Learning from algorithm-generated pseudo-annotations for detecting ants in videos

Deep learning (DL) based detection models are powerful tools for large-scale analysis of dynamic biological behaviors in video data. Supervised training of a DL detection model often requires a large amount of manually-labeled training data which are time-consuming and labor-intensive to acquire. In...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 13; no. 1; pp. 11566 - 10
Main Authors Zhang, Yizhe, Imirzian, Natalie, Kurze, Christoph, Zheng, Hao, Hughes, David P., Chen, Danny Z.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 18.07.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-023-28734-6

Cover

Abstract Deep learning (DL) based detection models are powerful tools for large-scale analysis of dynamic biological behaviors in video data. Supervised training of a DL detection model often requires a large amount of manually-labeled training data which are time-consuming and labor-intensive to acquire. In this paper, we propose LFAGPA (Learn From Algorithm-Generated Pseudo-Annotations) that utilizes (noisy) annotations which are automatically generated by algorithms to train DL models for ant detection in videos. Our method consists of two main steps: (1) generate foreground objects using a (set of) state-of-the-art foreground extraction algorithm(s); (2) treat the results from step (1) as pseudo-annotations and use them to train deep neural networks for ant detection. We tackle several challenges on how to make use of automatically generated noisy annotations, how to learn from multiple annotation resources, and how to combine algorithm-generated annotations with human-labeled annotations (when available) for this learning framework. In experiments, we evaluate our method using 82 videos (totally 20,348 image frames) captured under natural conditions in a tropical rain-forest for dynamic ant behavior study. Without any manual annotation cost but only algorithm-generated annotations, our method can achieve a decent detection performance (77% in F 1 score). Moreover, when using only 10% manual annotations, our method can train a DL model to perform as well as using the full human annotations (81% in F 1 score).
AbstractList Abstract Deep learning (DL) based detection models are powerful tools for large-scale analysis of dynamic biological behaviors in video data. Supervised training of a DL detection model often requires a large amount of manually-labeled training data which are time-consuming and labor-intensive to acquire. In this paper, we propose LFAGPA (Learn From Algorithm-Generated Pseudo-Annotations) that utilizes (noisy) annotations which are automatically generated by algorithms to train DL models for ant detection in videos. Our method consists of two main steps: (1) generate foreground objects using a (set of) state-of-the-art foreground extraction algorithm(s); (2) treat the results from step (1) as pseudo-annotations and use them to train deep neural networks for ant detection. We tackle several challenges on how to make use of automatically generated noisy annotations, how to learn from multiple annotation resources, and how to combine algorithm-generated annotations with human-labeled annotations (when available) for this learning framework. In experiments, we evaluate our method using 82 videos (totally 20,348 image frames) captured under natural conditions in a tropical rain-forest for dynamic ant behavior study. Without any manual annotation cost but only algorithm-generated annotations, our method can achieve a decent detection performance (77% in $$F_1$$ F 1 score). Moreover, when using only 10% manual annotations, our method can train a DL model to perform as well as using the full human annotations (81% in $$F_1$$ F 1 score).
Deep learning (DL) based detection models are powerful tools for large-scale analysis of dynamic biological behaviors in video data. Supervised training of a DL detection model often requires a large amount of manually-labeled training data which are time-consuming and labor-intensive to acquire. In this paper, we propose LFAGPA (Learn From Algorithm-Generated Pseudo-Annotations) that utilizes (noisy) annotations which are automatically generated by algorithms to train DL models for ant detection in videos. Our method consists of two main steps: (1) generate foreground objects using a (set of) state-of-the-art foreground extraction algorithm(s); (2) treat the results from step (1) as pseudo-annotations and use them to train deep neural networks for ant detection. We tackle several challenges on how to make use of automatically generated noisy annotations, how to learn from multiple annotation resources, and how to combine algorithm-generated annotations with human-labeled annotations (when available) for this learning framework. In experiments, we evaluate our method using 82 videos (totally 20,348 image frames) captured under natural conditions in a tropical rain-forest for dynamic ant behavior study. Without any manual annotation cost but only algorithm-generated annotations, our method can achieve a decent detection performance (77% in [Formula: see text] score). Moreover, when using only 10% manual annotations, our method can train a DL model to perform as well as using the full human annotations (81% in [Formula: see text] score).Deep learning (DL) based detection models are powerful tools for large-scale analysis of dynamic biological behaviors in video data. Supervised training of a DL detection model often requires a large amount of manually-labeled training data which are time-consuming and labor-intensive to acquire. In this paper, we propose LFAGPA (Learn From Algorithm-Generated Pseudo-Annotations) that utilizes (noisy) annotations which are automatically generated by algorithms to train DL models for ant detection in videos. Our method consists of two main steps: (1) generate foreground objects using a (set of) state-of-the-art foreground extraction algorithm(s); (2) treat the results from step (1) as pseudo-annotations and use them to train deep neural networks for ant detection. We tackle several challenges on how to make use of automatically generated noisy annotations, how to learn from multiple annotation resources, and how to combine algorithm-generated annotations with human-labeled annotations (when available) for this learning framework. In experiments, we evaluate our method using 82 videos (totally 20,348 image frames) captured under natural conditions in a tropical rain-forest for dynamic ant behavior study. Without any manual annotation cost but only algorithm-generated annotations, our method can achieve a decent detection performance (77% in [Formula: see text] score). Moreover, when using only 10% manual annotations, our method can train a DL model to perform as well as using the full human annotations (81% in [Formula: see text] score).
