Five siRNAs Targeting Three SNPs May Provide Therapy for Three-Quarters of Huntington's Disease Patients

Among dominant neurodegenerative disorders, Huntington's disease (HD) is perhaps the best candidate for treatment with small interfering RNAs (siRNAs) [1–9]. Invariably fatal, HD is caused by expansion of a CAG repeat in the Huntingtin gene, creating an extended polyglutamine tract that makes t...

Full description

Saved in:
Bibliographic Details
Published inCurrent biology Vol. 19; no. 9; pp. 774 - 778
Main Authors Pfister, Edith L., Kennington, Lori, Straubhaar, Juerg, Wagh, Sujata, Liu, Wanzhou, DiFiglia, Marian, Landwehrmeyer, Bernhard, Vonsattel, Jean-Paul, Zamore, Phillip D., Aronin, Neil
Format Journal Article
LanguageEnglish
Published England Elsevier Inc 12.05.2009
Subjects
Online AccessGet full text
ISSN0960-9822
1879-0445
1879-0445
DOI10.1016/j.cub.2009.03.030

Cover

Abstract Among dominant neurodegenerative disorders, Huntington's disease (HD) is perhaps the best candidate for treatment with small interfering RNAs (siRNAs) [1–9]. Invariably fatal, HD is caused by expansion of a CAG repeat in the Huntingtin gene, creating an extended polyglutamine tract that makes the Huntingtin protein toxic [10]. Silencing mutant Huntingtin messenger RNA (mRNA) should provide therapeutic benefit, but normal Huntingtin likely contributes to neuronal function [11–13]. No siRNA strategy can yet distinguish among the normal and disease Huntingtin alleles and other mRNAs containing CAG repeats [14]. siRNAs targeting the disease isoform of a heterozygous single-nucleotide polymorphism (SNP) in Huntingtin provide an alternative [15–19]. We sequenced 22 predicted SNP sites in 225 human samples corresponding to HD and control subjects. We find that 48% of our patient population is heterozygous at a single SNP site; one isoform of this SNP is associated with HD. Several other SNP sites are frequently heterozygous. Consequently, five allele-specific siRNAs, corresponding to just three SNP sites, could be used to treat three-quarters of the United States and European HD patient populations. We have designed and validated selective siRNAs for the three SNP sites, laying the foundation for allele-specific RNA interference (RNAi) therapy for HD.
AbstractList Among dominant neurodegenerative disorders, Huntington's disease (HD) is perhaps the best candidate for treatment with small interfering RNAs (siRNAs) [1-9]. Invariably fatal, HD is caused by expansion of a CAG repeat in the Huntingtin gene, creating an extended polyglutamine tract that makes the Huntingtin protein toxic [10]. Silencing mutant Huntingtin messenger RNA (mRNA) should provide therapeutic benefit, but normal Huntingtin likely contributes to neuronal function [11-13]. No siRNA strategy can yet distinguish among the normal and disease Huntingtin alleles and other mRNAs containing CAG repeats [14]. siRNAs targeting the disease isoform of a heterozygous single-nucleotide polymorphism (SNP) in Huntingtin provide an alternative [15-19]. We sequenced 22 predicted SNP sites in 225 human samples corresponding to HD and control subjects. We find that 48% of our patient population is heterozygous at a single SNP site; one isoform of this SNP is associated with HD. Several other SNP sites are frequently heterozygous. Consequently, five allele-specific siRNAs, corresponding to just three SNP sites, could be used to treat three-quarters of the United States and European HD patient populations. We have designed and validated selective siRNAs for the three SNP sites, laying the foundation for allele-specific RNA interference (RNAi) therapy for HD.Among dominant neurodegenerative disorders, Huntington's disease (HD) is perhaps the best candidate for treatment with small interfering RNAs (siRNAs) [1-9]. Invariably fatal, HD is caused by expansion of a CAG repeat in the Huntingtin gene, creating an extended polyglutamine tract that makes the Huntingtin protein toxic [10]. Silencing mutant Huntingtin messenger RNA (mRNA) should provide therapeutic benefit, but normal Huntingtin likely contributes to neuronal function [11-13]. No siRNA strategy can yet distinguish among the normal and disease Huntingtin alleles and other mRNAs containing CAG repeats [14]. siRNAs targeting the disease isoform of a heterozygous single-nucleotide polymorphism (SNP) in Huntingtin provide an alternative [15-19]. We sequenced 22 predicted SNP sites in 225 human samples corresponding to HD and control subjects. We find that 48% of our patient population is heterozygous at a single SNP site; one isoform of this SNP is associated with HD. Several other SNP sites are frequently heterozygous. Consequently, five allele-specific siRNAs, corresponding to just three SNP sites, could be used to treat three-quarters of the United States and European HD patient populations. We have designed and validated selective siRNAs for the three SNP sites, laying the foundation for allele-specific RNA interference (RNAi) therapy for HD.
Among dominant neurodegenerative disorders, Huntington's disease (HD) is perhaps the best candidate for treatment with small interfering RNAs (siRNAs) [1–9]. Invariably fatal, HD is caused by expansion of a CAG repeat in the Huntingtin gene, creating an extended polyglutamine tract that makes the Huntingtin protein toxic [10]. Silencing mutant Huntingtin messenger RNA (mRNA) should provide therapeutic benefit, but normal Huntingtin likely contributes to neuronal function [11–13]. No siRNA strategy can yet distinguish among the normal and disease Huntingtin alleles and other mRNAs containing CAG repeats [14]. siRNAs targeting the disease isoform of a heterozygous single-nucleotide polymorphism (SNP) in Huntingtin provide an alternative [15–19]. We sequenced 22 predicted SNP sites in 225 human samples corresponding to HD and control subjects. We find that 48% of our patient population is heterozygous at a single SNP site; one isoform of this SNP is associated with HD. Several other SNP sites are frequently heterozygous. Consequently, five allele-specific siRNAs, corresponding to just three SNP sites, could be used to treat three-quarters of the United States and European HD patient populations. We have designed and validated selective siRNAs for the three SNP sites, laying the foundation for allele-specific RNA interference (RNAi) therapy for HD.
Among dominant neurodegenerative disorders, Huntington's disease (HD) is perhaps the best candidate for treatment with small interfering RNAs (siRNAs) , and . Invariably fatal, HD is caused by expansion of a CAG repeat in the Huntingtin gene, creating an extended polyglutamine tract that makes the Huntingtin protein toxic . Silencing mutant Huntingtin messenger RNA (mRNA) should provide therapeutic benefit, but normal Huntingtin likely contributes to neuronal function , and . No siRNA strategy can yet distinguish among the normal and disease Huntingtin alleles and other mRNAs containing CAG repeats . siRNAs targeting the disease isoform of a heterozygous single-nucleotide polymorphism (SNP) in Huntingtin provide an alternative , and . We sequenced 22 predicted SNP sites in 225 human samples corresponding to HD and control subjects. We find that 48% of our patient population is heterozygous at a single SNP site; one isoform of this SNP is associated with HD. Several other SNP sites are frequently heterozygous. Consequently, five allele-specific siRNAs, corresponding to just three SNP sites, could be used to treat three-quarters of the United States and European HD patient populations. We have designed and validated selective siRNAs for the three SNP sites, laying the foundation for allele-specific RNA interference (RNAi) therapy for HD.
Among dominant neurodegenerative disorders, Huntington's disease (HD) is perhaps the best candidate for treatment with small interfering RNAs (siRNAs) [1-9]. Invariably fatal, HD is caused by expansion of a CAG repeat in the Huntingtin gene, creating an extended polyglutamine tract that makes the Huntingtin protein toxic [10]. Silencing mutant Huntingtin messenger RNA (mRNA) should provide therapeutic benefit, but normal Huntingtin likely contributes to neuronal function [11-13]. No siRNA strategy can yet distinguish among the normal and disease Huntingtin alleles and other mRNAs containing CAG repeats [14]. siRNAs targeting the disease isoform of a heterozygous single-nucleotide polymorphism (SNP) in Huntingtin provide an alternative [15-19]. We sequenced 22 predicted SNP sites in 225 human samples corresponding to HD and control subjects. We find that 48% of our patient population is heterozygous at a single SNP site; one isoform of this SNP is associated with HD. Several other SNP sites are frequently heterozygous. Consequently, five allele-specific siRNAs, corresponding to just three SNP sites, could be used to treat three-quarters of the United States and European HD patient populations. We have designed and validated selective siRNAs for the three SNP sites, laying the foundation for allele-specific RNA interference (RNAi) therapy for HD.
Author Straubhaar, Juerg
Vonsattel, Jean-Paul
Liu, Wanzhou
Pfister, Edith L.
Wagh, Sujata
Landwehrmeyer, Bernhard
Kennington, Lori
Aronin, Neil
DiFiglia, Marian
Zamore, Phillip D.
Author_xml – sequence: 1
  givenname: Edith L.
  surname: Pfister
  fullname: Pfister, Edith L.
  organization: Department of Medicine, Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01655, USA
– sequence: 2
  givenname: Lori
  surname: Kennington
  fullname: Kennington, Lori
  organization: Department of Medicine, Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01655, USA
– sequence: 3
  givenname: Juerg
  surname: Straubhaar
  fullname: Straubhaar, Juerg
  organization: Department of Medicine, Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01655, USA
– sequence: 4
  givenname: Sujata
  surname: Wagh
  fullname: Wagh, Sujata
  organization: Department of Medicine, Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01655, USA
– sequence: 5
  givenname: Wanzhou
  surname: Liu
  fullname: Liu, Wanzhou
  organization: Department of Medicine, Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01655, USA
– sequence: 6
  givenname: Marian
  surname: DiFiglia
  fullname: DiFiglia, Marian
  organization: Massachusetts General Hospital, Charlestown, MA 02129, USA
– sequence: 7
  givenname: Bernhard
  surname: Landwehrmeyer
  fullname: Landwehrmeyer, Bernhard
  organization: University of Ulm, 89069 Ulm, Germany
– sequence: 8
  givenname: Jean-Paul
  surname: Vonsattel
  fullname: Vonsattel, Jean-Paul
  organization: Columbia University School of Medicine, New York, NY 10032, USA
– sequence: 9
  givenname: Phillip D.
  surname: Zamore
  fullname: Zamore, Phillip D.
  email: phillip.zamore@umassmed.edu
  organization: Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01655, USA
– sequence: 10
  givenname: Neil
  surname: Aronin
  fullname: Aronin, Neil
  email: neil.aronin@umassmed.edu
  organization: Department of Medicine, Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01655, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19361997$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9rHCEcQKUkNJu0H6CX4qk5zVYd54_0FNKkKaTptt2exdHfJC6zulVnw377usxCoYclICjynujzHJ047wChd5TMKaH1x9Vcj92cESLmpMyDvEIz2jaiIJxXJ2hGRE0K0TJ2hs5jXBFCWSvq1-iMirKmQjQz9HRrt4Cj_flwFfFShUdI1j3i5VMAwL8eFhF_Uzu8CH5rDeRtCGqzw70PE1L8GFVIECL2Pb4b3V5O3l1G_NlGUBHwQiULLsU36LRXQ4S3h_kC_b69WV7fFfffv3y9vrovNBcsFVyXlVC0N8yIjpr8yo5VhpOqrUvTQ9e1oFjXQFUTqhWDvKo4MVxxJYjSfXmB2HTu6DZq96yGQW6CXauwk5TIfTa5kjmb3GeTpMyDZOlykjbB_xkhJrm2UcMwKAd-jFLkoE3VsjKTH46SdcN4RVuawfcHcOzWYP5d4pA-A3QCdPAxBuhfdM_mP0fblAN7l4Kyw1Hz02RCbr-1EGTU-V80GBtAJ2m8PWL_BcMtvZ0
CitedBy_id crossref_primary_10_1038_ejhg_2013_2
crossref_primary_10_17650_2222_8721_2023_13_1_22_32
crossref_primary_10_1016_j_neurot_2024_e00452
crossref_primary_10_1186_s12915_023_01515_3
crossref_primary_10_1038_gt_2011_69
crossref_primary_10_1016_j_molcel_2019_06_012
crossref_primary_10_1016_j_chembiol_2010_10_013
crossref_primary_10_3390_jpm3030144
crossref_primary_10_1016_j_mcn_2011_12_001
crossref_primary_10_1007_s00018_012_1083_5
crossref_primary_10_1093_nar_gkt594
crossref_primary_10_1016_j_ajhg_2019_10_011
crossref_primary_10_1016_j_baga_2012_09_004
crossref_primary_10_1021_bi101208k
crossref_primary_10_1093_nar_gkab1126
crossref_primary_10_1016_j_neuron_2012_05_009
crossref_primary_10_3233_JHD_150163
crossref_primary_10_1002_iub_1257
crossref_primary_10_1186_s40478_017_0468_y
crossref_primary_10_1016_j_cell_2012_08_002
crossref_primary_10_1016_j_drudis_2012_01_006
crossref_primary_10_1016_j_brainres_2010_03_038
crossref_primary_10_1073_pnas_1206506109
crossref_primary_10_1021_bi4014209
crossref_primary_10_1038_s41591_019_0478_3
crossref_primary_10_1371_journal_pone_0023443
crossref_primary_10_2478_jtim_2023_0142
crossref_primary_10_1038_gt_2011_152
crossref_primary_10_1212_NXG_0000000000000430
crossref_primary_10_1007_s00115_021_01224_8
crossref_primary_10_1089_hgtb_2013_016
crossref_primary_10_3390_genes4030457
crossref_primary_10_1016_j_ajhg_2015_07_017
crossref_primary_10_4061_2011_809218
crossref_primary_10_1016_j_omtm_2020_09_003
crossref_primary_10_1016_j_drudis_2012_06_017
crossref_primary_10_1038_mtna_2016_7
crossref_primary_10_3390_ijms21062146
crossref_primary_10_12688_f1000research_15828_1
crossref_primary_10_12688_f1000research_15828_2
crossref_primary_10_12688_f1000research_15828_3
crossref_primary_10_1016_S1353_8020_09_70800_4
crossref_primary_10_1038_jid_2010_372
crossref_primary_10_1038_s41593_020_00778_1
crossref_primary_10_1093_hmg_ddu349
crossref_primary_10_1126_scitranslmed_aar3959
crossref_primary_10_1093_nar_gkr156
crossref_primary_10_1096_fj_11_182162
crossref_primary_10_1016_j_celrep_2017_09_009
crossref_primary_10_1016_j_ejphar_2024_176873
crossref_primary_10_1371_journal_pone_0107434
crossref_primary_10_1016_j_expneurol_2010_12_017
crossref_primary_10_1089_hum_2020_323
crossref_primary_10_1523_JNEUROSCI_4286_09_2009
crossref_primary_10_1111_j_1471_4159_2009_06302_x
crossref_primary_10_1016_j_tig_2009_11_005
crossref_primary_10_1093_nar_gku385
crossref_primary_10_1136_neurintsurg_2011_010170
crossref_primary_10_1016_j_molmed_2012_09_001
crossref_primary_10_1016_S1474_4422_10_70245_3
crossref_primary_10_1016_j_nbd_2011_08_023
crossref_primary_10_1016_j_tins_2009_10_002
crossref_primary_10_1038_s41467_022_33061_x
crossref_primary_10_1021_cb5003027
crossref_primary_10_1186_1471_2199_13_6
crossref_primary_10_33805_2638_8073_131
crossref_primary_10_1016_j_cell_2011_12_032
crossref_primary_10_1111_fcp_12110
crossref_primary_10_1093_hmg_dds397
crossref_primary_10_1007_s12035_011_8219_8
crossref_primary_10_1016_j_expneurol_2009_09_017
crossref_primary_10_1007_s13670_020_00341_7
crossref_primary_10_3109_01677063_2015_1073275
crossref_primary_10_3233_JHD_150183
crossref_primary_10_1007_s13311_021_01075_w
crossref_primary_10_1038_s41582_020_0389_4
crossref_primary_10_1159_000446535
crossref_primary_10_1016_j_nbd_2011_12_030
crossref_primary_10_1007_s12035_012_8316_3
crossref_primary_10_1051_medsci_20153102012
crossref_primary_10_1002_mds_26020
crossref_primary_10_1038_mtna_2015_7
crossref_primary_10_3390_ph6040522
crossref_primary_10_1016_j_tips_2013_12_001
crossref_primary_10_1016_j_omtn_2018_01_007
crossref_primary_10_2217_rme_10_72
crossref_primary_10_1007_s40259_022_00519_9
crossref_primary_10_1038_mt_2011_219
crossref_primary_10_1002_acn3_657
crossref_primary_10_1146_annurev_neuro_070918_050501
crossref_primary_10_3390_ijms23074053
crossref_primary_10_1016_j_mrfmmm_2014_09_005
crossref_primary_10_1093_hmg_ddr137
crossref_primary_10_1371_journal_pone_0099341
crossref_primary_10_3892_ol_00000114
crossref_primary_10_1016_j_drudis_2014_09_011
crossref_primary_10_1038_s41587_019_0205_0
crossref_primary_10_1371_journal_pone_0021352
crossref_primary_10_1371_journal_pone_0108424
crossref_primary_10_1080_17474086_2025_2459259
crossref_primary_10_1016_j_ab_2010_02_012
crossref_primary_10_1530_EJE_14_0017
crossref_primary_10_1177_1073858410386236
crossref_primary_10_1016_j_omtm_2022_03_001
crossref_primary_10_1146_annurev_pharmtox_010919_023738
crossref_primary_10_2174_1566523220999200817164907
crossref_primary_10_1038_mt_2011_201
crossref_primary_10_1111_jth_14140
crossref_primary_10_1038_nrg2968
crossref_primary_10_1016_j_expneurol_2016_01_021
crossref_primary_10_1186_s13195_017_0307_1
crossref_primary_10_1093_nar_gkx1239
crossref_primary_10_1155_2012_358370
crossref_primary_10_1007_s13311_013_0183_8
crossref_primary_10_1089_nat_2013_0452
crossref_primary_10_1016_j_omtn_2024_102246
crossref_primary_10_1093_hmg_ddv442
crossref_primary_10_1093_nar_gkt725
crossref_primary_10_1038_ejhg_2014_39
crossref_primary_10_4018_jitr_2012010103
crossref_primary_10_1016_j_expneurol_2011_11_020
crossref_primary_10_14802_jmd_21006
crossref_primary_10_1172_JCI45130
crossref_primary_10_1007_s13311_019_00712_9
crossref_primary_10_1111_cge_12385
crossref_primary_10_1371_journal_pgen_1005043
crossref_primary_10_1016_S1474_4422_22_00121_1
crossref_primary_10_1093_nar_gkx483
crossref_primary_10_1186_2047_9158_2_2
crossref_primary_10_1016_j_semcdb_2021_09_012
crossref_primary_10_1038_gt_2017_71
crossref_primary_10_5005_ijcdas_54_1_5
crossref_primary_10_1093_nar_gks907
crossref_primary_10_1017_erm_2011_1
crossref_primary_10_1038_srep46740
crossref_primary_10_1002_jgm_2649
crossref_primary_10_1016_j_neuron_2012_06_001
crossref_primary_10_1038_s41536_021_00198_0
crossref_primary_10_1007_s11910_017_0711_8
crossref_primary_10_1038_mt_2015_128
crossref_primary_10_3389_fnagi_2020_571185
crossref_primary_10_1016_j_pneurobio_2016_11_001
crossref_primary_10_1038_ejhg_2017_125
crossref_primary_10_1016_j_ymthe_2018_02_002
crossref_primary_10_1007_s12035_024_04239_9
crossref_primary_10_1038_ejhg_2015_94
crossref_primary_10_1016_j_biopha_2024_117557
crossref_primary_10_1007_s13311_020_00891_w
crossref_primary_10_1016_j_parkreldis_2014_12_013
crossref_primary_10_1016_j_jns_2015_04_053
crossref_primary_10_1089_hum_2021_29192_arb
crossref_primary_10_1111_j_1755_5949_2010_00209_x
crossref_primary_10_1146_annurev_med_050710_134457
crossref_primary_10_1016_j_patbio_2009_12_004
crossref_primary_10_1038_nrd_2018_133
crossref_primary_10_1007_s11033_014_3586_7
crossref_primary_10_1007_s00115_020_00882_4
crossref_primary_10_1038_mt_2014_153
crossref_primary_10_1073_pnas_1012153107
crossref_primary_10_1089_nat_2015_0547
crossref_primary_10_3389_fnmol_2022_941528
crossref_primary_10_1021_bi401129r
crossref_primary_10_2217_epi_11_67
crossref_primary_10_1016_j_bbadis_2011_10_016
crossref_primary_10_1007_s40263_019_00695_3
crossref_primary_10_1016_j_neuron_2019_01_039
crossref_primary_10_1002_prot_24025
crossref_primary_10_1089_nat_2013_0476
crossref_primary_10_1038_gt_2015_102
crossref_primary_10_1155_2019_1039623
crossref_primary_10_1007_s42451_023_00582_8
crossref_primary_10_1007_s00018_013_1310_8
crossref_primary_10_1089_hum_2013_200
crossref_primary_10_1038_nrneurol_2017_148
crossref_primary_10_1016_j_jip_2009_06_014
crossref_primary_10_1016_j_nbd_2011_04_016
crossref_primary_10_1371_journal_pone_0024308
crossref_primary_10_1016_j_cels_2016_12_010
crossref_primary_10_1016_j_drudis_2014_02_012
crossref_primary_10_1007_s13311_013_0191_8
crossref_primary_10_1371_journal_pone_0052396
Cites_doi 10.1016/j.nbd.2006.04.019
10.1093/nar/gki312
10.1089/hum.2007.116
10.1038/nm1205
10.1016/j.neures.2005.06.021
10.1046/j.1474-9728.2003.00054.x
10.1038/81593
10.1093/nar/gkh208
10.1093/hmg/10.22.2515
10.1073/pnas.0601309103
10.1371/journal.pgen.0020140
10.1038/nm1076
10.1038/nbt739
10.1073/pnas.0708285104
10.1186/1471-2105-5-33
10.1038/nmeth.1261
10.1371/journal.pone.0002248
10.1073/pnas.0501507102
10.1038/nm1207
10.1016/j.ajhg.2009.02.003
10.1016/0092-8674(93)90585-E
10.1016/j.bbrc.2006.02.141
10.1093/hmg/11.2.175
10.1093/nar/gkn190
10.1038/nrn1806
10.1093/bioinformatics/18.12.1681
ContentType Journal Article
Copyright 2009 Elsevier Ltd
Copyright_xml – notice: 2009 Elsevier Ltd
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
7TK
7TM
8FD
FR3
P64
ADTOC
UNPAY
DOI 10.1016/j.cub.2009.03.030
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Neurosciences Abstracts
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList MEDLINE - Academic

Engineering Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1879-0445
EndPage 778
ExternalDocumentID 10.1016/j.cub.2009.03.030
19361997
10_1016_j_cub_2009_03_030
S0960982209008781
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: 2T32DK007302-31
– fundername: NIDDK NIH HHS
  grantid: P30 DK032520
– fundername: NIGMS NIH HHS
  grantid: R01 GM065236
– fundername: Howard Hughes Medical Institute
– fundername: NINDS NIH HHS
  grantid: R01 NS038194
– fundername: NIA NIH HHS
  grantid: P50 AG008702
– fundername: NINDS NIH HHS
  grantid: NS38194
– fundername: NIDDK NIH HHS
  grantid: P30DK032520-25
GroupedDBID ---
--K
-DZ
-~X
0R~
1RT
1~5
29F
2WC
4.4
457
4G.
53G
5GY
5VS
62-
6I.
6J9
7-5
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKRW
AALRI
AAQFI
AAQXK
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ADBBV
ADEZE
ADJPV
ADMUD
AEFWE
AENEX
AEXQZ
AFTJW
AGHFR
AGHSJ
AGKMS
AGUBO
AHHHB
AHPSJ
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CAG
COF
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FGOYB
FIRID
G-2
HVGLF
HZ~
IHE
IXB
J1W
JIG
LX5
M3Z
M41
NCXOZ
O-L
O9-
OK1
OZT
P2P
R2-
RCE
RIG
ROL
RPZ
SCP
SDG
SES
SEW
SSZ
TR2
UHS
WQ6
XIH
XPP
Y6R
ZA5
ZGI
AAMRU
AAYWO
AAYXX
ABDGV
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEUPX
AFPUW
AGQPQ
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
EFKBS
AGCQF
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
7TK
7TM
8FD
FR3
P64
ADTOC
UNPAY
ID FETCH-LOGICAL-c492t-4c359a1fd2d9b1d016b25d405863dfebb8ea2b7e5601ca2e7e5540d4a4a90acf3
IEDL.DBID UNPAY
ISSN 0960-9822
1879-0445
IngestDate Wed Oct 01 15:49:38 EDT 2025
Sat Sep 27 19:36:32 EDT 2025
Fri Sep 05 08:27:06 EDT 2025
Mon Jul 21 05:35:27 EDT 2025
Wed Oct 01 04:46:06 EDT 2025
Thu Apr 24 22:53:37 EDT 2025
Fri Feb 23 02:32:58 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords RNA
DNA
HUMDISEASE
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
publisher-specific-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c492t-4c359a1fd2d9b1d016b25d405863dfebb8ea2b7e5601ca2e7e5540d4a4a90acf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://proxy.k.utb.cz/login?url=http://www.cell.com/article/S0960982209008781/pdf
PMID 19361997
PQID 67245181
PQPubID 23479
PageCount 5
ParticipantIDs unpaywall_primary_10_1016_j_cub_2009_03_030
proquest_miscellaneous_904475823
proquest_miscellaneous_67245181
pubmed_primary_19361997
crossref_primary_10_1016_j_cub_2009_03_030
crossref_citationtrail_10_1016_j_cub_2009_03_030
elsevier_sciencedirect_doi_10_1016_j_cub_2009_03_030
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-05-12
PublicationDateYYYYMMDD 2009-05-12
PublicationDate_xml – month: 05
  year: 2009
  text: 2009-05-12
  day: 12
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Current biology
PublicationTitleAlternate Curr Biol
PublicationYear 2009
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Miller, Gouvion, Davidson, Paulson (bib19) 2004; 32
Warby, Montpetit, Hayden, Carroll, Butland, Visscher, Collins, Semaka, Hudson, Hayden (bib26) 2009; 84
Schwarz, Ding, Kennington, Moore, Schelter, Burchard, Linsley, Aronin, Xu, Zamore (bib15) 2006; 2
Dykxhoorn, Schlehuber, London, Lieberman (bib20) 2006; 103
Riva, Kohane (bib22) 2002; 18
(bib10) 1993; 72
Riva, Kohane (bib21) 2004; 5
Xia, Zhou, Huang, Xu (bib4) 2006; 23
Raoul, Abbas-Terki, Bensadoun, Guillot, Haase, Szulc, Henderson, Aebischer (bib9) 2005; 11
Harper, Staber, He, Eliason, Martins, Mao, Yang, Kotin, Paulson, Davidson (bib6) 2005; 102
Auerbach, Hurlbert, Hilditch-Maguire, Wadghiri, Wheeler, Cohen, Joyner, MacDonald, Turnbull (bib11) 2001; 10
Ding, Schwarz, Keene, Affar, Fenton, Xia, Shi, Zamore, Xu (bib16) 2003; 2
DiFiglia, Sena-Esteves, Chase, Sapp, Pfister, Sass, Yoder, Reeves, Pandey, Rajeev (bib7) 2007; 104
Liu, Kennington, Rosas, Hersch, Cha, Zamore, Aronin (bib23) 2008; 5
Dragatsis, Levine, Zeitlin (bib13) 2000; 26
Ralph, Radcliffe, Day, Carthy, Leroux, Lee, Wong, Bilsland, Greensmith, Kingsman (bib8) 2005; 11
Caplen, Taylor, Statham, Tanaka, Fire, Morgan (bib14) 2002; 11
Dahlgren, Zhang, Du, Grahn, Norstedt, Wahlestedt, Liang (bib17) 2008; 36
Xia, Mao, Paulson, Davidson (bib5) 2002; 20
Du, Thonberg, Wang, Wahlestedt, Liang (bib18) 2005; 33
Wang, Liu, Wada, Murata, Wada, Kanazawa (bib3) 2005; 53
Machida, Okada, Kurosawa, Oyama, Ozawa, Nukina (bib2) 2006; 343
van Bilsen, Jaspers, Lombardi, Odekerken, Burright, Kaemmerer (bib24) 2008; 19
Cattaneo, Zuccato, Tartari (bib12) 2005; 6
Xia, Mao, Eliason, Harper, Martins, Orr, Paulson, Yang, Kotin, Davidson (bib1) 2004; 10
Ohnishi, Tamura, Yoshida, Tokunaga, Hohjoh (bib25) 2008; 3
Riva (10.1016/j.cub.2009.03.030_bib21) 2004; 5
Riva (10.1016/j.cub.2009.03.030_bib22) 2002; 18
Harper (10.1016/j.cub.2009.03.030_bib6) 2005; 102
Machida (10.1016/j.cub.2009.03.030_bib2) 2006; 343
Liu (10.1016/j.cub.2009.03.030_bib23) 2008; 5
Ding (10.1016/j.cub.2009.03.030_bib16) 2003; 2
(10.1016/j.cub.2009.03.030_bib10) 1993; 72
Cattaneo (10.1016/j.cub.2009.03.030_bib12) 2005; 6
Du (10.1016/j.cub.2009.03.030_bib18) 2005; 33
Dragatsis (10.1016/j.cub.2009.03.030_bib13) 2000; 26
Ralph (10.1016/j.cub.2009.03.030_bib8) 2005; 11
Dahlgren (10.1016/j.cub.2009.03.030_bib17) 2008; 36
Miller (10.1016/j.cub.2009.03.030_bib19) 2004; 32
DiFiglia (10.1016/j.cub.2009.03.030_bib7) 2007; 104
Xia (10.1016/j.cub.2009.03.030_bib5) 2002; 20
Wang (10.1016/j.cub.2009.03.030_bib3) 2005; 53
Ohnishi (10.1016/j.cub.2009.03.030_bib25) 2008; 3
Caplen (10.1016/j.cub.2009.03.030_bib14) 2002; 11
van Bilsen (10.1016/j.cub.2009.03.030_bib24) 2008; 19
Warby (10.1016/j.cub.2009.03.030_bib26) 2009; 84
Raoul (10.1016/j.cub.2009.03.030_bib9) 2005; 11
Xia (10.1016/j.cub.2009.03.030_bib4) 2006; 23
Xia (10.1016/j.cub.2009.03.030_bib1) 2004; 10
Auerbach (10.1016/j.cub.2009.03.030_bib11) 2001; 10
Schwarz (10.1016/j.cub.2009.03.030_bib15) 2006; 2
Dykxhoorn (10.1016/j.cub.2009.03.030_bib20) 2006; 103
References_xml – volume: 6
  start-page: 919
  year: 2005
  end-page: 930
  ident: bib12
  article-title: Normal huntingtin function: An alternative approach to Huntington's disease
  publication-title: Nat. Rev. Neurosci.
– volume: 3
  start-page: e2248
  year: 2008
  ident: bib25
  article-title: Enhancement of allele discrimination by introduction of nucleotide mismatches into siRNA in allele-specific gene silencing by RNAi
  publication-title: PLoS ONE
– volume: 18
  start-page: 1681
  year: 2002
  end-page: 1685
  ident: bib22
  article-title: SNPper: Retrieval and analysis of human SNPs
  publication-title: Bioinformatics
– volume: 20
  start-page: 1006
  year: 2002
  end-page: 1010
  ident: bib5
  article-title: siRNA-mediated gene silencing in vitro and in vivo
  publication-title: Nat. Biotechnol.
– volume: 11
  start-page: 423
  year: 2005
  end-page: 428
  ident: bib9
  article-title: Lentiviral-mediated silencing of SOD1 through RNA interference retards disease onset and progression in a mouse model of ALS
  publication-title: Nat. Med.
– volume: 36
  start-page: e53
  year: 2008
  ident: bib17
  article-title: Analysis of siRNA specificity on targets with double-nucleotide mismatches
  publication-title: Nucleic Acids Res.
– volume: 11
  start-page: 429
  year: 2005
  end-page: 433
  ident: bib8
  article-title: Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model
  publication-title: Nat. Med.
– volume: 5
  start-page: 951
  year: 2008
  end-page: 953
  ident: bib23
  article-title: Linking SNPs to CAG repeat length in Huntington's disease patients
  publication-title: Nat. Methods
– volume: 72
  start-page: 971
  year: 1993
  end-page: 983
  ident: bib10
  article-title: A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes
  publication-title: Cell
– volume: 103
  start-page: 5953
  year: 2006
  end-page: 5958
  ident: bib20
  article-title: Determinants of specific RNA interference-mediated silencing of human beta-globin alleles differing by a single nucleotide polymorphism
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 23
  start-page: 578
  year: 2006
  end-page: 586
  ident: bib4
  article-title: Allele-specific RNAi selectively silences mutant SOD1 and achieves significant therapeutic benefit in vivo
  publication-title: Neurobiol. Dis.
– volume: 343
  start-page: 190
  year: 2006
  end-page: 197
  ident: bib2
  article-title: rAAV-mediated shRNA ameliorated neuropathology in Huntington disease model mouse
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 53
  start-page: 241
  year: 2005
  end-page: 249
  ident: bib3
  article-title: Clinico-pathological rescue of a model mouse of Huntington's disease by siRNA
  publication-title: Neurosci. Res.
– volume: 26
  start-page: 300
  year: 2000
  end-page: 306
  ident: bib13
  article-title: Inactivation of Hdh in the brain and testis results in progressive neurodegeneration and sterility in mice
  publication-title: Nat. Genet.
– volume: 84
  start-page: 351
  year: 2009
  end-page: 366
  ident: bib26
  article-title: CAG expansion in the Huntington disease gene is associated with a specific and targetable predisposing haplogroup
  publication-title: Am. J. Hum. Genet.
– volume: 2
  start-page: 209
  year: 2003
  end-page: 217
  ident: bib16
  article-title: Selective silencing by RNAi of a dominant allele that causes amyotrophic lateral sclerosis
  publication-title: Aging Cell
– volume: 32
  start-page: 661
  year: 2004
  end-page: 668
  ident: bib19
  article-title: Targeting Alzheimer's disease genes with RNA interference: An efficient strategy for silencing mutant alleles
  publication-title: Nucleic Acids Res.
– volume: 11
  start-page: 175
  year: 2002
  end-page: 184
  ident: bib14
  article-title: Rescue of polyglutamine-mediated cytotoxicity by double-stranded RNA-mediated RNA interference
  publication-title: Hum. Mol. Genet.
– volume: 104
  start-page: 17204
  year: 2007
  end-page: 17209
  ident: bib7
  article-title: Therapeutic silencing of mutant huntingtin with siRNA attenuates striatal and cortical neuropathology and behavioral deficits
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 33
  start-page: 1671
  year: 2005
  end-page: 1677
  ident: bib18
  article-title: A systematic analysis of the silencing effects of an active siRNA at all single-nucleotide mismatched target sites
  publication-title: Nucleic Acids Res.
– volume: 2
  start-page: e140
  year: 2006
  ident: bib15
  article-title: Designing siRNA that distinguish between genes that differ by a single nucleotide
  publication-title: PLoS Genet.
– volume: 19
  start-page: 710
  year: 2008
  end-page: 719
  ident: bib24
  article-title: Identification and allele-specific silencing of the mutant huntingtin allele in Huntington's disease patient-derived fibroblasts
  publication-title: Hum. Gene Ther.
– volume: 102
  start-page: 5820
  year: 2005
  end-page: 5825
  ident: bib6
  article-title: RNA interference improves motor and neuropathological abnormalities in a Huntington's disease mouse model
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 5
  start-page: 33
  year: 2004
  ident: bib21
  article-title: A SNP-centric database for the investigation of the human genome
  publication-title: BMC Bioinformatics
– volume: 10
  start-page: 816
  year: 2004
  end-page: 820
  ident: bib1
  article-title: RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia
  publication-title: Nat. Med.
– volume: 10
  start-page: 2515
  year: 2001
  end-page: 2523
  ident: bib11
  article-title: The HD mutation causes progressive lethal neurological disease in mice expressing reduced levels of huntingtin
  publication-title: Hum. Mol. Genet.
– volume: 23
  start-page: 578
  year: 2006
  ident: 10.1016/j.cub.2009.03.030_bib4
  article-title: Allele-specific RNAi selectively silences mutant SOD1 and achieves significant therapeutic benefit in vivo
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2006.04.019
– volume: 33
  start-page: 1671
  year: 2005
  ident: 10.1016/j.cub.2009.03.030_bib18
  article-title: A systematic analysis of the silencing effects of an active siRNA at all single-nucleotide mismatched target sites
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gki312
– volume: 19
  start-page: 710
  year: 2008
  ident: 10.1016/j.cub.2009.03.030_bib24
  article-title: Identification and allele-specific silencing of the mutant huntingtin allele in Huntington's disease patient-derived fibroblasts
  publication-title: Hum. Gene Ther.
  doi: 10.1089/hum.2007.116
– volume: 11
  start-page: 429
  year: 2005
  ident: 10.1016/j.cub.2009.03.030_bib8
  article-title: Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model
  publication-title: Nat. Med.
  doi: 10.1038/nm1205
– volume: 53
  start-page: 241
  year: 2005
  ident: 10.1016/j.cub.2009.03.030_bib3
  article-title: Clinico-pathological rescue of a model mouse of Huntington's disease by siRNA
  publication-title: Neurosci. Res.
  doi: 10.1016/j.neures.2005.06.021
– volume: 2
  start-page: 209
  year: 2003
  ident: 10.1016/j.cub.2009.03.030_bib16
  article-title: Selective silencing by RNAi of a dominant allele that causes amyotrophic lateral sclerosis
  publication-title: Aging Cell
  doi: 10.1046/j.1474-9728.2003.00054.x
– volume: 26
  start-page: 300
  year: 2000
  ident: 10.1016/j.cub.2009.03.030_bib13
  article-title: Inactivation of Hdh in the brain and testis results in progressive neurodegeneration and sterility in mice
  publication-title: Nat. Genet.
  doi: 10.1038/81593
– volume: 32
  start-page: 661
  year: 2004
  ident: 10.1016/j.cub.2009.03.030_bib19
  article-title: Targeting Alzheimer's disease genes with RNA interference: An efficient strategy for silencing mutant alleles
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkh208
– volume: 10
  start-page: 2515
  year: 2001
  ident: 10.1016/j.cub.2009.03.030_bib11
  article-title: The HD mutation causes progressive lethal neurological disease in mice expressing reduced levels of huntingtin
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/10.22.2515
– volume: 103
  start-page: 5953
  year: 2006
  ident: 10.1016/j.cub.2009.03.030_bib20
  article-title: Determinants of specific RNA interference-mediated silencing of human beta-globin alleles differing by a single nucleotide polymorphism
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0601309103
– volume: 2
  start-page: e140
  year: 2006
  ident: 10.1016/j.cub.2009.03.030_bib15
  article-title: Designing siRNA that distinguish between genes that differ by a single nucleotide
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.0020140
– volume: 10
  start-page: 816
  year: 2004
  ident: 10.1016/j.cub.2009.03.030_bib1
  article-title: RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia
  publication-title: Nat. Med.
  doi: 10.1038/nm1076
– volume: 20
  start-page: 1006
  year: 2002
  ident: 10.1016/j.cub.2009.03.030_bib5
  article-title: siRNA-mediated gene silencing in vitro and in vivo
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt739
– volume: 104
  start-page: 17204
  year: 2007
  ident: 10.1016/j.cub.2009.03.030_bib7
  article-title: Therapeutic silencing of mutant huntingtin with siRNA attenuates striatal and cortical neuropathology and behavioral deficits
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0708285104
– volume: 5
  start-page: 33
  year: 2004
  ident: 10.1016/j.cub.2009.03.030_bib21
  article-title: A SNP-centric database for the investigation of the human genome
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-5-33
– volume: 5
  start-page: 951
  year: 2008
  ident: 10.1016/j.cub.2009.03.030_bib23
  article-title: Linking SNPs to CAG repeat length in Huntington's disease patients
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1261
– volume: 3
  start-page: e2248
  year: 2008
  ident: 10.1016/j.cub.2009.03.030_bib25
  article-title: Enhancement of allele discrimination by introduction of nucleotide mismatches into siRNA in allele-specific gene silencing by RNAi
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0002248
– volume: 102
  start-page: 5820
  year: 2005
  ident: 10.1016/j.cub.2009.03.030_bib6
  article-title: RNA interference improves motor and neuropathological abnormalities in a Huntington's disease mouse model
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0501507102
– volume: 11
  start-page: 423
  year: 2005
  ident: 10.1016/j.cub.2009.03.030_bib9
  article-title: Lentiviral-mediated silencing of SOD1 through RNA interference retards disease onset and progression in a mouse model of ALS
  publication-title: Nat. Med.
  doi: 10.1038/nm1207
– volume: 84
  start-page: 351
  year: 2009
  ident: 10.1016/j.cub.2009.03.030_bib26
  article-title: CAG expansion in the Huntington disease gene is associated with a specific and targetable predisposing haplogroup
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2009.02.003
– volume: 72
  start-page: 971
  year: 1993
  ident: 10.1016/j.cub.2009.03.030_bib10
  article-title: A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes
  publication-title: Cell
  doi: 10.1016/0092-8674(93)90585-E
– volume: 343
  start-page: 190
  year: 2006
  ident: 10.1016/j.cub.2009.03.030_bib2
  article-title: rAAV-mediated shRNA ameliorated neuropathology in Huntington disease model mouse
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2006.02.141
– volume: 11
  start-page: 175
  year: 2002
  ident: 10.1016/j.cub.2009.03.030_bib14
  article-title: Rescue of polyglutamine-mediated cytotoxicity by double-stranded RNA-mediated RNA interference
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/11.2.175
– volume: 36
  start-page: e53
  year: 2008
  ident: 10.1016/j.cub.2009.03.030_bib17
  article-title: Analysis of siRNA specificity on targets with double-nucleotide mismatches
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkn190
– volume: 6
  start-page: 919
  year: 2005
  ident: 10.1016/j.cub.2009.03.030_bib12
  article-title: Normal huntingtin function: An alternative approach to Huntington's disease
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn1806
– volume: 18
  start-page: 1681
  year: 2002
  ident: 10.1016/j.cub.2009.03.030_bib22
  article-title: SNPper: Retrieval and analysis of human SNPs
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/18.12.1681
SSID ssj0012896
Score 2.4192066
Snippet Among dominant neurodegenerative disorders, Huntington's disease (HD) is perhaps the best candidate for treatment with small interfering RNAs (siRNAs) [1–9]....
Among dominant neurodegenerative disorders, Huntington's disease (HD) is perhaps the best candidate for treatment with small interfering RNAs (siRNAs) [1-9]....
Among dominant neurodegenerative disorders, Huntington's disease (HD) is perhaps the best candidate for treatment with small interfering RNAs (siRNAs) , and ....
SourceID unpaywall
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 774
SubjectTerms DNA
Genetic Carrier Screening
Genetic Therapy - methods
Humans
HUMDISEASE
Huntingtin Protein
Huntington Disease - genetics
Huntington Disease - therapy
Nerve Tissue Proteins - genetics
Nuclear Proteins - genetics
Polymorphism, Single Nucleotide - genetics
RNA
RNA Interference
RNA, Small Interfering - genetics
Sequence Analysis, DNA
SummonAdditionalLinks – databaseName: ScienceDirect
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1rixMxMBwHh_pBfFu903wQBCU2m2Qf-Xh3WopwpXg96LclT6yUbXFbjv77myS7VVFPEPbDEiaQyczOY-eF0JtKlj5jzpO8UiUBf8MSxXRFfJF5KbX3ZfyhfzEpxlfi8zyfH6DzvhYmpFV2sj_J9Citu5Vhd5vD9WIxvIzN0kC_URn6qsXyay7KWMQ3P9tHEsChiPFKACYBuo9sxhwvs9Vdy0r-ISZC_1k3_W573kN3ts1a7a7VcvmTPho9QPc7QxKfprM-RAeueYSO0mjJ3WP0dQRiDLeLL5PTFs9iujcoKTwD0jl8OZm2-ELt8DTV4cFy7C2AwYJNIKRL9mzxyuNxGicBVuLbFn9MER08TQ1Z2yfoavRpdj4m3VQFYoRkGyIMz6XKvGVW6szCRWiWW7DbqoJb77SuHFCrdMFVM4o5eAOrzgollKTKeP4UHTarxj1H2FHhKfVCO_Dicm4r6lWWG8NsXlFj-QDR_j5r07UcD5MvlnWfW_atBhKEUZiyphweOkDv9lvWqd_GbcCiJ1L9C9PUoA9u2_a6J2gNH1OIkKjGrbZtXZSAB9g8A4T_AiFp6JBYMcDtWWKFH8eUvAhpOwP0fs8b_8bhxf_h8BLdTXGtnGTsGB1uvm_dCZhHG_0q8v8NXiAL3w
  priority: 102
  providerName: Elsevier
Title Five siRNAs Targeting Three SNPs May Provide Therapy for Three-Quarters of Huntington's Disease Patients
URI https://dx.doi.org/10.1016/j.cub.2009.03.030
https://www.ncbi.nlm.nih.gov/pubmed/19361997
https://www.proquest.com/docview/67245181
https://www.proquest.com/docview/904475823
http://www.cell.com/article/S0960982209008781/pdf
UnpaywallVersion publishedVersion
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1879-0445
  dateEnd: 20241003
  omitProxy: true
  ssIdentifier: ssj0012896
  issn: 1879-0445
  databaseCode: IXB
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1879-0445
  dateEnd: 20241003
  omitProxy: true
  ssIdentifier: ssj0012896
  issn: 1879-0445
  databaseCode: DIK
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0445
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012896
  issn: 1879-0445
  databaseCode: AKRWK
  dateStart: 19910201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zj9MwEB7ttkLAA_dRjuIHJCRQus5tP5ajKqy2qrqtKE-RT3FUaUVaofLrGcfJgrSwgJSHKBpLscf2fOMZfwPwlPHchpGxQcpEHqC_oQMRSRbYLLScS2vz-kD_ZJKNF8m7Zbo8gLZwocuqdCfW9R7djN3RaU2LhpaMcsegxsKjjbaH0M1cTKkD3cVkOvxQc-plNHByzsliuTv0T9I2klnndKmdbCgq40Gd-Px7W3Qea16Fy7tyI_bfxGr1i_0ZXYdZe4vHp518Gey2cqC-nyd1_Peu3YBrDRolQy93Ew5MeQsu-fqU-9vwcYR7Iak-zSbDiszrnHG0dGSO-jfkdDKtyInYk6m_zIefa4ICgjDYiwRNxmhF1paMfU0KhJrPKvLah4XI1LO6VndgMXozfzUOmtIMgUp4tA0SFadchFZHmstQ4-jKKNUI_lgWa2ukZAZVnhvn7ykRGXxDaKgTkQhOhbLxXeiU69LcB2JoYim1iTToCqaxZtSKMFUq0imjSsc9oK2SCtXwlrvyGauiTVD7XKBeXT1NXtAYH9qD52dNNp604yLhpNV80aAOjyYKNCoXNXvSzpICV6TTrCjNelcVWY79QODUA_IHCU4dzSKLsG_3_Pz6-Zs8zlzuTw9enE24v_fhwX9JP4QrPiaWBmH0CDrbrzvzGKHVVvahOzyevT_uw-Hb5ct-s7R-APm0IEE
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dixMxEA_HiZw-iN9Xvy4PgqDEZrOfebw7LT29luL1oG8hn9ijbIvbIv3vnSS79UQ9QdiHZZlAJpPM_GZnMoPQ64qXLmHWkbySJQF_wxDJVEVckTjOlXNl-KE_GhfDy-zTLJ_todPuLoxPq2x1f9TpQVu3X_rtavZX83n_IhRLA_tGua-r5q9f3wI0QH1e19nsZBdKAI8iBCyBmnjyLrQZkrz0RrU1K9P3IRP6z8bpd_B5Fx1s6pXcfpeLxTWDNLiP7rVIEh_HyT5Ae7Z-iG7H3pLbR-jrAPQYbuZfxscNnoZ8b7BSeAqys_hiPGnwSG7xJF7Eg8-huAAGCBtJSJvt2eClw8PYTwJg4psGf4ghHTyJFVmbx-hy8HF6OiRtWwWiM87WJNNpzmXiDDNcJQYWQrHcAHCritQ4q1RlQVyl9b6alszCG8A6k8lMciq1S5-g_XpZ20OELc0cpS5TFty4PDUVdTLJtWYmr6g2aQ_Rbj2FbmuO-9YXC9Ell10JEIHvhckFTeGhPfR2N2QVC27cRJx1QhK_7BoBBuGmYUedQAWcJh8ikbVdbhpRlMAHgJ4ewn-h4NSXSKwY8PY0boWf0-Rp4fN2eujdbm_8m4dn_8fDEToYTkfn4vxs_Pk5uhODXDlJ2Au0v_62sS8BK63Vq3AWfgDaOw8A
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3rixMxEB_OHuL5weed1mc-CIKSXvadfCxqKcKVctfC-WnJEx9lW9wuUv96J5vdUzg9FfbDskxgk0kyv8lMfgPwgovCRbF1NOOyoOhvGCpjxanLIyeEcq5oD_RPZvl0mb4_z873oC9c6LMq_Yl1u0d3Y3d81tKioSVjwjOo8eh4Y9w12M99TGkA-8vZfPyh5dTLGfVy3snihT_0T7M-ktnmdOlGdRSVyahNfP69LbqMNW_CjabayN03uVr9Yn8mt-G0v8UT0k6-jJqtGunvl0kd_71rd-BWh0bJOMjdhT1b3YProT7l7j58nOBeSOpPp7NxTRZtzjhaOrJA_VtyNpvX5ETuyDxc5sPPLUEBQRgcRGiXMVqTtSPTUJMCoebLmrwNYSEyD6yu9SEsJ-8Wb6a0K81AdSriLU11kgkZORMboSKDo6vizCD443linFWKW1R5Yb2_p2Vs8Q2hoUllKgWT2iVHMKjWlX0IxLLUMeZSZdEVzBLDmZNRpnVsMs60SYbAeiWVuuMt9-UzVmWfoPa5RL36epqiZAk-bAivLppsAmnHVcJpr_myQx0BTZRoVK5q9ryfJSWuSK9ZWdl1U5d5gf1A4DQE8gcJwTzNIo-xbw_C_Pr5myLJfe7PEF5fTLi_9-HRf0k_hoMQE8toFD-BwfZrY58itNqqZ91i-gFL1B2a
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Five+siRNAs+targeting+three+SNPs+may+provide+therapy+for+three-quarters+of+Huntington%27s+disease+patients&rft.jtitle=Current+biology&rft.au=Pfister%2C+Edith+L&rft.au=Kennington%2C+Lori&rft.au=Straubhaar%2C+Juerg&rft.au=Wagh%2C+Sujata&rft.date=2009-05-12&rft.issn=1879-0445&rft.eissn=1879-0445&rft.volume=19&rft.issue=9&rft.spage=774&rft_id=info:doi/10.1016%2Fj.cub.2009.03.030&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-9822&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-9822&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-9822&client=summon