boundaries, AIAA paper 80 (2004) (2004) 6.
– volume: 227
  start-page: 4825
  year: 2008
  end-page: 4852
  ident: b0190
  article-title: A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries
  publication-title: J. Comput. Phys.
– volume: 61
  start-page: 279
  year: 2012
  end-page: 297
  ident: b0090
  article-title: A general boundary condition treatment in immersed boundary methods for incompressible Navier-Stokes equations with heat transfer
  publication-title: Numer. Heat Transfer, Part B: Fundam.
– volume: 7
  start-page: 147
  year: 1984
  end-page: 163
  ident: b0175
  article-title: Enhancements of the simple method for predicting incompressible fluid flows
  publication-title: Numer. Heat Transfer
– volume: 19
  start-page: 59
  year: 1979
  end-page: 98
  ident: b0180
  article-title: A stable and accurate convective modelling procedure based on quadratic upstream interpolation
  publication-title: Comput. Methods Appl. Mech. Eng.
– year: 2001
  ident: b0120
  article-title: RANS solvers with adaptive structured boundary non-conforming grids
– volume: 827
  start-page: 457
  year: 2017
  end-page: 483
  ident: b0235
  article-title: Mineral dissolution and wormholing from a pore-scale perspective
  publication-title: J. Fluid Mech.
– volume: 39
  start-page: 1
  year: 1982
  end-page: 14
  ident: b0215
  article-title: On lagrange and hermite interpolation in r k
  publication-title: Numer. Math.
– volume: 37
  start-page: 239
  year: 2005
  end-page: 261
  ident: b0020
  article-title: Immersed boundary methods
  publication-title: Annu. Rev. Fluid Mech.
– volume: 8
  start-page: 2182
  year: 1965
  end-page: 2189
  ident: b0170
  article-title: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface
  publication-title: Phys. Fluids
– volume: 7
  start-page: 32
  year: 2005
  end-page: 38
  ident: b0230
  article-title: Noise in algorithm refinement methods
  publication-title: Comput. Sci. Eng.
– volume: 12
  start-page: 377
  year: 2000
  end-page: 410
  ident: b0200
  article-title: Polynomial interpolation in several variables
  publication-title: Adv. Comput. Math.
– volume: vol. 2
  year: 2002
  ident: b0210
  publication-title: Numerical Analysis: Mathematics of Scientific Computing
– volume: 129
  start-page: 1506
  year: 2007
  end-page: 1516
  ident: b0085
  article-title: A general scheme for the boundary conditions in convective and diffusive heat transfer with immersed boundary methods
  publication-title: J. Heat Transfer
– year: 2007
  ident: b0165
  article-title: An Introduction to Computational Fluid Dynamics: The Finite Volume Method
– volume: 30
  start-page: 2799
  year: 2008
  end-page: 2816
  ident: b0080
  article-title: Hybrid simulations of reaction-diffusion systems in porous media
  publication-title: SIAM J. Sci. Comput.
– volume: 33
  start-page: 375
  year: 2004
  end-page: 404
  ident: b0115
  article-title: Modeling complex boundaries using an external force field on fixed Cartesian grids in large-eddy simulations
  publication-title: Comput. Fluids
– volume: 120
  start-page: 267
  year: 2003
  end-page: 282
  ident: b0195
  article-title: On polynomial interpolation of two variables
  publication-title: J. Approx. Theory
– volume: 98
  start-page: 819
  year: 1980
  end-page: 855
  ident: b0220
  article-title: A numerical study of steady viscous flow past a circular cylinder
  publication-title: J. Fluid Mech.
– volume: 43
  start-page: 639
  year: 2007
  end-page: 648
  ident: b0225
  article-title: A numerical study of the steady forced convection heat transfer from an unconfined circular cylinder
  publication-title: Heat Mass Transfer
– volume: 93
  start-page: 66
  year: 2015
  end-page: 78
  ident: b0155
  article-title: Simulations of dissolution of spherical particles in laminar shear flow
  publication-title: Chem. Eng. Res. Des.
– volume: 161
  start-page: 35
  year: 2000
  end-page: 60
  ident: b0110
  article-title: Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations
  publication-title: J. Comput. Phys.
– volume: 63
  start-page: 1152
  year: 2017
  end-page: 1173
  ident: b0145
  article-title: Immersed boundary method (ibm) based direct numerical simulation of open-cell solid foams: hydrodynamics
  publication-title: AIChE J.
– volume: 52
  start-page: 4510
  year: 2009
  end-page: 4518
  ident: b0040
  article-title: Immersed boundary method for the simulation of flows with heat transfer
  publication-title: Int. J. Heat Mass Transfer
– volume: 98
  start-page: 108
  year: 1992
  end-page: 118
  ident: b0185
  article-title: A consistently formulated quick scheme for fast and stable convergence using finite-volume iterative calculation procedures
  publication-title: J. Comput. Phys.
– volume: 11
  start-page: 479
  year: 2002
  end-page: 517
  ident: b0015
  article-title: The immersed boundary method
  publication-title: Acta Numer.
– volume: 25
  start-page: 220
  year: 1977
  end-page: 252
  ident: b0010
  article-title: Numerical analysis of blood flow in the heart
  publication-title: J. Comput. Phys.
– volume: 104
  start-page: 98
  year: 2017
  end-page: 111
  ident: b0100
  article-title: A ghost-cell immersed boundary method for the simulations of heat transfer in compressible flows under different boundary conditions part-ii: complex geometries
  publication-title: Int. J. Heat Mass Transfer
– volume: 181
  start-page: 2008
  year: 2010
  end-page: 2023
  ident: b0075
  article-title: A novel method for modeling Neumann and robin boundary conditions in smoothed particle hydrodynamics
  publication-title: Comput. Phys. Commun.
– volume: 48
  start-page: 1
  year: 2005
  end-page: 24
  ident: b0055
  article-title: Numerical simulations of heat transfer, fluid flow problems using an immersed-boundary finite-volume method on nonstaggered grids
  publication-title: Numer. Heat Transfer, Part B: Fundam.
– volume: 56
  start-page: 424
  year: 2013
  end-page: 435
  ident: b0035
  article-title: An immersed boundary method for simulation of flow with heat transfer
  publication-title: Int. J. Heat Mass Transfer
– volume: 34
  start-page: 1140
  year: 2011
  end-page: 1150
  ident: b0070
  article-title: Hybrid models of reactive transport in porous and fractured media
  publication-title: Adv. Water Resour.
– volume: 29
  start-page: 1558
  year: 2008
  end-page: 1566
  ident: b0030
  article-title: Study of heat-transfer on the surface of a circular cylinder in flow using an immersed-boundary method
  publication-title: Int. J. Heat Fluid Flow
– volume: 64
  start-page: 694
  year: 2013
  end-page: 705
  ident: b0045
  article-title: An efficient immersed boundary method for thermal flow problems with heat flux boundary conditions
  publication-title: Int. J. Heat Mass Transfer
– volume: 49
  start-page: 277
  year: 2006
  end-page: 297
  ident: b0050
  article-title: An immersed boundary method on unstructured Cartesian meshes for incompressible flows with heat transfer
  publication-title: Numer. Heat Transfer, Part B: Fundam.
– volume: 225
  start-page: 528
  year: 2007
  end-page: 553
  ident: b0135
  article-title: A sharp interface immersed boundary method for compressible viscous flows
  publication-title: J. Comput. Phys.
– year: 1997
  ident: b0105
  article-title: Combined immersed-boundary/B-spline methods for simulations of flow in complex geometries
– volume: 68
  start-page: 247
  year: 2014
  end-page: 258
  ident: b0060
  article-title: Heat or mass transfer at low Péclet number for Brinkman and Darcy flow round a sphere
  publication-title: Int. J. Heat Mass Transfer
– volume: 192
  start-page: 593
  year: 2003
  end-page: 623
  ident: b0125
  article-title: A ghost-cell immersed boundary method for flow in complex geometry
  publication-title: J. Comput. Phys.
– volume: 75
  start-page: 302
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2019.03.061_b0140
  article-title: A ghost-cell based high-order immersed boundary method for inter-phase heat transfer simulation
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2014.03.048
– volume: 48
  start-page: 1
  issue: 1
  year: 2005
  ident: 10.1016/j.ijheatmasstransfer.2019.03.061_b0055
  article-title: Numerical simulations of heat transfer, fluid flow problems using an immersed-boundary finite-volume method on nonstaggered grids
  publication-title: Numer. Heat Transfer, Part B: Fundam.
  doi: 10.1080/10407790590935975
– volume: 49
  start-page: 277
  issue: 3
  year: 2006
  ident: 10.1016/j.ijheatmasstransfer.2019.03.061_b0050
  article-title: An immersed boundary method on unstructured Cartesian meshes for incompressible flows with heat transfer
  publication-title: Numer. Heat Transfer, Part B: Fundam.
  doi: 10.1080/10407790500290709
– volume: 34
  start-page: 1140
  issue: 9
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2019.03.061_b0070
  article-title: Hybrid models of reactive transport in porous and fractured media
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2011.01.012
– volume: 30
  start-page: 2799
  issue: 6
  year: 2008
  ident: 10.1016/j.ijheatmasstransfer.2019.03.061_b0080
  article-title: Hybrid simulations of reaction-diffusion systems in porous media
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/070691097
– ident: 10.1016/j.ijheatmasstransfer.2019.03.061_b0130
  doi: 10.2514/6.2004-80
– volume: 10
  start-page: 252
  issue: 2
  year: 1972
  ident: 10.1016/j.ijheatmasstransfer.2019.03.061_b0005
  article-title: Flow patterns around heart valves: a numerical method
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(72)90065-4
– volume: 227
  start-page: 4825
  issue: 10
  year: 2008
  ident: 10.1016/j.ijheatmasstransfer.2019.03.061_b0190
  article-title: A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2008.01.028
– volume: 93
  start-page: 66
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2019.03.061_b0155
  article-title: Simulations of dissolution of spherical particles in laminar shear flow
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2014.06.027
– volume: 63
  start-page: 1152
  issue: 3
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2019.03.061_b0145
  article-title: Immersed boundary method (ibm) based direct numerical simulation of open-cell solid foams: hydrodynamics
  publication-title: AIChE J.
  doi: 10.1002/aic.15487
– volume: 104
  start-page: 98
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2019.03.061_b0100
  article-title: A ghost-cell immersed boundary method for the simulations of heat transfer in compressible flows under different boundary conditions part-ii: complex geometries
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2016.08.010
– volume: 33
  start-page: 375
  issue: 3
  year: 2004
  ident: 10.1016/j.ijheatmasstransfer.2019.03.061_b0115
  article-title: Modeling complex boundaries using an external force field on fixed Cartesian grids in large-eddy simulations
  publication-title: Comput. Fluids
  doi: 10.1016/S0045-7930(03)00058-6
– volume: 19
  start-page: 59
  issue: 1
  year: 1979
  ident: 10.1016/j.ijheatmasstransfer.2019.03.061_b0180
  article-title: A stable and accurate convective modelling procedure based on quadratic upstream interpolation
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/0045-7825(79)90034-3
– volume: 18
  start-page: 1026
  issue: 6
  year: 2004
  ident: 10.1016/j.ijheatmasstransfer.2019.03.061_b0025
  article-title: An immersed-boundary finite-volume method for simulation of heat transfer in complex geometries
  publication-title: KSME Int. J.
  doi: 10.1007/BF02990875
– volume: 98
  start-page: 108
  issue: 1
  year: 1992
  ident: 10.1016/j.ijheatmasstransfer.2019.03.061_b0185
  article-title: A consistently formulated quick scheme for fast and stable convergence using finite-volume iterative calculation procedures
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(92)90177-Z
– volume: 344
  start-page: 320
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2019.03.061_b0065
  article-title: Physics-based hybrid method for multiscale transport in porous media
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.04.055
– volume: vol. 2
  year: 2002
  ident: 10.1016/j.ijheatmasstransfer.2019.03.061_b0210
– volume: 37
  start-page: 239
  year: 2005
  ident: 10.1016/j.ijheatmasstransfer.2019.03.061_b0020
  article-title: Immersed boundary methods
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.37.061903.175743
– year: 2001
  ident: 10.1016/j.ijheatmasstransfer.2019.03.061_b0120
– volume: 61
  start-page: 279
  issue: 4
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2019.03.061_b0090
  article-title: A general boundary condition treatment in immersed boundary methods for incompressible Navier-Stokes equations with heat transfer
  publication-title: Numer. Heat Transfer, Part B: Fundam.
  doi: 10.1080/10407790.2012.670560
– volume: 12
  start-page: 377
  issue: 4
  year: 2000
  ident: 10.1016/j.ijheatmasstransfer.2019.03.061_b0200
  article-title: Polynomial interpolation in several variables
  publication-title: Adv. Comput. Math.
  doi: 10.1023/A:1018981505752
– year: 1997
  ident: 10.1016/j.ijheatmasstransfer.2019.03.061_b0105
– year: 2007
  ident: 10.1016/j.ijheatmasstransfer.2019.03.061_b0165
– volume: 64
  start-page: 1147
  issue: 211
  year: 1995
  ident: 10.1016/j.ijheatmasstransfer.2019.03.061_b0205
  article-title: On multivariate lagrange interpolation
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-1995-1297477-5
– volume: 225
  start-page: 528
  issue: 1
  year: 2007
  ident: 10.1016/j.ijheatmasstransfer.2019.03.061_b0135
  article-title: A sharp interface immersed boundary method for compressible viscous flows
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2006.12.007
– volume: 8
  start-page: 2182
  issue: 12
  year: 1965
  ident: 10.1016/j.ijheatmasstransfer.2019.03.061_b0170
  article-title: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface
  publication-title: Phys. Fluids
  doi: 10.1063/1.1761178
– volume: 25
  start-page: 220
  issue: 3
  year: 1977
  ident: 10.1016/j.ijheatmasstransfer.2019.03.061_b0010
  article-title: Numerical analysis of blood flow in the heart
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(77)90100-0
– volume: 56
  start-page: 424
  issue: 1
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2019.03.061_b0035
  article-title: An immersed boundary method for simulation of flow with heat transfer
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2012.09.010
– volume: 181
  start-page: 2008
  issue: 12
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2019.03.061_b0075
  article-title: A novel method for modeling Neumann and robin boundary conditions in smoothed particle hydrodynamics
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2010.08.022
– volume: 92
  start-page: 708
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2019.03.061_b0095
  article-title: A ghost-cell immersed boundary method for simulations of heat transfer in compressible flows under different boundary conditions
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2015.09.024
– volume: 129
  start-page: 1506
  issue: 11
  year: 2007
  ident: 10.1016/j.ijheatmasstransfer.2019.03.061_b0085
  article-title: A general scheme for the boundary conditions in convective and diffusive heat transfer with immersed boundary methods
  publication-title: J. Heat Transfer
  doi: 10.1115/1.2764083
– year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2019.03.061_b0160
– volume: 120
  start-page: 267
  issue: 2
  year: 2003
  ident: 10.1016/j.ijheatmasstransfer.2019.03.061_b0195
  article-title: On polynomial interpolation of two variables
  publication-title: J. Approx. Theory
  doi: 10.1016/S0021-9045(02)00023-0
– volume: 314
  start-page: 291
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2019.03.061_b0150
  article-title: Direct numerical simulation of non-isothermal flow through dense bidisperse random arrays of spheres
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2016.09.088
– volume: 827
  start-page: 457
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2019.03.061_b0235
  article-title: Mineral dissolution and wormholing from a pore-scale perspective
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2017.499
– volume: 64
  start-page: 694
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2019.03.061_b0045
  article-title: An efficient immersed boundary method for thermal flow problems with heat flux boundary conditions
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2013.05.020
– volume: 98
  start-page: 819
  issue: 4
  year: 1980
  ident: 10.1016/j.ijheatmasstransfer.2019.03.061_b0220
  article-title: A numerical study of steady viscous flow past a circular cylinder
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112080000419
– volume: 39
  start-page: 1
  issue: 1
  year: 1982
  ident: 10.1016/j.ijheatmasstransfer.2019.03.061_b0215
  article-title: On lagrange and hermite interpolation in r k
  publication-title: Numer. Math.
  doi: 10.1007/BF01399308
– volume: 29
  start-page: 1558
  issue: 6
  year: 2008
  ident: 10.1016/j.ijheatmasstransfer.2019.03.061_b0030
  article-title: Study of heat-transfer on the surface of a circular cylinder in flow using an immersed-boundary method
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2008.08.009
– volume: 7
  start-page: 147
  issue: 2
  year: 1984
  ident: 10.1016/j.ijheatmasstransfer.2019.03.061_b0175
  article-title: Enhancements of the simple method for predicting incompressible fluid flows
  publication-title: Numer. Heat Transfer
  doi: 10.1080/01495728408961817
– volume: 192
  start-page: 593
  issue: 2
  year: 2003
  ident: 10.1016/j.ijheatmasstransfer.2019.03.061_b0125
  article-title: A ghost-cell immersed boundary method for flow in complex geometry
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2003.07.024
– volume: 43
  start-page: 639
  issue: 7
  year: 2007
  ident: 10.1016/j.ijheatmasstransfer.2019.03.061_b0225
  article-title: A numerical study of the steady forced convection heat transfer from an unconfined circular cylinder
  publication-title: Heat Mass Transfer
  doi: 10.1007/s00231-006-0155-1
– volume: 52
  start-page: 4510
  issue: 19
  year: 2009
  ident: 10.1016/j.ijheatmasstransfer.2019.03.061_b0040
  article-title: Immersed boundary method for the simulation of flows with heat transfer
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2009.03.048
– volume: 7
  start-page: 32
  issue: 3
  year: 2005
  ident: 10.1016/j.ijheatmasstransfer.2019.03.061_b0230
  article-title: Noise in algorithm refinement methods
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2005.56
– volume: 11
  start-page: 479
  year: 2002
  ident: 10.1016/j.ijheatmasstransfer.2019.03.061_b0015
  article-title: The immersed boundary method
  publication-title: Acta Numer.
  doi: 10.1017/S0962492902000077
– volume: 68
  start-page: 247
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2019.03.061_b0060
  article-title: Heat or mass transfer at low Péclet number for Brinkman and Darcy flow round a sphere
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2013.09.017
– volume: 161
  start-page: 35
  issue: 1
  year: 2000
  ident: 10.1016/j.ijheatmasstransfer.2019.03.061_b0110
  article-title: Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2000.6484
SSID ssj0017046
Score 2.4552658
Snippet •High order ghost cell IBM method for scalar transport subject to different boundary conditions.•The accuracy test shows at least second order of accuracy in...
Flow and reactive transport problems in engineering, medical and environmental applications often involve complex geometries. Grid based methods (e.g. finite...
SourceID unpaywall
osti
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 585
SubjectTerms Accuracy
Boundary conditions
Cartesian coordinates
Computational fluid dynamics
Dirichlet problem
Finite element method
Fluid flow
Fluid-solid interaction
Grid generation (mathematics)
High order discretization
Immersed boundary method
Incompressible flow
Interpolation
Mass transport
Norms
Porous media
Robin boundary condition
Structured grids (mathematics)
Topology
SummonAdditionalLinks – databaseName: ScienceDirect Freedom Collection 2013
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB5kwcdFfOL6IgcPXqptk20TLyKLIoIeRMFbaJNUKuvuorvIevC3O9O0qyIeFjz2NYRJMvkm_fINwIFRkbIuToKik4pA5MYEkv6_KxGLLMpNXlQ63dc3yeW9uHroPMxBtzkLQ7TKOvb7mF5F6_rOce3N42FZ0hlfGlykOMURNHOS3RYipSoGRx9TmkeUhv6wDkVjensBDr84XuUTRbxnhKmjCiY6UgiNvOxpEv21VLUGOPt-INLFcX-YTd6yXu_b4nSxAss1qmRnvuGrMOf6azBfsTvN6zrcEpuDVSqb7JGOdQS0X8_KatPaWZZXtZVeJszXk2YIZNmj16Mu378_x-TZeo7XBtxfnN91L4O6mEJghIpH6PzIGluoIrMFyd45oaJMulxa7I0iVhIzB8W5MJzbXKYutTK00qZJJkKXyJxvQqs_6LstYIUNY5Vh4pTyjrCJyhRPJA8NJto8DVXchtPGb9rUSuNU8KKnG0rZk_7teU2e1yHX6Pk2qKmFoVfdmOHbbtNV-sdI0rhIzGBlh3qZLJCYriHWEZpAwEniq23YbTpf13P-VSPQwuiHAbHThpPpgJi5_dv_0v4dWKIrTyzehdboZez2ED6N8v1qfnwCd5Qd-g
  priority: 102
  providerName: Elsevier
Title High order ghost-cell immersed boundary method for generalized boundary conditions
URI https://dx.doi.org/10.1016/j.ijheatmasstransfer.2019.03.061
https://www.proquest.com/docview/2237874885
https://www.osti.gov/biblio/1547484
UnpaywallVersion submittedVersion
Volume 137
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-2189
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017046
  issn: 0017-9310
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-2189
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017046
  issn: 0017-9310
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-2189
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017046
  issn: 0017-9310
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-2189
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017046
  issn: 0017-9310
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-2189
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017046
  issn: 0017-9310
  databaseCode: AKRWK
  dateStart: 19600601
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB61iXhceCNCS2QJDlwcbO_a3uWCokIViIhQRUQ5rbwPVy4hqVpHqD3w25nx2qWAEIo4WZa1o7VnPPPt-vM3AM-MjKV1SRaWac5Dro0JBX1_lzzhRayNLhud7vezbDLn7w7Twy142v0LQ7TKFQZ3w6nUlV5UqxdY5Unxchv6WYqAuwf9-ezD-HOXYyXzmgMilyEWLHkdnv9kcVXHlNO-IhCtGyDoSAM09sKmWfy3YtSjKfyCOW-slyfF-bdisbhSfvZvw-tu4p518mW0rvXIXPym6fiPO7sDt1r4GYx9vNyFLbe8B9caGqg5uw8HRPsIGjnO4Ij-_whpYz-omt1tZwPdNGE6PQ984-kAEW9w5IWrq4ur13GVbT0Z7AHM99983JuEbdeF0HCZ1Oil2BpbyrKwJenjOS7jQjgtLLqtTKTAJYZkjBvGrBa5y62IrLB5VvDIZUKzh9BbrpbuEQSljRJZ4AorZym3mSwkywSLDK7IWR7JZACvusevTCtJTp0xFqrjnh2rPx2oyIEqYgodOAB5aeHEy3NsMHav87hq4YaHEQqryQZWdsirZIFUdw3Rk9BE69kB7HYxpNrkcKYQkWGaxMyZDuDlZVxtPP_H_zN4B27SmSce70KvPl27Jwivaj2E7dH3eAj98dvpZEbH6cGn6bB96X4AERItMA
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB7BIqCXiqe65eUDBy6BJHYSmwuqVkXL84BA4mYltoOCtssKFlX00N_emTjZghCHlbjGycga2-NvnM_fAOwaFSnr4jQok0wEojAmkPT_XYlY5FFhirLW6b64TPs34vQ2uZ2BXnsXhmiVTez3Mb2O1s2Tg8abB6Oqoju-NLlIcYojaObpLMyJJM4oA9v_O-F5RFnob-tQOKbXF2DvP8mruqeQ9wtx6rjGiY4kQiOve5pGH-1VnQdcfm8g6eLzcJS__M4Hg1e70_ESfG1gJfvhe74MM264AvM1vdM8rcIV0TlYLbPJ7uheR0AH9qyqT62dZUVdXOnxhfmC0gyRLLvzgtTVn9ftmD1bT_Jag5vjn9e9ftBUUwiMUPEYvR9ZY0tV5rYk3TsnVJRLV0iLw1HGSmLqoDgXhnNbyMxlVoZW2izNRehSWfB16Awfhu4bsNKGscoxc8p4ImyqcsVTyUODmTbPQhV34aj1mzaN1DhVvBjollN2r997XpPndcg1er4LamJh5GU3pvi21w6VfjOVNO4SU1jZoFEmC6Sma4h2hCYQcZL6ahc228HXzaJ_0oi0MPxhREy6cDiZEFP3__un9H8HFvvXF-f6_OTybAO-UItnGW9CZ_z47LYQS42L7Xqt_APaYCEd
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEB_sSasv9lM8tWWhfehLbJLdJLt9KeIHUqiU0gP7tGQ_IrHnnWgO0b_emWyitiLl6GMIO2wyk5nfbn77G4APViXK-TSPqqwQkTDWRpL-vyuRijIx1lStTve3w_xgJL4eZUcL8L4_C0O0yikGd8upNLUZ19NPWOVJ8fIJLOYZAu4BLI4Ov2__6nOs4kFzQBYqwoKlnsHHOxZXfUI57RSBaNMCQU8aoEkQNs2Tx4rRgKbwB-Zcmk3OyqvLcjy-V372n8NuP_HAOvm9NWvMlr3-S9PxH0_2AlY6-Mm2Q7y8hAU_eQVPWxqovXgNP4j2wVo5TnZM5z8i2thndbu77R0zbROm8ysWGk8zRLzsOAhX19f37-Mq2wUy2BsY7e_93DmIuq4LkRUqbdBLibOuUlXpKtLH80IlpfRGOnRblSqJSwzFubCcOyMLXzgZO-mKvBSxz6XhqzCYTCd-DVjl4lSVuMIqeCZcrkrFc8ljiytyXsQqHcKX_vVr20mSU2eMse65Zyf6oQM1OVDHXKMDh6BuLZwFeY45xu70Htcd3AgwQmM1mcPKBnmVLJDqriV6EproPDuEzT6GdJccLjQiMkyTmDmzIXy-jau557_-P4M3YJmuAvF4EwbN-cy_RXjVmHfd53UDZP0pAQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+order+ghost-cell+immersed+boundary+method+for+generalized+boundary+conditions&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Yousefzadeh%2C+Mehrdad&rft.au=Battiato%2C+Ilenia&rft.date=2019-07-01&rft.issn=0017-9310&rft.volume=137&rft.spage=585&rft.epage=598&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2019.03.061&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijheatmasstransfer_2019_03_061
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon