Enhanced low-light image fusion through multi-stage processing with Bayesian analysis and quadratic contrast function

This manuscript introduces an innovative multi-stage image fusion framework that adeptly integrates infrared (IR) and visible (VIS) spectrum images to surmount the difficulties posed by low-light settings. The approach commences with an initial preprocessing stage, utilizing an Efficient Guided Imag...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; pp. 16987 - 29
Main Authors Sharma, Apoorav Maulik, Vig, Renu, Dogra, Ayush, Goyal, Bhawna, Alkhayyat, Ahmed, Kukreja, Vinay, Saikia, Manob Jyoti
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 23.07.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-024-67502-y

Cover

Abstract This manuscript introduces an innovative multi-stage image fusion framework that adeptly integrates infrared (IR) and visible (VIS) spectrum images to surmount the difficulties posed by low-light settings. The approach commences with an initial preprocessing stage, utilizing an Efficient Guided Image Filter for the infrared (IR) images to amplify edge boundaries and a function for the visible (VIS) images to boost local contrast and brightness. Utilizing a two-scale decomposition technique that incorporates Lipschitz constraints-based smoothing, the images are effectively divided into distinct base and detail layers, thereby guaranteeing the preservation of essential structural information. The process of fusion is carried out in two distinct stages: firstly, a method grounded in Bayesian theory is employed to effectively combine the base layers, so effectively addressing any inherent uncertainty. Secondly, a Surface from Shade (SfS) method is utilized to ensure the preservation of the scene's geometry by enforcing integrability on the detail layers. Ultimately a Choose Max principle is employed to determine the most prominent textural characteristics, resulting in the amalgamation of the base and detail layers to generate an image that exhibits a substantial enhancement in both clarity and detail. The efficacy of our strategy is substantiated by rigorous testing, showcasing notable progressions in edge preservation, detail enhancement, and noise reduction. Consequently, our method presents significant advantages for real-world applications in image analysis.
AbstractList This manuscript introduces an innovative multi-stage image fusion framework that adeptly integrates infrared (IR) and visible (VIS) spectrum images to surmount the difficulties posed by low-light settings. The approach commences with an initial preprocessing stage, utilizing an Efficient Guided Image Filter for the infrared (IR) images to amplify edge boundaries and a function for the visible (VIS) images to boost local contrast and brightness. Utilizing a two-scale decomposition technique that incorporates Lipschitz constraints-based smoothing, the images are effectively divided into distinct base and detail layers, thereby guaranteeing the preservation of essential structural information. The process of fusion is carried out in two distinct stages: firstly, a method grounded in Bayesian theory is employed to effectively combine the base layers, so effectively addressing any inherent uncertainty. Secondly, a Surface from Shade (SfS) method is utilized to ensure the preservation of the scene's geometry by enforcing integrability on the detail layers. Ultimately a Choose Max principle is employed to determine the most prominent textural characteristics, resulting in the amalgamation of the base and detail layers to generate an image that exhibits a substantial enhancement in both clarity and detail. The efficacy of our strategy is substantiated by rigorous testing, showcasing notable progressions in edge preservation, detail enhancement, and noise reduction. Consequently, our method presents significant advantages for real-world applications in image analysis.
This manuscript introduces an innovative multi-stage image fusion framework that adeptly integrates infrared (IR) and visible (VIS) spectrum images to surmount the difficulties posed by low-light settings. The approach commences with an initial preprocessing stage, utilizing an Efficient Guided Image Filter for the infrared (IR) images to amplify edge boundaries and a function for the visible (VIS) images to boost local contrast and brightness. Utilizing a two-scale decomposition technique that incorporates Lipschitz constraints-based smoothing, the images are effectively divided into distinct base and detail layers, thereby guaranteeing the preservation of essential structural information. The process of fusion is carried out in two distinct stages: firstly, a method grounded in Bayesian theory is employed to effectively combine the base layers, so effectively addressing any inherent uncertainty. Secondly, a Surface from Shade (SfS) method is utilized to ensure the preservation of the scene's geometry by enforcing integrability on the detail layers. Ultimately a Choose Max principle is employed to determine the most prominent textural characteristics, resulting in the amalgamation of the base and detail layers to generate an image that exhibits a substantial enhancement in both clarity and detail. The efficacy of our strategy is substantiated by rigorous testing, showcasing notable progressions in edge preservation, detail enhancement, and noise reduction. Consequently, our method presents significant advantages for real-world applications in image analysis.
Abstract This manuscript introduces an innovative multi-stage image fusion framework that adeptly integrates infrared (IR) and visible (VIS) spectrum images to surmount the difficulties posed by low-light settings. The approach commences with an initial preprocessing stage, utilizing an Efficient Guided Image Filter for the infrared (IR) images to amplify edge boundaries and a function for the visible (VIS) images to boost local contrast and brightness. Utilizing a two-scale decomposition technique that incorporates Lipschitz constraints-based smoothing, the images are effectively divided into distinct base and detail layers, thereby guaranteeing the preservation of essential structural information. The process of fusion is carried out in two distinct stages: firstly, a method grounded in Bayesian theory is employed to effectively combine the base layers, so effectively addressing any inherent uncertainty. Secondly, a Surface from Shade (SfS) method is utilized to ensure the preservation of the scene's geometry by enforcing integrability on the detail layers. Ultimately a Choose Max principle is employed to determine the most prominent textural characteristics, resulting in the amalgamation of the base and detail layers to generate an image that exhibits a substantial enhancement in both clarity and detail. The efficacy of our strategy is substantiated by rigorous testing, showcasing notable progressions in edge preservation, detail enhancement, and noise reduction. Consequently, our method presents significant advantages for real-world applications in image analysis.
This manuscript introduces an innovative multi-stage image fusion framework that adeptly integrates infrared (IR) and visible (VIS) spectrum images to surmount the difficulties posed by low-light settings. The approach commences with an initial preprocessing stage, utilizing an Efficient Guided Image Filter for the infrared (IR) images to amplify edge boundaries and a function for the visible (VIS) images to boost local contrast and brightness. Utilizing a two-scale decomposition technique that incorporates Lipschitz constraints-based smoothing, the images are effectively divided into distinct base and detail layers, thereby guaranteeing the preservation of essential structural information. The process of fusion is carried out in two distinct stages: firstly, a method grounded in Bayesian theory is employed to effectively combine the base layers, so effectively addressing any inherent uncertainty. Secondly, a Surface from Shade (SfS) method is utilized to ensure the preservation of the scene's geometry by enforcing integrability on the detail layers. Ultimately a Choose Max principle is employed to determine the most prominent textural characteristics, resulting in the amalgamation of the base and detail layers to generate an image that exhibits a substantial enhancement in both clarity and detail. The efficacy of our strategy is substantiated by rigorous testing, showcasing notable progressions in edge preservation, detail enhancement, and noise reduction. Consequently, our method presents significant advantages for real-world applications in image analysis.This manuscript introduces an innovative multi-stage image fusion framework that adeptly integrates infrared (IR) and visible (VIS) spectrum images to surmount the difficulties posed by low-light settings. The approach commences with an initial preprocessing stage, utilizing an Efficient Guided Image Filter for the infrared (IR) images to amplify edge boundaries and a function for the visible (VIS) images to boost local contrast and brightness. Utilizing a two-scale decomposition technique that incorporates Lipschitz constraints-based smoothing, the images are effectively divided into distinct base and detail layers, thereby guaranteeing the preservation of essential structural information. The process of fusion is carried out in two distinct stages: firstly, a method grounded in Bayesian theory is employed to effectively combine the base layers, so effectively addressing any inherent uncertainty. Secondly, a Surface from Shade (SfS) method is utilized to ensure the preservation of the scene's geometry by enforcing integrability on the detail layers. Ultimately a Choose Max principle is employed to determine the most prominent textural characteristics, resulting in the amalgamation of the base and detail layers to generate an image that exhibits a substantial enhancement in both clarity and detail. The efficacy of our strategy is substantiated by rigorous testing, showcasing notable progressions in edge preservation, detail enhancement, and noise reduction. Consequently, our method presents significant advantages for real-world applications in image analysis.
ArticleNumber 16987
Author Goyal, Bhawna
Sharma, Apoorav Maulik
Dogra, Ayush
Alkhayyat, Ahmed
Vig, Renu
Kukreja, Vinay
Saikia, Manob Jyoti
Author_xml – sequence: 1
  givenname: Apoorav Maulik
  surname: Sharma
  fullname: Sharma, Apoorav Maulik
  organization: UIET, Panjab University
– sequence: 2
  givenname: Renu
  surname: Vig
  fullname: Vig, Renu
  organization: UIET, Panjab University
– sequence: 3
  givenname: Ayush
  surname: Dogra
  fullname: Dogra, Ayush
  organization: Chitkara University Institute of Engineering and Technology, Chitkara University
– sequence: 4
  givenname: Bhawna
  surname: Goyal
  fullname: Goyal, Bhawna
  organization: Department of UCRD, Chandigarh University
– sequence: 5
  givenname: Ahmed
  surname: Alkhayyat
  fullname: Alkhayyat, Ahmed
  organization: College of Technical Engineering, The Islamic University, College of Technical Engineering, The Islamic University of Al Diwaniyah
– sequence: 6
  givenname: Vinay
  surname: Kukreja
  fullname: Kukreja, Vinay
  organization: Chitkara University Institute of Engineering and Technology, Chitkara University
– sequence: 7
  givenname: Manob Jyoti
  surname: Saikia
  fullname: Saikia, Manob Jyoti
  email: manob.saikia@unf.edu
  organization: Department of Electrical Engineering, University of North Florida
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39043724$$D View this record in MEDLINE/PubMed
BookMark eNp9UstuFDEQtFAQCSE_wAFZ4sJlwOPHPE4IogCRInGBs9Xrx4xXs_bG9hDt3-PZCSHhQF_ccleVu9v1Ep344A1Cr2vyvias-5B4LfquIpRXTSsIrQ7P0BklXFSUUXryKD9FFyltSQlBe173L9Ap6wlnLeVnaL7yI3hlNJ7CXTW5YczY7WAw2M7JBY_zGMM8jHg3T9lVKS-lfQzKpOT8gO9cHvFnOJjkwGPwMB2SSyXR-HYGHSE7hVXwOULKRdOrXFRfoecWpmQu7s9z9PPL1Y_Lb9XN96_Xl59uKsV7mitmgCnNmaCitYJSy1qimNYbQSwH6EgPRhNq-aYhtOFckIY02qp2WUinenaOrlddHWAr97FMFg8ygJPHixAHCbF0OBlJFgqDureacQtdp6AxQgEzurcthaL1cdXaz5ud0cosM01PRJ9WvBvlEH7JuqZNCVIU3t0rxHA7m5TlziVlpgm8CXOSjHSc0L6jC_TtP9BtmGPZ7hHF2qbhoi6oN49beujlz_cWAF0BKoaUorEPkJrIxUZytZEsNpJHG8lDIbGVlArYDyb-ffs_rN_XBsxc
Cites_doi 10.1109/TCI.2024.3369398
10.1109/TIP.2018.2887342
10.1007/s11760-013-0556-9
10.1016/j.inffus.2016.02.001
10.1016/j.inffus.2021.12.004
