A rectified factor network based biclustering method for detecting cancer-related coding genes and miRNAs, and their interactions
•Biclustering analysis of integrated expression data from the same set of samples.•Identify breast cancer-specific biclusters with Rectified Factor Networks.•Identify breast cancer-related coding genes, microRNAs and their interactions.•Prioritize biomarkers by integrating multiple data sources and...
Saved in:
| Published in | Methods (San Diego, Calif.) Vol. 166; pp. 22 - 30 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Inc
15.08.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1046-2023 1095-9130 1095-9130 |
| DOI | 10.1016/j.ymeth.2019.05.010 |
Cover
| Abstract | •Biclustering analysis of integrated expression data from the same set of samples.•Identify breast cancer-specific biclusters with Rectified Factor Networks.•Identify breast cancer-related coding genes, microRNAs and their interactions.•Prioritize biomarkers by integrating multiple data sources and rank fusion process.
Detecting cancer-related genes and their interactions is a crucial task in cancer research. For this purpose, we proposed an efficient method, to detect coding genes, microRNAs (miRNAs), and their interactions related to a particular cancer or a cancer subtype using their expression data from the same set of samples. Firstly, biclusters specific to a particular type of cancer are detected based on rectified factor networks and ranked according to their associations with general cancers. Secondly, coding genes and miRNAs in each bicluster are prioritized by considering their differential expression and differential correlation values, protein–protein interaction data, and potential cancer markers. Finally, a rank fusion process is used to obtain the final comprehensive rank by combining multiple ranking results. We applied our proposed method on breast cancer datasets. Results show that our method outperforms other methods in detecting breast cancer-related coding genes and miRNAs. Furthermore, our method is very efficient in computing time, which can handle tens of thousands genes/miRNAs and hundreds of patients in hours on a desktop. This work may aid researchers in studying the genetic architecture of complex diseases, and improving the accuracy of diagnosis. |
|---|---|
| AbstractList | •Biclustering analysis of integrated expression data from the same set of samples.•Identify breast cancer-specific biclusters with Rectified Factor Networks.•Identify breast cancer-related coding genes, microRNAs and their interactions.•Prioritize biomarkers by integrating multiple data sources and rank fusion process.
Detecting cancer-related genes and their interactions is a crucial task in cancer research. For this purpose, we proposed an efficient method, to detect coding genes, microRNAs (miRNAs), and their interactions related to a particular cancer or a cancer subtype using their expression data from the same set of samples. Firstly, biclusters specific to a particular type of cancer are detected based on rectified factor networks and ranked according to their associations with general cancers. Secondly, coding genes and miRNAs in each bicluster are prioritized by considering their differential expression and differential correlation values, protein–protein interaction data, and potential cancer markers. Finally, a rank fusion process is used to obtain the final comprehensive rank by combining multiple ranking results. We applied our proposed method on breast cancer datasets. Results show that our method outperforms other methods in detecting breast cancer-related coding genes and miRNAs. Furthermore, our method is very efficient in computing time, which can handle tens of thousands genes/miRNAs and hundreds of patients in hours on a desktop. This work may aid researchers in studying the genetic architecture of complex diseases, and improving the accuracy of diagnosis. Detecting cancer-related genes and their interactions is a crucial task in cancer research. For this purpose, we proposed an efficient method, to detect coding genes, microRNAs (miRNAs), and their interactions related to a particular cancer or a cancer subtype using their expression data from the same set of samples. Firstly, biclusters specific to a particular type of cancer are detected based on rectified factor networks and ranked according to their associations with general cancers. Secondly, coding genes and miRNAs in each bicluster are prioritized by considering their differential expression and differential correlation values, protein-protein interaction data, and potential cancer markers. Finally, a rank fusion process is used to obtain the final comprehensive rank by combining multiple ranking results. We applied our proposed method on breast cancer datasets. Results show that our method outperforms other methods in detecting breast cancer-related coding genes and miRNAs. Furthermore, our method is very efficient in computing time, which can handle tens of thousands genes/miRNAs and hundreds of patients in hours on a desktop. This work may aid researchers in studying the genetic architecture of complex diseases, and improving the accuracy of diagnosis. Detecting cancer-related genes and their interactions is a crucial task in cancer research. For this purpose, we proposed an efficient method, to detect coding genes, microRNAs (miRNAs), and their interactions related to a particular cancer or a cancer subtype using their expression data from the same set of samples. Firstly, biclusters specific to a particular type of cancer are detected based on rectified factor networks and ranked according to their associations with general cancers. Secondly, coding genes and miRNAs in each bicluster are prioritized by considering their differential expression and differential correlation values, protein-protein interaction data, and potential cancer markers. Finally, a rank fusion process is used to obtain the final comprehensive rank by combining multiple ranking results. We applied our proposed method on breast cancer datasets. Results show that our method outperforms other methods in detecting breast cancer-related coding genes and miRNAs. Furthermore, our method is very efficient in computing time, which can handle tens of thousands genes/miRNAs and hundreds of patients in hours on a desktop. This work may aid researchers in studying the genetic architecture of complex diseases, and improving the accuracy of diagnosis.Detecting cancer-related genes and their interactions is a crucial task in cancer research. For this purpose, we proposed an efficient method, to detect coding genes, microRNAs (miRNAs), and their interactions related to a particular cancer or a cancer subtype using their expression data from the same set of samples. Firstly, biclusters specific to a particular type of cancer are detected based on rectified factor networks and ranked according to their associations with general cancers. Secondly, coding genes and miRNAs in each bicluster are prioritized by considering their differential expression and differential correlation values, protein-protein interaction data, and potential cancer markers. Finally, a rank fusion process is used to obtain the final comprehensive rank by combining multiple ranking results. We applied our proposed method on breast cancer datasets. Results show that our method outperforms other methods in detecting breast cancer-related coding genes and miRNAs. Furthermore, our method is very efficient in computing time, which can handle tens of thousands genes/miRNAs and hundreds of patients in hours on a desktop. This work may aid researchers in studying the genetic architecture of complex diseases, and improving the accuracy of diagnosis. |
| Author | Liu, Guixia Su, Lingtao Wang, Juexin Xu, Dong |
| AuthorAffiliation | 1 Department of Computer Science and Technology, Jilin University, Changchun, 130012, China 2 Department of Electrical Engineering & Computer Science and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA |
| AuthorAffiliation_xml | – name: 2 Department of Electrical Engineering & Computer Science and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA – name: 1 Department of Computer Science and Technology, Jilin University, Changchun, 130012, China |
| Author_xml | – sequence: 1 givenname: Lingtao surname: Su fullname: Su, Lingtao organization: Department of Computer Science and Technology, Jilin University, Changchun 130012, China – sequence: 2 givenname: Guixia surname: Liu fullname: Liu, Guixia organization: Department of Computer Science and Technology, Jilin University, Changchun 130012, China – sequence: 3 givenname: Juexin surname: Wang fullname: Wang, Juexin organization: Department of Electrical Engineering & Computer Science and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA – sequence: 4 givenname: Dong surname: Xu fullname: Xu, Dong email: xudong@missouri.edu organization: Department of Electrical Engineering & Computer Science and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31121299$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUktv1DAQjlARfcAvQEI5ciDBrzx8AGlVAa1UgYTgbE2cya6XxF5sp9Ue-ec43fI8QE8ezXzfNzPf-DQ7ss5ilj2lpKSE1i-35X7CuCkZobIkVUkoeZCdUCKrQlJOjpZY1AUjjB9npyFsCSGUNe2j7JhTyiiT8iT7tso96mgGg30-gI7O5xbjjfNf8g5CSnZGj3OI6I1d50tDl4AJ1WNciCmpwWr0hccRYiJo1y_ZNVoMOdg-n8zH96vw4jaOGzQ-NzbppWbG2fA4ezjAGPDJ3XuWfX775tP5RXH14d3l-eqq0EKyWPCu5aBZjyiQc5TYMCGAaKGlbJGgoN3AaV1BU3fQDF3LZKpipwVQSSvgZ5k46M52B_sbGEe182YCv1eUqMVRtVW3jqrFUUUqlRxNtNcH2m7uJuw12ujhF9WBUX9WrNmotbtWdUNaUdMk8PxOwLuvM4aoJhM0jiNYdHNQjLV1W_O0xT2gnLYVbViVoM9-H-vnPD8umwDyANDeheBxUNpEWBxPU5rxPzvzv7j3c-rVgYXpitcGvQraYPoavVm-mOqd-Sf_O4Tn5HY |
| CitedBy_id | crossref_primary_10_3390_electronics9111782 crossref_primary_10_3389_fbioe_2020_00349 crossref_primary_10_1016_j_csbj_2021_01_029 |
| Cites_doi | 10.7717/peerj-cs.133 10.1093/nar/gkw365 10.1093/bioinformatics/btv544 10.1109/TCBB.2016.2550432 10.1016/j.bbrc.2017.09.033 10.1186/1471-2105-10-73 10.1038/onc.2016.304 10.1093/bib/bbv033 10.1371/journal.pcbi.1004791 10.1093/nar/gkp491 10.1093/bioinformatics/btn209 10.1093/bioinformatics/bty148 10.1186/1471-2105-16-S4-S7 10.1093/nar/gkx1067 10.1109/TCBB.2004.2 10.1093/bioinformatics/btx226 10.1093/bioinformatics/btr206 10.1016/j.gene.2012.11.028 10.1186/s12859-015-0857-9 10.1136/jmg.2006.041376 10.1093/nar/gkx1090 10.1089/omi.2009.0143 10.1038/srep34512 10.1371/journal.pone.0006045 10.2147/OTT.S163891 10.3389/fcell.2016.00053 10.1186/1471-2164-13-535 10.7150/jca.18188 10.1093/nar/gkw1121 10.18632/oncotarget.10052 10.1186/s13059-014-0550-8 10.1016/j.tranon.2018.03.003 10.1093/bioinformatics/btt014 10.1038/srep46598 10.1093/bioinformatics/bty401 10.1371/journal.pcbi.1004042 10.1093/nar/gkr289 10.1093/bioinformatics/btq227 10.1093/bioinformatics/btu344 10.1371/journal.pone.0188900 10.1371/journal.pone.0157484 10.1093/nar/gkn892 10.1016/j.canlet.2015.07.048 10.1093/nar/gkp294 10.1093/nar/gkh070 10.1038/labinvest.2015.88 10.1155/2015/810514 10.18632/oncotarget.19278 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Inc. Copyright © 2019 Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: 2019 Elsevier Inc. – notice: Copyright © 2019 Elsevier Inc. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM ADTOC UNPAY |
| DOI | 10.1016/j.ymeth.2019.05.010 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Chemistry |
| EISSN | 1095-9130 |
| EndPage | 30 |
| ExternalDocumentID | oai:pubmedcentral.nih.gov:6708461 PMC6708461 31121299 10_1016_j_ymeth_2019_05_010 S1046202318303323 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R35 GM126985 |
| GroupedDBID | --- --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFRF ABGSF ABJNI ABMAC ABUDA ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DM4 DOVZS DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HMG IHE J1W KOM LG5 LX2 LZ5 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SCC SDF SDG SDP SES SPCBC SSU SSZ T5K XPP Y6R ZMT ZU3 ~G- --K .GJ 29M 53G AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGHFR AGQPQ AGRDE AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CAG CITATION COF EFKBS FEDTE FGOYB G-2 HLW HVGLF HZ~ K-O R2- SBG SEW SIN WUQ ZGI ~HD AGCQF AGRNS CGR CUY CVF ECM EIF NPM SSH 7X8 7S9 L.6 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c492t-3b83ac2dee4e33e9e7244a0c4c998e0e41bf3165a76ba7fb829a0cebc4a1915a3 |
| IEDL.DBID | .~1 |
| ISSN | 1046-2023 1095-9130 |
| IngestDate | Sun Oct 26 03:59:26 EDT 2025 Tue Sep 30 16:44:45 EDT 2025 Thu Oct 02 05:55:12 EDT 2025 Thu Oct 02 10:21:22 EDT 2025 Mon Jul 21 06:06:35 EDT 2025 Sat Oct 25 04:57:56 EDT 2025 Thu Apr 24 23:10:37 EDT 2025 Fri Feb 23 02:26:57 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | miRNA Biomarker Breast cancer Biclustering Rectified factor networks Gene-miRNA interaction |
| Language | English |
| License | Copyright © 2019 Elsevier Inc. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c492t-3b83ac2dee4e33e9e7244a0c4c998e0e41bf3165a76ba7fb829a0cebc4a1915a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/6708461 |
| PMID | 31121299 |
| PQID | 2231851725 |
| PQPubID | 23479 |
| PageCount | 9 |
| ParticipantIDs | unpaywall_primary_10_1016_j_ymeth_2019_05_010 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6708461 proquest_miscellaneous_2286863998 proquest_miscellaneous_2231851725 pubmed_primary_31121299 crossref_citationtrail_10_1016_j_ymeth_2019_05_010 crossref_primary_10_1016_j_ymeth_2019_05_010 elsevier_sciencedirect_doi_10_1016_j_ymeth_2019_05_010 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-08-15 |
| PublicationDateYYYYMMDD | 2019-08-15 |
| PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Methods (San Diego, Calif.) |
| PublicationTitleAlternate | Methods |
| PublicationYear | 2019 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Jin, Lee (b0085) 2017; 12 Zhou, Huang, Liang, Tang, Wu, Huang, Mo, Wang (b0095) 2018; 11 Liu, Yang, Taher, Denz, Grutzmann, Pilarsky, Weber (b0120) 2018; 11 Oti, Snel, Huynen, Brunner (b0215) 2006; 43 Hochreiter, Bodenhofer, Heusel, Mayr, Mitterecker, Kasim, Khamiakova, Van Sanden, Lin, Talloen (b0185) 2010; 26 Dimitrakopoulos, Hindupur, Hafliger, Behr, Montazeri, Hall, Beerenwinkel (b0070) 2018; 34 Chou, Shrestha, Yang, Chang, Lin, Liao, Huang, Sun, Tu, Lee (b0235) 2018; 46 Zou, Li, Hong, Lin, Wu, Shi, Ju (b0080) 2015 Vasaikar, Straub, Wang, Zhang (b0100) 2018; 46 Torrente, Lukk, Xue, Parkinson, Rung, Brazma (b0025) 2016; 11 Chen, Yan, Liao (b0230) 2010; 14 Freiesleben, Hecker, Zettl, Fuellen, Taher (b0110) 2016; 6 Strimmer (b0210) 2008; 24 Yang, Michailidis (b0130) 2016; 32 Peri, Navarro, Kristiansen, Amanchy, Surendranath, Muthusamy, Gandhi, Chandrika, Deshpande, Suresh (b0225) 2004; 32 Nam, Li, Choi, Balch, Kim, Nephew (b0105) 2009; 37 Xie, Ding, Han, Wu (b0175) 2013; 29 Riaz, van Jaarsveld, Hollestelle, Prager-van der Smissen, Heine, Boersma, Liu, Helmijr, Ozturk, Smid (b0030) 2013 Jin, Lee (b0125) 2015; 11 Wang, Huang, Yang, Zhang, Su, Tian, Lu, Zhang, Fan, Hui (b0035) 2015; 12 Li, Ma, Tang, Paterson, Xu (b0195) 2009; 37 Tranchevent, Ardeshirdavani, ElShal, Alcaide, Aerts, Auboeuf, Moreau (b0010) 2016; 44 Clevert, Unterthiner, Povysil, Hochreiter (b0155) 2017; 33 Love, Huber, Anders (b0160) 2014; 15 Fiannaca, La Rosa, La Paglia, Rizzo, Urso (b0145) 2015; 16 Israel, Sharan, Ruppin, Galun (b0240) 2009; 4 Keshava Prasad, Goel, Kandasamy, Keerthikumar, Kumar, Mathivanan, Telikicherla, Raju, Shafreen, Venugopal (b0180) 2009; 37 Xi, Wang, Li (b0220) 2017 Jiang, Yu, Peng, Di, Wu, Liu, Shao (b0285) 2014 Madeira, Oliveira (b0150) 2004; 1 Fukushima (b0205) 2013; 518 Sui, Zhang, Yang, Wei, Wang (b0290) 2018; 39 Makhijani, Raut, Purohit (b0020) 2018; 15 Guala, Sonnhammer (b0005) 2017; 7 Ma, Lin, Zhan, Mann, Stass, Jiang (b0040) 2015; 95 Guala, Sjolund, Sonnhammer (b0045) 2014; 30 Forbes, Beare, Boutselakis, Bamford, Bindal, Tate, Cole, Ward, Dawson, Ponting (b0170) 2017; 45 Nitsch, Tranchevent, Goncalves, Vogt, Madeira, Moreau (b0055) 2011; 39 Cheng, Church (b0140) 2000 Ho, Noor, Nagoor (b0270) 2018; 9 Liu, Zeng, He, Zou (b0060) 2017; 14 van Dam, Cordeiro, Craig, van Dam, Wood, de Magalhaes (b0015) 2012; 13 Zeng, Zhang, Zou (b0065) 2016; 17 Chen, Aronow, Jegga (b0275) 2009; 10 Liu, Shen, Chen, Ye, He, Hua, Jarjoura, Nakano, Ramesh, Shapiro (b0280) 2010; 3 Yin, Chen, Wu, Tian (b0050) 2017; 7 Orzechowski, Sipper, Huang, Moore (b0200) 2018; 34 Gao, McDowell, Zhao, Brown, Engelhardt (b0190) 2016; 12 Zhang, Li, Liu, Zhou (b0115) 2011; 27 Busca, Pouyssegur, Lenormand (b0245) 2016; 4 Bersanelli, Mosca, Remondini, Giampieri, Sala, Castellani, Milanesi (b0135) 2016; 17 Zhan, Rindtorff, Boutros (b0255) 2017; 36 Yuan, Wu, Xu, Xiong, Chu, Yu, Wu, Wu (b0250) 2015; 369 Su, Liu, Bai, Meng, Ma (b0090) 2018 Li, Lei, Wu, Li, Liu, Liu, Cheng, Tang (b0075) 2016; 7 Baxter, Leavy, Dryden, Maguire, Johnson, Fedele, Simigdala, Martin, Andrews, Wingett (b0165) 2018 Zhao, Zhao, He, Mao (b0260) 2017; 8 Liang, Feng, Xu, Li, Zhou (b0265) 2017; 493 Chen (10.1016/j.ymeth.2019.05.010_b0230) 2010; 14 Zeng (10.1016/j.ymeth.2019.05.010_b0065) 2016; 17 Torrente (10.1016/j.ymeth.2019.05.010_b0025) 2016; 11 Yin (10.1016/j.ymeth.2019.05.010_b0050) 2017; 7 Orzechowski (10.1016/j.ymeth.2019.05.010_b0200) 2018; 34 Li (10.1016/j.ymeth.2019.05.010_b0075) 2016; 7 Yang (10.1016/j.ymeth.2019.05.010_b0130) 2016; 32 Gao (10.1016/j.ymeth.2019.05.010_b0190) 2016; 12 Forbes (10.1016/j.ymeth.2019.05.010_b0170) 2017; 45 Love (10.1016/j.ymeth.2019.05.010_b0160) 2014; 15 Strimmer (10.1016/j.ymeth.2019.05.010_b0210) 2008; 24 Liu (10.1016/j.ymeth.2019.05.010_b0060) 2017; 14 Cheng (10.1016/j.ymeth.2019.05.010_b0140) 2000 Xi (10.1016/j.ymeth.2019.05.010_b0220) 2017 Chen (10.1016/j.ymeth.2019.05.010_b0275) 2009; 10 Tranchevent (10.1016/j.ymeth.2019.05.010_b0010) 2016; 44 Jin (10.1016/j.ymeth.2019.05.010_b0125) 2015; 11 Liu (10.1016/j.ymeth.2019.05.010_b0280) 2010; 3 Liu (10.1016/j.ymeth.2019.05.010_b0120) 2018; 11 Zhang (10.1016/j.ymeth.2019.05.010_b0115) 2011; 27 Hochreiter (10.1016/j.ymeth.2019.05.010_b0185) 2010; 26 Jin (10.1016/j.ymeth.2019.05.010_b0085) 2017; 12 Sui (10.1016/j.ymeth.2019.05.010_b0290) 2018; 39 Baxter (10.1016/j.ymeth.2019.05.010_b0165) 2018 Fukushima (10.1016/j.ymeth.2019.05.010_b0205) 2013; 518 Zhao (10.1016/j.ymeth.2019.05.010_b0260) 2017; 8 Makhijani (10.1016/j.ymeth.2019.05.010_b0020) 2018; 15 Li (10.1016/j.ymeth.2019.05.010_b0195) 2009; 37 Wang (10.1016/j.ymeth.2019.05.010_b0035) 2015; 12 Ma (10.1016/j.ymeth.2019.05.010_b0040) 2015; 95 Oti (10.1016/j.ymeth.2019.05.010_b0215) 2006; 43 Dimitrakopoulos (10.1016/j.ymeth.2019.05.010_b0070) 2018; 34 Freiesleben (10.1016/j.ymeth.2019.05.010_b0110) 2016; 6 Nitsch (10.1016/j.ymeth.2019.05.010_b0055) 2011; 39 Liang (10.1016/j.ymeth.2019.05.010_b0265) 2017; 493 Israel (10.1016/j.ymeth.2019.05.010_b0240) 2009; 4 Zhan (10.1016/j.ymeth.2019.05.010_b0255) 2017; 36 Zou (10.1016/j.ymeth.2019.05.010_b0080) 2015 Bersanelli (10.1016/j.ymeth.2019.05.010_b0135) 2016; 17 Busca (10.1016/j.ymeth.2019.05.010_b0245) 2016; 4 van Dam (10.1016/j.ymeth.2019.05.010_b0015) 2012; 13 Guala (10.1016/j.ymeth.2019.05.010_b0045) 2014; 30 Xie (10.1016/j.ymeth.2019.05.010_b0175) 2013; 29 Yuan (10.1016/j.ymeth.2019.05.010_b0250) 2015; 369 Fiannaca (10.1016/j.ymeth.2019.05.010_b0145) 2015; 16 Guala (10.1016/j.ymeth.2019.05.010_b0005) 2017; 7 Ho (10.1016/j.ymeth.2019.05.010_b0270) 2018; 9 Chou (10.1016/j.ymeth.2019.05.010_b0235) 2018; 46 Nam (10.1016/j.ymeth.2019.05.010_b0105) 2009; 37 Clevert (10.1016/j.ymeth.2019.05.010_b0155) 2017; 33 Jiang (10.1016/j.ymeth.2019.05.010_b0285) 2014 Vasaikar (10.1016/j.ymeth.2019.05.010_b0100) 2018; 46 Madeira (10.1016/j.ymeth.2019.05.010_b0150) 2004; 1 Su (10.1016/j.ymeth.2019.05.010_b0090) 2018 Zhou (10.1016/j.ymeth.2019.05.010_b0095) 2018; 11 Keshava Prasad (10.1016/j.ymeth.2019.05.010_b0180) 2009; 37 Peri (10.1016/j.ymeth.2019.05.010_b0225) 2004; 32 Riaz (10.1016/j.ymeth.2019.05.010_b0030) 2013 |
| References_xml | – volume: 7 start-page: 46598 year: 2017 ident: b0005 article-title: A large-scale benchmark of gene prioritization methods publication-title: Sci. Rep. – volume: 13 start-page: 535 year: 2012 ident: b0015 article-title: GeneFriends: an online co-expression analysis tool to identify novel gene targets for aging and complex diseases publication-title: BMC Genomics – volume: 17 start-page: 193 year: 2016 end-page: 203 ident: b0065 article-title: Integrative approaches for predicting microRNA function and prioritizing disease-related microRNA using biological interaction networks publication-title: Briefings Bioinf. – volume: 32 start-page: 1 year: 2016 end-page: 8 ident: b0130 article-title: A non-negative matrix factorization method for detecting modules in heterogeneous omics multi-modal data publication-title: Bioinformatics – volume: 37 year: 2009 ident: b0195 article-title: QUBIC: a qualitative biclustering algorithm for analyses of gene expression data publication-title: Nucleic Acids Res. – volume: 9 start-page: 331 year: 2018 end-page: 345 ident: b0270 article-title: MiR-378 and MiR-1827 regulate tumor invasion, migration and angiogenesis in human lung adenocarcinoma by targeting RBX1 and CRKL, respectively publication-title: J. Cancer – volume: 15 start-page: 1680 year: 2018 end-page: 1690 ident: b0020 article-title: Identification of common key genes in breast, lung and prostate cancer and exploration of their heterogeneous expression publication-title: Oncol. Lett. – volume: 45 start-page: D777 year: 2017 end-page: D783 ident: b0170 article-title: COSMIC: somatic cancer genetics at high-resolution publication-title: Nucleic Acids Res. – volume: 11 year: 2016 ident: b0025 article-title: Identification of cancer related genes using a comprehensive map of human gene expression publication-title: PLoS ONE – volume: 29 start-page: 638 year: 2013 end-page: 644 ident: b0175 article-title: miRCancer: a microRNA-cancer association database constructed by text mining on literature publication-title: Bioinformatics – volume: 15 year: 2014 ident: b0160 article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 publication-title: Genome Biol. – volume: 518 start-page: 209 year: 2013 end-page: 214 ident: b0205 article-title: DiffCorr: An R package to analyze and visualize differential correlations in biological networks publication-title: Gene – volume: 39 start-page: W334 year: 2011 end-page: W338 ident: b0055 article-title: PINTA: a web server for network-based gene prioritization from expression data publication-title: Nucleic Acids Res. – volume: 12 year: 2017 ident: b0085 article-title: FGMD: a novel approach for functional gene module detection in cancer publication-title: PLoS ONE – volume: 3 start-page: 328 year: 2010 end-page: 337 ident: b0280 article-title: Piwil2 is expressed in various stages of breast cancers and has the potential to be used as a novel biomarker publication-title: Int. J. Clin. Exp. Pathol. – volume: 30 start-page: 2689 year: 2014 end-page: 2690 ident: b0045 article-title: MaxLink: network-based prioritization of genes tightly linked to a disease seed set publication-title: Bioinformatics – start-page: 9 year: 2018 ident: b0165 article-title: Capture Hi-C identifies putative target genes at 33 breast cancer risk loci publication-title: Nat. Commun. – volume: 14 start-page: 337 year: 2010 end-page: 356 ident: b0230 article-title: A novel candidate disease genes prioritization method based on module partition and rank fusion publication-title: OMICS – volume: 12 start-page: 655 year: 2015 end-page: 661 ident: b0035 article-title: Differential expression of microRNAs in aortic tissue and plasma in patients with acute aortic dissection publication-title: J Geriatr. Cardiol. – volume: 14 start-page: 905 year: 2017 end-page: 915 ident: b0060 article-title: Inferring microRNA-disease associations by random walk on a heterogeneous network with multiple data sources publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf. – start-page: 19 year: 2018 ident: b0090 article-title: MGOGP: a gene module-based heuristic algorithm for cancer-related gene prioritization publication-title: BMC Bioinf. – volume: 43 year: 2006 ident: b0215 article-title: Predicting disease genes using protein-protein interactions publication-title: J. Med. Genet. – volume: 44 start-page: W117 year: 2016 end-page: W121 ident: b0010 article-title: Candidate gene prioritization with Endeavour publication-title: Nucleic Acids Res. – volume: 39 start-page: 473 year: 2018 end-page: 482 ident: b0290 article-title: MicroRNA-133a acts as a tumour suppressor in breast cancer through targeting LASP1 publication-title: Oncol. Rep. – volume: 6 start-page: 34512 year: 2016 ident: b0110 article-title: Analysis of microRNA and gene expression profiles in multiple sclerosis: integrating interaction data to uncover regulatory mechanisms publication-title: Sci. Rep. – volume: 26 start-page: 1520 year: 2010 end-page: 1527 ident: b0185 article-title: FABIA: factor analysis for bicluster acquisition publication-title: Bioinformatics – volume: 24 start-page: 1461 year: 2008 end-page: 1462 ident: b0210 article-title: fdrtool: a versatile R package for estimating local and tail area-based false discovery rates publication-title: Bioinformatics – volume: 37 start-page: D767 year: 2009 end-page: D772 ident: b0180 article-title: Human Protein Reference Database--2009 update publication-title: Nucleic Acids Res – volume: 7 year: 2017 ident: b0050 article-title: GenePANDA-a novel network-based gene prioritizing tool for complex diseases publication-title: Sci. Rep. – volume: 11 start-page: 2815 year: 2018 end-page: 2830 ident: b0095 article-title: Identifying miRNA and gene modules of colon cancer associated with pathological stage by weighted gene co-expression network analysis publication-title: Onco Targets Ther. – year: 2015 ident: b0080 article-title: Prediction of MicroRNA-disease associations based on social network analysis methods publication-title: Biomed Res. Int. – volume: 46 start-page: D956 year: 2018 end-page: D963 ident: b0100 article-title: LinkedOmics: analyzing multi-omics data within and across 32 cancer types publication-title: Nucleic Acids Res. – volume: 11 start-page: 700 year: 2018 end-page: 714 ident: b0120 article-title: Identification of prognostic biomarkers by combined mRNA and miRNA expression microarray analysis in pancreatic cancer publication-title: Transl. Oncol. – volume: 10 start-page: 73 year: 2009 ident: b0275 article-title: Disease candidate gene identification and prioritization using protein interaction networks publication-title: BMC Bioinformatics – volume: 36 start-page: 1461 year: 2017 end-page: 1473 ident: b0255 article-title: Wnt signaling in cancer publication-title: Oncogene – volume: 12 year: 2016 ident: b0190 article-title: Context specific and differential gene co-expression networks via bayesian biclustering publication-title: PLoS Comput. Biol. – year: 2017 ident: b0220 article-title: DGPathinter: a novel model for identifying driver genes via knowledge-driven matrix factorization with prior knowledge from interactome and pathways publication-title: PeerJ Comput. Sci. – start-page: 93 year: 2000 end-page: 103 ident: b0140 publication-title: Biclustering of expression data Proceedings International Conference on Intelligent Systems for Molecular Biology – volume: 4 year: 2009 ident: b0240 article-title: Increased microRNA activity in human cancers publication-title: PLoS ONE – volume: 4 start-page: 53 year: 2016 ident: b0245 article-title: ERK1 and ERK2 map kinases: specific roles or functional redundancy? publication-title: Front. Cell Dev. Biol. – volume: 37 start-page: W356 year: 2009 end-page: W362 ident: b0105 article-title: MicroRNA and mRNA integrated analysis (MMIA): a web tool for examining biological functions of microRNA expression publication-title: Nucleic Acids Res. – volume: 33 start-page: i59 year: 2017 end-page: i66 ident: b0155 article-title: Rectified factor networks for biclustering of omics data publication-title: Bioinformatics – volume: 16 start-page: S7 year: 2015 ident: b0145 article-title: Analysis of miRNA expression profiles in breast cancer using biclustering publication-title: BMC Bioinf. – volume: 17 start-page: 15 year: 2016 ident: b0135 article-title: Methods for the integration of multi-omics data: mathematical aspects publication-title: BMC Bioinf. – volume: 1 start-page: 24 year: 2004 end-page: 45 ident: b0150 article-title: Biclustering algorithms for biological data analysis: a survey publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform. – volume: 369 start-page: 20 year: 2015 end-page: 27 ident: b0250 article-title: Notch signaling: an emerging therapeutic target for cancer treatment publication-title: Cancer Lett. – start-page: 15(2) year: 2013 ident: b0030 article-title: miRNA expression profiling of 51 human breast cancer cell lines reveals subtype and driver mutation-specific miRNAs publication-title: Breast Cancer Res. – volume: 34 start-page: 2441 year: 2018 end-page: 2448 ident: b0070 article-title: Network-based integration of multi-omics data for prioritizing cancer genes publication-title: Bioinformatics – volume: 95 start-page: 1197 year: 2015 end-page: 1206 ident: b0040 article-title: Differential miRNA expressions in peripheral blood mononuclear cells for diagnosis of lung cancer publication-title: Lab. Invest. – volume: 32 start-page: D497 year: 2004 end-page: D501 ident: b0225 article-title: Human protein reference database as a discovery resource for proteomics publication-title: Nucleic Acids Res. – volume: 8 start-page: 64330 year: 2017 end-page: 64343 ident: b0260 article-title: miR-19b promotes breast cancer metastasis through targeting MYLIP and its related cell adhesion molecules publication-title: Oncotarget – volume: 493 start-page: 263 year: 2017 end-page: 269 ident: b0265 article-title: CREPT regulated by miR-138 promotes breast cancer progression publication-title: Biochem. Biophys. Res. Commun. – volume: 7 start-page: 45584 year: 2016 end-page: 45596 ident: b0075 article-title: Network-based identification of microRNAs as potential pharmacogenomic biomarkers for anticancer drugs publication-title: Oncotarget – volume: 46 start-page: D296 year: 2018 end-page: D302 ident: b0235 article-title: miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions publication-title: Nucleic Acids Res. – volume: 11 year: 2015 ident: b0125 article-title: A computational approach to identifying gene-microRNA modules in cancer publication-title: PLoS Comput. Biol. – volume: 34 start-page: 3719 year: 2018 end-page: 3726 ident: b0200 article-title: EBIC: an evolutionary-based parallel biclustering algorithm for pattern discovery publication-title: Bioinformatics – volume: 27 start-page: i401 year: 2011 end-page: 409 ident: b0115 article-title: A novel computational framework for simultaneous integration of multiple types of genomic data to identify microRNA-gene regulatory modules publication-title: Bioinformatics – start-page: 5 year: 2014 ident: b0285 article-title: Enriched variations in TEKT4 and breast cancer resistance to paclitaxel publication-title: Nat. Commun. – year: 2017 ident: 10.1016/j.ymeth.2019.05.010_b0220 article-title: DGPathinter: a novel model for identifying driver genes via knowledge-driven matrix factorization with prior knowledge from interactome and pathways publication-title: PeerJ Comput. Sci. doi: 10.7717/peerj-cs.133 – volume: 7 year: 2017 ident: 10.1016/j.ymeth.2019.05.010_b0050 article-title: GenePANDA-a novel network-based gene prioritizing tool for complex diseases publication-title: Sci. Rep. – volume: 44 start-page: W117 issue: W1 year: 2016 ident: 10.1016/j.ymeth.2019.05.010_b0010 article-title: Candidate gene prioritization with Endeavour publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw365 – start-page: 5 year: 2014 ident: 10.1016/j.ymeth.2019.05.010_b0285 article-title: Enriched variations in TEKT4 and breast cancer resistance to paclitaxel publication-title: Nat. Commun. – volume: 32 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.ymeth.2019.05.010_b0130 article-title: A non-negative matrix factorization method for detecting modules in heterogeneous omics multi-modal data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv544 – volume: 3 start-page: 328 issue: 4 year: 2010 ident: 10.1016/j.ymeth.2019.05.010_b0280 article-title: Piwil2 is expressed in various stages of breast cancers and has the potential to be used as a novel biomarker publication-title: Int. J. Clin. Exp. Pathol. – volume: 14 start-page: 905 issue: 4 year: 2017 ident: 10.1016/j.ymeth.2019.05.010_b0060 article-title: Inferring microRNA-disease associations by random walk on a heterogeneous network with multiple data sources publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf. doi: 10.1109/TCBB.2016.2550432 – volume: 493 start-page: 263 issue: 1 year: 2017 ident: 10.1016/j.ymeth.2019.05.010_b0265 article-title: CREPT regulated by miR-138 promotes breast cancer progression publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2017.09.033 – volume: 10 start-page: 73 year: 2009 ident: 10.1016/j.ymeth.2019.05.010_b0275 article-title: Disease candidate gene identification and prioritization using protein interaction networks publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-10-73 – volume: 36 start-page: 1461 issue: 11 year: 2017 ident: 10.1016/j.ymeth.2019.05.010_b0255 article-title: Wnt signaling in cancer publication-title: Oncogene doi: 10.1038/onc.2016.304 – volume: 17 start-page: 193 issue: 2 year: 2016 ident: 10.1016/j.ymeth.2019.05.010_b0065 article-title: Integrative approaches for predicting microRNA function and prioritizing disease-related microRNA using biological interaction networks publication-title: Briefings Bioinf. doi: 10.1093/bib/bbv033 – volume: 39 start-page: 473 issue: 2 year: 2018 ident: 10.1016/j.ymeth.2019.05.010_b0290 article-title: MicroRNA-133a acts as a tumour suppressor in breast cancer through targeting LASP1 publication-title: Oncol. Rep. – volume: 12 issue: 7 year: 2016 ident: 10.1016/j.ymeth.2019.05.010_b0190 article-title: Context specific and differential gene co-expression networks via bayesian biclustering publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1004791 – volume: 37 issue: 15 year: 2009 ident: 10.1016/j.ymeth.2019.05.010_b0195 article-title: QUBIC: a qualitative biclustering algorithm for analyses of gene expression data publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkp491 – volume: 24 start-page: 1461 issue: 12 year: 2008 ident: 10.1016/j.ymeth.2019.05.010_b0210 article-title: fdrtool: a versatile R package for estimating local and tail area-based false discovery rates publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn209 – volume: 34 start-page: 2441 issue: 14 year: 2018 ident: 10.1016/j.ymeth.2019.05.010_b0070 article-title: Network-based integration of multi-omics data for prioritizing cancer genes publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty148 – start-page: 9 year: 2018 ident: 10.1016/j.ymeth.2019.05.010_b0165 article-title: Capture Hi-C identifies putative target genes at 33 breast cancer risk loci publication-title: Nat. Commun. – volume: 16 start-page: S7 issue: Suppl. 4 year: 2015 ident: 10.1016/j.ymeth.2019.05.010_b0145 article-title: Analysis of miRNA expression profiles in breast cancer using biclustering publication-title: BMC Bioinf. doi: 10.1186/1471-2105-16-S4-S7 – volume: 46 start-page: D296 issue: D1 year: 2018 ident: 10.1016/j.ymeth.2019.05.010_b0235 article-title: miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx1067 – volume: 1 start-page: 24 issue: 1 year: 2004 ident: 10.1016/j.ymeth.2019.05.010_b0150 article-title: Biclustering algorithms for biological data analysis: a survey publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform. doi: 10.1109/TCBB.2004.2 – volume: 33 start-page: i59 issue: 14 year: 2017 ident: 10.1016/j.ymeth.2019.05.010_b0155 article-title: Rectified factor networks for biclustering of omics data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx226 – start-page: 93 year: 2000 ident: 10.1016/j.ymeth.2019.05.010_b0140 – volume: 27 start-page: i401 issue: 13 year: 2011 ident: 10.1016/j.ymeth.2019.05.010_b0115 article-title: A novel computational framework for simultaneous integration of multiple types of genomic data to identify microRNA-gene regulatory modules publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr206 – volume: 518 start-page: 209 issue: 1 year: 2013 ident: 10.1016/j.ymeth.2019.05.010_b0205 article-title: DiffCorr: An R package to analyze and visualize differential correlations in biological networks publication-title: Gene doi: 10.1016/j.gene.2012.11.028 – volume: 17 start-page: 15 issue: Suppl. 2 year: 2016 ident: 10.1016/j.ymeth.2019.05.010_b0135 article-title: Methods for the integration of multi-omics data: mathematical aspects publication-title: BMC Bioinf. doi: 10.1186/s12859-015-0857-9 – volume: 43 issue: 8 year: 2006 ident: 10.1016/j.ymeth.2019.05.010_b0215 article-title: Predicting disease genes using protein-protein interactions publication-title: J. Med. Genet. doi: 10.1136/jmg.2006.041376 – volume: 46 start-page: D956 issue: D1 year: 2018 ident: 10.1016/j.ymeth.2019.05.010_b0100 article-title: LinkedOmics: analyzing multi-omics data within and across 32 cancer types publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx1090 – volume: 14 start-page: 337 issue: 4 year: 2010 ident: 10.1016/j.ymeth.2019.05.010_b0230 article-title: A novel candidate disease genes prioritization method based on module partition and rank fusion publication-title: OMICS doi: 10.1089/omi.2009.0143 – volume: 6 start-page: 34512 year: 2016 ident: 10.1016/j.ymeth.2019.05.010_b0110 article-title: Analysis of microRNA and gene expression profiles in multiple sclerosis: integrating interaction data to uncover regulatory mechanisms publication-title: Sci. Rep. doi: 10.1038/srep34512 – volume: 4 issue: 6 year: 2009 ident: 10.1016/j.ymeth.2019.05.010_b0240 article-title: Increased microRNA activity in human cancers publication-title: PLoS ONE doi: 10.1371/journal.pone.0006045 – volume: 11 start-page: 2815 year: 2018 ident: 10.1016/j.ymeth.2019.05.010_b0095 article-title: Identifying miRNA and gene modules of colon cancer associated with pathological stage by weighted gene co-expression network analysis publication-title: Onco Targets Ther. doi: 10.2147/OTT.S163891 – start-page: 19 year: 2018 ident: 10.1016/j.ymeth.2019.05.010_b0090 article-title: MGOGP: a gene module-based heuristic algorithm for cancer-related gene prioritization publication-title: BMC Bioinf. – volume: 15 start-page: 1680 issue: 2 year: 2018 ident: 10.1016/j.ymeth.2019.05.010_b0020 article-title: Identification of common key genes in breast, lung and prostate cancer and exploration of their heterogeneous expression publication-title: Oncol. Lett. – volume: 4 start-page: 53 year: 2016 ident: 10.1016/j.ymeth.2019.05.010_b0245 article-title: ERK1 and ERK2 map kinases: specific roles or functional redundancy? publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2016.00053 – volume: 13 start-page: 535 year: 2012 ident: 10.1016/j.ymeth.2019.05.010_b0015 article-title: GeneFriends: an online co-expression analysis tool to identify novel gene targets for aging and complex diseases publication-title: BMC Genomics doi: 10.1186/1471-2164-13-535 – volume: 9 start-page: 331 issue: 2 year: 2018 ident: 10.1016/j.ymeth.2019.05.010_b0270 article-title: MiR-378 and MiR-1827 regulate tumor invasion, migration and angiogenesis in human lung adenocarcinoma by targeting RBX1 and CRKL, respectively publication-title: J. Cancer doi: 10.7150/jca.18188 – volume: 45 start-page: D777 issue: D1 year: 2017 ident: 10.1016/j.ymeth.2019.05.010_b0170 article-title: COSMIC: somatic cancer genetics at high-resolution publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw1121 – volume: 7 start-page: 45584 issue: 29 year: 2016 ident: 10.1016/j.ymeth.2019.05.010_b0075 article-title: Network-based identification of microRNAs as potential pharmacogenomic biomarkers for anticancer drugs publication-title: Oncotarget doi: 10.18632/oncotarget.10052 – volume: 15 issue: 12 year: 2014 ident: 10.1016/j.ymeth.2019.05.010_b0160 article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 publication-title: Genome Biol. doi: 10.1186/s13059-014-0550-8 – volume: 11 start-page: 700 issue: 3 year: 2018 ident: 10.1016/j.ymeth.2019.05.010_b0120 article-title: Identification of prognostic biomarkers by combined mRNA and miRNA expression microarray analysis in pancreatic cancer publication-title: Transl. Oncol. doi: 10.1016/j.tranon.2018.03.003 – volume: 29 start-page: 638 issue: 5 year: 2013 ident: 10.1016/j.ymeth.2019.05.010_b0175 article-title: miRCancer: a microRNA-cancer association database constructed by text mining on literature publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt014 – volume: 7 start-page: 46598 year: 2017 ident: 10.1016/j.ymeth.2019.05.010_b0005 article-title: A large-scale benchmark of gene prioritization methods publication-title: Sci. Rep. doi: 10.1038/srep46598 – volume: 34 start-page: 3719 issue: 21 year: 2018 ident: 10.1016/j.ymeth.2019.05.010_b0200 article-title: EBIC: an evolutionary-based parallel biclustering algorithm for pattern discovery publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty401 – volume: 11 issue: 1 year: 2015 ident: 10.1016/j.ymeth.2019.05.010_b0125 article-title: A computational approach to identifying gene-microRNA modules in cancer publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1004042 – volume: 12 start-page: 655 issue: 6 year: 2015 ident: 10.1016/j.ymeth.2019.05.010_b0035 article-title: Differential expression of microRNAs in aortic tissue and plasma in patients with acute aortic dissection publication-title: J Geriatr. Cardiol. – volume: 39 start-page: W334 issue: Web Server issue year: 2011 ident: 10.1016/j.ymeth.2019.05.010_b0055 article-title: PINTA: a web server for network-based gene prioritization from expression data publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr289 – volume: 26 start-page: 1520 issue: 12 year: 2010 ident: 10.1016/j.ymeth.2019.05.010_b0185 article-title: FABIA: factor analysis for bicluster acquisition publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq227 – volume: 30 start-page: 2689 issue: 18 year: 2014 ident: 10.1016/j.ymeth.2019.05.010_b0045 article-title: MaxLink: network-based prioritization of genes tightly linked to a disease seed set publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu344 – volume: 12 issue: 12 year: 2017 ident: 10.1016/j.ymeth.2019.05.010_b0085 article-title: FGMD: a novel approach for functional gene module detection in cancer publication-title: PLoS ONE doi: 10.1371/journal.pone.0188900 – volume: 11 issue: 6 year: 2016 ident: 10.1016/j.ymeth.2019.05.010_b0025 article-title: Identification of cancer related genes using a comprehensive map of human gene expression publication-title: PLoS ONE doi: 10.1371/journal.pone.0157484 – volume: 37 start-page: D767 issue: Database issue year: 2009 ident: 10.1016/j.ymeth.2019.05.010_b0180 article-title: Human Protein Reference Database--2009 update publication-title: Nucleic Acids Res doi: 10.1093/nar/gkn892 – volume: 369 start-page: 20 issue: 1 year: 2015 ident: 10.1016/j.ymeth.2019.05.010_b0250 article-title: Notch signaling: an emerging therapeutic target for cancer treatment publication-title: Cancer Lett. doi: 10.1016/j.canlet.2015.07.048 – volume: 37 start-page: W356 issue: Web Server issue year: 2009 ident: 10.1016/j.ymeth.2019.05.010_b0105 article-title: MicroRNA and mRNA integrated analysis (MMIA): a web tool for examining biological functions of microRNA expression publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkp294 – volume: 32 start-page: D497 year: 2004 ident: 10.1016/j.ymeth.2019.05.010_b0225 article-title: Human protein reference database as a discovery resource for proteomics publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkh070 – start-page: 15(2) year: 2013 ident: 10.1016/j.ymeth.2019.05.010_b0030 article-title: miRNA expression profiling of 51 human breast cancer cell lines reveals subtype and driver mutation-specific miRNAs publication-title: Breast Cancer Res. – volume: 95 start-page: 1197 issue: 10 year: 2015 ident: 10.1016/j.ymeth.2019.05.010_b0040 article-title: Differential miRNA expressions in peripheral blood mononuclear cells for diagnosis of lung cancer publication-title: Lab. Invest. doi: 10.1038/labinvest.2015.88 – year: 2015 ident: 10.1016/j.ymeth.2019.05.010_b0080 article-title: Prediction of MicroRNA-disease associations based on social network analysis methods publication-title: Biomed Res. Int. doi: 10.1155/2015/810514 – volume: 8 start-page: 64330 issue: 38 year: 2017 ident: 10.1016/j.ymeth.2019.05.010_b0260 article-title: miR-19b promotes breast cancer metastasis through targeting MYLIP and its related cell adhesion molecules publication-title: Oncotarget doi: 10.18632/oncotarget.19278 |
| SSID | ssj0001278 |
| Score | 2.30266 |
| Snippet | •Biclustering analysis of integrated expression data from the same set of samples.•Identify breast cancer-specific biclusters with Rectified Factor... Detecting cancer-related genes and their interactions is a crucial task in cancer research. For this purpose, we proposed an efficient method, to detect coding... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 22 |
| SubjectTerms | Algorithms Biclustering Biomarker Breast cancer breast neoplasms Breast Neoplasms - genetics Breast Neoplasms - pathology breasts Computational Biology data collection Female gene expression regulation Gene Expression Regulation, Neoplastic - genetics Gene Regulatory Networks - genetics Gene-miRNA interaction genes Humans microRNA MicroRNAs - genetics miRNA patients protein-protein interactions Rectified factor networks RNA, Messenger - genetics |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9swFD6U9KF72aXdxbuhwdhTnTrWxfajKStlsDDKAt2TkBR5S5c4IYkp6dv--Y4kO6wrC-ubE0nGjr_ofMf69B2A96bQRWVpEY9z7RKUnMdFzmhsUqFp5f033Yru56E4H7FPl_xyDwbdXhgv2jd60q-ns349-eG1lYuZOel0YiciSzBmYsKzLzjS7x7sj4Zfym_BdUDErhy4Pw41CJPOachrujauLLPTcxXBrjP5VzS6yzbviiYPmnqhNtdqOv0jIp09govuXoIQ5We_Weu-ufnL5vFeN_sYHrb8lJSh6Qns2foQjsoac_PZhnwgXjHqX8UfwsFpVy3uCH6VxM-dFVJaEor4kDpIzImLlGOi8YSNs2XAYElC4WqCjJmMrVvHcF8ah8Bl7LfX4AAzd3GVfHezMVH1mMwmF8NydeyP_QIHcWYXy7A1Y_UURmcfv56ex215h9iwIl3HVOdUmXRsLbOU2sJmSDVUYpjBFNAmlg10RQeCq0xolVU6TwtstdowhUkmV_QZ9Op5bV8AYbnSXBiBhEMwnIZUqg3HE9CKmSoVJoK0e8zStN7nrgTHVHYityvpsSEdNmTCJWIjguPtoEWw_tjdXXT4kS17CaxEYnDaPfBdhzaJD80t2KjazpuVROqGdAopJt_VJxe5o5l5BM8DQrdXS5FMI58rIshuYXfbwXmL325BFHqP8RZ4EcRblP_Pj_Dynv1fwQP3yb2kH_DX0FsvG_sGWd5av23_178B8oxUNg priority: 102 providerName: Unpaywall |
| Title | A rectified factor network based biclustering method for detecting cancer-related coding genes and miRNAs, and their interactions |
| URI | https://dx.doi.org/10.1016/j.ymeth.2019.05.010 https://www.ncbi.nlm.nih.gov/pubmed/31121299 https://www.proquest.com/docview/2231851725 https://www.proquest.com/docview/2286863998 https://pubmed.ncbi.nlm.nih.gov/PMC6708461 https://www.ncbi.nlm.nih.gov/pmc/articles/6708461 |
| UnpaywallVersion | submittedVersion |
| Volume | 166 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1095-9130 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001278 issn: 1095-9130 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1095-9130 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001278 issn: 1095-9130 databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1095-9130 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001278 issn: 1095-9130 databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1095-9130 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001278 issn: 1095-9130 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1095-9130 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001278 issn: 1095-9130 databaseCode: AKRWK dateStart: 19900801 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELem8TBeEGx8hMFkJMTTQlPbcZLHqGIqICoEVBpPlu04o6hLq35o6gsS_zl3dlKoJirEU75sK_Jd7n7OnX9HyEtbmKJ2vIir3OACJU_jIhc8tkwaXnv-TYzofhjJ4Vi8u0wvD8ig2wuDaZWt7Q823Vvr9k6vnc3efDLpfcboJBb_BqVMOGfI-ClEhlUMXv_4nebRZ1nYDidkjK075iGf47XBMs2Y31UE-s7kb97pNvq8nUR5tG7menOjp9M_PNTFfXKvhZa0DG__gBy45piclA0sq6839BX1yZ7-L_oxORp0hd5OyM-SerNXAxqlof4ObUJ2OEUnV1EDA66RUQH8HA01pymAXVo5DEHgTYvKs4j9zhjoYGfoEukVGlKqm4peTz6NyuW5P_exCYo8FYuwq2L5kIwv3nwZDOO2MkNsRcFWMTc515ZVzgnHuStcBihBJ1ZYWL25xIm-qXlfpjqTRme1yVkBT52xQsP6MNX8ETlsZo17QqjItUmllYAVpAALopmxKQzAa2FrJm1EWCcRZVvacqyeMVVdftp35cWoUIwqSRWIMSLn207zwNqxv7nsRK12lE-BX9nf8UWnGAqEhrEW3bjZeqkY6mUK6DDd1yaXOSLEPCKPgzJt35YDDgYoVkQk21GzbQOkBd990ky-eXpwmSUAKvsRibcK-S-T8PR_J-GU3MUr_NHeT5-Rw9Vi7Z4DUluZM_8pnpE75dv3wxEcx6OP5ddf0Z5CKQ |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaW5VAuCHZ5hKeREKcNTfxKcqwqVgV2e4BdaW-W7ThQ1E2rPoR6QeKfM-MkhWpFhbhFsR1FnsnMN5nxN4S8doUtKs-LuMwtBii5jItc8NgxZXkV-Dcxo3s-VqNL8eFKXh2QYXcWBssqW9vf2PRgrds7_XY3-_PJpP8Zs5PY_BuUMuGc8VvktpAswwjs7Y_fdR4py5rzcELFOL2jHgpFXhvs04wFXkXD35n8zT3dhJ83qyh763puNt_NdPqHizq9R-622JIOmte_Tw58fUSOBzXE1dcb-oaGas_wG_2I9IZdp7dj8nNAg92rAI7SpgEPrZvycIperqQWHrhGSgVwdLRpOk0B7dLSYw4CbzrUnkUcjsbAAjdDn0i_oCWlpi7p9eTTeLA8CdchOUGRqGLRHKtYPiCXp-8uhqO4bc0QO1GwVcxtzo1jpffCc-4LnwFMMIkTDsI3n3iR2oqnSppMWZNVNmcFjHrrhIEAURr-kBzWs9o_JlTkxkrlFIAFJcCEGGadhAfwSriKKRcR1klEu5a3HNtnTHVXoPZNBzFqFKNOpAYxRuRku2je0Hbsn646Uesd7dPgWPYvfNUphgahYbLF1H62XmqGiikBHsp9c3KVI0TMI_KoUabt23IAwoDFiohkO2q2nYC84Lsj9eRr4AdXWQKoMo1IvFXIf9mEJ_-7CS9Jb3RxfqbP3o8_PiV3cAT_uqfyGTlcLdb-OcC2lX0RPstf0IVCDg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9swFD6U9KF72aXdxbuhwdhTnTrWxfajKStlsDDKAt2TkBR5S5c4IYkp6dv--Y4kO6wrC-ubE0nGjr_ofMf69B2A96bQRWVpEY9z7RKUnMdFzmhsUqFp5f033Yru56E4H7FPl_xyDwbdXhgv2jd60q-ns349-eG1lYuZOel0YiciSzBmYsKzLzjS7x7sj4Zfym_BdUDErhy4Pw41CJPOachrujauLLPTcxXBrjP5VzS6yzbviiYPmnqhNtdqOv0jIp09govuXoIQ5We_Weu-ufnL5vFeN_sYHrb8lJSh6Qns2foQjsoac_PZhnwgXjHqX8UfwsFpVy3uCH6VxM-dFVJaEor4kDpIzImLlGOi8YSNs2XAYElC4WqCjJmMrVvHcF8ah8Bl7LfX4AAzd3GVfHezMVH1mMwmF8NydeyP_QIHcWYXy7A1Y_UURmcfv56ex215h9iwIl3HVOdUmXRsLbOU2sJmSDVUYpjBFNAmlg10RQeCq0xolVU6TwtstdowhUkmV_QZ9Op5bV8AYbnSXBiBhEMwnIZUqg3HE9CKmSoVJoK0e8zStN7nrgTHVHYityvpsSEdNmTCJWIjguPtoEWw_tjdXXT4kS17CaxEYnDaPfBdhzaJD80t2KjazpuVROqGdAopJt_VJxe5o5l5BM8DQrdXS5FMI58rIshuYXfbwXmL325BFHqP8RZ4EcRblP_Pj_Dynv1fwQP3yb2kH_DX0FsvG_sGWd5av23_178B8oxUNg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+rectified+factor+network+based+biclustering+method+for+detecting+cancer-related+coding+genes+and+miRNAs%2C+and+their+interactions&rft.jtitle=Methods+%28San+Diego%2C+Calif.%29&rft.au=Su%2C+Lingtao&rft.au=Liu%2C+Guixia&rft.au=Wang%2C+Juexin&rft.au=Xu%2C+Dong&rft.date=2019-08-15&rft.issn=1046-2023&rft.eissn=1095-9130&rft.volume=166&rft.spage=22&rft.epage=30&rft_id=info:doi/10.1016%2Fj.ymeth.2019.05.010&rft_id=info%3Apmid%2F31121299&rft.externalDocID=PMC6708461 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1046-2023&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1046-2023&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1046-2023&client=summon |