A rectified factor network based biclustering method for detecting cancer-related coding genes and miRNAs, and their interactions

•Biclustering analysis of integrated expression data from the same set of samples.•Identify breast cancer-specific biclusters with Rectified Factor Networks.•Identify breast cancer-related coding genes, microRNAs and their interactions.•Prioritize biomarkers by integrating multiple data sources and...

Full description

Saved in:
Bibliographic Details
Published inMethods (San Diego, Calif.) Vol. 166; pp. 22 - 30
Main Authors Su, Lingtao, Liu, Guixia, Wang, Juexin, Xu, Dong
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.08.2019
Subjects
Online AccessGet full text
ISSN1046-2023
1095-9130
1095-9130
DOI10.1016/j.ymeth.2019.05.010

Cover

Abstract •Biclustering analysis of integrated expression data from the same set of samples.•Identify breast cancer-specific biclusters with Rectified Factor Networks.•Identify breast cancer-related coding genes, microRNAs and their interactions.•Prioritize biomarkers by integrating multiple data sources and rank fusion process. Detecting cancer-related genes and their interactions is a crucial task in cancer research. For this purpose, we proposed an efficient method, to detect coding genes, microRNAs (miRNAs), and their interactions related to a particular cancer or a cancer subtype using their expression data from the same set of samples. Firstly, biclusters specific to a particular type of cancer are detected based on rectified factor networks and ranked according to their associations with general cancers. Secondly, coding genes and miRNAs in each bicluster are prioritized by considering their differential expression and differential correlation values, protein–protein interaction data, and potential cancer markers. Finally, a rank fusion process is used to obtain the final comprehensive rank by combining multiple ranking results. We applied our proposed method on breast cancer datasets. Results show that our method outperforms other methods in detecting breast cancer-related coding genes and miRNAs. Furthermore, our method is very efficient in computing time, which can handle tens of thousands genes/miRNAs and hundreds of patients in hours on a desktop. This work may aid researchers in studying the genetic architecture of complex diseases, and improving the accuracy of diagnosis.
AbstractList •Biclustering analysis of integrated expression data from the same set of samples.•Identify breast cancer-specific biclusters with Rectified Factor Networks.•Identify breast cancer-related coding genes, microRNAs and their interactions.•Prioritize biomarkers by integrating multiple data sources and rank fusion process. Detecting cancer-related genes and their interactions is a crucial task in cancer research. For this purpose, we proposed an efficient method, to detect coding genes, microRNAs (miRNAs), and their interactions related to a particular cancer or a cancer subtype using their expression data from the same set of samples. Firstly, biclusters specific to a particular type of cancer are detected based on rectified factor networks and ranked according to their associations with general cancers. Secondly, coding genes and miRNAs in each bicluster are prioritized by considering their differential expression and differential correlation values, protein–protein interaction data, and potential cancer markers. Finally, a rank fusion process is used to obtain the final comprehensive rank by combining multiple ranking results. We applied our proposed method on breast cancer datasets. Results show that our method outperforms other methods in detecting breast cancer-related coding genes and miRNAs. Furthermore, our method is very efficient in computing time, which can handle tens of thousands genes/miRNAs and hundreds of patients in hours on a desktop. This work may aid researchers in studying the genetic architecture of complex diseases, and improving the accuracy of diagnosis.
Detecting cancer-related genes and their interactions is a crucial task in cancer research. For this purpose, we proposed an efficient method, to detect coding genes, microRNAs (miRNAs), and their interactions related to a particular cancer or a cancer subtype using their expression data from the same set of samples. Firstly, biclusters specific to a particular type of cancer are detected based on rectified factor networks and ranked according to their associations with general cancers. Secondly, coding genes and miRNAs in each bicluster are prioritized by considering their differential expression and differential correlation values, protein-protein interaction data, and potential cancer markers. Finally, a rank fusion process is used to obtain the final comprehensive rank by combining multiple ranking results. We applied our proposed method on breast cancer datasets. Results show that our method outperforms other methods in detecting breast cancer-related coding genes and miRNAs. Furthermore, our method is very efficient in computing time, which can handle tens of thousands genes/miRNAs and hundreds of patients in hours on a desktop. This work may aid researchers in studying the genetic architecture of complex diseases, and improving the accuracy of diagnosis.
Detecting cancer-related genes and their interactions is a crucial task in cancer research. For this purpose, we proposed an efficient method, to detect coding genes, microRNAs (miRNAs), and their interactions related to a particular cancer or a cancer subtype using their expression data from the same set of samples. Firstly, biclusters specific to a particular type of cancer are detected based on rectified factor networks and ranked according to their associations with general cancers. Secondly, coding genes and miRNAs in each bicluster are prioritized by considering their differential expression and differential correlation values, protein-protein interaction data, and potential cancer markers. Finally, a rank fusion process is used to obtain the final comprehensive rank by combining multiple ranking results. We applied our proposed method on breast cancer datasets. Results show that our method outperforms other methods in detecting breast cancer-related coding genes and miRNAs. Furthermore, our method is very efficient in computing time, which can handle tens of thousands genes/miRNAs and hundreds of patients in hours on a desktop. This work may aid researchers in studying the genetic architecture of complex diseases, and improving the accuracy of diagnosis.Detecting cancer-related genes and their interactions is a crucial task in cancer research. For this purpose, we proposed an efficient method, to detect coding genes, microRNAs (miRNAs), and their interactions related to a particular cancer or a cancer subtype using their expression data from the same set of samples. Firstly, biclusters specific to a particular type of cancer are detected based on rectified factor networks and ranked according to their associations with general cancers. Secondly, coding genes and miRNAs in each bicluster are prioritized by considering their differential expression and differential correlation values, protein-protein interaction data, and potential cancer markers. Finally, a rank fusion process is used to obtain the final comprehensive rank by combining multiple ranking results. We applied our proposed method on breast cancer datasets. Results show that our method outperforms other methods in detecting breast cancer-related coding genes and miRNAs. Furthermore, our method is very efficient in computing time, which can handle tens of thousands genes/miRNAs and hundreds of patients in hours on a desktop. This work may aid researchers in studying the genetic architecture of complex diseases, and improving the accuracy of diagnosis.
Author Liu, Guixia
Su, Lingtao
Wang, Juexin
Xu, Dong
AuthorAffiliation 1 Department of Computer Science and Technology, Jilin University, Changchun, 130012, China
2 Department of Electrical Engineering & Computer Science and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
AuthorAffiliation_xml – name: 2 Department of Electrical Engineering & Computer Science and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
– name: 1 Department of Computer Science and Technology, Jilin University, Changchun, 130012, China
Author_xml – sequence: 1
  givenname: Lingtao
  surname: Su
  fullname: Su, Lingtao
  organization: Department of Computer Science and Technology, Jilin University, Changchun 130012, China
– sequence: 2
  givenname: Guixia
  surname: Liu
  fullname: Liu, Guixia
  organization: Department of Computer Science and Technology, Jilin University, Changchun 130012, China
– sequence: 3
  givenname: Juexin
  surname: Wang
  fullname: Wang, Juexin
  organization: Department of Electrical Engineering & Computer Science and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
– sequence: 4
  givenname: Dong
  surname: Xu
  fullname: Xu, Dong
  email: xudong@missouri.edu
  organization: Department of Electrical Engineering & Computer Science and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31121299$$D View this record in MEDLINE/PubMed
BookMark eNqNUktv1DAQjlARfcAvQEI5ciDBrzx8AGlVAa1UgYTgbE2cya6XxF5sp9Ue-ec43fI8QE8ezXzfNzPf-DQ7ss5ilj2lpKSE1i-35X7CuCkZobIkVUkoeZCdUCKrQlJOjpZY1AUjjB9npyFsCSGUNe2j7JhTyiiT8iT7tso96mgGg30-gI7O5xbjjfNf8g5CSnZGj3OI6I1d50tDl4AJ1WNciCmpwWr0hccRYiJo1y_ZNVoMOdg-n8zH96vw4jaOGzQ-NzbppWbG2fA4ezjAGPDJ3XuWfX775tP5RXH14d3l-eqq0EKyWPCu5aBZjyiQc5TYMCGAaKGlbJGgoN3AaV1BU3fQDF3LZKpipwVQSSvgZ5k46M52B_sbGEe182YCv1eUqMVRtVW3jqrFUUUqlRxNtNcH2m7uJuw12ujhF9WBUX9WrNmotbtWdUNaUdMk8PxOwLuvM4aoJhM0jiNYdHNQjLV1W_O0xT2gnLYVbViVoM9-H-vnPD8umwDyANDeheBxUNpEWBxPU5rxPzvzv7j3c-rVgYXpitcGvQraYPoavVm-mOqd-Sf_O4Tn5HY
CitedBy_id crossref_primary_10_3390_electronics9111782
crossref_primary_10_3389_fbioe_2020_00349
crossref_primary_10_1016_j_csbj_2021_01_029
Cites_doi 10.7717/peerj-cs.133
10.1093/nar/gkw365
10.1093/bioinformatics/btv544
10.1109/TCBB.2016.2550432
10.1016/j.bbrc.2017.09.033
10.1186/1471-2105-10-73
10.1038/onc.2016.304
10.1093/bib/bbv033
10.1371/journal.pcbi.1004791
10.1093/nar/gkp491
10.1093/bioinformatics/btn209
10.1093/bioinformatics/bty148
10.1186/1471-2105-16-S4-S7
10.1093/nar/gkx1067
10.1109/TCBB.2004.2
10.1093/bioinformatics/btx226
10.1093/bioinformatics/btr206
10.1016/j.gene.2012.11.028
10.1186/s12859-015-0857-9
10.1136/jmg.2006.041376
10.1093/nar/gkx1090
10.1089/omi.2009.0143
10.1038/srep34512
10.1371/journal.pone.0006045
10.2147/OTT.S163891
10.3389/fcell.2016.00053
10.1186/1471-2164-13-535
10.7150/jca.18188
10.1093/nar/gkw1121
10.18632/oncotarget.10052
10.1186/s13059-014-0550-8
10.1016/j.tranon.2018.03.003
10.1093/bioinformatics/btt014
10.1038/srep46598
10.1093/bioinformatics/bty401
10.1371/journal.pcbi.1004042
10.1093/nar/gkr289
10.1093/bioinformatics/btq227
10.1093/bioinformatics/btu344
10.1371/journal.pone.0188900
10.1371/journal.pone.0157484
10.1093/nar/gkn892
10.1016/j.canlet.2015.07.048
10.1093/nar/gkp294
10.1093/nar/gkh070
10.1038/labinvest.2015.88
10.1155/2015/810514
10.18632/oncotarget.19278
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright © 2019 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2019 Elsevier Inc.
– notice: Copyright © 2019 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
ADTOC
UNPAY
DOI 10.1016/j.ymeth.2019.05.010
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1095-9130
EndPage 30
ExternalDocumentID oai:pubmedcentral.nih.gov:6708461
PMC6708461
31121299
10_1016_j_ymeth_2019_05_010
S1046202318303323
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R35 GM126985
GroupedDBID ---
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFRF
ABGSF
ABJNI
ABMAC
ABUDA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DM4
DOVZS
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMG
IHE
J1W
KOM
LG5
LX2
LZ5
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPCBC
SSU
SSZ
T5K
XPP
Y6R
ZMT
ZU3
~G-
--K
.GJ
29M
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGHFR
AGQPQ
AGRDE
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EFKBS
FEDTE
FGOYB
G-2
HLW
HVGLF
HZ~
K-O
R2-
SBG
SEW
SIN
WUQ
ZGI
~HD
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
7S9
L.6
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c492t-3b83ac2dee4e33e9e7244a0c4c998e0e41bf3165a76ba7fb829a0cebc4a1915a3
IEDL.DBID .~1
ISSN 1046-2023
1095-9130
IngestDate Sun Oct 26 03:59:26 EDT 2025
Tue Sep 30 16:44:45 EDT 2025
Thu Oct 02 05:55:12 EDT 2025
Thu Oct 02 10:21:22 EDT 2025
Mon Jul 21 06:06:35 EDT 2025
Sat Oct 25 04:57:56 EDT 2025
Thu Apr 24 23:10:37 EDT 2025
Fri Feb 23 02:26:57 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords miRNA
Biomarker
Breast cancer
Biclustering
Rectified factor networks
Gene-miRNA interaction
Language English
License Copyright © 2019 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c492t-3b83ac2dee4e33e9e7244a0c4c998e0e41bf3165a76ba7fb829a0cebc4a1915a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/6708461
PMID 31121299
PQID 2231851725
PQPubID 23479
PageCount 9
ParticipantIDs unpaywall_primary_10_1016_j_ymeth_2019_05_010
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6708461
proquest_miscellaneous_2286863998
proquest_miscellaneous_2231851725
pubmed_primary_31121299
crossref_citationtrail_10_1016_j_ymeth_2019_05_010
crossref_primary_10_1016_j_ymeth_2019_05_010
elsevier_sciencedirect_doi_10_1016_j_ymeth_2019_05_010
PublicationCentury 2000
PublicationDate 2019-08-15
PublicationDateYYYYMMDD 2019-08-15
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Methods (San Diego, Calif.)
PublicationTitleAlternate Methods
PublicationYear 2019
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Jin, Lee (b0085) 2017; 12
Zhou, Huang, Liang, Tang, Wu, Huang, Mo, Wang (b0095) 2018; 11
Liu, Yang, Taher, Denz, Grutzmann, Pilarsky, Weber (b0120) 2018; 11
Oti, Snel, Huynen, Brunner (b0215) 2006; 43
Hochreiter, Bodenhofer, Heusel, Mayr, Mitterecker, Kasim, Khamiakova, Van Sanden, Lin, Talloen (b0185) 2010; 26
Dimitrakopoulos, Hindupur, Hafliger, Behr, Montazeri, Hall, Beerenwinkel (b0070) 2018; 34
Chou, Shrestha, Yang, Chang, Lin, Liao, Huang, Sun, Tu, Lee (b0235) 2018; 46
Zou, Li, Hong, Lin, Wu, Shi, Ju (b0080) 2015
Vasaikar, Straub, Wang, Zhang (b0100) 2018; 46
Torrente, Lukk, Xue, Parkinson, Rung, Brazma (b0025) 2016; 11
Chen, Yan, Liao (b0230) 2010; 14
Freiesleben, Hecker, Zettl, Fuellen, Taher (b0110) 2016; 6
Strimmer (b0210) 2008; 24
Yang, Michailidis (b0130) 2016; 32
Peri, Navarro, Kristiansen, Amanchy, Surendranath, Muthusamy, Gandhi, Chandrika, Deshpande, Suresh (b0225) 2004; 32
Nam, Li, Choi, Balch, Kim, Nephew (b0105) 2009; 37
Xie, Ding, Han, Wu (b0175) 2013; 29
Riaz, van Jaarsveld, Hollestelle, Prager-van der Smissen, Heine, Boersma, Liu, Helmijr, Ozturk, Smid (b0030) 2013
Jin, Lee (b0125) 2015; 11
Wang, Huang, Yang, Zhang, Su, Tian, Lu, Zhang, Fan, Hui (b0035) 2015; 12
Li, Ma, Tang, Paterson, Xu (b0195) 2009; 37
Tranchevent, Ardeshirdavani, ElShal, Alcaide, Aerts, Auboeuf, Moreau (b0010) 2016; 44
Clevert, Unterthiner, Povysil, Hochreiter (b0155) 2017; 33
Love, Huber, Anders (b0160) 2014; 15
Fiannaca, La Rosa, La Paglia, Rizzo, Urso (b0145) 2015; 16
Israel, Sharan, Ruppin, Galun (b0240) 2009; 4
Keshava Prasad, Goel, Kandasamy, Keerthikumar, Kumar, Mathivanan, Telikicherla, Raju, Shafreen, Venugopal (b0180) 2009; 37
Xi, Wang, Li (b0220) 2017
Jiang, Yu, Peng, Di, Wu, Liu, Shao (b0285) 2014
Madeira, Oliveira (b0150) 2004; 1
Fukushima (b0205) 2013; 518
Sui, Zhang, Yang, Wei, Wang (b0290) 2018; 39
Makhijani, Raut, Purohit (b0020) 2018; 15
Guala, Sonnhammer (b0005) 2017; 7
Ma, Lin, Zhan, Mann, Stass, Jiang (b0040) 2015; 95
Guala, Sjolund, Sonnhammer (b0045) 2014; 30
Forbes, Beare, Boutselakis, Bamford, Bindal, Tate, Cole, Ward, Dawson, Ponting (b0170) 2017; 45
Nitsch, Tranchevent, Goncalves, Vogt, Madeira, Moreau (b0055) 2011; 39
Cheng, Church (b0140) 2000
Ho, Noor, Nagoor (b0270) 2018; 9
Liu, Zeng, He, Zou (b0060) 2017; 14
van Dam, Cordeiro, Craig, van Dam, Wood, de Magalhaes (b0015) 2012; 13
Zeng, Zhang, Zou (b0065) 2016; 17
Chen, Aronow, Jegga (b0275) 2009; 10
Liu, Shen, Chen, Ye, He, Hua, Jarjoura, Nakano, Ramesh, Shapiro (b0280) 2010; 3
Yin, Chen, Wu, Tian (b0050) 2017; 7
Orzechowski, Sipper, Huang, Moore (b0200) 2018; 34
Gao, McDowell, Zhao, Brown, Engelhardt (b0190) 2016; 12
Zhang, Li, Liu, Zhou (b0115) 2011; 27
Busca, Pouyssegur, Lenormand (b0245) 2016; 4
Bersanelli, Mosca, Remondini, Giampieri, Sala, Castellani, Milanesi (b0135) 2016; 17
Zhan, Rindtorff, Boutros (b0255) 2017; 36
Yuan, Wu, Xu, Xiong, Chu, Yu, Wu, Wu (b0250) 2015; 369
Su, Liu, Bai, Meng, Ma (b0090) 2018
Li, Lei, Wu, Li, Liu, Liu, Cheng, Tang (b0075) 2016; 7
Baxter, Leavy, Dryden, Maguire, Johnson, Fedele, Simigdala, Martin, Andrews, Wingett (b0165) 2018
Zhao, Zhao, He, Mao (b0260) 2017; 8
Liang, Feng, Xu, Li, Zhou (b0265) 2017; 493
Chen (10.1016/j.ymeth.2019.05.010_b0230) 2010; 14
Zeng (10.1016/j.ymeth.2019.05.010_b0065) 2016; 17
Torrente (10.1016/j.ymeth.2019.05.010_b0025) 2016; 11
Yin (10.1016/j.ymeth.2019.05.010_b0050) 2017; 7
Orzechowski (10.1016/j.ymeth.2019.05.010_b0200) 2018; 34
Li (10.1016/j.ymeth.2019.05.010_b0075) 2016; 7
Yang (10.1016/j.ymeth.2019.05.010_b0130) 2016; 32
Gao (10.1016/j.ymeth.2019.05.010_b0190) 2016; 12
Forbes (10.1016/j.ymeth.2019.05.010_b0170) 2017; 45
Love (10.1016/j.ymeth.2019.05.010_b0160) 2014; 15
Strimmer (10.1016/j.ymeth.2019.05.010_b0210) 2008; 24
Liu (10.1016/j.ymeth.2019.05.010_b0060) 2017; 14
Cheng (10.1016/j.ymeth.2019.05.010_b0140) 2000
Xi (10.1016/j.ymeth.2019.05.010_b0220) 2017
Chen (10.1016/j.ymeth.2019.05.010_b0275) 2009; 10
Tranchevent (10.1016/j.ymeth.2019.05.010_b0010) 2016; 44
Jin (10.1016/j.ymeth.2019.05.010_b0125) 2015; 11
Liu (10.1016/j.ymeth.2019.05.010_b0280) 2010; 3
Liu (10.1016/j.ymeth.2019.05.010_b0120) 2018; 11
Zhang (10.1016/j.ymeth.2019.05.010_b0115) 2011; 27
Hochreiter (10.1016/j.ymeth.2019.05.010_b0185) 2010; 26
Jin (10.1016/j.ymeth.2019.05.010_b0085) 2017; 12
Sui (10.1016/j.ymeth.2019.05.010_b0290) 2018; 39
Baxter (10.1016/j.ymeth.2019.05.010_b0165) 2018
Fukushima (10.1016/j.ymeth.2019.05.010_b0205) 2013; 518
Zhao (10.1016/j.ymeth.2019.05.010_b0260) 2017; 8
Makhijani (10.1016/j.ymeth.2019.05.010_b0020) 2018; 15
Li (10.1016/j.ymeth.2019.05.010_b0195) 2009; 37
Wang (10.1016/j.ymeth.2019.05.010_b0035) 2015; 12
Ma (10.1016/j.ymeth.2019.05.010_b0040) 2015; 95
Oti (10.1016/j.ymeth.2019.05.010_b0215) 2006; 43
Dimitrakopoulos (10.1016/j.ymeth.2019.05.010_b0070) 2018; 34
Freiesleben (10.1016/j.ymeth.2019.05.010_b0110) 2016; 6
Nitsch (10.1016/j.ymeth.2019.05.010_b0055) 2011; 39
Liang (10.1016/j.ymeth.2019.05.010_b0265) 2017; 493
Israel (10.1016/j.ymeth.2019.05.010_b0240) 2009; 4
Zhan (10.1016/j.ymeth.2019.05.010_b0255) 2017; 36
Zou (10.1016/j.ymeth.2019.05.010_b0080) 2015
Bersanelli (10.1016/j.ymeth.2019.05.010_b0135) 2016; 17
Busca (10.1016/j.ymeth.2019.05.010_b0245) 2016; 4
van Dam (10.1016/j.ymeth.2019.05.010_b0015) 2012; 13
Guala (10.1016/j.ymeth.2019.05.010_b0045) 2014; 30
Xie (10.1016/j.ymeth.2019.05.010_b0175) 2013; 29
Yuan (10.1016/j.ymeth.2019.05.010_b0250) 2015; 369
Fiannaca (10.1016/j.ymeth.2019.05.010_b0145) 2015; 16
Guala (10.1016/j.ymeth.2019.05.010_b0005) 2017; 7
Ho (10.1016/j.ymeth.2019.05.010_b0270) 2018; 9
Chou (10.1016/j.ymeth.2019.05.010_b0235) 2018; 46
Nam (10.1016/j.ymeth.2019.05.010_b0105) 2009; 37
Clevert (10.1016/j.ymeth.2019.05.010_b0155) 2017; 33
Jiang (10.1016/j.ymeth.2019.05.010_b0285) 2014
Vasaikar (10.1016/j.ymeth.2019.05.010_b0100) 2018; 46
Madeira (10.1016/j.ymeth.2019.05.010_b0150) 2004; 1
Su (10.1016/j.ymeth.2019.05.010_b0090) 2018
Zhou (10.1016/j.ymeth.2019.05.010_b0095) 2018; 11
Keshava Prasad (10.1016/j.ymeth.2019.05.010_b0180) 2009; 37
Peri (10.1016/j.ymeth.2019.05.010_b0225) 2004; 32
Riaz (10.1016/j.ymeth.2019.05.010_b0030) 2013
References_xml – volume: 7
  start-page: 46598
  year: 2017
  ident: b0005
  article-title: A large-scale benchmark of gene prioritization methods
  publication-title: Sci. Rep.
– volume: 13
  start-page: 535
  year: 2012
  ident: b0015
  article-title: GeneFriends: an online co-expression analysis tool to identify novel gene targets for aging and complex diseases
  publication-title: BMC Genomics
– volume: 17
  start-page: 193
  year: 2016
  end-page: 203
  ident: b0065
  article-title: Integrative approaches for predicting microRNA function and prioritizing disease-related microRNA using biological interaction networks
  publication-title: Briefings Bioinf.
– volume: 32
  start-page: 1
  year: 2016
  end-page: 8
  ident: b0130
  article-title: A non-negative matrix factorization method for detecting modules in heterogeneous omics multi-modal data
  publication-title: Bioinformatics
– volume: 37
  year: 2009
  ident: b0195
  article-title: QUBIC: a qualitative biclustering algorithm for analyses of gene expression data
  publication-title: Nucleic Acids Res.
– volume: 9
  start-page: 331
  year: 2018
  end-page: 345
  ident: b0270
  article-title: MiR-378 and MiR-1827 regulate tumor invasion, migration and angiogenesis in human lung adenocarcinoma by targeting RBX1 and CRKL, respectively
  publication-title: J. Cancer
– volume: 15
  start-page: 1680
  year: 2018
  end-page: 1690
  ident: b0020
  article-title: Identification of common key genes in breast, lung and prostate cancer and exploration of their heterogeneous expression
  publication-title: Oncol. Lett.
– volume: 45
  start-page: D777
  year: 2017
  end-page: D783
  ident: b0170
  article-title: COSMIC: somatic cancer genetics at high-resolution
  publication-title: Nucleic Acids Res.
– volume: 11
  year: 2016
  ident: b0025
  article-title: Identification of cancer related genes using a comprehensive map of human gene expression
  publication-title: PLoS ONE
– volume: 29
  start-page: 638
  year: 2013
  end-page: 644
  ident: b0175
  article-title: miRCancer: a microRNA-cancer association database constructed by text mining on literature
  publication-title: Bioinformatics
– volume: 15
  year: 2014
  ident: b0160
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
  publication-title: Genome Biol.
– volume: 518
  start-page: 209
  year: 2013
  end-page: 214
  ident: b0205
  article-title: DiffCorr: An R package to analyze and visualize differential correlations in biological networks
  publication-title: Gene
– volume: 39
  start-page: W334
  year: 2011
  end-page: W338
  ident: b0055
  article-title: PINTA: a web server for network-based gene prioritization from expression data
  publication-title: Nucleic Acids Res.
– volume: 12
  year: 2017
  ident: b0085
  article-title: FGMD: a novel approach for functional gene module detection in cancer
  publication-title: PLoS ONE
– volume: 3
  start-page: 328
  year: 2010
  end-page: 337
  ident: b0280
  article-title: Piwil2 is expressed in various stages of breast cancers and has the potential to be used as a novel biomarker
  publication-title: Int. J. Clin. Exp. Pathol.
– volume: 30
  start-page: 2689
  year: 2014
  end-page: 2690
  ident: b0045
  article-title: MaxLink: network-based prioritization of genes tightly linked to a disease seed set
  publication-title: Bioinformatics
– start-page: 9
  year: 2018
  ident: b0165
  article-title: Capture Hi-C identifies putative target genes at 33 breast cancer risk loci
  publication-title: Nat. Commun.
– volume: 14
  start-page: 337
  year: 2010
  end-page: 356
  ident: b0230
  article-title: A novel candidate disease genes prioritization method based on module partition and rank fusion
  publication-title: OMICS
– volume: 12
  start-page: 655
  year: 2015
  end-page: 661
  ident: b0035
  article-title: Differential expression of microRNAs in aortic tissue and plasma in patients with acute aortic dissection
  publication-title: J Geriatr. Cardiol.
– volume: 14
  start-page: 905
  year: 2017
  end-page: 915
  ident: b0060
  article-title: Inferring microRNA-disease associations by random walk on a heterogeneous network with multiple data sources
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf.
– start-page: 19
  year: 2018
  ident: b0090
  article-title: MGOGP: a gene module-based heuristic algorithm for cancer-related gene prioritization
  publication-title: BMC Bioinf.
– volume: 43
  year: 2006
  ident: b0215
  article-title: Predicting disease genes using protein-protein interactions
  publication-title: J. Med. Genet.
– volume: 44
  start-page: W117
  year: 2016
  end-page: W121
  ident: b0010
  article-title: Candidate gene prioritization with Endeavour
  publication-title: Nucleic Acids Res.
– volume: 39
  start-page: 473
  year: 2018
  end-page: 482
  ident: b0290
  article-title: MicroRNA-133a acts as a tumour suppressor in breast cancer through targeting LASP1
  publication-title: Oncol. Rep.
– volume: 6
  start-page: 34512
  year: 2016
  ident: b0110
  article-title: Analysis of microRNA and gene expression profiles in multiple sclerosis: integrating interaction data to uncover regulatory mechanisms
  publication-title: Sci. Rep.
– volume: 26
  start-page: 1520
  year: 2010
  end-page: 1527
  ident: b0185
  article-title: FABIA: factor analysis for bicluster acquisition
  publication-title: Bioinformatics
– volume: 24
  start-page: 1461
  year: 2008
  end-page: 1462
  ident: b0210
  article-title: fdrtool: a versatile R package for estimating local and tail area-based false discovery rates
  publication-title: Bioinformatics
– volume: 37
  start-page: D767
  year: 2009
  end-page: D772
  ident: b0180
  article-title: Human Protein Reference Database--2009 update
  publication-title: Nucleic Acids Res
– volume: 7
  year: 2017
  ident: b0050
  article-title: GenePANDA-a novel network-based gene prioritizing tool for complex diseases
  publication-title: Sci. Rep.
– volume: 11
  start-page: 2815
  year: 2018
  end-page: 2830
  ident: b0095
  article-title: Identifying miRNA and gene modules of colon cancer associated with pathological stage by weighted gene co-expression network analysis
  publication-title: Onco Targets Ther.
– year: 2015
  ident: b0080
  article-title: Prediction of MicroRNA-disease associations based on social network analysis methods
  publication-title: Biomed Res. Int.
– volume: 46
  start-page: D956
  year: 2018
  end-page: D963
  ident: b0100
  article-title: LinkedOmics: analyzing multi-omics data within and across 32 cancer types
  publication-title: Nucleic Acids Res.
– volume: 11
  start-page: 700
  year: 2018
  end-page: 714
  ident: b0120
  article-title: Identification of prognostic biomarkers by combined mRNA and miRNA expression microarray analysis in pancreatic cancer
  publication-title: Transl. Oncol.
– volume: 10
  start-page: 73
  year: 2009
  ident: b0275
  article-title: Disease candidate gene identification and prioritization using protein interaction networks
  publication-title: BMC Bioinformatics
– volume: 36
  start-page: 1461
  year: 2017
  end-page: 1473
  ident: b0255
  article-title: Wnt signaling in cancer
  publication-title: Oncogene
– volume: 12
  year: 2016
  ident: b0190
  article-title: Context specific and differential gene co-expression networks via bayesian biclustering
  publication-title: PLoS Comput. Biol.
– year: 2017
  ident: b0220
  article-title: DGPathinter: a novel model for identifying driver genes via knowledge-driven matrix factorization with prior knowledge from interactome and pathways
  publication-title: PeerJ Comput. Sci.
– start-page: 93
  year: 2000
  end-page: 103
  ident: b0140
  publication-title: Biclustering of expression data Proceedings International Conference on Intelligent Systems for Molecular Biology
– volume: 4
  year: 2009
  ident: b0240
  article-title: Increased microRNA activity in human cancers
  publication-title: PLoS ONE
– volume: 4
  start-page: 53
  year: 2016
  ident: b0245
  article-title: ERK1 and ERK2 map kinases: specific roles or functional redundancy?
  publication-title: Front. Cell Dev. Biol.
– volume: 37
  start-page: W356
  year: 2009
  end-page: W362
  ident: b0105
  article-title: MicroRNA and mRNA integrated analysis (MMIA): a web tool for examining biological functions of microRNA expression
  publication-title: Nucleic Acids Res.
– volume: 33
  start-page: i59
  year: 2017
  end-page: i66
  ident: b0155
  article-title: Rectified factor networks for biclustering of omics data
  publication-title: Bioinformatics
– volume: 16
  start-page: S7
  year: 2015
  ident: b0145
  article-title: Analysis of miRNA expression profiles in breast cancer using biclustering
  publication-title: BMC Bioinf.
– volume: 17
  start-page: 15
  year: 2016
  ident: b0135
  article-title: Methods for the integration of multi-omics data: mathematical aspects
  publication-title: BMC Bioinf.
– volume: 1
  start-page: 24
  year: 2004
  end-page: 45
  ident: b0150
  article-title: Biclustering algorithms for biological data analysis: a survey
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
– volume: 369
  start-page: 20
  year: 2015
  end-page: 27
  ident: b0250
  article-title: Notch signaling: an emerging therapeutic target for cancer treatment
  publication-title: Cancer Lett.
– start-page: 15(2)
  year: 2013
  ident: b0030
  article-title: miRNA expression profiling of 51 human breast cancer cell lines reveals subtype and driver mutation-specific miRNAs
  publication-title: Breast Cancer Res.
– volume: 34
  start-page: 2441
  year: 2018
  end-page: 2448
  ident: b0070
  article-title: Network-based integration of multi-omics data for prioritizing cancer genes
  publication-title: Bioinformatics
– volume: 95
  start-page: 1197
  year: 2015
  end-page: 1206
  ident: b0040
  article-title: Differential miRNA expressions in peripheral blood mononuclear cells for diagnosis of lung cancer
  publication-title: Lab. Invest.
– volume: 32
  start-page: D497
  year: 2004
  end-page: D501
  ident: b0225
  article-title: Human protein reference database as a discovery resource for proteomics
  publication-title: Nucleic Acids Res.
– volume: 8
  start-page: 64330
  year: 2017
  end-page: 64343
  ident: b0260
  article-title: miR-19b promotes breast cancer metastasis through targeting MYLIP and its related cell adhesion molecules
  publication-title: Oncotarget
– volume: 493
  start-page: 263
  year: 2017
  end-page: 269
  ident: b0265
  article-title: CREPT regulated by miR-138 promotes breast cancer progression
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 7
  start-page: 45584
  year: 2016
  end-page: 45596
  ident: b0075
  article-title: Network-based identification of microRNAs as potential pharmacogenomic biomarkers for anticancer drugs
  publication-title: Oncotarget
– volume: 46
  start-page: D296
  year: 2018
  end-page: D302
  ident: b0235
  article-title: miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions
  publication-title: Nucleic Acids Res.
– volume: 11
  year: 2015
  ident: b0125
  article-title: A computational approach to identifying gene-microRNA modules in cancer
  publication-title: PLoS Comput. Biol.
– volume: 34
  start-page: 3719
  year: 2018
  end-page: 3726
  ident: b0200
  article-title: EBIC: an evolutionary-based parallel biclustering algorithm for pattern discovery
  publication-title: Bioinformatics
– volume: 27
  start-page: i401
  year: 2011
  end-page: 409
  ident: b0115
  article-title: A novel computational framework for simultaneous integration of multiple types of genomic data to identify microRNA-gene regulatory modules
  publication-title: Bioinformatics
– start-page: 5
  year: 2014
  ident: b0285
  article-title: Enriched variations in TEKT4 and breast cancer resistance to paclitaxel
  publication-title: Nat. Commun.
– year: 2017
  ident: 10.1016/j.ymeth.2019.05.010_b0220
  article-title: DGPathinter: a novel model for identifying driver genes via knowledge-driven matrix factorization with prior knowledge from interactome and pathways
  publication-title: PeerJ Comput. Sci.
  doi: 10.7717/peerj-cs.133
– volume: 7
  year: 2017
  ident: 10.1016/j.ymeth.2019.05.010_b0050
  article-title: GenePANDA-a novel network-based gene prioritizing tool for complex diseases
  publication-title: Sci. Rep.
– volume: 44
  start-page: W117
  issue: W1
  year: 2016
  ident: 10.1016/j.ymeth.2019.05.010_b0010
  article-title: Candidate gene prioritization with Endeavour
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw365
– start-page: 5
  year: 2014
  ident: 10.1016/j.ymeth.2019.05.010_b0285
  article-title: Enriched variations in TEKT4 and breast cancer resistance to paclitaxel
  publication-title: Nat. Commun.
– volume: 32
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.ymeth.2019.05.010_b0130
  article-title: A non-negative matrix factorization method for detecting modules in heterogeneous omics multi-modal data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv544
– volume: 3
  start-page: 328
  issue: 4
  year: 2010
  ident: 10.1016/j.ymeth.2019.05.010_b0280
  article-title: Piwil2 is expressed in various stages of breast cancers and has the potential to be used as a novel biomarker
  publication-title: Int. J. Clin. Exp. Pathol.
– volume: 14
  start-page: 905
  issue: 4
  year: 2017
  ident: 10.1016/j.ymeth.2019.05.010_b0060
  article-title: Inferring microRNA-disease associations by random walk on a heterogeneous network with multiple data sources
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf.
  doi: 10.1109/TCBB.2016.2550432
– volume: 493
  start-page: 263
  issue: 1
  year: 2017
  ident: 10.1016/j.ymeth.2019.05.010_b0265
  article-title: CREPT regulated by miR-138 promotes breast cancer progression
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2017.09.033
– volume: 10
  start-page: 73
  year: 2009
  ident: 10.1016/j.ymeth.2019.05.010_b0275
  article-title: Disease candidate gene identification and prioritization using protein interaction networks
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-10-73
– volume: 36
  start-page: 1461
  issue: 11
  year: 2017
  ident: 10.1016/j.ymeth.2019.05.010_b0255
  article-title: Wnt signaling in cancer
  publication-title: Oncogene
  doi: 10.1038/onc.2016.304
– volume: 17
  start-page: 193
  issue: 2
  year: 2016
  ident: 10.1016/j.ymeth.2019.05.010_b0065
  article-title: Integrative approaches for predicting microRNA function and prioritizing disease-related microRNA using biological interaction networks
  publication-title: Briefings Bioinf.
  doi: 10.1093/bib/bbv033
– volume: 39
  start-page: 473
  issue: 2
  year: 2018
  ident: 10.1016/j.ymeth.2019.05.010_b0290
  article-title: MicroRNA-133a acts as a tumour suppressor in breast cancer through targeting LASP1
  publication-title: Oncol. Rep.
– volume: 12
  issue: 7
  year: 2016
  ident: 10.1016/j.ymeth.2019.05.010_b0190
  article-title: Context specific and differential gene co-expression networks via bayesian biclustering
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1004791
– volume: 37
  issue: 15
  year: 2009
  ident: 10.1016/j.ymeth.2019.05.010_b0195
  article-title: QUBIC: a qualitative biclustering algorithm for analyses of gene expression data
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkp491
– volume: 24
  start-page: 1461
  issue: 12
  year: 2008
  ident: 10.1016/j.ymeth.2019.05.010_b0210
  article-title: fdrtool: a versatile R package for estimating local and tail area-based false discovery rates
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn209
– volume: 34
  start-page: 2441
  issue: 14
  year: 2018
  ident: 10.1016/j.ymeth.2019.05.010_b0070
  article-title: Network-based integration of multi-omics data for prioritizing cancer genes
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty148
– start-page: 9
  year: 2018
  ident: 10.1016/j.ymeth.2019.05.010_b0165
  article-title: Capture Hi-C identifies putative target genes at 33 breast cancer risk loci
  publication-title: Nat. Commun.
– volume: 16
  start-page: S7
  issue: Suppl. 4
  year: 2015
  ident: 10.1016/j.ymeth.2019.05.010_b0145
  article-title: Analysis of miRNA expression profiles in breast cancer using biclustering
  publication-title: BMC Bioinf.
  doi: 10.1186/1471-2105-16-S4-S7
– volume: 46
  start-page: D296
  issue: D1
  year: 2018
  ident: 10.1016/j.ymeth.2019.05.010_b0235
  article-title: miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx1067
– volume: 1
  start-page: 24
  issue: 1
  year: 2004
  ident: 10.1016/j.ymeth.2019.05.010_b0150
  article-title: Biclustering algorithms for biological data analysis: a survey
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
  doi: 10.1109/TCBB.2004.2
– volume: 33
  start-page: i59
  issue: 14
  year: 2017
  ident: 10.1016/j.ymeth.2019.05.010_b0155
  article-title: Rectified factor networks for biclustering of omics data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx226
– start-page: 93
  year: 2000
  ident: 10.1016/j.ymeth.2019.05.010_b0140
– volume: 27
  start-page: i401
  issue: 13
  year: 2011
  ident: 10.1016/j.ymeth.2019.05.010_b0115
  article-title: A novel computational framework for simultaneous integration of multiple types of genomic data to identify microRNA-gene regulatory modules
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr206
– volume: 518
  start-page: 209
  issue: 1
  year: 2013
  ident: 10.1016/j.ymeth.2019.05.010_b0205
  article-title: DiffCorr: An R package to analyze and visualize differential correlations in biological networks
  publication-title: Gene
  doi: 10.1016/j.gene.2012.11.028
– volume: 17
  start-page: 15
  issue: Suppl. 2
  year: 2016
  ident: 10.1016/j.ymeth.2019.05.010_b0135
  article-title: Methods for the integration of multi-omics data: mathematical aspects
  publication-title: BMC Bioinf.
  doi: 10.1186/s12859-015-0857-9
– volume: 43
  issue: 8
  year: 2006
  ident: 10.1016/j.ymeth.2019.05.010_b0215
  article-title: Predicting disease genes using protein-protein interactions
  publication-title: J. Med. Genet.
  doi: 10.1136/jmg.2006.041376
– volume: 46
  start-page: D956
  issue: D1
  year: 2018
  ident: 10.1016/j.ymeth.2019.05.010_b0100
  article-title: LinkedOmics: analyzing multi-omics data within and across 32 cancer types
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx1090
– volume: 14
  start-page: 337
  issue: 4
  year: 2010
  ident: 10.1016/j.ymeth.2019.05.010_b0230
  article-title: A novel candidate disease genes prioritization method based on module partition and rank fusion
  publication-title: OMICS
  doi: 10.1089/omi.2009.0143
– volume: 6
  start-page: 34512
  year: 2016
  ident: 10.1016/j.ymeth.2019.05.010_b0110
  article-title: Analysis of microRNA and gene expression profiles in multiple sclerosis: integrating interaction data to uncover regulatory mechanisms
  publication-title: Sci. Rep.
  doi: 10.1038/srep34512
– volume: 4
  issue: 6
  year: 2009
  ident: 10.1016/j.ymeth.2019.05.010_b0240
  article-title: Increased microRNA activity in human cancers
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0006045
– volume: 11
  start-page: 2815
  year: 2018
  ident: 10.1016/j.ymeth.2019.05.010_b0095
  article-title: Identifying miRNA and gene modules of colon cancer associated with pathological stage by weighted gene co-expression network analysis
  publication-title: Onco Targets Ther.
  doi: 10.2147/OTT.S163891
– start-page: 19
  year: 2018
  ident: 10.1016/j.ymeth.2019.05.010_b0090
  article-title: MGOGP: a gene module-based heuristic algorithm for cancer-related gene prioritization
  publication-title: BMC Bioinf.
– volume: 15
  start-page: 1680
  issue: 2
  year: 2018
  ident: 10.1016/j.ymeth.2019.05.010_b0020
  article-title: Identification of common key genes in breast, lung and prostate cancer and exploration of their heterogeneous expression
  publication-title: Oncol. Lett.
– volume: 4
  start-page: 53
  year: 2016
  ident: 10.1016/j.ymeth.2019.05.010_b0245
  article-title: ERK1 and ERK2 map kinases: specific roles or functional redundancy?
  publication-title: Front. Cell Dev. Biol.
  doi: 10.3389/fcell.2016.00053
– volume: 13
  start-page: 535
  year: 2012
  ident: 10.1016/j.ymeth.2019.05.010_b0015
  article-title: GeneFriends: an online co-expression analysis tool to identify novel gene targets for aging and complex diseases
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-13-535
– volume: 9
  start-page: 331
  issue: 2
  year: 2018
  ident: 10.1016/j.ymeth.2019.05.010_b0270
  article-title: MiR-378 and MiR-1827 regulate tumor invasion, migration and angiogenesis in human lung adenocarcinoma by targeting RBX1 and CRKL, respectively
  publication-title: J. Cancer
  doi: 10.7150/jca.18188
– volume: 45
  start-page: D777
  issue: D1
  year: 2017
  ident: 10.1016/j.ymeth.2019.05.010_b0170
  article-title: COSMIC: somatic cancer genetics at high-resolution
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw1121
– volume: 7
  start-page: 45584
  issue: 29
  year: 2016
  ident: 10.1016/j.ymeth.2019.05.010_b0075
  article-title: Network-based identification of microRNAs as potential pharmacogenomic biomarkers for anticancer drugs
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.10052
– volume: 15
  issue: 12
  year: 2014
  ident: 10.1016/j.ymeth.2019.05.010_b0160
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
  publication-title: Genome Biol.
  doi: 10.1186/s13059-014-0550-8
– volume: 11
  start-page: 700
  issue: 3
  year: 2018
  ident: 10.1016/j.ymeth.2019.05.010_b0120
  article-title: Identification of prognostic biomarkers by combined mRNA and miRNA expression microarray analysis in pancreatic cancer
  publication-title: Transl. Oncol.
  doi: 10.1016/j.tranon.2018.03.003
– volume: 29
  start-page: 638
  issue: 5
  year: 2013
  ident: 10.1016/j.ymeth.2019.05.010_b0175
  article-title: miRCancer: a microRNA-cancer association database constructed by text mining on literature
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt014
– volume: 7
  start-page: 46598
  year: 2017
  ident: 10.1016/j.ymeth.2019.05.010_b0005
  article-title: A large-scale benchmark of gene prioritization methods
  publication-title: Sci. Rep.
  doi: 10.1038/srep46598
– volume: 34
  start-page: 3719
  issue: 21
  year: 2018
  ident: 10.1016/j.ymeth.2019.05.010_b0200
  article-title: EBIC: an evolutionary-based parallel biclustering algorithm for pattern discovery
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty401
– volume: 11
  issue: 1
  year: 2015
  ident: 10.1016/j.ymeth.2019.05.010_b0125
  article-title: A computational approach to identifying gene-microRNA modules in cancer
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1004042
– volume: 12
  start-page: 655
  issue: 6
  year: 2015
  ident: 10.1016/j.ymeth.2019.05.010_b0035
  article-title: Differential expression of microRNAs in aortic tissue and plasma in patients with acute aortic dissection
  publication-title: J Geriatr. Cardiol.
– volume: 39
  start-page: W334
  issue: Web Server issue
  year: 2011
  ident: 10.1016/j.ymeth.2019.05.010_b0055
  article-title: PINTA: a web server for network-based gene prioritization from expression data
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr289
– volume: 26
  start-page: 1520
  issue: 12
  year: 2010
  ident: 10.1016/j.ymeth.2019.05.010_b0185
  article-title: FABIA: factor analysis for bicluster acquisition
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq227
– volume: 30
  start-page: 2689
  issue: 18
  year: 2014
  ident: 10.1016/j.ymeth.2019.05.010_b0045
  article-title: MaxLink: network-based prioritization of genes tightly linked to a disease seed set
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu344
– volume: 12
  issue: 12
  year: 2017
  ident: 10.1016/j.ymeth.2019.05.010_b0085
  article-title: FGMD: a novel approach for functional gene module detection in cancer
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0188900
– volume: 11
  issue: 6
  year: 2016
  ident: 10.1016/j.ymeth.2019.05.010_b0025
  article-title: Identification of cancer related genes using a comprehensive map of human gene expression
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0157484
– volume: 37
  start-page: D767
  issue: Database issue
  year: 2009
  ident: 10.1016/j.ymeth.2019.05.010_b0180
  article-title: Human Protein Reference Database--2009 update
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkn892
– volume: 369
  start-page: 20
  issue: 1
  year: 2015
  ident: 10.1016/j.ymeth.2019.05.010_b0250
  article-title: Notch signaling: an emerging therapeutic target for cancer treatment
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2015.07.048
– volume: 37
  start-page: W356
  issue: Web Server issue
  year: 2009
  ident: 10.1016/j.ymeth.2019.05.010_b0105
  article-title: MicroRNA and mRNA integrated analysis (MMIA): a web tool for examining biological functions of microRNA expression
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkp294
– volume: 32
  start-page: D497
  year: 2004
  ident: 10.1016/j.ymeth.2019.05.010_b0225
  article-title: Human protein reference database as a discovery resource for proteomics
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkh070
– start-page: 15(2)
  year: 2013
  ident: 10.1016/j.ymeth.2019.05.010_b0030
  article-title: miRNA expression profiling of 51 human breast cancer cell lines reveals subtype and driver mutation-specific miRNAs
  publication-title: Breast Cancer Res.
– volume: 95
  start-page: 1197
  issue: 10
  year: 2015
  ident: 10.1016/j.ymeth.2019.05.010_b0040
  article-title: Differential miRNA expressions in peripheral blood mononuclear cells for diagnosis of lung cancer
  publication-title: Lab. Invest.
  doi: 10.1038/labinvest.2015.88
– year: 2015
  ident: 10.1016/j.ymeth.2019.05.010_b0080
  article-title: Prediction of MicroRNA-disease associations based on social network analysis methods
  publication-title: Biomed Res. Int.
  doi: 10.1155/2015/810514
– volume: 8
  start-page: 64330
  issue: 38
  year: 2017
  ident: 10.1016/j.ymeth.2019.05.010_b0260
  article-title: miR-19b promotes breast cancer metastasis through targeting MYLIP and its related cell adhesion molecules
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.19278
SSID ssj0001278
Score 2.30266
Snippet •Biclustering analysis of integrated expression data from the same set of samples.•Identify breast cancer-specific biclusters with Rectified Factor...
Detecting cancer-related genes and their interactions is a crucial task in cancer research. For this purpose, we proposed an efficient method, to detect coding...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 22
SubjectTerms Algorithms
Biclustering
Biomarker
Breast cancer
breast neoplasms
Breast Neoplasms - genetics
Breast Neoplasms - pathology
breasts
Computational Biology
data collection
Female
gene expression regulation
Gene Expression Regulation, Neoplastic - genetics
Gene Regulatory Networks - genetics
Gene-miRNA interaction
genes
Humans
microRNA
MicroRNAs - genetics
miRNA
patients
protein-protein interactions
Rectified factor networks
RNA, Messenger - genetics
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9swFD6U9KF72aXdxbuhwdhTnTrWxfajKStlsDDKAt2TkBR5S5c4IYkp6dv--Y4kO6wrC-ubE0nGjr_ofMf69B2A96bQRWVpEY9z7RKUnMdFzmhsUqFp5f033Yru56E4H7FPl_xyDwbdXhgv2jd60q-ns349-eG1lYuZOel0YiciSzBmYsKzLzjS7x7sj4Zfym_BdUDErhy4Pw41CJPOachrujauLLPTcxXBrjP5VzS6yzbviiYPmnqhNtdqOv0jIp09govuXoIQ5We_Weu-ufnL5vFeN_sYHrb8lJSh6Qns2foQjsoac_PZhnwgXjHqX8UfwsFpVy3uCH6VxM-dFVJaEor4kDpIzImLlGOi8YSNs2XAYElC4WqCjJmMrVvHcF8ah8Bl7LfX4AAzd3GVfHezMVH1mMwmF8NydeyP_QIHcWYXy7A1Y_UURmcfv56ex215h9iwIl3HVOdUmXRsLbOU2sJmSDVUYpjBFNAmlg10RQeCq0xolVU6TwtstdowhUkmV_QZ9Op5bV8AYbnSXBiBhEMwnIZUqg3HE9CKmSoVJoK0e8zStN7nrgTHVHYityvpsSEdNmTCJWIjguPtoEWw_tjdXXT4kS17CaxEYnDaPfBdhzaJD80t2KjazpuVROqGdAopJt_VJxe5o5l5BM8DQrdXS5FMI58rIshuYXfbwXmL325BFHqP8RZ4EcRblP_Pj_Dynv1fwQP3yb2kH_DX0FsvG_sGWd5av23_178B8oxUNg
  priority: 102
  providerName: Unpaywall
Title A rectified factor network based biclustering method for detecting cancer-related coding genes and miRNAs, and their interactions
URI https://dx.doi.org/10.1016/j.ymeth.2019.05.010
https://www.ncbi.nlm.nih.gov/pubmed/31121299
https://www.proquest.com/docview/2231851725
https://www.proquest.com/docview/2286863998
https://pubmed.ncbi.nlm.nih.gov/PMC6708461
https://www.ncbi.nlm.nih.gov/pmc/articles/6708461
UnpaywallVersion submittedVersion
Volume 166
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1095-9130
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001278
  issn: 1095-9130
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1095-9130
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001278
  issn: 1095-9130
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1095-9130
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001278
  issn: 1095-9130
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1095-9130
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001278
  issn: 1095-9130
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1095-9130
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001278
  issn: 1095-9130
  databaseCode: AKRWK
  dateStart: 19900801
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELem8TBeEGx8hMFkJMTTQlPbcZLHqGIqICoEVBpPlu04o6hLq35o6gsS_zl3dlKoJirEU75sK_Jd7n7OnX9HyEtbmKJ2vIir3OACJU_jIhc8tkwaXnv-TYzofhjJ4Vi8u0wvD8ig2wuDaZWt7Q823Vvr9k6vnc3efDLpfcboJBb_BqVMOGfI-ClEhlUMXv_4nebRZ1nYDidkjK075iGf47XBMs2Y31UE-s7kb97pNvq8nUR5tG7menOjp9M_PNTFfXKvhZa0DG__gBy45piclA0sq6839BX1yZ7-L_oxORp0hd5OyM-SerNXAxqlof4ObUJ2OEUnV1EDA66RUQH8HA01pymAXVo5DEHgTYvKs4j9zhjoYGfoEukVGlKqm4peTz6NyuW5P_exCYo8FYuwq2L5kIwv3nwZDOO2MkNsRcFWMTc515ZVzgnHuStcBihBJ1ZYWL25xIm-qXlfpjqTRme1yVkBT52xQsP6MNX8ETlsZo17QqjItUmllYAVpAALopmxKQzAa2FrJm1EWCcRZVvacqyeMVVdftp35cWoUIwqSRWIMSLn207zwNqxv7nsRK12lE-BX9nf8UWnGAqEhrEW3bjZeqkY6mUK6DDd1yaXOSLEPCKPgzJt35YDDgYoVkQk21GzbQOkBd990ky-eXpwmSUAKvsRibcK-S-T8PR_J-GU3MUr_NHeT5-Rw9Vi7Z4DUluZM_8pnpE75dv3wxEcx6OP5ddf0Z5CKQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaW5VAuCHZ5hKeREKcNTfxKcqwqVgV2e4BdaW-W7ThQ1E2rPoR6QeKfM-MkhWpFhbhFsR1FnsnMN5nxN4S8doUtKs-LuMwtBii5jItc8NgxZXkV-Dcxo3s-VqNL8eFKXh2QYXcWBssqW9vf2PRgrds7_XY3-_PJpP8Zs5PY_BuUMuGc8VvktpAswwjs7Y_fdR4py5rzcELFOL2jHgpFXhvs04wFXkXD35n8zT3dhJ83qyh763puNt_NdPqHizq9R-622JIOmte_Tw58fUSOBzXE1dcb-oaGas_wG_2I9IZdp7dj8nNAg92rAI7SpgEPrZvycIperqQWHrhGSgVwdLRpOk0B7dLSYw4CbzrUnkUcjsbAAjdDn0i_oCWlpi7p9eTTeLA8CdchOUGRqGLRHKtYPiCXp-8uhqO4bc0QO1GwVcxtzo1jpffCc-4LnwFMMIkTDsI3n3iR2oqnSppMWZNVNmcFjHrrhIEAURr-kBzWs9o_JlTkxkrlFIAFJcCEGGadhAfwSriKKRcR1klEu5a3HNtnTHVXoPZNBzFqFKNOpAYxRuRku2je0Hbsn646Uesd7dPgWPYvfNUphgahYbLF1H62XmqGiikBHsp9c3KVI0TMI_KoUabt23IAwoDFiohkO2q2nYC84Lsj9eRr4AdXWQKoMo1IvFXIf9mEJ_-7CS9Jb3RxfqbP3o8_PiV3cAT_uqfyGTlcLdb-OcC2lX0RPstf0IVCDg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9swFD6U9KF72aXdxbuhwdhTnTrWxfajKStlsDDKAt2TkBR5S5c4IYkp6dv--Y4kO6wrC-ubE0nGjr_ofMf69B2A96bQRWVpEY9z7RKUnMdFzmhsUqFp5f033Yru56E4H7FPl_xyDwbdXhgv2jd60q-ns349-eG1lYuZOel0YiciSzBmYsKzLzjS7x7sj4Zfym_BdUDErhy4Pw41CJPOachrujauLLPTcxXBrjP5VzS6yzbviiYPmnqhNtdqOv0jIp09govuXoIQ5We_Weu-ufnL5vFeN_sYHrb8lJSh6Qns2foQjsoac_PZhnwgXjHqX8UfwsFpVy3uCH6VxM-dFVJaEor4kDpIzImLlGOi8YSNs2XAYElC4WqCjJmMrVvHcF8ah8Bl7LfX4AAzd3GVfHezMVH1mMwmF8NydeyP_QIHcWYXy7A1Y_UURmcfv56ex215h9iwIl3HVOdUmXRsLbOU2sJmSDVUYpjBFNAmlg10RQeCq0xolVU6TwtstdowhUkmV_QZ9Op5bV8AYbnSXBiBhEMwnIZUqg3HE9CKmSoVJoK0e8zStN7nrgTHVHYityvpsSEdNmTCJWIjguPtoEWw_tjdXXT4kS17CaxEYnDaPfBdhzaJD80t2KjazpuVROqGdAopJt_VJxe5o5l5BM8DQrdXS5FMI58rIshuYXfbwXmL325BFHqP8RZ4EcRblP_Pj_Dynv1fwQP3yb2kH_DX0FsvG_sGWd5av23_178B8oxUNg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+rectified+factor+network+based+biclustering+method+for+detecting+cancer-related+coding+genes+and+miRNAs%2C+and+their+interactions&rft.jtitle=Methods+%28San+Diego%2C+Calif.%29&rft.au=Su%2C+Lingtao&rft.au=Liu%2C+Guixia&rft.au=Wang%2C+Juexin&rft.au=Xu%2C+Dong&rft.date=2019-08-15&rft.issn=1046-2023&rft.eissn=1095-9130&rft.volume=166&rft.spage=22&rft.epage=30&rft_id=info:doi/10.1016%2Fj.ymeth.2019.05.010&rft_id=info%3Apmid%2F31121299&rft.externalDocID=PMC6708461
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1046-2023&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1046-2023&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1046-2023&client=summon