Enhancement of Classifier Performance Using Swarm Intelligence in Detection of Diabetes from Pancreatic Microarray Gene Data

In this study, we focused on using microarray gene data from pancreatic sources to detect diabetes mellitus. Dimensionality reduction (DR) techniques were used to reduce the dimensionally high microarray gene data. DR methods like the Bessel function, Discrete Cosine Transform (DCT), Least Squares L...

Full description

Saved in:
Bibliographic Details
Published inBiomimetics (Basel, Switzerland) Vol. 8; no. 6; p. 503
Main Authors Chellappan, Dinesh, Rajaguru, Harikumar
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2023
MDPI
Subjects
Online AccessGet full text
ISSN2313-7673
2313-7673
DOI10.3390/biomimetics8060503

Cover

Abstract In this study, we focused on using microarray gene data from pancreatic sources to detect diabetes mellitus. Dimensionality reduction (DR) techniques were used to reduce the dimensionally high microarray gene data. DR methods like the Bessel function, Discrete Cosine Transform (DCT), Least Squares Linear Regression (LSLR), and Artificial Algae Algorithm (AAA) are used. Subsequently, we applied meta-heuristic algorithms like the Dragonfly Optimization Algorithm (DOA) and Elephant Herding Optimization Algorithm (EHO) for feature selection. Classifiers such as Nonlinear Regression (NLR), Linear Regression (LR), Gaussian Mixture Model (GMM), Expectation Maximum (EM), Bayesian Linear Discriminant Classifier (BLDC), Logistic Regression (LoR), Softmax Discriminant Classifier (SDC), and Support Vector Machine (SVM) with three types of kernels, Linear, Polynomial, and Radial Basis Function (RBF), were utilized to detect diabetes. The classifier’s performance was analyzed based on parameters like accuracy, F1 score, MCC, error rate, FM metric, and Kappa. Without feature selection, the SVM (RBF) classifier achieved a high accuracy of 90% using the AAA DR methods. The SVM (RBF) classifier using the AAA DR method for EHO feature selection outperformed the other classifiers with an accuracy of 95.714%. This improvement in the accuracy of the classifier’s performance emphasizes the role of feature selection methods.
AbstractList In this study, we focused on using microarray gene data from pancreatic sources to detect diabetes mellitus. Dimensionality reduction (DR) techniques were used to reduce the dimensionally high microarray gene data. DR methods like the Bessel function, Discrete Cosine Transform (DCT), Least Squares Linear Regression (LSLR), and Artificial Algae Algorithm (AAA) are used. Subsequently, we applied meta-heuristic algorithms like the Dragonfly Optimization Algorithm (DOA) and Elephant Herding Optimization Algorithm (EHO) for feature selection. Classifiers such as Nonlinear Regression (NLR), Linear Regression (LR), Gaussian Mixture Model (GMM), Expectation Maximum (EM), Bayesian Linear Discriminant Classifier (BLDC), Logistic Regression (LoR), Softmax Discriminant Classifier (SDC), and Support Vector Machine (SVM) with three types of kernels, Linear, Polynomial, and Radial Basis Function (RBF), were utilized to detect diabetes. The classifier's performance was analyzed based on parameters like accuracy, F1 score, MCC, error rate, FM metric, and Kappa. Without feature selection, the SVM (RBF) classifier achieved a high accuracy of 90% using the AAA DR methods. The SVM (RBF) classifier using the AAA DR method for EHO feature selection outperformed the other classifiers with an accuracy of 95.714%. This improvement in the accuracy of the classifier's performance emphasizes the role of feature selection methods.In this study, we focused on using microarray gene data from pancreatic sources to detect diabetes mellitus. Dimensionality reduction (DR) techniques were used to reduce the dimensionally high microarray gene data. DR methods like the Bessel function, Discrete Cosine Transform (DCT), Least Squares Linear Regression (LSLR), and Artificial Algae Algorithm (AAA) are used. Subsequently, we applied meta-heuristic algorithms like the Dragonfly Optimization Algorithm (DOA) and Elephant Herding Optimization Algorithm (EHO) for feature selection. Classifiers such as Nonlinear Regression (NLR), Linear Regression (LR), Gaussian Mixture Model (GMM), Expectation Maximum (EM), Bayesian Linear Discriminant Classifier (BLDC), Logistic Regression (LoR), Softmax Discriminant Classifier (SDC), and Support Vector Machine (SVM) with three types of kernels, Linear, Polynomial, and Radial Basis Function (RBF), were utilized to detect diabetes. The classifier's performance was analyzed based on parameters like accuracy, F1 score, MCC, error rate, FM metric, and Kappa. Without feature selection, the SVM (RBF) classifier achieved a high accuracy of 90% using the AAA DR methods. The SVM (RBF) classifier using the AAA DR method for EHO feature selection outperformed the other classifiers with an accuracy of 95.714%. This improvement in the accuracy of the classifier's performance emphasizes the role of feature selection methods.
In this study, we focused on using microarray gene data from pancreatic sources to detect diabetes mellitus. Dimensionality reduction (DR) techniques were used to reduce the dimensionally high microarray gene data. DR methods like the Bessel function, Discrete Cosine Transform (DCT), Least Squares Linear Regression (LSLR), and Artificial Algae Algorithm (AAA) are used. Subsequently, we applied meta-heuristic algorithms like the Dragonfly Optimization Algorithm (DOA) and Elephant Herding Optimization Algorithm (EHO) for feature selection. Classifiers such as Nonlinear Regression (NLR), Linear Regression (LR), Gaussian Mixture Model (GMM), Expectation Maximum (EM), Bayesian Linear Discriminant Classifier (BLDC), Logistic Regression (LoR), Softmax Discriminant Classifier (SDC), and Support Vector Machine (SVM) with three types of kernels, Linear, Polynomial, and Radial Basis Function (RBF), were utilized to detect diabetes. The classifier’s performance was analyzed based on parameters like accuracy, F1 score, MCC, error rate, FM metric, and Kappa. Without feature selection, the SVM (RBF) classifier achieved a high accuracy of 90% using the AAA DR methods. The SVM (RBF) classifier using the AAA DR method for EHO feature selection outperformed the other classifiers with an accuracy of 95.714%. This improvement in the accuracy of the classifier’s performance emphasizes the role of feature selection methods.
Audience Academic
Author Chellappan, Dinesh
Rajaguru, Harikumar
AuthorAffiliation 2 Department of Electronics and Communication Engineering, Bannari Amman Institute of Technology, Sathyamangalam 638 401, Tamil Nadu, India
1 Department of Electrical and Electronics Engineering, KPR Institute of Engineering and Technology, Coimbatore 641 407, Tamil Nadu, India; dinesh.chml@gmail.com
AuthorAffiliation_xml – name: 1 Department of Electrical and Electronics Engineering, KPR Institute of Engineering and Technology, Coimbatore 641 407, Tamil Nadu, India; dinesh.chml@gmail.com
– name: 2 Department of Electronics and Communication Engineering, Bannari Amman Institute of Technology, Sathyamangalam 638 401, Tamil Nadu, India
Author_xml – sequence: 1
  givenname: Dinesh
  orcidid: 0000-0002-6955-7646
  surname: Chellappan
  fullname: Chellappan, Dinesh
– sequence: 2
  givenname: Harikumar
  orcidid: 0000-0002-2792-0945
  surname: Rajaguru
  fullname: Rajaguru, Harikumar
BookMark eNqNUsFuEzEQXaEiWkp_gJMlLlxS7LVj755Q1ZQSqYhK0LM19o5TR7t2sDdUkfh4vKQCAhyQD7Zn3nsznufn1VGIAavqJaPnnLf0jfFx8AOO3uaGSjqn_El1UnPGZ0oqfvTb-bg6y3lNKWWtnAtBn1XHXDWNklycVN-uwj0EiwOGkURHLnvI2TuPidxicjENU5bcZR9W5NMDpIEsw4h971c4JXwgCxzRjj6Gib_wYMo9E5fiQG4LOSGUJskHb1OElGBHrjEgWcAIL6qnDvqMZ4_7aXX37urz5fvZzcfr5eXFzcyKth5nqpuzRnSUOjQdc06CYUg7IQxHISU427bS4ARgxnEru7p1nCopmTLCtfy0Wu51uwhrvUl-gLTTEbz-EYhppSGVJnvUQqhOOWhAWC5Q8JY7hqx2texMbRQtWnyvtQ0b2D1A3_8UZFRP1ui_rSmst3vWZmsG7GyZdoL-oJXDTPD3ehW_Fk1JBZs3ReH1o0KKX7aYRz34bIsREDBus66bhs-VUlwV6Ks_oOu4TaFMeELVvJGUi1-oFZR3--BiKWwnUX2hFGsZa-hU9vwfqLI6HLwtX9L5Ej8g1HtCsTvnhO5_xvMdy3nkZw
Cites_doi 10.1016/j.neucom.2016.07.080
10.1016/j.cmpb.2017.09.004
10.1016/j.jbi.2017.04.001
10.1016/j.asoc.2015.03.003
10.1177/1932296816678263
10.1016/j.procs.2020.01.079
10.1111/dom.13148
10.1186/s12902-019-0361-8
10.3390/a12060123
10.4103/ijo.IJO_1627_21
10.1007/s40313-022-00959-2
10.3390/biomimetics8050441
10.1016/j.compbiomed.2023.106949
10.1007/s00521-022-07852-8
10.1109/JBHI.2021.3077114
10.1109/ACCESS.2020.3006154
10.1115/1.4054440
10.1007/s42979-020-00250-8
10.1109/ICSITech46713.2019.8987479
10.3390/microarrays5030023
10.1109/SoutheastCon42311.2019.9020358
10.5888/pcd16.190109
10.2196/15431
10.1109/MINES.2011.123
10.2337/dc14-2459
10.1109/IWW-BCI.2019.8737328
10.1016/j.cell.2019.02.039
10.1002/ima.22365
10.3349/ymj.2019.60.2.191
10.1002/9781118625590
10.1007/s11222-009-9153-8
10.1155/2022/6750457
10.1016/j.neucom.2023.02.010
10.1038/s41598-020-61123-x
10.1016/j.jare.2023.01.014
10.3844/jcssp.2018.1521.1530
10.1186/s13690-021-00687-0
10.1109/HI-POCT45284.2019.8962811
10.1016/j.compbiomed.2021.104554
10.1037/h0071325
10.1109/MSP.2008.930649
10.29304/jqcm.2020.12.3.709
10.1016/j.automatica.2022.110365
10.1109/ISCBI.2015.8
10.1007/s00521-015-1920-1
10.2337/dc22-S002
10.1007/978-0-387-84858-7
10.1109/ACCESS.2022.3170038
10.3390/ijerph18063317
10.3390/ijerph18115597
10.1109/T-C.1974.223784
10.1186/s12911-019-0918-5
10.1016/j.aca.2004.11.066
10.1109/TBME.2013.2254486
10.1016/j.artmed.2020.101847
10.1007/s12293-016-0212-3
10.1002/ima.22522
10.3390/biomimetics8030268
10.21786/bbrc/13.14/73
10.1515/nleng-2018-0095
10.3390/genes11070747
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/biomimetics8060503
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection (Proquest)
Biological Sciences
Biological Science Database (Proquest)
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database
CrossRef



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2313-7673
ExternalDocumentID oai_doaj_org_article_447d7fa8a4c34e4393f1e12f26db2b70
10.3390/biomimetics8060503
PMC10604158
A771911808
10_3390_biomimetics8060503
GeographicLocations India
GeographicLocations_xml – name: India
GroupedDBID 53G
8FE
8FH
AADQD
AAFWJ
AAYXX
ABDBF
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
HYE
IAO
IHR
INH
ITC
LK8
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RPM
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
7X8
PUEGO
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c492t-7d5184d00febd1ff6ab1e0d44b3e466afc996bed00f1bf3c6d29f3076617b4f93
IEDL.DBID BENPR
ISSN 2313-7673
IngestDate Fri Oct 03 12:53:08 EDT 2025
Sun Oct 26 03:03:28 EDT 2025
Tue Sep 30 17:11:28 EDT 2025
Thu Oct 02 10:33:46 EDT 2025
Fri Jul 25 11:44:19 EDT 2025
Mon Oct 20 23:25:45 EDT 2025
Mon Oct 20 17:10:12 EDT 2025
Thu Oct 16 04:45:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c492t-7d5184d00febd1ff6ab1e0d44b3e466afc996bed00f1bf3c6d29f3076617b4f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2792-0945
0000-0002-6955-7646
OpenAccessLink https://www.proquest.com/docview/2882386034?pq-origsite=%requestingapplication%&accountid=15518
PMID 37887634
PQID 2882386034
PQPubID 2055439
ParticipantIDs doaj_primary_oai_doaj_org_article_447d7fa8a4c34e4393f1e12f26db2b70
unpaywall_primary_10_3390_biomimetics8060503
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10604158
proquest_miscellaneous_2883577737
proquest_journals_2882386034
gale_infotracmisc_A771911808
gale_infotracacademiconefile_A771911808
crossref_primary_10_3390_biomimetics8060503
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Biomimetics (Basel, Switzerland)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Maniruzzaman (ref_53) 2017; 152
Liu (ref_45) 2022; 142
Wang (ref_30) 2018; 10
Lu (ref_8) 2017; 256
Jakka (ref_10) 2019; 8
ref_57
ref_12
ref_56
ref_11
Zhang (ref_67) 2021; 25
Pham (ref_54) 2017; 69
ref_17
ref_15
ref_59
Muhammad (ref_14) 2020; 1
Adiwijaya (ref_48) 2018; 14
Mirjalili (ref_38) 2016; 27
Hotelling (ref_24) 1933; 24
Bernardini (ref_61) 2020; 105
ref_25
Jain (ref_63) 2020; 13
Bharanidharan (ref_39) 2021; 31
ref_23
ref_66
ref_21
Xie (ref_60) 2019; 16
ref_20
ref_64
Choi (ref_58) 2019; 60
Pradeepa (ref_2) 2021; 69
Zhang (ref_41) 2023; 23
Zhang (ref_62) 2020; 10
Yang (ref_13) 2020; 8
Parand (ref_19) 2019; 8
Su (ref_36) 2023; 532
Wang (ref_52) 2009; 26
Hamid (ref_47) 2020; 12
Fushiki (ref_51) 2011; 21
ref_35
ref_33
ref_32
ref_31
Uymaz (ref_26) 2015; 31
Hertroijs (ref_55) 2017; 20
ref_37
Ewees (ref_29) 2023; 35
Herman (ref_4) 2015; 38
Ahmed (ref_22) 1974; C-23
Izci (ref_34) 2023; 34
Yao (ref_50) 2005; 535
Haneef (ref_65) 2021; 79
Parhi (ref_28) 2022; 10
Bharanidharan (ref_40) 2020; 30
ref_44
ref_43
Schnell (ref_7) 2017; 11
ref_42
Kenny (ref_6) 2019; 177
Zhou (ref_46) 2013; 60
ref_1
ref_3
Prabhakar (ref_27) 2020; 8
Lawi (ref_16) 2019; Volume 1341
ref_49
ref_9
ref_5
Velliangiri (ref_18) 2019; 165
References_xml – volume: 256
  start-page: 56
  year: 2017
  ident: ref_8
  article-title: A hybrid feature selection algorithm for gene expression data classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.07.080
– volume: 152
  start-page: 23
  year: 2017
  ident: ref_53
  article-title: Comparative approaches for classification of diabetes mellitus data: Machine learning paradigm
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2017.09.004
– volume: 69
  start-page: 218
  year: 2017
  ident: ref_54
  article-title: Predicting healthcare trajectories from medical records: A deep learning approach
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2017.04.001
– volume: 31
  start-page: 153
  year: 2015
  ident: ref_26
  article-title: Artificial algae algorithm (AAA) for nonlinear global optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.03.003
– volume: 11
  start-page: 611
  year: 2017
  ident: ref_7
  article-title: Impact of HbA1c testing at point of care on diabetes management
  publication-title: J. Diabetes Sci. Technol.
  doi: 10.1177/1932296816678263
– volume: 165
  start-page: 104
  year: 2019
  ident: ref_18
  article-title: A review of dimensionality reduction techniques for efficient computation
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2020.01.079
– volume: 20
  start-page: 681
  year: 2017
  ident: ref_55
  article-title: A risk score including body mass index, glycated hemoglobin and triglycerides predicts future glycemic control in people with type 2 diabetes
  publication-title: Diabetes Obes. Metab.
  doi: 10.1111/dom.13148
– ident: ref_56
  doi: 10.1186/s12902-019-0361-8
– ident: ref_17
  doi: 10.3390/a12060123
– ident: ref_1
– volume: 69
  start-page: 2932
  year: 2021
  ident: ref_2
  article-title: Epidemiology of type 2 diabetes in India
  publication-title: Indian J. Ophthalmol.
  doi: 10.4103/ijo.IJO_1627_21
– ident: ref_23
– volume: 34
  start-page: 333
  year: 2023
  ident: ref_34
  article-title: Biomedical application of a random learning and elite opposition-based weighted mean of vectors algorithm with pattern search mechanism
  publication-title: J. Control. Autom. Electr. Syst.
  doi: 10.1007/s40313-022-00959-2
– ident: ref_31
  doi: 10.3390/biomimetics8050441
– ident: ref_32
  doi: 10.1016/j.compbiomed.2023.106949
– volume: 35
  start-page: 3307
  year: 2023
  ident: ref_29
  article-title: Enhanced feature selection technique using slime mould algorithm: A case study on chemical data
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-022-07852-8
– volume: 25
  start-page: 4005
  year: 2021
  ident: ref_67
  article-title: Nonlaboratory based risk assessment model for type 2 diabetes mellitus screening in Chinese rural population: A joint bagging boosting model
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2021.3077114
– volume: 8
  start-page: 127866
  year: 2020
  ident: ref_27
  article-title: An integrated approach for ovarian cancer classification with the application of stochastic optimization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3006154
– volume: 23
  start-page: 021006
  year: 2023
  ident: ref_41
  article-title: Reducing the Search Space for Global Minimum: A Focused Regions Identification Method for Least Squares Parameter Estimation in Nonlinear Models
  publication-title: J. Comput. Inf. Sci. Eng.
  doi: 10.1115/1.4054440
– volume: 1
  start-page: 240
  year: 2020
  ident: ref_14
  article-title: Predictive supervised machine learning models for diabetes mellitus
  publication-title: SN Comput. Sci.
  doi: 10.1007/s42979-020-00250-8
– ident: ref_11
  doi: 10.1109/ICSITech46713.2019.8987479
– ident: ref_3
  doi: 10.3390/microarrays5030023
– ident: ref_59
  doi: 10.1109/SoutheastCon42311.2019.9020358
– ident: ref_20
– volume: 16
  start-page: E130
  year: 2019
  ident: ref_60
  article-title: Building risk prediction models for type 2 diabetes using machine learning techniques
  publication-title: Prev. Chronic Dis.
  doi: 10.5888/pcd16.190109
– volume: 8
  start-page: e15431
  year: 2020
  ident: ref_13
  article-title: Ensemble learning models based on noninvasive features for type 2 diabetes screening: Model development and validation
  publication-title: JMIR Med. Inform.
  doi: 10.2196/15431
– ident: ref_49
  doi: 10.1109/MINES.2011.123
– volume: 38
  start-page: 1449
  year: 2015
  ident: ref_4
  article-title: Early detection and treatment of type 2 diabetes reduce cardiovascular morbidity and mortality: A simulation of the results of the Anglo-Danish-Dutch study of intensive treatment in people with screen-detected diabetes in primary care (ADDITION-Europe)
  publication-title: Diabetes Care
  doi: 10.2337/dc14-2459
– ident: ref_44
  doi: 10.1109/IWW-BCI.2019.8737328
– volume: 177
  start-page: 58
  year: 2019
  ident: ref_6
  article-title: Personalized medicine and the power of electronic health records
  publication-title: Cell
  doi: 10.1016/j.cell.2019.02.039
– volume: 30
  start-page: 57
  year: 2020
  ident: ref_40
  article-title: Performance enhancement of swarm intelligence techniques in dementia classification using dragonfly-based hybrid algorithms
  publication-title: Int. J. Imaging Syst. Technol.
  doi: 10.1002/ima.22365
– volume: 60
  start-page: 191
  year: 2019
  ident: ref_58
  article-title: Machine learning for the prediction of new-onset diabetes mellitus during 5-year follow-up in non-diabetic patients with cardiovascular risks
  publication-title: Yonsei Med. J.
  doi: 10.3349/ymj.2019.60.2.191
– ident: ref_42
  doi: 10.1002/9781118625590
– volume: 21
  start-page: 137
  year: 2011
  ident: ref_51
  article-title: Estimation of prediction error by using K-fold cross-validation
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-009-9153-8
– ident: ref_21
  doi: 10.1155/2022/6750457
– volume: 532
  start-page: 183
  year: 2023
  ident: ref_36
  article-title: RIME: A physics-based optimization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2023.02.010
– volume: 10
  start-page: 4406
  year: 2020
  ident: ref_62
  article-title: Machine learning for characterizing risk of type 2 diabetes mellitus in a rural Chinese population: The Henan rural cohort study
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-61123-x
– ident: ref_35
  doi: 10.1016/j.jare.2023.01.014
– volume: 14
  start-page: 1521
  year: 2018
  ident: ref_48
  article-title: Dimensionality reduction using principal component analysis for cancer detection based on microarray data classification
  publication-title: J. Comput. Sci.
  doi: 10.3844/jcssp.2018.1521.1530
– volume: 79
  start-page: 168
  year: 2021
  ident: ref_65
  article-title: Use of artifcial intelligence for public health surveillance: A case study to develop a machine learning-algorithm to estimate the incidence of diabetes mellitus in France
  publication-title: Arch. Public Health
  doi: 10.1186/s13690-021-00687-0
– ident: ref_57
  doi: 10.1109/HI-POCT45284.2019.8962811
– ident: ref_64
  doi: 10.1016/j.compbiomed.2021.104554
– volume: 24
  start-page: 417
  year: 1933
  ident: ref_24
  article-title: Analysis of a complex of statistical variables into principal components
  publication-title: J. Educ. Psychol.
  doi: 10.1037/h0071325
– volume: 8
  start-page: 1976
  year: 2019
  ident: ref_10
  article-title: Performance evaluation of machine learning models for diabetes prediction
  publication-title: Int. J. Innov. Technol. Explor. Eng. Regul. Issue
– volume: 26
  start-page: 98
  year: 2009
  ident: ref_52
  article-title: Mean squared error: Love it or leave it? A new look at signal fidelity measures
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2008.930649
– volume: 12
  start-page: 1
  year: 2020
  ident: ref_47
  article-title: Prediction of Type 2 Diabetes through Risk Factors using Binary Logistic Regression
  publication-title: J. Al-Qadisiyah Comput. Sci. Math.
  doi: 10.29304/jqcm.2020.12.3.709
– volume: 142
  start-page: 110365
  year: 2022
  ident: ref_45
  article-title: Expectation–maximization algorithm for bilinear systems by using the Rauch–Tung–Striebel smoother
  publication-title: Automatica
  doi: 10.1016/j.automatica.2022.110365
– volume: Volume 1341
  start-page: 042018
  year: 2019
  ident: ref_16
  article-title: Performance evaluation of naive Bayes and support vector machine in type 2 diabetes Mellitus gene expression microarray data
  publication-title: Journal of Physics: Conference Series
– ident: ref_37
  doi: 10.1109/ISCBI.2015.8
– volume: 27
  start-page: 1053
  year: 2016
  ident: ref_38
  article-title: Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-1920-1
– ident: ref_9
  doi: 10.2337/dc22-S002
– ident: ref_25
  doi: 10.1007/978-0-387-84858-7
– volume: 10
  start-page: 49219
  year: 2022
  ident: ref_28
  article-title: Influential gene selection from high-dimensional genomic data using a bio-inspired algorithm wrapped broad learning system
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3170038
– ident: ref_66
  doi: 10.3390/ijerph18063317
– ident: ref_15
  doi: 10.3390/ijerph18115597
– volume: C-23
  start-page: 90
  year: 1974
  ident: ref_22
  article-title: Discrete cosine transform
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/T-C.1974.223784
– ident: ref_12
  doi: 10.1186/s12911-019-0918-5
– volume: 535
  start-page: 259
  year: 2005
  ident: ref_50
  article-title: Comparative classification study of toxicity mechanisms using support vector machines and radial basis function neural networks
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2004.11.066
– volume: 60
  start-page: 3375
  year: 2013
  ident: ref_46
  article-title: Epileptic seizure detection using lacunarity and Bayesian linear discriminant analysis in intracranial EEG
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2013.2254486
– volume: 105
  start-page: 101847
  year: 2020
  ident: ref_61
  article-title: Early temporal prediction of type 2 diabetes risk condition from a general practitioner electronic health record: A multiple instance boosting approach
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2020.101847
– ident: ref_43
– volume: 10
  start-page: 151
  year: 2018
  ident: ref_30
  article-title: Moth search algorithm: A bio-inspired metaheuristic algorithm for global optimization problems
  publication-title: Memetic Comput.
  doi: 10.1007/s12293-016-0212-3
– volume: 31
  start-page: 1221
  year: 2021
  ident: ref_39
  article-title: Dementia MRI image classification using transformation technique based on elephant herding optimization with Randomized Adam method for updating the hyper-parameters
  publication-title: Int. J. Imaging Syst. Technol.
  doi: 10.1002/ima.22522
– ident: ref_33
  doi: 10.3390/biomimetics8030268
– volume: 13
  start-page: 315
  year: 2020
  ident: ref_63
  article-title: A supervised model for diabetes divination
  publication-title: Biosci. Biotechnol. Res. Commun.
  doi: 10.21786/bbrc/13.14/73
– volume: 8
  start-page: 438
  year: 2019
  ident: ref_19
  article-title: New numerical method based on generalized Bessel function to solve nonlinear Abel fractional differential equation of the first kind
  publication-title: Nonlinear Eng.
  doi: 10.1515/nleng-2018-0095
– ident: ref_5
  doi: 10.3390/genes11070747
SSID ssj0001965440
Score 2.2569675
Snippet In this study, we focused on using microarray gene data from pancreatic sources to detect diabetes mellitus. Dimensionality reduction (DR) techniques were used...
SourceID doaj
unpaywall
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 503
SubjectTerms Accuracy
Algae
Algorithms
Bayesian analysis
Blood pressure
Cardiovascular disease
Classification
classification techniques
Datasets
Decision trees
Diabetes
Diabetes mellitus
Diagnosis
dimensionality reduction (DR)
Discriminant analysis
Disease prevention
DNA microarrays
Feature selection
Gene expression
Genetic aspects
Hypertension
Laboratories
Literature reviews
Machine learning
Medical diagnosis
Metabolic disorders
microarray gene data
Nutrition
Obesity
Pancreas
Performance evaluation
Regression analysis
Swarm intelligence
type II DM
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Bi9QwFA6yF72IuorVVSKIHrRs2qRJehzdXVZBWdCFvZUkTdhZdjLLTIdlwB_ve2l3nDIHPXgrTULbvJe-94XvfSHkLRe15dpWeQlXudC2zWvufB68dEFULRMuqX1-l6fn4utFdbF11Bdywnp54H7iDoVQrQpGG-G48BA-eSh8UYYSD0KyKqF1pustMHXVi75UQrC-SoYDrj_EavbpDAsDl5pJVEEZRaIk2L_7W96lSt5fxRuzvjXX11tx6OQReTgkkHTSv_hjcs_HJ2R_EgE8z9b0HU2UzrRXvk9-HcdLtCruANJ5oOkEzGmASEjP_hQM0EQboD9uzWJGv2xJdNJppEe-S2StiOMH-sySYlEKPYPBKeV09BvS-sxiYdYUdazpkenMU3J-cvzz82k-HLeQO1GXXa7aCuBey1jwti1CkMYWnrVCWO6FlCY4wEbWY4fCBu5kW9YBfhEQ4ZUVoebPyF6cR_-c0FB6X4e6CEpYISEHK7h0TAdIR4QPrcvIh7upb256VY0G0Agaqtk1VEY-oXU2PVERO90AP2kGP2n-5icZeY-2bXDdgiWdGcoP4IVRAauZKAXQtdBMZ-Rg1BPWmxs333lHM6z3ZVMCUOFaMi4y8mbTjCORwxb9fJX68EopxVVG9MirRl82bonTy6T5XaDIUVHB0z9uHPAfpu7F_5i6l-RBCaldT2E8IHvdYuVfQSrW2ddp1f0Gil02kA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLagO8CFXwMRGMhICA6QNY4d2zmhwjYNJKZKUGmcItuxWcWaVm3KVMQfz7PrlYVegFsVPytN8vz8Pet730PoOWWlplIXaQ6_UiZ1nZbU2NRZbhwr6oyZoPZ5wo9H7MNpcRq5OYtIq4RUfByCNGAPmgouaF_2eb_IaH9Wuzff40ES4aUouSzy4jra4QVA8R7aGZ0MB19CQ7k4dV0oQyG17_uC9vHE1wYuZMa9EEpnMwqa_duReZsteWPZzNTqQp2fX9mKjm6v-60ugoKhZ6B821-2et_8-EPf8b-f8g66FUEqHqy96i66Zpt7aHfQQII-WeEXONBGw3n8Lvp52Jx5z_GnjHjqcOiyOXaw2-Lh76IEHKgJ-NOFmk_w-ysyoHjc4APbBkJY4-dHis4C-8IXPITJAdYa_NFTB9V8rlbYa2XjA9Wq-2h0dPj53XEaWzqkhpV5m4q6gJSyzjJndU2c40oTm9WMaWoZ58oZyL-09QZEO2p4nZcOwhCgCKGZK-kD1GumjX2IsMutLV1JnGCaccB5hHKTSQeQh1lXmwS9uvy21Wyt3FFBxuM9odr2hAS99Z9_Y-lVt8OF6fxrFRdxxZiohVNSMUOZBShHHbEkd7lvyqVFlqCX3nkqHxvAVYyKJQ7wh73KVjUQAtJjIjOZoL2OJaxp0x2-dL8qxpRFlUMyRCXPKEvQs82wn-l5co2dLoMNLYQQVCRIdty282TdkWZ8FnTFiRdSIgXc_fXGw__i1T36N_PH6GYOQHFNiNxDvXa-tE8A2LX6aVy-vwC9aE52
  priority: 102
  providerName: Unpaywall
Title Enhancement of Classifier Performance Using Swarm Intelligence in Detection of Diabetes from Pancreatic Microarray Gene Data
URI https://www.proquest.com/docview/2882386034
https://www.proquest.com/docview/2883577737
https://pubmed.ncbi.nlm.nih.gov/PMC10604158
https://www.mdpi.com/2313-7673/8/6/503/pdf?version=1697968525
https://doaj.org/article/447d7fa8a4c34e4393f1e12f26db2b70
UnpaywallVersion publishedVersion
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2313-7673
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001965440
  issn: 2313-7673
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2313-7673
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001965440
  issn: 2313-7673
  databaseCode: ABDBF
  dateStart: 20220601
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2313-7673
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001965440
  issn: 2313-7673
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2313-7673
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001965440
  issn: 2313-7673
  databaseCode: RPM
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2313-7673
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001965440
  issn: 2313-7673
  databaseCode: BENPR
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dixMxEA9n-6Avop7i6lkiiD7ocrubbLL7INLallOwFLVwPi35vCtcd2s_OAr-8WbSbXtLQXxrm4RuM5PJzPQ3v0HoDaG5JJlMw8S9CmkmdZgTZUJrmLI01RFVnu1zxC4m9OtlenmCRrtaGIBV7myiN9S6UpAjP0-cK0gyFhH6af47hK5R8O_qroWGqFsr6I-eYuweaifAjNVC7d5gNP5-yLrkLKU02lbPEBfvn0OV-3QGBYPLLGLAjtK4oTyR_7G5PoZQ3l-Xc7G5FTc3d-6n4SP0sHYscXerCY_RiSmfoNNu6YLq2Qa_xR7q6XPop-jPoLwGaUNmEFcW-86YU-tuSDw-FBJgDyfAP27FYoa_3KHuxNMS983Kg7hKWF_DapYYilXw2C32rqjC3wDuJxYLscHAb437YiWeoslw8PPzRVi3YQgVzZNVyLXbUaqjyBqpY2uZkLGJNKWSGMqYsMrFTNLAhFhaophOcutMh7v5uaQ2J89Qq6xK8xxhmxiT2zy2nErKnG8WE6aizDo3hRqrVYDe77a-mG_ZNgoXpYCgimNBBagH0tnPBKZs_0G1uCrqg1dQyjW3IhNUEWqc-0VsbOLEJtBIS_IoQO9AtgWcZydJJeqyBPfAwIxVdDl3IW2cRVmAzhoz3TlUzeGddhS1HVgWB60N0Ov9MKwEbFtpqrWfQ1LOOeEByhpa1fhlzZFyeu25wGMgP4pT9-0f9gr4H1v34t8P-xI9SJwztwUtnqHWarE2r5zztZId1O72-r1hpz5ZHZ_EcO8mo3H3118Ftjic
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELem7WG8IGAgAgOMxMcDREtiJ04eJtTRTi3bqgo2aW-Z7dis0pqWfqiqxN_G38adm66LKiFe9hbVtvJxd74793e_I-Qd45liqYr9CK58nqrCz5g2vjWJtjwuAq4d22c3aV_wb5fx5Rb5s6qFQVjlak90G3Ux1HhGfhBBKMjSJGD8y-iXj12j8N_VVQsNWbVWKA4dxVhV2HFiFnNI4SaHnSbI-30UHbfOv7b9qsuAr3kWTX1RwAJeBIE1qgitTaQKTVBwrpjhSSKthpRAGZwQKst0UkSZBcsAxyYUt0jGBC5gh8O7QvK3c9Tq9r6vT3myJOY8WFbrMJYFB1hV3x9ggeIkDRJkY6l5RNc4YNM9bEI2d2flSC7m8ubmjj88fkQeVoEsbSw17zHZMuUTstcoIYkfLOgH6qCl7sx-j_xuldeoXXgSSYeWuk6cfQsemfbWhQvUwRfoj7kcD2jnDlUo7Ze0aaYONFbi-grGM6FYHEN7sNiFvpqeIbxQjsdyQZFPmzblVD4lF_cikGdkuxyW5jmhNjIms1loBVc8gVgwZIkOUgthETe20B75tPr0-WjJ7pFDVoSCyjcF5ZEjlM7tTGTmdj8Mxz_zytBzzkUhrEwl14wbCPeYDU0Y2QgbdykReOQjyjbH_QMkqWVVBgEPjExceUMISKHDNEg9sl-bCXav68Mr7cirfWeSr63EI29vh3ElYulKM5y5OSwWQjDhkbSmVbU3q4-U_WvHPR4i2VIYw90_3yrgf3y6F_9-2Ddkt31-dpqfdronL8mDCALJJWByn2xPxzPzCgK_qXpdWRclV_dt0H8B9Exyxw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamTQJeEDAQgQFG4vIAUZPYiZOHCXW01cqgqoBJewu2Y7NKa1p6UVWJX8iv4hw3bRdVQrzsLaptJc3xuTnf-Q4hrxjPFEtV7Edw5fNUFX7GtPGtSbTlcRFw7dg-e8npOf90EV_skT_rWhiEVa5tojPUxUjjGXkjglCQpUnAeMNWsIh-q_Nh_MvHDlL4pXXdTkNWbRaKY0c3VhV5nJnlAtK56XG3BbJ_HUWd9vePp37VccDXPItmvihgAS-CwBpVhNYmUoUmKDhXzPAkkVZDeqAMTgiVZToposyCloCTE4pbJGYCd3CAH7_ASByctHv9r9sTnyyJOQ9WlTuMZUEDK-wHQyxWnKZBgswsNe_omgjsuopd-ObteTmWy4W8urrmGzv3yN0qqKXN1S68T_ZM-YAcNktI6IdL-oY6mKk7vz8kv9vlJe40PJWkI0tdV86BBe9M-9siBuqgDPTbQk6GtHuNNpQOStoyMwcgK3F9BemZUiyUoX1Y7MJgTb8g1FBOJnJJkVubtuRMPiTnNyKQR2S_HJXmMaE2MiazWWgFVzyBuDBkiQ5SCyESN7bQHnm3fvX5eMX0kUOGhILKdwXlkROUzmYmsnS7H0aTn3ml9DnnohBWppJrxg2EfsyGJoxshE28lAg88hZlm6MtAUlqWZVEwAMjK1feFALS6TANUo8c1WaCDdD14fXuyCsbNM23GuORl5thXIm4utKM5m4Oi4UQTHgkre2q2j-rj5SDS8dDHiLxUhjD3d9vNuB_vLon_37YF-QWKHb-uds7e0ruRBBTrrCTR2R_NpmbZxADztTzSrko-XHT-vwX0rN29g
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLagO8CFXwMRGMhICA6QNY4d2zmhwjYNJKZKUGmcItuxWcWaVm3KVMQfz7PrlYVegFsVPytN8vz8Pet730PoOWWlplIXaQ6_UiZ1nZbU2NRZbhwr6oyZoPZ5wo9H7MNpcRq5OYtIq4RUfByCNGAPmgouaF_2eb_IaH9Wuzff40ES4aUouSzy4jra4QVA8R7aGZ0MB19CQ7k4dV0oQyG17_uC9vHE1wYuZMa9EEpnMwqa_duReZsteWPZzNTqQp2fX9mKjm6v-60ugoKhZ6B821-2et_8-EPf8b-f8g66FUEqHqy96i66Zpt7aHfQQII-WeEXONBGw3n8Lvp52Jx5z_GnjHjqcOiyOXaw2-Lh76IEHKgJ-NOFmk_w-ysyoHjc4APbBkJY4-dHis4C-8IXPITJAdYa_NFTB9V8rlbYa2XjA9Wq-2h0dPj53XEaWzqkhpV5m4q6gJSyzjJndU2c40oTm9WMaWoZ58oZyL-09QZEO2p4nZcOwhCgCKGZK-kD1GumjX2IsMutLV1JnGCaccB5hHKTSQeQh1lXmwS9uvy21Wyt3FFBxuM9odr2hAS99Z9_Y-lVt8OF6fxrFRdxxZiohVNSMUOZBShHHbEkd7lvyqVFlqCX3nkqHxvAVYyKJQ7wh73KVjUQAtJjIjOZoL2OJaxp0x2-dL8qxpRFlUMyRCXPKEvQs82wn-l5co2dLoMNLYQQVCRIdty282TdkWZ8FnTFiRdSIgXc_fXGw__i1T36N_PH6GYOQHFNiNxDvXa-tE8A2LX6aVy-vwC9aE52
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancement+of+Classifier+Performance+Using+Swarm+Intelligence+in+Detection+of+Diabetes+from+Pancreatic+Microarray+Gene+Data&rft.jtitle=Biomimetics+%28Basel%2C+Switzerland%29&rft.au=Chellappan%2C+Dinesh&rft.au=Rajaguru%2C+Harikumar&rft.date=2023-10-01&rft.pub=MDPI+AG&rft.eissn=2313-7673&rft.volume=8&rft.issue=6&rft.spage=503&rft_id=info:doi/10.3390%2Fbiomimetics8060503&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2313-7673&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2313-7673&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2313-7673&client=summon