Integrating EPSOSA-BP neural network algorithm for enhanced accuracy and robustness in optimizing coronary artery disease prediction
Coronary artery disease represents a formidable health threat to middle-aged and elderly populations worldwide. This research introduces an advanced BP neural network algorithm, EPSOSA-BP, which integrates particle swarm optimization, simulated annealing, and a particle elimination mechanism to elev...
Saved in:
| Published in | Scientific reports Vol. 14; no. 1; pp. 30993 - 20 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Nature Publishing Group UK
28.12.2024
Nature Publishing Group Nature Portfolio |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2045-2322 2045-2322 |
| DOI | 10.1038/s41598-024-82184-2 |
Cover
| Abstract | Coronary artery disease represents a formidable health threat to middle-aged and elderly populations worldwide. This research introduces an advanced BP neural network algorithm, EPSOSA-BP, which integrates particle swarm optimization, simulated annealing, and a particle elimination mechanism to elevate the precision of heart disease prediction models. To address prior limitations in feature selection, the study employs single-hot encoding and Principal Component Analysis, thereby enhancing the model’s feature learning capability. The proposed method achieved remarkable accuracy rates of 93.22% and 95.20% on the UCI and Kaggle datasets, respectively, underscoring its exceptional performance even with small sample sizes. Ablation experiments further validated the efficacy of the data preprocessing and feature selection techniques employed. Notably, the EPSOSA algorithm surpassed classical optimization algorithms in terms of convergence speed, while also demonstrating improved sensitivity and specificity. This model holds significant potential for facilitating early identification of high-risk patients, which could ultimately save lives and optimize the utilization of medical resources. Despite implementation challenges, including technical integration and data standardization, the algorithm shows promise for use in emergency settings and community health services for regular cardiac risk monitoring. |
|---|---|
| AbstractList | Coronary artery disease represents a formidable health threat to middle-aged and elderly populations worldwide. This research introduces an advanced BP neural network algorithm, EPSOSA-BP, which integrates particle swarm optimization, simulated annealing, and a particle elimination mechanism to elevate the precision of heart disease prediction models. To address prior limitations in feature selection, the study employs single-hot encoding and Principal Component Analysis, thereby enhancing the model's feature learning capability. The proposed method achieved remarkable accuracy rates of 93.22% and 95.20% on the UCI and Kaggle datasets, respectively, underscoring its exceptional performance even with small sample sizes. Ablation experiments further validated the efficacy of the data preprocessing and feature selection techniques employed. Notably, the EPSOSA algorithm surpassed classical optimization algorithms in terms of convergence speed, while also demonstrating improved sensitivity and specificity. This model holds significant potential for facilitating early identification of high-risk patients, which could ultimately save lives and optimize the utilization of medical resources. Despite implementation challenges, including technical integration and data standardization, the algorithm shows promise for use in emergency settings and community health services for regular cardiac risk monitoring.Coronary artery disease represents a formidable health threat to middle-aged and elderly populations worldwide. This research introduces an advanced BP neural network algorithm, EPSOSA-BP, which integrates particle swarm optimization, simulated annealing, and a particle elimination mechanism to elevate the precision of heart disease prediction models. To address prior limitations in feature selection, the study employs single-hot encoding and Principal Component Analysis, thereby enhancing the model's feature learning capability. The proposed method achieved remarkable accuracy rates of 93.22% and 95.20% on the UCI and Kaggle datasets, respectively, underscoring its exceptional performance even with small sample sizes. Ablation experiments further validated the efficacy of the data preprocessing and feature selection techniques employed. Notably, the EPSOSA algorithm surpassed classical optimization algorithms in terms of convergence speed, while also demonstrating improved sensitivity and specificity. This model holds significant potential for facilitating early identification of high-risk patients, which could ultimately save lives and optimize the utilization of medical resources. Despite implementation challenges, including technical integration and data standardization, the algorithm shows promise for use in emergency settings and community health services for regular cardiac risk monitoring. Coronary artery disease represents a formidable health threat to middle-aged and elderly populations worldwide. This research introduces an advanced BP neural network algorithm, EPSOSA-BP, which integrates particle swarm optimization, simulated annealing, and a particle elimination mechanism to elevate the precision of heart disease prediction models. To address prior limitations in feature selection, the study employs single-hot encoding and Principal Component Analysis, thereby enhancing the model's feature learning capability. The proposed method achieved remarkable accuracy rates of 93.22% and 95.20% on the UCI and Kaggle datasets, respectively, underscoring its exceptional performance even with small sample sizes. Ablation experiments further validated the efficacy of the data preprocessing and feature selection techniques employed. Notably, the EPSOSA algorithm surpassed classical optimization algorithms in terms of convergence speed, while also demonstrating improved sensitivity and specificity. This model holds significant potential for facilitating early identification of high-risk patients, which could ultimately save lives and optimize the utilization of medical resources. Despite implementation challenges, including technical integration and data standardization, the algorithm shows promise for use in emergency settings and community health services for regular cardiac risk monitoring. Abstract Coronary artery disease represents a formidable health threat to middle-aged and elderly populations worldwide. This research introduces an advanced BP neural network algorithm, EPSOSA-BP, which integrates particle swarm optimization, simulated annealing, and a particle elimination mechanism to elevate the precision of heart disease prediction models. To address prior limitations in feature selection, the study employs single-hot encoding and Principal Component Analysis, thereby enhancing the model’s feature learning capability. The proposed method achieved remarkable accuracy rates of 93.22% and 95.20% on the UCI and Kaggle datasets, respectively, underscoring its exceptional performance even with small sample sizes. Ablation experiments further validated the efficacy of the data preprocessing and feature selection techniques employed. Notably, the EPSOSA algorithm surpassed classical optimization algorithms in terms of convergence speed, while also demonstrating improved sensitivity and specificity. This model holds significant potential for facilitating early identification of high-risk patients, which could ultimately save lives and optimize the utilization of medical resources. Despite implementation challenges, including technical integration and data standardization, the algorithm shows promise for use in emergency settings and community health services for regular cardiac risk monitoring. |
| ArticleNumber | 30993 |
| Author | Li, Chengjie Wang, Yanglin Liu, Tao Zhang, Chengfang Meng, Linghui Zhong, Wen |
| Author_xml | – sequence: 1 givenname: Chengjie surname: Li fullname: Li, Chengjie organization: The Key Laboratory for Computer Systems of State Ethnic Affairs Commission, School of Computer and Artificial Intelligence, Southwest Minzu University, University of Electronic Science and Technology of China – sequence: 2 givenname: Yanglin surname: Wang fullname: Wang, Yanglin organization: The Key Laboratory for Computer Systems of State Ethnic Affairs Commission, School of Computer and Artificial Intelligence, Southwest Minzu University – sequence: 3 givenname: Linghui surname: Meng fullname: Meng, Linghui organization: The Key Laboratory for Computer Systems of State Ethnic Affairs Commission, School of Computer and Artificial Intelligence, Southwest Minzu University – sequence: 4 givenname: Wen surname: Zhong fullname: Zhong, Wen organization: Department of General Medicine, Chengdu Third People’s Hospital – sequence: 5 givenname: Chengfang surname: Zhang fullname: Zhang, Chengfang email: lcj@swun.edu.cn organization: Intelligent Policing and National Security Risk Management Laboratory, Intelligent Policing Key Laboratory of Sichuan Province, Sichuan Police College – sequence: 6 givenname: Tao surname: Liu fullname: Liu, Tao organization: The Key Laboratory for Computer Systems of State Ethnic Affairs Commission, School of Computer and Artificial Intelligence, Southwest Minzu University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39730803$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkk1v1DAQhiNUREvpH-CAInHhEvB34hNqqwIrVWqlwtly7EnWS9Ze7ISqnPnheDdLaTkgfBnLfub1OzN-Xhz44KEoXmL0FiPavEsMc9lUiLCqIbhhFXlSHBHEeEUoIQcP9ofFSUorlBcnkmH5rDiksqaoQfSo-LnwI_RRj8735cX1zdXNaXV2XXqYoh5yGG9D_FrqoQ_Rjct12YVYgl9qb8CW2piMmbtSe1vG0E5p9JBS6XwZNqNbux9bVRNi8DpmKo6Qg3UJdIJyE8E6M7rgXxRPOz0kONnH4-LLh4vP55-qy6uPi_PTy8owScaqprw1gnXStAIJa23XMtIIjK2gEiNCRNd23AhDW1Pn8omokQRAjRaG1NrQ42Ix69qgV2oT3TrbUkE7tTsIsVfZozMDKNlabTFkHY4Yq0VTG00NA84NrVuArEVnrclv9N2tHoZ7QYzUdkRqHpHKI1K7ESmSs97PWZupXYM14Mfc50dWHt94t1R9-K4wFg3itcwKb_YKMXybII1q7ZKBYdAewpQUxUzWPJe_fez1X-gqTNHnDu8owSmmLFOvHlq69_L7j2SAzICJIaUI3f8Vum9PyrDvIf55-x9ZvwCep-E6 |
| Cites_doi | 10.1007/s13534-024-00358-3 10.1016/S2214-109X(23)00605-8 10.1002/clc.23255 10.1186/s12911-021-01527-5 10.1016/j.compmedimag.2021.101936 10.1016/j.neunet.2014.04.006 10.1063/1.1699114 10.1016/j.eswa.2018.01.025 10.1007/s11042-022-12425-x 10.1109/ACCAI58221.2023.10199851 10.1109/ICSMC.1997.637339 10.1007/s00500-023-08388-2 10.1007/s10462-020-09837-2 10.3390/jpm12081208 10.4015/S1016237222500107 10.3390/su15097388 10.15837/ijccc.2023.5.4994 10.1109/ACCESS.2019.2923707 10.3389/fcvm.2022.1032524 10.32604/csse.2022.021741 10.1016/j.eswa.2008.09.013 10.1109/IC3I56241.2022.10073094 10.1038/s41598-022-25813-y 10.1007/978-981-99-3315-0_47 10.1093/jamia/ocw150 10.1007/s10462-022-10297-z 10.3390/diagnostics13142392 10.3390/s20164460 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 2024. The Author(s). Copyright Nature Publishing Group 2024 The Author(s) 2024 2024 |
| Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: Copyright Nature Publishing Group 2024 – notice: The Author(s) 2024 2024 |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1038/s41598-024-82184-2 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) Medical Database Science Database ProQuest Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 6 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 20 |
| ExternalDocumentID | oai_doaj_org_article_9bdad1ec7250447687ca3c4e55c37bee 10.1038/s41598-024-82184-2 PMC11680579 39730803 10_1038_s41598_024_82184_2 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62171390 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Fundamental Research Funds for the Central Universities grantid: ZYN2024105 funderid: http://dx.doi.org/10.13039/501100012226 – fundername: Key Research and Development Project of Chengdu Science and Technology Bureau grantid: 2024-YF05-02327-SN – fundername: 2024 the Open Project of Key Laboratory of Intelligent Policing and National Security Risk Management of Sichuan Police College grantid: ZHKFYB2401 – fundername: Fundamental Research Funds for the Central Universities grantid: ZYN2024105 – fundername: National Natural Science Foundation of China grantid: 62171390 |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC EJD IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c492t-735bc64f9cb606dddfb428611d63910226fbf5c6c3bc720426709ee08a6c27ac3 |
| IEDL.DBID | DOA |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:45:58 EDT 2025 Sun Oct 26 03:11:46 EDT 2025 Tue Sep 30 17:06:37 EDT 2025 Fri Sep 05 12:46:25 EDT 2025 Tue Oct 07 09:13:08 EDT 2025 Wed Feb 19 02:01:33 EST 2025 Wed Oct 01 02:45:38 EDT 2025 Fri Feb 21 02:36:15 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Simulated annealing algorithm Elimination strategy Feature engineering Particle swarm optimization algorithm Principal component analysis Cardiovascular disease (CVD) |
| Language | English |
| License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c492t-735bc64f9cb606dddfb428611d63910226fbf5c6c3bc720426709ee08a6c27ac3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/9bdad1ec7250447687ca3c4e55c37bee |
| PMID | 39730803 |
| PQID | 3149653134 |
| PQPubID | 2041939 |
| PageCount | 20 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_9bdad1ec7250447687ca3c4e55c37bee unpaywall_primary_10_1038_s41598_024_82184_2 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11680579 proquest_miscellaneous_3149757202 proquest_journals_3149653134 pubmed_primary_39730803 crossref_primary_10_1038_s41598_024_82184_2 springer_journals_10_1038_s41598_024_82184_2 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-28 |
| PublicationDateYYYYMMDD | 2024-12-28 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-28 day: 28 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2024 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | J Kennedy (82184_CR29) 2001 W Zhang (82184_CR22) 2017; 44 S Saha (82184_CR23) 2006; 27 82184_CR3 C Song (82184_CR26) 2020; 20 H Wang (82184_CR4) 2024; 12 S Mohan (82184_CR6) 2019; 7 S Kusuma (82184_CR36) 2022; 41 SS Guo (82184_CR27) 2020; 19 WH Press (82184_CR31) 2007 MG El-Shafiey (82184_CR13) 2022; 81 S Moturi (82184_CR14) 2022; 34 R Das (82184_CR20) 2009; 36 82184_CR19 82184_CR18 S Marukatat (82184_CR35) 2023; 56 S Moturi (82184_CR16) 2021; 91 H Li (82184_CR8) 2019; 42 D Mpanya (82184_CR2) 2023 Q Cai (82184_CR28) 2014; 58 82184_CR11 M Chakraborty (82184_CR21) 2024; 14 82184_CR30 L Baccour (82184_CR10) 2018; 99 82184_CR15 R Venkatesh (82184_CR12) 2023 A Al Bataineh (82184_CR9) 2022; 12 W Lei (82184_CR25) 2020; 53 N Metropolis (82184_CR33) 1953; 21 Q Wang (82184_CR32) 2023; 15 J Chen (82184_CR24) 2005; 35 D Banerjee (82184_CR5) 2017; 24 A Yazdani (82184_CR1) 2021; 21 Z Wu (82184_CR7) 2022; 26 NV MahaLakshmi (82184_CR37) 2023; 27 R Kowsar (82184_CR34) 2022; 12 AA Ahmad (82184_CR17) 2023; 13 |
| References_xml | – volume: 14 start-page: 649 year: 2024 ident: 82184_CR21 publication-title: Biomed. Eng. Lett. doi: 10.1007/s13534-024-00358-3 – volume: 12 start-page: e611 year: 2024 ident: 82184_CR4 publication-title: Lancet Glob. Health doi: 10.1016/S2214-109X(23)00605-8 – volume: 42 start-page: 1087 year: 2019 ident: 82184_CR8 publication-title: Clin. Cardiol. doi: 10.1002/clc.23255 – volume: 44 start-page: 1 year: 2017 ident: 82184_CR22 publication-title: Proc. Comput. Cardiol. (CinC) – volume: 21 start-page: 194 year: 2021 ident: 82184_CR1 publication-title: BMC Med. Inform. Decis. Mak. doi: 10.1186/s12911-021-01527-5 – volume: 27 start-page: 58 year: 2006 ident: 82184_CR23 publication-title: Pattern Recognit. Lett. – volume: 91 start-page: 101936 year: 2021 ident: 82184_CR16 publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2021.101936 – volume: 58 start-page: 4 year: 2014 ident: 82184_CR28 publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.04.006 – volume: 21 start-page: 1087 year: 1953 ident: 82184_CR33 publication-title: J. Chem. Phys. doi: 10.1063/1.1699114 – volume: 99 start-page: 115 year: 2018 ident: 82184_CR10 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.01.025 – volume: 81 start-page: 18155 year: 2022 ident: 82184_CR13 publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-022-12425-x – volume: 35 start-page: 679 year: 2005 ident: 82184_CR24 publication-title: IEEE Trans. Syst. Man Cybern. Part B – volume: 26 start-page: 6 year: 2022 ident: 82184_CR7 publication-title: J. Pract. Shock. – ident: 82184_CR11 doi: 10.1109/ACCAI58221.2023.10199851 – ident: 82184_CR30 doi: 10.1109/ICSMC.1997.637339 – volume: 27 start-page: 11027 year: 2023 ident: 82184_CR37 publication-title: Soft Comput. doi: 10.1007/s00500-023-08388-2 – volume: 53 start-page: 1 year: 2020 ident: 82184_CR25 publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-020-09837-2 – volume-title: Swarm Intelligence year: 2001 ident: 82184_CR29 – volume: 12 start-page: 1208 year: 2022 ident: 82184_CR9 publication-title: J. Pers. Med. doi: 10.3390/jpm12081208 – volume: 34 start-page: 3 year: 2022 ident: 82184_CR14 publication-title: Biomed. Eng. Appl. Basis Commun. doi: 10.4015/S1016237222500107 – volume-title: Numerical recipes: The art of scientific computing year: 2007 ident: 82184_CR31 – volume: 15 start-page: 7388 year: 2023 ident: 82184_CR32 publication-title: Sustainability doi: 10.3390/su15097388 – volume: 19 start-page: 1 year: 2020 ident: 82184_CR27 publication-title: Comput. Intell. Neurosci. – year: 2023 ident: 82184_CR12 publication-title: Int. J. Comput. Commun. Control doi: 10.15837/ijccc.2023.5.4994 – volume: 7 start-page: 81542 year: 2019 ident: 82184_CR6 publication-title: IEEE Access. doi: 10.1109/ACCESS.2019.2923707 – year: 2023 ident: 82184_CR2 publication-title: Front. Cardiovasc. Med. doi: 10.3389/fcvm.2022.1032524 – ident: 82184_CR3 – volume: 41 start-page: 1273 year: 2022 ident: 82184_CR36 publication-title: Comput. Syst. Sci. Eng. doi: 10.32604/csse.2022.021741 – volume: 36 start-page: 7675 year: 2009 ident: 82184_CR20 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2008.09.013 – ident: 82184_CR18 doi: 10.1109/IC3I56241.2022.10073094 – volume: 12 start-page: 21135 year: 2022 ident: 82184_CR34 publication-title: Sci. Rep. doi: 10.1038/s41598-022-25813-y – ident: 82184_CR19 doi: 10.1109/IC3I56241.2022.10073094 – ident: 82184_CR15 doi: 10.1007/978-981-99-3315-0_47 – volume: 24 start-page: 550 issue: 3 year: 2017 ident: 82184_CR5 publication-title: J. Am. Med. Inform. Assoc. doi: 10.1093/jamia/ocw150 – volume: 56 start-page: 5445 year: 2023 ident: 82184_CR35 publication-title: Artif Intell Rev. doi: 10.1007/s10462-022-10297-z – volume: 13 start-page: 2392 year: 2023 ident: 82184_CR17 publication-title: Diagnostics doi: 10.3390/diagnostics13142392 – volume: 20 start-page: 1 year: 2020 ident: 82184_CR26 publication-title: Sensors doi: 10.3390/s20164460 |
| SSID | ssj0000529419 |
| Score | 2.4624767 |
| Snippet | Coronary artery disease represents a formidable health threat to middle-aged and elderly populations worldwide. This research introduces an advanced BP neural... Abstract Coronary artery disease represents a formidable health threat to middle-aged and elderly populations worldwide. This research introduces an advanced... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 30993 |
| SubjectTerms | 639/705/117 692/4019 Algorithms Cardiovascular disease Cardiovascular disease (CVD) Cardiovascular diseases Coronary Artery Disease Coronary vessels Elimination strategy Feature engineering Feature selection Health risks Heart diseases Hierarchies Humanities and Social Sciences Humans multidisciplinary Neural networks Neural Networks, Computer Particle swarm optimization algorithm Prediction models Principal Component Analysis Principal components analysis Risk groups Science Science (multidisciplinary) Simulated annealing algorithm Vein & artery diseases |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9RADLbKVgg4IN4EChokbnTUJDN5HRDqoq0Kh2VFqdRbNK90V9omyz6EljM_HDuvsgJVXCeTkTO2Z-zY_gzw1mjlmyiLObU-4rKINFeFdVyHGY6j_e3rOttiHJ-ey88X0cUejLtaGEqr7M7E-qC2laF_5EciIGRzEQj5YfGdU9coiq52LTRU21rBvq8hxm7BfkjIWAPYH47Gk6_9XxeKa8kga6tnfJEerfAGoyqzUPKU3B0e7txQNZD_v6zPv5Mo-0jqPbizKRdq-0PN539cVicP4H5rZbLjRiwewp4rH8Htpu_k9jH8-tSCROBCbDQ5-3J2zIcTRtiW-FbZZIYzNb_EDVhPrxgatsyV0zpZgOEm4DSzZaq0bFnpzWpNxyWblazC8-dq9pNWNYSMoJY4i3JGt6wNBLHFkiJDJA1P4Pxk9O3jKW_bMXAjs3DNExFpE8siMxq9HmttodF3iYPAopVDjmNc6CIysRHaUOubkKDhnPNTFZswUUY8hUFZle45sKiQ1g-0lplVEm1EnSQaeRuHOpboYRkP3nUsyBcN6kZeR8tFmjcMy5Fhec2wPPRgSFzqZxJidj1QLS_zVgHzTFtlA4eURb6U6GQlRgkjXRQZkWjnPDjoeJy3arzKr4XOgzf9Y1RAiqqo0lWbZk4S4QcjHc8akegpQWNPoEkuPEh3hGWH1N0n5Wxag3wHQZxSobAHh51cXdN1014c9rL3H1v34uavfgl3Q9KMgEr4D2CwXm7cKzTC1vp1q1m_ASI_MMI priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaqIgQcEG8CBRmJGzXEsfM6INSiVgUJqFRW6i3yK92Vts6S3RWEMz-cmbxgxQpx4JrYkeOZsb_RzHxDyHOjVWjiPGHY-ojJMtZMldYxHeXwHPB3qNtsi4_JyUS-P4_Pd8jQ7qjfwOVW1w77SU3q-ctvX5o3YPCvu5Lx7NUSLiEsFIsky9BjYXAkX4GbKsdWDh96uN9xfUe55HlfO7N96sb91NL4b8Oef6ZQjnHUG-Ta2i9U81XN579dVce3yM0eY9KDTilukx3n75CrXdfJ5i758a6niIAP0aPTs09nB-zwlCKzJczyXV44VfOLqp6tppcUYC11ftqmClBlDAwzDVXe0rrS6-UKD0s687SC0-dy9h2_apAXQdUwCjNGG9qHgeiixrgQ6sI9Mjk--vz2hPXNGJiRebRiqYi1SWSZGw0-j7W21OC5JJxbwDjoNialLmOTGKENNr6JkBjOuTBTiYlSZcR9susr7x4SGpfShlxrmVslASHqNNVwFCSRTiT4VyYgLwYRFIuOc6NoY-UiKzqBFSCwohVYEQXkEKU0jkS-7PZBVV8UvfkVubbKcgcri0MpwcVKjRJGujg2ItXOBWRvkHEx6GAhOJLpCy5kQJ6Nr8H8MKaivKvW3Zg0hh-GdTzoVGJcCUA9AYBcBCTbUJaNpW6-8bNpS_HNeZJhmXBA9ge9-rWuv-3F_qh7_7B1j_7H1j0m1yO0H45l_ntkd1Wv3RMAaiv9tLW-n46sOuQ priority: 102 providerName: Scholars Portal – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9NnRDwgPgcgYGMxBu1yIfz9dihTaMPMKlM2ptlOw6t1DlV2mrqnvnDuUvSQDSE4NVfuvju7Lvc3c8A741WvonzhNPTR1yUseaqLCzXYY7taH_7usm2-JKcX4rpVXx1AON9Lcwgft9Ad6_xiqEysFDwjPwRjgfuYYaCmY3gcDKZzqb9PxWKWokg72pjcPrHu5MH908D0_8n2_JuimQfJ30I97dupXY3arn87So6ewyPOhuSTVqmP4ED657CvfZVyd0z-PG5g4DAhdjpxezrbMJPLhghV-Is1-Z9M7X8XtWLzfyaodnKrJs3qQBMGYPDzI4pV7C60tv1hg5DtnCswtPlenFLqxrCPVA1jqKM0B3rwjxsVVPch3j9HC7PTr99OufdYwvciDzc8DSKtUlEmRuNPk1RFKVGzyQJggJtGHILk1KXsUlMpA09bBMS8Ju1fqYSE6bKRC9g5CpnXwKLS1H4gdYiL5RAC1CnqUZVT0KdCPSfjAcf9iyQqxZTQzax8CiTLcMkMkw2DJOhByfEpX4k4WE3DSgmslMvmetCFYFFymJfCHShUqMiI2wcmyjV1npwvOex7JR0LaOAwPKjIBIevOu7Ub0oZqKcrbbtmDTGD0Y6jlqR6ClBUw6l0I88yAbCMiB12OMW8wbCOwiSjMqAPRjv5eoXXX_bi3Eve_-wda_-b_XX8CAkTQmoYP8YRpt6a9-gybXRbztN-wkIJSUB priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB6VVIhy4E0xFLRI3OgW27te28cUtSocSqQSUU7WvtxEpHbkOELpmR_OrB-BQIXo1R7bs7Pj3W80s98AvNFK-jpKBXWtjyjPI0VlbixVYYrXEX_7qqm2OBUnY_7xPDrfAtGfhWmK9htKy2aZ7qvD3i1wo3GHwUJOExeVUIwHTX4LtgV-yB_A9vh0NPzqOskhRqEIE8LuhIzPkmse3tiFGrL-6xDm34WS62zpXbizLOZy9V3OZr9tSMf34Us_lLYO5dvBslYH-uoPlsebj_UB3OswKhm2kg9hyxaP4HbbtXL1GH586CgmUEVyNDr7dDakhyPimDHxqaKtKydydlFW03pySRAWE1tMmlIDIrVGMb0isjCkKtVyUbvFlkwLUuLqdTm9cm_VjldBVijlKk5XpEsjkXnl8krOl57A-Pjo8_sT2jVzoJqnYU1jFikteJ5qhTGTMSZXGPmIIDCIkVzYKXKVR1poprRrnBM6Yjlr_UQKHcZSs6cwKMrCPgMS5dz4gVI8NZIjwlRxrHApEaESHOMz7cHbfnKzecvZkTW5dpZkrW0ztG3W2DYLPTh087-WdHzbzYWyusi6OclSZaQJLGoW-ZxjiBZryTS3UaRZrKz1YK_3nqxbBBYZCxwZPwsY9-D1-jb-vi4nIwtbLluZOMIBox67rbOtNUGoyBDQMw-SDTfcUHXzTjGdNBThQSASd8zYg_3eY3_p9S9b7K-9-j9M9_xm4i9gJ3ROHThCgD0Y1NXSvkRIV6tX3f_7E5CVR5I priority: 102 providerName: Unpaywall |
| Title | Integrating EPSOSA-BP neural network algorithm for enhanced accuracy and robustness in optimizing coronary artery disease prediction |
| URI | https://link.springer.com/article/10.1038/s41598-024-82184-2 https://www.ncbi.nlm.nih.gov/pubmed/39730803 https://www.proquest.com/docview/3149653134 https://www.proquest.com/docview/3149757202 https://pubmed.ncbi.nlm.nih.gov/PMC11680579 https://www.nature.com/articles/s41598-024-82184-2.pdf https://doaj.org/article/9bdad1ec7250447687ca3c4e55c37bee |
| UnpaywallVersion | publishedVersion |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: HH5 dateStart: 20110101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: ABDBF dateStart: 20121221 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DIK dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: RPM dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAQT databaseName: Springer Nature - nature.com Journals - Fully Open Access customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: NAO dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.nature.com/siteindex/index.html providerName: Nature Publishing – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest_Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2045-2322 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M48 dateStart: 20110801 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: AAJSJ dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: C6C dateStart: 20111201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELVgEQIOiO8NLJWRuLHRJrHjJMe06mqpRKkolcopsh2HVuomVZpqVc78cGaSNLQCAQcujWS7keOZsd9oxm8IeauVdLQfCRtLH9k885Uts9TYyougHfC3o-psi7G4mvHR3J8flPrCnLCGHrhZuItIpTJ1jQ6Qa4sDOA60ZJob39csUMbg7uuE0YEz1bB6exF3o_aWjMPCiw2cVHibzON2iG6N7R2dRDVh_-9Q5q_Jkl3E9AG5t83XcncjV6uDQ-nyEXnYokkaN1_xmNwy-RNyt6kvuXtKvr9vySDgRXQ4mX6cxnZ_QpHDEv6VNxngVK6-FuWyWlxTALDU5Is6KYBKrWGY3lGZp7Qs1HZT4bZIlzktYJ-5Xn7Dt2pkQJAljMLc0B1tAz50XWIECKX-jMwuh58HV3ZbdsHWPPIqO2C-0oJnkVbg3aRpminwUYTrpoBm0EEUmcp8LTRTGkvceEgBZ4wTSqG9QGr2nJzkRW5OCfUznjquUjxKJQcsqIJAgdELTwkOnpS2yLu9CJJ1w66R1FFxFiaNwBIQWFILLPEs0kcpdSORGbtuAH1JWn1J_qYvFjnbyzhpzXWTMBdp85nLuEXedN1gaBg9kbkpts2YwIcPhnm8aFSimwmAOgbQm1kkPFKWo6ke9-TLRU3m7boixAvBFjnf69XPef1pLc473fuHpXv5P5buFbnvof24eKH_jJxU5da8BkhWqR65HcyDHrkTx6PpCJ794XjyCVoHYtCrLRN-P_AQembjSfzlBx_BOxk |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVqhwQLwxFFgkOFGrtnf9OlSogVQJLSGirdSbuy83kVI7OImqcOZ38duY8atEoIpLr_Z6td557MzOzDeEvFVSOMqPAxtbH9k89aUtUm1s6cXwHOxvR5bZFoOgd8I_n_qna-RXUwuDaZWNTiwVtc4V3pHvMBeRzZnL-Ifpdxu7RmF0tWmhIerWCnq3hBirCzsOzPISXLjZbv8T0Pud5-13jz_27LrLgK147M3tkPlSBTyNlQRjXmudSjDJA9fVcHijPxSkMvVVoJhU2NHFQ8QzY5xIBMoLhWIw7y2ywRmPwfnb6HQHw2_tLQ_G0bgb19U6Dot2ZnBiYlWbx-0I3SvbWzkRy8YB_7J2_07abCO3d8nmIpuK5aWYTP44HPfvk3u1VUv3KjZ8QNZM9pDcrvpcLh-Rn_0alAImot3h0dejPbszpIilCV9lVSY6FZNz2PD56IKCIU1NNiqTEyhsOgxTSyoyTYtcLmZzVM90nNEc9N3F-AfOqhCJQRQwCnNUl7QOPNFpgZEo5L7H5ORGCPOErGd5Zp4R6qdcO66UPNaCg00qw1ACLwWeDDh4dMoi7xsSJNMK5SMpo_MsSiqCJUCwpCRY4lmkg1RqRyJCd_kgL86TWuCTWGqhXQMr8x3OwakLlWCKG99XLJTGWGSroXFSq41ZcsXkFnnTvgaBxyiOyEy-qMaEPvwwrONpxRLtSsC4ZOACMItEK8yystTVN9l4VIKKu24QYWGyRbYbvrpa13V7sd3y3n9s3fPr__o12ewdfzlMDvuDgxfkjodS4iJ8wBZZnxcL8xIMwLl8VUsZJWc3Ldi_AeHRbXg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELZKEdcD4iZQwEjwRKNNYud6QKilXXUpKiuVSvtmfKW70jZZ9lAVnvlV_DpmcpUVqOKlr4ljTTyHv_GMZwh5o5X0dJhGLrY-cnkWKldmxroqSOE54G9PVdkWR9HBCf80Ckcb5Fd7FwbTKlubWBlqU2g8I-8xHyubM5_xXtakRQz3-h9m313sIIWR1radRi0ih7Y8B_dt8X6wB7x-GwT9_a8fD9ymw4CreRos3ZiFSkc8S7UCIG-MyRTA8cj3DWzc6AtFmcpCHWmmNHZzCbDambVeIiMdxFIzmPcauR4zlmI6YTyKu_MdjKBxP23u6Xgs6S1gr8T7bAF3E3Ss3GBtL6xaBvwL5_6drtnFbO-QW6t8JstzOZ3-sS3275G7DZ6lO7UA3icbNn9AbtQdLsuH5OegKUcBE9H94fGX4x13d0ixiiZ8ldc56FROT2F5l-MzChCa2nxcpSVQqTUM0yWVuaHzQq0WSzTMdJLTAizd2eQHzqqxBoOcwyjMTi1pE3KisznGoFDuHpGTK2HLY7KZF7l9SmiYceP5SvHUSA5oVMWxAimKAhVx8OW0Q961LBCzur6HqOLyLBE1wwQwTFQME4FDdpFL3UiszV09KOanolF1kSojjW-BstDjHNy5WEumuQ1DzWJlrUO2Wh6LxmAsxIV4O-R19xpUHeM3MrfFqh4Th_DDQMeTWiQ6SgBWMgD_zCHJmrCskbr-Jp-Mq3Livh8leCXZIdutXF3QddlabHey9x9L9-zyv35FboI6i8-Do8Pn5HaASuJj3YAtsrmcr-wLQH5L9bJSMUq-XbVO_wbeamsS |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB6VVIhy4E0xFLRI3OgW27te28cUtSocSqQSUU7WvtxEpHbkOELpmR_OrB-BQIXo1R7bs7Pj3W80s98AvNFK-jpKBXWtjyjPI0VlbixVYYrXEX_7qqm2OBUnY_7xPDrfAtGfhWmK9htKy2aZ7qvD3i1wo3GHwUJOExeVUIwHTX4LtgV-yB_A9vh0NPzqOskhRqEIE8LuhIzPkmse3tiFGrL-6xDm34WS62zpXbizLOZy9V3OZr9tSMf34Us_lLYO5dvBslYH-uoPlsebj_UB3OswKhm2kg9hyxaP4HbbtXL1GH586CgmUEVyNDr7dDakhyPimDHxqaKtKydydlFW03pySRAWE1tMmlIDIrVGMb0isjCkKtVyUbvFlkwLUuLqdTm9cm_VjldBVijlKk5XpEsjkXnl8krOl57A-Pjo8_sT2jVzoJqnYU1jFikteJ5qhTGTMSZXGPmIIDCIkVzYKXKVR1poprRrnBM6Yjlr_UQKHcZSs6cwKMrCPgMS5dz4gVI8NZIjwlRxrHApEaESHOMz7cHbfnKzecvZkTW5dpZkrW0ztG3W2DYLPTh087-WdHzbzYWyusi6OclSZaQJLGoW-ZxjiBZryTS3UaRZrKz1YK_3nqxbBBYZCxwZPwsY9-D1-jb-vi4nIwtbLluZOMIBox67rbOtNUGoyBDQMw-SDTfcUHXzTjGdNBThQSASd8zYg_3eY3_p9S9b7K-9-j9M9_xm4i9gJ3ROHThCgD0Y1NXSvkRIV6tX3f_7E5CVR5I |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrating+EPSOSA-BP+neural+network+algorithm+for+enhanced+accuracy+and+robustness+in+optimizing+coronary+artery+disease+prediction&rft.jtitle=Scientific+reports&rft.au=Chengjie+Li&rft.au=Yanglin+Wang&rft.au=Linghui+Meng&rft.au=Wen+Zhong&rft.date=2024-12-28&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=20&rft_id=info:doi/10.1038%2Fs41598-024-82184-2&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9bdad1ec7250447687ca3c4e55c37bee |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |