Five siRNAs Targeting Three SNPs May Provide Therapy for Three-Quarters of Huntington's Disease Patients
Among dominant neurodegenerative disorders, Huntington's disease (HD) is perhaps the best candidate for treatment with small interfering RNAs (siRNAs) [1–9]. Invariably fatal, HD is caused by expansion of a CAG repeat in the Huntingtin gene, creating an extended polyglutamine tract that makes t...
Saved in:
Published in | Current biology Vol. 19; no. 9; pp. 774 - 778 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Inc
12.05.2009
|
Subjects | |
Online Access | Get full text |
ISSN | 0960-9822 1879-0445 1879-0445 |
DOI | 10.1016/j.cub.2009.03.030 |
Cover
Abstract | Among dominant neurodegenerative disorders, Huntington's disease (HD) is perhaps the best candidate for treatment with small interfering RNAs (siRNAs)
[1–9]. Invariably fatal, HD is caused by expansion of a CAG repeat in the
Huntingtin gene, creating an extended polyglutamine tract that makes the Huntingtin protein toxic
[10]. Silencing mutant
Huntingtin messenger RNA (mRNA) should provide therapeutic benefit, but normal Huntingtin likely contributes to neuronal function
[11–13]. No siRNA strategy can yet distinguish among the normal and disease
Huntingtin alleles and other mRNAs containing CAG repeats
[14]. siRNAs targeting the disease isoform of a heterozygous single-nucleotide polymorphism (SNP) in
Huntingtin provide an alternative
[15–19]. We sequenced 22 predicted SNP sites in 225 human samples corresponding to HD and control subjects. We find that 48% of our patient population is heterozygous at a single SNP site; one isoform of this SNP is associated with HD. Several other SNP sites are frequently heterozygous. Consequently, five allele-specific siRNAs, corresponding to just three SNP sites, could be used to treat three-quarters of the United States and European HD patient populations. We have designed and validated selective siRNAs for the three SNP sites, laying the foundation for allele-specific RNA interference (RNAi) therapy for HD. |
---|---|
AbstractList | Among dominant neurodegenerative disorders, Huntington's disease (HD) is perhaps the best candidate for treatment with small interfering RNAs (siRNAs) [1-9]. Invariably fatal, HD is caused by expansion of a CAG repeat in the Huntingtin gene, creating an extended polyglutamine tract that makes the Huntingtin protein toxic [10]. Silencing mutant Huntingtin messenger RNA (mRNA) should provide therapeutic benefit, but normal Huntingtin likely contributes to neuronal function [11-13]. No siRNA strategy can yet distinguish among the normal and disease Huntingtin alleles and other mRNAs containing CAG repeats [14]. siRNAs targeting the disease isoform of a heterozygous single-nucleotide polymorphism (SNP) in Huntingtin provide an alternative [15-19]. We sequenced 22 predicted SNP sites in 225 human samples corresponding to HD and control subjects. We find that 48% of our patient population is heterozygous at a single SNP site; one isoform of this SNP is associated with HD. Several other SNP sites are frequently heterozygous. Consequently, five allele-specific siRNAs, corresponding to just three SNP sites, could be used to treat three-quarters of the United States and European HD patient populations. We have designed and validated selective siRNAs for the three SNP sites, laying the foundation for allele-specific RNA interference (RNAi) therapy for HD.Among dominant neurodegenerative disorders, Huntington's disease (HD) is perhaps the best candidate for treatment with small interfering RNAs (siRNAs) [1-9]. Invariably fatal, HD is caused by expansion of a CAG repeat in the Huntingtin gene, creating an extended polyglutamine tract that makes the Huntingtin protein toxic [10]. Silencing mutant Huntingtin messenger RNA (mRNA) should provide therapeutic benefit, but normal Huntingtin likely contributes to neuronal function [11-13]. No siRNA strategy can yet distinguish among the normal and disease Huntingtin alleles and other mRNAs containing CAG repeats [14]. siRNAs targeting the disease isoform of a heterozygous single-nucleotide polymorphism (SNP) in Huntingtin provide an alternative [15-19]. We sequenced 22 predicted SNP sites in 225 human samples corresponding to HD and control subjects. We find that 48% of our patient population is heterozygous at a single SNP site; one isoform of this SNP is associated with HD. Several other SNP sites are frequently heterozygous. Consequently, five allele-specific siRNAs, corresponding to just three SNP sites, could be used to treat three-quarters of the United States and European HD patient populations. We have designed and validated selective siRNAs for the three SNP sites, laying the foundation for allele-specific RNA interference (RNAi) therapy for HD. Among dominant neurodegenerative disorders, Huntington's disease (HD) is perhaps the best candidate for treatment with small interfering RNAs (siRNAs) [1–9]. Invariably fatal, HD is caused by expansion of a CAG repeat in the Huntingtin gene, creating an extended polyglutamine tract that makes the Huntingtin protein toxic [10]. Silencing mutant Huntingtin messenger RNA (mRNA) should provide therapeutic benefit, but normal Huntingtin likely contributes to neuronal function [11–13]. No siRNA strategy can yet distinguish among the normal and disease Huntingtin alleles and other mRNAs containing CAG repeats [14]. siRNAs targeting the disease isoform of a heterozygous single-nucleotide polymorphism (SNP) in Huntingtin provide an alternative [15–19]. We sequenced 22 predicted SNP sites in 225 human samples corresponding to HD and control subjects. We find that 48% of our patient population is heterozygous at a single SNP site; one isoform of this SNP is associated with HD. Several other SNP sites are frequently heterozygous. Consequently, five allele-specific siRNAs, corresponding to just three SNP sites, could be used to treat three-quarters of the United States and European HD patient populations. We have designed and validated selective siRNAs for the three SNP sites, laying the foundation for allele-specific RNA interference (RNAi) therapy for HD. Among dominant neurodegenerative disorders, Huntington's disease (HD) is perhaps the best candidate for treatment with small interfering RNAs (siRNAs) , and . Invariably fatal, HD is caused by expansion of a CAG repeat in the Huntingtin gene, creating an extended polyglutamine tract that makes the Huntingtin protein toxic . Silencing mutant Huntingtin messenger RNA (mRNA) should provide therapeutic benefit, but normal Huntingtin likely contributes to neuronal function , and . No siRNA strategy can yet distinguish among the normal and disease Huntingtin alleles and other mRNAs containing CAG repeats . siRNAs targeting the disease isoform of a heterozygous single-nucleotide polymorphism (SNP) in Huntingtin provide an alternative , and . We sequenced 22 predicted SNP sites in 225 human samples corresponding to HD and control subjects. We find that 48% of our patient population is heterozygous at a single SNP site; one isoform of this SNP is associated with HD. Several other SNP sites are frequently heterozygous. Consequently, five allele-specific siRNAs, corresponding to just three SNP sites, could be used to treat three-quarters of the United States and European HD patient populations. We have designed and validated selective siRNAs for the three SNP sites, laying the foundation for allele-specific RNA interference (RNAi) therapy for HD. Among dominant neurodegenerative disorders, Huntington's disease (HD) is perhaps the best candidate for treatment with small interfering RNAs (siRNAs) [1-9]. Invariably fatal, HD is caused by expansion of a CAG repeat in the Huntingtin gene, creating an extended polyglutamine tract that makes the Huntingtin protein toxic [10]. Silencing mutant Huntingtin messenger RNA (mRNA) should provide therapeutic benefit, but normal Huntingtin likely contributes to neuronal function [11-13]. No siRNA strategy can yet distinguish among the normal and disease Huntingtin alleles and other mRNAs containing CAG repeats [14]. siRNAs targeting the disease isoform of a heterozygous single-nucleotide polymorphism (SNP) in Huntingtin provide an alternative [15-19]. We sequenced 22 predicted SNP sites in 225 human samples corresponding to HD and control subjects. We find that 48% of our patient population is heterozygous at a single SNP site; one isoform of this SNP is associated with HD. Several other SNP sites are frequently heterozygous. Consequently, five allele-specific siRNAs, corresponding to just three SNP sites, could be used to treat three-quarters of the United States and European HD patient populations. We have designed and validated selective siRNAs for the three SNP sites, laying the foundation for allele-specific RNA interference (RNAi) therapy for HD. |
Author | Straubhaar, Juerg Vonsattel, Jean-Paul Liu, Wanzhou Pfister, Edith L. Wagh, Sujata Landwehrmeyer, Bernhard Kennington, Lori Aronin, Neil DiFiglia, Marian Zamore, Phillip D. |
Author_xml | – sequence: 1 givenname: Edith L. surname: Pfister fullname: Pfister, Edith L. organization: Department of Medicine, Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01655, USA – sequence: 2 givenname: Lori surname: Kennington fullname: Kennington, Lori organization: Department of Medicine, Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01655, USA – sequence: 3 givenname: Juerg surname: Straubhaar fullname: Straubhaar, Juerg organization: Department of Medicine, Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01655, USA – sequence: 4 givenname: Sujata surname: Wagh fullname: Wagh, Sujata organization: Department of Medicine, Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01655, USA – sequence: 5 givenname: Wanzhou surname: Liu fullname: Liu, Wanzhou organization: Department of Medicine, Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01655, USA – sequence: 6 givenname: Marian surname: DiFiglia fullname: DiFiglia, Marian organization: Massachusetts General Hospital, Charlestown, MA 02129, USA – sequence: 7 givenname: Bernhard surname: Landwehrmeyer fullname: Landwehrmeyer, Bernhard organization: University of Ulm, 89069 Ulm, Germany – sequence: 8 givenname: Jean-Paul surname: Vonsattel fullname: Vonsattel, Jean-Paul organization: Columbia University School of Medicine, New York, NY 10032, USA – sequence: 9 givenname: Phillip D. surname: Zamore fullname: Zamore, Phillip D. email: phillip.zamore@umassmed.edu organization: Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01655, USA – sequence: 10 givenname: Neil surname: Aronin fullname: Aronin, Neil email: neil.aronin@umassmed.edu organization: Department of Medicine, Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01655, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19361997$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU9rHCEcQKUkNJu0H6CX4qk5zVYd54_0FNKkKaTptt2exdHfJC6zulVnw377usxCoYclICjynujzHJ047wChd5TMKaH1x9Vcj92cESLmpMyDvEIz2jaiIJxXJ2hGRE0K0TJ2hs5jXBFCWSvq1-iMirKmQjQz9HRrt4Cj_flwFfFShUdI1j3i5VMAwL8eFhF_Uzu8CH5rDeRtCGqzw70PE1L8GFVIECL2Pb4b3V5O3l1G_NlGUBHwQiULLsU36LRXQ4S3h_kC_b69WV7fFfffv3y9vrovNBcsFVyXlVC0N8yIjpr8yo5VhpOqrUvTQ9e1oFjXQFUTqhWDvKo4MVxxJYjSfXmB2HTu6DZq96yGQW6CXauwk5TIfTa5kjmb3GeTpMyDZOlykjbB_xkhJrm2UcMwKAd-jFLkoE3VsjKTH46SdcN4RVuawfcHcOzWYP5d4pA-A3QCdPAxBuhfdM_mP0fblAN7l4Kyw1Hz02RCbr-1EGTU-V80GBtAJ2m8PWL_BcMtvZ0 |
CitedBy_id | crossref_primary_10_1038_ejhg_2013_2 crossref_primary_10_17650_2222_8721_2023_13_1_22_32 crossref_primary_10_1016_j_neurot_2024_e00452 crossref_primary_10_1186_s12915_023_01515_3 crossref_primary_10_1038_gt_2011_69 crossref_primary_10_1016_j_molcel_2019_06_012 crossref_primary_10_1016_j_chembiol_2010_10_013 crossref_primary_10_3390_jpm3030144 crossref_primary_10_1016_j_mcn_2011_12_001 crossref_primary_10_1007_s00018_012_1083_5 crossref_primary_10_1093_nar_gkt594 crossref_primary_10_1016_j_ajhg_2019_10_011 crossref_primary_10_1016_j_baga_2012_09_004 crossref_primary_10_1021_bi101208k crossref_primary_10_1093_nar_gkab1126 crossref_primary_10_1016_j_neuron_2012_05_009 crossref_primary_10_3233_JHD_150163 crossref_primary_10_1002_iub_1257 crossref_primary_10_1186_s40478_017_0468_y crossref_primary_10_1016_j_cell_2012_08_002 crossref_primary_10_1016_j_drudis_2012_01_006 crossref_primary_10_1016_j_brainres_2010_03_038 crossref_primary_10_1073_pnas_1206506109 crossref_primary_10_1021_bi4014209 crossref_primary_10_1038_s41591_019_0478_3 crossref_primary_10_1371_journal_pone_0023443 crossref_primary_10_2478_jtim_2023_0142 crossref_primary_10_1038_gt_2011_152 crossref_primary_10_1212_NXG_0000000000000430 crossref_primary_10_1007_s00115_021_01224_8 crossref_primary_10_1089_hgtb_2013_016 crossref_primary_10_3390_genes4030457 crossref_primary_10_1016_j_ajhg_2015_07_017 crossref_primary_10_4061_2011_809218 crossref_primary_10_1016_j_omtm_2020_09_003 crossref_primary_10_1016_j_drudis_2012_06_017 crossref_primary_10_1038_mtna_2016_7 crossref_primary_10_3390_ijms21062146 crossref_primary_10_12688_f1000research_15828_1 crossref_primary_10_12688_f1000research_15828_2 crossref_primary_10_12688_f1000research_15828_3 crossref_primary_10_1016_S1353_8020_09_70800_4 crossref_primary_10_1038_jid_2010_372 crossref_primary_10_1038_s41593_020_00778_1 crossref_primary_10_1093_hmg_ddu349 crossref_primary_10_1126_scitranslmed_aar3959 crossref_primary_10_1093_nar_gkr156 crossref_primary_10_1096_fj_11_182162 crossref_primary_10_1016_j_celrep_2017_09_009 crossref_primary_10_1016_j_ejphar_2024_176873 crossref_primary_10_1371_journal_pone_0107434 crossref_primary_10_1016_j_expneurol_2010_12_017 crossref_primary_10_1089_hum_2020_323 crossref_primary_10_1523_JNEUROSCI_4286_09_2009 crossref_primary_10_1111_j_1471_4159_2009_06302_x crossref_primary_10_1016_j_tig_2009_11_005 crossref_primary_10_1093_nar_gku385 crossref_primary_10_1136_neurintsurg_2011_010170 crossref_primary_10_1016_j_molmed_2012_09_001 crossref_primary_10_1016_S1474_4422_10_70245_3 crossref_primary_10_1016_j_nbd_2011_08_023 crossref_primary_10_1016_j_tins_2009_10_002 crossref_primary_10_1038_s41467_022_33061_x crossref_primary_10_1021_cb5003027 crossref_primary_10_1186_1471_2199_13_6 crossref_primary_10_33805_2638_8073_131 crossref_primary_10_1016_j_cell_2011_12_032 crossref_primary_10_1111_fcp_12110 crossref_primary_10_1093_hmg_dds397 crossref_primary_10_1007_s12035_011_8219_8 crossref_primary_10_1016_j_expneurol_2009_09_017 crossref_primary_10_1007_s13670_020_00341_7 crossref_primary_10_3109_01677063_2015_1073275 crossref_primary_10_3233_JHD_150183 crossref_primary_10_1007_s13311_021_01075_w crossref_primary_10_1038_s41582_020_0389_4 crossref_primary_10_1159_000446535 crossref_primary_10_1016_j_nbd_2011_12_030 crossref_primary_10_1007_s12035_012_8316_3 crossref_primary_10_1051_medsci_20153102012 crossref_primary_10_1002_mds_26020 crossref_primary_10_1038_mtna_2015_7 crossref_primary_10_3390_ph6040522 crossref_primary_10_1016_j_tips_2013_12_001 crossref_primary_10_1016_j_omtn_2018_01_007 crossref_primary_10_2217_rme_10_72 crossref_primary_10_1007_s40259_022_00519_9 crossref_primary_10_1038_mt_2011_219 crossref_primary_10_1002_acn3_657 crossref_primary_10_1146_annurev_neuro_070918_050501 crossref_primary_10_3390_ijms23074053 crossref_primary_10_1016_j_mrfmmm_2014_09_005 crossref_primary_10_1093_hmg_ddr137 crossref_primary_10_1371_journal_pone_0099341 crossref_primary_10_3892_ol_00000114 crossref_primary_10_1016_j_drudis_2014_09_011 crossref_primary_10_1038_s41587_019_0205_0 crossref_primary_10_1371_journal_pone_0021352 crossref_primary_10_1371_journal_pone_0108424 crossref_primary_10_1080_17474086_2025_2459259 crossref_primary_10_1016_j_ab_2010_02_012 crossref_primary_10_1530_EJE_14_0017 crossref_primary_10_1177_1073858410386236 crossref_primary_10_1016_j_omtm_2022_03_001 crossref_primary_10_1146_annurev_pharmtox_010919_023738 crossref_primary_10_2174_1566523220999200817164907 crossref_primary_10_1038_mt_2011_201 crossref_primary_10_1111_jth_14140 crossref_primary_10_1038_nrg2968 crossref_primary_10_1016_j_expneurol_2016_01_021 crossref_primary_10_1186_s13195_017_0307_1 crossref_primary_10_1093_nar_gkx1239 crossref_primary_10_1155_2012_358370 crossref_primary_10_1007_s13311_013_0183_8 crossref_primary_10_1089_nat_2013_0452 crossref_primary_10_1016_j_omtn_2024_102246 crossref_primary_10_1093_hmg_ddv442 crossref_primary_10_1093_nar_gkt725 crossref_primary_10_1038_ejhg_2014_39 crossref_primary_10_4018_jitr_2012010103 crossref_primary_10_1016_j_expneurol_2011_11_020 crossref_primary_10_14802_jmd_21006 crossref_primary_10_1172_JCI45130 crossref_primary_10_1007_s13311_019_00712_9 crossref_primary_10_1111_cge_12385 crossref_primary_10_1371_journal_pgen_1005043 crossref_primary_10_1016_S1474_4422_22_00121_1 crossref_primary_10_1093_nar_gkx483 crossref_primary_10_1186_2047_9158_2_2 crossref_primary_10_1016_j_semcdb_2021_09_012 crossref_primary_10_1038_gt_2017_71 crossref_primary_10_5005_ijcdas_54_1_5 crossref_primary_10_1093_nar_gks907 crossref_primary_10_1017_erm_2011_1 crossref_primary_10_1038_srep46740 crossref_primary_10_1002_jgm_2649 crossref_primary_10_1016_j_neuron_2012_06_001 crossref_primary_10_1038_s41536_021_00198_0 crossref_primary_10_1007_s11910_017_0711_8 crossref_primary_10_1038_mt_2015_128 crossref_primary_10_3389_fnagi_2020_571185 crossref_primary_10_1016_j_pneurobio_2016_11_001 crossref_primary_10_1038_ejhg_2017_125 crossref_primary_10_1016_j_ymthe_2018_02_002 crossref_primary_10_1007_s12035_024_04239_9 crossref_primary_10_1038_ejhg_2015_94 crossref_primary_10_1016_j_biopha_2024_117557 crossref_primary_10_1007_s13311_020_00891_w crossref_primary_10_1016_j_parkreldis_2014_12_013 crossref_primary_10_1016_j_jns_2015_04_053 crossref_primary_10_1089_hum_2021_29192_arb crossref_primary_10_1111_j_1755_5949_2010_00209_x crossref_primary_10_1146_annurev_med_050710_134457 crossref_primary_10_1016_j_patbio_2009_12_004 crossref_primary_10_1038_nrd_2018_133 crossref_primary_10_1007_s11033_014_3586_7 crossref_primary_10_1007_s00115_020_00882_4 crossref_primary_10_1038_mt_2014_153 crossref_primary_10_1073_pnas_1012153107 crossref_primary_10_1089_nat_2015_0547 crossref_primary_10_3389_fnmol_2022_941528 crossref_primary_10_1021_bi401129r crossref_primary_10_2217_epi_11_67 crossref_primary_10_1016_j_bbadis_2011_10_016 crossref_primary_10_1007_s40263_019_00695_3 crossref_primary_10_1016_j_neuron_2019_01_039 crossref_primary_10_1002_prot_24025 crossref_primary_10_1089_nat_2013_0476 crossref_primary_10_1038_gt_2015_102 crossref_primary_10_1155_2019_1039623 crossref_primary_10_1007_s42451_023_00582_8 crossref_primary_10_1007_s00018_013_1310_8 crossref_primary_10_1089_hum_2013_200 crossref_primary_10_1038_nrneurol_2017_148 crossref_primary_10_1016_j_jip_2009_06_014 crossref_primary_10_1016_j_nbd_2011_04_016 crossref_primary_10_1371_journal_pone_0024308 crossref_primary_10_1016_j_cels_2016_12_010 crossref_primary_10_1016_j_drudis_2014_02_012 crossref_primary_10_1007_s13311_013_0191_8 crossref_primary_10_1371_journal_pone_0052396 |
Cites_doi | 10.1016/j.nbd.2006.04.019 10.1093/nar/gki312 10.1089/hum.2007.116 10.1038/nm1205 10.1016/j.neures.2005.06.021 10.1046/j.1474-9728.2003.00054.x 10.1038/81593 10.1093/nar/gkh208 10.1093/hmg/10.22.2515 10.1073/pnas.0601309103 10.1371/journal.pgen.0020140 10.1038/nm1076 10.1038/nbt739 10.1073/pnas.0708285104 10.1186/1471-2105-5-33 10.1038/nmeth.1261 10.1371/journal.pone.0002248 10.1073/pnas.0501507102 10.1038/nm1207 10.1016/j.ajhg.2009.02.003 10.1016/0092-8674(93)90585-E 10.1016/j.bbrc.2006.02.141 10.1093/hmg/11.2.175 10.1093/nar/gkn190 10.1038/nrn1806 10.1093/bioinformatics/18.12.1681 |
ContentType | Journal Article |
Copyright | 2009 Elsevier Ltd |
Copyright_xml | – notice: 2009 Elsevier Ltd |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QO 7TK 7TM 8FD FR3 P64 ADTOC UNPAY |
DOI | 10.1016/j.cub.2009.03.030 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Neurosciences Abstracts Nucleic Acids Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | MEDLINE - Academic Engineering Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1879-0445 |
EndPage | 778 |
ExternalDocumentID | 10.1016/j.cub.2009.03.030 19361997 10_1016_j_cub_2009_03_030 S0960982209008781 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: 2T32DK007302-31 – fundername: NIDDK NIH HHS grantid: P30 DK032520 – fundername: NIGMS NIH HHS grantid: R01 GM065236 – fundername: Howard Hughes Medical Institute – fundername: NINDS NIH HHS grantid: R01 NS038194 – fundername: NIA NIH HHS grantid: P50 AG008702 – fundername: NINDS NIH HHS grantid: NS38194 – fundername: NIDDK NIH HHS grantid: P30DK032520-25 |
GroupedDBID | --- --K -DZ -~X 0R~ 1RT 1~5 29F 2WC 4.4 457 4G. 53G 5GY 5VS 62- 6I. 6J9 7-5 AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAIKJ AAKRW AALRI AAQFI AAQXK AAUCE AAVLU AAXJY AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ADBBV ADEZE ADJPV ADMUD AEFWE AENEX AEXQZ AFTJW AGHFR AGHSJ AGKMS AGUBO AHHHB AHPSJ AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CAG COF CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FGOYB FIRID G-2 HVGLF HZ~ IHE IXB J1W JIG LX5 M3Z M41 NCXOZ O-L O9- OK1 OZT P2P R2- RCE RIG ROL RPZ SCP SDG SES SEW SSZ TR2 UHS WQ6 XIH XPP Y6R ZA5 ZGI AAMRU AAYWO AAYXX ABDGV ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEUPX AFPUW AGQPQ AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION EFKBS AGCQF CGR CUY CVF ECM EIF NPM 7X8 7QO 7TK 7TM 8FD FR3 P64 ADTOC UNPAY |
ID | FETCH-LOGICAL-c492t-4c359a1fd2d9b1d016b25d405863dfebb8ea2b7e5601ca2e7e5540d4a4a90acf3 |
IEDL.DBID | UNPAY |
ISSN | 0960-9822 1879-0445 |
IngestDate | Wed Oct 01 15:49:38 EDT 2025 Sat Sep 27 19:36:32 EDT 2025 Fri Sep 05 08:27:06 EDT 2025 Mon Jul 21 05:35:27 EDT 2025 Wed Oct 01 04:46:06 EDT 2025 Thu Apr 24 22:53:37 EDT 2025 Fri Feb 23 02:32:58 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | RNA DNA HUMDISEASE |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 publisher-specific-oa |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c492t-4c359a1fd2d9b1d016b25d405863dfebb8ea2b7e5601ca2e7e5540d4a4a90acf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=http://www.cell.com/article/S0960982209008781/pdf |
PMID | 19361997 |
PQID | 67245181 |
PQPubID | 23479 |
PageCount | 5 |
ParticipantIDs | unpaywall_primary_10_1016_j_cub_2009_03_030 proquest_miscellaneous_904475823 proquest_miscellaneous_67245181 pubmed_primary_19361997 crossref_primary_10_1016_j_cub_2009_03_030 crossref_citationtrail_10_1016_j_cub_2009_03_030 elsevier_sciencedirect_doi_10_1016_j_cub_2009_03_030 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-05-12 |
PublicationDateYYYYMMDD | 2009-05-12 |
PublicationDate_xml | – month: 05 year: 2009 text: 2009-05-12 day: 12 |
PublicationDecade | 2000 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Current biology |
PublicationTitleAlternate | Curr Biol |
PublicationYear | 2009 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Miller, Gouvion, Davidson, Paulson (bib19) 2004; 32 Warby, Montpetit, Hayden, Carroll, Butland, Visscher, Collins, Semaka, Hudson, Hayden (bib26) 2009; 84 Schwarz, Ding, Kennington, Moore, Schelter, Burchard, Linsley, Aronin, Xu, Zamore (bib15) 2006; 2 Dykxhoorn, Schlehuber, London, Lieberman (bib20) 2006; 103 Riva, Kohane (bib22) 2002; 18 (bib10) 1993; 72 Riva, Kohane (bib21) 2004; 5 Xia, Zhou, Huang, Xu (bib4) 2006; 23 Raoul, Abbas-Terki, Bensadoun, Guillot, Haase, Szulc, Henderson, Aebischer (bib9) 2005; 11 Harper, Staber, He, Eliason, Martins, Mao, Yang, Kotin, Paulson, Davidson (bib6) 2005; 102 Auerbach, Hurlbert, Hilditch-Maguire, Wadghiri, Wheeler, Cohen, Joyner, MacDonald, Turnbull (bib11) 2001; 10 Ding, Schwarz, Keene, Affar, Fenton, Xia, Shi, Zamore, Xu (bib16) 2003; 2 DiFiglia, Sena-Esteves, Chase, Sapp, Pfister, Sass, Yoder, Reeves, Pandey, Rajeev (bib7) 2007; 104 Liu, Kennington, Rosas, Hersch, Cha, Zamore, Aronin (bib23) 2008; 5 Dragatsis, Levine, Zeitlin (bib13) 2000; 26 Ralph, Radcliffe, Day, Carthy, Leroux, Lee, Wong, Bilsland, Greensmith, Kingsman (bib8) 2005; 11 Caplen, Taylor, Statham, Tanaka, Fire, Morgan (bib14) 2002; 11 Dahlgren, Zhang, Du, Grahn, Norstedt, Wahlestedt, Liang (bib17) 2008; 36 Xia, Mao, Paulson, Davidson (bib5) 2002; 20 Du, Thonberg, Wang, Wahlestedt, Liang (bib18) 2005; 33 Wang, Liu, Wada, Murata, Wada, Kanazawa (bib3) 2005; 53 Machida, Okada, Kurosawa, Oyama, Ozawa, Nukina (bib2) 2006; 343 van Bilsen, Jaspers, Lombardi, Odekerken, Burright, Kaemmerer (bib24) 2008; 19 Cattaneo, Zuccato, Tartari (bib12) 2005; 6 Xia, Mao, Eliason, Harper, Martins, Orr, Paulson, Yang, Kotin, Davidson (bib1) 2004; 10 Ohnishi, Tamura, Yoshida, Tokunaga, Hohjoh (bib25) 2008; 3 Riva (10.1016/j.cub.2009.03.030_bib21) 2004; 5 Riva (10.1016/j.cub.2009.03.030_bib22) 2002; 18 Harper (10.1016/j.cub.2009.03.030_bib6) 2005; 102 Machida (10.1016/j.cub.2009.03.030_bib2) 2006; 343 Liu (10.1016/j.cub.2009.03.030_bib23) 2008; 5 Ding (10.1016/j.cub.2009.03.030_bib16) 2003; 2 (10.1016/j.cub.2009.03.030_bib10) 1993; 72 Cattaneo (10.1016/j.cub.2009.03.030_bib12) 2005; 6 Du (10.1016/j.cub.2009.03.030_bib18) 2005; 33 Dragatsis (10.1016/j.cub.2009.03.030_bib13) 2000; 26 Ralph (10.1016/j.cub.2009.03.030_bib8) 2005; 11 Dahlgren (10.1016/j.cub.2009.03.030_bib17) 2008; 36 Miller (10.1016/j.cub.2009.03.030_bib19) 2004; 32 DiFiglia (10.1016/j.cub.2009.03.030_bib7) 2007; 104 Xia (10.1016/j.cub.2009.03.030_bib5) 2002; 20 Wang (10.1016/j.cub.2009.03.030_bib3) 2005; 53 Ohnishi (10.1016/j.cub.2009.03.030_bib25) 2008; 3 Caplen (10.1016/j.cub.2009.03.030_bib14) 2002; 11 van Bilsen (10.1016/j.cub.2009.03.030_bib24) 2008; 19 Warby (10.1016/j.cub.2009.03.030_bib26) 2009; 84 Raoul (10.1016/j.cub.2009.03.030_bib9) 2005; 11 Xia (10.1016/j.cub.2009.03.030_bib4) 2006; 23 Xia (10.1016/j.cub.2009.03.030_bib1) 2004; 10 Auerbach (10.1016/j.cub.2009.03.030_bib11) 2001; 10 Schwarz (10.1016/j.cub.2009.03.030_bib15) 2006; 2 Dykxhoorn (10.1016/j.cub.2009.03.030_bib20) 2006; 103 |
References_xml | – volume: 6 start-page: 919 year: 2005 end-page: 930 ident: bib12 article-title: Normal huntingtin function: An alternative approach to Huntington's disease publication-title: Nat. Rev. Neurosci. – volume: 3 start-page: e2248 year: 2008 ident: bib25 article-title: Enhancement of allele discrimination by introduction of nucleotide mismatches into siRNA in allele-specific gene silencing by RNAi publication-title: PLoS ONE – volume: 18 start-page: 1681 year: 2002 end-page: 1685 ident: bib22 article-title: SNPper: Retrieval and analysis of human SNPs publication-title: Bioinformatics – volume: 20 start-page: 1006 year: 2002 end-page: 1010 ident: bib5 article-title: siRNA-mediated gene silencing in vitro and in vivo publication-title: Nat. Biotechnol. – volume: 11 start-page: 423 year: 2005 end-page: 428 ident: bib9 article-title: Lentiviral-mediated silencing of SOD1 through RNA interference retards disease onset and progression in a mouse model of ALS publication-title: Nat. Med. – volume: 36 start-page: e53 year: 2008 ident: bib17 article-title: Analysis of siRNA specificity on targets with double-nucleotide mismatches publication-title: Nucleic Acids Res. – volume: 11 start-page: 429 year: 2005 end-page: 433 ident: bib8 article-title: Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model publication-title: Nat. Med. – volume: 5 start-page: 951 year: 2008 end-page: 953 ident: bib23 article-title: Linking SNPs to CAG repeat length in Huntington's disease patients publication-title: Nat. Methods – volume: 72 start-page: 971 year: 1993 end-page: 983 ident: bib10 article-title: A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes publication-title: Cell – volume: 103 start-page: 5953 year: 2006 end-page: 5958 ident: bib20 article-title: Determinants of specific RNA interference-mediated silencing of human beta-globin alleles differing by a single nucleotide polymorphism publication-title: Proc. Natl. Acad. Sci. USA – volume: 23 start-page: 578 year: 2006 end-page: 586 ident: bib4 article-title: Allele-specific RNAi selectively silences mutant SOD1 and achieves significant therapeutic benefit in vivo publication-title: Neurobiol. Dis. – volume: 343 start-page: 190 year: 2006 end-page: 197 ident: bib2 article-title: rAAV-mediated shRNA ameliorated neuropathology in Huntington disease model mouse publication-title: Biochem. Biophys. Res. Commun. – volume: 53 start-page: 241 year: 2005 end-page: 249 ident: bib3 article-title: Clinico-pathological rescue of a model mouse of Huntington's disease by siRNA publication-title: Neurosci. Res. – volume: 26 start-page: 300 year: 2000 end-page: 306 ident: bib13 article-title: Inactivation of Hdh in the brain and testis results in progressive neurodegeneration and sterility in mice publication-title: Nat. Genet. – volume: 84 start-page: 351 year: 2009 end-page: 366 ident: bib26 article-title: CAG expansion in the Huntington disease gene is associated with a specific and targetable predisposing haplogroup publication-title: Am. J. Hum. Genet. – volume: 2 start-page: 209 year: 2003 end-page: 217 ident: bib16 article-title: Selective silencing by RNAi of a dominant allele that causes amyotrophic lateral sclerosis publication-title: Aging Cell – volume: 32 start-page: 661 year: 2004 end-page: 668 ident: bib19 article-title: Targeting Alzheimer's disease genes with RNA interference: An efficient strategy for silencing mutant alleles publication-title: Nucleic Acids Res. – volume: 11 start-page: 175 year: 2002 end-page: 184 ident: bib14 article-title: Rescue of polyglutamine-mediated cytotoxicity by double-stranded RNA-mediated RNA interference publication-title: Hum. Mol. Genet. – volume: 104 start-page: 17204 year: 2007 end-page: 17209 ident: bib7 article-title: Therapeutic silencing of mutant huntingtin with siRNA attenuates striatal and cortical neuropathology and behavioral deficits publication-title: Proc. Natl. Acad. Sci. USA – volume: 33 start-page: 1671 year: 2005 end-page: 1677 ident: bib18 article-title: A systematic analysis of the silencing effects of an active siRNA at all single-nucleotide mismatched target sites publication-title: Nucleic Acids Res. – volume: 2 start-page: e140 year: 2006 ident: bib15 article-title: Designing siRNA that distinguish between genes that differ by a single nucleotide publication-title: PLoS Genet. – volume: 19 start-page: 710 year: 2008 end-page: 719 ident: bib24 article-title: Identification and allele-specific silencing of the mutant huntingtin allele in Huntington's disease patient-derived fibroblasts publication-title: Hum. Gene Ther. – volume: 102 start-page: 5820 year: 2005 end-page: 5825 ident: bib6 article-title: RNA interference improves motor and neuropathological abnormalities in a Huntington's disease mouse model publication-title: Proc. Natl. Acad. Sci. USA – volume: 5 start-page: 33 year: 2004 ident: bib21 article-title: A SNP-centric database for the investigation of the human genome publication-title: BMC Bioinformatics – volume: 10 start-page: 816 year: 2004 end-page: 820 ident: bib1 article-title: RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia publication-title: Nat. Med. – volume: 10 start-page: 2515 year: 2001 end-page: 2523 ident: bib11 article-title: The HD mutation causes progressive lethal neurological disease in mice expressing reduced levels of huntingtin publication-title: Hum. Mol. Genet. – volume: 23 start-page: 578 year: 2006 ident: 10.1016/j.cub.2009.03.030_bib4 article-title: Allele-specific RNAi selectively silences mutant SOD1 and achieves significant therapeutic benefit in vivo publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2006.04.019 – volume: 33 start-page: 1671 year: 2005 ident: 10.1016/j.cub.2009.03.030_bib18 article-title: A systematic analysis of the silencing effects of an active siRNA at all single-nucleotide mismatched target sites publication-title: Nucleic Acids Res. doi: 10.1093/nar/gki312 – volume: 19 start-page: 710 year: 2008 ident: 10.1016/j.cub.2009.03.030_bib24 article-title: Identification and allele-specific silencing of the mutant huntingtin allele in Huntington's disease patient-derived fibroblasts publication-title: Hum. Gene Ther. doi: 10.1089/hum.2007.116 – volume: 11 start-page: 429 year: 2005 ident: 10.1016/j.cub.2009.03.030_bib8 article-title: Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model publication-title: Nat. Med. doi: 10.1038/nm1205 – volume: 53 start-page: 241 year: 2005 ident: 10.1016/j.cub.2009.03.030_bib3 article-title: Clinico-pathological rescue of a model mouse of Huntington's disease by siRNA publication-title: Neurosci. Res. doi: 10.1016/j.neures.2005.06.021 – volume: 2 start-page: 209 year: 2003 ident: 10.1016/j.cub.2009.03.030_bib16 article-title: Selective silencing by RNAi of a dominant allele that causes amyotrophic lateral sclerosis publication-title: Aging Cell doi: 10.1046/j.1474-9728.2003.00054.x – volume: 26 start-page: 300 year: 2000 ident: 10.1016/j.cub.2009.03.030_bib13 article-title: Inactivation of Hdh in the brain and testis results in progressive neurodegeneration and sterility in mice publication-title: Nat. Genet. doi: 10.1038/81593 – volume: 32 start-page: 661 year: 2004 ident: 10.1016/j.cub.2009.03.030_bib19 article-title: Targeting Alzheimer's disease genes with RNA interference: An efficient strategy for silencing mutant alleles publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkh208 – volume: 10 start-page: 2515 year: 2001 ident: 10.1016/j.cub.2009.03.030_bib11 article-title: The HD mutation causes progressive lethal neurological disease in mice expressing reduced levels of huntingtin publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/10.22.2515 – volume: 103 start-page: 5953 year: 2006 ident: 10.1016/j.cub.2009.03.030_bib20 article-title: Determinants of specific RNA interference-mediated silencing of human beta-globin alleles differing by a single nucleotide polymorphism publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0601309103 – volume: 2 start-page: e140 year: 2006 ident: 10.1016/j.cub.2009.03.030_bib15 article-title: Designing siRNA that distinguish between genes that differ by a single nucleotide publication-title: PLoS Genet. doi: 10.1371/journal.pgen.0020140 – volume: 10 start-page: 816 year: 2004 ident: 10.1016/j.cub.2009.03.030_bib1 article-title: RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia publication-title: Nat. Med. doi: 10.1038/nm1076 – volume: 20 start-page: 1006 year: 2002 ident: 10.1016/j.cub.2009.03.030_bib5 article-title: siRNA-mediated gene silencing in vitro and in vivo publication-title: Nat. Biotechnol. doi: 10.1038/nbt739 – volume: 104 start-page: 17204 year: 2007 ident: 10.1016/j.cub.2009.03.030_bib7 article-title: Therapeutic silencing of mutant huntingtin with siRNA attenuates striatal and cortical neuropathology and behavioral deficits publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0708285104 – volume: 5 start-page: 33 year: 2004 ident: 10.1016/j.cub.2009.03.030_bib21 article-title: A SNP-centric database for the investigation of the human genome publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-5-33 – volume: 5 start-page: 951 year: 2008 ident: 10.1016/j.cub.2009.03.030_bib23 article-title: Linking SNPs to CAG repeat length in Huntington's disease patients publication-title: Nat. Methods doi: 10.1038/nmeth.1261 – volume: 3 start-page: e2248 year: 2008 ident: 10.1016/j.cub.2009.03.030_bib25 article-title: Enhancement of allele discrimination by introduction of nucleotide mismatches into siRNA in allele-specific gene silencing by RNAi publication-title: PLoS ONE doi: 10.1371/journal.pone.0002248 – volume: 102 start-page: 5820 year: 2005 ident: 10.1016/j.cub.2009.03.030_bib6 article-title: RNA interference improves motor and neuropathological abnormalities in a Huntington's disease mouse model publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0501507102 – volume: 11 start-page: 423 year: 2005 ident: 10.1016/j.cub.2009.03.030_bib9 article-title: Lentiviral-mediated silencing of SOD1 through RNA interference retards disease onset and progression in a mouse model of ALS publication-title: Nat. Med. doi: 10.1038/nm1207 – volume: 84 start-page: 351 year: 2009 ident: 10.1016/j.cub.2009.03.030_bib26 article-title: CAG expansion in the Huntington disease gene is associated with a specific and targetable predisposing haplogroup publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2009.02.003 – volume: 72 start-page: 971 year: 1993 ident: 10.1016/j.cub.2009.03.030_bib10 article-title: A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes publication-title: Cell doi: 10.1016/0092-8674(93)90585-E – volume: 343 start-page: 190 year: 2006 ident: 10.1016/j.cub.2009.03.030_bib2 article-title: rAAV-mediated shRNA ameliorated neuropathology in Huntington disease model mouse publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2006.02.141 – volume: 11 start-page: 175 year: 2002 ident: 10.1016/j.cub.2009.03.030_bib14 article-title: Rescue of polyglutamine-mediated cytotoxicity by double-stranded RNA-mediated RNA interference publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/11.2.175 – volume: 36 start-page: e53 year: 2008 ident: 10.1016/j.cub.2009.03.030_bib17 article-title: Analysis of siRNA specificity on targets with double-nucleotide mismatches publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn190 – volume: 6 start-page: 919 year: 2005 ident: 10.1016/j.cub.2009.03.030_bib12 article-title: Normal huntingtin function: An alternative approach to Huntington's disease publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn1806 – volume: 18 start-page: 1681 year: 2002 ident: 10.1016/j.cub.2009.03.030_bib22 article-title: SNPper: Retrieval and analysis of human SNPs publication-title: Bioinformatics doi: 10.1093/bioinformatics/18.12.1681 |
SSID | ssj0012896 |
Score | 2.4192066 |
Snippet | Among dominant neurodegenerative disorders, Huntington's disease (HD) is perhaps the best candidate for treatment with small interfering RNAs (siRNAs)
[1–9].... Among dominant neurodegenerative disorders, Huntington's disease (HD) is perhaps the best candidate for treatment with small interfering RNAs (siRNAs) [1-9].... Among dominant neurodegenerative disorders, Huntington's disease (HD) is perhaps the best candidate for treatment with small interfering RNAs (siRNAs) , and .... |
SourceID | unpaywall proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 774 |
SubjectTerms | DNA Genetic Carrier Screening Genetic Therapy - methods Humans HUMDISEASE Huntingtin Protein Huntington Disease - genetics Huntington Disease - therapy Nerve Tissue Proteins - genetics Nuclear Proteins - genetics Polymorphism, Single Nucleotide - genetics RNA RNA Interference RNA, Small Interfering - genetics Sequence Analysis, DNA |
SummonAdditionalLinks | – databaseName: ScienceDirect dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1rixMxMBwHh_pBfFu903wQBCU2m2Qf-Xh3WopwpXg96LclT6yUbXFbjv77myS7VVFPEPbDEiaQyczOY-eF0JtKlj5jzpO8UiUBf8MSxXRFfJF5KbX3ZfyhfzEpxlfi8zyfH6DzvhYmpFV2sj_J9Citu5Vhd5vD9WIxvIzN0kC_URn6qsXyay7KWMQ3P9tHEsChiPFKACYBuo9sxhwvs9Vdy0r-ISZC_1k3_W573kN3ts1a7a7VcvmTPho9QPc7QxKfprM-RAeueYSO0mjJ3WP0dQRiDLeLL5PTFs9iujcoKTwD0jl8OZm2-ELt8DTV4cFy7C2AwYJNIKRL9mzxyuNxGicBVuLbFn9MER08TQ1Z2yfoavRpdj4m3VQFYoRkGyIMz6XKvGVW6szCRWiWW7DbqoJb77SuHFCrdMFVM4o5eAOrzgollKTKeP4UHTarxj1H2FHhKfVCO_Dicm4r6lWWG8NsXlFj-QDR_j5r07UcD5MvlnWfW_atBhKEUZiyphweOkDv9lvWqd_GbcCiJ1L9C9PUoA9u2_a6J2gNH1OIkKjGrbZtXZSAB9g8A4T_AiFp6JBYMcDtWWKFH8eUvAhpOwP0fs8b_8bhxf_h8BLdTXGtnGTsGB1uvm_dCZhHG_0q8v8NXiAL3w priority: 102 providerName: Elsevier |
Title | Five siRNAs Targeting Three SNPs May Provide Therapy for Three-Quarters of Huntington's Disease Patients |
URI | https://dx.doi.org/10.1016/j.cub.2009.03.030 https://www.ncbi.nlm.nih.gov/pubmed/19361997 https://www.proquest.com/docview/67245181 https://www.proquest.com/docview/904475823 http://www.cell.com/article/S0960982209008781/pdf |
UnpaywallVersion | publishedVersion |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1879-0445 dateEnd: 20241003 omitProxy: true ssIdentifier: ssj0012896 issn: 1879-0445 databaseCode: IXB dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1879-0445 dateEnd: 20241003 omitProxy: true ssIdentifier: ssj0012896 issn: 1879-0445 databaseCode: DIK dateStart: 19950101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0445 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012896 issn: 1879-0445 databaseCode: AKRWK dateStart: 19910201 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zj9MwEB7ttkLAA_dRjuIHJCRQus5tP5ajKqy2qrqtKE-RT3FUaUVaofLrGcfJgrSwgJSHKBpLscf2fOMZfwPwlPHchpGxQcpEHqC_oQMRSRbYLLScS2vz-kD_ZJKNF8m7Zbo8gLZwocuqdCfW9R7djN3RaU2LhpaMcsegxsKjjbaH0M1cTKkD3cVkOvxQc-plNHByzsliuTv0T9I2klnndKmdbCgq40Gd-Px7W3Qea16Fy7tyI_bfxGr1i_0ZXYdZe4vHp518Gey2cqC-nyd1_Peu3YBrDRolQy93Ew5MeQsu-fqU-9vwcYR7Iak-zSbDiszrnHG0dGSO-jfkdDKtyInYk6m_zIefa4ICgjDYiwRNxmhF1paMfU0KhJrPKvLah4XI1LO6VndgMXozfzUOmtIMgUp4tA0SFadchFZHmstQ4-jKKNUI_lgWa2ukZAZVnhvn7ykRGXxDaKgTkQhOhbLxXeiU69LcB2JoYim1iTToCqaxZtSKMFUq0imjSsc9oK2SCtXwlrvyGauiTVD7XKBeXT1NXtAYH9qD52dNNp604yLhpNV80aAOjyYKNCoXNXvSzpICV6TTrCjNelcVWY79QODUA_IHCU4dzSKLsG_3_Pz6-Zs8zlzuTw9enE24v_fhwX9JP4QrPiaWBmH0CDrbrzvzGKHVVvahOzyevT_uw-Hb5ct-s7R-APm0IEE |
linkProvider | Unpaywall |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dixMxEA_HiZw-iN9Xvy4PgqDEZrOfebw7LT29luL1oG8hn9ijbIvbIv3vnSS79UQ9QdiHZZlAJpPM_GZnMoPQ64qXLmHWkbySJQF_wxDJVEVckTjOlXNl-KE_GhfDy-zTLJ_todPuLoxPq2x1f9TpQVu3X_rtavZX83n_IhRLA_tGua-r5q9f3wI0QH1e19nsZBdKAI8iBCyBmnjyLrQZkrz0RrU1K9P3IRP6z8bpd_B5Fx1s6pXcfpeLxTWDNLiP7rVIEh_HyT5Ae7Z-iG7H3pLbR-jrAPQYbuZfxscNnoZ8b7BSeAqys_hiPGnwSG7xJF7Eg8-huAAGCBtJSJvt2eClw8PYTwJg4psGf4ghHTyJFVmbx-hy8HF6OiRtWwWiM87WJNNpzmXiDDNcJQYWQrHcAHCritQ4q1RlQVyl9b6alszCG8A6k8lMciq1S5-g_XpZ20OELc0cpS5TFty4PDUVdTLJtWYmr6g2aQ_Rbj2FbmuO-9YXC9Ell10JEIHvhckFTeGhPfR2N2QVC27cRJx1QhK_7BoBBuGmYUedQAWcJh8ikbVdbhpRlMAHgJ4ewn-h4NSXSKwY8PY0boWf0-Rp4fN2eujdbm_8m4dn_8fDEToYTkfn4vxs_Pk5uhODXDlJ2Au0v_62sS8BK63Vq3AWfgDaOw8A |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3rixMxEB_OHuL5weed1mc-CIKSXvadfCxqKcKVctfC-WnJEx9lW9wuUv96J5vdUzg9FfbDskxgk0kyv8lMfgPwgovCRbF1NOOyoOhvGCpjxanLIyeEcq5oD_RPZvl0mb4_z873oC9c6LMq_Yl1u0d3Y3d81tKioSVjwjOo8eh4Y9w12M99TGkA-8vZfPyh5dTLGfVy3snihT_0T7M-ktnmdOlGdRSVyahNfP69LbqMNW_CjabayN03uVr9Yn8mt-G0v8UT0k6-jJqtGunvl0kd_71rd-BWh0bJOMjdhT1b3YProT7l7j58nOBeSOpPp7NxTRZtzjhaOrJA_VtyNpvX5ETuyDxc5sPPLUEBQRgcRGiXMVqTtSPTUJMCoebLmrwNYSEyD6yu9SEsJ-8Wb6a0K81AdSriLU11kgkZORMboSKDo6vizCD443linFWKW1R5Yb2_p2Vs8Q2hoUllKgWT2iVHMKjWlX0IxLLUMeZSZdEVzBLDmZNRpnVsMs60SYbAeiWVuuMt9-UzVmWfoPa5RL36epqiZAk-bAivLppsAmnHVcJpr_myQx0BTZRoVK5q9ryfJSWuSK9ZWdl1U5d5gf1A4DQE8gcJwTzNIo-xbw_C_Pr5myLJfe7PEF5fTLi_9-HRf0k_hoMQE8toFD-BwfZrY58itNqqZ91i-gFL1B2a |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Five+siRNAs+targeting+three+SNPs+may+provide+therapy+for+three-quarters+of+Huntington%27s+disease+patients&rft.jtitle=Current+biology&rft.au=Pfister%2C+Edith+L&rft.au=Kennington%2C+Lori&rft.au=Straubhaar%2C+Juerg&rft.au=Wagh%2C+Sujata&rft.date=2009-05-12&rft.issn=1879-0445&rft.eissn=1879-0445&rft.volume=19&rft.issue=9&rft.spage=774&rft_id=info:doi/10.1016%2Fj.cub.2009.03.030&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-9822&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-9822&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-9822&client=summon |