Deep learning (DL) based detection models are powerful tools for large-scale analysis of dynamic biological behaviors in video data. Supervised training of a DL detection model often requires a large amount of manually-labeled training data which are time-consuming and labor-intensive to acquire. In this paper, we propose LFAGPA (Learn From Algorithm-Generated Pseudo-Annotations) that utilizes (noisy) annotations which are automatically generated by algorithms to train DL models for ant detection in videos. Our method consists of two main steps: (1) generate foreground objects using a (set of) state-of-the-art foreground extraction algorithm(s); (2) treat the results from step (1) as pseudo-annotations and use them to train deep neural networks for ant detection. We tackle several challenges on how to make use of automatically generated noisy annotations, how to learn from multiple annotation resources, and how to combine algorithm-generated annotations with human-labeled annotations (when available) for this learning framework. In experiments, we evaluate our method using 82 videos (totally 20,348 image frames) captured under natural conditions in a tropical rain-forest for dynamic ant behavior study. Without any manual annotation cost but only algorithm-generated annotations, our method can achieve a decent detection performance (77% in F1 score). Moreover, when using only 10% manual annotations, our method can train a DL model to perform as well as using the full human annotations (81% in F1 score).
Deep learning (DL) based detection models are powerful tools for large-scale analysis of dynamic biological behaviors in video data. Supervised training of a DL detection model often requires a large amount of manually-labeled training data which are time-consuming and labor-intensive to acquire. In this paper, we propose LFAGPA (Learn From Algorithm-Generated Pseudo-Annotations) that utilizes (noisy) annotations which are automatically generated by algorithms to train DL models for ant detection in videos. Our method consists of two main steps: (1) generate foreground objects using a (set of) state-of-the-art foreground extraction algorithm(s); (2) treat the results from step (1) as pseudo-annotations and use them to train deep neural networks for ant detection. We tackle several challenges on how to make use of automatically generated noisy annotations, how to learn from multiple annotation resources, and how to combine algorithm-generated annotations with human-labeled annotations (when available) for this learning framework. In experiments, we evaluate our method using 82 videos (totally 20,348 image frames) captured under natural conditions in a tropical rain-forest for dynamic ant behavior study. Without any manual annotation cost but only algorithm-generated annotations, our method can achieve a decent detection performance (77% in [Formula: see text] score). Moreover, when using only 10% manual annotations, our method can train a DL model to perform as well as using the full human annotations (81% in [Formula: see text] score).
Deep learning (DL) based detection models are powerful tools for large-scale analysis of dynamic biological behaviors in video data. Supervised training of a DL detection model often requires a large amount of manually-labeled training data which are time-consuming and labor-intensive to acquire. In this paper, we propose LFAGPA (Learn From Algorithm-Generated Pseudo-Annotations) that utilizes (noisy) annotations which are automatically generated by algorithms to train DL models for ant detection in videos. Our method consists of two main steps: (1) generate foreground objects using a (set of) state-of-the-art foreground extraction algorithm(s); (2) treat the results from step (1) as pseudo-annotations and use them to train deep neural networks for ant detection. We tackle several challenges on how to make use of automatically generated noisy annotations, how to learn from multiple annotation resources, and how to combine algorithm-generated annotations with human-labeled annotations (when available) for this learning framework. In experiments, we evaluate our method using 82 videos (totally 20,348 image frames) captured under natural conditions in a tropical rain-forest for dynamic ant behavior study. Without any manual annotation cost but only algorithm-generated annotations, our method can achieve a decent detection performance (77% in F 1 score). Moreover, when using only 10% manual annotations, our method can train a DL model to perform as well as using the full human annotations (81% in F 1 score).
Deep learning (DL) based detection models are powerful tools for large-scale analysis of dynamic biological behaviors in video data. Supervised training of a DL detection model often requires a large amount of manually-labeled training data which are time-consuming and labor-intensive to acquire. In this paper, we propose LFAGPA (Learn From Algorithm-Generated Pseudo-Annotations) that utilizes (noisy) annotations which are automatically generated by algorithms to train DL models for ant detection in videos. Our method consists of two main steps: (1) generate foreground objects using a (set of) state-of-the-art foreground extraction algorithm(s); (2) treat the results from step (1) as pseudo-annotations and use them to train deep neural networks for ant detection. We tackle several challenges on how to make use of automatically generated noisy annotations, how to learn from multiple annotation resources, and how to combine algorithm-generated annotations with human-labeled annotations (when available) for this learning framework. In experiments, we evaluate our method using 82 videos (totally 20,348 image frames) captured under natural conditions in a tropical rain-forest for dynamic ant behavior study. Without any manual annotation cost but only algorithm-generated annotations, our method can achieve a decent detection performance (77% in $$F_1$$ F1 score). Moreover, when using only 10% manual annotations, our method can train a DL model to perform as well as using the full human annotations (81% in $$F_1$$ F1 score).
Deep learning (DL) based detection models are powerful tools for large-scale analysis of dynamic biological behaviors in video data. Supervised training of a DL detection model often requires a large amount of manually-labeled training data which are time-consuming and labor-intensive to acquire. In this paper, we propose LFAGPA (Learn From Algorithm-Generated Pseudo-Annotations) that utilizes (noisy) annotations which are automatically generated by algorithms to train DL models for ant detection in videos. Our method consists of two main steps: (1) generate foreground objects using a (set of) state-of-the-art foreground extraction algorithm(s); (2) treat the results from step (1) as pseudo-annotations and use them to train deep neural networks for ant detection. We tackle several challenges on how to make use of automatically generated noisy annotations, how to learn from multiple annotation resources, and how to combine algorithm-generated annotations with human-labeled annotations (when available) for this learning framework. In experiments, we evaluate our method using 82 videos (totally 20,348 image frames) captured under natural conditions in a tropical rain-forest for dynamic ant behavior study. Without any manual annotation cost but only algorithm-generated annotations, our method can achieve a decent detection performance (77% in $$F_1$$ F 1 score). Moreover, when using only 10% manual annotations, our method can train a DL model to perform as well as using the full human annotations (81% in $$F_1$$ F 1 score).
ArticleNumber 11566
Author Hughes, David P.
Zhang, Yizhe
Zheng, Hao
Imirzian, Natalie
Kurze, Christoph
Chen, Danny Z.
Author_xml – sequence: 1
  givenname: Yizhe
  surname: Zhang
  fullname: Zhang, Yizhe
  email: zhangyizhe@njust.edu.cn
  organization: School of Computer Science and Engineering, Nanjing University of Science and Technology
– sequence: 2
  givenname: Natalie
  surname: Imirzian
  fullname: Imirzian, Natalie
  organization: Department of Entomology and Department of Biology, Pennsylvania State University, Department of Bioengineering, Imperial College London
– sequence: 3
  givenname: Christoph
  surname: Kurze
  fullname: Kurze, Christoph
  organization: Department of Entomology and Department of Biology, Pennsylvania State University, Institute for Zoology, University of Regensburg
– sequence: 4
  givenname: Hao
  surname: Zheng
  fullname: Zheng, Hao
  organization: Department of Computer Science and Engineering, University of Notre Dame
– sequence: 5
  givenname: David P.
  surname: Hughes
  fullname: Hughes, David P.
  organization: Department of Entomology and Department of Biology, Pennsylvania State University
– sequence: 6
  givenname: Danny Z.
  surname: Chen
  fullname: Chen, Danny Z.
  organization: Department of Computer Science and Engineering, University of Notre Dame
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37464003$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv1DAUhSNUREvpH2CBIrFhE_Arjr1CqAJaaSSEBGvrxr6TZpSxB9tp1X-Ppxn6YIG4G1v2d869Pn5ZHfngsapeU_KeEq4-JEFbrRrCeMNUx0Ujn1UnjIi2YZyxo0f74-ospQ0p1TItqH5RHfNOSEEIP6m-rxCiH_1Qr2PY1jANIY75atsM6DFCRlfvEs4uNOB9yJDH4FO9DrF2mNHmvRJ8TvXo6-vRYUivqudrmBKeHdbT6ueXzz_OL5rVt6-X559WjRWa5YZ3XILrQZFeCOeo65yiFjRpudCupSgoh17THpXSzCJZK6kklwiUMlSan1aXi68LsDG7OG4h3poAo7k7CHEwEPNoJzQOlZBg-7aXXMjO9paXfhw7Ch3jaIsXX7xmv4PbG5ime0NKzD5vs-RtSt7mLm8ji-rjotrN_RadRZ8jTE9GeXrjxyszhOu9YSuoIsXh3cEhhl8zpmy2Y7I4TeAxzKl04rrjWrKuoG__Qjdhjr4kvKdUKcppod48Hul-lj8fXgC2ADaGlCKu_--hh3hSgf2A8aH3P1S_Ac3Bzi0
Cites_doi 10.3389/fmars.2018.00319
10.1016/j.zool.2016.03.007
10.1146/annurev-ento-010715-023711
10.1109/TIP.2015.2419084
10.1038/s41598-019-49655-3
10.1098/rstb.2017.0012
10.1242/jeb.01831
10.1038/35082745
10.1016/j.jip.2020.107506
10.2193/2006-465
10.1007/s00359-006-0116-7
10.1109/TPAMI.2012.97
10.1109/CVPR.2015.7298965
10.1609/aaai.v30i1.10141
10.1109/CVPR.2017.638
10.1109/TNNLS.2022.3152527
10.1109/ICCV.2017.322
10.1007/978-3-319-24574-4_28
10.1109/ICCV.2017.211
10.2307/j.ctvs32s3w
10.1109/CVPR.2016.91
10.1007/978-3-319-46448-0_2
10.1109/ICCV.2015.167
10.1007/978-3-319-46466-4_5
10.1109/CVPR42600.2020.00975
10.1109/CVPR.2018.00582
10.1109/ICCV.2019.00524
10.1109/TPAMI.2004.1273918
10.1007/978-3-319-46493-0_35
10.1609/aaai.v33i01.33015909
10.1080/00031305.1994.10476030
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1038/s41598-023-28734-6
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest SciTech Premium Collection Natural Science Collection Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Publicly Available Content Database
PubMed


CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature Link OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 10
ExternalDocumentID oai_doaj_org_article_de846acb5b63467cbc31d73e71a723ec
10.1038/s41598-023-28734-6
PMC10354180
37464003
10_1038_s41598_023_28734_6
Genre Journal Article
GrantInformation_xml – fundername: US National Institutes of Health
  grantid: R01 GM116927
– fundername: NIGMS NIH HHS
  grantid: R01 GM116927
– fundername: ;
  grantid: R01 GM116927
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
EJD
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c492t-3736adba80b44dd1d7d81ca905349d51e413ab91be8892ce0f868636ea112e893
IEDL.DBID M48
ISSN 2045-2322
IngestDate Tue Oct 14 18:11:12 EDT 2025
Sun Oct 26 04:05:02 EDT 2025
Tue Sep 30 17:12:42 EDT 2025
Fri Sep 05 13:02:26 EDT 2025
Tue Oct 07 08:05:36 EDT 2025
Wed Feb 19 02:23:14 EST 2025
Wed Oct 01 05:01:14 EDT 2025
Fri Feb 21 02:39:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c492t-3736adba80b44dd1d7d81ca905349d51e413ab91be8892ce0f868636ea112e893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.nature.com/articles/s41598-023-28734-6.pdf
PMID 37464003
PQID 2838888131
PQPubID 2041939
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_de846acb5b63467cbc31d73e71a723ec
unpaywall_primary_10_1038_s41598_023_28734_6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10354180
proquest_miscellaneous_2839739627
proquest_journals_2838888131
pubmed_primary_37464003
crossref_primary_10_1038_s41598_023_28734_6
springer_journals_10_1038_s41598_023_28734_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-18
PublicationDateYYYYMMDD 2023-07-18
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-18
  day: 18
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Hölldobler, Wilson (CR8) 2009
Elias, Land, Mason, Hoy (CR5) 2006; 192
CR19
CR18
CR17
Korb, Heinze (CR11) 2016; 61
CR16
CR36
CR35
Patek, Caldwell (CR4) 2005; 208
CR34
CR33
CR10
CR32
CR31
CR30
Liu, Zhao, Yao, Qi (CR39) 2015; 24
Pukelsheim (CR40) 1994; 48
Oreifej, Li, Shah (CR38) 2012; 35
Torres, Nieukirk, Lemos, Chandler (CR6) 2018; 5
Gordon (CR12) 1999
CR29
CR28
CR9
CR27
Torney, Hopcraft, Morrison, Couzin, Levin (CR7) 2018; 373
CR26
Imirzian (CR1) 2019; 9
CR25
Kurze, Routtu, Moritz (CR14) 2016; 119
CR24
CR23
Schmid-Hempel (CR13) 1998
CR22
Thomas, Thorne (CR3) 2001; 411
CR21
CR20
CR42
CR41
Horn, Arnett, Kunz (CR2) 2008; 72
Wilfert, Brown, Doublet (CR15) 2021; 186
Bai (CR37) 2021; 34
28734_CR19
28734_CR16
28734_CR18
28734_CR17
F Pukelsheim (28734_CR40) 1994; 48
X Liu (28734_CR39) 2015; 24
L Wilfert (28734_CR15) 2021; 186
GL Thomas (28734_CR3) 2001; 411
28734_CR23
DM Gordon (28734_CR12) 1999
28734_CR22
28734_CR25
CJ Torney (28734_CR7) 2018; 373
28734_CR9
28734_CR24
28734_CR41
Y Bai (28734_CR37) 2021; 34
28734_CR21
DO Elias (28734_CR5) 2006; 192
28734_CR20
28734_CR42
LG Torres (28734_CR6) 2018; 5
28734_CR27
B Hölldobler (28734_CR8) 2009
C Kurze (28734_CR14) 2016; 119
28734_CR26
28734_CR29
28734_CR28
N Imirzian (28734_CR1) 2019; 9
J Korb (28734_CR11) 2016; 61
JW Horn (28734_CR2) 2008; 72
S Patek (28734_CR4) 2005; 208
28734_CR34
28734_CR33
28734_CR36
28734_CR35
28734_CR30
P Schmid-Hempel (28734_CR13) 1998
28734_CR10
28734_CR32
28734_CR31
O Oreifej (28734_CR38) 2012; 35
References_xml – ident: CR22
– volume: 48
  start-page: 88
  year: 1994
  end-page: 91
  ident: CR40
  article-title: The three sigma rule
  publication-title: Am. Stat.
– ident: CR18
– volume: 5
  start-page: 319
  year: 2018
  ident: CR6
  article-title: Drone up! Quantifying whale behavior from a new perspective improves observational capacity
  publication-title: Front. Mar. Sci.
  doi: 10.3389/fmars.2018.00319
– volume: 119
  start-page: 290
  year: 2016
  end-page: 297
  ident: CR14
  article-title: Parasite resistance and tolerance in honeybees at the individual and social level
  publication-title: Zoology
  doi: 10.1016/j.zool.2016.03.007
– ident: CR16
– volume: 61
  start-page: 297
  year: 2016
  end-page: 316
  ident: CR11
  article-title: Major hurdles for the evolution of sociality
  publication-title: Annu. Rev. Entomol.
  doi: 10.1146/annurev-ento-010715-023711
– ident: CR30
– volume: 24
  start-page: 2502
  year: 2015
  end-page: 2514
  ident: CR39
  article-title: Background subtraction based on low-rank and structured sparse decomposition
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2015.2419084
– ident: CR10
– ident: CR33
– volume: 9
  start-page: 1
  year: 2019
  end-page: 10
  ident: CR1
  article-title: Automated tracking and analysis of ant trajectories shows variation in forager exploration
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-49655-3
– volume: 34
  start-page: 24392
  year: 2021
  end-page: 24403
  ident: CR37
  article-title: Understanding and improving early stopping for learning with noisy labels
  publication-title: Adv. Neural. Inf. Process. Syst.
– volume: 373
  start-page: 20170012
  year: 2018
  ident: CR7
  article-title: From single steps to mass migration: The problem of scale in the movement ecology of the Serengeti wildebeest
  publication-title: Philos. Trans. R. Soc. B Biol. Sci.
  doi: 10.1098/rstb.2017.0012
– ident: CR35
– volume: 208
  start-page: 3655
  year: 2005
  end-page: 3664
  ident: CR4
  article-title: Extreme impact and cavitation forces of a biological hammer: Strike forces of the peacock mantis shrimp
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.01831
– ident: CR29
– volume: 411
  start-page: 1013
  year: 2001
  ident: CR3
  article-title: Night-time predation by Steller sea lions
  publication-title: Nature
  doi: 10.1038/35082745
– volume: 186
  year: 2021
  ident: CR15
  article-title: Onehealth implications of infectious diseases of wild and managed bees
  publication-title: J. Invertebr. Pathol.
  doi: 10.1016/j.jip.2020.107506
– ident: CR25
– ident: CR27
– ident: CR42
– ident: CR23
– ident: CR21
– year: 1999
  ident: CR12
  publication-title: Ants at Work: How an Insect Society is Organized
– ident: CR19
– year: 2009
  ident: CR8
  publication-title: The Superorganism: The Beauty, Elegance, and Strangeness of Insect Societies
– ident: CR17
– ident: CR31
– ident: CR9
– volume: 72
  start-page: 123
  year: 2008
  end-page: 132
  ident: CR2
  article-title: Behavioral responses of bats to operating wind turbines
  publication-title: J. Wildl. Manag.
  doi: 10.2193/2006-465
– ident: CR32
– ident: CR34
– year: 1998
  ident: CR13
  publication-title: Parasites in Social Insects
– ident: CR36
– ident: CR28
– ident: CR41
– volume: 192
  start-page: 785
  year: 2006
  end-page: 797
  ident: CR5
  article-title: Measuring and quantifying dynamic visual signals in jumping spiders
  publication-title: J. Comp. Physiol. A.
  doi: 10.1007/s00359-006-0116-7
– ident: CR26
– ident: CR24
– ident: CR20
– volume: 35
  start-page: 450
  year: 2012
  end-page: 462
  ident: CR38
  article-title: Simultaneous video stabilization and moving object detection in turbulence
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.97
– ident: 28734_CR20
  doi: 10.1109/CVPR.2015.7298965
– ident: 28734_CR23
  doi: 10.1609/aaai.v30i1.10141
– volume: 119
  start-page: 290
  year: 2016
  ident: 28734_CR14
  publication-title: Zoology
  doi: 10.1016/j.zool.2016.03.007
– volume: 411
  start-page: 1013
  year: 2001
  ident: 28734_CR3
  publication-title: Nature
  doi: 10.1038/35082745
– ident: 28734_CR21
– volume: 5
  start-page: 319
  year: 2018
  ident: 28734_CR6
  publication-title: Front. Mar. Sci.
  doi: 10.3389/fmars.2018.00319
– ident: 28734_CR31
  doi: 10.1109/CVPR.2017.638
– ident: 28734_CR32
  doi: 10.1109/TNNLS.2022.3152527
– ident: 28734_CR17
  doi: 10.1109/ICCV.2017.322
– volume: 35
  start-page: 450
  year: 2012
  ident: 28734_CR38
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.97
– volume: 208
  start-page: 3655
  year: 2005
  ident: 28734_CR4
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.01831
– volume: 192
  start-page: 785
  year: 2006
  ident: 28734_CR5
  publication-title: J. Comp. Physiol. A.
  doi: 10.1007/s00359-006-0116-7
– volume: 9
  start-page: 1
  year: 2019
  ident: 28734_CR1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-49655-3
– volume-title: Parasites in Social Insects
  year: 1998
  ident: 28734_CR13
– volume: 24
  start-page: 2502
  year: 2015
  ident: 28734_CR39
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2015.2419084
– ident: 28734_CR22
  doi: 10.1007/978-3-319-24574-4_28
– ident: 28734_CR33
  doi: 10.1109/ICCV.2017.211
– ident: 28734_CR10
  doi: 10.2307/j.ctvs32s3w
– ident: 28734_CR19
  doi: 10.1109/CVPR.2016.91
– ident: 28734_CR18
  doi: 10.1007/978-3-319-46448-0_2
– ident: 28734_CR25
– volume-title: Ants at Work: How an Insect Society is Organized
  year: 1999
  ident: 28734_CR12
– ident: 28734_CR9
– ident: 28734_CR26
  doi: 10.1109/ICCV.2015.167
– volume: 72
  start-page: 123
  year: 2008
  ident: 28734_CR2
  publication-title: J. Wildl. Manag.
  doi: 10.2193/2006-465
– volume: 61
  start-page: 297
  year: 2016
  ident: 28734_CR11
  publication-title: Annu. Rev. Entomol.
  doi: 10.1146/annurev-ento-010715-023711
– ident: 28734_CR28
  doi: 10.1007/978-3-319-46466-4_5
– ident: 28734_CR16
– volume-title: The Superorganism: The Beauty, Elegance, and Strangeness of Insect Societies
  year: 2009
  ident: 28734_CR8
– ident: 28734_CR30
– ident: 28734_CR29
  doi: 10.1109/CVPR42600.2020.00975
– ident: 28734_CR34
  doi: 10.1109/CVPR.2018.00582
– volume: 373
  start-page: 20170012
  year: 2018
  ident: 28734_CR7
  publication-title: Philos. Trans. R. Soc. B Biol. Sci.
  doi: 10.1098/rstb.2017.0012
– ident: 28734_CR36
  doi: 10.1109/ICCV.2019.00524
– volume: 34
  start-page: 24392
  year: 2021
  ident: 28734_CR37
  publication-title: Adv. Neural. Inf. Process. Syst.
– volume: 186
  year: 2021
  ident: 28734_CR15
  publication-title: J. Invertebr. Pathol.
  doi: 10.1016/j.jip.2020.107506
– ident: 28734_CR42
  doi: 10.1109/TPAMI.2004.1273918
– ident: 28734_CR41
– ident: 28734_CR27
  doi: 10.1007/978-3-319-46493-0_35
– ident: 28734_CR24
– ident: 28734_CR35
  doi: 10.1609/aaai.v33i01.33015909
– volume: 48
  start-page: 88
  year: 1994
  ident: 28734_CR40
  publication-title: Am. Stat.
  doi: 10.1080/00031305.1994.10476030
SSID ssj0000529419
Score 2.408195
Snippet Deep learning (DL) based detection models are powerful tools for large-scale analysis of dynamic biological behaviors in video data. Supervised training of a...
Abstract Deep learning (DL) based detection models are powerful tools for large-scale analysis of dynamic biological behaviors in video data. Supervised...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 11566
SubjectTerms 631/114/1305
631/114/1314
631/114/1564
631/114/2397
Algorithms
Annotations
Deep learning
Humanities and Social Sciences
multidisciplinary
Neural networks
Rainforests
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEB-kIOpD8dvUKhF8s0uT7Ed2H61YiqAgWOhbmP3I9eBMjuaO0v--s0kuvUNRH3zNJmT3Nzs7M8zObwDeSywkZt4wsn6SCRSSoUbOSmswZmI09jwFX7-ps3Px5UJebLX6infCBnrgAbhjH8hCorPSKk5K7azjuS95KHMsCx5cPH0zbbaCqYHVuzAiN2OVTMb1cUeWKlaTFZxRkMAFUzuWqCfs_52X-etlySlj-ggerJsl3lzjYrFllE4fw_7oTaYfh1U8gXuheQr3h_6SN8_g-8ieOktjFUmKi1l7NV9d_mSznmyanM102YW1bxk2TTsk5buU3NjUh5hciF_GezLpvEljvV7bPYfz088_Pp2xsYcCc8IUKzo_uEJvUWdWCO8JOq9zh4Z0Txgv80BGDK3JbdDaFC5ktVZacRWQHLFAzswL2GvaJryCtLa2lsqXrg4UVtlgpSidxkLXmbO8Fgl82OBZLQeqjKpPcXNdDehXhH7Vo1-pBE4i5NObkea6f0DCr0bhV38TfgKHG4FVo-519ANOYb3OeZ7Au2mYtCamQrAJ7bp_x5Q8Nh5K4OUg32kmvBSKTjaegN6R_M5Ud0ea-WXPzE1rlSLXWQJHm01yN68_YXE0baR_gO7gf0D3Gh4WURkiR6g-hL3V1Tq8If9qZd_2qnQL7zshQg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB_qFVEfxK_aaJUIvtmlSXY32TyIWGkpgoeKhb6F2Y9cC2dy9u4o_e-d3XzUQym-ZjewMztfu7PzG4C3EjOJiS0ZeT_JBArJUCFnhS7RZ2IUBpyCL9P85FR8PpNnWzAdamH8s8rBJgZDbVvj78gPyA3SYU2lPP2w-MV81yifXR1aaGDfWsG-DxBjd2A788hYE9g-PJp-_T7euvi8lkjLvnom4epgSR7MV5llnNHhgQuWb3ioAOT_r-jz70eUYyb1AdxbNwu8vsL5_A9ndfwIHvZRZvyxE4vHsOWaJ3C36zt5_RS-9aiqs9hXl8Q4nxGlq_OfbBZAqCkIjRdLt7Ytw6Zpu2T9MqbwNrbOJx38n_79THzRxL6Or10-g9Pjox-fTljfW4EZUWYrsis8R6tRJVoIa1NbWJUaLEknRWll6si5oS5T7ZQqM-OSWuUq57lDCtAcBTk7MGnaxu1CXGtdy9wWpnZ03NJOS1EYhZmqE6N5LSJ4N_CzWnQQGlVIfXNVddyviPtV4H6VR3DoWT7O9PDX4UN7Oat6baqso7AJjZY652TpjTacKOCuSLHIuDMR7A0bVvU6uaxuJCiCN-MwaZNPkWDj2nWYUxbcNySK4Hm3v-NKeCFysng8ArWx8xtL3RxpLs4DYjfRKkWqkgj2ByG5WddtvNgfBek_WPfidqpfwv3Mi7lHBVV7MFldrt0riqhW-nWvJr8Bx2Uegw
  priority: 102
  providerName: ProQuest
– databaseName: HAS SpringerNature Open Access 2022
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_OPUR9EL-vekoF39xg23w0fVzF41hQED24tzL56N7CXrtcd5H772_SdqvLiehbaZM2mclkfulkfgF4JzGTmLiCkfeTTKCQDDVylpsCQyRGY8dT8OWrOj0T83N5fgDTXS7MXvy-o-5uycWENLCMM0L3XDB1Bw7pItETOJzN5t_n4z-VELUSaTHkxlD1D7cr7_mfjqb_T9jy9hbJMU76AO5t6zVe_8TV6jdXdPIIHg4YMp71Sn8MB75-Anf7UyWvn8K3gTN1EYfckRhXi-Zqubm4ZIuOYpogZrxu_dY1DOu66UPxbUzgNXY-hBRCzbA7Jl7WccjSa9pncHby-cenUzacnMCsKLINzRpcoTOoEyOEc6nLnU4tFmRxonAy9eS60BSp8VoXmfVJpZVWXHkk-OUJwjyHSd3U_gjiyphKKpfbytNiyngjRW41ZrpKrOGViOD9Tp7luifIKLvANtdlL_2SpF920i9VBB-DyMeSgdy6u0E6LwdbKZ0nUITWSKM4zePWWE494D5PMc-4txEc7xRWDhbX0gc4LeZ1ytMI3o6PyVZCAARr32y7MkXOw3FDEbzo9Tu2hOdC0XzGI9B7mt9r6v6TennR8XFTX6VIdRLBdDdIfrXrb7KYjgPpH0T38v_e_gruZ2HYBw5QfQyTzdXWvyb8tDFvBrO5AbRrErQ
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrRDlwPsRKChI3KiXJH7EORZEVSFRgcSKcor8ynbFNlntboTKr2fsJAsLFaI5xrbiGY89XzQznwFecpVxldiCoPfjhCnGiZKKklwXykdipAo8BR9OxPGEvT_lpzsghlqYkLQfKC3DMT1kh71eoaPxxWAZJYjxKSNivLDVNdgVHDH4CHYnJx8Pv_qb5BCjEIQJWV8hk1B5yeAtLxTI-i9DmH8nSm6ipTfhRlsv1MV3NZ__5pCObsOXQZQuD-XbuF3rsfnxB8vj1WW9A7d6jBofdj3vwo6r78H17tbKi_vwqedknca-NiVW82mznK3Pzsk0UFgjhI0XK9fahqi6brpQ_ypGcBxb50MWfqTPvolndeyrAJvVA5gcvfv89pj0NzMQw4psjacSFcpqJRPNmLWpza1MjSpwR7PC8tSha1S6SLWTssiMSyoppKDCKYR3DiHSQxjVTe0eQ1xpXXFhc1M5_FnTTnOWG6kyWSVG04pF8GpYqXLREXCUIXBOZdkpqkRFlUFRpYjgjV_MTU9Pnh1eNMtp2Su4tA5BlzKaa0HRTxhtKEpAXZ6qPKPORLA_mELZ7-gVfoBKfFKaRvBi04x70QdYVO2aNvQpcuqvM4rgUWc5m5nQnAk8L2kEcsumtqa63VLPzgLfN8rKWSqTCA4G8_s1r3_p4mBjov-huidX6_4U9jJvoZ5jVO7DaL1s3TPEZ2v9vN-MPwEuODVJ
  priority: 102
  providerName: Unpaywall
Title Learning from algorithm-generated pseudo-annotations for detecting ants in videos
URI https://link.springer.com/article/10.1038/s41598-023-28734-6
https://www.ncbi.nlm.nih.gov/pubmed/37464003
https://www.proquest.com/docview/2838888131
https://www.proquest.com/docview/2839739627
https://pubmed.ncbi.nlm.nih.gov/PMC10354180
https://www.nature.com/articles/s41598-023-28734-6.pdf
https://doaj.org/article/de846acb5b63467cbc31d73e71a723ec
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: HH5
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: ABDBF
  dateStart: 20121221
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DIK
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAQT
  databaseName: Nature
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: NAO
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.nature.com/siteindex/index.html
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M48
  dateStart: 20110801
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: AAJSJ
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature Link OA Free Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: C6C
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_tQwh4QHwvMKog8cbMmthxnAeEumrTVGnV-KhUniI7drpKJemaVtD_nrOTBioqBE-R4nzY5zvfz7nc7wDeRDKMZFcnBL1fRJhkEZFCUhKrRNpIjJCOp-BqyC9HbDCOxnuwKXfUCLDaubWz9aRGi9m7H7frD2jw7-uUcXFaoROyiWIhJYj_KSN8Hw7RUyW2lMNVA_drru8wYa7WhyVhJwgmwiaPZvdjtnyVo_TfhUP__J2yjaneh7urYi7X3-Vs9pvbungIDxq86fdqBXkEe6Z4DHfqCpTrJ_Cx4Ved-DbPxJezSbmYLm--kYmjo0Y46s8rs9IlkUVR1mH7ykeg62tjww_2TvsnjT8tfJvRV1ZPYXRx_qV_SZoqCyRjSbjEFYZyqZUUXcWY1oGOtQgymaB1skRHgUE3J1USKCNEEmammwsuOOVGIlQzCHeewUFRFuYI_FypPOI6znKDGy9lVMTiTMhQ5N1M0Zx58HYjz3Rek2mkLghORVpLP0Xpp076KffgzIq8vdISYbsT5WKSNnaVaoMASmYqUpzimp-pjOIIqIkDGYfUZB4cbyYs3SgXvoDixl8ENPDgdduMdmWDJbIw5cpdk8TUliby4Hk9v21PaMw4rn3UA7E181td3W4ppjeOuxvHGrFAdD042SjJr379TRYnrSL9g-he_JegX8K90Gq9pQsVx3CwXKzMK4RaS9WB_Xgcd-Cw1xt8HuDx7Hx4_QnP9nm_4z5fdJyFYctoeN37-hOVUyhZ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9RAFD4hEIM-GLxXUWuiTzKh7Uzb6QMhoJBFYKMGEt7GuXUhWduV7obsn_O3caY33GiIL7x2psnMN-c6Z845AO9jGcUyMBlB7RcTJllMJJeUpCqTLhLDZV2n4HiYDE7Zl7P4bAl-d7kw7lllJxNrQW1K7e7IN1ENorPGQxpuT34R1zXKRVe7Fhqyba1gtuoSY21ix6GdX6ELV20dfMbz_hBF-3snnwak7TJANMuiKXIYTaRRkgeKMWNCkxoeapkhdbLMxKFFMS9VFirLeRZpG-Q84QlNrERTxXJXjAlVwArD2ej8rezuDb9-7295XByNhVmbrRNQvlmhxnRZbREl6KxQRpIFjVg3DviXtfv3o80-cvsAVmfFRM6v5Hj8h3LcX4OHrVXr7zRk-AiWbPEY7jV9LudP4FtbxXXku2wWX45HiOz0_CcZ1UWv0ej1J5WdmZLIoiibxwGVj-a0b6wLcrg_3Xsd_6LwXd5gWT2F0ztB-RksF2VhX4CfK5XHiUl1btG9U1bFLNVcRjwPtKI58-Bjh6eYNCU7RB1qp1w06AtEX9Toi8SDXQd5P9OV264_lJcj0XKvMBbNNKlVrBKKmkUrTXEH1KahTCNqtQfr3YGJVgZU4oZiPXjXDyP3upCMLGw5q-dkKXUNkDx43pxvvxKasgQlLPWAL5z8wlIXR4qL87pCOO41ZiEPPNjoiORmXbdhsdET0n9A9_L2Xb-F1cHJ8ZE4OhgevoL7kSN5V5GUr8Py9HJmX6M1N1VvWpbx4cddc-k1cZla7w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH6qitgOiJ1AgSDBiVqTxE7sHBACyqilUIFEpbm53jKtNCRDM6Nq_hq_judsZQSquPQaO5L9-W322wBepipJVWRzgtovJUyxlCihKOE6V94TI1RTp-DLQbZ7yD5N0skG_OpzYXxYZS8TG0FtK-PfyEeoBvGyJmIaj4ouLOLrzvjt_CfxHaS8p7Vvp9GSyL5bneH1rX6zt4Nn_SpJxh-_f9glXYcBYlieLJC7aKasViLSjFkbW25FbFSOlMlym8YORbzSeaydEHliXFSITGQ0cwrNFCd8ISYU_1c4xY0iL_EJH953vAeNxXmXpxNRMapRV_p8toQSvKZQRrI1Xdi0DPiXnft3uObgs70J15flXK3O1Gz2h1oc34ZbnT0bvmsJ8A5suPIuXG07XK7uwbeufus09HksoZpNEcfF8Q8ybcpdo7kbzmu3tBVRZVm1YQF1iIZ0aJ13b_g_faROeFKGPmOwqu_D4aVg_AA2y6p0jyAstC7SzHJTOLzYaadTxo1QiSgio2nBAnjd4ynnbbEO2TjZqZAt-hLRlw36MgvgvYd8mOkLbTcfqtOp7PhWWocGmjI61RlFnWK0obgD6niseEKdCWCrPzDZcX8tz2k1gBfDMPKtd8ao0lXLZk7OqW99FMDD9nyHlVDOMpStNACxdvJrS10fKU-Om9rguNeUxSIKYLsnkvN1XYTF9kBI_wHd44t3_RyuIW_Kz3sH-0_gRuIp3pciFVuwuThduqdoxi30s4ZfQji6bAb9De3dWIk
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrRDlwPsRKChI3KiXJH7EORZEVSFRgcSKcor8ynbFNlntboTKr2fsJAsLFaI5xrbiGY89XzQznwFecpVxldiCoPfjhCnGiZKKklwXykdipAo8BR9OxPGEvT_lpzsghlqYkLQfKC3DMT1kh71eoaPxxWAZJYjxKSNivLDVNdgVHDH4CHYnJx8Pv_qb5BCjEIQJWV8hk1B5yeAtLxTI-i9DmH8nSm6ipTfhRlsv1MV3NZ__5pCObsOXQZQuD-XbuF3rsfnxB8vj1WW9A7d6jBofdj3vwo6r78H17tbKi_vwqedknca-NiVW82mznK3Pzsk0UFgjhI0XK9fahqi6brpQ_ypGcBxb50MWfqTPvolndeyrAJvVA5gcvfv89pj0NzMQw4psjacSFcpqJRPNmLWpza1MjSpwR7PC8tSha1S6SLWTssiMSyoppKDCKYR3DiHSQxjVTe0eQ1xpXXFhc1M5_FnTTnOWG6kyWSVG04pF8GpYqXLREXCUIXBOZdkpqkRFlUFRpYjgjV_MTU9Pnh1eNMtp2Su4tA5BlzKaa0HRTxhtKEpAXZ6qPKPORLA_mELZ7-gVfoBKfFKaRvBi04x70QdYVO2aNvQpcuqvM4rgUWc5m5nQnAk8L2kEcsumtqa63VLPzgLfN8rKWSqTCA4G8_s1r3_p4mBjov-huidX6_4U9jJvoZ5jVO7DaL1s3TPEZ2v9vN-MPwEuODVJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+from+algorithm-generated+pseudo-annotations+for+detecting+ants+in+videos&rft.jtitle=Scientific+reports&rft.au=Zhang%2C+Yizhe&rft.au=Imirzian%2C+Natalie&rft.au=Kurze%2C+Christoph&rft.au=Zheng%2C+Hao&rft.date=2023-07-18&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-023-28734-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_023_28734_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon