Hybrid deep learning models for the screening of Diabetic Macular Edema in optical coherence tomography volumes

Several studies published so far used highly selective image datasets from unclear sources to train computer vision models and that may lead to overestimated results, while those studies conducted in real-life remain scarce. To avoid image selection bias, we stacked convolutional and recurrent neura...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; pp. 17633 - 11
Main Authors Rodríguez-Miguel, Antonio, Arruabarrena, Carolina, Allendes, Germán, Olivera, Maximiliano, Zarranz-Ventura, Javier, Teus, Miguel A.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 31.07.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-024-68489-2

Cover

Abstract Several studies published so far used highly selective image datasets from unclear sources to train computer vision models and that may lead to overestimated results, while those studies conducted in real-life remain scarce. To avoid image selection bias, we stacked convolutional and recurrent neural networks (CNN-RNN) to analyze complete optical coherence tomography (OCT) cubes in a row and predict diabetic macular edema (DME), in a real-world diabetic retinopathy screening program. A retrospective cohort study was carried out. Throughout 4-years, 5314 OCT cubes from 4408 subjects who attended to the diabetic retinopathy (DR) screening program were included. We arranged twenty-two (22) pre-trained CNNs in parallel with a bidirectional RNN layer stacked at the bottom, allowing the model to make a prediction for the whole OCT cube. The staff of retina experts built a ground truth of DME later used to train a set of these CNN-RNN models with different configurations. For each trained CNN-RNN model, we performed threshold tuning to find the optimal cut-off point for binary classification of DME. Finally, the best models were selected according to sensitivity, specificity, and area under the receiver operating characteristics curve (AUROC) with their 95% confidence intervals (95%CI). An ensemble of the best models was also explored. 5188 cubes were non-DME and 126 were DME. Three models achieved an AUROC of 0.94. Among these, sensitivity, and specificity (95%CI) ranged from 84.1–90.5 and 89.7–93.3, respectively, at threshold 1, from 89.7–92.1 and 80–83.1 at threshold 2, and from 80.2–81 and 93.8–97, at threshold 3. The ensemble model improved these results, and lower specificity was observed among subjects with sight-threatening DR. Analysis by age, gender, or grade of DME did not vary the performance of the models. CNN-RNN models showed high diagnostic accuracy for detecting DME in a real-world setting. This engine allowed us to detect extra-foveal DMEs commonly overlooked in other studies, and showed potential for application as the first filter of non-referable patients in an outpatient center within a population-based DR screening program, otherwise ended up in specialized care.
AbstractList Abstract Several studies published so far used highly selective image datasets from unclear sources to train computer vision models and that may lead to overestimated results, while those studies conducted in real-life remain scarce. To avoid image selection bias, we stacked convolutional and recurrent neural networks (CNN-RNN) to analyze complete optical coherence tomography (OCT) cubes in a row and predict diabetic macular edema (DME), in a real-world diabetic retinopathy screening program. A retrospective cohort study was carried out. Throughout 4-years, 5314 OCT cubes from 4408 subjects who attended to the diabetic retinopathy (DR) screening program were included. We arranged twenty-two (22) pre-trained CNNs in parallel with a bidirectional RNN layer stacked at the bottom, allowing the model to make a prediction for the whole OCT cube. The staff of retina experts built a ground truth of DME later used to train a set of these CNN-RNN models with different configurations. For each trained CNN-RNN model, we performed threshold tuning to find the optimal cut-off point for binary classification of DME. Finally, the best models were selected according to sensitivity, specificity, and area under the receiver operating characteristics curve (AUROC) with their 95% confidence intervals (95%CI). An ensemble of the best models was also explored. 5188 cubes were non-DME and 126 were DME. Three models achieved an AUROC of 0.94. Among these, sensitivity, and specificity (95%CI) ranged from 84.1–90.5 and 89.7–93.3, respectively, at threshold 1, from 89.7–92.1 and 80–83.1 at threshold 2, and from 80.2–81 and 93.8–97, at threshold 3. The ensemble model improved these results, and lower specificity was observed among subjects with sight-threatening DR. Analysis by age, gender, or grade of DME did not vary the performance of the models. CNN-RNN models showed high diagnostic accuracy for detecting DME in a real-world setting. This engine allowed us to detect extra-foveal DMEs commonly overlooked in other studies, and showed potential for application as the first filter of non-referable patients in an outpatient center within a population-based DR screening program, otherwise ended up in specialized care.
Several studies published so far used highly selective image datasets from unclear sources to train computer vision models and that may lead to overestimated results, while those studies conducted in real-life remain scarce. To avoid image selection bias, we stacked convolutional and recurrent neural networks (CNN-RNN) to analyze complete optical coherence tomography (OCT) cubes in a row and predict diabetic macular edema (DME), in a real-world diabetic retinopathy screening program. A retrospective cohort study was carried out. Throughout 4-years, 5314 OCT cubes from 4408 subjects who attended to the diabetic retinopathy (DR) screening program were included. We arranged twenty-two (22) pre-trained CNNs in parallel with a bidirectional RNN layer stacked at the bottom, allowing the model to make a prediction for the whole OCT cube. The staff of retina experts built a ground truth of DME later used to train a set of these CNN-RNN models with different configurations. For each trained CNN-RNN model, we performed threshold tuning to find the optimal cut-off point for binary classification of DME. Finally, the best models were selected according to sensitivity, specificity, and area under the receiver operating characteristics curve (AUROC) with their 95% confidence intervals (95%CI). An ensemble of the best models was also explored. 5188 cubes were non-DME and 126 were DME. Three models achieved an AUROC of 0.94. Among these, sensitivity, and specificity (95%CI) ranged from 84.1–90.5 and 89.7–93.3, respectively, at threshold 1, from 89.7–92.1 and 80–83.1 at threshold 2, and from 80.2–81 and 93.8–97, at threshold 3. The ensemble model improved these results, and lower specificity was observed among subjects with sight-threatening DR. Analysis by age, gender, or grade of DME did not vary the performance of the models. CNN-RNN models showed high diagnostic accuracy for detecting DME in a real-world setting. This engine allowed us to detect extra-foveal DMEs commonly overlooked in other studies, and showed potential for application as the first filter of non-referable patients in an outpatient center within a population-based DR screening program, otherwise ended up in specialized care.
Several studies published so far used highly selective image datasets from unclear sources to train computer vision models and that may lead to overestimated results, while those studies conducted in real-life remain scarce. To avoid image selection bias, we stacked convolutional and recurrent neural networks (CNN-RNN) to analyze complete optical coherence tomography (OCT) cubes in a row and predict diabetic macular edema (DME), in a real-world diabetic retinopathy screening program. A retrospective cohort study was carried out. Throughout 4-years, 5314 OCT cubes from 4408 subjects who attended to the diabetic retinopathy (DR) screening program were included. We arranged twenty-two (22) pre-trained CNNs in parallel with a bidirectional RNN layer stacked at the bottom, allowing the model to make a prediction for the whole OCT cube. The staff of retina experts built a ground truth of DME later used to train a set of these CNN-RNN models with different configurations. For each trained CNN-RNN model, we performed threshold tuning to find the optimal cut-off point for binary classification of DME. Finally, the best models were selected according to sensitivity, specificity, and area under the receiver operating characteristics curve (AUROC) with their 95% confidence intervals (95%CI). An ensemble of the best models was also explored. 5188 cubes were non-DME and 126 were DME. Three models achieved an AUROC of 0.94. Among these, sensitivity, and specificity (95%CI) ranged from 84.1-90.5 and 89.7-93.3, respectively, at threshold 1, from 89.7-92.1 and 80-83.1 at threshold 2, and from 80.2-81 and 93.8-97, at threshold 3. The ensemble model improved these results, and lower specificity was observed among subjects with sight-threatening DR. Analysis by age, gender, or grade of DME did not vary the performance of the models. CNN-RNN models showed high diagnostic accuracy for detecting DME in a real-world setting. This engine allowed us to detect extra-foveal DMEs commonly overlooked in other studies, and showed potential for application as the first filter of non-referable patients in an outpatient center within a population-based DR screening program, otherwise ended up in specialized care.Several studies published so far used highly selective image datasets from unclear sources to train computer vision models and that may lead to overestimated results, while those studies conducted in real-life remain scarce. To avoid image selection bias, we stacked convolutional and recurrent neural networks (CNN-RNN) to analyze complete optical coherence tomography (OCT) cubes in a row and predict diabetic macular edema (DME), in a real-world diabetic retinopathy screening program. A retrospective cohort study was carried out. Throughout 4-years, 5314 OCT cubes from 4408 subjects who attended to the diabetic retinopathy (DR) screening program were included. We arranged twenty-two (22) pre-trained CNNs in parallel with a bidirectional RNN layer stacked at the bottom, allowing the model to make a prediction for the whole OCT cube. The staff of retina experts built a ground truth of DME later used to train a set of these CNN-RNN models with different configurations. For each trained CNN-RNN model, we performed threshold tuning to find the optimal cut-off point for binary classification of DME. Finally, the best models were selected according to sensitivity, specificity, and area under the receiver operating characteristics curve (AUROC) with their 95% confidence intervals (95%CI). An ensemble of the best models was also explored. 5188 cubes were non-DME and 126 were DME. Three models achieved an AUROC of 0.94. Among these, sensitivity, and specificity (95%CI) ranged from 84.1-90.5 and 89.7-93.3, respectively, at threshold 1, from 89.7-92.1 and 80-83.1 at threshold 2, and from 80.2-81 and 93.8-97, at threshold 3. The ensemble model improved these results, and lower specificity was observed among subjects with sight-threatening DR. Analysis by age, gender, or grade of DME did not vary the performance of the models. CNN-RNN models showed high diagnostic accuracy for detecting DME in a real-world setting. This engine allowed us to detect extra-foveal DMEs commonly overlooked in other studies, and showed potential for application as the first filter of non-referable patients in an outpatient center within a population-based DR screening program, otherwise ended up in specialized care.
Several studies published so far used highly selective image datasets from unclear sources to train computer vision models and that may lead to overestimated results, while those studies conducted in real-life remain scarce. To avoid image selection bias, we stacked convolutional and recurrent neural networks (CNN-RNN) to analyze complete optical coherence tomography (OCT) cubes in a row and predict diabetic macular edema (DME), in a real-world diabetic retinopathy screening program. A retrospective cohort study was carried out. Throughout 4-years, 5314 OCT cubes from 4408 subjects who attended to the diabetic retinopathy (DR) screening program were included. We arranged twenty-two (22) pre-trained CNNs in parallel with a bidirectional RNN layer stacked at the bottom, allowing the model to make a prediction for the whole OCT cube. The staff of retina experts built a ground truth of DME later used to train a set of these CNN-RNN models with different configurations. For each trained CNN-RNN model, we performed threshold tuning to find the optimal cut-off point for binary classification of DME. Finally, the best models were selected according to sensitivity, specificity, and area under the receiver operating characteristics curve (AUROC) with their 95% confidence intervals (95%CI). An ensemble of the best models was also explored. 5188 cubes were non-DME and 126 were DME. Three models achieved an AUROC of 0.94. Among these, sensitivity, and specificity (95%CI) ranged from 84.1–90.5 and 89.7–93.3, respectively, at threshold 1, from 89.7–92.1 and 80–83.1 at threshold 2, and from 80.2–81 and 93.8–97, at threshold 3. The ensemble model improved these results, and lower specificity was observed among subjects with sight-threatening DR. Analysis by age, gender, or grade of DME did not vary the performance of the models. CNN-RNN models showed high diagnostic accuracy for detecting DME in a real-world setting. This engine allowed us to detect extra-foveal DMEs commonly overlooked in other studies, and showed potential for application as the first filter of non-referable patients in an outpatient center within a population-based DR screening program, otherwise ended up in specialized care.
ArticleNumber 17633
Author Arruabarrena, Carolina
Rodríguez-Miguel, Antonio
Zarranz-Ventura, Javier
Olivera, Maximiliano
Allendes, Germán
Teus, Miguel A.
Author_xml – sequence: 1
  givenname: Antonio
  surname: Rodríguez-Miguel
  fullname: Rodríguez-Miguel, Antonio
  email: antonio.rodriguezmig@uah.es
  organization: Department of Biomedical Sciences, University of Alcalá (IRYCIS)
– sequence: 2
  givenname: Carolina
  surname: Arruabarrena
  fullname: Arruabarrena, Carolina
  organization: Department of Ophthalmology, Retina Unit, University Hospital “Príncipe de Asturias”
– sequence: 3
  givenname: Germán
  surname: Allendes
  fullname: Allendes, Germán
  organization: Department of Ophthalmology, Retina Unit, University Hospital “Príncipe de Asturias”
– sequence: 4
  givenname: Maximiliano
  surname: Olivera
  fullname: Olivera, Maximiliano
  organization: Institute of Ophthalmology “Fernández-Vega”
– sequence: 5
  givenname: Javier
  surname: Zarranz-Ventura
  fullname: Zarranz-Ventura, Javier
  organization: Hospital Clínic de Barcelona, University of Barcelona, Institut de Investigacions Biomediques August Pi I Sunyer (IDIBAPS)
– sequence: 6
  givenname: Miguel A.
  surname: Teus
  fullname: Teus, Miguel A.
  organization: Department of Surgery, Medical and Social Sciences (Ophthalmology), University of Alcalá
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39085461$$D View this record in MEDLINE/PubMed
BookMark eNqNUk1v1DAUjFARLaV_gAOyxIVLIP5K7BNCpdBKRVzgbL04z7upHHuxk6L997i7S2k5IHyxNW_eePzGz6ujEANW1UvavKUNV--yoFKrumGibpVQumZPqhPWCFkzztjRg_NxdZbzTVOWZFpQ_aw65rpRUrT0pIqX2z6NAxkQN8QjpDCGFZnigD4TFxOZ10iyTYi7QnTk4wg9zqMlX8AuHhK5GHACMgYSNwUGT2xcY8JgkcxxiqsEm_WW3Ea_TJhfVE8d-Ixnh_20-v7p4tv5ZX399fPV-Yfr2grN5lo3FJyUTrRaAuOOWuu4UOwO4rIVrgfXtbLvUFkGTrjGtVb1GhS6Fizy0-pqrztEuDGbNE6QtibCaHZATCsDqdj1aCRSTVum2q5lQlKuAbq207x3Yuig4UWL77WWsIHtT_D-XpA25i4Ns0_DlDTMLg3DStf7fddm6SccLIY5gX9k5XEljGuzireGUqapamRReHNQSPHHgnk205gteg8B45INb1QZj2RUFerrv6g3cUmhTHjHEp2iihbWq4eW7r38_g6FwPYEm2LOCd3_PfQwnlzIYYXpz93_6PoF2y_YeA
Cites_doi 10.1038/s41746-019-0099-8
10.1016/j.survophthal.2022.08.004
10.22608/APO.201976
10.1016/j.ophtha.2017.02.008
10.1097/IAE.0000000000003832
10.1016/j.ophtha.2013.11.041
10.1148/radiology.143.1.7063747
10.1007/s40123-018-0153-7
10.1097/APO.0000000000000218
10.1097/ICU.0000000000000980
10.2174/1570161117666190405165911
10.1007/s13312-011-0055-4
10.1186/s12938-022-01018-2
10.2337/dc18-0147
10.1167/tvst.9.2.11
10.1016/j.ajo.2009.02.031
10.1038/s41467-021-26990-6
10.1038/s41746-018-0040-6
10.1016/S2589-7500(21)00086-8
10.1038/s41591-018-0107-6
10.1080/08820530490519934
10.1016/S0161-6420(03)00475-5
10.1016/j.ophtha.2009.03.012
10.1158/1078-0432.CCR-18-2495
10.1002/14651858.CD008081.pub3
10.1016/j.cell.2018.02.010
10.1001/jamaophthalmol.2019.1997
10.2337/dc17-2612
10.1016/j.ophtha.2021.04.027
10.1145/3313831.3376718
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1038/s41598-024-68489-2
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database (via ProQuest SciTech Premium Collection)
Biological Science Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic
MEDLINE
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: BENPR
  name: ProQuest Central Database Suite (ProQuest)
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 11
ExternalDocumentID oai_doaj_org_article_5e191628676245139aa76793bf4d7a03
10.1038/s41598-024-68489-2
PMC11291805
39085461
10_1038_s41598_024_68489_2
Genre Journal Article
GrantInformation_xml – fundername: Biomedical Research Foundation of the University Hospital “Príncipe de Asturias”
  grantid: FIB-PI19-01
– fundername: Biomedical Research Foundation of the University Hospital "Príncipe de Asturias"
  grantid: FIB-PI19-01
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
AARCD
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
EJD
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c492t-901af55f4695a23f1ccf348255f43564fbaf765b7e8c2af4f0f6c8b9a8ef6ace3
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:24:57 EDT 2025
Sun Sep 07 11:21:06 EDT 2025
Tue Sep 30 17:08:22 EDT 2025
Thu Sep 04 20:19:48 EDT 2025
Wed Aug 13 08:19:54 EDT 2025
Mon Jul 21 06:03:39 EDT 2025
Wed Oct 01 01:45:21 EDT 2025
Fri Feb 21 02:37:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Deep learning
Screening
Optical Coherence Tomography
Diabetic Macular Edema
Telemedicine
Diabetic Retinopathy
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c492t-901af55f4695a23f1ccf348255f43564fbaf765b7e8c2af4f0f6c8b9a8ef6ace3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-024-68489-2
PMID 39085461
PQID 3086478181
PQPubID 2041939
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_5e191628676245139aa76793bf4d7a03
unpaywall_primary_10_1038_s41598_024_68489_2
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11291805
proquest_miscellaneous_3086955218
proquest_journals_3086478181
pubmed_primary_39085461
crossref_primary_10_1038_s41598_024_68489_2
springer_journals_10_1038_s41598_024_68489_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-31
PublicationDateYYYYMMDD 2024-07-31
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-31
  day: 31
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Schmidt-Erfurth, Lang, Holz (CR4) 2014
Abràmoff, Lavin, Birch, Shah, Folk (CR26) 2018; 1
Fenner, Wong, Lam (CR5) 2018; 7
Xu, Hosny, Zeleznik, Parmar, Coroller, Franco, Mak, Aerts (CR16) 2019; 25
Ting, Carin, Abramoff (CR33) 2019; 137
Westreich (CR31) 2020
Arruabarrena, Rodríguez-Miguel, Allendes, Vera, Son, Teus (CR6) 2023; 43
(CR30) 1998; 1352
Wong, Wong, Chan, Kawasaki, Chong (CR7) 2020; 43
Kermany, Goldbaum, Cai (CR12) 2018; 172
Panozzo, Parolini, Gusson (CR18) 2004; 19
Lovic, Piperidou, Zografou (CR1) 2020; 18
De Fauw, Ledsam, Romera-Paredes (CR27) 2018; 24
Ruia, Saxena, Gemmy Cheung, Gilhotra, Lai (CR19) 2016; 5
Kumar, Indrayan (CR21) 2011; 48
Shahriari, Sabbaghi, Asadi, Hosseini, Khorrami (CR23) 2023; 68
Liu, Li, Xu (CR13) 2022; 21
Lu, Dercle, Zhao, Schwartz (CR15) 2021; 12
Teo, Tham, Yu (CR3) 2021; 128
Wilkinson, Ferris, Klein (CR20) 2003; 110
CR2
Cheung, Tang, Ting, Tan, Wong (CR10) 2019
Danese, Kale, Aslam (CR9) 2023; 34
Lin, Xiong, Liu (CR24) 2021; 3
CR25
Gargeya, Leng (CR32) 2017; 124
Virgili, Menchini, Casazza (CR8) 2015
Klein, Lee, Knudtson, Gangnon, Klein (CR29) 2009; 116
Yanagihara, Lee, Ting, Lee (CR11) 2020; 9
Vujosevic, Benetti, Massignan (CR17) 2009; 148
Hanley, McNeil (CR22) 1982; 143
Li, Keel, Liu, He, Meng, Scheetz (CR28) 2018; 41
Raumviboonsuk, Krause, Chotcomwongse, Sayres, Raman, Widner (CR14) 2019; 2
CP Wilkinson (68489_CR20) 2003; 110
P Raumviboonsuk (68489_CR14) 2019; 2
68489_CR2
IYH Wong (68489_CR7) 2020; 43
L Lu (68489_CR15) 2021; 12
D Lovic (68489_CR1) 2020; 18
BJ Fenner (68489_CR5) 2018; 7
G Panozzo (68489_CR18) 2004; 19
UKPDS Group (68489_CR30) 1998; 1352
R Liu (68489_CR13) 2022; 21
68489_CR25
MD Abràmoff (68489_CR26) 2018; 1
Z Li (68489_CR28) 2018; 41
MH Shahriari (68489_CR23) 2023; 68
J De Fauw (68489_CR27) 2018; 24
D Lin (68489_CR24) 2021; 3
R Kumar (68489_CR21) 2011; 48
D Westreich (68489_CR31) 2020
JA Hanley (68489_CR22) 1982; 143
C Arruabarrena (68489_CR6) 2023; 43
ZL Teo (68489_CR3) 2021; 128
G Virgili (68489_CR8) 2015
Y Xu (68489_CR16) 2019; 25
D Kermany (68489_CR12) 2018; 172
CY Cheung (68489_CR10) 2019
S Ruia (68489_CR19) 2016; 5
S Vujosevic (68489_CR17) 2009; 148
RT Yanagihara (68489_CR11) 2020; 9
R Gargeya (68489_CR32) 2017; 124
C Danese (68489_CR9) 2023; 34
U Schmidt-Erfurth (68489_CR4) 2014
DSW Ting (68489_CR33) 2019; 137
R Klein (68489_CR29) 2009; 116
References_xml – volume: 2
  start-page: 25
  year: 2019
  ident: CR14
  article-title: Deep learning versus human graders for classifying diabetic retinopathy severity in a nationwide screening program
  publication-title: NPJ Digit Med.
  doi: 10.1038/s41746-019-0099-8
– volume: 68
  start-page: 42
  issue: 1
  year: 2023
  end-page: 53
  ident: CR23
  article-title: Artificial intelligence in screening, diagnosis, and classification of diabetic macular edema: A systematic review
  publication-title: Surv. Ophthalmol.
  doi: 10.1016/j.survophthal.2022.08.004
– volume: 1352
  start-page: 837
  year: 1998
  end-page: 853
  ident: CR30
  article-title: Intensive blood-glucose control with sulphonylurea or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33)
  publication-title: Lancet
– year: 2019
  ident: CR10
  article-title: Artificial intelligence in diabetic eye disease screening
  publication-title: Asia Pac J. Ophthalmol.
  doi: 10.22608/APO.201976
– volume: 124
  start-page: 962
  year: 2017
  end-page: 969
  ident: CR32
  article-title: Automated identification of diabetic retinopathy using deep learning
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2017.02.008
– volume: 43
  start-page: 1308
  issue: 8
  year: 2023
  end-page: 1316
  ident: CR6
  article-title: Evaluation of the inclusion of spectral domain optical coherence tomography in a telemedicine diabetic retinopathy screening program: a real clinical practice
  publication-title: Retina
  doi: 10.1097/IAE.0000000000003832
– year: 2014
  ident: CR4
  article-title: Three-year outcomes of individualized ranibizumab treatment in patients with diabetic macular edema The restore extension study
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2013.11.041
– ident: CR2
– volume: 143
  start-page: 29
  issue: 1
  year: 1982
  end-page: 36
  ident: CR22
  article-title: The meaning and use of the area under a receiver operating characteristic (ROC) curve
  publication-title: Radiology
  doi: 10.1148/radiology.143.1.7063747
– volume: 7
  start-page: 333
  year: 2018
  end-page: 346
  ident: CR5
  article-title: Advances in retinal imaging and applications in diabetic retinopathy screening: A review
  publication-title: Ophthalmol. Ther.
  doi: 10.1007/s40123-018-0153-7
– volume: 5
  start-page: 360
  issue: 5
  year: 2016
  end-page: 367
  ident: CR19
  article-title: Spectral Domain Optical Coherence Tomography Features and Classification Systems for Diabetic Macular Edema: A Review
  publication-title: Asia Pac J. Ophthalmol. (Phila)
  doi: 10.1097/APO.0000000000000218
– volume: 34
  start-page: 396
  issue: 5
  year: 2023
  end-page: 402
  ident: CR9
  article-title: The impact of artificial intelligence on retinal disease management: Vision Academy retinal expert consensus
  publication-title: Curr. Opin. Ophthalmol.
  doi: 10.1097/ICU.0000000000000980
– volume: 18
  start-page: 104
  year: 2020
  end-page: 109
  ident: CR1
  article-title: The growing epidemic of diabetes mellitus
  publication-title: Curr. Vasc. Pharmacol.
  doi: 10.2174/1570161117666190405165911
– ident: CR25
– volume: 48
  start-page: 277
  issue: 4
  year: 2011
  end-page: 287
  ident: CR21
  article-title: Receiver operating characteristic (ROC) curve for medical researchers
  publication-title: Indian Pediatr.
  doi: 10.1007/s13312-011-0055-4
– volume: 21
  start-page: 47
  issue: 1
  year: 2022
  ident: CR13
  article-title: Application of artificial intelligence-based dual-modality analysis combining fundus photography and optical coherence tomography in diabetic retinopathy screening in a community hospital
  publication-title: Biomed. Eng. Online
  doi: 10.1186/s12938-022-01018-2
– volume: 41
  start-page: 2509
  year: 2018
  end-page: 2516
  ident: CR28
  article-title: An automated grading system for detection of vision-threatening referable diabetic retinopathy on the basis of color fundus photographs
  publication-title: Diabetes Care
  doi: 10.2337/dc18-0147
– volume: 9
  start-page: 11
  issue: 2
  year: 2020
  ident: CR11
  article-title: Methodological Challenges of Deep Learning in Optical Coherence Tomography for Retinal Diseases: A Review
  publication-title: Transl. Vis. Sci. Technol.
  doi: 10.1167/tvst.9.2.11
– volume: 148
  start-page: 111
  year: 2009
  end-page: 118
  ident: CR17
  article-title: Screening for diabetic retinopathy: 1 and 3 nonmydriatic 45-degree digital fundus photographs vs 7 standard early treatment diabetic retinopathy study fields
  publication-title: Am. J. Ophthalmol.
  doi: 10.1016/j.ajo.2009.02.031
– volume: 12
  start-page: 6654
  issue: 1
  year: 2021
  ident: CR15
  article-title: Deep learning for the prediction of early on-treatment response in metastatic colorectal cancer from serial medical imaging
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-26990-6
– volume: 1
  start-page: 39
  year: 2018
  ident: CR26
  article-title: Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-018-0040-6
– volume: 3
  start-page: e486
  issue: 8
  year: 2021
  end-page: e495
  ident: CR24
  article-title: Application of Comprehensive Artificial intelligence Retinal Expert (CARE) system: a national real-world evidence study
  publication-title: Lancet Digit Health
  doi: 10.1016/S2589-7500(21)00086-8
– volume: 24
  start-page: 1342
  year: 2018
  end-page: 1350
  ident: CR27
  article-title: Clinically applicable deep learning for diagnosis and referral in retinal disease
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0107-6
– volume: 19
  start-page: 13
  issue: 1–2
  year: 2004
  end-page: 20
  ident: CR18
  article-title: Diabetic macular edema: an OCT-based classification
  publication-title: Semin Ophthalmol.
  doi: 10.1080/08820530490519934
– volume: 110
  start-page: 1667
  year: 2003
  end-page: 1682
  ident: CR20
  article-title: Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales
  publication-title: Ophthalmology
  doi: 10.1016/S0161-6420(03)00475-5
– volume: 116
  start-page: 1937
  issue: 10
  year: 2009
  end-page: 1942
  ident: CR29
  article-title: Changes in visual impairment prevalence by period of diagnosis of diabetes: the Wisconsin Epidemiologic Study of Diabetic Retinopathy
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2009.03.012
– year: 2020
  ident: CR31
  publication-title: Epidemiology by design. A causal approach to the health sciences
– volume: 25
  start-page: 3266
  issue: 11
  year: 2019
  end-page: 3275
  ident: CR16
  article-title: Deep Learning Predicts Lung Cancer Treatment Response from Serial Medical Imaging
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-18-2495
– year: 2015
  ident: CR8
  article-title: Optical coherence tomography (OCT) for detection of macular oedema in patients with diabetic retinopathy
  publication-title: Cochrane Database Syst. Rev.
  doi: 10.1002/14651858.CD008081.pub3
– volume: 172
  start-page: 1122
  issue: 5
  year: 2018
  end-page: 1131.e9
  ident: CR12
  article-title: Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning
  publication-title: Cell.
  doi: 10.1016/j.cell.2018.02.010
– volume: 137
  start-page: 994
  issue: 9
  year: 2019
  end-page: 995
  ident: CR33
  article-title: Observations and Lessons Learned From the Artificial Intelligence Studies for Diabetic Retinopathy Screening
  publication-title: JAMA Ophthalmol.
  doi: 10.1001/jamaophthalmol.2019.1997
– volume: 43
  start-page: 2959
  issue: 12
  year: 2020
  end-page: 2966
  ident: CR7
  article-title: Incorporating Optical Coherence Tomography Macula Scans Enhances Cost-effectiveness of Fundus Photography-Based Screening for Diabetic Macular Edema
  publication-title: Diabetes Care
  doi: 10.2337/dc17-2612
– volume: 128
  start-page: 1580
  year: 2021
  end-page: 1591
  ident: CR3
  article-title: Global prevalence of diabetic retinopathy and projection of burden through 2045: Systematic review and meta-analysis
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2021.04.027
– year: 2015
  ident: 68489_CR8
  publication-title: Cochrane Database Syst. Rev.
  doi: 10.1002/14651858.CD008081.pub3
– volume: 43
  start-page: 1308
  issue: 8
  year: 2023
  ident: 68489_CR6
  publication-title: Retina
  doi: 10.1097/IAE.0000000000003832
– volume-title: Epidemiology by design. A causal approach to the health sciences
  year: 2020
  ident: 68489_CR31
– volume: 148
  start-page: 111
  year: 2009
  ident: 68489_CR17
  publication-title: Am. J. Ophthalmol.
  doi: 10.1016/j.ajo.2009.02.031
– volume: 143
  start-page: 29
  issue: 1
  year: 1982
  ident: 68489_CR22
  publication-title: Radiology
  doi: 10.1148/radiology.143.1.7063747
– volume: 1
  start-page: 39
  year: 2018
  ident: 68489_CR26
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-018-0040-6
– volume: 116
  start-page: 1937
  issue: 10
  year: 2009
  ident: 68489_CR29
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2009.03.012
– volume: 110
  start-page: 1667
  year: 2003
  ident: 68489_CR20
  publication-title: Ophthalmology
  doi: 10.1016/S0161-6420(03)00475-5
– volume: 68
  start-page: 42
  issue: 1
  year: 2023
  ident: 68489_CR23
  publication-title: Surv. Ophthalmol.
  doi: 10.1016/j.survophthal.2022.08.004
– volume: 34
  start-page: 396
  issue: 5
  year: 2023
  ident: 68489_CR9
  publication-title: Curr. Opin. Ophthalmol.
  doi: 10.1097/ICU.0000000000000980
– volume: 172
  start-page: 1122
  issue: 5
  year: 2018
  ident: 68489_CR12
  publication-title: Cell.
  doi: 10.1016/j.cell.2018.02.010
– volume: 21
  start-page: 47
  issue: 1
  year: 2022
  ident: 68489_CR13
  publication-title: Biomed. Eng. Online
  doi: 10.1186/s12938-022-01018-2
– ident: 68489_CR25
  doi: 10.1145/3313831.3376718
– ident: 68489_CR2
– volume: 128
  start-page: 1580
  year: 2021
  ident: 68489_CR3
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2021.04.027
– volume: 43
  start-page: 2959
  issue: 12
  year: 2020
  ident: 68489_CR7
  publication-title: Diabetes Care
  doi: 10.2337/dc17-2612
– volume: 1352
  start-page: 837
  year: 1998
  ident: 68489_CR30
  publication-title: Lancet
– year: 2014
  ident: 68489_CR4
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2013.11.041
– volume: 48
  start-page: 277
  issue: 4
  year: 2011
  ident: 68489_CR21
  publication-title: Indian Pediatr.
  doi: 10.1007/s13312-011-0055-4
– volume: 19
  start-page: 13
  issue: 1–2
  year: 2004
  ident: 68489_CR18
  publication-title: Semin Ophthalmol.
  doi: 10.1080/08820530490519934
– volume: 18
  start-page: 104
  year: 2020
  ident: 68489_CR1
  publication-title: Curr. Vasc. Pharmacol.
  doi: 10.2174/1570161117666190405165911
– volume: 3
  start-page: e486
  issue: 8
  year: 2021
  ident: 68489_CR24
  publication-title: Lancet Digit Health
  doi: 10.1016/S2589-7500(21)00086-8
– volume: 5
  start-page: 360
  issue: 5
  year: 2016
  ident: 68489_CR19
  publication-title: Asia Pac J. Ophthalmol. (Phila)
  doi: 10.1097/APO.0000000000000218
– volume: 12
  start-page: 6654
  issue: 1
  year: 2021
  ident: 68489_CR15
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-26990-6
– volume: 41
  start-page: 2509
  year: 2018
  ident: 68489_CR28
  publication-title: Diabetes Care
  doi: 10.2337/dc18-0147
– volume: 124
  start-page: 962
  year: 2017
  ident: 68489_CR32
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2017.02.008
– volume: 137
  start-page: 994
  issue: 9
  year: 2019
  ident: 68489_CR33
  publication-title: JAMA Ophthalmol.
  doi: 10.1001/jamaophthalmol.2019.1997
– volume: 9
  start-page: 11
  issue: 2
  year: 2020
  ident: 68489_CR11
  publication-title: Transl. Vis. Sci. Technol.
  doi: 10.1167/tvst.9.2.11
– volume: 7
  start-page: 333
  year: 2018
  ident: 68489_CR5
  publication-title: Ophthalmol. Ther.
  doi: 10.1007/s40123-018-0153-7
– volume: 24
  start-page: 1342
  year: 2018
  ident: 68489_CR27
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0107-6
– volume: 25
  start-page: 3266
  issue: 11
  year: 2019
  ident: 68489_CR16
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-18-2495
– year: 2019
  ident: 68489_CR10
  publication-title: Asia Pac J. Ophthalmol.
  doi: 10.22608/APO.201976
– volume: 2
  start-page: 25
  year: 2019
  ident: 68489_CR14
  publication-title: NPJ Digit Med.
  doi: 10.1038/s41746-019-0099-8
SSID ssj0000529419
Score 2.4568212
Snippet Several studies published so far used highly selective image datasets from unclear sources to train computer vision models and that may lead to overestimated...
Abstract Several studies published so far used highly selective image datasets from unclear sources to train computer vision models and that may lead to...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 17633
SubjectTerms 631/114/2413
692/163/2743/137/773
Aged
Computer vision
Deep Learning
Diabetes
Diabetes mellitus
Diabetic Macular Edema
Diabetic Retinopathy
Diabetic Retinopathy - diagnostic imaging
Edema
Female
Humanities and Social Sciences
Humans
Macular Edema - diagnostic imaging
Male
Mass Screening - methods
Middle Aged
multidisciplinary
Neural networks
Neural Networks, Computer
Optical Coherence Tomography
Population studies
Retinopathy
Retrospective Studies
ROC Curve
Science
Science (multidisciplinary)
Screening
Telemedicine
Tomography
Tomography, Optical Coherence - methods
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxsxEBYlUNoeQt_dNC0q9NYssfVa6diEBFNITw3kJiRZagzJrqltgv99ZqT11qal7aHXlRa081h9I818Q8hHiIw983gENg2yBnwra6-irJvIlJbJBC6wwPniq5pcii9X8mqr1RfmhBV64CK4YxkhosD6SfBaIQGvONcoMCpMMGtc4fmEbWwrmCqs3syIsemrZEZcHy9gp8JqMiZqpQWm9uzsRJmw_3co89dkyeHG9Al5tGrnbn3nbm62NqXzp2S_R5P0c_mKZ-RBbJ-Th6W_5PoF6SZrLMii0xjntO8P8Z3m5jcLCmiVAvqj8N-AWBYHukRLgsws0AuXE1Tp2TTeOjpraTfPp940dNelQpAuu9ue75qWf9ziJbk8P_t2Oqn7Dgt1EIYtMTfDJSkTxMjSMZ7GISRku8FHXCqRvEuNkr6JOjCXRBolFbQ3TsekXIj8Fdlruza-IdSbqRhFlkAvUniJsw2PSPdmhIwhVeTTRtp2Xog0bL4A59oW3VjQjc26sawiJ6iQYSaSYOcHYBq2Nw37N9OoyOFGnbb3zIXlEMNhea0eV-TDMAw-hRclro3dqswxEoCNrsjrov1hJdwASBUK3tY7drGz1N2RdnadebsR2o71SFbkaGNCP9f1J1kcDWb2D6I7-B-ie0seM3SVfIh9SPaWP1bxHaCvpX-fHe0e0I8odw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1baxQxFD7ULaI-iPeOVongmx06O7lM5kHEypZF6CJioW8hySTtQjuzdncp--_NyVzqohRfkwxkci75cq4AH8LL2OQGTWCV5WnAtzw1wvG0cLmQ3JeWMkxwPpmJ6Sn7dsbPdmDW58JgWGWvE6OirhqLNvJDGrA3pkXK8efFrxS7RqF3tW-hobvWCtWnWGLsHuyiSmYj2D2azL7_GKwu6Ndi47LLnsmoPFyGGwyzzHKWCskw5GfrhoqF_P-FPv8Oohw8qY_gwbpe6M2Nvrz847I6fgKPO5RJvrRs8RR2XP0M7rd9JzfPoZluMFGLVM4tSNc34pzEpjhLElAsCaiQBH0S3rg40XjSBs7MLTnRMXCVTCp3pcm8Js0iWsOJbS7azEGyaq66Otik1X3LF3B6PPn5dZp2nRdSy8p8hTEb2nPuw9uZ65z6sbUeq-DgEOWCeaN9IbgpnLS59sxnXlhpSi2dF9o6-hJGdVO7PSCmrFjmcm8848xwXF1Sh2XgSsad9Ql87E9bLdoCGyo6xqlULW1UoI2KtFF5AkdIkGElFseOA831uepkTXEXHqGYchsUPeMB4mpdiKCHMCax0BlNYL8np-okdqlu-SuB98N0kDV0oOjaNet2TckD4JEJvGqpP-yElgG8MhG-llt8sbXV7Zl6fhHreSPkHcuMJ3DQs9Dtvu46i4OBzf7j6F7f_ddv4GGOQhDN1vswWl2v3duAt1bmXSdEvwFQbCg_
  priority: 102
  providerName: ProQuest
– databaseName: SpringerOpen Free (Free internet resource, activated by CARLI)
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB9qRdQH8dvVKhF8s4t3-drso5aWQ6hPFvoWklzSHrS7R-8Ouf_emeyHHhbR102yhMxk8pvMzC8AH9Az9tzTFdg8qBLxrSq9jqqsItdGpToISQXOp9_07Ex-PVfne8CHWpictJ8pLbOZHrLDPq3woKFiMC5LbSRl5tyBu4bI1ilAq4_GexWKXMlp3dfHTIS5ZejOGZSp-m_Dl3-mSY6x0odwf9Ms3faHu7r67Tg6eQyPehzJPnczfwJ7sXkK97qXJbfPoJ1tqRSLzWNcsv5liAuWn71ZMcSpDHEfQ4uBXiw1tIl1qTGLwE5dTk1lx_N47diiYe0y33ez0F52tYFs3V73TNess26r53B2cvz9aFb2byuUQdZ8TVkZLimV0DtWjos0DSERzw19EkrL5F2qtPJVNIG7JNMk6WB87UxM2oUoXsB-0zbxFTBfz-Uk8uSTVNIr6l2LSERvtVQxpAI-Dqttlx2Fhs2hb2FsJxuLsrFZNpYX8IUEMvYk-uv8ob25sL06WBXRzaSiWjTlUiGIda7SaGko67ByE1HAwSBO2-_JlRXovVFhrZkW8H5sxt1EIRLXxHbT9akVQhpTwMtO-uNMRI3wVGocbXb0Ymequy3N4jIzdhOonZqJKuBwUKFf8_rbWhyOavYPS_f6__7-Bh5w2hT5ovoA9tc3m_gWEdbav8tb6icrNx-N
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagFQIOvCmBgozEjabs-hXnWFCrFVIrDqxUTpHttemKNlk1u0LLr2fGzgYCFSpX25Gc8dj-xjPzDSFvwDK2zOIT2MzJHPCtzK3yMi88U1qG0nGBCc7HJ2oyFR9P5WlHk4O5MAP_PdfvWrhgMAmMiVxpgRE5N8m2giYwtLanJ58OvmD1OMAlOUAD1mXFXP3h4OaJBP1Xocq_gyN7D-ldcntVL8z6uzk__-0SOrqfqhm1kbsQY0--7a-Wdt_9-IPZ8Xr_94Dc67AoPUjK85Dc8PUjcitVp1w_Js1kjelcdOb9gnbVJb7SWDqnpYB1KWBHCqcOWMLY0QSawmvmjh6bGN5KD2f-wtB5TZtFfDOnrjlL-YV02Vx0bNk0nZDtEzI9Ovz8YZJ39RlyJ0q2xMgOE6QMYGFLw3gYOxeQKwebuFQiWBMKJW3htWMmiDAKymlbGu2DMs7zp2Srbmr_jFBbzsTIs2CDkMJKHF1yj2RxpZDehYy83axdtUg0HFV0n3NdJRFWIMIqirBiGXmPy9uPRArt2ACSr7odWUkPpiom5sJ1ICQAYWMKBacVRi4WZsQzsrtRjqrb123FwQLE5Fw9zsjrvht2JLpZTO2bVRpTSoBFOiM7SZf6mfASIK5Q8LUeaNlgqsOeen4WWb8RGI_1SGZkb6OQv-b1L1ns9Up7DdE9_7_hL8gdhrobH7t3ydbycuVfAkpb2lfd9vwJwnkyjg
  priority: 102
  providerName: Unpaywall
Title Hybrid deep learning models for the screening of Diabetic Macular Edema in optical coherence tomography volumes
URI https://link.springer.com/article/10.1038/s41598-024-68489-2
https://www.ncbi.nlm.nih.gov/pubmed/39085461
https://www.proquest.com/docview/3086478181
https://www.proquest.com/docview/3086955218
https://pubmed.ncbi.nlm.nih.gov/PMC11291805
https://doi.org/10.1038/s41598-024-68489-2
https://doaj.org/article/5e191628676245139aa76793bf4d7a03
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: HH5
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: ABDBF
  dateStart: 20121221
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DIK
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAQT
  databaseName: Springer Nature - nature.com Journals - Fully Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: NAO
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.nature.com/siteindex/index.html
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (ProQuest)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Database Suite (ProQuest)
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M48
  dateStart: 20110801
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: AAJSJ
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: C6C
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dixMxEA_3gagP4rerZ4kgvnh7trtJNvsg0is9SqHlUAv1acmmyV2ht7vXD7T_vTPJtlosck-FJC1pZpL5TTLzG0Leg2ecRzlegU00DwHf8jAXhoeJiYTkNtUxwwTnwVD0Rqw_5uMDsgm3rRdwsde1w3pSo_ns7Nft-gts-M8-ZVx-WoARwkSxiIVCMoza-VDdhlhYCh9g6yobh-QYjFUL6fUHtQfg6b-jlLnyH8jLHgK-iOrUmv2_vGO-HMv_Pmj6b4Tl9pn1Ibm_Kiq1_qlms78s2cVj8qiGoLTtdeYJOTDFU3LPF6VcPyNlb41ZXHRiTEXrohJX1FXMWVCAuBQgI4XDBhxg7Cgt9VE1U00HykW10u7E3Cg6LWhZuatyqstrn1ZIl-VNTZJN_cG4eE5GF93vnV5Yl2UINUujJQZ0KMu5Bceaqyi2La0tUuRgU8wFs7myieB5YqSOlGW2aYWWeaqksUJpE78gR0VZmFeE5umENU1kc8s4yzmOTmODHHEp40bbgHzcrHZWefaNzL2axzLzsslANpmTTRYF5BwFsh2JzNmuoZxfZfVGzLgBDxXzccEKMA74V6lEwCGFAYuJasYBOdmIM9toYxaD44c5ubIVkHfbbtiI-LqiClOu_JiUAxqSAXnppb-dSZwCsmUCvi139GJnqrs9xfTakX0jHm7JJg_I6UaF_szrf2txulWzOyzd6zv8rTfkAaDFyEc_npCj5Xxl3gIiW-YNcpiMkwY5brf73_rwed4dXn6F1o7oNNwtR8PtOugZDS_bP34DMFI32A
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4andDgAXEnMMBI8MSitY6dJg8TYtCpY-uE0CbtzXMce6u0JWVtNfXP8ds4x7mMCjTxstfYiRyfiz-fK8B7vBlnPCMTWG5kiPhWhllsZdi3PE6kS00kKMF5dBAPj8S3Y3m8Ar-aXBgKq2x0olfUeWnIRr4ZIfamtMik92nyM6SuUeRdbVpo6Lq1Qr7lS4zViR17dnGFV7jp1u5XpPcHzncGh1-GYd1lIDQi5TOKT9BOSof3RKl55HrGOKr4Qo8iGQuXadePZda3ieHaCdd1sUmyVCfWxdrYCL97B1ZxLhcdWN0eHHz_0Vp5yI8memmdrdONks0pnpiU1cZFGCeCQoyWTkTfOOBfaPfvoM3Wc3sf1ubFRC-u9Pn5H4fjzkN4UKNa9rliw0ewYovHcLfqc7l4AuVwQYlhLLd2wuo-FafMN-GZMkTNDFEoQ_2Fd2oaKB2rAnXGho20D5Rlg9xeaDYuWDnx1ndmyrMqU5HNyou67jardO30KRzdCg2eQacoC_sCWJbmomu5y5yQIpM0O40slZ1LhbTGBfCx2W01qQp6KO-IjxJV0UYhbZSnjeIBbBNB2plUjNs_KC9PVS3bSlq89FKKLx4sQiKk1rofo96jGMi-7kYBrDfkVLWGmKprfg7gXTuMsk0OG13Ycl7NSSUCrCSA5xX125VEKYJlEePbyRJfLC11eaQYn_n64QSxe0lXBrDRsND1um7ai42Wzf5j617e_NdvYW14ONpX-7sHe6_gHieB8CbzdejMLuf2NWK9WfamFigGJ7ctw78BmJtmoA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4aQ9weEHcCA4wETyxq69iJ84AQsFUdYxMPTNqbcVx7q7QlZW019a_x6zjHuYwKNPGy19iJHJ-LP58rwBu8GRe8IBPY2MoY8a2Mi9TJOHM8VdLnNhGU4Ly3n44OxJdDebgGv9pcGAqrbHViUNTjypKNvJcg9qa0SDXo-SYs4tvW8MP0Z0wdpMjT2rbTqFlk1y3P8fo2e7-zhbR-y_lw-_vnUdx0GIityPmcYhOMl9LjHVEanviBtZ6qvdCjRKbCF8ZnqSwypyw3Xvi-T60qcqOcT411CX73GlzPqIweylJ2mHX2HfKgiUHe5On0E9Wb4VlJ-WxcxKkSFFy0chaGlgH_wrl_h2t2Pts7cGtRTs3y3Jyc_HEsDu_B3QbPso81A96HNVc-gBt1h8vlQ6hGS0oJY2PnpqzpUHHEQvudGUO8zBB_MtRceJumgcqzOkRnYtmeCSGybHvsTg2blKyaBrs7s9VxnaPI5tVpU3Gb1Vp29ggOroQCj2G9rEr3FFiRj0XfcV94IUUhaXaeOCo4lwvprI_gXbvbelqX8tDBBZ8oXdNGI210oI3mEXwignQzqQx3eFCdHelGqrV0eN2l5F48UoREMG1MlqLGo-jHzPSTCDZacupGN8z0BSdH8LobRqkmV40pXbWo5-QSoZWK4ElN_W4lSY4wWaT4tlrhi5Wlro6Uk-NQOZzA9UD1ZQSbLQtdrOuyvdjs2Ow_tu7Z5X_9Cm6i5OqvO_u7z-E2J3kItvINWJ-fLdwLBHnz4mWQJgY_rlp8fwPNJGQ7
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagFQIOvCmBgozEjabs-hXnWFCrFVIrDqxUTpHttemKNlk1u0LLr2fGzgYCFSpX25Gc8dj-xjPzDSFvwDK2zOIT2MzJHPCtzK3yMi88U1qG0nGBCc7HJ2oyFR9P5WlHk4O5MAP_PdfvWrhgMAmMiVxpgRE5N8m2giYwtLanJ58OvmD1OMAlOUAD1mXFXP3h4OaJBP1Xocq_gyN7D-ldcntVL8z6uzk__-0SOrqfqhm1kbsQY0--7a-Wdt_9-IPZ8Xr_94Dc67AoPUjK85Dc8PUjcitVp1w_Js1kjelcdOb9gnbVJb7SWDqnpYB1KWBHCqcOWMLY0QSawmvmjh6bGN5KD2f-wtB5TZtFfDOnrjlL-YV02Vx0bNk0nZDtEzI9Ovz8YZJ39RlyJ0q2xMgOE6QMYGFLw3gYOxeQKwebuFQiWBMKJW3htWMmiDAKymlbGu2DMs7zp2Srbmr_jFBbzsTIs2CDkMJKHF1yj2RxpZDehYy83axdtUg0HFV0n3NdJRFWIMIqirBiGXmPy9uPRArt2ACSr7odWUkPpiom5sJ1ICQAYWMKBacVRi4WZsQzsrtRjqrb123FwQLE5Fw9zsjrvht2JLpZTO2bVRpTSoBFOiM7SZf6mfASIK5Q8LUeaNlgqsOeen4WWb8RGI_1SGZkb6OQv-b1L1ns9Up7DdE9_7_hL8gdhrobH7t3ydbycuVfAkpb2lfd9vwJwnkyjg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+deep+learning+models+for+the+screening+of+Diabetic+Macular+Edema+in+optical+coherence+tomography+volumes&rft.jtitle=Scientific+reports&rft.au=Rodr%C3%ADguez-Miguel%2C+Antonio&rft.au=Arruabarrena%2C+Carolina&rft.au=Allendes%2C+Germ%C3%A1n&rft.au=Olivera%2C+Maximiliano&rft.date=2024-07-31&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=17633&rft_id=info:doi/10.1038%2Fs41598-024-68489-2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon