Enhanced low-light image fusion through multi-stage processing with Bayesian analysis and quadratic contrast function
This manuscript introduces an innovative multi-stage image fusion framework that adeptly integrates infrared (IR) and visible (VIS) spectrum images to surmount the difficulties posed by low-light settings. The approach commences with an initial preprocessing stage, utilizing an Efficient Guided Imag...
Saved in:
Published in | Scientific reports Vol. 14; no. 1; pp. 16987 - 29 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
23.07.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/s41598-024-67502-y |
Cover
Abstract | This manuscript introduces an innovative multi-stage image fusion framework that adeptly integrates infrared (IR) and visible (VIS) spectrum images to surmount the difficulties posed by low-light settings. The approach commences with an initial preprocessing stage, utilizing an Efficient Guided Image Filter for the infrared (IR) images to amplify edge boundaries and a function for the visible (VIS) images to boost local contrast and brightness. Utilizing a two-scale decomposition technique that incorporates Lipschitz constraints-based smoothing, the images are effectively divided into distinct base and detail layers, thereby guaranteeing the preservation of essential structural information. The process of fusion is carried out in two distinct stages: firstly, a method grounded in Bayesian theory is employed to effectively combine the base layers, so effectively addressing any inherent uncertainty. Secondly, a Surface from Shade (SfS) method is utilized to ensure the preservation of the scene's geometry by enforcing integrability on the detail layers. Ultimately a Choose Max principle is employed to determine the most prominent textural characteristics, resulting in the amalgamation of the base and detail layers to generate an image that exhibits a substantial enhancement in both clarity and detail. The efficacy of our strategy is substantiated by rigorous testing, showcasing notable progressions in edge preservation, detail enhancement, and noise reduction. Consequently, our method presents significant advantages for real-world applications in image analysis. |
---|---|
AbstractList | This manuscript introduces an innovative multi-stage image fusion framework that adeptly integrates infrared (IR) and visible (VIS) spectrum images to surmount the difficulties posed by low-light settings. The approach commences with an initial preprocessing stage, utilizing an Efficient Guided Image Filter for the infrared (IR) images to amplify edge boundaries and a function for the visible (VIS) images to boost local contrast and brightness. Utilizing a two-scale decomposition technique that incorporates Lipschitz constraints-based smoothing, the images are effectively divided into distinct base and detail layers, thereby guaranteeing the preservation of essential structural information. The process of fusion is carried out in two distinct stages: firstly, a method grounded in Bayesian theory is employed to effectively combine the base layers, so effectively addressing any inherent uncertainty. Secondly, a Surface from Shade (SfS) method is utilized to ensure the preservation of the scene's geometry by enforcing integrability on the detail layers. Ultimately a Choose Max principle is employed to determine the most prominent textural characteristics, resulting in the amalgamation of the base and detail layers to generate an image that exhibits a substantial enhancement in both clarity and detail. The efficacy of our strategy is substantiated by rigorous testing, showcasing notable progressions in edge preservation, detail enhancement, and noise reduction. Consequently, our method presents significant advantages for real-world applications in image analysis. This manuscript introduces an innovative multi-stage image fusion framework that adeptly integrates infrared (IR) and visible (VIS) spectrum images to surmount the difficulties posed by low-light settings. The approach commences with an initial preprocessing stage, utilizing an Efficient Guided Image Filter for the infrared (IR) images to amplify edge boundaries and a function for the visible (VIS) images to boost local contrast and brightness. Utilizing a two-scale decomposition technique that incorporates Lipschitz constraints-based smoothing, the images are effectively divided into distinct base and detail layers, thereby guaranteeing the preservation of essential structural information. The process of fusion is carried out in two distinct stages: firstly, a method grounded in Bayesian theory is employed to effectively combine the base layers, so effectively addressing any inherent uncertainty. Secondly, a Surface from Shade (SfS) method is utilized to ensure the preservation of the scene's geometry by enforcing integrability on the detail layers. Ultimately a Choose Max principle is employed to determine the most prominent textural characteristics, resulting in the amalgamation of the base and detail layers to generate an image that exhibits a substantial enhancement in both clarity and detail. The efficacy of our strategy is substantiated by rigorous testing, showcasing notable progressions in edge preservation, detail enhancement, and noise reduction. Consequently, our method presents significant advantages for real-world applications in image analysis. Abstract This manuscript introduces an innovative multi-stage image fusion framework that adeptly integrates infrared (IR) and visible (VIS) spectrum images to surmount the difficulties posed by low-light settings. The approach commences with an initial preprocessing stage, utilizing an Efficient Guided Image Filter for the infrared (IR) images to amplify edge boundaries and a function for the visible (VIS) images to boost local contrast and brightness. Utilizing a two-scale decomposition technique that incorporates Lipschitz constraints-based smoothing, the images are effectively divided into distinct base and detail layers, thereby guaranteeing the preservation of essential structural information. The process of fusion is carried out in two distinct stages: firstly, a method grounded in Bayesian theory is employed to effectively combine the base layers, so effectively addressing any inherent uncertainty. Secondly, a Surface from Shade (SfS) method is utilized to ensure the preservation of the scene's geometry by enforcing integrability on the detail layers. Ultimately a Choose Max principle is employed to determine the most prominent textural characteristics, resulting in the amalgamation of the base and detail layers to generate an image that exhibits a substantial enhancement in both clarity and detail. The efficacy of our strategy is substantiated by rigorous testing, showcasing notable progressions in edge preservation, detail enhancement, and noise reduction. Consequently, our method presents significant advantages for real-world applications in image analysis. This manuscript introduces an innovative multi-stage image fusion framework that adeptly integrates infrared (IR) and visible (VIS) spectrum images to surmount the difficulties posed by low-light settings. The approach commences with an initial preprocessing stage, utilizing an Efficient Guided Image Filter for the infrared (IR) images to amplify edge boundaries and a function for the visible (VIS) images to boost local contrast and brightness. Utilizing a two-scale decomposition technique that incorporates Lipschitz constraints-based smoothing, the images are effectively divided into distinct base and detail layers, thereby guaranteeing the preservation of essential structural information. The process of fusion is carried out in two distinct stages: firstly, a method grounded in Bayesian theory is employed to effectively combine the base layers, so effectively addressing any inherent uncertainty. Secondly, a Surface from Shade (SfS) method is utilized to ensure the preservation of the scene's geometry by enforcing integrability on the detail layers. Ultimately a Choose Max principle is employed to determine the most prominent textural characteristics, resulting in the amalgamation of the base and detail layers to generate an image that exhibits a substantial enhancement in both clarity and detail. The efficacy of our strategy is substantiated by rigorous testing, showcasing notable progressions in edge preservation, detail enhancement, and noise reduction. Consequently, our method presents significant advantages for real-world applications in image analysis.This manuscript introduces an innovative multi-stage image fusion framework that adeptly integrates infrared (IR) and visible (VIS) spectrum images to surmount the difficulties posed by low-light settings. The approach commences with an initial preprocessing stage, utilizing an Efficient Guided Image Filter for the infrared (IR) images to amplify edge boundaries and a function for the visible (VIS) images to boost local contrast and brightness. Utilizing a two-scale decomposition technique that incorporates Lipschitz constraints-based smoothing, the images are effectively divided into distinct base and detail layers, thereby guaranteeing the preservation of essential structural information. The process of fusion is carried out in two distinct stages: firstly, a method grounded in Bayesian theory is employed to effectively combine the base layers, so effectively addressing any inherent uncertainty. Secondly, a Surface from Shade (SfS) method is utilized to ensure the preservation of the scene's geometry by enforcing integrability on the detail layers. Ultimately a Choose Max principle is employed to determine the most prominent textural characteristics, resulting in the amalgamation of the base and detail layers to generate an image that exhibits a substantial enhancement in both clarity and detail. The efficacy of our strategy is substantiated by rigorous testing, showcasing notable progressions in edge preservation, detail enhancement, and noise reduction. Consequently, our method presents significant advantages for real-world applications in image analysis. |
ArticleNumber | 16987 |
Author | Goyal, Bhawna Sharma, Apoorav Maulik Dogra, Ayush Alkhayyat, Ahmed Vig, Renu Kukreja, Vinay Saikia, Manob Jyoti |
Author_xml | – sequence: 1 givenname: Apoorav Maulik surname: Sharma fullname: Sharma, Apoorav Maulik organization: UIET, Panjab University – sequence: 2 givenname: Renu surname: Vig fullname: Vig, Renu organization: UIET, Panjab University – sequence: 3 givenname: Ayush surname: Dogra fullname: Dogra, Ayush organization: Chitkara University Institute of Engineering and Technology, Chitkara University – sequence: 4 givenname: Bhawna surname: Goyal fullname: Goyal, Bhawna organization: Department of UCRD, Chandigarh University – sequence: 5 givenname: Ahmed surname: Alkhayyat fullname: Alkhayyat, Ahmed organization: College of Technical Engineering, The Islamic University, College of Technical Engineering, The Islamic University of Al Diwaniyah – sequence: 6 givenname: Vinay surname: Kukreja fullname: Kukreja, Vinay organization: Chitkara University Institute of Engineering and Technology, Chitkara University – sequence: 7 givenname: Manob Jyoti surname: Saikia fullname: Saikia, Manob Jyoti email: manob.saikia@unf.edu organization: Department of Electrical Engineering, University of North Florida |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39043724$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UstuFDEQtFAQCSE_wAFZ4sJlwOPHPE4IogCRInGBs9Xrx4xXs_bG9hDt3-PZCSHhQF_ccleVu9v1Ep344A1Cr2vyvias-5B4LfquIpRXTSsIrQ7P0BklXFSUUXryKD9FFyltSQlBe173L9Ap6wlnLeVnaL7yI3hlNJ7CXTW5YczY7WAw2M7JBY_zGMM8jHg3T9lVKS-lfQzKpOT8gO9cHvFnOJjkwGPwMB2SSyXR-HYGHSE7hVXwOULKRdOrXFRfoecWpmQu7s9z9PPL1Y_Lb9XN96_Xl59uKsV7mitmgCnNmaCitYJSy1qimNYbQSwH6EgPRhNq-aYhtOFckIY02qp2WUinenaOrlddHWAr97FMFg8ygJPHixAHCbF0OBlJFgqDureacQtdp6AxQgEzurcthaL1cdXaz5ud0cosM01PRJ9WvBvlEH7JuqZNCVIU3t0rxHA7m5TlziVlpgm8CXOSjHSc0L6jC_TtP9BtmGPZ7hHF2qbhoi6oN49beujlz_cWAF0BKoaUorEPkJrIxUZytZEsNpJHG8lDIbGVlArYDyb-ffs_rN_XBsxc |
Cites_doi | 10.1109/TCI.2024.3369398 10.1109/TIP.2018.2887342 10.1007/s11760-013-0556-9 10.1016/j.inffus.2016.02.001 10.1016/j.inffus.2021.12.004 10.1007/s00034-019-01131-z 10.1016/j.inffus.2018.09.004 10.1109/TPAMI.2020.3012548 10.1109/ACCESS.2017.2735865 10.1016/j.neucom.2024.127353 10.1109/tip.2013.2244222 10.1016/j.inffus.2014.09.004 10.1109/TPAMI.2011.109 10.1016/j.sigpro.2020.107734 10.3390/e25081215 10.1016/j.infrared.2017.02.005 10.1016/j.infrared.2017.05.007 10.1109/TPAMI.2012.213 10.1007/BF00939426 10.1007/s11760-012-0361-x 10.1016/j.ijleo.2018.06.123 10.1109/TPAMI.2010.168 10.1016/j.infrared.2023.104701 10.1109/LSP.2018.2867896 10.1109/34.3909 10.1137/0317026 10.1007/s00371-022-02588-x 10.1142/S0219691318500182 10.3390/rs15122969 10.1016/j.inffus.2021.02.023 10.1049/el:20000267 10.1117/1.oe.62.8.083101 10.1049/iet-ipr.2019.0322 10.1080/00224065.1993.11979431 10.1364/AO.55.006480 10.1016/j.inffus.2018.02.004 10.1016/j.inffus.2022.03.007 10.1007/s11263-021-01501-8 10.1117/1.jei.26.6.063004 10.1609/aaai.v34i07.6975 10.1016/j.inffus.2019.07.011 10.1016/j.infrared.2016.01.009 10.1109/JSEN.2015.2478655 10.1002/9780470627242 10.1145/1836845.1836920 10.1109/WACV57701.2024.00165 10.1117/12.2239945 10.23919/ICIF.2017.8009719 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 2024 |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 2024 |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-024-67502-y |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni) Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Engineering |
EISSN | 2045-2322 |
EndPage | 29 |
ExternalDocumentID | oai_doaj_org_article_050283a19fd34fa88ca6e5ca3ed9f72a PMC11266660 39043724 10_1038_s41598_024_67502_y |
Genre | Journal Article |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT NPM PJZUB PPXIY PQGLB 7XB 8FK AARCD K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c492t-3ea3cd435257f522f370c3ddb50f4aa809aed02f4b60264450606dfc775028c93 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:30:54 EDT 2025 Thu Aug 21 18:33:39 EDT 2025 Thu Sep 04 22:12:45 EDT 2025 Wed Aug 13 09:30:31 EDT 2025 Mon Jul 21 05:33:33 EDT 2025 Tue Jul 01 01:02:14 EDT 2025 Fri Feb 21 02:39:48 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Bayesian fuse Visible IR Surface from shade Image fusion Quadratic contrast Lipschitz constraints |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c492t-3ea3cd435257f522f370c3ddb50f4aa809aed02f4b60264450606dfc775028c93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-024-67502-y |
PMID | 39043724 |
PQID | 3083766451 |
PQPubID | 2041939 |
PageCount | 29 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_050283a19fd34fa88ca6e5ca3ed9f72a pubmedcentral_primary_oai_pubmedcentral_nih_gov_11266660 proquest_miscellaneous_3084029820 proquest_journals_3083766451 pubmed_primary_39043724 crossref_primary_10_1038_s41598_024_67502_y springer_journals_10_1038_s41598_024_67502_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-23 |
PublicationDateYYYYMMDD | 2024-07-23 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Li, Wu, Kittler (CR42) 2021; 73 Qi, Abera, Fanose, Wang, Cheng (CR46) 2024; 578 Zhan, Xie, Wang, Min (CR30) 2017; 26 Liu, Liu, Wang (CR26) 2015; 24 CR36 Ma, Zhou, Wang, Zong (CR32) 2017 Bavirisetti, Xiao, Zhao, Dhuli, Liu (CR28) 2019; 38 Liu, Chen, Cheng, Peng, Wang (CR29) 2018; 16 Li, Wu (CR37) 2019; 28 Zhang, Xu, Xiao, Guo, Ma (CR41) 2020; 34 Sharma, Dogra, Goyal, Vig, Agrawal (CR2) 2020; 14 Zhou, Dong, Xie, Gao (CR20) 2016; 55 Dogra, Goyal, Agrawal (CR3) 2017; 5 Ma, Chen, Li, Huang (CR6) 2016; 31 Kurban (CR23) 2023; 25 Li, Xie, Zhou, Han, Zhan (CR27) 2018; 172 Zhang, Zhang, Bai, Zhang (CR24) 2017; 83 CR4 He, Sun, Tang (CR9) 2011; 33 Xydeas, Petrović (CR49) 2000; 36 Frankot, Chellappa (CR17) 1988; 10 Li, Li, Liu (CR33) 2023; 15 Hager (CR12) 1979; 17 CR47 Shreyamsha Kumar (CR19) 2015; 9 Xie, Hu, Wang, Zhang, Qin (CR25) 2023; 39 Ma, Yu, Liang, Li, Jiang (CR38) 2019; 48 Ma, Ma, Li (CR1) 2019; 45 CR16 Zhang, Liu, Sun, Yan, Zhao, Zhang (CR39) 2020; 54 CR14 Thach (CR11) 1990; 64 Zhao, Xu, Zhang, Liu, Zhang (CR13) 2020; 177 CR10 Li, Tan, Zhou, Wang, Li (CR34) 2023; 131 Lu, Long, Li, Lu (CR8) 2018; 25 Zhang, Ma (CR43) 2021; 129 Bavirisetti, Dhuli (CR31) 2016; 76 Hallinan (CR15) 1993; 25 Xu, Ma, Jiang, Guo, Ling (CR45) 2022; 44 Shreyamsha Kumar (CR21) 2013; 7 Tang, Yuan, Zhang, Jiang, Ma (CR40) 2022; 83–84 Tang, Liu, Qian, Wang, Xiong (CR35) 2024; 10 Liu, Blasch, Xue, Zhao, Laganiere, Wu (CR50) 2012; 34 Bavirisetti, Dhuli (CR18) 2016; 16 CR22 Li, Kang, Jianwen (CR5) 2013; 22 Tang, Yuan, Ma (CR44) 2022; 82 Gu (CR48) 2023 He, Sun, Tang (CR7) 2013; 35 H Li (67502_CR37) 2019; 28 J Ma (67502_CR38) 2019; 48 A Dogra (67502_CR3) 2017; 5 DP Bavirisetti (67502_CR28) 2019; 38 X Li (67502_CR33) 2023; 15 WW Hager (67502_CR12) 1979; 17 Z Liu (67502_CR50) 2012; 34 H Xu (67502_CR45) 2022; 44 Q Xie (67502_CR25) 2023; 39 67502_CR47 BK Shreyamsha Kumar (67502_CR21) 2013; 7 J Qi (67502_CR46) 2024; 578 X Li (67502_CR34) 2023; 131 L Tang (67502_CR40) 2022; 83–84 H Zhang (67502_CR43) 2021; 129 K He (67502_CR9) 2011; 33 J Ma (67502_CR32) 2017 Y Zhang (67502_CR39) 2020; 54 Z Lu (67502_CR8) 2018; 25 RT Frankot (67502_CR17) 1988; 10 67502_CR4 67502_CR36 DP Bavirisetti (67502_CR31) 2016; 76 PT Thach (67502_CR11) 1990; 64 H Tang (67502_CR35) 2024; 10 Z Zhou (67502_CR20) 2016; 55 J Ma (67502_CR1) 2019; 45 H Li (67502_CR42) 2021; 73 K Zhan (67502_CR30) 2017; 26 W Li (67502_CR27) 2018; 172 Y Zhang (67502_CR24) 2017; 83 Y Liu (67502_CR26) 2015; 24 DP Bavirisetti (67502_CR18) 2016; 16 R Kurban (67502_CR23) 2023; 25 Z Zhao (67502_CR13) 2020; 177 L Tang (67502_CR44) 2022; 82 67502_CR22 CS Xydeas (67502_CR49) 2000; 36 AM Sharma (67502_CR2) 2020; 14 H Zhang (67502_CR41) 2020; 34 AJ Hallinan (67502_CR15) 1993; 25 Y Liu (67502_CR29) 2018; 16 Y Gu (67502_CR48) 2023 67502_CR10 S Li (67502_CR5) 2013; 22 BK Shreyamsha Kumar (67502_CR19) 2015; 9 67502_CR16 67502_CR14 J Ma (67502_CR6) 2016; 31 K He (67502_CR7) 2013; 35 |
References_xml | – ident: CR22 – volume: 10 start-page: 385 year: 2024 end-page: 398 ident: CR35 article-title: EgeFusion: Towards edge gradient enhancement in infrared and visible image fusion with multi-scale transform publication-title: IEEE Trans. Comput. Imaging doi: 10.1109/TCI.2024.3369398 – volume: 28 start-page: 2614 issue: 5 year: 2019 end-page: 2623 ident: CR37 article-title: DenseFuse: A fusion approach to infrared and visible images publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2018.2887342 – ident: CR4 – ident: CR16 – volume: 9 start-page: 1193 issue: 5 year: 2015 end-page: 1204 ident: CR19 article-title: Image fusion based on pixel significance using cross bilateral filter publication-title: Signal Image Video Process. doi: 10.1007/s11760-013-0556-9 – volume: 31 start-page: 100 year: 2016 end-page: 109 ident: CR6 article-title: Infrared and visible image fusion via gradient transfer and total variation minimization publication-title: Inf. Fus. doi: 10.1016/j.inffus.2016.02.001 – volume: 82 start-page: 28 year: 2022 end-page: 42 ident: CR44 article-title: Image fusion in the loop of high-level vision tasks: A semantic-aware real-time infrared and visible image fusion network publication-title: Inf. Fus. doi: 10.1016/j.inffus.2021.12.004 – volume: 38 start-page: 5576 issue: 12 year: 2019 end-page: 5605 ident: CR28 article-title: Multi-scale guided image and video fusion: A fast and efficient approach publication-title: Circuits Syst. Signal Process. doi: 10.1007/s00034-019-01131-z – volume: 48 start-page: 11 year: 2019 end-page: 26 ident: CR38 article-title: FusionGAN: A generative adversarial network for infrared and visible image fusion publication-title: Inf. Fus. doi: 10.1016/j.inffus.2018.09.004 – volume: 44 start-page: 502 issue: 1 year: 2022 end-page: 518 ident: CR45 article-title: U2Fusion: A unified unsupervised image fusion network publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2020.3012548 – volume: 5 start-page: 16040 year: 2017 end-page: 16067 ident: CR3 article-title: From multi-scale decomposition to non-multi-scale decomposition methods: a comprehensive survey of image fusion techniques and its applications publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2735865 – ident: CR36 – volume: 578 year: 2024 ident: CR46 article-title: A deep learning and image enhancement based pipeline for infrared and visible image fusion publication-title: Neurocomputing doi: 10.1016/j.neucom.2024.127353 – volume: 22 start-page: 2864 issue: 7 year: 2013 end-page: 2875 ident: CR5 article-title: Image fusion with guided filtering publication-title: IEEE Trans. Image Process. doi: 10.1109/tip.2013.2244222 – volume: 24 start-page: 147 year: 2015 end-page: 164 ident: CR26 article-title: A general framework for image fusion based on multi-scale transform and sparse representation publication-title: Inf. Fus. doi: 10.1016/j.inffus.2014.09.004 – volume: 34 start-page: 94 issue: 1 year: 2012 end-page: 109 ident: CR50 article-title: Objective assessment of multiresolution image fusion algorithms for context enhancement in night vision: A comparative study publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2011.109 – ident: CR47 – volume: 177 year: 2020 ident: CR13 article-title: Bayesian fusion for infrared and visible images publication-title: Signal Process. doi: 10.1016/j.sigpro.2020.107734 – ident: CR14 – volume: 25 start-page: 1215 issue: 8 year: 2023 ident: CR23 article-title: Gaussian of differences: A simple and efficient general image fusion method publication-title: Entropy doi: 10.3390/e25081215 – year: 2017 ident: CR32 article-title: Infrared and visible image fusion based on visual saliency map and weighted least square optimization publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2017.02.005 – volume: 83 start-page: 227 year: 2017 end-page: 237 ident: CR24 article-title: Infrared and visual image fusion through infrared feature extraction and visual information preservation publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2017.05.007 – volume: 35 start-page: 1397 issue: 6 year: 2013 end-page: 1409 ident: CR7 article-title: Guided image filtering publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.213 – ident: CR10 – volume: 64 start-page: 595 issue: 3 year: 1990 end-page: 614 ident: CR11 article-title: Convex minimization under Lipschitz constraints publication-title: J. Optim. Theory Appl. doi: 10.1007/BF00939426 – volume: 7 start-page: 1125 issue: 6 year: 2013 end-page: 1143 ident: CR21 article-title: Multifocus and multispectral image fusion based on pixel significance using discrete cosine harmonic wavelet transform publication-title: Signal Image Video Process. doi: 10.1007/s11760-012-0361-x – volume: 172 start-page: 1 year: 2018 end-page: 11 ident: CR27 article-title: Structure-aware image fusion publication-title: Optik (Stuttg) doi: 10.1016/j.ijleo.2018.06.123 – volume: 33 start-page: 2341 issue: 12 year: 2011 end-page: 2353 ident: CR9 article-title: Single image haze removal using dark channel prior publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2010.168 – volume: 131 year: 2023 ident: CR34 article-title: Infrared and visible image fusion based on domain transform filtering and sparse representation publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2023.104701 – volume: 25 start-page: 1585 issue: 10 year: 2018 end-page: 1589 ident: CR8 article-title: Effective guided image filtering for contrast enhancement publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2018.2867896 – volume: 10 start-page: 439 issue: 4 year: 1988 end-page: 451 ident: CR17 article-title: A method for enforcing integrability in shape from shading algorithms publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.3909 – volume: 17 start-page: 321 issue: 3 year: 1979 end-page: 338 ident: CR12 article-title: Lipschitz continuity for constrained processes publication-title: SIAM J. Control Optim. doi: 10.1137/0317026 – volume: 39 start-page: 4249 issue: 9 year: 2023 end-page: 4265 ident: CR25 article-title: Novel and fast EMD-based image fusion via morphological filter publication-title: Vis. Comput. doi: 10.1007/s00371-022-02588-x – volume: 16 start-page: 1850018 issue: 03 year: 2018 ident: CR29 article-title: Infrared and visible image fusion with convolutional neural networks publication-title: Int. J. Wavelets Multiresolut. Inf. Process. doi: 10.1142/S0219691318500182 – volume: 15 start-page: 2969 issue: 12 year: 2023 ident: CR33 article-title: CBFM: Contrast balance infrared and visible image fusion based on contrast-preserving guided filter publication-title: Remote Sens. (Basel) doi: 10.3390/rs15122969 – volume: 73 start-page: 72 year: 2021 end-page: 86 ident: CR42 article-title: RFN-Nest: An end-to-end residual fusion network for infrared and visible images publication-title: Inf. Fus. doi: 10.1016/j.inffus.2021.02.023 – volume: 36 start-page: 308 issue: 4 year: 2000 ident: CR49 article-title: Objective image fusion performance measure publication-title: Electron. Lett. doi: 10.1049/el:20000267 – year: 2023 ident: CR48 article-title: Physics driven deep Retinex fusion for adaptive infrared and visible image fusion publication-title: Opt. Eng. doi: 10.1117/1.oe.62.8.083101 – volume: 14 start-page: 1671 issue: 9 year: 2020 end-page: 1689 ident: CR2 article-title: From pyramids to state-of-the-art: A study and comprehensive comparison of visible–infrared image fusion techniques publication-title: IET Image Process doi: 10.1049/iet-ipr.2019.0322 – volume: 25 start-page: 85 issue: 2 year: 1993 end-page: 93 ident: CR15 article-title: A review of the Weibull distribution publication-title: J. Qual. Technol. doi: 10.1080/00224065.1993.11979431 – volume: 55 start-page: 6480 issue: 23 year: 2016 ident: CR20 article-title: Fusion of infrared and visible images for night-vision context enhancement publication-title: Appl. Opt. doi: 10.1364/AO.55.006480 – volume: 45 start-page: 153 year: 2019 end-page: 178 ident: CR1 article-title: Infrared and visible image fusion methods and applications: A survey publication-title: Inf. Fus. doi: 10.1016/j.inffus.2018.02.004 – volume: 83–84 start-page: 79 year: 2022 end-page: 92 ident: CR40 article-title: PIAFusion: A progressive infrared and visible image fusion network based on illumination aware publication-title: Inf. Fus. doi: 10.1016/j.inffus.2022.03.007 – volume: 129 start-page: 2761 issue: 10 year: 2021 end-page: 2785 ident: CR43 article-title: SDNet: A versatile squeeze-and-decomposition network for real-time image fusion publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-021-01501-8 – volume: 26 start-page: 1 issue: 06 year: 2017 ident: CR30 article-title: Fast filtering image fusion publication-title: J. Electron. Imaging doi: 10.1117/1.jei.26.6.063004 – volume: 34 start-page: 12797 issue: 07 year: 2020 end-page: 12804 ident: CR41 article-title: Rethinking the image fusion: A fast unified image fusion network based on proportional maintenance of gradient and intensity publication-title: Proc. AAAI Conf. Artif. Intell. doi: 10.1609/aaai.v34i07.6975 – volume: 54 start-page: 99 year: 2020 end-page: 118 ident: CR39 article-title: IFCNN: A general image fusion framework based on convolutional neural network publication-title: Inf. Fus. doi: 10.1016/j.inffus.2019.07.011 – volume: 76 start-page: 52 year: 2016 end-page: 64 ident: CR31 article-title: Two-scale image fusion of visible and infrared images using saliency detection publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2016.01.009 – volume: 16 start-page: 203 issue: 1 year: 2016 end-page: 209 ident: CR18 article-title: Fusion of infrared and visible sensor images based on anisotropic diffusion and Karhunen–Loeve transform publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2015.2478655 – ident: 67502_CR14 doi: 10.1002/9780470627242 – volume: 129 start-page: 2761 issue: 10 year: 2021 ident: 67502_CR43 publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-021-01501-8 – volume: 10 start-page: 439 issue: 4 year: 1988 ident: 67502_CR17 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.3909 – volume: 45 start-page: 153 year: 2019 ident: 67502_CR1 publication-title: Inf. Fus. doi: 10.1016/j.inffus.2018.02.004 – year: 2023 ident: 67502_CR48 publication-title: Opt. Eng. doi: 10.1117/1.oe.62.8.083101 – volume: 172 start-page: 1 year: 2018 ident: 67502_CR27 publication-title: Optik (Stuttg) doi: 10.1016/j.ijleo.2018.06.123 – volume: 177 year: 2020 ident: 67502_CR13 publication-title: Signal Process. doi: 10.1016/j.sigpro.2020.107734 – volume: 64 start-page: 595 issue: 3 year: 1990 ident: 67502_CR11 publication-title: J. Optim. Theory Appl. doi: 10.1007/BF00939426 – volume: 36 start-page: 308 issue: 4 year: 2000 ident: 67502_CR49 publication-title: Electron. Lett. doi: 10.1049/el:20000267 – volume: 25 start-page: 85 issue: 2 year: 1993 ident: 67502_CR15 publication-title: J. Qual. Technol. doi: 10.1080/00224065.1993.11979431 – ident: 67502_CR47 – volume: 15 start-page: 2969 issue: 12 year: 2023 ident: 67502_CR33 publication-title: Remote Sens. (Basel) doi: 10.3390/rs15122969 – volume: 28 start-page: 2614 issue: 5 year: 2019 ident: 67502_CR37 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2018.2887342 – volume: 24 start-page: 147 year: 2015 ident: 67502_CR26 publication-title: Inf. Fus. doi: 10.1016/j.inffus.2014.09.004 – volume: 14 start-page: 1671 issue: 9 year: 2020 ident: 67502_CR2 publication-title: IET Image Process doi: 10.1049/iet-ipr.2019.0322 – ident: 67502_CR10 doi: 10.1145/1836845.1836920 – volume: 22 start-page: 2864 issue: 7 year: 2013 ident: 67502_CR5 publication-title: IEEE Trans. Image Process. doi: 10.1109/tip.2013.2244222 – volume: 73 start-page: 72 year: 2021 ident: 67502_CR42 publication-title: Inf. Fus. doi: 10.1016/j.inffus.2021.02.023 – volume: 9 start-page: 1193 issue: 5 year: 2015 ident: 67502_CR19 publication-title: Signal Image Video Process. doi: 10.1007/s11760-013-0556-9 – volume: 76 start-page: 52 year: 2016 ident: 67502_CR31 publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2016.01.009 – volume: 33 start-page: 2341 issue: 12 year: 2011 ident: 67502_CR9 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2010.168 – volume: 38 start-page: 5576 issue: 12 year: 2019 ident: 67502_CR28 publication-title: Circuits Syst. Signal Process. doi: 10.1007/s00034-019-01131-z – volume: 44 start-page: 502 issue: 1 year: 2022 ident: 67502_CR45 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2020.3012548 – year: 2017 ident: 67502_CR32 publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2017.02.005 – volume: 55 start-page: 6480 issue: 23 year: 2016 ident: 67502_CR20 publication-title: Appl. Opt. doi: 10.1364/AO.55.006480 – volume: 82 start-page: 28 year: 2022 ident: 67502_CR44 publication-title: Inf. Fus. doi: 10.1016/j.inffus.2021.12.004 – ident: 67502_CR16 – volume: 578 year: 2024 ident: 67502_CR46 publication-title: Neurocomputing doi: 10.1016/j.neucom.2024.127353 – volume: 25 start-page: 1585 issue: 10 year: 2018 ident: 67502_CR8 publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2018.2867896 – volume: 34 start-page: 12797 issue: 07 year: 2020 ident: 67502_CR41 publication-title: Proc. AAAI Conf. Artif. Intell. doi: 10.1609/aaai.v34i07.6975 – volume: 54 start-page: 99 year: 2020 ident: 67502_CR39 publication-title: Inf. Fus. doi: 10.1016/j.inffus.2019.07.011 – volume: 34 start-page: 94 issue: 1 year: 2012 ident: 67502_CR50 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2011.109 – ident: 67502_CR36 doi: 10.1109/WACV57701.2024.00165 – volume: 31 start-page: 100 year: 2016 ident: 67502_CR6 publication-title: Inf. Fus. doi: 10.1016/j.inffus.2016.02.001 – volume: 39 start-page: 4249 issue: 9 year: 2023 ident: 67502_CR25 publication-title: Vis. Comput. doi: 10.1007/s00371-022-02588-x – volume: 83 start-page: 227 year: 2017 ident: 67502_CR24 publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2017.05.007 – volume: 131 year: 2023 ident: 67502_CR34 publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2023.104701 – volume: 26 start-page: 1 issue: 06 year: 2017 ident: 67502_CR30 publication-title: J. Electron. Imaging doi: 10.1117/1.jei.26.6.063004 – volume: 10 start-page: 385 year: 2024 ident: 67502_CR35 publication-title: IEEE Trans. Comput. Imaging doi: 10.1109/TCI.2024.3369398 – volume: 16 start-page: 1850018 issue: 03 year: 2018 ident: 67502_CR29 publication-title: Int. J. Wavelets Multiresolut. Inf. Process. doi: 10.1142/S0219691318500182 – volume: 48 start-page: 11 year: 2019 ident: 67502_CR38 publication-title: Inf. Fus. doi: 10.1016/j.inffus.2018.09.004 – volume: 17 start-page: 321 issue: 3 year: 1979 ident: 67502_CR12 publication-title: SIAM J. Control Optim. doi: 10.1137/0317026 – ident: 67502_CR4 doi: 10.1117/12.2239945 – volume: 35 start-page: 1397 issue: 6 year: 2013 ident: 67502_CR7 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.213 – ident: 67502_CR22 doi: 10.23919/ICIF.2017.8009719 – volume: 25 start-page: 1215 issue: 8 year: 2023 ident: 67502_CR23 publication-title: Entropy doi: 10.3390/e25081215 – volume: 5 start-page: 16040 year: 2017 ident: 67502_CR3 publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2735865 – volume: 7 start-page: 1125 issue: 6 year: 2013 ident: 67502_CR21 publication-title: Signal Image Video Process. doi: 10.1007/s11760-012-0361-x – volume: 83–84 start-page: 79 year: 2022 ident: 67502_CR40 publication-title: Inf. Fus. doi: 10.1016/j.inffus.2022.03.007 – volume: 16 start-page: 203 issue: 1 year: 2016 ident: 67502_CR18 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2015.2478655 |
SSID | ssj0000529419 |
Score | 2.4351354 |
Snippet | This manuscript introduces an innovative multi-stage image fusion framework that adeptly integrates infrared (IR) and visible (VIS) spectrum images to surmount... Abstract This manuscript introduces an innovative multi-stage image fusion framework that adeptly integrates infrared (IR) and visible (VIS) spectrum images to... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 16987 |
SubjectTerms | 639/166/987 639/766/400 Algorithms Bayesian analysis Bayesian fuse Decomposition Engineering Humanities and Social Sciences Image fusion Image processing Information processing Lipschitz constraints multidisciplinary Noise reduction Preservation Quadratic contrast Science Science (multidisciplinary) Surveillance Visible |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiPIMFGQkbmDV8SOxjy1qVSHBiUq9WY4faqWSLexGaP89M3Z26fIQF3KKYiexZsaez4_5hpA3rR-iBs_Bss-aqdS3zMiBs5zDIGWfVRdwovjxU3d2rj5c6Itbqb7wTFilB66CO-QaPaBvbY5SZW9M8F3SwcsUbe5FgUbc8luTqcrqLaxq7Rwlw6U5XIKnwmgyoRhgZBgG1jueqBD2_wll_n5Y8pcd0-KITh-Q-zOCpEe15fvkThofkrs1p-T6EZlOxsuyq0-vF9_ZNc696dUXGDVonnBljM6ZeWg5SsgAHELRTQ0XgP9RXJilx36dMLqS-pmzBG4i_Tr5iAYTaDng7pcrim4RVfuYnJ-efH5_xubcCiwoK1ZMJi9DVIUMNQMGy7LnQcY4aJ6V94ZbnyIXWQ2Yo0op5CHsYg49ys4EK5-QvXExpmeEWoORUEbrkI0KRsMbWmWAiaApmbVuyNuNnN1NpdBwZetbGle14kArrmjFrRtyjKrY1kT66_IAjMLNRuH-ZRQNOdgo0s19cukkoM2-65RuG_J6Wwy9CbdI_JgWU6mjkJRe8IY8rXrftkRa5IESqiFmxyJ2mrpbMl5dFsZujNOCCz76bmM8P9v1d1k8_x-yeEHuCbR63jMhD8je6tuUXgKQWg2vSp_5AR1MHII priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-NTUjwgGB8BQYyEm9gLY3txHlAiKJOExIVQkzam-XY8TZpJN3aCPW_585JOspXnqI4SV3fz3cXn-93AK8ntvIKLQcPNigu62LCtahSHoKrhCiCzB19KH6e58cn8tOpOt2B-ZgLQ9sqR50YFbVvHa2RHwr0FYo8l2ryfnHFqWoURVfHEhp2KK3g30WKsVuwhypZI-73prP5l6-bVReKa8lJOWTPpEIfLtGCUZZZJjn6zqge1lsWKhL5_837_HMT5W-R1Gigju7DvcGzZB96KDyAnbrZh9t9rcn1Ptz9hXnwIXSz5jzG_tll-4Nf0hc6u_iOuoWFjtbP2FC_h8UNhxxdSGxa9EkF-AJGy7dsatc15WAyOzCb4IlnV531BCvH4jZ4u1wxMp4EgEdwcjT79vGYDxUYuJNltuKitsJ5GSlTA3pqQRSpE95XKg3SWp2WtvZpFmRFlaykJLbC3AdX0EhqV4rHsNu0Tf0UWKkpX0or5YKWTit8QsmAzqSzuQhKJfBmHHWz6Ik2TAyQC216GRmUkYkyMusEpiSYzZ1Ekh0vtNdnZphzJqVOCDspgxcyWK3xp2rlrKh9GYrMJnAwitUMM3dpbnCWwKtNM845CqTYpm67eI8k6vosTeBJj4JNT0RJbFGZTEBv4WOrq9stzcV55PWmbC488KVvRyjd9OvfY_Hs_3_jOdzJCN1pwTNxALur665-gY7Uqno5zI6fwtoeSA priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIiQuiDeBgozEDSwSPxLnSFetKiQ4Uak3y_GDVirZtrsR2n_PjJMsWigHcopiOx55xp6xZ-YzwLvKdUGj5uDJJc1VbCpuZFfylHwnZZNU7Wmj-OVrfXKqPp_psz0Qcy5MDtrPkJZ5mZ6jwz6uUNFQMphQHE1cnMWbO3DX4L6OwvgW9WJ7rkKeK1W1U35MKc0tTXd0UIbqv82-_DtM8g9faVZBxw_hwWQ7sk8jtY9gL_aP4d54m-TmCQxH_Xn257PL5U9-SbtudvED1wuWBjoTY9OdPCwHEXI0C7HoakwUwP4YHcmyQ7eJlFfJ3IRWgi-BXQ8ukKh4lkPb3WrNSCESU5_C6fHRt8UJn25V4F61Ys1ldNIHlWFQE1pfSTallyF0ukzKOVO2LoZSJNXR7VRKEQJhHZJvaOyMb-Uz2O-XfXwBrDWUA2W09skobzS20CqhgehdLZPWBbyfx9lejeAZNju9pbEjVyxyxWau2E0Bh8SKbU0Cvs4fljff7SQItiQipKvaFKRKzhjsKmrvZAxtaoQr4GBmpJ1m48pKtDObula6KuDtthjnETlHXB-XQ66jCI5elAU8H_m-pUS2hAAlVAFmRyJ2SN0t6S_OM1Y3ZWjhgz_9MAvPb7r-PRYv_6_6K7gvSL7Lhgt5APvrmyG-RmNp3b3Js-MXTW0Rhw priority: 102 providerName: Springer Nature |
Title | Enhanced low-light image fusion through multi-stage processing with Bayesian analysis and quadratic contrast function |
URI | https://link.springer.com/article/10.1038/s41598-024-67502-y https://www.ncbi.nlm.nih.gov/pubmed/39043724 https://www.proquest.com/docview/3083766451 https://www.proquest.com/docview/3084029820 https://pubmed.ncbi.nlm.nih.gov/PMC11266660 https://doaj.org/article/050283a19fd34fa88ca6e5ca3ed9f72a |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1Zj9MwEB7tIdC-IG4CS2Uk3sCQxHbiPCDUVl2tKu0KAZX6FjlOzK5U0t0egv57ZpykqNDtS6o4x8gzk_l8zDcAbyNTlAojB3fGKS6rNOJaFCF3zhZCpE4mlgaKF5fJ-USOp2p6AF25o7YDl3uHdlRParKYffh9u_mMDv-pSRnXH5cYhChRLJYc4S96-OYQjjEyJTQYu2jhfsP1HWcyytrcmf23nsB9kRHhTyx3QpVn9N8HQ__fTfnPkqqPVGcP4UELMVm_sYlHcFDVj-FeU3Ry8wTWo_rKL_uz2fwXn9HgnF3_xM8Kc2uaOmNt6R7m9xpyRI_YdNPkE-D7GM3csoHZVJR-yUxLaoJ_Sna7NiVZlGV-B7xZrhjFTdL9U5icjb4Pz3lbfIFbmcUrLiojbCk9W6pDkOZEGlpRloUKnTRGh5mpyjB2sqAiVlISUWFSOptSN2qbiWdwVM_r6gWwTFOqlFbKOi2tVniHkg5xpDWJcEoF8K7r5_ym4djI_dq40HmjoBwVlHsF5ZsABqSK7ZXEj-1PzBc_8tbd8pCEECbKXCmkM1rjqypljajKzKWxCeC0U2Te2VwuEI6mSSJVFMCbbTO6G62hmLqar_01kljr4zCA543et5J0dhOA3rGIHVF3W-rrK0_pTYlc-MOHvu-M569cd_fFyztleAUnMVl1mPJYnMLRarGuXiN8WhU9OEynaQ-O-_3xtzEeB6PLL1_x7DAZ9vyURM97zR8fnxxZ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrRBwQFBegQJGghNYzfqROIcKsbDVlrYrhFqpN-P4QSuV7La7qyp_jt-Gx0m2LK9bc4rixHEyY894Ht8g9KqvSyuC5CBee0G4y_tEsjIl3puSsdzzzMBG8WCcjY74p2NxvIZ-dLkwEFbZrYlxobYTAzbyLRZ0hTzLuOi_m54TqBoF3tWuhIZuSyvY7Qgx1iZ27Ln6MmzhZtu7HwO9X1O6Mzz8MCJtlQFieEHnhDnNjOURFtQHbcSzPDXM2lKknmst00I7m1LPS6jWxDkg8mXWmzzIWioNgDEFEbAeOih4D60PhuPPX5ZWHvCj8X7RZuukTG7NgsSErDbKSQY9kHpFIsbCAX_Tdv8M2vzNcxsF4s5ddKfVZPH7hvXuoTVXbaAbTW3LegPd_gXp8D5aDKuTGGuAzyaX5AwsAvj0e1jLsF-AvQ639YJwDHAkQWUNTdMmiSF0gMFcjAe6dpDziXWLpBJOLD5faAtsbHAMu9ezOQZhDQz3AB1dCy0eol41qdxjhAsJ-VlSCOMlN1KEJwT3QXk1OmNeiAS96f66mjbAHio65JlUDY1UoJGKNFJ1ggZAmOWdAModL0wuvql2jqsUBsF0v_CWca-lDK9ywmjmbOFzqhO02ZFVtSvFTF3xdYJeLpvDHAfHja7cZBHv4QCVT9MEPWq4YDkSVgA6FeUJkiv8sTLU1Zbq9CTiiEP2WDhCp287Vroa17__xZP_f8YLdHN0eLCv9nfHe0_RLQqcnuaEsk3Um18s3LOgxM3L5-1MwejrdU_On2AwWhw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTSB4QDC-AgOMBE9gNY3txHmYEGWtNgbVhJi0t8yxYzZppN3aasq_yF_FneN0lK-35amKU9fN3fnO9_E7Ql71dWklaA7mtJNMVFmfKV7GzDlTcp45kRo8KH4ep7uH4uORPFojP7paGEyr7PZEv1HbiUEfeY-DrZClqZD9ngtpEQc7o3fTc4YdpDDS2rXT0KHNgt32cGOhyGO_ai7hODfb3tsB2r9OktHw64ddFjoOMCPyZM54pbmxwkOEOrBMHM9iw60tZeyE1irOdWXjxIkSOzcJgeh8qXUmA72bKIPATKAONjLQkiBzG4Ph-ODL0uODMTXRz0PlTsxVbwbaEyvcEsFSnIE1K9rRNxH4m-X7ZwLnb1FcrxxHd8mdYNXS9y0b3iNrVb1JbrR9LptNcvsX1MP7ZDGsT3zeAT2bXLIz9A7Q0--wr1G3QN8dDb2DqE92ZGC-wtC0LWiACSi6julANxXWf1IdUFXgg6XnC22RpQ31Kfh6NqeouJH5HpDDa6HFQ7JeT-rqMaG5wlotJaVxShgl4RtSODBkjU65kzIib7q3XkxbkI_CB-e5KloaFUCjwtOoaCIyQMIsn0SAbn9jcvGtCPJexLgIrvu5s1w4rRT8VCWN5pXNXZboiGx1ZC3CrjErrng8Ii-XwyDvGMTRdTVZ-GcEwuYncUQetVywXAnPEakqERFRK_yxstTVkfr0xGOKYyUZXDDp246Vrtb173fx5P9_4wW5CUJafNob7z8ltxJk9DhjCd8i6_OLRfUM7Ll5-TwICiXH1y2bPwFiYl5I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+low-light+image+fusion+through+multi-stage+processing+with+Bayesian+analysis+and+quadratic+contrast+function&rft.jtitle=Scientific+reports&rft.au=Sharma%2C+Apoorav+Maulik&rft.au=Vig%2C+Renu&rft.au=Dogra%2C+Ayush&rft.au=Goyal%2C+Bhawna&rft.date=2024-07-23&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=16987&rft_id=info:doi/10.1038%2Fs41598-024-67502-y&rft_id=info%3Apmid%2F39043724&rft.externalDocID=39043724 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |