Enhancement of Classifier Performance Using Swarm Intelligence in Detection of Diabetes from Pancreatic Microarray Gene Data
In this study, we focused on using microarray gene data from pancreatic sources to detect diabetes mellitus. Dimensionality reduction (DR) techniques were used to reduce the dimensionally high microarray gene data. DR methods like the Bessel function, Discrete Cosine Transform (DCT), Least Squares L...
Saved in:
| Published in | Biomimetics (Basel, Switzerland) Vol. 8; no. 6; p. 503 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.10.2023
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2313-7673 2313-7673 |
| DOI | 10.3390/biomimetics8060503 |
Cover
| Abstract | In this study, we focused on using microarray gene data from pancreatic sources to detect diabetes mellitus. Dimensionality reduction (DR) techniques were used to reduce the dimensionally high microarray gene data. DR methods like the Bessel function, Discrete Cosine Transform (DCT), Least Squares Linear Regression (LSLR), and Artificial Algae Algorithm (AAA) are used. Subsequently, we applied meta-heuristic algorithms like the Dragonfly Optimization Algorithm (DOA) and Elephant Herding Optimization Algorithm (EHO) for feature selection. Classifiers such as Nonlinear Regression (NLR), Linear Regression (LR), Gaussian Mixture Model (GMM), Expectation Maximum (EM), Bayesian Linear Discriminant Classifier (BLDC), Logistic Regression (LoR), Softmax Discriminant Classifier (SDC), and Support Vector Machine (SVM) with three types of kernels, Linear, Polynomial, and Radial Basis Function (RBF), were utilized to detect diabetes. The classifier’s performance was analyzed based on parameters like accuracy, F1 score, MCC, error rate, FM metric, and Kappa. Without feature selection, the SVM (RBF) classifier achieved a high accuracy of 90% using the AAA DR methods. The SVM (RBF) classifier using the AAA DR method for EHO feature selection outperformed the other classifiers with an accuracy of 95.714%. This improvement in the accuracy of the classifier’s performance emphasizes the role of feature selection methods. |
|---|---|
| AbstractList | In this study, we focused on using microarray gene data from pancreatic sources to detect diabetes mellitus. Dimensionality reduction (DR) techniques were used to reduce the dimensionally high microarray gene data. DR methods like the Bessel function, Discrete Cosine Transform (DCT), Least Squares Linear Regression (LSLR), and Artificial Algae Algorithm (AAA) are used. Subsequently, we applied meta-heuristic algorithms like the Dragonfly Optimization Algorithm (DOA) and Elephant Herding Optimization Algorithm (EHO) for feature selection. Classifiers such as Nonlinear Regression (NLR), Linear Regression (LR), Gaussian Mixture Model (GMM), Expectation Maximum (EM), Bayesian Linear Discriminant Classifier (BLDC), Logistic Regression (LoR), Softmax Discriminant Classifier (SDC), and Support Vector Machine (SVM) with three types of kernels, Linear, Polynomial, and Radial Basis Function (RBF), were utilized to detect diabetes. The classifier's performance was analyzed based on parameters like accuracy, F1 score, MCC, error rate, FM metric, and Kappa. Without feature selection, the SVM (RBF) classifier achieved a high accuracy of 90% using the AAA DR methods. The SVM (RBF) classifier using the AAA DR method for EHO feature selection outperformed the other classifiers with an accuracy of 95.714%. This improvement in the accuracy of the classifier's performance emphasizes the role of feature selection methods.In this study, we focused on using microarray gene data from pancreatic sources to detect diabetes mellitus. Dimensionality reduction (DR) techniques were used to reduce the dimensionally high microarray gene data. DR methods like the Bessel function, Discrete Cosine Transform (DCT), Least Squares Linear Regression (LSLR), and Artificial Algae Algorithm (AAA) are used. Subsequently, we applied meta-heuristic algorithms like the Dragonfly Optimization Algorithm (DOA) and Elephant Herding Optimization Algorithm (EHO) for feature selection. Classifiers such as Nonlinear Regression (NLR), Linear Regression (LR), Gaussian Mixture Model (GMM), Expectation Maximum (EM), Bayesian Linear Discriminant Classifier (BLDC), Logistic Regression (LoR), Softmax Discriminant Classifier (SDC), and Support Vector Machine (SVM) with three types of kernels, Linear, Polynomial, and Radial Basis Function (RBF), were utilized to detect diabetes. The classifier's performance was analyzed based on parameters like accuracy, F1 score, MCC, error rate, FM metric, and Kappa. Without feature selection, the SVM (RBF) classifier achieved a high accuracy of 90% using the AAA DR methods. The SVM (RBF) classifier using the AAA DR method for EHO feature selection outperformed the other classifiers with an accuracy of 95.714%. This improvement in the accuracy of the classifier's performance emphasizes the role of feature selection methods. In this study, we focused on using microarray gene data from pancreatic sources to detect diabetes mellitus. Dimensionality reduction (DR) techniques were used to reduce the dimensionally high microarray gene data. DR methods like the Bessel function, Discrete Cosine Transform (DCT), Least Squares Linear Regression (LSLR), and Artificial Algae Algorithm (AAA) are used. Subsequently, we applied meta-heuristic algorithms like the Dragonfly Optimization Algorithm (DOA) and Elephant Herding Optimization Algorithm (EHO) for feature selection. Classifiers such as Nonlinear Regression (NLR), Linear Regression (LR), Gaussian Mixture Model (GMM), Expectation Maximum (EM), Bayesian Linear Discriminant Classifier (BLDC), Logistic Regression (LoR), Softmax Discriminant Classifier (SDC), and Support Vector Machine (SVM) with three types of kernels, Linear, Polynomial, and Radial Basis Function (RBF), were utilized to detect diabetes. The classifier’s performance was analyzed based on parameters like accuracy, F1 score, MCC, error rate, FM metric, and Kappa. Without feature selection, the SVM (RBF) classifier achieved a high accuracy of 90% using the AAA DR methods. The SVM (RBF) classifier using the AAA DR method for EHO feature selection outperformed the other classifiers with an accuracy of 95.714%. This improvement in the accuracy of the classifier’s performance emphasizes the role of feature selection methods. |
| Audience | Academic |
| Author | Chellappan, Dinesh Rajaguru, Harikumar |
| AuthorAffiliation | 2 Department of Electronics and Communication Engineering, Bannari Amman Institute of Technology, Sathyamangalam 638 401, Tamil Nadu, India 1 Department of Electrical and Electronics Engineering, KPR Institute of Engineering and Technology, Coimbatore 641 407, Tamil Nadu, India; dinesh.chml@gmail.com |
| AuthorAffiliation_xml | – name: 1 Department of Electrical and Electronics Engineering, KPR Institute of Engineering and Technology, Coimbatore 641 407, Tamil Nadu, India; dinesh.chml@gmail.com – name: 2 Department of Electronics and Communication Engineering, Bannari Amman Institute of Technology, Sathyamangalam 638 401, Tamil Nadu, India |
| Author_xml | – sequence: 1 givenname: Dinesh orcidid: 0000-0002-6955-7646 surname: Chellappan fullname: Chellappan, Dinesh – sequence: 2 givenname: Harikumar orcidid: 0000-0002-2792-0945 surname: Rajaguru fullname: Rajaguru, Harikumar |
| BookMark | eNqNUsFuEzEQXaEiWkp_gJMlLlxS7LVj755Q1ZQSqYhK0LM19o5TR7t2sDdUkfh4vKQCAhyQD7Zn3nsznufn1VGIAavqJaPnnLf0jfFx8AOO3uaGSjqn_El1UnPGZ0oqfvTb-bg6y3lNKWWtnAtBn1XHXDWNklycVN-uwj0EiwOGkURHLnvI2TuPidxicjENU5bcZR9W5NMDpIEsw4h971c4JXwgCxzRjj6Gib_wYMo9E5fiQG4LOSGUJskHb1OElGBHrjEgWcAIL6qnDvqMZ4_7aXX37urz5fvZzcfr5eXFzcyKth5nqpuzRnSUOjQdc06CYUg7IQxHISU427bS4ARgxnEru7p1nCopmTLCtfy0Wu51uwhrvUl-gLTTEbz-EYhppSGVJnvUQqhOOWhAWC5Q8JY7hqx2texMbRQtWnyvtQ0b2D1A3_8UZFRP1ui_rSmst3vWZmsG7GyZdoL-oJXDTPD3ehW_Fk1JBZs3ReH1o0KKX7aYRz34bIsREDBus66bhs-VUlwV6Ks_oOu4TaFMeELVvJGUi1-oFZR3--BiKWwnUX2hFGsZa-hU9vwfqLI6HLwtX9L5Ej8g1HtCsTvnhO5_xvMdy3nkZw |
| Cites_doi | 10.1016/j.neucom.2016.07.080 10.1016/j.cmpb.2017.09.004 10.1016/j.jbi.2017.04.001 10.1016/j.asoc.2015.03.003 10.1177/1932296816678263 10.1016/j.procs.2020.01.079 10.1111/dom.13148 10.1186/s12902-019-0361-8 10.3390/a12060123 10.4103/ijo.IJO_1627_21 10.1007/s40313-022-00959-2 10.3390/biomimetics8050441 10.1016/j.compbiomed.2023.106949 10.1007/s00521-022-07852-8 10.1109/JBHI.2021.3077114 10.1109/ACCESS.2020.3006154 10.1115/1.4054440 10.1007/s42979-020-00250-8 10.1109/ICSITech46713.2019.8987479 10.3390/microarrays5030023 10.1109/SoutheastCon42311.2019.9020358 10.5888/pcd16.190109 10.2196/15431 10.1109/MINES.2011.123 10.2337/dc14-2459 10.1109/IWW-BCI.2019.8737328 10.1016/j.cell.2019.02.039 10.1002/ima.22365 10.3349/ymj.2019.60.2.191 10.1002/9781118625590 10.1007/s11222-009-9153-8 10.1155/2022/6750457 10.1016/j.neucom.2023.02.010 10.1038/s41598-020-61123-x 10.1016/j.jare.2023.01.014 10.3844/jcssp.2018.1521.1530 10.1186/s13690-021-00687-0 10.1109/HI-POCT45284.2019.8962811 10.1016/j.compbiomed.2021.104554 10.1037/h0071325 10.1109/MSP.2008.930649 10.29304/jqcm.2020.12.3.709 10.1016/j.automatica.2022.110365 10.1109/ISCBI.2015.8 10.1007/s00521-015-1920-1 10.2337/dc22-S002 10.1007/978-0-387-84858-7 10.1109/ACCESS.2022.3170038 10.3390/ijerph18063317 10.3390/ijerph18115597 10.1109/T-C.1974.223784 10.1186/s12911-019-0918-5 10.1016/j.aca.2004.11.066 10.1109/TBME.2013.2254486 10.1016/j.artmed.2020.101847 10.1007/s12293-016-0212-3 10.1002/ima.22522 10.3390/biomimetics8030268 10.21786/bbrc/13.14/73 10.1515/nleng-2018-0095 10.3390/genes11070747 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
| DBID | AAYXX CITATION 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3390/biomimetics8060503 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection (Proquest) Biological Sciences Biological Science Database (Proquest) ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 2313-7673 |
| ExternalDocumentID | oai_doaj_org_article_447d7fa8a4c34e4393f1e12f26db2b70 10.3390/biomimetics8060503 PMC10604158 A771911808 10_3390_biomimetics8060503 |
| GeographicLocations | India |
| GeographicLocations_xml | – name: India |
| GroupedDBID | 53G 8FE 8FH AADQD AAFWJ AAYXX ABDBF ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ HYE IAO IHR INH ITC LK8 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQGLB PROAC RPM ABUWG AZQEC DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI 7X8 PUEGO 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c492t-7d5184d00febd1ff6ab1e0d44b3e466afc996bed00f1bf3c6d29f3076617b4f93 |
| IEDL.DBID | BENPR |
| ISSN | 2313-7673 |
| IngestDate | Fri Oct 03 12:53:08 EDT 2025 Sun Oct 26 03:03:28 EDT 2025 Tue Sep 30 17:11:28 EDT 2025 Thu Oct 02 10:33:46 EDT 2025 Fri Jul 25 11:44:19 EDT 2025 Mon Oct 20 23:25:45 EDT 2025 Mon Oct 20 17:10:12 EDT 2025 Thu Oct 16 04:45:36 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c492t-7d5184d00febd1ff6ab1e0d44b3e466afc996bed00f1bf3c6d29f3076617b4f93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-2792-0945 0000-0002-6955-7646 |
| OpenAccessLink | https://www.proquest.com/docview/2882386034?pq-origsite=%requestingapplication%&accountid=15518 |
| PMID | 37887634 |
| PQID | 2882386034 |
| PQPubID | 2055439 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_447d7fa8a4c34e4393f1e12f26db2b70 unpaywall_primary_10_3390_biomimetics8060503 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10604158 proquest_miscellaneous_2883577737 proquest_journals_2882386034 gale_infotracmisc_A771911808 gale_infotracacademiconefile_A771911808 crossref_primary_10_3390_biomimetics8060503 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-10-01 |
| PublicationDateYYYYMMDD | 2023-10-01 |
| PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Biomimetics (Basel, Switzerland) |
| PublicationYear | 2023 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Maniruzzaman (ref_53) 2017; 152 Liu (ref_45) 2022; 142 Wang (ref_30) 2018; 10 Lu (ref_8) 2017; 256 Jakka (ref_10) 2019; 8 ref_57 ref_12 ref_56 ref_11 Zhang (ref_67) 2021; 25 Pham (ref_54) 2017; 69 ref_17 ref_15 ref_59 Muhammad (ref_14) 2020; 1 Adiwijaya (ref_48) 2018; 14 Mirjalili (ref_38) 2016; 27 Hotelling (ref_24) 1933; 24 Bernardini (ref_61) 2020; 105 ref_25 Jain (ref_63) 2020; 13 Bharanidharan (ref_39) 2021; 31 ref_23 ref_66 ref_21 Xie (ref_60) 2019; 16 ref_20 ref_64 Choi (ref_58) 2019; 60 Pradeepa (ref_2) 2021; 69 Zhang (ref_41) 2023; 23 Zhang (ref_62) 2020; 10 Yang (ref_13) 2020; 8 Parand (ref_19) 2019; 8 Su (ref_36) 2023; 532 Wang (ref_52) 2009; 26 Hamid (ref_47) 2020; 12 Fushiki (ref_51) 2011; 21 ref_35 ref_33 ref_32 ref_31 Uymaz (ref_26) 2015; 31 Hertroijs (ref_55) 2017; 20 ref_37 Ewees (ref_29) 2023; 35 Herman (ref_4) 2015; 38 Ahmed (ref_22) 1974; C-23 Izci (ref_34) 2023; 34 Yao (ref_50) 2005; 535 Haneef (ref_65) 2021; 79 Parhi (ref_28) 2022; 10 Bharanidharan (ref_40) 2020; 30 ref_44 ref_43 Schnell (ref_7) 2017; 11 ref_42 Kenny (ref_6) 2019; 177 Zhou (ref_46) 2013; 60 ref_1 ref_3 Prabhakar (ref_27) 2020; 8 Lawi (ref_16) 2019; Volume 1341 ref_49 ref_9 ref_5 Velliangiri (ref_18) 2019; 165 |
| References_xml | – volume: 256 start-page: 56 year: 2017 ident: ref_8 article-title: A hybrid feature selection algorithm for gene expression data classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.07.080 – volume: 152 start-page: 23 year: 2017 ident: ref_53 article-title: Comparative approaches for classification of diabetes mellitus data: Machine learning paradigm publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2017.09.004 – volume: 69 start-page: 218 year: 2017 ident: ref_54 article-title: Predicting healthcare trajectories from medical records: A deep learning approach publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2017.04.001 – volume: 31 start-page: 153 year: 2015 ident: ref_26 article-title: Artificial algae algorithm (AAA) for nonlinear global optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.03.003 – volume: 11 start-page: 611 year: 2017 ident: ref_7 article-title: Impact of HbA1c testing at point of care on diabetes management publication-title: J. Diabetes Sci. Technol. doi: 10.1177/1932296816678263 – volume: 165 start-page: 104 year: 2019 ident: ref_18 article-title: A review of dimensionality reduction techniques for efficient computation publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2020.01.079 – volume: 20 start-page: 681 year: 2017 ident: ref_55 article-title: A risk score including body mass index, glycated hemoglobin and triglycerides predicts future glycemic control in people with type 2 diabetes publication-title: Diabetes Obes. Metab. doi: 10.1111/dom.13148 – ident: ref_56 doi: 10.1186/s12902-019-0361-8 – ident: ref_17 doi: 10.3390/a12060123 – ident: ref_1 – volume: 69 start-page: 2932 year: 2021 ident: ref_2 article-title: Epidemiology of type 2 diabetes in India publication-title: Indian J. Ophthalmol. doi: 10.4103/ijo.IJO_1627_21 – ident: ref_23 – volume: 34 start-page: 333 year: 2023 ident: ref_34 article-title: Biomedical application of a random learning and elite opposition-based weighted mean of vectors algorithm with pattern search mechanism publication-title: J. Control. Autom. Electr. Syst. doi: 10.1007/s40313-022-00959-2 – ident: ref_31 doi: 10.3390/biomimetics8050441 – ident: ref_32 doi: 10.1016/j.compbiomed.2023.106949 – volume: 35 start-page: 3307 year: 2023 ident: ref_29 article-title: Enhanced feature selection technique using slime mould algorithm: A case study on chemical data publication-title: Neural Comput. Appl. doi: 10.1007/s00521-022-07852-8 – volume: 25 start-page: 4005 year: 2021 ident: ref_67 article-title: Nonlaboratory based risk assessment model for type 2 diabetes mellitus screening in Chinese rural population: A joint bagging boosting model publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2021.3077114 – volume: 8 start-page: 127866 year: 2020 ident: ref_27 article-title: An integrated approach for ovarian cancer classification with the application of stochastic optimization publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3006154 – volume: 23 start-page: 021006 year: 2023 ident: ref_41 article-title: Reducing the Search Space for Global Minimum: A Focused Regions Identification Method for Least Squares Parameter Estimation in Nonlinear Models publication-title: J. Comput. Inf. Sci. Eng. doi: 10.1115/1.4054440 – volume: 1 start-page: 240 year: 2020 ident: ref_14 article-title: Predictive supervised machine learning models for diabetes mellitus publication-title: SN Comput. Sci. doi: 10.1007/s42979-020-00250-8 – ident: ref_11 doi: 10.1109/ICSITech46713.2019.8987479 – ident: ref_3 doi: 10.3390/microarrays5030023 – ident: ref_59 doi: 10.1109/SoutheastCon42311.2019.9020358 – ident: ref_20 – volume: 16 start-page: E130 year: 2019 ident: ref_60 article-title: Building risk prediction models for type 2 diabetes using machine learning techniques publication-title: Prev. Chronic Dis. doi: 10.5888/pcd16.190109 – volume: 8 start-page: e15431 year: 2020 ident: ref_13 article-title: Ensemble learning models based on noninvasive features for type 2 diabetes screening: Model development and validation publication-title: JMIR Med. Inform. doi: 10.2196/15431 – ident: ref_49 doi: 10.1109/MINES.2011.123 – volume: 38 start-page: 1449 year: 2015 ident: ref_4 article-title: Early detection and treatment of type 2 diabetes reduce cardiovascular morbidity and mortality: A simulation of the results of the Anglo-Danish-Dutch study of intensive treatment in people with screen-detected diabetes in primary care (ADDITION-Europe) publication-title: Diabetes Care doi: 10.2337/dc14-2459 – ident: ref_44 doi: 10.1109/IWW-BCI.2019.8737328 – volume: 177 start-page: 58 year: 2019 ident: ref_6 article-title: Personalized medicine and the power of electronic health records publication-title: Cell doi: 10.1016/j.cell.2019.02.039 – volume: 30 start-page: 57 year: 2020 ident: ref_40 article-title: Performance enhancement of swarm intelligence techniques in dementia classification using dragonfly-based hybrid algorithms publication-title: Int. J. Imaging Syst. Technol. doi: 10.1002/ima.22365 – volume: 60 start-page: 191 year: 2019 ident: ref_58 article-title: Machine learning for the prediction of new-onset diabetes mellitus during 5-year follow-up in non-diabetic patients with cardiovascular risks publication-title: Yonsei Med. J. doi: 10.3349/ymj.2019.60.2.191 – ident: ref_42 doi: 10.1002/9781118625590 – volume: 21 start-page: 137 year: 2011 ident: ref_51 article-title: Estimation of prediction error by using K-fold cross-validation publication-title: Stat. Comput. doi: 10.1007/s11222-009-9153-8 – ident: ref_21 doi: 10.1155/2022/6750457 – volume: 532 start-page: 183 year: 2023 ident: ref_36 article-title: RIME: A physics-based optimization publication-title: Neurocomputing doi: 10.1016/j.neucom.2023.02.010 – volume: 10 start-page: 4406 year: 2020 ident: ref_62 article-title: Machine learning for characterizing risk of type 2 diabetes mellitus in a rural Chinese population: The Henan rural cohort study publication-title: Sci. Rep. doi: 10.1038/s41598-020-61123-x – ident: ref_35 doi: 10.1016/j.jare.2023.01.014 – volume: 14 start-page: 1521 year: 2018 ident: ref_48 article-title: Dimensionality reduction using principal component analysis for cancer detection based on microarray data classification publication-title: J. Comput. Sci. doi: 10.3844/jcssp.2018.1521.1530 – volume: 79 start-page: 168 year: 2021 ident: ref_65 article-title: Use of artifcial intelligence for public health surveillance: A case study to develop a machine learning-algorithm to estimate the incidence of diabetes mellitus in France publication-title: Arch. Public Health doi: 10.1186/s13690-021-00687-0 – ident: ref_57 doi: 10.1109/HI-POCT45284.2019.8962811 – ident: ref_64 doi: 10.1016/j.compbiomed.2021.104554 – volume: 24 start-page: 417 year: 1933 ident: ref_24 article-title: Analysis of a complex of statistical variables into principal components publication-title: J. Educ. Psychol. doi: 10.1037/h0071325 – volume: 8 start-page: 1976 year: 2019 ident: ref_10 article-title: Performance evaluation of machine learning models for diabetes prediction publication-title: Int. J. Innov. Technol. Explor. Eng. Regul. Issue – volume: 26 start-page: 98 year: 2009 ident: ref_52 article-title: Mean squared error: Love it or leave it? A new look at signal fidelity measures publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2008.930649 – volume: 12 start-page: 1 year: 2020 ident: ref_47 article-title: Prediction of Type 2 Diabetes through Risk Factors using Binary Logistic Regression publication-title: J. Al-Qadisiyah Comput. Sci. Math. doi: 10.29304/jqcm.2020.12.3.709 – volume: 142 start-page: 110365 year: 2022 ident: ref_45 article-title: Expectation–maximization algorithm for bilinear systems by using the Rauch–Tung–Striebel smoother publication-title: Automatica doi: 10.1016/j.automatica.2022.110365 – volume: Volume 1341 start-page: 042018 year: 2019 ident: ref_16 article-title: Performance evaluation of naive Bayes and support vector machine in type 2 diabetes Mellitus gene expression microarray data publication-title: Journal of Physics: Conference Series – ident: ref_37 doi: 10.1109/ISCBI.2015.8 – volume: 27 start-page: 1053 year: 2016 ident: ref_38 article-title: Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-1920-1 – ident: ref_9 doi: 10.2337/dc22-S002 – ident: ref_25 doi: 10.1007/978-0-387-84858-7 – volume: 10 start-page: 49219 year: 2022 ident: ref_28 article-title: Influential gene selection from high-dimensional genomic data using a bio-inspired algorithm wrapped broad learning system publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3170038 – ident: ref_66 doi: 10.3390/ijerph18063317 – ident: ref_15 doi: 10.3390/ijerph18115597 – volume: C-23 start-page: 90 year: 1974 ident: ref_22 article-title: Discrete cosine transform publication-title: IEEE Trans. Comput. doi: 10.1109/T-C.1974.223784 – ident: ref_12 doi: 10.1186/s12911-019-0918-5 – volume: 535 start-page: 259 year: 2005 ident: ref_50 article-title: Comparative classification study of toxicity mechanisms using support vector machines and radial basis function neural networks publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2004.11.066 – volume: 60 start-page: 3375 year: 2013 ident: ref_46 article-title: Epileptic seizure detection using lacunarity and Bayesian linear discriminant analysis in intracranial EEG publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2013.2254486 – volume: 105 start-page: 101847 year: 2020 ident: ref_61 article-title: Early temporal prediction of type 2 diabetes risk condition from a general practitioner electronic health record: A multiple instance boosting approach publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2020.101847 – ident: ref_43 – volume: 10 start-page: 151 year: 2018 ident: ref_30 article-title: Moth search algorithm: A bio-inspired metaheuristic algorithm for global optimization problems publication-title: Memetic Comput. doi: 10.1007/s12293-016-0212-3 – volume: 31 start-page: 1221 year: 2021 ident: ref_39 article-title: Dementia MRI image classification using transformation technique based on elephant herding optimization with Randomized Adam method for updating the hyper-parameters publication-title: Int. J. Imaging Syst. Technol. doi: 10.1002/ima.22522 – ident: ref_33 doi: 10.3390/biomimetics8030268 – volume: 13 start-page: 315 year: 2020 ident: ref_63 article-title: A supervised model for diabetes divination publication-title: Biosci. Biotechnol. Res. Commun. doi: 10.21786/bbrc/13.14/73 – volume: 8 start-page: 438 year: 2019 ident: ref_19 article-title: New numerical method based on generalized Bessel function to solve nonlinear Abel fractional differential equation of the first kind publication-title: Nonlinear Eng. doi: 10.1515/nleng-2018-0095 – ident: ref_5 doi: 10.3390/genes11070747 |
| SSID | ssj0001965440 |
| Score | 2.2569675 |
| Snippet | In this study, we focused on using microarray gene data from pancreatic sources to detect diabetes mellitus. Dimensionality reduction (DR) techniques were used... |
| SourceID | doaj unpaywall pubmedcentral proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 503 |
| SubjectTerms | Accuracy Algae Algorithms Bayesian analysis Blood pressure Cardiovascular disease Classification classification techniques Datasets Decision trees Diabetes Diabetes mellitus Diagnosis dimensionality reduction (DR) Discriminant analysis Disease prevention DNA microarrays Feature selection Gene expression Genetic aspects Hypertension Laboratories Literature reviews Machine learning Medical diagnosis Metabolic disorders microarray gene data Nutrition Obesity Pancreas Performance evaluation Regression analysis Swarm intelligence type II DM |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Bi9QwFA6yF72IuorVVSKIHrRs2qRJehzdXVZBWdCFvZUkTdhZdjLLTIdlwB_ve2l3nDIHPXgrTULbvJe-94XvfSHkLRe15dpWeQlXudC2zWvufB68dEFULRMuqX1-l6fn4utFdbF11Bdywnp54H7iDoVQrQpGG-G48BA-eSh8UYYSD0KyKqF1pustMHXVi75UQrC-SoYDrj_EavbpDAsDl5pJVEEZRaIk2L_7W96lSt5fxRuzvjXX11tx6OQReTgkkHTSv_hjcs_HJ2R_EgE8z9b0HU2UzrRXvk9-HcdLtCruANJ5oOkEzGmASEjP_hQM0EQboD9uzWJGv2xJdNJppEe-S2StiOMH-sySYlEKPYPBKeV09BvS-sxiYdYUdazpkenMU3J-cvzz82k-HLeQO1GXXa7aCuBey1jwti1CkMYWnrVCWO6FlCY4wEbWY4fCBu5kW9YBfhEQ4ZUVoebPyF6cR_-c0FB6X4e6CEpYISEHK7h0TAdIR4QPrcvIh7upb256VY0G0Agaqtk1VEY-oXU2PVERO90AP2kGP2n-5icZeY-2bXDdgiWdGcoP4IVRAauZKAXQtdBMZ-Rg1BPWmxs333lHM6z3ZVMCUOFaMi4y8mbTjCORwxb9fJX68EopxVVG9MirRl82bonTy6T5XaDIUVHB0z9uHPAfpu7F_5i6l-RBCaldT2E8IHvdYuVfQSrW2ddp1f0Gil02kA priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLagO8CFXwMRGMhICA6QNY4d2zmhwjYNJKZKUGmcItuxWcWaVm3KVMQfz7PrlYVegFsVPytN8vz8Pet730PoOWWlplIXaQ6_UiZ1nZbU2NRZbhwr6oyZoPZ5wo9H7MNpcRq5OYtIq4RUfByCNGAPmgouaF_2eb_IaH9Wuzff40ES4aUouSzy4jra4QVA8R7aGZ0MB19CQ7k4dV0oQyG17_uC9vHE1wYuZMa9EEpnMwqa_duReZsteWPZzNTqQp2fX9mKjm6v-60ugoKhZ6B821-2et_8-EPf8b-f8g66FUEqHqy96i66Zpt7aHfQQII-WeEXONBGw3n8Lvp52Jx5z_GnjHjqcOiyOXaw2-Lh76IEHKgJ-NOFmk_w-ysyoHjc4APbBkJY4-dHis4C-8IXPITJAdYa_NFTB9V8rlbYa2XjA9Wq-2h0dPj53XEaWzqkhpV5m4q6gJSyzjJndU2c40oTm9WMaWoZ58oZyL-09QZEO2p4nZcOwhCgCKGZK-kD1GumjX2IsMutLV1JnGCaccB5hHKTSQeQh1lXmwS9uvy21Wyt3FFBxuM9odr2hAS99Z9_Y-lVt8OF6fxrFRdxxZiohVNSMUOZBShHHbEkd7lvyqVFlqCX3nkqHxvAVYyKJQ7wh73KVjUQAtJjIjOZoL2OJaxp0x2-dL8qxpRFlUMyRCXPKEvQs82wn-l5co2dLoMNLYQQVCRIdty282TdkWZ8FnTFiRdSIgXc_fXGw__i1T36N_PH6GYOQHFNiNxDvXa-tE8A2LX6aVy-vwC9aE52 priority: 102 providerName: Unpaywall |
| Title | Enhancement of Classifier Performance Using Swarm Intelligence in Detection of Diabetes from Pancreatic Microarray Gene Data |
| URI | https://www.proquest.com/docview/2882386034 https://www.proquest.com/docview/2883577737 https://pubmed.ncbi.nlm.nih.gov/PMC10604158 https://www.mdpi.com/2313-7673/8/6/503/pdf?version=1697968525 https://doaj.org/article/447d7fa8a4c34e4393f1e12f26db2b70 |
| UnpaywallVersion | publishedVersion |
| Volume | 8 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2313-7673 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001965440 issn: 2313-7673 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2313-7673 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001965440 issn: 2313-7673 databaseCode: ABDBF dateStart: 20220601 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2313-7673 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001965440 issn: 2313-7673 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2313-7673 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001965440 issn: 2313-7673 databaseCode: RPM dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2313-7673 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001965440 issn: 2313-7673 databaseCode: BENPR dateStart: 20161201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dixMxEA9n-6Avop7i6lkiiD7ocrubbLL7INLallOwFLVwPi35vCtcd2s_OAr-8WbSbXtLQXxrm4RuM5PJzPQ3v0HoDaG5JJlMw8S9CmkmdZgTZUJrmLI01RFVnu1zxC4m9OtlenmCRrtaGIBV7myiN9S6UpAjP0-cK0gyFhH6af47hK5R8O_qroWGqFsr6I-eYuweaifAjNVC7d5gNP5-yLrkLKU02lbPEBfvn0OV-3QGBYPLLGLAjtK4oTyR_7G5PoZQ3l-Xc7G5FTc3d-6n4SP0sHYscXerCY_RiSmfoNNu6YLq2Qa_xR7q6XPop-jPoLwGaUNmEFcW-86YU-tuSDw-FBJgDyfAP27FYoa_3KHuxNMS983Kg7hKWF_DapYYilXw2C32rqjC3wDuJxYLscHAb437YiWeoslw8PPzRVi3YQgVzZNVyLXbUaqjyBqpY2uZkLGJNKWSGMqYsMrFTNLAhFhaophOcutMh7v5uaQ2J89Qq6xK8xxhmxiT2zy2nErKnG8WE6aizDo3hRqrVYDe77a-mG_ZNgoXpYCgimNBBagH0tnPBKZs_0G1uCrqg1dQyjW3IhNUEWqc-0VsbOLEJtBIS_IoQO9AtgWcZydJJeqyBPfAwIxVdDl3IW2cRVmAzhoz3TlUzeGddhS1HVgWB60N0Ov9MKwEbFtpqrWfQ1LOOeEByhpa1fhlzZFyeu25wGMgP4pT9-0f9gr4H1v34t8P-xI9SJwztwUtnqHWarE2r5zztZId1O72-r1hpz5ZHZ_EcO8mo3H3118Ftjic |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELem7WG8IGAgAgOMxMcDREtiJ04eJtTRTi3bqgo2aW-Z7dis0pqWfqiqxN_G38adm66LKiFe9hbVtvJxd74793e_I-Qd45liqYr9CK58nqrCz5g2vjWJtjwuAq4d22c3aV_wb5fx5Rb5s6qFQVjlak90G3Ux1HhGfhBBKMjSJGD8y-iXj12j8N_VVQsNWbVWKA4dxVhV2HFiFnNI4SaHnSbI-30UHbfOv7b9qsuAr3kWTX1RwAJeBIE1qgitTaQKTVBwrpjhSSKthpRAGZwQKst0UkSZBcsAxyYUt0jGBC5gh8O7QvK3c9Tq9r6vT3myJOY8WFbrMJYFB1hV3x9ggeIkDRJkY6l5RNc4YNM9bEI2d2flSC7m8ubmjj88fkQeVoEsbSw17zHZMuUTstcoIYkfLOgH6qCl7sx-j_xuldeoXXgSSYeWuk6cfQsemfbWhQvUwRfoj7kcD2jnDlUo7Ze0aaYONFbi-grGM6FYHEN7sNiFvpqeIbxQjsdyQZFPmzblVD4lF_cikGdkuxyW5jmhNjIms1loBVc8gVgwZIkOUgthETe20B75tPr0-WjJ7pFDVoSCyjcF5ZEjlM7tTGTmdj8Mxz_zytBzzkUhrEwl14wbCPeYDU0Y2QgbdykReOQjyjbH_QMkqWVVBgEPjExceUMISKHDNEg9sl-bCXav68Mr7cirfWeSr63EI29vh3ElYulKM5y5OSwWQjDhkbSmVbU3q4-U_WvHPR4i2VIYw90_3yrgf3y6F_9-2Ddkt31-dpqfdronL8mDCALJJWByn2xPxzPzCgK_qXpdWRclV_dt0H8B9Exyxw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamTQJeEDAQgQFG4vIAUZPYiZOHCXW01cqgqoBJewu2Y7NKa1p6UVWJX8iv4hw3bRdVQrzsLaptJc3xuTnf-Q4hrxjPFEtV7Edw5fNUFX7GtPGtSbTlcRFw7dg-e8npOf90EV_skT_rWhiEVa5tojPUxUjjGXkjglCQpUnAeMNWsIh-q_Nh_MvHDlL4pXXdTkNWbRaKY0c3VhV5nJnlAtK56XG3BbJ_HUWd9vePp37VccDXPItmvihgAS-CwBpVhNYmUoUmKDhXzPAkkVZDeqAMTgiVZToposyCloCTE4pbJGYCd3CAH7_ASByctHv9r9sTnyyJOQ9WlTuMZUEDK-wHQyxWnKZBgswsNe_omgjsuopd-ObteTmWy4W8urrmGzv3yN0qqKXN1S68T_ZM-YAcNktI6IdL-oY6mKk7vz8kv9vlJe40PJWkI0tdV86BBe9M-9siBuqgDPTbQk6GtHuNNpQOStoyMwcgK3F9BemZUiyUoX1Y7MJgTb8g1FBOJnJJkVubtuRMPiTnNyKQR2S_HJXmMaE2MiazWWgFVzyBuDBkiQ5SCyESN7bQHnm3fvX5eMX0kUOGhILKdwXlkROUzmYmsnS7H0aTn3ml9DnnohBWppJrxg2EfsyGJoxshE28lAg88hZlm6MtAUlqWZVEwAMjK1feFALS6TANUo8c1WaCDdD14fXuyCsbNM23GuORl5thXIm4utKM5m4Oi4UQTHgkre2q2j-rj5SDS8dDHiLxUhjD3d9vNuB_vLon_37YF-QWKHb-uds7e0ruRBBTrrCTR2R_NpmbZxADztTzSrko-XHT-vwX0rN29g |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLagO8CFXwMRGMhICA6QNY4d2zmhwjYNJKZKUGmcItuxWcWaVm3KVMQfz7PrlYVegFsVPytN8vz8Pet730PoOWWlplIXaQ6_UiZ1nZbU2NRZbhwr6oyZoPZ5wo9H7MNpcRq5OYtIq4RUfByCNGAPmgouaF_2eb_IaH9Wuzff40ES4aUouSzy4jra4QVA8R7aGZ0MB19CQ7k4dV0oQyG17_uC9vHE1wYuZMa9EEpnMwqa_duReZsteWPZzNTqQp2fX9mKjm6v-60ugoKhZ6B821-2et_8-EPf8b-f8g66FUEqHqy96i66Zpt7aHfQQII-WeEXONBGw3n8Lvp52Jx5z_GnjHjqcOiyOXaw2-Lh76IEHKgJ-NOFmk_w-ysyoHjc4APbBkJY4-dHis4C-8IXPITJAdYa_NFTB9V8rlbYa2XjA9Wq-2h0dPj53XEaWzqkhpV5m4q6gJSyzjJndU2c40oTm9WMaWoZ58oZyL-09QZEO2p4nZcOwhCgCKGZK-kD1GumjX2IsMutLV1JnGCaccB5hHKTSQeQh1lXmwS9uvy21Wyt3FFBxuM9odr2hAS99Z9_Y-lVt8OF6fxrFRdxxZiohVNSMUOZBShHHbEkd7lvyqVFlqCX3nkqHxvAVYyKJQ7wh73KVjUQAtJjIjOZoL2OJaxp0x2-dL8qxpRFlUMyRCXPKEvQs82wn-l5co2dLoMNLYQQVCRIdty282TdkWZ8FnTFiRdSIgXc_fXGw__i1T36N_PH6GYOQHFNiNxDvXa-tE8A2LX6aVy-vwC9aE52 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancement+of+Classifier+Performance+Using+Swarm+Intelligence+in+Detection+of+Diabetes+from+Pancreatic+Microarray+Gene+Data&rft.jtitle=Biomimetics+%28Basel%2C+Switzerland%29&rft.au=Chellappan%2C+Dinesh&rft.au=Rajaguru%2C+Harikumar&rft.date=2023-10-01&rft.pub=MDPI+AG&rft.eissn=2313-7673&rft.volume=8&rft.issue=6&rft.spage=503&rft_id=info:doi/10.3390%2Fbiomimetics8060503&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2313-7673&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2313-7673&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2313-7673&client=summon |