10.1007/s00034-019-01131-z
10.1016/j.inffus.2018.09.004
10.1109/TPAMI.2020.3012548
10.1109/ACCESS.2017.2735865
10.1016/j.neucom.2024.127353
10.1109/tip.2013.2244222
10.1016/j.inffus.2014.09.004
10.1109/TPAMI.2011.109
10.1016/j.sigpro.2020.107734
10.3390/e25081215
10.1016/j.infrared.2017.02.005
10.1016/j.infrared.2017.05.007
10.1109/TPAMI.2012.213
10.1007/BF00939426
10.1007/s11760-012-0361-x
10.1016/j.ijleo.2018.06.123
10.1109/TPAMI.2010.168
10.1016/j.infrared.2023.104701
10.1109/LSP.2018.2867896
10.1109/34.3909
10.1137/0317026
10.1007/s00371-022-02588-x
10.1142/S0219691318500182
10.3390/rs15122969
10.1016/j.inffus.2021.02.023
10.1049/el:20000267
10.1117/1.oe.62.8.083101
10.1049/iet-ipr.2019.0322
10.1080/00224065.1993.11979431
10.1364/AO.55.006480
10.1016/j.inffus.2018.02.004
10.1016/j.inffus.2022.03.007
10.1007/s11263-021-01501-8
10.1117/1.jei.26.6.063004
10.1609/aaai.v34i07.6975
10.1016/j.inffus.2019.07.011
10.1016/j.infrared.2016.01.009
10.1109/JSEN.2015.2478655
10.1002/9780470627242
10.1145/1836845.1836920
10.1109/WACV57701.2024.00165
10.1117/12.2239945
10.23919/ICIF.2017.8009719
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-024-67502-y
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database


MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Engineering
EISSN 2045-2322
EndPage 29
ExternalDocumentID oai_doaj_org_article_050283a19fd34fa88ca6e5ca3ed9f72a
PMC11266660
39043724
10_1038_s41598_024_67502_y
Genre Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
NPM
PJZUB
PPXIY
PQGLB
7XB
8FK
AARCD
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c492t-3ea3cd435257f522f370c3ddb50f4aa809aed02f4b60264450606dfc775028c93
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:30:54 EDT 2025
Thu Aug 21 18:33:39 EDT 2025
Thu Sep 04 22:12:45 EDT 2025
Wed Aug 13 09:30:31 EDT 2025
Mon Jul 21 05:33:33 EDT 2025
Tue Jul 01 01:02:14 EDT 2025
Fri Feb 21 02:39:48 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Bayesian fuse
Visible
IR
Surface from shade
Image fusion
Quadratic contrast
Lipschitz constraints
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c492t-3ea3cd435257f522f370c3ddb50f4aa809aed02f4b60264450606dfc775028c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-024-67502-y
PMID 39043724
PQID 3083766451
PQPubID 2041939
PageCount 29
ParticipantIDs doaj_primary_oai_doaj_org_article_050283a19fd34fa88ca6e5ca3ed9f72a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11266660
proquest_miscellaneous_3084029820
proquest_journals_3083766451
pubmed_primary_39043724
crossref_primary_10_1038_s41598_024_67502_y
springer_journals_10_1038_s41598_024_67502_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-23
PublicationDateYYYYMMDD 2024-07-23
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-23
  day: 23
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Li, Wu, Kittler (CR42) 2021; 73
Qi, Abera, Fanose, Wang, Cheng (CR46) 2024; 578
Zhan, Xie, Wang, Min (CR30) 2017; 26
Liu, Liu, Wang (CR26) 2015; 24
CR36
Ma, Zhou, Wang, Zong (CR32) 2017
Bavirisetti, Xiao, Zhao, Dhuli, Liu (CR28) 2019; 38
Liu, Chen, Cheng, Peng, Wang (CR29) 2018; 16
Li, Wu (CR37) 2019; 28
Zhang, Xu, Xiao, Guo, Ma (CR41) 2020; 34
Sharma, Dogra, Goyal, Vig, Agrawal (CR2) 2020; 14
Zhou, Dong, Xie, Gao (CR20) 2016; 55
Dogra, Goyal, Agrawal (CR3) 2017; 5
Ma, Chen, Li, Huang (CR6) 2016; 31
Kurban (CR23) 2023; 25
Li, Xie, Zhou, Han, Zhan (CR27) 2018; 172
Zhang, Zhang, Bai, Zhang (CR24) 2017; 83
CR4
He, Sun, Tang (CR9) 2011; 33
Xydeas, Petrović (CR49) 2000; 36
Frankot, Chellappa (CR17) 1988; 10
Li, Li, Liu (CR33) 2023; 15
Hager (CR12) 1979; 17
CR47
Shreyamsha Kumar (CR19) 2015; 9
Xie, Hu, Wang, Zhang, Qin (CR25) 2023; 39
Ma, Yu, Liang, Li, Jiang (CR38) 2019; 48
Ma, Ma, Li (CR1) 2019; 45
CR16
Zhang, Liu, Sun, Yan, Zhao, Zhang (CR39) 2020; 54
CR14
Thach (CR11) 1990; 64
Zhao, Xu, Zhang, Liu, Zhang (CR13) 2020; 177
CR10
Li, Tan, Zhou, Wang, Li (CR34) 2023; 131
Lu, Long, Li, Lu (CR8) 2018; 25
Zhang, Ma (CR43) 2021; 129
Bavirisetti, Dhuli (CR31) 2016; 76
Hallinan (CR15) 1993; 25
Xu, Ma, Jiang, Guo, Ling (CR45) 2022; 44
Shreyamsha Kumar (CR21) 2013; 7
Tang, Yuan, Zhang, Jiang, Ma (CR40) 2022; 83–84
Tang, Liu, Qian, Wang, Xiong (CR35) 2024; 10
Liu, Blasch, Xue, Zhao, Laganiere, Wu (CR50) 2012; 34
Bavirisetti, Dhuli (CR18) 2016; 16
CR22
Li, Kang, Jianwen (CR5) 2013; 22
Tang, Yuan, Ma (CR44) 2022; 82
Gu (CR48) 2023
He, Sun, Tang (CR7) 2013; 35
H Li (67502_CR37) 2019; 28
J Ma (67502_CR38) 2019; 48
A Dogra (67502_CR3) 2017; 5
DP Bavirisetti (67502_CR28) 2019; 38
X Li (67502_CR33) 2023; 15
WW Hager (67502_CR12) 1979; 17
Z Liu (67502_CR50) 2012; 34
H Xu (67502_CR45) 2022; 44
Q Xie (67502_CR25) 2023; 39
67502_CR47
BK Shreyamsha Kumar (67502_CR21) 2013; 7
J Qi (67502_CR46) 2024; 578
X Li (67502_CR34) 2023; 131
L Tang (67502_CR40) 2022; 83–84
H Zhang (67502_CR43) 2021; 129
K He (67502_CR9) 2011; 33
J Ma (67502_CR32) 2017
Y Zhang (67502_CR39) 2020; 54
Z Lu (67502_CR8) 2018; 25
RT Frankot (67502_CR17) 1988; 10
67502_CR4
67502_CR36
DP Bavirisetti (67502_CR31) 2016; 76
PT Thach (67502_CR11) 1990; 64
H Tang (67502_CR35) 2024; 10
Z Zhou (67502_CR20) 2016; 55
J Ma (67502_CR1) 2019; 45
H Li (67502_CR42) 2021; 73
K Zhan (67502_CR30) 2017; 26
W Li (67502_CR27) 2018; 172
Y Zhang (67502_CR24) 2017; 83
Y Liu (67502_CR26) 2015; 24
DP Bavirisetti (67502_CR18) 2016; 16
R Kurban (67502_CR23) 2023; 25
Z Zhao (67502_CR13) 2020; 177
L Tang (67502_CR44) 2022; 82
67502_CR22
CS Xydeas (67502_CR49) 2000; 36
AM Sharma (67502_CR2) 2020; 14
H Zhang (67502_CR41) 2020; 34
AJ Hallinan (67502_CR15) 1993; 25
Y Liu (67502_CR29) 2018; 16
Y Gu (67502_CR48) 2023
67502_CR10
S Li (67502_CR5) 2013; 22
BK Shreyamsha Kumar (67502_CR19) 2015; 9
67502_CR16
67502_CR14
J Ma (67502_CR6) 2016; 31
K He (67502_CR7) 2013; 35
References_xml – ident: CR22
– volume: 10
  start-page: 385
  year: 2024
  end-page: 398
  ident: CR35
  article-title: EgeFusion: Towards edge gradient enhancement in infrared and visible image fusion with multi-scale transform
  publication-title: IEEE Trans. Comput. Imaging
  doi: 10.1109/TCI.2024.3369398
– volume: 28
  start-page: 2614
  issue: 5
  year: 2019
  end-page: 2623
  ident: CR37
  article-title: DenseFuse: A fusion approach to infrared and visible images
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2018.2887342
– ident: CR4
– ident: CR16
– volume: 9
  start-page: 1193
  issue: 5
  year: 2015
  end-page: 1204
  ident: CR19
  article-title: Image fusion based on pixel significance using cross bilateral filter
  publication-title: Signal Image Video Process.
  doi: 10.1007/s11760-013-0556-9
– volume: 31
  start-page: 100
  year: 2016
  end-page: 109
  ident: CR6
  article-title: Infrared and visible image fusion via gradient transfer and total variation minimization
  publication-title: Inf. Fus.
  doi: 10.1016/j.inffus.2016.02.001
– volume: 82
  start-page: 28
  year: 2022
  end-page: 42
  ident: CR44
  article-title: Image fusion in the loop of high-level vision tasks: A semantic-aware real-time infrared and visible image fusion network
  publication-title: Inf. Fus.
  doi: 10.1016/j.inffus.2021.12.004
– volume: 38
  start-page: 5576
  issue: 12
  year: 2019
  end-page: 5605
  ident: CR28
  article-title: Multi-scale guided image and video fusion: A fast and efficient approach
  publication-title: Circuits Syst. Signal Process.
  doi: 10.1007/s00034-019-01131-z
– volume: 48
  start-page: 11
  year: 2019
  end-page: 26
  ident: CR38
  article-title: FusionGAN: A generative adversarial network for infrared and visible image fusion
  publication-title: Inf. Fus.
  doi: 10.1016/j.inffus.2018.09.004
– volume: 44
  start-page: 502
  issue: 1
  year: 2022
  end-page: 518
  ident: CR45
  article-title: U2Fusion: A unified unsupervised image fusion network
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2020.3012548
– volume: 5
  start-page: 16040
  year: 2017
  end-page: 16067
  ident: CR3
  article-title: From multi-scale decomposition to non-multi-scale decomposition methods: a comprehensive survey of image fusion techniques and its applications
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2735865
– ident: CR36
– volume: 578
  year: 2024
  ident: CR46
  article-title: A deep learning and image enhancement based pipeline for infrared and visible image fusion
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2024.127353
– volume: 22
  start-page: 2864
  issue: 7
  year: 2013
  end-page: 2875
  ident: CR5
  article-title: Image fusion with guided filtering
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/tip.2013.2244222
– volume: 24
  start-page: 147
  year: 2015
  end-page: 164
  ident: CR26
  article-title: A general framework for image fusion based on multi-scale transform and sparse representation
  publication-title: Inf. Fus.
  doi: 10.1016/j.inffus.2014.09.004
– volume: 34
  start-page: 94
  issue: 1
  year: 2012
  end-page: 109
  ident: CR50
  article-title: Objective assessment of multiresolution image fusion algorithms for context enhancement in night vision: A comparative study
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2011.109
– ident: CR47
– volume: 177
  year: 2020
  ident: CR13
  article-title: Bayesian fusion for infrared and visible images
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2020.107734
– ident: CR14
– volume: 25
  start-page: 1215
  issue: 8
  year: 2023
  ident: CR23
  article-title: Gaussian of differences: A simple and efficient general image fusion method
  publication-title: Entropy
  doi: 10.3390/e25081215
– year: 2017
  ident: CR32
  article-title: Infrared and visible image fusion based on visual saliency map and weighted least square optimization
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2017.02.005
– volume: 83
  start-page: 227
  year: 2017
  end-page: 237
  ident: CR24
  article-title: Infrared and visual image fusion through infrared feature extraction and visual information preservation
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2017.05.007
– volume: 35
  start-page: 1397
  issue: 6
  year: 2013
  end-page: 1409
  ident: CR7
  article-title: Guided image filtering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.213
– ident: CR10
– volume: 64
  start-page: 595
  issue: 3
  year: 1990
  end-page: 614
  ident: CR11
  article-title: Convex minimization under Lipschitz constraints
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00939426
– volume: 7
  start-page: 1125
  issue: 6
  year: 2013
  end-page: 1143
  ident: CR21
  article-title: Multifocus and multispectral image fusion based on pixel significance using discrete cosine harmonic wavelet transform
  publication-title: Signal Image Video Process.
  doi: 10.1007/s11760-012-0361-x
– volume: 172
  start-page: 1
  year: 2018
  end-page: 11
  ident: CR27
  article-title: Structure-aware image fusion
  publication-title: Optik (Stuttg)
  doi: 10.1016/j.ijleo.2018.06.123
– volume: 33
  start-page: 2341
  issue: 12
  year: 2011
  end-page: 2353
  ident: CR9
  article-title: Single image haze removal using dark channel prior
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2010.168
– volume: 131
  year: 2023
  ident: CR34
  article-title: Infrared and visible image fusion based on domain transform filtering and sparse representation
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2023.104701
– volume: 25
  start-page: 1585
  issue: 10
  year: 2018
  end-page: 1589
  ident: CR8
  article-title: Effective guided image filtering for contrast enhancement
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2018.2867896
– volume: 10
  start-page: 439
  issue: 4
  year: 1988
  end-page: 451
  ident: CR17
  article-title: A method for enforcing integrability in shape from shading algorithms
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.3909
– volume: 17
  start-page: 321
  issue: 3
  year: 1979
  end-page: 338
  ident: CR12
  article-title: Lipschitz continuity for constrained processes
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/0317026
– volume: 39
  start-page: 4249
  issue: 9
  year: 2023
  end-page: 4265
  ident: CR25
  article-title: Novel and fast EMD-based image fusion via morphological filter
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-022-02588-x
– volume: 16
  start-page: 1850018
  issue: 03
  year: 2018
  ident: CR29
  article-title: Infrared and visible image fusion with convolutional neural networks
  publication-title: Int. J. Wavelets Multiresolut. Inf. Process.
  doi: 10.1142/S0219691318500182
– volume: 15
  start-page: 2969
  issue: 12
  year: 2023
  ident: CR33
  article-title: CBFM: Contrast balance infrared and visible image fusion based on contrast-preserving guided filter
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs15122969
– volume: 73
  start-page: 72
  year: 2021
  end-page: 86
  ident: CR42
  article-title: RFN-Nest: An end-to-end residual fusion network for infrared and visible images
  publication-title: Inf. Fus.
  doi: 10.1016/j.inffus.2021.02.023
– volume: 36
  start-page: 308
  issue: 4
  year: 2000
  ident: CR49
  article-title: Objective image fusion performance measure
  publication-title: Electron. Lett.
  doi: 10.1049/el:20000267
– year: 2023
  ident: CR48
  article-title: Physics driven deep Retinex fusion for adaptive infrared and visible image fusion
  publication-title: Opt. Eng.
  doi: 10.1117/1.oe.62.8.083101
– volume: 14
  start-page: 1671
  issue: 9
  year: 2020
  end-page: 1689
  ident: CR2
  article-title: From pyramids to state-of-the-art: A study and comprehensive comparison of visible–infrared image fusion techniques
  publication-title: IET Image Process
  doi: 10.1049/iet-ipr.2019.0322
– volume: 25
  start-page: 85
  issue: 2
  year: 1993
  end-page: 93
  ident: CR15
  article-title: A review of the Weibull distribution
  publication-title: J. Qual. Technol.
  doi: 10.1080/00224065.1993.11979431
– volume: 55
  start-page: 6480
  issue: 23
  year: 2016
  ident: CR20
  article-title: Fusion of infrared and visible images for night-vision context enhancement
  publication-title: Appl. Opt.
  doi: 10.1364/AO.55.006480
– volume: 45
  start-page: 153
  year: 2019
  end-page: 178
  ident: CR1
  article-title: Infrared and visible image fusion methods and applications: A survey
  publication-title: Inf. Fus.
  doi: 10.1016/j.inffus.2018.02.004
– volume: 83–84
  start-page: 79
  year: 2022
  end-page: 92
  ident: CR40
  article-title: PIAFusion: A progressive infrared and visible image fusion network based on illumination aware
  publication-title: Inf. Fus.
  doi: 10.1016/j.inffus.2022.03.007
– volume: 129
  start-page: 2761
  issue: 10
  year: 2021
  end-page: 2785
  ident: CR43
  article-title: SDNet: A versatile squeeze-and-decomposition network for real-time image fusion
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-021-01501-8
– volume: 26
  start-page: 1
  issue: 06
  year: 2017
  ident: CR30
  article-title: Fast filtering image fusion
  publication-title: J. Electron. Imaging
  doi: 10.1117/1.jei.26.6.063004
– volume: 34
  start-page: 12797
  issue: 07
  year: 2020
  end-page: 12804
  ident: CR41
  article-title: Rethinking the image fusion: A fast unified image fusion network based on proportional maintenance of gradient and intensity
  publication-title: Proc. AAAI Conf. Artif. Intell.
  doi: 10.1609/aaai.v34i07.6975
– volume: 54
  start-page: 99
  year: 2020
  end-page: 118
  ident: CR39
  article-title: IFCNN: A general image fusion framework based on convolutional neural network
  publication-title: Inf. Fus.
  doi: 10.1016/j.inffus.2019.07.011
– volume: 76
  start-page: 52
  year: 2016
  end-page: 64
  ident: CR31
  article-title: Two-scale image fusion of visible and infrared images using saliency detection
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2016.01.009
– volume: 16
  start-page: 203
  issue: 1
  year: 2016
  end-page: 209
  ident: CR18
  article-title: Fusion of infrared and visible sensor images based on anisotropic diffusion and Karhunen–Loeve transform
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2015.2478655
– ident: 67502_CR14
  doi: 10.1002/9780470627242
– volume: 129
  start-page: 2761
  issue: 10
  year: 2021
  ident: 67502_CR43
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-021-01501-8
– volume: 10
  start-page: 439
  issue: 4
  year: 1988
  ident: 67502_CR17
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.3909
– volume: 45
  start-page: 153
  year: 2019
  ident: 67502_CR1
  publication-title: Inf. Fus.
  doi: 10.1016/j.inffus.2018.02.004
– year: 2023
  ident: 67502_CR48
  publication-title: Opt. Eng.
  doi: 10.1117/1.oe.62.8.083101
– volume: 172
  start-page: 1
  year: 2018
  ident: 67502_CR27
  publication-title: Optik (Stuttg)
  doi: 10.1016/j.ijleo.2018.06.123
– volume: 177
  year: 2020
  ident: 67502_CR13
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2020.107734
– volume: 64
  start-page: 595
  issue: 3
  year: 1990
  ident: 67502_CR11
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00939426
– volume: 36
  start-page: 308
  issue: 4
  year: 2000
  ident: 67502_CR49
  publication-title: Electron. Lett.
  doi: 10.1049/el:20000267
– volume: 25
  start-page: 85
  issue: 2
  year: 1993
  ident: 67502_CR15
  publication-title: J. Qual. Technol.
  doi: 10.1080/00224065.1993.11979431
– ident: 67502_CR47
– volume: 15
  start-page: 2969
  issue: 12
  year: 2023
  ident: 67502_CR33
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs15122969
– volume: 28
  start-page: 2614
  issue: 5
  year: 2019
  ident: 67502_CR37
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2018.2887342
– volume: 24
  start-page: 147
  year: 2015
  ident: 67502_CR26
  publication-title: Inf. Fus.
  doi: 10.1016/j.inffus.2014.09.004
– volume: 14
  start-page: 1671
  issue: 9
  year: 2020
  ident: 67502_CR2
  publication-title: IET Image Process
  doi: 10.1049/iet-ipr.2019.0322
– ident: 67502_CR10
  doi: 10.1145/1836845.1836920
– volume: 22
  start-page: 2864
  issue: 7
  year: 2013
  ident: 67502_CR5
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/tip.2013.2244222
– volume: 73
  start-page: 72
  year: 2021
  ident: 67502_CR42
  publication-title: Inf. Fus.
  doi: 10.1016/j.inffus.2021.02.023
– volume: 9
  start-page: 1193
  issue: 5
  year: 2015
  ident: 67502_CR19
  publication-title: Signal Image Video Process.
  doi: 10.1007/s11760-013-0556-9
– volume: 76
  start-page: 52
  year: 2016
  ident: 67502_CR31
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2016.01.009
– volume: 33
  start-page: 2341
  issue: 12
  year: 2011
  ident: 67502_CR9
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2010.168
– volume: 38
  start-page: 5576
  issue: 12
  year: 2019
  ident: 67502_CR28
  publication-title: Circuits Syst. Signal Process.
  doi: 10.1007/s00034-019-01131-z
– volume: 44
  start-page: 502
  issue: 1
  year: 2022
  ident: 67502_CR45
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2020.3012548
– year: 2017
  ident: 67502_CR32
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2017.02.005
– volume: 55
  start-page: 6480
  issue: 23
  year: 2016
  ident: 67502_CR20
  publication-title: Appl. Opt.
  doi: 10.1364/AO.55.006480
– volume: 82
  start-page: 28
  year: 2022
  ident: 67502_CR44
  publication-title: Inf. Fus.
  doi: 10.1016/j.inffus.2021.12.004
– ident: 67502_CR16
– volume: 578
  year: 2024
  ident: 67502_CR46
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2024.127353
– volume: 25
  start-page: 1585
  issue: 10
  year: 2018
  ident: 67502_CR8
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2018.2867896
– volume: 34
  start-page: 12797
  issue: 07
  year: 2020
  ident: 67502_CR41
  publication-title: Proc. AAAI Conf. Artif. Intell.
  doi: 10.1609/aaai.v34i07.6975
– volume: 54
  start-page: 99
  year: 2020
  ident: 67502_CR39
  publication-title: Inf. Fus.
  doi: 10.1016/j.inffus.2019.07.011
– volume: 34
  start-page: 94
  issue: 1
  year: 2012
  ident: 67502_CR50
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2011.109
– ident: 67502_CR36
  doi: 10.1109/WACV57701.2024.00165
– volume: 31
  start-page: 100
  year: 2016
  ident: 67502_CR6
  publication-title: Inf. Fus.
  doi: 10.1016/j.inffus.2016.02.001
– volume: 39
  start-page: 4249
  issue: 9
  year: 2023
  ident: 67502_CR25
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-022-02588-x
– volume: 83
  start-page: 227
  year: 2017
  ident: 67502_CR24
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2017.05.007
– volume: 131
  year: 2023
  ident: 67502_CR34
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2023.104701
– volume: 26
  start-page: 1
  issue: 06
  year: 2017
  ident: 67502_CR30
  publication-title: J. Electron. Imaging
  doi: 10.1117/1.jei.26.6.063004
– volume: 10
  start-page: 385
  year: 2024
  ident: 67502_CR35
  publication-title: IEEE Trans. Comput. Imaging
  doi: 10.1109/TCI.2024.3369398
– volume: 16
  start-page: 1850018
  issue: 03
  year: 2018
  ident: 67502_CR29
  publication-title: Int. J. Wavelets Multiresolut. Inf. Process.
  doi: 10.1142/S0219691318500182
– volume: 48
  start-page: 11
  year: 2019
  ident: 67502_CR38
  publication-title: Inf. Fus.
  doi: 10.1016/j.inffus.2018.09.004
– volume: 17
  start-page: 321
  issue: 3
  year: 1979
  ident: 67502_CR12
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/0317026
– ident: 67502_CR4
  doi: 10.1117/12.2239945
– volume: 35
  start-page: 1397
  issue: 6
  year: 2013
  ident: 67502_CR7
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.213
– ident: 67502_CR22
  doi: 10.23919/ICIF.2017.8009719
– volume: 25
  start-page: 1215
  issue: 8
  year: 2023
  ident: 67502_CR23
  publication-title: Entropy
  doi: 10.3390/e25081215
– volume: 5
  start-page: 16040
  year: 2017
  ident: 67502_CR3
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2735865
– volume: 7
  start-page: 1125
  issue: 6
  year: 2013
  ident: 67502_CR21
  publication-title: Signal Image Video Process.
  doi: 10.1007/s11760-012-0361-x
– volume: 83–84
  start-page: 79
  year: 2022
  ident: 67502_CR40
  publication-title: Inf. Fus.
  doi: 10.1016/j.inffus.2022.03.007
– volume: 16
  start-page: 203
  issue: 1
  year: 2016
  ident: 67502_CR18
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2015.2478655
SSID ssj0000529419
Score 2.4351354
Snippet This manuscript introduces an innovative multi-stage image fusion framework that adeptly integrates infrared (IR) and visible (VIS) spectrum images to surmount...
Abstract This manuscript introduces an innovative multi-stage image fusion framework that adeptly integrates infrared (IR) and visible (VIS) spectrum images to...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 16987
SubjectTerms 639/166/987
639/766/400
Algorithms
Bayesian analysis
Bayesian fuse
Decomposition
Engineering
Humanities and Social Sciences
Image fusion
Image processing
Information processing
Lipschitz constraints
multidisciplinary
Noise reduction
Preservation
Quadratic contrast
Science
Science (multidisciplinary)
Surveillance
Visible
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiPIMFGQkbmDV8SOxjy1qVSHBiUq9WY4faqWSLexGaP89M3Z26fIQF3KKYiexZsaez4_5hpA3rR-iBs_Bss-aqdS3zMiBs5zDIGWfVRdwovjxU3d2rj5c6Itbqb7wTFilB66CO-QaPaBvbY5SZW9M8F3SwcsUbe5FgUbc8luTqcrqLaxq7Rwlw6U5XIKnwmgyoRhgZBgG1jueqBD2_wll_n5Y8pcd0-KITh-Q-zOCpEe15fvkThofkrs1p-T6EZlOxsuyq0-vF9_ZNc696dUXGDVonnBljM6ZeWg5SsgAHELRTQ0XgP9RXJilx36dMLqS-pmzBG4i_Tr5iAYTaDng7pcrim4RVfuYnJ-efH5_xubcCiwoK1ZMJi9DVIUMNQMGy7LnQcY4aJ6V94ZbnyIXWQ2Yo0op5CHsYg49ys4EK5-QvXExpmeEWoORUEbrkI0KRsMbWmWAiaApmbVuyNuNnN1NpdBwZetbGle14kArrmjFrRtyjKrY1kT66_IAjMLNRuH-ZRQNOdgo0s19cukkoM2-65RuG_J6Wwy9CbdI_JgWU6mjkJRe8IY8rXrftkRa5IESqiFmxyJ2mrpbMl5dFsZujNOCCz76bmM8P9v1d1k8_x-yeEHuCbR63jMhD8je6tuUXgKQWg2vSp_5AR1MHII
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-NTUjwgGB8BQYyEm9gLY3txHlAiKJOExIVQkzam-XY8TZpJN3aCPW_585JOspXnqI4SV3fz3cXn-93AK8ntvIKLQcPNigu62LCtahSHoKrhCiCzB19KH6e58cn8tOpOt2B-ZgLQ9sqR50YFbVvHa2RHwr0FYo8l2ryfnHFqWoURVfHEhp2KK3g30WKsVuwhypZI-73prP5l6-bVReKa8lJOWTPpEIfLtGCUZZZJjn6zqge1lsWKhL5_837_HMT5W-R1Gigju7DvcGzZB96KDyAnbrZh9t9rcn1Ptz9hXnwIXSz5jzG_tll-4Nf0hc6u_iOuoWFjtbP2FC_h8UNhxxdSGxa9EkF-AJGy7dsatc15WAyOzCb4IlnV531BCvH4jZ4u1wxMp4EgEdwcjT79vGYDxUYuJNltuKitsJ5GSlTA3pqQRSpE95XKg3SWp2WtvZpFmRFlaykJLbC3AdX0EhqV4rHsNu0Tf0UWKkpX0or5YKWTit8QsmAzqSzuQhKJfBmHHWz6Ik2TAyQC216GRmUkYkyMusEpiSYzZ1Ekh0vtNdnZphzJqVOCDspgxcyWK3xp2rlrKh9GYrMJnAwitUMM3dpbnCWwKtNM845CqTYpm67eI8k6vosTeBJj4JNT0RJbFGZTEBv4WOrq9stzcV55PWmbC488KVvRyjd9OvfY_Hs_3_jOdzJCN1pwTNxALur665-gY7Uqno5zI6fwtoeSA
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIiQuiDeBgozEDSwSPxLnSFetKiQ4Uak3y_GDVirZtrsR2n_PjJMsWigHcopiOx55xp6xZ-YzwLvKdUGj5uDJJc1VbCpuZFfylHwnZZNU7Wmj-OVrfXKqPp_psz0Qcy5MDtrPkJZ5mZ6jwz6uUNFQMphQHE1cnMWbO3DX4L6OwvgW9WJ7rkKeK1W1U35MKc0tTXd0UIbqv82-_DtM8g9faVZBxw_hwWQ7sk8jtY9gL_aP4d54m-TmCQxH_Xn257PL5U9-SbtudvED1wuWBjoTY9OdPCwHEXI0C7HoakwUwP4YHcmyQ7eJlFfJ3IRWgi-BXQ8ukKh4lkPb3WrNSCESU5_C6fHRt8UJn25V4F61Ys1ldNIHlWFQE1pfSTallyF0ukzKOVO2LoZSJNXR7VRKEQJhHZJvaOyMb-Uz2O-XfXwBrDWUA2W09skobzS20CqhgehdLZPWBbyfx9lejeAZNju9pbEjVyxyxWau2E0Bh8SKbU0Cvs4fljff7SQItiQipKvaFKRKzhjsKmrvZAxtaoQr4GBmpJ1m48pKtDObula6KuDtthjnETlHXB-XQ66jCI5elAU8H_m-pUS2hAAlVAFmRyJ2SN0t6S_OM1Y3ZWjhgz_9MAvPb7r-PRYv_6_6K7gvSL7Lhgt5APvrmyG-RmNp3b3Js-MXTW0Rhw
  priority: 102
  providerName: Springer Nature
Title Enhanced low-light image fusion through multi-stage processing with Bayesian analysis and quadratic contrast function
URI https://link.springer.com/article/10.1038/s41598-024-67502-y
https://www.ncbi.nlm.nih.gov/pubmed/39043724
https://www.proquest.com/docview/3083766451
https://www.proquest.com/docview/3084029820
https://pubmed.ncbi.nlm.nih.gov/PMC11266660
https://doaj.org/article/050283a19fd34fa88ca6e5ca3ed9f72a
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1Zj9MwEB7tIdC-IG4CS2Uk3sCQxHbiPCDUVl2tKu0KAZX6FjlOzK5U0t0egv57ZpykqNDtS6o4x8gzk_l8zDcAbyNTlAojB3fGKS6rNOJaFCF3zhZCpE4mlgaKF5fJ-USOp2p6AF25o7YDl3uHdlRParKYffh9u_mMDv-pSRnXH5cYhChRLJYc4S96-OYQjjEyJTQYu2jhfsP1HWcyytrcmf23nsB9kRHhTyx3QpVn9N8HQ__fTfnPkqqPVGcP4UELMVm_sYlHcFDVj-FeU3Ry8wTWo_rKL_uz2fwXn9HgnF3_xM8Kc2uaOmNt6R7m9xpyRI_YdNPkE-D7GM3csoHZVJR-yUxLaoJ_Sna7NiVZlGV-B7xZrhjFTdL9U5icjb4Pz3lbfIFbmcUrLiojbCk9W6pDkOZEGlpRloUKnTRGh5mpyjB2sqAiVlISUWFSOptSN2qbiWdwVM_r6gWwTFOqlFbKOi2tVniHkg5xpDWJcEoF8K7r5_ym4djI_dq40HmjoBwVlHsF5ZsABqSK7ZXEj-1PzBc_8tbd8pCEECbKXCmkM1rjqypljajKzKWxCeC0U2Te2VwuEI6mSSJVFMCbbTO6G62hmLqar_01kljr4zCA543et5J0dhOA3rGIHVF3W-rrK0_pTYlc-MOHvu-M569cd_fFyztleAUnMVl1mPJYnMLRarGuXiN8WhU9OEynaQ-O-_3xtzEeB6PLL1_x7DAZ9vyURM97zR8fnxxZ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrRBwQFBegQJGghNYzfqROIcKsbDVlrYrhFqpN-P4QSuV7La7qyp_jt-Gx0m2LK9bc4rixHEyY894Ht8g9KqvSyuC5CBee0G4y_tEsjIl3puSsdzzzMBG8WCcjY74p2NxvIZ-dLkwEFbZrYlxobYTAzbyLRZ0hTzLuOi_m54TqBoF3tWuhIZuSyvY7Qgx1iZ27Ln6MmzhZtu7HwO9X1O6Mzz8MCJtlQFieEHnhDnNjOURFtQHbcSzPDXM2lKknmst00I7m1LPS6jWxDkg8mXWmzzIWioNgDEFEbAeOih4D60PhuPPX5ZWHvCj8X7RZuukTG7NgsSErDbKSQY9kHpFIsbCAX_Tdv8M2vzNcxsF4s5ddKfVZPH7hvXuoTVXbaAbTW3LegPd_gXp8D5aDKuTGGuAzyaX5AwsAvj0e1jLsF-AvQ639YJwDHAkQWUNTdMmiSF0gMFcjAe6dpDziXWLpBJOLD5faAtsbHAMu9ezOQZhDQz3AB1dCy0eol41qdxjhAsJ-VlSCOMlN1KEJwT3QXk1OmNeiAS96f66mjbAHio65JlUDY1UoJGKNFJ1ggZAmOWdAModL0wuvql2jqsUBsF0v_CWca-lDK9ywmjmbOFzqhO02ZFVtSvFTF3xdYJeLpvDHAfHja7cZBHv4QCVT9MEPWq4YDkSVgA6FeUJkiv8sTLU1Zbq9CTiiEP2WDhCp287Vroa17__xZP_f8YLdHN0eLCv9nfHe0_RLQqcnuaEsk3Um18s3LOgxM3L5-1MwejrdU_On2AwWhw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTSB4QDC-AgOMBE9gNY3txHmYEGWtNgbVhJi0t8yxYzZppN3aasq_yF_FneN0lK-35amKU9fN3fnO9_E7Ql71dWklaA7mtJNMVFmfKV7GzDlTcp45kRo8KH4ep7uH4uORPFojP7paGEyr7PZEv1HbiUEfeY-DrZClqZD9ngtpEQc7o3fTc4YdpDDS2rXT0KHNgt32cGOhyGO_ai7hODfb3tsB2r9OktHw64ddFjoOMCPyZM54pbmxwkOEOrBMHM9iw60tZeyE1irOdWXjxIkSOzcJgeh8qXUmA72bKIPATKAONjLQkiBzG4Ph-ODL0uODMTXRz0PlTsxVbwbaEyvcEsFSnIE1K9rRNxH4m-X7ZwLnb1FcrxxHd8mdYNXS9y0b3iNrVb1JbrR9LptNcvsX1MP7ZDGsT3zeAT2bXLIz9A7Q0--wr1G3QN8dDb2DqE92ZGC-wtC0LWiACSi6julANxXWf1IdUFXgg6XnC22RpQ31Kfh6NqeouJH5HpDDa6HFQ7JeT-rqMaG5wlotJaVxShgl4RtSODBkjU65kzIib7q3XkxbkI_CB-e5KloaFUCjwtOoaCIyQMIsn0SAbn9jcvGtCPJexLgIrvu5s1w4rRT8VCWN5pXNXZboiGx1ZC3CrjErrng8Ii-XwyDvGMTRdTVZ-GcEwuYncUQetVywXAnPEakqERFRK_yxstTVkfr0xGOKYyUZXDDp246Vrtb173fx5P9_4wW5CUJafNob7z8ltxJk9DhjCd8i6_OLRfUM7Ll5-TwICiXH1y2bPwFiYl5I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+low-light+image+fusion+through+multi-stage+processing+with+Bayesian+analysis+and+quadratic+contrast+function&rft.jtitle=Scientific+reports&rft.au=Sharma%2C+Apoorav+Maulik&rft.au=Vig%2C+Renu&rft.au=Dogra%2C+Ayush&rft.au=Goyal%2C+Bhawna&rft.date=2024-07-23&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=16987&rft_id=info:doi/10.1038%2Fs41598-024-67502-y&rft_id=info%3Apmid%2F39043724&rft.externalDocID=39043724
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon