Integrating EPSOSA-BP neural network algorithm for enhanced accuracy and robustness in optimizing coronary artery disease prediction

Coronary artery disease represents a formidable health threat to middle-aged and elderly populations worldwide. This research introduces an advanced BP neural network algorithm, EPSOSA-BP, which integrates particle swarm optimization, simulated annealing, and a particle elimination mechanism to elev...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; pp. 30993 - 20
Main Authors Li, Chengjie, Wang, Yanglin, Meng, Linghui, Zhong, Wen, Zhang, Chengfang, Liu, Tao
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 28.12.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-024-82184-2

Cover

Abstract Coronary artery disease represents a formidable health threat to middle-aged and elderly populations worldwide. This research introduces an advanced BP neural network algorithm, EPSOSA-BP, which integrates particle swarm optimization, simulated annealing, and a particle elimination mechanism to elevate the precision of heart disease prediction models. To address prior limitations in feature selection, the study employs single-hot encoding and Principal Component Analysis, thereby enhancing the model’s feature learning capability. The proposed method achieved remarkable accuracy rates of 93.22% and 95.20% on the UCI and Kaggle datasets, respectively, underscoring its exceptional performance even with small sample sizes. Ablation experiments further validated the efficacy of the data preprocessing and feature selection techniques employed. Notably, the EPSOSA algorithm surpassed classical optimization algorithms in terms of convergence speed, while also demonstrating improved sensitivity and specificity. This model holds significant potential for facilitating early identification of high-risk patients, which could ultimately save lives and optimize the utilization of medical resources. Despite implementation challenges, including technical integration and data standardization, the algorithm shows promise for use in emergency settings and community health services for regular cardiac risk monitoring.
AbstractList Coronary artery disease represents a formidable health threat to middle-aged and elderly populations worldwide. This research introduces an advanced BP neural network algorithm, EPSOSA-BP, which integrates particle swarm optimization, simulated annealing, and a particle elimination mechanism to elevate the precision of heart disease prediction models. To address prior limitations in feature selection, the study employs single-hot encoding and Principal Component Analysis, thereby enhancing the model's feature learning capability. The proposed method achieved remarkable accuracy rates of 93.22% and 95.20% on the UCI and Kaggle datasets, respectively, underscoring its exceptional performance even with small sample sizes. Ablation experiments further validated the efficacy of the data preprocessing and feature selection techniques employed. Notably, the EPSOSA algorithm surpassed classical optimization algorithms in terms of convergence speed, while also demonstrating improved sensitivity and specificity. This model holds significant potential for facilitating early identification of high-risk patients, which could ultimately save lives and optimize the utilization of medical resources. Despite implementation challenges, including technical integration and data standardization, the algorithm shows promise for use in emergency settings and community health services for regular cardiac risk monitoring.Coronary artery disease represents a formidable health threat to middle-aged and elderly populations worldwide. This research introduces an advanced BP neural network algorithm, EPSOSA-BP, which integrates particle swarm optimization, simulated annealing, and a particle elimination mechanism to elevate the precision of heart disease prediction models. To address prior limitations in feature selection, the study employs single-hot encoding and Principal Component Analysis, thereby enhancing the model's feature learning capability. The proposed method achieved remarkable accuracy rates of 93.22% and 95.20% on the UCI and Kaggle datasets, respectively, underscoring its exceptional performance even with small sample sizes. Ablation experiments further validated the efficacy of the data preprocessing and feature selection techniques employed. Notably, the EPSOSA algorithm surpassed classical optimization algorithms in terms of convergence speed, while also demonstrating improved sensitivity and specificity. This model holds significant potential for facilitating early identification of high-risk patients, which could ultimately save lives and optimize the utilization of medical resources. Despite implementation challenges, including technical integration and data standardization, the algorithm shows promise for use in emergency settings and community health services for regular cardiac risk monitoring.
Coronary artery disease represents a formidable health threat to middle-aged and elderly populations worldwide. This research introduces an advanced BP neural network algorithm, EPSOSA-BP, which integrates particle swarm optimization, simulated annealing, and a particle elimination mechanism to elevate the precision of heart disease prediction models. To address prior limitations in feature selection, the study employs single-hot encoding and Principal Component Analysis, thereby enhancing the model's feature learning capability. The proposed method achieved remarkable accuracy rates of 93.22% and 95.20% on the UCI and Kaggle datasets, respectively, underscoring its exceptional performance even with small sample sizes. Ablation experiments further validated the efficacy of the data preprocessing and feature selection techniques employed. Notably, the EPSOSA algorithm surpassed classical optimization algorithms in terms of convergence speed, while also demonstrating improved sensitivity and specificity. This model holds significant potential for facilitating early identification of high-risk patients, which could ultimately save lives and optimize the utilization of medical resources. Despite implementation challenges, including technical integration and data standardization, the algorithm shows promise for use in emergency settings and community health services for regular cardiac risk monitoring.
Abstract Coronary artery disease represents a formidable health threat to middle-aged and elderly populations worldwide. This research introduces an advanced BP neural network algorithm, EPSOSA-BP, which integrates particle swarm optimization, simulated annealing, and a particle elimination mechanism to elevate the precision of heart disease prediction models. To address prior limitations in feature selection, the study employs single-hot encoding and Principal Component Analysis, thereby enhancing the model’s feature learning capability. The proposed method achieved remarkable accuracy rates of 93.22% and 95.20% on the UCI and Kaggle datasets, respectively, underscoring its exceptional performance even with small sample sizes. Ablation experiments further validated the efficacy of the data preprocessing and feature selection techniques employed. Notably, the EPSOSA algorithm surpassed classical optimization algorithms in terms of convergence speed, while also demonstrating improved sensitivity and specificity. This model holds significant potential for facilitating early identification of high-risk patients, which could ultimately save lives and optimize the utilization of medical resources. Despite implementation challenges, including technical integration and data standardization, the algorithm shows promise for use in emergency settings and community health services for regular cardiac risk monitoring.
ArticleNumber 30993
Author Li, Chengjie
Wang, Yanglin
Liu, Tao
Zhang, Chengfang
Meng, Linghui
Zhong, Wen
Author_xml – sequence: 1
  givenname: Chengjie
  surname: Li
  fullname: Li, Chengjie
  organization: The Key Laboratory for Computer Systems of State Ethnic Affairs Commission, School of Computer and Artificial Intelligence, Southwest Minzu University, University of Electronic Science and Technology of China
– sequence: 2
  givenname: Yanglin
  surname: Wang
  fullname: Wang, Yanglin
  organization: The Key Laboratory for Computer Systems of State Ethnic Affairs Commission, School of Computer and Artificial Intelligence, Southwest Minzu University
– sequence: 3
  givenname: Linghui
  surname: Meng
  fullname: Meng, Linghui
  organization: The Key Laboratory for Computer Systems of State Ethnic Affairs Commission, School of Computer and Artificial Intelligence, Southwest Minzu University
– sequence: 4
  givenname: Wen
  surname: Zhong
  fullname: Zhong, Wen
  organization: Department of General Medicine, Chengdu Third People’s Hospital
– sequence: 5
  givenname: Chengfang
  surname: Zhang
  fullname: Zhang, Chengfang
  email: lcj@swun.edu.cn
  organization: Intelligent Policing and National Security Risk Management Laboratory, Intelligent Policing Key Laboratory of Sichuan Province, Sichuan Police College
– sequence: 6
  givenname: Tao
  surname: Liu
  fullname: Liu, Tao
  organization: The Key Laboratory for Computer Systems of State Ethnic Affairs Commission, School of Computer and Artificial Intelligence, Southwest Minzu University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39730803$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1v1DAQhiNUREvpH-CAInHhEvB34hNqqwIrVWqlwtly7EnWS9Ze7ISqnPnheDdLaTkgfBnLfub1OzN-Xhz44KEoXmL0FiPavEsMc9lUiLCqIbhhFXlSHBHEeEUoIQcP9ofFSUorlBcnkmH5rDiksqaoQfSo-LnwI_RRj8735cX1zdXNaXV2XXqYoh5yGG9D_FrqoQ_Rjct12YVYgl9qb8CW2piMmbtSe1vG0E5p9JBS6XwZNqNbux9bVRNi8DpmKo6Qg3UJdIJyE8E6M7rgXxRPOz0kONnH4-LLh4vP55-qy6uPi_PTy8owScaqprw1gnXStAIJa23XMtIIjK2gEiNCRNd23AhDW1Pn8omokQRAjRaG1NrQ42Ix69qgV2oT3TrbUkE7tTsIsVfZozMDKNlabTFkHY4Yq0VTG00NA84NrVuArEVnrclv9N2tHoZ7QYzUdkRqHpHKI1K7ESmSs97PWZupXYM14Mfc50dWHt94t1R9-K4wFg3itcwKb_YKMXybII1q7ZKBYdAewpQUxUzWPJe_fez1X-gqTNHnDu8owSmmLFOvHlq69_L7j2SAzICJIaUI3f8Vum9PyrDvIf55-x9ZvwCep-E6
Cites_doi 10.1007/s13534-024-00358-3
10.1016/S2214-109X(23)00605-8
10.1002/clc.23255
10.1186/s12911-021-01527-5
10.1016/j.compmedimag.2021.101936
10.1016/j.neunet.2014.04.006
10.1063/1.1699114
10.1016/j.eswa.2018.01.025
10.1007/s11042-022-12425-x
10.1109/ACCAI58221.2023.10199851
10.1109/ICSMC.1997.637339
10.1007/s00500-023-08388-2
10.1007/s10462-020-09837-2
10.3390/jpm12081208
10.4015/S1016237222500107
10.3390/su15097388
10.15837/ijccc.2023.5.4994
10.1109/ACCESS.2019.2923707
10.3389/fcvm.2022.1032524
10.32604/csse.2022.021741
10.1016/j.eswa.2008.09.013
10.1109/IC3I56241.2022.10073094
10.1038/s41598-022-25813-y
10.1007/978-981-99-3315-0_47
10.1093/jamia/ocw150
10.1007/s10462-022-10297-z
10.3390/diagnostics13142392
10.3390/s20164460
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
Copyright Nature Publishing Group 2024
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: Copyright Nature Publishing Group 2024
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1038/s41598-024-82184-2
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
ProQuest Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Publicly Available Content Database


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 20
ExternalDocumentID oai_doaj_org_article_9bdad1ec7250447687ca3c4e55c37bee
10.1038/s41598-024-82184-2
PMC11680579
39730803
10_1038_s41598_024_82184_2
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62171390
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
  grantid: ZYN2024105
  funderid: http://dx.doi.org/10.13039/501100012226
– fundername: Key Research and Development Project of Chengdu Science and Technology Bureau
  grantid: 2024-YF05-02327-SN
– fundername: 2024 the Open Project of Key Laboratory of Intelligent Policing and National Security Risk Management of Sichuan Police College
  grantid: ZHKFYB2401
– fundername: Fundamental Research Funds for the Central Universities
  grantid: ZYN2024105
– fundername: National Natural Science Foundation of China
  grantid: 62171390
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
EJD
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c492t-735bc64f9cb606dddfb428611d63910226fbf5c6c3bc720426709ee08a6c27ac3
IEDL.DBID DOA
ISSN 2045-2322
IngestDate Fri Oct 03 12:45:58 EDT 2025
Sun Oct 26 03:11:46 EDT 2025
Tue Sep 30 17:06:37 EDT 2025
Fri Sep 05 12:46:25 EDT 2025
Tue Oct 07 09:13:08 EDT 2025
Wed Feb 19 02:01:33 EST 2025
Wed Oct 01 02:45:38 EDT 2025
Fri Feb 21 02:36:15 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Simulated annealing algorithm
Elimination strategy
Feature engineering
Particle swarm optimization algorithm
Principal component analysis
Cardiovascular disease (CVD)
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c492t-735bc64f9cb606dddfb428611d63910226fbf5c6c3bc720426709ee08a6c27ac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/9bdad1ec7250447687ca3c4e55c37bee
PMID 39730803
PQID 3149653134
PQPubID 2041939
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_9bdad1ec7250447687ca3c4e55c37bee
unpaywall_primary_10_1038_s41598_024_82184_2
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11680579
proquest_miscellaneous_3149757202
proquest_journals_3149653134
pubmed_primary_39730803
crossref_primary_10_1038_s41598_024_82184_2
springer_journals_10_1038_s41598_024_82184_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-28
PublicationDateYYYYMMDD 2024-12-28
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-28
  day: 28
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References J Kennedy (82184_CR29) 2001
W Zhang (82184_CR22) 2017; 44
S Saha (82184_CR23) 2006; 27
82184_CR3
C Song (82184_CR26) 2020; 20
H Wang (82184_CR4) 2024; 12
S Mohan (82184_CR6) 2019; 7
S Kusuma (82184_CR36) 2022; 41
SS Guo (82184_CR27) 2020; 19
WH Press (82184_CR31) 2007
MG El-Shafiey (82184_CR13) 2022; 81
S Moturi (82184_CR14) 2022; 34
R Das (82184_CR20) 2009; 36
82184_CR19
82184_CR18
S Marukatat (82184_CR35) 2023; 56
S Moturi (82184_CR16) 2021; 91
H Li (82184_CR8) 2019; 42
D Mpanya (82184_CR2) 2023
Q Cai (82184_CR28) 2014; 58
82184_CR11
M Chakraborty (82184_CR21) 2024; 14
82184_CR30
L Baccour (82184_CR10) 2018; 99
82184_CR15
R Venkatesh (82184_CR12) 2023
A Al Bataineh (82184_CR9) 2022; 12
W Lei (82184_CR25) 2020; 53
N Metropolis (82184_CR33) 1953; 21
Q Wang (82184_CR32) 2023; 15
J Chen (82184_CR24) 2005; 35
D Banerjee (82184_CR5) 2017; 24
A Yazdani (82184_CR1) 2021; 21
Z Wu (82184_CR7) 2022; 26
NV MahaLakshmi (82184_CR37) 2023; 27
R Kowsar (82184_CR34) 2022; 12
AA Ahmad (82184_CR17) 2023; 13
References_xml – volume: 14
  start-page: 649
  year: 2024
  ident: 82184_CR21
  publication-title: Biomed. Eng. Lett.
  doi: 10.1007/s13534-024-00358-3
– volume: 12
  start-page: e611
  year: 2024
  ident: 82184_CR4
  publication-title: Lancet Glob. Health
  doi: 10.1016/S2214-109X(23)00605-8
– volume: 42
  start-page: 1087
  year: 2019
  ident: 82184_CR8
  publication-title: Clin. Cardiol.
  doi: 10.1002/clc.23255
– volume: 44
  start-page: 1
  year: 2017
  ident: 82184_CR22
  publication-title: Proc. Comput. Cardiol. (CinC)
– volume: 21
  start-page: 194
  year: 2021
  ident: 82184_CR1
  publication-title: BMC Med. Inform. Decis. Mak.
  doi: 10.1186/s12911-021-01527-5
– volume: 27
  start-page: 58
  year: 2006
  ident: 82184_CR23
  publication-title: Pattern Recognit. Lett.
– volume: 91
  start-page: 101936
  year: 2021
  ident: 82184_CR16
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2021.101936
– volume: 58
  start-page: 4
  year: 2014
  ident: 82184_CR28
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.04.006
– volume: 21
  start-page: 1087
  year: 1953
  ident: 82184_CR33
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1699114
– volume: 99
  start-page: 115
  year: 2018
  ident: 82184_CR10
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.01.025
– volume: 81
  start-page: 18155
  year: 2022
  ident: 82184_CR13
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-022-12425-x
– volume: 35
  start-page: 679
  year: 2005
  ident: 82184_CR24
  publication-title: IEEE Trans. Syst. Man Cybern. Part B
– volume: 26
  start-page: 6
  year: 2022
  ident: 82184_CR7
  publication-title: J. Pract. Shock.
– ident: 82184_CR11
  doi: 10.1109/ACCAI58221.2023.10199851
– ident: 82184_CR30
  doi: 10.1109/ICSMC.1997.637339
– volume: 27
  start-page: 11027
  year: 2023
  ident: 82184_CR37
  publication-title: Soft Comput.
  doi: 10.1007/s00500-023-08388-2
– volume: 53
  start-page: 1
  year: 2020
  ident: 82184_CR25
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-020-09837-2
– volume-title: Swarm Intelligence
  year: 2001
  ident: 82184_CR29
– volume: 12
  start-page: 1208
  year: 2022
  ident: 82184_CR9
  publication-title: J. Pers. Med.
  doi: 10.3390/jpm12081208
– volume: 34
  start-page: 3
  year: 2022
  ident: 82184_CR14
  publication-title: Biomed. Eng. Appl. Basis Commun.
  doi: 10.4015/S1016237222500107
– volume-title: Numerical recipes: The art of scientific computing
  year: 2007
  ident: 82184_CR31
– volume: 15
  start-page: 7388
  year: 2023
  ident: 82184_CR32
  publication-title: Sustainability
  doi: 10.3390/su15097388
– volume: 19
  start-page: 1
  year: 2020
  ident: 82184_CR27
  publication-title: Comput. Intell. Neurosci.
– year: 2023
  ident: 82184_CR12
  publication-title: Int. J. Comput. Commun. Control
  doi: 10.15837/ijccc.2023.5.4994
– volume: 7
  start-page: 81542
  year: 2019
  ident: 82184_CR6
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2019.2923707
– year: 2023
  ident: 82184_CR2
  publication-title: Front. Cardiovasc. Med.
  doi: 10.3389/fcvm.2022.1032524
– ident: 82184_CR3
– volume: 41
  start-page: 1273
  year: 2022
  ident: 82184_CR36
  publication-title: Comput. Syst. Sci. Eng.
  doi: 10.32604/csse.2022.021741
– volume: 36
  start-page: 7675
  year: 2009
  ident: 82184_CR20
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2008.09.013
– ident: 82184_CR18
  doi: 10.1109/IC3I56241.2022.10073094
– volume: 12
  start-page: 21135
  year: 2022
  ident: 82184_CR34
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-25813-y
– ident: 82184_CR19
  doi: 10.1109/IC3I56241.2022.10073094
– ident: 82184_CR15
  doi: 10.1007/978-981-99-3315-0_47
– volume: 24
  start-page: 550
  issue: 3
  year: 2017
  ident: 82184_CR5
  publication-title: J. Am. Med. Inform. Assoc.
  doi: 10.1093/jamia/ocw150
– volume: 56
  start-page: 5445
  year: 2023
  ident: 82184_CR35
  publication-title: Artif Intell Rev.
  doi: 10.1007/s10462-022-10297-z
– volume: 13
  start-page: 2392
  year: 2023
  ident: 82184_CR17
  publication-title: Diagnostics
  doi: 10.3390/diagnostics13142392
– volume: 20
  start-page: 1
  year: 2020
  ident: 82184_CR26
  publication-title: Sensors
  doi: 10.3390/s20164460
SSID ssj0000529419
Score 2.4624767
Snippet Coronary artery disease represents a formidable health threat to middle-aged and elderly populations worldwide. This research introduces an advanced BP neural...
Abstract Coronary artery disease represents a formidable health threat to middle-aged and elderly populations worldwide. This research introduces an advanced...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 30993
SubjectTerms 639/705/117
692/4019
Algorithms
Cardiovascular disease
Cardiovascular disease (CVD)
Cardiovascular diseases
Coronary Artery Disease
Coronary vessels
Elimination strategy
Feature engineering
Feature selection
Health risks
Heart diseases
Hierarchies
Humanities and Social Sciences
Humans
multidisciplinary
Neural networks
Neural Networks, Computer
Particle swarm optimization algorithm
Prediction models
Principal Component Analysis
Principal components analysis
Risk groups
Science
Science (multidisciplinary)
Simulated annealing algorithm
Vein & artery diseases
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9RADLbKVgg4IN4EChokbnTUJDN5HRDqoq0Kh2VFqdRbNK90V9omyz6EljM_HDuvsgJVXCeTkTO2Z-zY_gzw1mjlmyiLObU-4rKINFeFdVyHGY6j_e3rOttiHJ-ey88X0cUejLtaGEqr7M7E-qC2laF_5EciIGRzEQj5YfGdU9coiq52LTRU21rBvq8hxm7BfkjIWAPYH47Gk6_9XxeKa8kga6tnfJEerfAGoyqzUPKU3B0e7txQNZD_v6zPv5Mo-0jqPbizKRdq-0PN539cVicP4H5rZbLjRiwewp4rH8Htpu_k9jH8-tSCROBCbDQ5-3J2zIcTRtiW-FbZZIYzNb_EDVhPrxgatsyV0zpZgOEm4DSzZaq0bFnpzWpNxyWblazC8-dq9pNWNYSMoJY4i3JGt6wNBLHFkiJDJA1P4Pxk9O3jKW_bMXAjs3DNExFpE8siMxq9HmttodF3iYPAopVDjmNc6CIysRHaUOubkKDhnPNTFZswUUY8hUFZle45sKiQ1g-0lplVEm1EnSQaeRuHOpboYRkP3nUsyBcN6kZeR8tFmjcMy5Fhec2wPPRgSFzqZxJidj1QLS_zVgHzTFtlA4eURb6U6GQlRgkjXRQZkWjnPDjoeJy3arzKr4XOgzf9Y1RAiqqo0lWbZk4S4QcjHc8akegpQWNPoEkuPEh3hGWH1N0n5Wxag3wHQZxSobAHh51cXdN1014c9rL3H1v34uavfgl3Q9KMgEr4D2CwXm7cKzTC1vp1q1m_ASI_MMI
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaqIgQcEG8CBRmJGzXEsfM6INSiVgUJqFRW6i3yK92Vts6S3RWEMz-cmbxgxQpx4JrYkeOZsb_RzHxDyHOjVWjiPGHY-ojJMtZMldYxHeXwHPB3qNtsi4_JyUS-P4_Pd8jQ7qjfwOVW1w77SU3q-ctvX5o3YPCvu5Lx7NUSLiEsFIsky9BjYXAkX4GbKsdWDh96uN9xfUe55HlfO7N96sb91NL4b8Oef6ZQjnHUG-Ta2i9U81XN579dVce3yM0eY9KDTilukx3n75CrXdfJ5i758a6niIAP0aPTs09nB-zwlCKzJczyXV44VfOLqp6tppcUYC11ftqmClBlDAwzDVXe0rrS6-UKD0s687SC0-dy9h2_apAXQdUwCjNGG9qHgeiixrgQ6sI9Mjk--vz2hPXNGJiRebRiqYi1SWSZGw0-j7W21OC5JJxbwDjoNialLmOTGKENNr6JkBjOuTBTiYlSZcR9susr7x4SGpfShlxrmVslASHqNNVwFCSRTiT4VyYgLwYRFIuOc6NoY-UiKzqBFSCwohVYEQXkEKU0jkS-7PZBVV8UvfkVubbKcgcri0MpwcVKjRJGujg2ItXOBWRvkHEx6GAhOJLpCy5kQJ6Nr8H8MKaivKvW3Zg0hh-GdTzoVGJcCUA9AYBcBCTbUJaNpW6-8bNpS_HNeZJhmXBA9ge9-rWuv-3F_qh7_7B1j_7H1j0m1yO0H45l_ntkd1Wv3RMAaiv9tLW-n46sOuQ
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9NnRDwgPgcgYGMxBu1yIfz9dihTaMPMKlM2ptlOw6t1DlV2mrqnvnDuUvSQDSE4NVfuvju7Lvc3c8A741WvonzhNPTR1yUseaqLCzXYY7taH_7usm2-JKcX4rpVXx1AON9Lcwgft9Ad6_xiqEysFDwjPwRjgfuYYaCmY3gcDKZzqb9PxWKWokg72pjcPrHu5MH908D0_8n2_JuimQfJ30I97dupXY3arn87So6ewyPOhuSTVqmP4ED657CvfZVyd0z-PG5g4DAhdjpxezrbMJPLhghV-Is1-Z9M7X8XtWLzfyaodnKrJs3qQBMGYPDzI4pV7C60tv1hg5DtnCswtPlenFLqxrCPVA1jqKM0B3rwjxsVVPch3j9HC7PTr99OufdYwvciDzc8DSKtUlEmRuNPk1RFKVGzyQJggJtGHILk1KXsUlMpA09bBMS8Ju1fqYSE6bKRC9g5CpnXwKLS1H4gdYiL5RAC1CnqUZVT0KdCPSfjAcf9iyQqxZTQzax8CiTLcMkMkw2DJOhByfEpX4k4WE3DSgmslMvmetCFYFFymJfCHShUqMiI2wcmyjV1npwvOex7JR0LaOAwPKjIBIevOu7Ub0oZqKcrbbtmDTGD0Y6jlqR6ClBUw6l0I88yAbCMiB12OMW8wbCOwiSjMqAPRjv5eoXXX_bi3Eve_-wda_-b_XX8CAkTQmoYP8YRpt6a9-gybXRbztN-wkIJSUB
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB6VVIhy4E0xFLRI3OgW27te28cUtSocSqQSUU7WvtxEpHbkOELpmR_OrB-BQIXo1R7bs7Pj3W80s98AvNFK-jpKBXWtjyjPI0VlbixVYYrXEX_7qqm2OBUnY_7xPDrfAtGfhWmK9htKy2aZ7qvD3i1wo3GHwUJOExeVUIwHTX4LtgV-yB_A9vh0NPzqOskhRqEIE8LuhIzPkmse3tiFGrL-6xDm34WS62zpXbizLOZy9V3OZr9tSMf34Us_lLYO5dvBslYH-uoPlsebj_UB3OswKhm2kg9hyxaP4HbbtXL1GH586CgmUEVyNDr7dDakhyPimDHxqaKtKydydlFW03pySRAWE1tMmlIDIrVGMb0isjCkKtVyUbvFlkwLUuLqdTm9cm_VjldBVijlKk5XpEsjkXnl8krOl57A-Pjo8_sT2jVzoJqnYU1jFikteJ5qhTGTMSZXGPmIIDCIkVzYKXKVR1poprRrnBM6Yjlr_UQKHcZSs6cwKMrCPgMS5dz4gVI8NZIjwlRxrHApEaESHOMz7cHbfnKzecvZkTW5dpZkrW0ztG3W2DYLPTh087-WdHzbzYWyusi6OclSZaQJLGoW-ZxjiBZryTS3UaRZrKz1YK_3nqxbBBYZCxwZPwsY9-D1-jb-vi4nIwtbLluZOMIBox67rbOtNUGoyBDQMw-SDTfcUHXzTjGdNBThQSASd8zYg_3eY3_p9S9b7K-9-j9M9_xm4i9gJ3ROHThCgD0Y1NXSvkRIV6tX3f_7E5CVR5I
  priority: 102
  providerName: Unpaywall
Title Integrating EPSOSA-BP neural network algorithm for enhanced accuracy and robustness in optimizing coronary artery disease prediction
URI https://link.springer.com/article/10.1038/s41598-024-82184-2
https://www.ncbi.nlm.nih.gov/pubmed/39730803
https://www.proquest.com/docview/3149653134
https://www.proquest.com/docview/3149757202
https://pubmed.ncbi.nlm.nih.gov/PMC11680579
https://www.nature.com/articles/s41598-024-82184-2.pdf
https://doaj.org/article/9bdad1ec7250447687ca3c4e55c37bee
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: HH5
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: ABDBF
  dateStart: 20121221
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DIK
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAQT
  databaseName: Springer Nature - nature.com Journals - Fully Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: NAO
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.nature.com/siteindex/index.html
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest_Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M48
  dateStart: 20110801
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: AAJSJ
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: C6C
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELVgEQIOiO8NLJWRuLHRJrHjJMe06mqpRKkolcopsh2HVuomVZpqVc78cGaSNLQCAQcujWS7keOZsd9oxm8IeauVdLQfCRtLH9k885Uts9TYyougHfC3o-psi7G4mvHR3J8flPrCnLCGHrhZuItIpTJ1jQ6Qa4sDOA60ZJob39csUMbg7uuE0YEz1bB6exF3o_aWjMPCiw2cVHibzON2iG6N7R2dRDVh_-9Q5q_Jkl3E9AG5t83XcncjV6uDQ-nyEXnYokkaN1_xmNwy-RNyt6kvuXtKvr9vySDgRXQ4mX6cxnZ_QpHDEv6VNxngVK6-FuWyWlxTALDU5Is6KYBKrWGY3lGZp7Qs1HZT4bZIlzktYJ-5Xn7Dt2pkQJAljMLc0B1tAz50XWIECKX-jMwuh58HV3ZbdsHWPPIqO2C-0oJnkVbg3aRpminwUYTrpoBm0EEUmcp8LTRTGkvceEgBZ4wTSqG9QGr2nJzkRW5OCfUznjquUjxKJQcsqIJAgdELTwkOnpS2yLu9CJJ1w66R1FFxFiaNwBIQWFILLPEs0kcpdSORGbtuAH1JWn1J_qYvFjnbyzhpzXWTMBdp85nLuEXedN1gaBg9kbkpts2YwIcPhnm8aFSimwmAOgbQm1kkPFKWo6ke9-TLRU3m7boixAvBFjnf69XPef1pLc473fuHpXv5P5buFbnvof24eKH_jJxU5da8BkhWqR65HcyDHrkTx6PpCJ794XjyCVoHYtCrLRN-P_AQembjSfzlBx_BOxk
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVqhwQLwxFFgkOFGrtnf9OlSogVQJLSGirdSbuy83kVI7OImqcOZ38duY8atEoIpLr_Z6td557MzOzDeEvFVSOMqPAxtbH9k89aUtUm1s6cXwHOxvR5bZFoOgd8I_n_qna-RXUwuDaZWNTiwVtc4V3pHvMBeRzZnL-Ifpdxu7RmF0tWmhIerWCnq3hBirCzsOzPISXLjZbv8T0Pud5-13jz_27LrLgK147M3tkPlSBTyNlQRjXmudSjDJA9fVcHijPxSkMvVVoJhU2NHFQ8QzY5xIBMoLhWIw7y2ywRmPwfnb6HQHw2_tLQ_G0bgb19U6Dot2ZnBiYlWbx-0I3SvbWzkRy8YB_7J2_07abCO3d8nmIpuK5aWYTP44HPfvk3u1VUv3KjZ8QNZM9pDcrvpcLh-Rn_0alAImot3h0dejPbszpIilCV9lVSY6FZNz2PD56IKCIU1NNiqTEyhsOgxTSyoyTYtcLmZzVM90nNEc9N3F-AfOqhCJQRQwCnNUl7QOPNFpgZEo5L7H5ORGCPOErGd5Zp4R6qdcO66UPNaCg00qw1ACLwWeDDh4dMoi7xsSJNMK5SMpo_MsSiqCJUCwpCRY4lmkg1RqRyJCd_kgL86TWuCTWGqhXQMr8x3OwakLlWCKG99XLJTGWGSroXFSq41ZcsXkFnnTvgaBxyiOyEy-qMaEPvwwrONpxRLtSsC4ZOACMItEK8yystTVN9l4VIKKu24QYWGyRbYbvrpa13V7sd3y3n9s3fPr__o12ewdfzlMDvuDgxfkjodS4iJ8wBZZnxcL8xIMwLl8VUsZJWc3Ldi_AeHRbXg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELZKEdcD4iZQwEjwRKNNYud6QKilXXUpKiuVSvtmfKW70jZZ9lAVnvlV_DpmcpUVqOKlr4ljTTyHv_GMZwh5o5X0dJhGLrY-cnkWKldmxroqSOE54G9PVdkWR9HBCf80Ckcb5Fd7FwbTKlubWBlqU2g8I-8xHyubM5_xXtakRQz3-h9m313sIIWR1radRi0ih7Y8B_dt8X6wB7x-GwT9_a8fD9ymw4CreRos3ZiFSkc8S7UCIG-MyRTA8cj3DWzc6AtFmcpCHWmmNHZzCbDambVeIiMdxFIzmPcauR4zlmI6YTyKu_MdjKBxP23u6Xgs6S1gr8T7bAF3E3Ss3GBtL6xaBvwL5_6drtnFbO-QW6t8JstzOZ3-sS3275G7DZ6lO7UA3icbNn9AbtQdLsuH5OegKUcBE9H94fGX4x13d0ixiiZ8ldc56FROT2F5l-MzChCa2nxcpSVQqTUM0yWVuaHzQq0WSzTMdJLTAizd2eQHzqqxBoOcwyjMTi1pE3KisznGoFDuHpGTK2HLY7KZF7l9SmiYceP5SvHUSA5oVMWxAimKAhVx8OW0Q961LBCzur6HqOLyLBE1wwQwTFQME4FDdpFL3UiszV09KOanolF1kSojjW-BstDjHNy5WEumuQ1DzWJlrUO2Wh6LxmAsxIV4O-R19xpUHeM3MrfFqh4Th_DDQMeTWiQ6SgBWMgD_zCHJmrCskbr-Jp-Mq3Livh8leCXZIdutXF3QddlabHey9x9L9-zyv35FboI6i8-Do8Pn5HaASuJj3YAtsrmcr-wLQH5L9bJSMUq-XbVO_wbeamsS
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB6VVIhy4E0xFLRI3OgW27te28cUtSocSqQSUU7WvtxEpHbkOELpmR_OrB-BQIXo1R7bs7Pj3W80s98AvNFK-jpKBXWtjyjPI0VlbixVYYrXEX_7qqm2OBUnY_7xPDrfAtGfhWmK9htKy2aZ7qvD3i1wo3GHwUJOExeVUIwHTX4LtgV-yB_A9vh0NPzqOskhRqEIE8LuhIzPkmse3tiFGrL-6xDm34WS62zpXbizLOZy9V3OZr9tSMf34Us_lLYO5dvBslYH-uoPlsebj_UB3OswKhm2kg9hyxaP4HbbtXL1GH586CgmUEVyNDr7dDakhyPimDHxqaKtKydydlFW03pySRAWE1tMmlIDIrVGMb0isjCkKtVyUbvFlkwLUuLqdTm9cm_VjldBVijlKk5XpEsjkXnl8krOl57A-Pjo8_sT2jVzoJqnYU1jFikteJ5qhTGTMSZXGPmIIDCIkVzYKXKVR1poprRrnBM6Yjlr_UQKHcZSs6cwKMrCPgMS5dz4gVI8NZIjwlRxrHApEaESHOMz7cHbfnKzecvZkTW5dpZkrW0ztG3W2DYLPTh087-WdHzbzYWyusi6OclSZaQJLGoW-ZxjiBZryTS3UaRZrKz1YK_3nqxbBBYZCxwZPwsY9-D1-jb-vi4nIwtbLluZOMIBox67rbOtNUGoyBDQMw-SDTfcUHXzTjGdNBThQSASd8zYg_3eY3_p9S9b7K-9-j9M9_xm4i9gJ3ROHThCgD0Y1NXSvkRIV6tX3f_7E5CVR5I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrating+EPSOSA-BP+neural+network+algorithm+for+enhanced+accuracy+and+robustness+in+optimizing+coronary+artery+disease+prediction&rft.jtitle=Scientific+reports&rft.au=Chengjie+Li&rft.au=Yanglin+Wang&rft.au=Linghui+Meng&rft.au=Wen+Zhong&rft.date=2024-12-28&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=20&rft_id=info:doi/10.1038%2Fs41598-024-82184-2&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9bdad1ec7250447687ca3c4e55c37bee
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon