Intracellular morphogenesis of diatom silica is guided by local variations in membrane curvature
Silica cell-wall formation in diatoms is a showcase for the ability of organisms to control inorganic mineralization. The process of silicification by these unicellular algae is tightly regulated within a membrane-bound organelle, the silica deposition vesicle (SDV). Two opposing scenarios were prop...
Saved in:
Published in | Nature communications Vol. 15; no. 1; pp. 7888 - 11 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
10.09.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2041-1723 2041-1723 |
DOI | 10.1038/s41467-024-52211-x |
Cover
Abstract | Silica cell-wall formation in diatoms is a showcase for the ability of organisms to control inorganic mineralization. The process of silicification by these unicellular algae is tightly regulated within a membrane-bound organelle, the silica deposition vesicle (SDV). Two opposing scenarios were proposed to explain the tight regulation of this intracellular process: a template-mediated process that relies on preformed scaffolds, or a template-independent self-assembly process. The present work points to a third scenario, where the SDV membrane is a dynamic mold that shapes the forming silica. We use in-cell cryo-electron tomography to visualize the silicification process in situ, in its native-state, and with a nanometer-scale resolution. This reveals that the plasma membrane interacts with the SDV membrane via physical tethering at membrane contact sites, where the curvature of the tethered side of the SDV membrane mirrors the intricate silica topography. We propose that silica growth and morphogenesis result from the biophysical properties of the SDV and plasma membranes.
The silica cell wall of unicellular algae has intricate architecture unattainable by current technology. In this work it is shown that membrane contact sites are the biological morphogenesis handles to shape such intracellular mineralization. |
---|---|
AbstractList | Silica cell-wall formation in diatoms is a showcase for the ability of organisms to control inorganic mineralization. The process of silicification by these unicellular algae is tightly regulated within a membrane-bound organelle, the silica deposition vesicle (SDV). Two opposing scenarios were proposed to explain the tight regulation of this intracellular process: a template-mediated process that relies on preformed scaffolds, or a template-independent self-assembly process. The present work points to a third scenario, where the SDV membrane is a dynamic mold that shapes the forming silica. We use in-cell cryo-electron tomography to visualize the silicification process in situ, in its native-state, and with a nanometer-scale resolution. This reveals that the plasma membrane interacts with the SDV membrane via physical tethering at membrane contact sites, where the curvature of the tethered side of the SDV membrane mirrors the intricate silica topography. We propose that silica growth and morphogenesis result from the biophysical properties of the SDV and plasma membranes.Silica cell-wall formation in diatoms is a showcase for the ability of organisms to control inorganic mineralization. The process of silicification by these unicellular algae is tightly regulated within a membrane-bound organelle, the silica deposition vesicle (SDV). Two opposing scenarios were proposed to explain the tight regulation of this intracellular process: a template-mediated process that relies on preformed scaffolds, or a template-independent self-assembly process. The present work points to a third scenario, where the SDV membrane is a dynamic mold that shapes the forming silica. We use in-cell cryo-electron tomography to visualize the silicification process in situ, in its native-state, and with a nanometer-scale resolution. This reveals that the plasma membrane interacts with the SDV membrane via physical tethering at membrane contact sites, where the curvature of the tethered side of the SDV membrane mirrors the intricate silica topography. We propose that silica growth and morphogenesis result from the biophysical properties of the SDV and plasma membranes. Silica cell-wall formation in diatoms is a showcase for the ability of organisms to control inorganic mineralization. The process of silicification by these unicellular algae is tightly regulated within a membrane-bound organelle, the silica deposition vesicle (SDV). Two opposing scenarios were proposed to explain the tight regulation of this intracellular process: a template-mediated process that relies on preformed scaffolds, or a template-independent self-assembly process. The present work points to a third scenario, where the SDV membrane is a dynamic mold that shapes the forming silica. We use in-cell cryo-electron tomography to visualize the silicification process in situ, in its native-state, and with a nanometer-scale resolution. This reveals that the plasma membrane interacts with the SDV membrane via physical tethering at membrane contact sites, where the curvature of the tethered side of the SDV membrane mirrors the intricate silica topography. We propose that silica growth and morphogenesis result from the biophysical properties of the SDV and plasma membranes. The silica cell wall of unicellular algae has intricate architecture unattainable by current technology. In this work it is shown that membrane contact sites are the biological morphogenesis handles to shape such intracellular mineralization. Silica cell-wall formation in diatoms is a showcase for the ability of organisms to control inorganic mineralization. The process of silicification by these unicellular algae is tightly regulated within a membrane-bound organelle, the silica deposition vesicle (SDV). Two opposing scenarios were proposed to explain the tight regulation of this intracellular process: a template-mediated process that relies on preformed scaffolds, or a template-independent self-assembly process. The present work points to a third scenario, where the SDV membrane is a dynamic mold that shapes the forming silica. We use in-cell cryo-electron tomography to visualize the silicification process in situ, in its native-state, and with a nanometer-scale resolution. This reveals that the plasma membrane interacts with the SDV membrane via physical tethering at membrane contact sites, where the curvature of the tethered side of the SDV membrane mirrors the intricate silica topography. We propose that silica growth and morphogenesis result from the biophysical properties of the SDV and plasma membranes.The silica cell wall of unicellular algae has intricate architecture unattainable by current technology. In this work it is shown that membrane contact sites are the biological morphogenesis handles to shape such intracellular mineralization. Silica cell-wall formation in diatoms is a showcase for the ability of organisms to control inorganic mineralization. The process of silicification by these unicellular algae is tightly regulated within a membrane-bound organelle, the silica deposition vesicle (SDV). Two opposing scenarios were proposed to explain the tight regulation of this intracellular process: a template-mediated process that relies on preformed scaffolds, or a template-independent self-assembly process. The present work points to a third scenario, where the SDV membrane is a dynamic mold that shapes the forming silica. We use in-cell cryo-electron tomography to visualize the silicification process in situ, in its native-state, and with a nanometer-scale resolution. This reveals that the plasma membrane interacts with the SDV membrane via physical tethering at membrane contact sites, where the curvature of the tethered side of the SDV membrane mirrors the intricate silica topography. We propose that silica growth and morphogenesis result from the biophysical properties of the SDV and plasma membranes. Abstract Silica cell-wall formation in diatoms is a showcase for the ability of organisms to control inorganic mineralization. The process of silicification by these unicellular algae is tightly regulated within a membrane-bound organelle, the silica deposition vesicle (SDV). Two opposing scenarios were proposed to explain the tight regulation of this intracellular process: a template-mediated process that relies on preformed scaffolds, or a template-independent self-assembly process. The present work points to a third scenario, where the SDV membrane is a dynamic mold that shapes the forming silica. We use in-cell cryo-electron tomography to visualize the silicification process in situ, in its native-state, and with a nanometer-scale resolution. This reveals that the plasma membrane interacts with the SDV membrane via physical tethering at membrane contact sites, where the curvature of the tethered side of the SDV membrane mirrors the intricate silica topography. We propose that silica growth and morphogenesis result from the biophysical properties of the SDV and plasma membranes. |
ArticleNumber | 7888 |
Author | Elad, Nadav Gilchrist, James B. Gal, Assaf de Haan, Diede Kröger, Nils Rotkopf, Ron Aram, Lior Heintze, Christoph Varsano, Neta Rechav, Katya |
Author_xml | – sequence: 1 givenname: Lior orcidid: 0000-0002-3890-0456 surname: Aram fullname: Aram, Lior organization: Department of Plant and Environmental Sciences, Weizmann Institute of Science – sequence: 2 givenname: Diede orcidid: 0000-0002-9793-1260 surname: de Haan fullname: de Haan, Diede organization: Department of Plant and Environmental Sciences, Weizmann Institute of Science – sequence: 3 givenname: Neta surname: Varsano fullname: Varsano, Neta organization: Department of Chemical Research Support, Weizmann Institute of Science – sequence: 4 givenname: James B. orcidid: 0000-0002-9814-4285 surname: Gilchrist fullname: Gilchrist, James B. organization: Electron Bio-Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus – sequence: 5 givenname: Christoph surname: Heintze fullname: Heintze, Christoph organization: B CUBE – Center for Molecular Bioengineering, Technische Universität Dresden – sequence: 6 givenname: Ron orcidid: 0000-0001-9503-7348 surname: Rotkopf fullname: Rotkopf, Ron organization: Life Sciences Core Facilities, Weizmann Institute of Science – sequence: 7 givenname: Katya orcidid: 0000-0003-4664-5704 surname: Rechav fullname: Rechav, Katya organization: Department of Chemical Research Support, Weizmann Institute of Science – sequence: 8 givenname: Nadav orcidid: 0000-0001-6222-2280 surname: Elad fullname: Elad, Nadav organization: Department of Chemical Research Support, Weizmann Institute of Science – sequence: 9 givenname: Nils orcidid: 0000-0002-8115-4129 surname: Kröger fullname: Kröger, Nils organization: B CUBE – Center for Molecular Bioengineering, Technische Universität Dresden, Cluster of Excellence Physics of Life, Technische Universität Dresden, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden – sequence: 10 givenname: Assaf orcidid: 0000-0003-1488-1227 surname: Gal fullname: Gal, Assaf email: assaf.gal@weizmann.ac.il organization: Department of Plant and Environmental Sciences, Weizmann Institute of Science |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39251596$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1P3DAQhq2KqsCWP9BDZamXXtL6K3FyqirUlpWQeoGzcZxJ8Mqxt3aygn-PdwMUeqhlyZb9zjOjd-YUHfngAaEPlHyhhNdfk6CikgVhoigZo7S4e4NOGBG0oJLxoxf3Y3SW0obkxRtaC_EOHfOGlbRsqhN0s_ZT1Aacm52OeAxxexsG8JBswqHHndVTGHGyzhqN89sw2w463N5jF4x2eKdjltjgE7YejzC2UXvAZo47Pc0R3qO3vXYJzh7PFbr--ePq_KK4_P1rff79sjCiYVPB-pZDzzjhTPSs5iVpRSlFS6rG1HlDLVkPsoWK69ZUhJSQy9DAJW9KqBhfofXC7YLeqG20o473KmirDg8hDkrHyRoHynSS8lpTXYEUvO7aCmjDTdWLRoKmPLO-Lazt3I7QGdh75F5BX_94e6uGsFM0c3M39oTPj4QY_syQJjXatHc5exPmpDjNjZOkLpss_fSPdBPm6LNXB1WmydzwFfr4sqTnWp46mQVsEZgYUorQP0soUfuJUcvEqJxYHSZG3eUgvgSlLPYDxL-5_xP1AHwZxCU |
Cites_doi | 10.1126/science.aad8857 10.1073/pnas.2309518121 10.7554/eLife.78750 10.1021/jacs.1c00814 10.1038/s41467-019-09253-3 10.1038/nmeth.4193 10.1111/j.0022-3646.1983.00387.x 10.1016/j.jsb.2014.02.015 10.1146/annurev.genet.41.110306.130109 10.1083/jcb.201911122 10.1007/BF01275654 10.1016/j.jsb.2005.07.007 10.1016/j.jsb.2007.09.010 10.1016/0968-0004(87)90072-7 10.1007/BF01666388 10.1074/jbc.M115.706440 10.1016/j.devcel.2019.10.018 10.1007/978-3-030-92499-7_12 10.1038/s41592-023-01783-5 10.1006/jsbi.1996.0013 10.1186/s42833-020-00017-8 10.1557/jmr.2006.0333 10.1016/j.jsb.2016.06.007 10.1038/s41586-022-05255-2 10.1073/pnas.2025670118 10.1007/978-3-030-92499-7_11 10.1371/journal.pone.0014300 10.1038/s41467-021-24944-6 10.1038/s41467-023-36112-z 10.1098/rsif.2013.0067 10.1038/s41580-018-0071-5 10.3389/fmars.2018.00125 10.1186/s42833-019-0007-1 10.1186/s12915-017-0400-8 10.1016/j.jsb.2009.08.013 10.1038/s41586-023-06050-3 10.1073/pnas.1807028115 10.1111/nph.16329 10.1016/S0074-7696(08)61544-2 10.1093/pnasnexus/pgac156 10.1371/journal.pone.0061675 10.1039/b505945c 10.1111/j.1529-8817.2007.00361.x 10.1002/adfm.200500616 10.1007/BF01279316 10.1007/s00709-013-0495-x 10.1126/science.1070026 10.1016/j.devcel.2016.10.022 10.1111/tpj.15765 10.1073/pnas.2211549119 10.1126/sciadv.aaz7554 10.1098/rstb.1984.0043 10.1038/s41580-019-0180-9 10.1016/j.jsb.2018.07.005 10.7554/eLife.72817 10.1007/BF00353582 10.1002/j.1537-2197.1965.tb07286.x 10.1073/pnas.1012842108 10.1111/jpy.13362 10.1073/pnas.2201014119 10.1016/bs.mcb.2019.05.001 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 2024 |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 2024 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-024-52211-x |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC Biological Science Database ProQuest Central ProQuest Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_cd7138a1a6e7438db6e193c6f497ea13 PMC11385223 39251596 10_1038_s41467_024_52211_x |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council) grantid: 848339 funderid: https://doi.org/10.13039/100010663 – fundername: EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council) grantid: 848339 – fundername: Wellcome Trust |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c492t-2fb3ef230324f28350b4574b069c89c8e872fe7be63abc6005ededae37395e623 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 00:56:50 EDT 2025 Thu Aug 21 18:35:31 EDT 2025 Thu Sep 04 15:21:45 EDT 2025 Wed Aug 13 04:18:56 EDT 2025 Fri Jun 20 01:35:04 EDT 2025 Tue Jul 01 02:37:33 EDT 2025 Fri Feb 21 02:37:36 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c492t-2fb3ef230324f28350b4574b069c89c8e872fe7be63abc6005ededae37395e623 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1488-1227 0000-0002-8115-4129 0000-0002-3890-0456 0000-0001-9503-7348 0000-0002-9793-1260 0000-0002-9814-4285 0000-0001-6222-2280 0000-0003-4664-5704 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-024-52211-x |
PMID | 39251596 |
PQID | 3102223710 |
PQPubID | 546298 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_cd7138a1a6e7438db6e193c6f497ea13 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11385223 proquest_miscellaneous_3102470859 proquest_journals_3102223710 pubmed_primary_39251596 crossref_primary_10_1038_s41467_024_52211_x springer_journals_10_1038_s41467_024_52211_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-09-10 |
PublicationDateYYYYMMDD | 2024-09-10 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | GrögerCSumperMBrunnerESilicon uptake and metabolism of the marine diatom Thalassiosira pseudonana: Solid-state 29Si NMR and fluorescence microscopic studiesJ. Struct. Biol.200816155631795939010.1016/j.jsb.2007.09.010 HeintzeCThe molecular basis for pore pattern morphogenesis in diatom silicaProc. Natl. Acad. Sci. USA202211903210.1073/pnas.22115491191:CAS:528:DC%2BB38XjtFCiurfP KotzschABiochemical composition and assembly of biosilica-associated insoluble organic matrices from the diatom Thalassiosira pseudonanaJ. Biol. Chem.2016291498249972671084710.1074/jbc.M115.7064401:CAS:528:DC%2BC28Xjs1Gjtrs%3D LutzKGrögerCSumperMBrunnerEBiomimetic silica formation: Analysis of the phosphate-induced self-assembly of polyaminesPhys. Chem. Chem. Phys.20057281228151618959710.1039/b505945c1:CAS:528:DC%2BD2MXlvVSnt7s%3D AnnenkovVVBasharinaTNDanilovtsevaENGrachevMAPutative silicon transport vesicles in the cytoplasm of the diatom Synedra acus during surge uptake of siliconProtoplasma2013250114711552352574210.1007/s00709-013-0495-x1:CAS:528:DC%2BC3sXhsFOks7jI PawolskiDHeintzeCMeyISteinemCKrögerNReconstituting the formation of hierarchically porous silica patterns using diatom biomoleculesJ. Struct. Biol.201820464743000987710.1016/j.jsb.2018.07.0051:CAS:528:DC%2BC1cXhsVWrur%2FK MahamidJVisualizing the molecular sociology at the HeLa cell nuclear peripheryScience20163519699722016Sci...351..969M2691777010.1126/science.aad88571:CAS:528:DC%2BC28XivFOnt7c%3D Kumar, S., Rechav, K., Kaplan-Ashiri, I. & Gal, A. Imaging and quantifying homeostatic levels of intracellular silicon in diatoms. Sci. Adv.6, (2020). Kröger, N. Biomolecules involved in silica formation and function. in The Molecular Life of Diatoms 313–343 (Springer, Cham, Cham, 2022). ZhengSQMotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopyNat. Methods20171433133228250466549403810.1038/nmeth.41931:CAS:528:DC%2BC2sXjt1ags7g%3D ZhengSAreTomo: An integrated software package for automated marker-free, motion-corrected cryo-electron tomographic alignment and reconstructionJ. Struct. Biol. X202261000683560168391176861:CAS:528:DC%2BB38XhsVOhs7%2FF PaascheESilicon and the ecology of marine plankton diatoms. I. Thalassiosira pseudonana (Cyclotella nana) grown in a chemostat with silicate as limiting nutrientMar. Biol.19731911712610.1007/BF003535821:CAS:528:DyaE3sXkvV2gur0%3D MayzelBAramLVarsanoNWolfSGGalAStructural evidence for extracellular silica formation by diatomsNat. Commun.2021122021NatCo..12.4639M34330922832491710.1038/s41467-021-24944-61:CAS:528:DC%2BB3MXhslyksL7I WoznyMRIn situ architecture of the ER–mitochondria encounter structureNature20236181881922023Natur.618..188W37165187761460610.1038/s41586-023-06050-31:CAS:528:DC%2BB3sXpvVait70%3D ColladoJTricalbin-mediated contact sites control ER curvature to maintain plasma membrane integrityDev. Cell20195147648731743662686339510.1016/j.devcel.2019.10.0181:CAS:528:DC%2BC1MXit1SmsLvN SchmidAMMSchulzDWall morphogenesis in diatoms: Deposition of silica by cytoplasmic vesiclesProtoplasma197910026728810.1007/BF01279316 Martinez-SanchezAGarciaIAsanoSLucicVFernandezJ-JRobust membrane detection based on tensor voting for electron tomographyJ. Struct. Biol.201418649612462552310.1016/j.jsb.2014.02.015 MastronardeDNAutomated electron microscope tomography using robust prediction of specimen movementsJ. Struct. Biol.200515236511618256310.1016/j.jsb.2005.07.007 MorandiMIExtracellular vesicle fusion visualized by cryo-electron microscopyPNAS Nexus2022111110.1093/pnasnexus/pgac1561:CAS:528:DC%2BB2cXhtlWrsbzN Poulsen, N. & Kröger, N. Thalassiosira pseudonana (Cyclotella nana) (Hustedt) Hasle et Heimdal (Bacillariophyceae): A genetically tractable model organism for studying diatom biology, including biological silica formation. J. Phycol.59, 809–817 (2023). TessonBHildebrandMCharacterization and localization of insoluble organic matrices associated with diatom cell walls: Insight into their roles during cell wall formationPLoS ONE20138e616752013PLoSO...861675T23626714363399110.1371/journal.pone.00616751:CAS:528:DC%2BC3sXntVKrtb8%3D KremerJRMastronardeDNMcIntoshJRComputer visualization of three-dimensional image data using IMODJ. Struct. Biol.19961167176874272610.1006/jsbi.1996.00131:STN:280:DyaK28zmtFyqtg%3D%3D WongLHGattaATLevineTPLipid transfer proteins: the lipid commute via shuttles, bridges and tubesNat. Rev. Mol. Cell Biol.201920851013033766810.1038/s41580-018-0071-51:CAS:528:DC%2BC1cXhvFygurzE TessonBHildebrandMDynamics of silica cell wall morphogenesis in the diatom Cyclotella cryptica: Substructure formation and the role of microfilamentsJ. Struct. Biol.201016962741972906610.1016/j.jsb.2009.08.0131:CAS:528:DC%2BD1MXhs1Wjt7bO BuchholzTOContent-aware image restoration for electron microscopyMethods Cell Biol.20191522772893132602510.1016/bs.mcb.2019.05.001 ChiappinoMLVolcaniBEStudies on the biochemistry and fine structure of silicia shell formation in diatoms VII. Sequential cell wall development in the pennateNavicula pelliculosaProtoplasma19779320522110.1007/BF01275654 Gingras, R. M., Sulpizio, A. M., Park, J. & Bretscher, A. High-resolution secretory timeline from vesicle formation at the Golgi to fusion at the plasma membrane in S. cerevisiae. Elife11, https://doi.org/10.7554/eLife.78750 (2022). KadanYTollerveyFVarsanoNMahamidJGalAIntracellular nanoscale architecture as a master regulator of calcium carbonate crystallization in marine microalgaeProc. Natl. Acad. Sci. USA202111834772804869405010.1073/pnas.20256701181:CAS:528:DC%2BB38XovFygsQ%3D%3D RobinsonDHSullivanCWHow do diatoms make silicon biominerals?Trends Biochem. Sci.19871215115410.1016/0968-0004(87)90072-71:CAS:528:DyaL2sXitFSlsL4%3D BergerCCryo-electron tomography on focused ion beam lamellae transforms structural cell biologyNat. Methods2023204995113691481410.1038/s41592-023-01783-51:CAS:528:DC%2BB3sXltFGms7s%3D Babenko, I., Friedrich, B. M. & Kröger, N. Structure and morphogenesis of the frustule. in The Molecular Life of Diatoms 287–312 (Springer International Publishing, Cham, 2022). KrögerNPoulsenNDiatoms - From cell wall biogenesis to nanotechnologyAnnu Rev. Genet.200842831071898325510.1146/annurev.genet.41.110306.130109 SumperMBrunnerELearning from diatoms: Nature’s tools for the production of nanostructured silicaAdv. Funct. Mater.200616172610.1002/adfm.2005006161:CAS:528:DC%2BD28XpvVWksA%3D%3D WillisLCoxEJDukeTA simple probabilistic model of submicroscopic diatom morphogenesisJ. R. Soc. Interface2013102013006723554345364541610.1098/rsif.2013.00671:STN:280:DC%2BC3sritFGrtw%3D%3D BabenkoIKrögerNFriedrichBMMechanism of branching morphogenesis inspired by diatom silica formationProc. Natl. Acad. Sci. USA2024121384220231092758810.1073/pnas.23095181211:CAS:528:DC%2BB2cXmvVSgur4%3D de HaanDExocytosis of the silicified cell wall of diatoms involves extensive membrane disintegrationNat. Commun.2023142023NatCo..14..472H36717559988699410.1038/s41467-023-36112-z HildebrandMNanoscale control of silica morphology and three-dimensional structure during diatom cell wall formationJ. Mater. Res.200621268926982006JMatR..21.2689H10.1557/jmr.2006.03331:CAS:528:DC%2BD28XhtVylsL7P SchmidAMMAspects of morphogenesis and function of diatom cell walls with implications for taxonomyProtoplasma1994181436010.1007/BF01666388 SumperMA phase separation model for the nanopatterning of diatom biosilicaScience2002295243024332002Sci...295.2430S1192353310.1126/science.10700261:CAS:528:DC%2BD38XisFSltrg%3D Pöge, M. et al. Determinants shaping the nanoscale architecture of the mouse rod outer segment. Elife10, https://doi.org/10.7554/eLife.72817 (2021). Kotzsch, A. et al. Silicanin-1 is a conserved diatom membrane protein involved in silica biomineralization. BMC Biol15, 65 (2017). BobethMContinuum modelling of structure formation of biosilica patterns in diatomsBMC Mater.20202111 HagenWJHWanWBriggsJAGImplementation of a cryo-electron tomography tilt-scheme optimized for high resolution subtomogram averagingJ. Struct. Biol.201719719119827313000528735610.1016/j.jsb.2016.06.007 ScheffelAPoulsenNShianSKrögerNNanopatterned protein microrings from a diatom that direct silica morphogenesisProc. Natl. Acad. Sci. USA2011108317531802011PNAS..108.3175S21300899304441810.1073/pnas.10128421081:CAS:528:DC%2BC3MXislyjtbk%3D HildebrandMFrigeriLGDavisAKSynchronized growth of Thalassiosira pseudonana (Bacillariophyceae) provides novel insights into cell-wall synthesis processes in relation to the cell cycleJ. Phycol.20074373074010.1111/j.1529-8817.2007.00361.x1:CAS:528:DC%2BD2sXpvFSrtrc%3D HeintzeCAn intimate view into the silica deposition vesicles of diatomsBMC Mater.202021110.1186/s42833-020-00017-8 Skeffington, A. W. et al. Shedding light on silica biomineralization by comparative analysis of the silica‐associated proteomes from three diatom species. Plant J.110, 1700–1716 (2022). ScorranoLComing together to define membrane contact sitesNat. Commun.20191011110.1038/s41467-019-09253-31:CAS:528:DC%2BC1MXotFagtLw%3D LIC-WVolcaniBEAspects of silicification in wall morphogenesis of diatomsPhilos. Trans. R. Soc. Lond. B Biol. Sci.19843045195281984RSPTB.304..519L10.1098/rstb.1984.0043 ChouSZPollardTDMechanism of actin polymerization revealed by cryo-EM structures of actin filaments with three different bound nucleotidesProc. Natl. Acad. Sci. USA2019116426542742019PNAS..116.4265C30760599641086310.1073/pnas.18070281151:CAS:528:DC%2BC1MXktFeis7k%3D TessonBHildebrandMExtensive and intimate association of the cytoskeleton with forming silica in diatoms: Control over patterning on the meso- and micro-scalePLoS ONE20105e143002010PLoSO...514300T21200414300082210.1371/journal.pone.0014300 FeofilovaMGeometrical frustration of phase-separated domains in Coscinodiscus diatom frustulesProc. Natl. Acad. Sci. USA2022119448949835905319935150410.1073/pnas.22010141191:CAS:528:DC%2BB38XitFCnsrbM SchmidAMVolcaniBEWall morphogenesis in coscinodiscus wailesii gran and angst. I. Valve morphology and development of its architectureJ. Phycol.19831938740210.1 C-W LI (52211_CR5) 1984; 304 WA Prinz (52211_CR52) 2020; 21 A Kotzsch (52211_CR47) 2016; 291 M Eisenberg-Bord (52211_CR39) 2016; 39 B Tesson (52211_CR45) 2013; 8 AMM Schmid (52211_CR30) 1979; 100 B Tesson (52211_CR44) 2010; 169 J Mahamid (52211_CR22) 2016; 351 DH Robinson (52211_CR12) 1987; 12 D Pawolski (52211_CR16) 2018; 204 AM Schmid (52211_CR48) 1983; 19 N Kröger (52211_CR2) 2008; 42 52211_CR53 52211_CR51 L Willis (52211_CR19) 2013; 10 K Lutz (52211_CR28) 2005; 7 DN Mastronarde (52211_CR55) 2005; 152 WJH Hagen (52211_CR54) 2017; 197 M Sumper (52211_CR15) 2002; 295 C Berger (52211_CR35) 2023; 20 A Scheffel (52211_CR46) 2011; 108 MI Morandi (52211_CR34) 2022; 1 M Sumper (52211_CR3) 2006; 16 M Bobeth (52211_CR18) 2020; 2 I Babenko (52211_CR20) 2024; 121 TO Buchholz (52211_CR59) 2019; 152 L Scorrano (52211_CR40) 2019; 10 VV Annenkov (52211_CR31) 2013; 250 C Heintze (52211_CR13) 2020; 2 52211_CR25 D de Haan (52211_CR36) 2023; 14 SQ Zheng (52211_CR58) 2017; 14 J Collado (52211_CR50) 2019; 51 LH Wong (52211_CR49) 2019; 20 C Heintze (52211_CR6) 2022; 119 Q Lei (52211_CR29) 2021; 143 E Paasche (52211_CR62) 1973; 19 M Hildebrand (52211_CR27) 2006; 21 L Xue (52211_CR21) 2022; 610 52211_CR1 Y Kadan (52211_CR23) 2021; 118 A Martinez-Sanchez (52211_CR60) 2014; 186 52211_CR4 AMM Schmid (52211_CR11) 1994; 181 SZ Chou (52211_CR43) 2019; 116 52211_CR8 52211_CR7 M Hildebrand (52211_CR26) 2007; 43 B Mayzel (52211_CR24) 2021; 12 52211_CR38 52211_CR37 B Tesson (52211_CR42) 2010; 5 EF Stoermer (52211_CR9) 1965; 52 ML Chiappino (52211_CR10) 1977; 93 52211_CR32 DP Yee (52211_CR61) 2020; 225 C Gröger (52211_CR33) 2008; 161 S Zheng (52211_CR57) 2022; 6 M Feofilova (52211_CR17) 2022; 119 JR Kremer (52211_CR56) 1996; 116 R Gordon (52211_CR14) 1994; 150 MR Wozny (52211_CR41) 2023; 618 |
References_xml | – reference: YeeDPHildebrandMTresguerresMDynamic subcellular translocation of V‐type H + ‐ATPase is essential for biomineralization of the diatom silica cell wallN. Phytol.20202252411242210.1111/nph.163291:CAS:528:DC%2BB3cXjtFeiur4%3D – reference: SchmidAMVolcaniBEWall morphogenesis in coscinodiscus wailesii gran and angst. I. Valve morphology and development of its architectureJ. Phycol.19831938740210.1111/j.0022-3646.1983.00387.x – reference: HeintzeCAn intimate view into the silica deposition vesicles of diatomsBMC Mater.202021110.1186/s42833-020-00017-8 – reference: GordonRDrumRWThe chemical basis of diatom morphogenesisInt. Rev. Cytol.199415024337210.1016/S0074-7696(08)61544-21:CAS:528:DyaK2cXkslOrtrY%3D – reference: TessonBHildebrandMExtensive and intimate association of the cytoskeleton with forming silica in diatoms: Control over patterning on the meso- and micro-scalePLoS ONE20105e143002010PLoSO...514300T21200414300082210.1371/journal.pone.0014300 – reference: XueLVisualizing translation dynamics at atomic detail inside a bacterial cellNature20226102052112022Natur.610..205X36171285953475110.1038/s41586-022-05255-21:CAS:528:DC%2BB38XisFWit7vO – reference: Poulsen, N. & Kröger, N. Thalassiosira pseudonana (Cyclotella nana) (Hustedt) Hasle et Heimdal (Bacillariophyceae): A genetically tractable model organism for studying diatom biology, including biological silica formation. J. Phycol.59, 809–817 (2023). – reference: SchmidAMMSchulzDWall morphogenesis in diatoms: Deposition of silica by cytoplasmic vesiclesProtoplasma197910026728810.1007/BF01279316 – reference: MahamidJVisualizing the molecular sociology at the HeLa cell nuclear peripheryScience20163519699722016Sci...351..969M2691777010.1126/science.aad88571:CAS:528:DC%2BC28XivFOnt7c%3D – reference: HagenWJHWanWBriggsJAGImplementation of a cryo-electron tomography tilt-scheme optimized for high resolution subtomogram averagingJ. Struct. Biol.201719719119827313000528735610.1016/j.jsb.2016.06.007 – reference: TessonBHildebrandMCharacterization and localization of insoluble organic matrices associated with diatom cell walls: Insight into their roles during cell wall formationPLoS ONE20138e616752013PLoSO...861675T23626714363399110.1371/journal.pone.00616751:CAS:528:DC%2BC3sXntVKrtb8%3D – reference: Kumar, S., Rechav, K., Kaplan-Ashiri, I. & Gal, A. Imaging and quantifying homeostatic levels of intracellular silicon in diatoms. Sci. Adv.6, (2020). – reference: SumperMBrunnerELearning from diatoms: Nature’s tools for the production of nanostructured silicaAdv. Funct. Mater.200616172610.1002/adfm.2005006161:CAS:528:DC%2BD28XpvVWksA%3D%3D – reference: FeofilovaMGeometrical frustration of phase-separated domains in Coscinodiscus diatom frustulesProc. Natl. Acad. Sci. USA2022119448949835905319935150410.1073/pnas.22010141191:CAS:528:DC%2BB38XitFCnsrbM – reference: BergerCCryo-electron tomography on focused ion beam lamellae transforms structural cell biologyNat. Methods2023204995113691481410.1038/s41592-023-01783-51:CAS:528:DC%2BB3sXltFGms7s%3D – reference: StoermerEFPankratzHSBowenCCFine structure of the diatom amphipleura pellucida. Ii. Cytoplasmic fine structure and frustule formationAm. J. Bot.1965521067107810.1002/j.1537-2197.1965.tb07286.x – reference: Babenko, I., Friedrich, B. M. & Kröger, N. Structure and morphogenesis of the frustule. in The Molecular Life of Diatoms 287–312 (Springer International Publishing, Cham, 2022). – reference: Martinez-SanchezAGarciaIAsanoSLucicVFernandezJ-JRobust membrane detection based on tensor voting for electron tomographyJ. Struct. Biol.201418649612462552310.1016/j.jsb.2014.02.015 – reference: KadanYTollerveyFVarsanoNMahamidJGalAIntracellular nanoscale architecture as a master regulator of calcium carbonate crystallization in marine microalgaeProc. Natl. Acad. Sci. USA202111834772804869405010.1073/pnas.20256701181:CAS:528:DC%2BB38XovFygsQ%3D%3D – reference: LutzKGrögerCSumperMBrunnerEBiomimetic silica formation: Analysis of the phosphate-induced self-assembly of polyaminesPhys. Chem. Chem. Phys.20057281228151618959710.1039/b505945c1:CAS:528:DC%2BD2MXlvVSnt7s%3D – reference: GrögerCSumperMBrunnerESilicon uptake and metabolism of the marine diatom Thalassiosira pseudonana: Solid-state 29Si NMR and fluorescence microscopic studiesJ. Struct. Biol.200816155631795939010.1016/j.jsb.2007.09.010 – reference: SumperMA phase separation model for the nanopatterning of diatom biosilicaScience2002295243024332002Sci...295.2430S1192353310.1126/science.10700261:CAS:528:DC%2BD38XisFSltrg%3D – reference: ZhengSAreTomo: An integrated software package for automated marker-free, motion-corrected cryo-electron tomographic alignment and reconstructionJ. Struct. Biol. X202261000683560168391176861:CAS:528:DC%2BB38XhsVOhs7%2FF – reference: PaascheESilicon and the ecology of marine plankton diatoms. I. Thalassiosira pseudonana (Cyclotella nana) grown in a chemostat with silicate as limiting nutrientMar. Biol.19731911712610.1007/BF003535821:CAS:528:DyaE3sXkvV2gur0%3D – reference: Kotzsch, A. et al. Silicanin-1 is a conserved diatom membrane protein involved in silica biomineralization. BMC Biol15, 65 (2017). – reference: HildebrandMFrigeriLGDavisAKSynchronized growth of Thalassiosira pseudonana (Bacillariophyceae) provides novel insights into cell-wall synthesis processes in relation to the cell cycleJ. Phycol.20074373074010.1111/j.1529-8817.2007.00361.x1:CAS:528:DC%2BD2sXpvFSrtrc%3D – reference: Eisenberg-BordMShaiNSchuldinerMBohnertMA tether is a tether is a tether: Tethering at membrane contact sitesDev. Cell2016393954092787568410.1016/j.devcel.2016.10.0221:CAS:528:DC%2BC28XhvFWnsb3O – reference: KrögerNPoulsenNDiatoms - From cell wall biogenesis to nanotechnologyAnnu Rev. Genet.200842831071898325510.1146/annurev.genet.41.110306.130109 – reference: SchmidAMMAspects of morphogenesis and function of diatom cell walls with implications for taxonomyProtoplasma1994181436010.1007/BF01666388 – reference: HeintzeCThe molecular basis for pore pattern morphogenesis in diatom silicaProc. Natl. Acad. Sci. USA202211903210.1073/pnas.22115491191:CAS:528:DC%2BB38XjtFCiurfP – reference: BobethMContinuum modelling of structure formation of biosilica patterns in diatomsBMC Mater.20202111 – reference: MorandiMIExtracellular vesicle fusion visualized by cryo-electron microscopyPNAS Nexus2022111110.1093/pnasnexus/pgac1561:CAS:528:DC%2BB2cXhtlWrsbzN – reference: ChouSZPollardTDMechanism of actin polymerization revealed by cryo-EM structures of actin filaments with three different bound nucleotidesProc. Natl. Acad. Sci. USA2019116426542742019PNAS..116.4265C30760599641086310.1073/pnas.18070281151:CAS:528:DC%2BC1MXktFeis7k%3D – reference: WongLHGattaATLevineTPLipid transfer proteins: the lipid commute via shuttles, bridges and tubesNat. Rev. Mol. Cell Biol.201920851013033766810.1038/s41580-018-0071-51:CAS:528:DC%2BC1cXhvFygurzE – reference: MayzelBAramLVarsanoNWolfSGGalAStructural evidence for extracellular silica formation by diatomsNat. Commun.2021122021NatCo..12.4639M34330922832491710.1038/s41467-021-24944-61:CAS:528:DC%2BB3MXhslyksL7I – reference: PawolskiDHeintzeCMeyISteinemCKrögerNReconstituting the formation of hierarchically porous silica patterns using diatom biomoleculesJ. Struct. Biol.201820464743000987710.1016/j.jsb.2018.07.0051:CAS:528:DC%2BC1cXhsVWrur%2FK – reference: Hildebrand, M., Lerch, S. J. L. & Shrestha, R. P. Understanding Diatom Cell Wall Silicification—Moving Forward. Front. Mar. Sci.5, https://doi.org/10.3389/fmars.2018.00125 (2018). – reference: MastronardeDNAutomated electron microscope tomography using robust prediction of specimen movementsJ. Struct. Biol.200515236511618256310.1016/j.jsb.2005.07.007 – reference: ColladoJTricalbin-mediated contact sites control ER curvature to maintain plasma membrane integrityDev. Cell20195147648731743662686339510.1016/j.devcel.2019.10.0181:CAS:528:DC%2BC1MXit1SmsLvN – reference: KotzschABiochemical composition and assembly of biosilica-associated insoluble organic matrices from the diatom Thalassiosira pseudonanaJ. Biol. Chem.2016291498249972671084710.1074/jbc.M115.7064401:CAS:528:DC%2BC28Xjs1Gjtrs%3D – reference: HildebrandMNanoscale control of silica morphology and three-dimensional structure during diatom cell wall formationJ. Mater. Res.200621268926982006JMatR..21.2689H10.1557/jmr.2006.03331:CAS:528:DC%2BD28XhtVylsL7P – reference: de HaanDExocytosis of the silicified cell wall of diatoms involves extensive membrane disintegrationNat. Commun.2023142023NatCo..14..472H36717559988699410.1038/s41467-023-36112-z – reference: ScheffelAPoulsenNShianSKrögerNNanopatterned protein microrings from a diatom that direct silica morphogenesisProc. Natl. Acad. Sci. USA2011108317531802011PNAS..108.3175S21300899304441810.1073/pnas.10128421081:CAS:528:DC%2BC3MXislyjtbk%3D – reference: Pöge, M. et al. Determinants shaping the nanoscale architecture of the mouse rod outer segment. Elife10, https://doi.org/10.7554/eLife.72817 (2021). – reference: ScorranoLComing together to define membrane contact sitesNat. Commun.20191011110.1038/s41467-019-09253-31:CAS:528:DC%2BC1MXotFagtLw%3D – reference: ChiappinoMLVolcaniBEStudies on the biochemistry and fine structure of silicia shell formation in diatoms VII. Sequential cell wall development in the pennateNavicula pelliculosaProtoplasma19779320522110.1007/BF01275654 – reference: PrinzWAToulmayABallaTThe functional universe of membrane contact sitesNat. Rev. Mol. Cell Biol.2020217243173271710.1038/s41580-019-0180-91:CAS:528:DC%2BC1MXitFOisr3O – reference: ZhengSQMotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopyNat. Methods20171433133228250466549403810.1038/nmeth.41931:CAS:528:DC%2BC2sXjt1ags7g%3D – reference: BabenkoIKrögerNFriedrichBMMechanism of branching morphogenesis inspired by diatom silica formationProc. Natl. Acad. Sci. USA2024121384220231092758810.1073/pnas.23095181211:CAS:528:DC%2BB2cXmvVSgur4%3D – reference: Skeffington, A. W. et al. Shedding light on silica biomineralization by comparative analysis of the silica‐associated proteomes from three diatom species. Plant J.110, 1700–1716 (2022). – reference: WoznyMRIn situ architecture of the ER–mitochondria encounter structureNature20236181881922023Natur.618..188W37165187761460610.1038/s41586-023-06050-31:CAS:528:DC%2BB3sXpvVait70%3D – reference: Abrisch, R. G., Gumbin, S. C., Wisniewski, B. T., Lackner, L. L. & Voeltz, G. K. Fission and fusion machineries converge at ER contact sites to regulate mitochondrial morphology. J. Cell Biol.219, e201911122 (2020). – reference: RobinsonDHSullivanCWHow do diatoms make silicon biominerals?Trends Biochem. Sci.19871215115410.1016/0968-0004(87)90072-71:CAS:528:DyaL2sXitFSlsL4%3D – reference: LeiQBioinspired cell silicification: From extracellular to intracellularJ. Am. Chem. Soc.2021143630563223382632410.1021/jacs.1c008141:CAS:528:DC%2BB3MXot1Cgu7c%3D – reference: LIC-WVolcaniBEAspects of silicification in wall morphogenesis of diatomsPhilos. Trans. R. Soc. Lond. B Biol. Sci.19843045195281984RSPTB.304..519L10.1098/rstb.1984.0043 – reference: WillisLCoxEJDukeTA simple probabilistic model of submicroscopic diatom morphogenesisJ. R. Soc. Interface2013102013006723554345364541610.1098/rsif.2013.00671:STN:280:DC%2BC3sritFGrtw%3D%3D – reference: KremerJRMastronardeDNMcIntoshJRComputer visualization of three-dimensional image data using IMODJ. Struct. Biol.19961167176874272610.1006/jsbi.1996.00131:STN:280:DyaK28zmtFyqtg%3D%3D – reference: Gingras, R. M., Sulpizio, A. M., Park, J. & Bretscher, A. High-resolution secretory timeline from vesicle formation at the Golgi to fusion at the plasma membrane in S. cerevisiae. Elife11, https://doi.org/10.7554/eLife.78750 (2022). – reference: TessonBHildebrandMDynamics of silica cell wall morphogenesis in the diatom Cyclotella cryptica: Substructure formation and the role of microfilamentsJ. Struct. Biol.201016962741972906610.1016/j.jsb.2009.08.0131:CAS:528:DC%2BD1MXhs1Wjt7bO – reference: Kröger, N. Biomolecules involved in silica formation and function. in The Molecular Life of Diatoms 313–343 (Springer, Cham, Cham, 2022). – reference: BuchholzTOContent-aware image restoration for electron microscopyMethods Cell Biol.20191522772893132602510.1016/bs.mcb.2019.05.001 – reference: AnnenkovVVBasharinaTNDanilovtsevaENGrachevMAPutative silicon transport vesicles in the cytoplasm of the diatom Synedra acus during surge uptake of siliconProtoplasma2013250114711552352574210.1007/s00709-013-0495-x1:CAS:528:DC%2BC3sXhsFOks7jI – volume: 351 start-page: 969 year: 2016 ident: 52211_CR22 publication-title: Science doi: 10.1126/science.aad8857 – volume: 121 year: 2024 ident: 52211_CR20 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2309518121 – ident: 52211_CR37 doi: 10.7554/eLife.78750 – volume: 143 start-page: 6305 year: 2021 ident: 52211_CR29 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c00814 – volume: 10 start-page: 1 year: 2019 ident: 52211_CR40 publication-title: Nat. Commun. doi: 10.1038/s41467-019-09253-3 – volume: 14 start-page: 331 year: 2017 ident: 52211_CR58 publication-title: Nat. Methods doi: 10.1038/nmeth.4193 – volume: 19 start-page: 387 year: 1983 ident: 52211_CR48 publication-title: J. Phycol. doi: 10.1111/j.0022-3646.1983.00387.x – volume: 186 start-page: 49 year: 2014 ident: 52211_CR60 publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2014.02.015 – volume: 42 start-page: 83 year: 2008 ident: 52211_CR2 publication-title: Annu Rev. Genet. doi: 10.1146/annurev.genet.41.110306.130109 – ident: 52211_CR51 doi: 10.1083/jcb.201911122 – volume: 93 start-page: 205 year: 1977 ident: 52211_CR10 publication-title: Protoplasma doi: 10.1007/BF01275654 – volume: 152 start-page: 36 year: 2005 ident: 52211_CR55 publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2005.07.007 – volume: 161 start-page: 55 year: 2008 ident: 52211_CR33 publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2007.09.010 – volume: 12 start-page: 151 year: 1987 ident: 52211_CR12 publication-title: Trends Biochem. Sci. doi: 10.1016/0968-0004(87)90072-7 – volume: 181 start-page: 43 year: 1994 ident: 52211_CR11 publication-title: Protoplasma doi: 10.1007/BF01666388 – volume: 291 start-page: 4982 year: 2016 ident: 52211_CR47 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.706440 – volume: 51 start-page: 476 year: 2019 ident: 52211_CR50 publication-title: Dev. Cell doi: 10.1016/j.devcel.2019.10.018 – ident: 52211_CR8 doi: 10.1007/978-3-030-92499-7_12 – volume: 6 start-page: 100068 year: 2022 ident: 52211_CR57 publication-title: J. Struct. Biol. X – volume: 20 start-page: 499 year: 2023 ident: 52211_CR35 publication-title: Nat. Methods doi: 10.1038/s41592-023-01783-5 – volume: 116 start-page: 71 year: 1996 ident: 52211_CR56 publication-title: J. Struct. Biol. doi: 10.1006/jsbi.1996.0013 – volume: 2 start-page: 11 year: 2020 ident: 52211_CR13 publication-title: BMC Mater. doi: 10.1186/s42833-020-00017-8 – volume: 21 start-page: 2689 year: 2006 ident: 52211_CR27 publication-title: J. Mater. Res. doi: 10.1557/jmr.2006.0333 – volume: 197 start-page: 191 year: 2017 ident: 52211_CR54 publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2016.06.007 – volume: 610 start-page: 205 year: 2022 ident: 52211_CR21 publication-title: Nature doi: 10.1038/s41586-022-05255-2 – volume: 118 year: 2021 ident: 52211_CR23 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2025670118 – ident: 52211_CR4 doi: 10.1007/978-3-030-92499-7_11 – volume: 5 start-page: e14300 year: 2010 ident: 52211_CR42 publication-title: PLoS ONE doi: 10.1371/journal.pone.0014300 – volume: 12 year: 2021 ident: 52211_CR24 publication-title: Nat. Commun. doi: 10.1038/s41467-021-24944-6 – volume: 14 year: 2023 ident: 52211_CR36 publication-title: Nat. Commun. doi: 10.1038/s41467-023-36112-z – volume: 10 start-page: 20130067 year: 2013 ident: 52211_CR19 publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2013.0067 – volume: 20 start-page: 85 year: 2019 ident: 52211_CR49 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-018-0071-5 – ident: 52211_CR1 doi: 10.3389/fmars.2018.00125 – volume: 2 start-page: 1 year: 2020 ident: 52211_CR18 publication-title: BMC Mater. doi: 10.1186/s42833-019-0007-1 – ident: 52211_CR53 doi: 10.1186/s12915-017-0400-8 – volume: 169 start-page: 62 year: 2010 ident: 52211_CR44 publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2009.08.013 – volume: 618 start-page: 188 year: 2023 ident: 52211_CR41 publication-title: Nature doi: 10.1038/s41586-023-06050-3 – volume: 116 start-page: 4265 year: 2019 ident: 52211_CR43 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1807028115 – volume: 225 start-page: 2411 year: 2020 ident: 52211_CR61 publication-title: N. Phytol. doi: 10.1111/nph.16329 – volume: 150 start-page: 243 year: 1994 ident: 52211_CR14 publication-title: Int. Rev. Cytol. doi: 10.1016/S0074-7696(08)61544-2 – volume: 1 start-page: 1 year: 2022 ident: 52211_CR34 publication-title: PNAS Nexus doi: 10.1093/pnasnexus/pgac156 – volume: 8 start-page: e61675 year: 2013 ident: 52211_CR45 publication-title: PLoS ONE doi: 10.1371/journal.pone.0061675 – volume: 7 start-page: 2812 year: 2005 ident: 52211_CR28 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b505945c – volume: 43 start-page: 730 year: 2007 ident: 52211_CR26 publication-title: J. Phycol. doi: 10.1111/j.1529-8817.2007.00361.x – volume: 16 start-page: 17 year: 2006 ident: 52211_CR3 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200500616 – volume: 100 start-page: 267 year: 1979 ident: 52211_CR30 publication-title: Protoplasma doi: 10.1007/BF01279316 – volume: 250 start-page: 1147 year: 2013 ident: 52211_CR31 publication-title: Protoplasma doi: 10.1007/s00709-013-0495-x – volume: 295 start-page: 2430 year: 2002 ident: 52211_CR15 publication-title: Science doi: 10.1126/science.1070026 – volume: 39 start-page: 395 year: 2016 ident: 52211_CR39 publication-title: Dev. Cell doi: 10.1016/j.devcel.2016.10.022 – ident: 52211_CR7 doi: 10.1111/tpj.15765 – volume: 119 start-page: 0 year: 2022 ident: 52211_CR6 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2211549119 – ident: 52211_CR32 doi: 10.1126/sciadv.aaz7554 – volume: 304 start-page: 519 year: 1984 ident: 52211_CR5 publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. doi: 10.1098/rstb.1984.0043 – volume: 21 start-page: 7 year: 2020 ident: 52211_CR52 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-019-0180-9 – volume: 204 start-page: 64 year: 2018 ident: 52211_CR16 publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2018.07.005 – ident: 52211_CR38 doi: 10.7554/eLife.72817 – volume: 19 start-page: 117 year: 1973 ident: 52211_CR62 publication-title: Mar. Biol. doi: 10.1007/BF00353582 – volume: 52 start-page: 1067 year: 1965 ident: 52211_CR9 publication-title: Am. J. Bot. doi: 10.1002/j.1537-2197.1965.tb07286.x – volume: 108 start-page: 3175 year: 2011 ident: 52211_CR46 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1012842108 – ident: 52211_CR25 doi: 10.1111/jpy.13362 – volume: 119 year: 2022 ident: 52211_CR17 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2201014119 – volume: 152 start-page: 277 year: 2019 ident: 52211_CR59 publication-title: Methods Cell Biol. doi: 10.1016/bs.mcb.2019.05.001 |
SSID | ssj0000391844 |
Score | 2.4670064 |
Snippet | Silica cell-wall formation in diatoms is a showcase for the ability of organisms to control inorganic mineralization. The process of silicification by these... Abstract Silica cell-wall formation in diatoms is a showcase for the ability of organisms to control inorganic mineralization. The process of silicification by... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 7888 |
SubjectTerms | 101/28 147/143 631/535/1258/1260 631/57/2270 639/301/54/991 704/829/826 Algae Biological effects Biological properties Cell Membrane - metabolism Cell Wall - metabolism Cell Wall - ultrastructure Cell walls Cryoelectron Microscopy Curvature Diatoms - growth & development Diatoms - metabolism Diatoms - ultrastructure Electron Microscope Tomography Humanities and Social Sciences Intracellular Marine microorganisms Membranes Mineralization Morphogenesis multidisciplinary Plasma membranes Science Science (multidisciplinary) Self-assembly Silica Silicon dioxide Silicon Dioxide - chemistry Silicon Dioxide - metabolism Tethering |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQpUpcEC1foQUZiRtEdWPHiY-AqAoSnKjUm7Gdcclhk6q7Qe2_Z8bOLl0-xAVpT0mUncyLPe-NnRnGXrbQ1TEIU4ZYx1K5aEoncTwGSjhABAyJlND_9FmfnqmP5_X5rVZftCcslwfOjjsKHcqo1h07DRjs2s5rQM4RdFSmAZf61VbCiFtiKs3B0qB0UfNXMkK2R0uV5gQMSai9UPWU11uRKBXs_xPL_H2z5C8rpikQndxn92YGyd9ky_fYHRj22W7uKXnzgH39QDegfDxtMOWLER05XtCM1i_5GDl15hgXfNlTto7jsYup76Dj_oanuMa_o3rOaTzeD3wBC9TTA_AwUfZ2uoKH7Ozk_Zd3p-XcRqEMylSrsopeQkSpgdwpUnk14VXdKC-0CS3-oG2qCI0HLZ0PSIBqwL91IGkND5AePWI7wzjAE8YbZaKr6bbBKCO0a70DJ6TsNNLMRhfs1dql9jJXy7BplVu2NgNgEQCbALDXBXtLXt9cSZWu0wHE387423_hX7DDNWZ2Hn5LK5OOlcieCvZicxoHDnkffTZO-RrVUH23gj3OEG8sQdJIPA-fp90Cf8vU7TND_y0V5z5Ga_H50K7X6_fkp11_98XT_-GLA3a3ohecOlyIQ7azuprgGXKmlX-ehscPFyYUMA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9QwDLfGTUi8IL4pDBQk3qBa75K26QNCDG0aSJwQYtLeQpo6Rx-uHXdXtP332Gl70_El9amNWsd27J-d1AZ4qbFKvUuK2PnUx8r6IraS1qPjhAN6JJfICf1P8-z0TH08T8_3YD7-C8PHKkebGAx11TrOkR_KEJpIcohvL37E3DWKd1fHFhp2aK1QvQklxm7APpnkNJnA_tHx_POXbdaF66FrpYa_ZxKpD9cq2ApyVRSTUTQUX-54qFDI_2_o889DlL_tpAYHdXIHbg_IUrzrVeEu7GFzD272vSav7sO3D_wCztPzwVOxbInB7YItXb0WrRfcsaNdinXNWTxB9xZdXWElyisR_J34SVF1n94TdSOWuKQ4u0HhOs7qdit8AGcnx1_fn8ZDe4XYqWK2iWe-lOgpBCFM5bnsWlKqNFdlkhVO04U6n3nMS8ykLR0BoxTpsxYl7-0hwaaHMGnaBh-DyFXhbcqvdYUqkszq0qJNpKwygp95FsGrkaXmoq-iYcLut9SmF4AhAZggAHMZwRFzfTuSK2CHG-1qYYYFZVxF4bW2U5shgSBdlRkSFnWZV0WOdiojOBhlZoZluTbXShTBi-1jWlDMfeJZ2_VjVM513yJ41It4SwmBScZ_NB-9I_wdUnefNPX3ULR7StTS_Iiu16OeXNP1b148-f80nsKtGasu97RIDmCyWXX4jFDSpnw-qP4v-b8R7Q priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9QwDLZWi5C4IN4UFhQkblDRadI0PcKI1YIEJ1baW0hSZ-hhWrQzg9h_j522gwaWA1JPaZo6dhx_dhIH4KXBtoqhaPIQq5grF5vcSdLHwAEHjEgmkQP6nz7rs3P18aK6OIJyPguTNu2nlJZpmp53h73ZqKTSZFHIdSKnJSfceMPUsuJRvdTLfVyFM54bpabzMYU013x6YINSqv7r8OXf2yT_WCtNJuj0DtyesKN4O1J7F46wvwc3x9skr-7D1w_cAEfieWupWA_EwmHFc1m3EUMUfCfHsBabjuN0gspWu67FVvgrkSya-EF-8xjAE10v1rgmT7pHEXYctyVePYDz0_dflmf5dIFCHlRTbvMyeomRnAxCTZETqxVeVbXyhW6CoQdNXUasPWrpfCDoUyH91qHk1TskYPQQjvuhx8cgatVEV3GzoVFNoZ3xDl0hZasJYNY6g1czS-33MU-GTevb0thRAJYEYJMA7M8M3jHX9zU5x3UqGC5XdpK5DS050MYtnEaCOab1GgltBh1VU6NbyAxOZpnZSfE2ViYPVhJuyuDF_jWpDHOfeDbsxjqq5sxuGTwaRbynhOAiIzzqjzkQ_gGph2_67ltKy70gaql_RNfreZz8puvfvHjyf9Wfwq2ShzLfYlGcwPH2cofPCBdt_fOkCL8ACvIJzA priority: 102 providerName: Springer Nature |
Title | Intracellular morphogenesis of diatom silica is guided by local variations in membrane curvature |
URI | https://link.springer.com/article/10.1038/s41467-024-52211-x https://www.ncbi.nlm.nih.gov/pubmed/39251596 https://www.proquest.com/docview/3102223710 https://www.proquest.com/docview/3102470859 https://pubmed.ncbi.nlm.nih.gov/PMC11385223 https://doaj.org/article/cd7138a1a6e7438db6e193c6f497ea13 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9NAEB_OO5R7Eb-NnmUF3zSadjeb5EGkV66eBQ9RC32Lm2S2Fmxy1w-5_vfObJJKtb4IJYXN12Q-Mr-Z3cwAvIixCG0eJH5uQ-srYxPfSLLHnBMOaJFcIif0P17o87EaTcLJAbTtjhoGLveGdtxParz48fr6avOODP5t_cl4_GapnLmTt6GwigIanzDlkZsv4qV8Ddx3b2aZUECjmm9n9p96DLcIMrCX1zuuylX03wdD_15N-ceUqvNUwztwu4GYol_rxF04wPIe3KybTm7uw7cPfAFO2PMKVDGviNPVlF95s6WorODWHdVcLGeczhM0Nl3PCixEthHO8YmfFF7XeT4xK8Uc5xRwlyjyNad31wt8AOPh2dfBud_0WfBzlfRWfs9mEi3FIgSuLNdfCzIVRioLdJLH9MM46lmMMtTSZDkhpBDptgYlT_Ih4aeHcFhWJT4GEanEmpAvmycqCbSJM4MmkLLQhEMj7cHLlqXpZV1OI3XT4DJOa1mkJIvUySK99uCUub49kkthu4FqMU0by0rzguLs2HSNRkJDcZFpJFCaa6uSCE1XenDSyixt1SuVLtCVBK88eL7dTZbF3CeeVev6GBVxATgPHtUi3lLSqogH8Y7wd0jd3VPOvrvq3V2ilp6P6HrV6slvuv7Niyf_f6encNxjDefGF8EJHK4Wa3xGUGqVdeBGNIloGw_fd-Co3x99GdH_6dnFp880OtCDjktSdJwd_QIXFCM3 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTghe0Phc2QAjwRNES2Pn62FCDDa1bKsQ2qS9Gcc5lzw0GW0D6z_H38adk3QqX2-T8pRY0fnOvvvdnX3H2MsE8tAaP_WMDa0ntU09LXA_Ggo4gAU0iRTQPx1Hw3P58SK82GA_u7swdKyy04lOUeeVoRj5nnCuiUCD-Pbym0ddoyi72rXQ0G1rhXzflRhrL3Ycw_IHunDz_dEHlPerIDg6PHs_9NouA56RabDwApsJsIjEEVpYqj7mZzKMZeZHqUnwgSQOLMQZREJnBvFBCDnkGgSluCCiwgdoAjYlBVB6bPPgcPzp8yrKQ_XXEynb2zq-SPbm0ukmNI3oA6L35V2tWUTXOOBvaPfPQ5u_ZW6dQTzaYndbJMvfNUvvHtuA8j671fS2XD5gX0b0A8oL0EFXPq1QoNWENGsx55Xl1CGkmvJ5QVFDju8mdYEz5tmSO_vKv6MX34QTeVHyKUzRry-Bm5qiyPUMHrLzG2H0I9YrqxK2GY9lanVIvzWpTP1IJ5kG7QuRRwh346jPXncsVZdN1Q7lsu0iUY0AFApAOQGoqz47IK6vRlLFbfeimk1Uu4GVydGdT_RAR4CgK8mzCBD7msjKNAY9EH2228lMtWpgrq4XbZ-9WH3GDUzcR55VdTNGxlRnrs8eNyJeUYLglfAmzidZE_4aqetfyuKrKxI-QGpxfkjXm26dXNP1b148-f80nrPbw7PTE3UyGh_vsDsBLWPqp-Hvst5iVsNTRGiL7Fm7DTiutRveeb8Ak7lOsg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqViAuiDeBAkaCE0SbjZ3XoUKUdtWlsKoQlXozjjNe9rBJ2Wyg-xf5Vcw4yVbL61YplzwUjWc8M9-M7RnGXqRQRNYEmW9sZH2pbeZrgfpoKOEAFtAlUkL_4yQ-OpXvz6KzLfazPwtD2yp7m-gMdVEZypEPhAtNBDrEge22RZwcjN6cf_OpgxSttPbtNHTXZqHYc-XGukMex7D6geFcvTc-QNm_DMPR4ed3R37XccA3MguXfmhzARZROcIMS5XIglxGicyDODMpXpAmoYUkh1jo3CBWiKCAQoOg5S6IqQgCuoMdvMswENzZP5ycfFpnfKgWeypld3InEOmgls5OoZvEeBAjMf9iwzu6JgJ_Q75_buD8bRXXOcfRLXazQ7X8bTsNb7MtKO-wa22fy9Vd9mVMP6A1Atr0yucVCreakpWd1byynLqFVHNezyiDyPHZtJnhiHm-4s7X8u8Y0bepRT4r-RzmGOOXwE1DGeVmAffY6ZUw-j7bLqsSHjKeyMzqiH5rMpkFsU5zDToQoogR-iaxx171LFXnbQUP5VbeRapaASgUgHICUBce2yeur7-k6tvuQbWYqk6ZlSkwtE_1UMeAACwt8hgQB5vYyiwBPRQe2-1lpjqTUKvLCeyx5-vXqMzEfeRZ1bTfyIRqznnsQSviNSUIZAl74njSDeFvkLr5ppx9dQXDh0gtjg_pet3Pk0u6_s2LR_8fxjN2HTVQfRhPjh-zGyHNYmqtEeyy7eWigScI1pb5004LOE61K1a8X1h4UvY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intracellular+morphogenesis+of+diatom+silica+is+guided+by+local+variations+in+membrane+curvature&rft.jtitle=Nature+communications&rft.au=Aram%2C+Lior&rft.au=de+Haan%2C+Diede&rft.au=Varsano%2C+Neta&rft.au=Gilchrist%2C+James+B.&rft.date=2024-09-10&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=15&rft_id=info:doi/10.1038%2Fs41467-024-52211-x&rft_id=info%3Apmid%2F39251596&rft.externalDocID=PMC11385223 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |