Intracellular morphogenesis of diatom silica is guided by local variations in membrane curvature

Silica cell-wall formation in diatoms is a showcase for the ability of organisms to control inorganic mineralization. The process of silicification by these unicellular algae is tightly regulated within a membrane-bound organelle, the silica deposition vesicle (SDV). Two opposing scenarios were prop...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 15; no. 1; pp. 7888 - 11
Main Authors Aram, Lior, de Haan, Diede, Varsano, Neta, Gilchrist, James B., Heintze, Christoph, Rotkopf, Ron, Rechav, Katya, Elad, Nadav, Kröger, Nils, Gal, Assaf
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 10.09.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2041-1723
2041-1723
DOI10.1038/s41467-024-52211-x

Cover

Abstract Silica cell-wall formation in diatoms is a showcase for the ability of organisms to control inorganic mineralization. The process of silicification by these unicellular algae is tightly regulated within a membrane-bound organelle, the silica deposition vesicle (SDV). Two opposing scenarios were proposed to explain the tight regulation of this intracellular process: a template-mediated process that relies on preformed scaffolds, or a template-independent self-assembly process. The present work points to a third scenario, where the SDV membrane is a dynamic mold that shapes the forming silica. We use in-cell cryo-electron tomography to visualize the silicification process in situ, in its native-state, and with a nanometer-scale resolution. This reveals that the plasma membrane interacts with the SDV membrane via physical tethering at membrane contact sites, where the curvature of the tethered side of the SDV membrane mirrors the intricate silica topography. We propose that silica growth and morphogenesis result from the biophysical properties of the SDV and plasma membranes. The silica cell wall of unicellular algae has intricate architecture unattainable by current technology. In this work it is shown that membrane contact sites are the biological morphogenesis handles to shape such intracellular mineralization.
AbstractList Silica cell-wall formation in diatoms is a showcase for the ability of organisms to control inorganic mineralization. The process of silicification by these unicellular algae is tightly regulated within a membrane-bound organelle, the silica deposition vesicle (SDV). Two opposing scenarios were proposed to explain the tight regulation of this intracellular process: a template-mediated process that relies on preformed scaffolds, or a template-independent self-assembly process. The present work points to a third scenario, where the SDV membrane is a dynamic mold that shapes the forming silica. We use in-cell cryo-electron tomography to visualize the silicification process in situ, in its native-state, and with a nanometer-scale resolution. This reveals that the plasma membrane interacts with the SDV membrane via physical tethering at membrane contact sites, where the curvature of the tethered side of the SDV membrane mirrors the intricate silica topography. We propose that silica growth and morphogenesis result from the biophysical properties of the SDV and plasma membranes.Silica cell-wall formation in diatoms is a showcase for the ability of organisms to control inorganic mineralization. The process of silicification by these unicellular algae is tightly regulated within a membrane-bound organelle, the silica deposition vesicle (SDV). Two opposing scenarios were proposed to explain the tight regulation of this intracellular process: a template-mediated process that relies on preformed scaffolds, or a template-independent self-assembly process. The present work points to a third scenario, where the SDV membrane is a dynamic mold that shapes the forming silica. We use in-cell cryo-electron tomography to visualize the silicification process in situ, in its native-state, and with a nanometer-scale resolution. This reveals that the plasma membrane interacts with the SDV membrane via physical tethering at membrane contact sites, where the curvature of the tethered side of the SDV membrane mirrors the intricate silica topography. We propose that silica growth and morphogenesis result from the biophysical properties of the SDV and plasma membranes.
Silica cell-wall formation in diatoms is a showcase for the ability of organisms to control inorganic mineralization. The process of silicification by these unicellular algae is tightly regulated within a membrane-bound organelle, the silica deposition vesicle (SDV). Two opposing scenarios were proposed to explain the tight regulation of this intracellular process: a template-mediated process that relies on preformed scaffolds, or a template-independent self-assembly process. The present work points to a third scenario, where the SDV membrane is a dynamic mold that shapes the forming silica. We use in-cell cryo-electron tomography to visualize the silicification process in situ, in its native-state, and with a nanometer-scale resolution. This reveals that the plasma membrane interacts with the SDV membrane via physical tethering at membrane contact sites, where the curvature of the tethered side of the SDV membrane mirrors the intricate silica topography. We propose that silica growth and morphogenesis result from the biophysical properties of the SDV and plasma membranes. The silica cell wall of unicellular algae has intricate architecture unattainable by current technology. In this work it is shown that membrane contact sites are the biological morphogenesis handles to shape such intracellular mineralization.
Silica cell-wall formation in diatoms is a showcase for the ability of organisms to control inorganic mineralization. The process of silicification by these unicellular algae is tightly regulated within a membrane-bound organelle, the silica deposition vesicle (SDV). Two opposing scenarios were proposed to explain the tight regulation of this intracellular process: a template-mediated process that relies on preformed scaffolds, or a template-independent self-assembly process. The present work points to a third scenario, where the SDV membrane is a dynamic mold that shapes the forming silica. We use in-cell cryo-electron tomography to visualize the silicification process in situ, in its native-state, and with a nanometer-scale resolution. This reveals that the plasma membrane interacts with the SDV membrane via physical tethering at membrane contact sites, where the curvature of the tethered side of the SDV membrane mirrors the intricate silica topography. We propose that silica growth and morphogenesis result from the biophysical properties of the SDV and plasma membranes.The silica cell wall of unicellular algae has intricate architecture unattainable by current technology. In this work it is shown that membrane contact sites are the biological morphogenesis handles to shape such intracellular mineralization.
Silica cell-wall formation in diatoms is a showcase for the ability of organisms to control inorganic mineralization. The process of silicification by these unicellular algae is tightly regulated within a membrane-bound organelle, the silica deposition vesicle (SDV). Two opposing scenarios were proposed to explain the tight regulation of this intracellular process: a template-mediated process that relies on preformed scaffolds, or a template-independent self-assembly process. The present work points to a third scenario, where the SDV membrane is a dynamic mold that shapes the forming silica. We use in-cell cryo-electron tomography to visualize the silicification process in situ, in its native-state, and with a nanometer-scale resolution. This reveals that the plasma membrane interacts with the SDV membrane via physical tethering at membrane contact sites, where the curvature of the tethered side of the SDV membrane mirrors the intricate silica topography. We propose that silica growth and morphogenesis result from the biophysical properties of the SDV and plasma membranes.
Abstract Silica cell-wall formation in diatoms is a showcase for the ability of organisms to control inorganic mineralization. The process of silicification by these unicellular algae is tightly regulated within a membrane-bound organelle, the silica deposition vesicle (SDV). Two opposing scenarios were proposed to explain the tight regulation of this intracellular process: a template-mediated process that relies on preformed scaffolds, or a template-independent self-assembly process. The present work points to a third scenario, where the SDV membrane is a dynamic mold that shapes the forming silica. We use in-cell cryo-electron tomography to visualize the silicification process in situ, in its native-state, and with a nanometer-scale resolution. This reveals that the plasma membrane interacts with the SDV membrane via physical tethering at membrane contact sites, where the curvature of the tethered side of the SDV membrane mirrors the intricate silica topography. We propose that silica growth and morphogenesis result from the biophysical properties of the SDV and plasma membranes.
ArticleNumber 7888
Author Elad, Nadav
Gilchrist, James B.
Gal, Assaf
de Haan, Diede
Kröger, Nils
Rotkopf, Ron
Aram, Lior
Heintze, Christoph
Varsano, Neta
Rechav, Katya
Author_xml – sequence: 1
  givenname: Lior
  orcidid: 0000-0002-3890-0456
  surname: Aram
  fullname: Aram, Lior
  organization: Department of Plant and Environmental Sciences, Weizmann Institute of Science
– sequence: 2
  givenname: Diede
  orcidid: 0000-0002-9793-1260
  surname: de Haan
  fullname: de Haan, Diede
  organization: Department of Plant and Environmental Sciences, Weizmann Institute of Science
– sequence: 3
  givenname: Neta
  surname: Varsano
  fullname: Varsano, Neta
  organization: Department of Chemical Research Support, Weizmann Institute of Science
– sequence: 4
  givenname: James B.
  orcidid: 0000-0002-9814-4285
  surname: Gilchrist
  fullname: Gilchrist, James B.
  organization: Electron Bio-Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus
– sequence: 5
  givenname: Christoph
  surname: Heintze
  fullname: Heintze, Christoph
  organization: B CUBE – Center for Molecular Bioengineering, Technische Universität Dresden
– sequence: 6
  givenname: Ron
  orcidid: 0000-0001-9503-7348
  surname: Rotkopf
  fullname: Rotkopf, Ron
  organization: Life Sciences Core Facilities, Weizmann Institute of Science
– sequence: 7
  givenname: Katya
  orcidid: 0000-0003-4664-5704
  surname: Rechav
  fullname: Rechav, Katya
  organization: Department of Chemical Research Support, Weizmann Institute of Science
– sequence: 8
  givenname: Nadav
  orcidid: 0000-0001-6222-2280
  surname: Elad
  fullname: Elad, Nadav
  organization: Department of Chemical Research Support, Weizmann Institute of Science
– sequence: 9
  givenname: Nils
  orcidid: 0000-0002-8115-4129
  surname: Kröger
  fullname: Kröger, Nils
  organization: B CUBE – Center for Molecular Bioengineering, Technische Universität Dresden, Cluster of Excellence Physics of Life, Technische Universität Dresden, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden
– sequence: 10
  givenname: Assaf
  orcidid: 0000-0003-1488-1227
  surname: Gal
  fullname: Gal, Assaf
  email: assaf.gal@weizmann.ac.il
  organization: Department of Plant and Environmental Sciences, Weizmann Institute of Science
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39251596$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1P3DAQhq2KqsCWP9BDZamXXtL6K3FyqirUlpWQeoGzcZxJ8Mqxt3aygn-PdwMUeqhlyZb9zjOjd-YUHfngAaEPlHyhhNdfk6CikgVhoigZo7S4e4NOGBG0oJLxoxf3Y3SW0obkxRtaC_EOHfOGlbRsqhN0s_ZT1Aacm52OeAxxexsG8JBswqHHndVTGHGyzhqN89sw2w463N5jF4x2eKdjltjgE7YejzC2UXvAZo47Pc0R3qO3vXYJzh7PFbr--ePq_KK4_P1rff79sjCiYVPB-pZDzzjhTPSs5iVpRSlFS6rG1HlDLVkPsoWK69ZUhJSQy9DAJW9KqBhfofXC7YLeqG20o473KmirDg8hDkrHyRoHynSS8lpTXYEUvO7aCmjDTdWLRoKmPLO-Lazt3I7QGdh75F5BX_94e6uGsFM0c3M39oTPj4QY_syQJjXatHc5exPmpDjNjZOkLpss_fSPdBPm6LNXB1WmydzwFfr4sqTnWp46mQVsEZgYUorQP0soUfuJUcvEqJxYHSZG3eUgvgSlLPYDxL-5_xP1AHwZxCU
Cites_doi 10.1126/science.aad8857
10.1073/pnas.2309518121
10.7554/eLife.78750
10.1021/jacs.1c00814
10.1038/s41467-019-09253-3
10.1038/nmeth.4193
10.1111/j.0022-3646.1983.00387.x
10.1016/j.jsb.2014.02.015
10.1146/annurev.genet.41.110306.130109
10.1083/jcb.201911122
10.1007/BF01275654
10.1016/j.jsb.2005.07.007
10.1016/j.jsb.2007.09.010
10.1016/0968-0004(87)90072-7
10.1007/BF01666388
10.1074/jbc.M115.706440
10.1016/j.devcel.2019.10.018
10.1007/978-3-030-92499-7_12
10.1038/s41592-023-01783-5
10.1006/jsbi.1996.0013
10.1186/s42833-020-00017-8
10.1557/jmr.2006.0333
10.1016/j.jsb.2016.06.007
10.1038/s41586-022-05255-2
10.1073/pnas.2025670118
10.1007/978-3-030-92499-7_11
10.1371/journal.pone.0014300
10.1038/s41467-021-24944-6
10.1038/s41467-023-36112-z
10.1098/rsif.2013.0067
10.1038/s41580-018-0071-5
10.3389/fmars.2018.00125
10.1186/s42833-019-0007-1
10.1186/s12915-017-0400-8
10.1016/j.jsb.2009.08.013
10.1038/s41586-023-06050-3
10.1073/pnas.1807028115
10.1111/nph.16329
10.1016/S0074-7696(08)61544-2
10.1093/pnasnexus/pgac156
10.1371/journal.pone.0061675
10.1039/b505945c
10.1111/j.1529-8817.2007.00361.x
10.1002/adfm.200500616
10.1007/BF01279316
10.1007/s00709-013-0495-x
10.1126/science.1070026
10.1016/j.devcel.2016.10.022
10.1111/tpj.15765
10.1073/pnas.2211549119
10.1126/sciadv.aaz7554
10.1098/rstb.1984.0043
10.1038/s41580-019-0180-9
10.1016/j.jsb.2018.07.005
10.7554/eLife.72817
10.1007/BF00353582
10.1002/j.1537-2197.1965.tb07286.x
10.1073/pnas.1012842108
10.1111/jpy.13362
10.1073/pnas.2201014119
10.1016/bs.mcb.2019.05.001
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-024-52211-x
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
Biological Science Database
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Publicly Available Content Database
MEDLINE


CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 11
ExternalDocumentID oai_doaj_org_article_cd7138a1a6e7438db6e193c6f497ea13
PMC11385223
39251596
10_1038_s41467_024_52211_x
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
  grantid: 848339
  funderid: https://doi.org/10.13039/100010663
– fundername: EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
  grantid: 848339
– fundername: Wellcome Trust
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M48
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c492t-2fb3ef230324f28350b4574b069c89c8e872fe7be63abc6005ededae37395e623
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 00:56:50 EDT 2025
Thu Aug 21 18:35:31 EDT 2025
Thu Sep 04 15:21:45 EDT 2025
Wed Aug 13 04:18:56 EDT 2025
Fri Jun 20 01:35:04 EDT 2025
Tue Jul 01 02:37:33 EDT 2025
Fri Feb 21 02:37:36 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c492t-2fb3ef230324f28350b4574b069c89c8e872fe7be63abc6005ededae37395e623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1488-1227
0000-0002-8115-4129
0000-0002-3890-0456
0000-0001-9503-7348
0000-0002-9793-1260
0000-0002-9814-4285
0000-0001-6222-2280
0000-0003-4664-5704
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-024-52211-x
PMID 39251596
PQID 3102223710
PQPubID 546298
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_cd7138a1a6e7438db6e193c6f497ea13
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11385223
proquest_miscellaneous_3102470859
proquest_journals_3102223710
pubmed_primary_39251596
crossref_primary_10_1038_s41467_024_52211_x
springer_journals_10_1038_s41467_024_52211_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-10
PublicationDateYYYYMMDD 2024-09-10
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-10
  day: 10
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References GrögerCSumperMBrunnerESilicon uptake and metabolism of the marine diatom Thalassiosira pseudonana: Solid-state 29Si NMR and fluorescence microscopic studiesJ. Struct. Biol.200816155631795939010.1016/j.jsb.2007.09.010
HeintzeCThe molecular basis for pore pattern morphogenesis in diatom silicaProc. Natl. Acad. Sci. USA202211903210.1073/pnas.22115491191:CAS:528:DC%2BB38XjtFCiurfP
KotzschABiochemical composition and assembly of biosilica-associated insoluble organic matrices from the diatom Thalassiosira pseudonanaJ. Biol. Chem.2016291498249972671084710.1074/jbc.M115.7064401:CAS:528:DC%2BC28Xjs1Gjtrs%3D
LutzKGrögerCSumperMBrunnerEBiomimetic silica formation: Analysis of the phosphate-induced self-assembly of polyaminesPhys. Chem. Chem. Phys.20057281228151618959710.1039/b505945c1:CAS:528:DC%2BD2MXlvVSnt7s%3D
AnnenkovVVBasharinaTNDanilovtsevaENGrachevMAPutative silicon transport vesicles in the cytoplasm of the diatom Synedra acus during surge uptake of siliconProtoplasma2013250114711552352574210.1007/s00709-013-0495-x1:CAS:528:DC%2BC3sXhsFOks7jI
PawolskiDHeintzeCMeyISteinemCKrögerNReconstituting the formation of hierarchically porous silica patterns using diatom biomoleculesJ. Struct. Biol.201820464743000987710.1016/j.jsb.2018.07.0051:CAS:528:DC%2BC1cXhsVWrur%2FK
MahamidJVisualizing the molecular sociology at the HeLa cell nuclear peripheryScience20163519699722016Sci...351..969M2691777010.1126/science.aad88571:CAS:528:DC%2BC28XivFOnt7c%3D
Kumar, S., Rechav, K., Kaplan-Ashiri, I. & Gal, A. Imaging and quantifying homeostatic levels of intracellular silicon in diatoms. Sci. Adv.6, (2020).
Kröger, N. Biomolecules involved in silica formation and function. in The Molecular Life of Diatoms 313–343 (Springer, Cham, Cham, 2022).
ZhengSQMotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopyNat. Methods20171433133228250466549403810.1038/nmeth.41931:CAS:528:DC%2BC2sXjt1ags7g%3D
ZhengSAreTomo: An integrated software package for automated marker-free, motion-corrected cryo-electron tomographic alignment and reconstructionJ. Struct. Biol. X202261000683560168391176861:CAS:528:DC%2BB38XhsVOhs7%2FF
PaascheESilicon and the ecology of marine plankton diatoms. I. Thalassiosira pseudonana (Cyclotella nana) grown in a chemostat with silicate as limiting nutrientMar. Biol.19731911712610.1007/BF003535821:CAS:528:DyaE3sXkvV2gur0%3D
MayzelBAramLVarsanoNWolfSGGalAStructural evidence for extracellular silica formation by diatomsNat. Commun.2021122021NatCo..12.4639M34330922832491710.1038/s41467-021-24944-61:CAS:528:DC%2BB3MXhslyksL7I
WoznyMRIn situ architecture of the ER–mitochondria encounter structureNature20236181881922023Natur.618..188W37165187761460610.1038/s41586-023-06050-31:CAS:528:DC%2BB3sXpvVait70%3D
ColladoJTricalbin-mediated contact sites control ER curvature to maintain plasma membrane integrityDev. Cell20195147648731743662686339510.1016/j.devcel.2019.10.0181:CAS:528:DC%2BC1MXit1SmsLvN
SchmidAMMSchulzDWall morphogenesis in diatoms: Deposition of silica by cytoplasmic vesiclesProtoplasma197910026728810.1007/BF01279316
Martinez-SanchezAGarciaIAsanoSLucicVFernandezJ-JRobust membrane detection based on tensor voting for electron tomographyJ. Struct. Biol.201418649612462552310.1016/j.jsb.2014.02.015
MastronardeDNAutomated electron microscope tomography using robust prediction of specimen movementsJ. Struct. Biol.200515236511618256310.1016/j.jsb.2005.07.007
MorandiMIExtracellular vesicle fusion visualized by cryo-electron microscopyPNAS Nexus2022111110.1093/pnasnexus/pgac1561:CAS:528:DC%2BB2cXhtlWrsbzN
Poulsen, N. & Kröger, N. Thalassiosira pseudonana (Cyclotella nana) (Hustedt) Hasle et Heimdal (Bacillariophyceae): A genetically tractable model organism for studying diatom biology, including biological silica formation. J. Phycol.59, 809–817 (2023).
TessonBHildebrandMCharacterization and localization of insoluble organic matrices associated with diatom cell walls: Insight into their roles during cell wall formationPLoS ONE20138e616752013PLoSO...861675T23626714363399110.1371/journal.pone.00616751:CAS:528:DC%2BC3sXntVKrtb8%3D
KremerJRMastronardeDNMcIntoshJRComputer visualization of three-dimensional image data using IMODJ. Struct. Biol.19961167176874272610.1006/jsbi.1996.00131:STN:280:DyaK28zmtFyqtg%3D%3D
WongLHGattaATLevineTPLipid transfer proteins: the lipid commute via shuttles, bridges and tubesNat. Rev. Mol. Cell Biol.201920851013033766810.1038/s41580-018-0071-51:CAS:528:DC%2BC1cXhvFygurzE
TessonBHildebrandMDynamics of silica cell wall morphogenesis in the diatom Cyclotella cryptica: Substructure formation and the role of microfilamentsJ. Struct. Biol.201016962741972906610.1016/j.jsb.2009.08.0131:CAS:528:DC%2BD1MXhs1Wjt7bO
BuchholzTOContent-aware image restoration for electron microscopyMethods Cell Biol.20191522772893132602510.1016/bs.mcb.2019.05.001
ChiappinoMLVolcaniBEStudies on the biochemistry and fine structure of silicia shell formation in diatoms VII. Sequential cell wall development in the pennateNavicula pelliculosaProtoplasma19779320522110.1007/BF01275654
Gingras, R. M., Sulpizio, A. M., Park, J. & Bretscher, A. High-resolution secretory timeline from vesicle formation at the Golgi to fusion at the plasma membrane in S. cerevisiae. Elife11, https://doi.org/10.7554/eLife.78750 (2022).
KadanYTollerveyFVarsanoNMahamidJGalAIntracellular nanoscale architecture as a master regulator of calcium carbonate crystallization in marine microalgaeProc. Natl. Acad. Sci. USA202111834772804869405010.1073/pnas.20256701181:CAS:528:DC%2BB38XovFygsQ%3D%3D
RobinsonDHSullivanCWHow do diatoms make silicon biominerals?Trends Biochem. Sci.19871215115410.1016/0968-0004(87)90072-71:CAS:528:DyaL2sXitFSlsL4%3D
BergerCCryo-electron tomography on focused ion beam lamellae transforms structural cell biologyNat. Methods2023204995113691481410.1038/s41592-023-01783-51:CAS:528:DC%2BB3sXltFGms7s%3D
Babenko, I., Friedrich, B. M. & Kröger, N. Structure and morphogenesis of the frustule. in The Molecular Life of Diatoms 287–312 (Springer International Publishing, Cham, 2022).
KrögerNPoulsenNDiatoms - From cell wall biogenesis to nanotechnologyAnnu Rev. Genet.200842831071898325510.1146/annurev.genet.41.110306.130109
SumperMBrunnerELearning from diatoms: Nature’s tools for the production of nanostructured silicaAdv. Funct. Mater.200616172610.1002/adfm.2005006161:CAS:528:DC%2BD28XpvVWksA%3D%3D
WillisLCoxEJDukeTA simple probabilistic model of submicroscopic diatom morphogenesisJ. R. Soc. Interface2013102013006723554345364541610.1098/rsif.2013.00671:STN:280:DC%2BC3sritFGrtw%3D%3D
BabenkoIKrögerNFriedrichBMMechanism of branching morphogenesis inspired by diatom silica formationProc. Natl. Acad. Sci. USA2024121384220231092758810.1073/pnas.23095181211:CAS:528:DC%2BB2cXmvVSgur4%3D
de HaanDExocytosis of the silicified cell wall of diatoms involves extensive membrane disintegrationNat. Commun.2023142023NatCo..14..472H36717559988699410.1038/s41467-023-36112-z
HildebrandMNanoscale control of silica morphology and three-dimensional structure during diatom cell wall formationJ. Mater. Res.200621268926982006JMatR..21.2689H10.1557/jmr.2006.03331:CAS:528:DC%2BD28XhtVylsL7P
SchmidAMMAspects of morphogenesis and function of diatom cell walls with implications for taxonomyProtoplasma1994181436010.1007/BF01666388
SumperMA phase separation model for the nanopatterning of diatom biosilicaScience2002295243024332002Sci...295.2430S1192353310.1126/science.10700261:CAS:528:DC%2BD38XisFSltrg%3D
Pöge, M. et al. Determinants shaping the nanoscale architecture of the mouse rod outer segment. Elife10, https://doi.org/10.7554/eLife.72817 (2021).
Kotzsch, A. et al. Silicanin-1 is a conserved diatom membrane protein involved in silica biomineralization. BMC Biol15, 65 (2017).
BobethMContinuum modelling of structure formation of biosilica patterns in diatomsBMC Mater.20202111
HagenWJHWanWBriggsJAGImplementation of a cryo-electron tomography tilt-scheme optimized for high resolution subtomogram averagingJ. Struct. Biol.201719719119827313000528735610.1016/j.jsb.2016.06.007
ScheffelAPoulsenNShianSKrögerNNanopatterned protein microrings from a diatom that direct silica morphogenesisProc. Natl. Acad. Sci. USA2011108317531802011PNAS..108.3175S21300899304441810.1073/pnas.10128421081:CAS:528:DC%2BC3MXislyjtbk%3D
HildebrandMFrigeriLGDavisAKSynchronized growth of Thalassiosira pseudonana (Bacillariophyceae) provides novel insights into cell-wall synthesis processes in relation to the cell cycleJ. Phycol.20074373074010.1111/j.1529-8817.2007.00361.x1:CAS:528:DC%2BD2sXpvFSrtrc%3D
HeintzeCAn intimate view into the silica deposition vesicles of diatomsBMC Mater.202021110.1186/s42833-020-00017-8
Skeffington, A. W. et al. Shedding light on silica biomineralization by comparative analysis of the silica‐associated proteomes from three diatom species. Plant J.110, 1700–1716 (2022).
ScorranoLComing together to define membrane contact sitesNat. Commun.20191011110.1038/s41467-019-09253-31:CAS:528:DC%2BC1MXotFagtLw%3D
LIC-WVolcaniBEAspects of silicification in wall morphogenesis of diatomsPhilos. Trans. R. Soc. Lond. B Biol. Sci.19843045195281984RSPTB.304..519L10.1098/rstb.1984.0043
ChouSZPollardTDMechanism of actin polymerization revealed by cryo-EM structures of actin filaments with three different bound nucleotidesProc. Natl. Acad. Sci. USA2019116426542742019PNAS..116.4265C30760599641086310.1073/pnas.18070281151:CAS:528:DC%2BC1MXktFeis7k%3D
TessonBHildebrandMExtensive and intimate association of the cytoskeleton with forming silica in diatoms: Control over patterning on the meso- and micro-scalePLoS ONE20105e143002010PLoSO...514300T21200414300082210.1371/journal.pone.0014300
FeofilovaMGeometrical frustration of phase-separated domains in Coscinodiscus diatom frustulesProc. Natl. Acad. Sci. USA2022119448949835905319935150410.1073/pnas.22010141191:CAS:528:DC%2BB38XitFCnsrbM
SchmidAMVolcaniBEWall morphogenesis in coscinodiscus wailesii gran and angst. I. Valve morphology and development of its architectureJ. Phycol.19831938740210.1
C-W LI (52211_CR5) 1984; 304
WA Prinz (52211_CR52) 2020; 21
A Kotzsch (52211_CR47) 2016; 291
M Eisenberg-Bord (52211_CR39) 2016; 39
B Tesson (52211_CR45) 2013; 8
AMM Schmid (52211_CR30) 1979; 100
B Tesson (52211_CR44) 2010; 169
J Mahamid (52211_CR22) 2016; 351
DH Robinson (52211_CR12) 1987; 12
D Pawolski (52211_CR16) 2018; 204
AM Schmid (52211_CR48) 1983; 19
N Kröger (52211_CR2) 2008; 42
52211_CR53
52211_CR51
L Willis (52211_CR19) 2013; 10
K Lutz (52211_CR28) 2005; 7
DN Mastronarde (52211_CR55) 2005; 152
WJH Hagen (52211_CR54) 2017; 197
M Sumper (52211_CR15) 2002; 295
C Berger (52211_CR35) 2023; 20
A Scheffel (52211_CR46) 2011; 108
MI Morandi (52211_CR34) 2022; 1
M Sumper (52211_CR3) 2006; 16
M Bobeth (52211_CR18) 2020; 2
I Babenko (52211_CR20) 2024; 121
TO Buchholz (52211_CR59) 2019; 152
L Scorrano (52211_CR40) 2019; 10
VV Annenkov (52211_CR31) 2013; 250
C Heintze (52211_CR13) 2020; 2
52211_CR25
D de Haan (52211_CR36) 2023; 14
SQ Zheng (52211_CR58) 2017; 14
J Collado (52211_CR50) 2019; 51
LH Wong (52211_CR49) 2019; 20
C Heintze (52211_CR6) 2022; 119
Q Lei (52211_CR29) 2021; 143
E Paasche (52211_CR62) 1973; 19
M Hildebrand (52211_CR27) 2006; 21
L Xue (52211_CR21) 2022; 610
52211_CR1
Y Kadan (52211_CR23) 2021; 118
A Martinez-Sanchez (52211_CR60) 2014; 186
52211_CR4
AMM Schmid (52211_CR11) 1994; 181
SZ Chou (52211_CR43) 2019; 116
52211_CR8
52211_CR7
M Hildebrand (52211_CR26) 2007; 43
B Mayzel (52211_CR24) 2021; 12
52211_CR38
52211_CR37
B Tesson (52211_CR42) 2010; 5
EF Stoermer (52211_CR9) 1965; 52
ML Chiappino (52211_CR10) 1977; 93
52211_CR32
DP Yee (52211_CR61) 2020; 225
C Gröger (52211_CR33) 2008; 161
S Zheng (52211_CR57) 2022; 6
M Feofilova (52211_CR17) 2022; 119
JR Kremer (52211_CR56) 1996; 116
R Gordon (52211_CR14) 1994; 150
MR Wozny (52211_CR41) 2023; 618
References_xml – reference: YeeDPHildebrandMTresguerresMDynamic subcellular translocation of V‐type H + ‐ATPase is essential for biomineralization of the diatom silica cell wallN. Phytol.20202252411242210.1111/nph.163291:CAS:528:DC%2BB3cXjtFeiur4%3D
– reference: SchmidAMVolcaniBEWall morphogenesis in coscinodiscus wailesii gran and angst. I. Valve morphology and development of its architectureJ. Phycol.19831938740210.1111/j.0022-3646.1983.00387.x
– reference: HeintzeCAn intimate view into the silica deposition vesicles of diatomsBMC Mater.202021110.1186/s42833-020-00017-8
– reference: GordonRDrumRWThe chemical basis of diatom morphogenesisInt. Rev. Cytol.199415024337210.1016/S0074-7696(08)61544-21:CAS:528:DyaK2cXkslOrtrY%3D
– reference: TessonBHildebrandMExtensive and intimate association of the cytoskeleton with forming silica in diatoms: Control over patterning on the meso- and micro-scalePLoS ONE20105e143002010PLoSO...514300T21200414300082210.1371/journal.pone.0014300
– reference: XueLVisualizing translation dynamics at atomic detail inside a bacterial cellNature20226102052112022Natur.610..205X36171285953475110.1038/s41586-022-05255-21:CAS:528:DC%2BB38XisFWit7vO
– reference: Poulsen, N. & Kröger, N. Thalassiosira pseudonana (Cyclotella nana) (Hustedt) Hasle et Heimdal (Bacillariophyceae): A genetically tractable model organism for studying diatom biology, including biological silica formation. J. Phycol.59, 809–817 (2023).
– reference: SchmidAMMSchulzDWall morphogenesis in diatoms: Deposition of silica by cytoplasmic vesiclesProtoplasma197910026728810.1007/BF01279316
– reference: MahamidJVisualizing the molecular sociology at the HeLa cell nuclear peripheryScience20163519699722016Sci...351..969M2691777010.1126/science.aad88571:CAS:528:DC%2BC28XivFOnt7c%3D
– reference: HagenWJHWanWBriggsJAGImplementation of a cryo-electron tomography tilt-scheme optimized for high resolution subtomogram averagingJ. Struct. Biol.201719719119827313000528735610.1016/j.jsb.2016.06.007
– reference: TessonBHildebrandMCharacterization and localization of insoluble organic matrices associated with diatom cell walls: Insight into their roles during cell wall formationPLoS ONE20138e616752013PLoSO...861675T23626714363399110.1371/journal.pone.00616751:CAS:528:DC%2BC3sXntVKrtb8%3D
– reference: Kumar, S., Rechav, K., Kaplan-Ashiri, I. & Gal, A. Imaging and quantifying homeostatic levels of intracellular silicon in diatoms. Sci. Adv.6, (2020).
– reference: SumperMBrunnerELearning from diatoms: Nature’s tools for the production of nanostructured silicaAdv. Funct. Mater.200616172610.1002/adfm.2005006161:CAS:528:DC%2BD28XpvVWksA%3D%3D
– reference: FeofilovaMGeometrical frustration of phase-separated domains in Coscinodiscus diatom frustulesProc. Natl. Acad. Sci. USA2022119448949835905319935150410.1073/pnas.22010141191:CAS:528:DC%2BB38XitFCnsrbM
– reference: BergerCCryo-electron tomography on focused ion beam lamellae transforms structural cell biologyNat. Methods2023204995113691481410.1038/s41592-023-01783-51:CAS:528:DC%2BB3sXltFGms7s%3D
– reference: StoermerEFPankratzHSBowenCCFine structure of the diatom amphipleura pellucida. Ii. Cytoplasmic fine structure and frustule formationAm. J. Bot.1965521067107810.1002/j.1537-2197.1965.tb07286.x
– reference: Babenko, I., Friedrich, B. M. & Kröger, N. Structure and morphogenesis of the frustule. in The Molecular Life of Diatoms 287–312 (Springer International Publishing, Cham, 2022).
– reference: Martinez-SanchezAGarciaIAsanoSLucicVFernandezJ-JRobust membrane detection based on tensor voting for electron tomographyJ. Struct. Biol.201418649612462552310.1016/j.jsb.2014.02.015
– reference: KadanYTollerveyFVarsanoNMahamidJGalAIntracellular nanoscale architecture as a master regulator of calcium carbonate crystallization in marine microalgaeProc. Natl. Acad. Sci. USA202111834772804869405010.1073/pnas.20256701181:CAS:528:DC%2BB38XovFygsQ%3D%3D
– reference: LutzKGrögerCSumperMBrunnerEBiomimetic silica formation: Analysis of the phosphate-induced self-assembly of polyaminesPhys. Chem. Chem. Phys.20057281228151618959710.1039/b505945c1:CAS:528:DC%2BD2MXlvVSnt7s%3D
– reference: GrögerCSumperMBrunnerESilicon uptake and metabolism of the marine diatom Thalassiosira pseudonana: Solid-state 29Si NMR and fluorescence microscopic studiesJ. Struct. Biol.200816155631795939010.1016/j.jsb.2007.09.010
– reference: SumperMA phase separation model for the nanopatterning of diatom biosilicaScience2002295243024332002Sci...295.2430S1192353310.1126/science.10700261:CAS:528:DC%2BD38XisFSltrg%3D
– reference: ZhengSAreTomo: An integrated software package for automated marker-free, motion-corrected cryo-electron tomographic alignment and reconstructionJ. Struct. Biol. X202261000683560168391176861:CAS:528:DC%2BB38XhsVOhs7%2FF
– reference: PaascheESilicon and the ecology of marine plankton diatoms. I. Thalassiosira pseudonana (Cyclotella nana) grown in a chemostat with silicate as limiting nutrientMar. Biol.19731911712610.1007/BF003535821:CAS:528:DyaE3sXkvV2gur0%3D
– reference: Kotzsch, A. et al. Silicanin-1 is a conserved diatom membrane protein involved in silica biomineralization. BMC Biol15, 65 (2017).
– reference: HildebrandMFrigeriLGDavisAKSynchronized growth of Thalassiosira pseudonana (Bacillariophyceae) provides novel insights into cell-wall synthesis processes in relation to the cell cycleJ. Phycol.20074373074010.1111/j.1529-8817.2007.00361.x1:CAS:528:DC%2BD2sXpvFSrtrc%3D
– reference: Eisenberg-BordMShaiNSchuldinerMBohnertMA tether is a tether is a tether: Tethering at membrane contact sitesDev. Cell2016393954092787568410.1016/j.devcel.2016.10.0221:CAS:528:DC%2BC28XhvFWnsb3O
– reference: KrögerNPoulsenNDiatoms - From cell wall biogenesis to nanotechnologyAnnu Rev. Genet.200842831071898325510.1146/annurev.genet.41.110306.130109
– reference: SchmidAMMAspects of morphogenesis and function of diatom cell walls with implications for taxonomyProtoplasma1994181436010.1007/BF01666388
– reference: HeintzeCThe molecular basis for pore pattern morphogenesis in diatom silicaProc. Natl. Acad. Sci. USA202211903210.1073/pnas.22115491191:CAS:528:DC%2BB38XjtFCiurfP
– reference: BobethMContinuum modelling of structure formation of biosilica patterns in diatomsBMC Mater.20202111
– reference: MorandiMIExtracellular vesicle fusion visualized by cryo-electron microscopyPNAS Nexus2022111110.1093/pnasnexus/pgac1561:CAS:528:DC%2BB2cXhtlWrsbzN
– reference: ChouSZPollardTDMechanism of actin polymerization revealed by cryo-EM structures of actin filaments with three different bound nucleotidesProc. Natl. Acad. Sci. USA2019116426542742019PNAS..116.4265C30760599641086310.1073/pnas.18070281151:CAS:528:DC%2BC1MXktFeis7k%3D
– reference: WongLHGattaATLevineTPLipid transfer proteins: the lipid commute via shuttles, bridges and tubesNat. Rev. Mol. Cell Biol.201920851013033766810.1038/s41580-018-0071-51:CAS:528:DC%2BC1cXhvFygurzE
– reference: MayzelBAramLVarsanoNWolfSGGalAStructural evidence for extracellular silica formation by diatomsNat. Commun.2021122021NatCo..12.4639M34330922832491710.1038/s41467-021-24944-61:CAS:528:DC%2BB3MXhslyksL7I
– reference: PawolskiDHeintzeCMeyISteinemCKrögerNReconstituting the formation of hierarchically porous silica patterns using diatom biomoleculesJ. Struct. Biol.201820464743000987710.1016/j.jsb.2018.07.0051:CAS:528:DC%2BC1cXhsVWrur%2FK
– reference: Hildebrand, M., Lerch, S. J. L. & Shrestha, R. P. Understanding Diatom Cell Wall Silicification—Moving Forward. Front. Mar. Sci.5, https://doi.org/10.3389/fmars.2018.00125 (2018).
– reference: MastronardeDNAutomated electron microscope tomography using robust prediction of specimen movementsJ. Struct. Biol.200515236511618256310.1016/j.jsb.2005.07.007
– reference: ColladoJTricalbin-mediated contact sites control ER curvature to maintain plasma membrane integrityDev. Cell20195147648731743662686339510.1016/j.devcel.2019.10.0181:CAS:528:DC%2BC1MXit1SmsLvN
– reference: KotzschABiochemical composition and assembly of biosilica-associated insoluble organic matrices from the diatom Thalassiosira pseudonanaJ. Biol. Chem.2016291498249972671084710.1074/jbc.M115.7064401:CAS:528:DC%2BC28Xjs1Gjtrs%3D
– reference: HildebrandMNanoscale control of silica morphology and three-dimensional structure during diatom cell wall formationJ. Mater. Res.200621268926982006JMatR..21.2689H10.1557/jmr.2006.03331:CAS:528:DC%2BD28XhtVylsL7P
– reference: de HaanDExocytosis of the silicified cell wall of diatoms involves extensive membrane disintegrationNat. Commun.2023142023NatCo..14..472H36717559988699410.1038/s41467-023-36112-z
– reference: ScheffelAPoulsenNShianSKrögerNNanopatterned protein microrings from a diatom that direct silica morphogenesisProc. Natl. Acad. Sci. USA2011108317531802011PNAS..108.3175S21300899304441810.1073/pnas.10128421081:CAS:528:DC%2BC3MXislyjtbk%3D
– reference: Pöge, M. et al. Determinants shaping the nanoscale architecture of the mouse rod outer segment. Elife10, https://doi.org/10.7554/eLife.72817 (2021).
– reference: ScorranoLComing together to define membrane contact sitesNat. Commun.20191011110.1038/s41467-019-09253-31:CAS:528:DC%2BC1MXotFagtLw%3D
– reference: ChiappinoMLVolcaniBEStudies on the biochemistry and fine structure of silicia shell formation in diatoms VII. Sequential cell wall development in the pennateNavicula pelliculosaProtoplasma19779320522110.1007/BF01275654
– reference: PrinzWAToulmayABallaTThe functional universe of membrane contact sitesNat. Rev. Mol. Cell Biol.2020217243173271710.1038/s41580-019-0180-91:CAS:528:DC%2BC1MXitFOisr3O
– reference: ZhengSQMotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopyNat. Methods20171433133228250466549403810.1038/nmeth.41931:CAS:528:DC%2BC2sXjt1ags7g%3D
– reference: BabenkoIKrögerNFriedrichBMMechanism of branching morphogenesis inspired by diatom silica formationProc. Natl. Acad. Sci. USA2024121384220231092758810.1073/pnas.23095181211:CAS:528:DC%2BB2cXmvVSgur4%3D
– reference: Skeffington, A. W. et al. Shedding light on silica biomineralization by comparative analysis of the silica‐associated proteomes from three diatom species. Plant J.110, 1700–1716 (2022).
– reference: WoznyMRIn situ architecture of the ER–mitochondria encounter structureNature20236181881922023Natur.618..188W37165187761460610.1038/s41586-023-06050-31:CAS:528:DC%2BB3sXpvVait70%3D
– reference: Abrisch, R. G., Gumbin, S. C., Wisniewski, B. T., Lackner, L. L. & Voeltz, G. K. Fission and fusion machineries converge at ER contact sites to regulate mitochondrial morphology. J. Cell Biol.219, e201911122 (2020).
– reference: RobinsonDHSullivanCWHow do diatoms make silicon biominerals?Trends Biochem. Sci.19871215115410.1016/0968-0004(87)90072-71:CAS:528:DyaL2sXitFSlsL4%3D
– reference: LeiQBioinspired cell silicification: From extracellular to intracellularJ. Am. Chem. Soc.2021143630563223382632410.1021/jacs.1c008141:CAS:528:DC%2BB3MXot1Cgu7c%3D
– reference: LIC-WVolcaniBEAspects of silicification in wall morphogenesis of diatomsPhilos. Trans. R. Soc. Lond. B Biol. Sci.19843045195281984RSPTB.304..519L10.1098/rstb.1984.0043
– reference: WillisLCoxEJDukeTA simple probabilistic model of submicroscopic diatom morphogenesisJ. R. Soc. Interface2013102013006723554345364541610.1098/rsif.2013.00671:STN:280:DC%2BC3sritFGrtw%3D%3D
– reference: KremerJRMastronardeDNMcIntoshJRComputer visualization of three-dimensional image data using IMODJ. Struct. Biol.19961167176874272610.1006/jsbi.1996.00131:STN:280:DyaK28zmtFyqtg%3D%3D
– reference: Gingras, R. M., Sulpizio, A. M., Park, J. & Bretscher, A. High-resolution secretory timeline from vesicle formation at the Golgi to fusion at the plasma membrane in S. cerevisiae. Elife11, https://doi.org/10.7554/eLife.78750 (2022).
– reference: TessonBHildebrandMDynamics of silica cell wall morphogenesis in the diatom Cyclotella cryptica: Substructure formation and the role of microfilamentsJ. Struct. Biol.201016962741972906610.1016/j.jsb.2009.08.0131:CAS:528:DC%2BD1MXhs1Wjt7bO
– reference: Kröger, N. Biomolecules involved in silica formation and function. in The Molecular Life of Diatoms 313–343 (Springer, Cham, Cham, 2022).
– reference: BuchholzTOContent-aware image restoration for electron microscopyMethods Cell Biol.20191522772893132602510.1016/bs.mcb.2019.05.001
– reference: AnnenkovVVBasharinaTNDanilovtsevaENGrachevMAPutative silicon transport vesicles in the cytoplasm of the diatom Synedra acus during surge uptake of siliconProtoplasma2013250114711552352574210.1007/s00709-013-0495-x1:CAS:528:DC%2BC3sXhsFOks7jI
– volume: 351
  start-page: 969
  year: 2016
  ident: 52211_CR22
  publication-title: Science
  doi: 10.1126/science.aad8857
– volume: 121
  year: 2024
  ident: 52211_CR20
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2309518121
– ident: 52211_CR37
  doi: 10.7554/eLife.78750
– volume: 143
  start-page: 6305
  year: 2021
  ident: 52211_CR29
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c00814
– volume: 10
  start-page: 1
  year: 2019
  ident: 52211_CR40
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09253-3
– volume: 14
  start-page: 331
  year: 2017
  ident: 52211_CR58
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4193
– volume: 19
  start-page: 387
  year: 1983
  ident: 52211_CR48
  publication-title: J. Phycol.
  doi: 10.1111/j.0022-3646.1983.00387.x
– volume: 186
  start-page: 49
  year: 2014
  ident: 52211_CR60
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2014.02.015
– volume: 42
  start-page: 83
  year: 2008
  ident: 52211_CR2
  publication-title: Annu Rev. Genet.
  doi: 10.1146/annurev.genet.41.110306.130109
– ident: 52211_CR51
  doi: 10.1083/jcb.201911122
– volume: 93
  start-page: 205
  year: 1977
  ident: 52211_CR10
  publication-title: Protoplasma
  doi: 10.1007/BF01275654
– volume: 152
  start-page: 36
  year: 2005
  ident: 52211_CR55
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2005.07.007
– volume: 161
  start-page: 55
  year: 2008
  ident: 52211_CR33
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2007.09.010
– volume: 12
  start-page: 151
  year: 1987
  ident: 52211_CR12
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/0968-0004(87)90072-7
– volume: 181
  start-page: 43
  year: 1994
  ident: 52211_CR11
  publication-title: Protoplasma
  doi: 10.1007/BF01666388
– volume: 291
  start-page: 4982
  year: 2016
  ident: 52211_CR47
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M115.706440
– volume: 51
  start-page: 476
  year: 2019
  ident: 52211_CR50
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2019.10.018
– ident: 52211_CR8
  doi: 10.1007/978-3-030-92499-7_12
– volume: 6
  start-page: 100068
  year: 2022
  ident: 52211_CR57
  publication-title: J. Struct. Biol. X
– volume: 20
  start-page: 499
  year: 2023
  ident: 52211_CR35
  publication-title: Nat. Methods
  doi: 10.1038/s41592-023-01783-5
– volume: 116
  start-page: 71
  year: 1996
  ident: 52211_CR56
  publication-title: J. Struct. Biol.
  doi: 10.1006/jsbi.1996.0013
– volume: 2
  start-page: 11
  year: 2020
  ident: 52211_CR13
  publication-title: BMC Mater.
  doi: 10.1186/s42833-020-00017-8
– volume: 21
  start-page: 2689
  year: 2006
  ident: 52211_CR27
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2006.0333
– volume: 197
  start-page: 191
  year: 2017
  ident: 52211_CR54
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2016.06.007
– volume: 610
  start-page: 205
  year: 2022
  ident: 52211_CR21
  publication-title: Nature
  doi: 10.1038/s41586-022-05255-2
– volume: 118
  year: 2021
  ident: 52211_CR23
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2025670118
– ident: 52211_CR4
  doi: 10.1007/978-3-030-92499-7_11
– volume: 5
  start-page: e14300
  year: 2010
  ident: 52211_CR42
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0014300
– volume: 12
  year: 2021
  ident: 52211_CR24
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-24944-6
– volume: 14
  year: 2023
  ident: 52211_CR36
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-36112-z
– volume: 10
  start-page: 20130067
  year: 2013
  ident: 52211_CR19
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2013.0067
– volume: 20
  start-page: 85
  year: 2019
  ident: 52211_CR49
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-018-0071-5
– ident: 52211_CR1
  doi: 10.3389/fmars.2018.00125
– volume: 2
  start-page: 1
  year: 2020
  ident: 52211_CR18
  publication-title: BMC Mater.
  doi: 10.1186/s42833-019-0007-1
– ident: 52211_CR53
  doi: 10.1186/s12915-017-0400-8
– volume: 169
  start-page: 62
  year: 2010
  ident: 52211_CR44
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2009.08.013
– volume: 618
  start-page: 188
  year: 2023
  ident: 52211_CR41
  publication-title: Nature
  doi: 10.1038/s41586-023-06050-3
– volume: 116
  start-page: 4265
  year: 2019
  ident: 52211_CR43
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1807028115
– volume: 225
  start-page: 2411
  year: 2020
  ident: 52211_CR61
  publication-title: N. Phytol.
  doi: 10.1111/nph.16329
– volume: 150
  start-page: 243
  year: 1994
  ident: 52211_CR14
  publication-title: Int. Rev. Cytol.
  doi: 10.1016/S0074-7696(08)61544-2
– volume: 1
  start-page: 1
  year: 2022
  ident: 52211_CR34
  publication-title: PNAS Nexus
  doi: 10.1093/pnasnexus/pgac156
– volume: 8
  start-page: e61675
  year: 2013
  ident: 52211_CR45
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0061675
– volume: 7
  start-page: 2812
  year: 2005
  ident: 52211_CR28
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b505945c
– volume: 43
  start-page: 730
  year: 2007
  ident: 52211_CR26
  publication-title: J. Phycol.
  doi: 10.1111/j.1529-8817.2007.00361.x
– volume: 16
  start-page: 17
  year: 2006
  ident: 52211_CR3
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200500616
– volume: 100
  start-page: 267
  year: 1979
  ident: 52211_CR30
  publication-title: Protoplasma
  doi: 10.1007/BF01279316
– volume: 250
  start-page: 1147
  year: 2013
  ident: 52211_CR31
  publication-title: Protoplasma
  doi: 10.1007/s00709-013-0495-x
– volume: 295
  start-page: 2430
  year: 2002
  ident: 52211_CR15
  publication-title: Science
  doi: 10.1126/science.1070026
– volume: 39
  start-page: 395
  year: 2016
  ident: 52211_CR39
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2016.10.022
– ident: 52211_CR7
  doi: 10.1111/tpj.15765
– volume: 119
  start-page: 0
  year: 2022
  ident: 52211_CR6
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2211549119
– ident: 52211_CR32
  doi: 10.1126/sciadv.aaz7554
– volume: 304
  start-page: 519
  year: 1984
  ident: 52211_CR5
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci.
  doi: 10.1098/rstb.1984.0043
– volume: 21
  start-page: 7
  year: 2020
  ident: 52211_CR52
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-019-0180-9
– volume: 204
  start-page: 64
  year: 2018
  ident: 52211_CR16
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2018.07.005
– ident: 52211_CR38
  doi: 10.7554/eLife.72817
– volume: 19
  start-page: 117
  year: 1973
  ident: 52211_CR62
  publication-title: Mar. Biol.
  doi: 10.1007/BF00353582
– volume: 52
  start-page: 1067
  year: 1965
  ident: 52211_CR9
  publication-title: Am. J. Bot.
  doi: 10.1002/j.1537-2197.1965.tb07286.x
– volume: 108
  start-page: 3175
  year: 2011
  ident: 52211_CR46
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1012842108
– ident: 52211_CR25
  doi: 10.1111/jpy.13362
– volume: 119
  year: 2022
  ident: 52211_CR17
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2201014119
– volume: 152
  start-page: 277
  year: 2019
  ident: 52211_CR59
  publication-title: Methods Cell Biol.
  doi: 10.1016/bs.mcb.2019.05.001
SSID ssj0000391844
Score 2.4670064
Snippet Silica cell-wall formation in diatoms is a showcase for the ability of organisms to control inorganic mineralization. The process of silicification by these...
Abstract Silica cell-wall formation in diatoms is a showcase for the ability of organisms to control inorganic mineralization. The process of silicification by...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 7888
SubjectTerms 101/28
147/143
631/535/1258/1260
631/57/2270
639/301/54/991
704/829/826
Algae
Biological effects
Biological properties
Cell Membrane - metabolism
Cell Wall - metabolism
Cell Wall - ultrastructure
Cell walls
Cryoelectron Microscopy
Curvature
Diatoms - growth & development
Diatoms - metabolism
Diatoms - ultrastructure
Electron Microscope Tomography
Humanities and Social Sciences
Intracellular
Marine microorganisms
Membranes
Mineralization
Morphogenesis
multidisciplinary
Plasma membranes
Science
Science (multidisciplinary)
Self-assembly
Silica
Silicon dioxide
Silicon Dioxide - chemistry
Silicon Dioxide - metabolism
Tethering
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQpUpcEC1foQUZiRtEdWPHiY-AqAoSnKjUm7Gdcclhk6q7Qe2_Z8bOLl0-xAVpT0mUncyLPe-NnRnGXrbQ1TEIU4ZYx1K5aEoncTwGSjhABAyJlND_9FmfnqmP5_X5rVZftCcslwfOjjsKHcqo1h07DRjs2s5rQM4RdFSmAZf61VbCiFtiKs3B0qB0UfNXMkK2R0uV5gQMSai9UPWU11uRKBXs_xPL_H2z5C8rpikQndxn92YGyd9ky_fYHRj22W7uKXnzgH39QDegfDxtMOWLER05XtCM1i_5GDl15hgXfNlTto7jsYup76Dj_oanuMa_o3rOaTzeD3wBC9TTA_AwUfZ2uoKH7Ozk_Zd3p-XcRqEMylSrsopeQkSpgdwpUnk14VXdKC-0CS3-oG2qCI0HLZ0PSIBqwL91IGkND5AePWI7wzjAE8YbZaKr6bbBKCO0a70DJ6TsNNLMRhfs1dql9jJXy7BplVu2NgNgEQCbALDXBXtLXt9cSZWu0wHE387423_hX7DDNWZ2Hn5LK5OOlcieCvZicxoHDnkffTZO-RrVUH23gj3OEG8sQdJIPA-fp90Cf8vU7TND_y0V5z5Ga_H50K7X6_fkp11_98XT_-GLA3a3ohecOlyIQ7azuprgGXKmlX-ehscPFyYUMA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9QwDLfGTUi8IL4pDBQk3qBa75K26QNCDG0aSJwQYtLeQpo6Rx-uHXdXtP332Gl70_El9amNWsd27J-d1AZ4qbFKvUuK2PnUx8r6IraS1qPjhAN6JJfICf1P8-z0TH08T8_3YD7-C8PHKkebGAx11TrOkR_KEJpIcohvL37E3DWKd1fHFhp2aK1QvQklxm7APpnkNJnA_tHx_POXbdaF66FrpYa_ZxKpD9cq2ApyVRSTUTQUX-54qFDI_2_o889DlL_tpAYHdXIHbg_IUrzrVeEu7GFzD272vSav7sO3D_wCztPzwVOxbInB7YItXb0WrRfcsaNdinXNWTxB9xZdXWElyisR_J34SVF1n94TdSOWuKQ4u0HhOs7qdit8AGcnx1_fn8ZDe4XYqWK2iWe-lOgpBCFM5bnsWlKqNFdlkhVO04U6n3nMS8ykLR0BoxTpsxYl7-0hwaaHMGnaBh-DyFXhbcqvdYUqkszq0qJNpKwygp95FsGrkaXmoq-iYcLut9SmF4AhAZggAHMZwRFzfTuSK2CHG-1qYYYFZVxF4bW2U5shgSBdlRkSFnWZV0WOdiojOBhlZoZluTbXShTBi-1jWlDMfeJZ2_VjVM513yJ41It4SwmBScZ_NB-9I_wdUnefNPX3ULR7StTS_Iiu16OeXNP1b148-f80nsKtGasu97RIDmCyWXX4jFDSpnw-qP4v-b8R7Q
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9QwDLZWi5C4IN4UFhQkblDRadI0PcKI1YIEJ1baW0hSZ-hhWrQzg9h_j522gwaWA1JPaZo6dhx_dhIH4KXBtoqhaPIQq5grF5vcSdLHwAEHjEgmkQP6nz7rs3P18aK6OIJyPguTNu2nlJZpmp53h73ZqKTSZFHIdSKnJSfceMPUsuJRvdTLfVyFM54bpabzMYU013x6YINSqv7r8OXf2yT_WCtNJuj0DtyesKN4O1J7F46wvwc3x9skr-7D1w_cAEfieWupWA_EwmHFc1m3EUMUfCfHsBabjuN0gspWu67FVvgrkSya-EF-8xjAE10v1rgmT7pHEXYctyVePYDz0_dflmf5dIFCHlRTbvMyeomRnAxCTZETqxVeVbXyhW6CoQdNXUasPWrpfCDoUyH91qHk1TskYPQQjvuhx8cgatVEV3GzoVFNoZ3xDl0hZasJYNY6g1czS-33MU-GTevb0thRAJYEYJMA7M8M3jHX9zU5x3UqGC5XdpK5DS050MYtnEaCOab1GgltBh1VU6NbyAxOZpnZSfE2ViYPVhJuyuDF_jWpDHOfeDbsxjqq5sxuGTwaRbynhOAiIzzqjzkQ_gGph2_67ltKy70gaql_RNfreZz8puvfvHjyf9Wfwq2ShzLfYlGcwPH2cofPCBdt_fOkCL8ACvIJzA
  priority: 102
  providerName: Springer Nature
Title Intracellular morphogenesis of diatom silica is guided by local variations in membrane curvature
URI https://link.springer.com/article/10.1038/s41467-024-52211-x
https://www.ncbi.nlm.nih.gov/pubmed/39251596
https://www.proquest.com/docview/3102223710
https://www.proquest.com/docview/3102470859
https://pubmed.ncbi.nlm.nih.gov/PMC11385223
https://doaj.org/article/cd7138a1a6e7438db6e193c6f497ea13
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9NAEB_OO5R7Eb-NnmUF3zSadjeb5EGkV66eBQ9RC32Lm2S2Fmxy1w-5_vfObJJKtb4IJYXN12Q-Mr-Z3cwAvIixCG0eJH5uQ-srYxPfSLLHnBMOaJFcIif0P17o87EaTcLJAbTtjhoGLveGdtxParz48fr6avOODP5t_cl4_GapnLmTt6GwigIanzDlkZsv4qV8Ddx3b2aZUECjmm9n9p96DLcIMrCX1zuuylX03wdD_15N-ceUqvNUwztwu4GYol_rxF04wPIe3KybTm7uw7cPfAFO2PMKVDGviNPVlF95s6WorODWHdVcLGeczhM0Nl3PCixEthHO8YmfFF7XeT4xK8Uc5xRwlyjyNad31wt8AOPh2dfBud_0WfBzlfRWfs9mEi3FIgSuLNdfCzIVRioLdJLH9MM46lmMMtTSZDkhpBDptgYlT_Ih4aeHcFhWJT4GEanEmpAvmycqCbSJM4MmkLLQhEMj7cHLlqXpZV1OI3XT4DJOa1mkJIvUySK99uCUub49kkthu4FqMU0by0rzguLs2HSNRkJDcZFpJFCaa6uSCE1XenDSyixt1SuVLtCVBK88eL7dTZbF3CeeVev6GBVxATgPHtUi3lLSqogH8Y7wd0jd3VPOvrvq3V2ilp6P6HrV6slvuv7Niyf_f6encNxjDefGF8EJHK4Wa3xGUGqVdeBGNIloGw_fd-Co3x99GdH_6dnFp880OtCDjktSdJwd_QIXFCM3
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTghe0Phc2QAjwRNES2Pn62FCDDa1bKsQ2qS9Gcc5lzw0GW0D6z_H38adk3QqX2-T8pRY0fnOvvvdnX3H2MsE8tAaP_WMDa0ntU09LXA_Ggo4gAU0iRTQPx1Hw3P58SK82GA_u7swdKyy04lOUeeVoRj5nnCuiUCD-Pbym0ddoyi72rXQ0G1rhXzflRhrL3Ycw_IHunDz_dEHlPerIDg6PHs_9NouA56RabDwApsJsIjEEVpYqj7mZzKMZeZHqUnwgSQOLMQZREJnBvFBCDnkGgSluCCiwgdoAjYlBVB6bPPgcPzp8yrKQ_XXEynb2zq-SPbm0ukmNI3oA6L35V2tWUTXOOBvaPfPQ5u_ZW6dQTzaYndbJMvfNUvvHtuA8j671fS2XD5gX0b0A8oL0EFXPq1QoNWENGsx55Xl1CGkmvJ5QVFDju8mdYEz5tmSO_vKv6MX34QTeVHyKUzRry-Bm5qiyPUMHrLzG2H0I9YrqxK2GY9lanVIvzWpTP1IJ5kG7QuRRwh346jPXncsVZdN1Q7lsu0iUY0AFApAOQGoqz47IK6vRlLFbfeimk1Uu4GVydGdT_RAR4CgK8mzCBD7msjKNAY9EH2228lMtWpgrq4XbZ-9WH3GDUzcR55VdTNGxlRnrs8eNyJeUYLglfAmzidZE_4aqetfyuKrKxI-QGpxfkjXm26dXNP1b148-f80nrPbw7PTE3UyGh_vsDsBLWPqp-Hvst5iVsNTRGiL7Fm7DTiutRveeb8Ak7lOsg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqViAuiDeBAkaCE0SbjZ3XoUKUdtWlsKoQlXozjjNe9rBJ2Wyg-xf5Vcw4yVbL61YplzwUjWc8M9-M7RnGXqRQRNYEmW9sZH2pbeZrgfpoKOEAFtAlUkL_4yQ-OpXvz6KzLfazPwtD2yp7m-gMdVEZypEPhAtNBDrEge22RZwcjN6cf_OpgxSttPbtNHTXZqHYc-XGukMex7D6geFcvTc-QNm_DMPR4ed3R37XccA3MguXfmhzARZROcIMS5XIglxGicyDODMpXpAmoYUkh1jo3CBWiKCAQoOg5S6IqQgCuoMdvMswENzZP5ycfFpnfKgWeypld3InEOmgls5OoZvEeBAjMf9iwzu6JgJ_Q75_buD8bRXXOcfRLXazQ7X8bTsNb7MtKO-wa22fy9Vd9mVMP6A1Atr0yucVCreakpWd1byynLqFVHNezyiDyPHZtJnhiHm-4s7X8u8Y0bepRT4r-RzmGOOXwE1DGeVmAffY6ZUw-j7bLqsSHjKeyMzqiH5rMpkFsU5zDToQoogR-iaxx171LFXnbQUP5VbeRapaASgUgHICUBce2yeur7-k6tvuQbWYqk6ZlSkwtE_1UMeAACwt8hgQB5vYyiwBPRQe2-1lpjqTUKvLCeyx5-vXqMzEfeRZ1bTfyIRqznnsQSviNSUIZAl74njSDeFvkLr5ppx9dQXDh0gtjg_pet3Pk0u6_s2LR_8fxjN2HTVQfRhPjh-zGyHNYmqtEeyy7eWigScI1pb5004LOE61K1a8X1h4UvY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intracellular+morphogenesis+of+diatom+silica+is+guided+by+local+variations+in+membrane+curvature&rft.jtitle=Nature+communications&rft.au=Aram%2C+Lior&rft.au=de+Haan%2C+Diede&rft.au=Varsano%2C+Neta&rft.au=Gilchrist%2C+James+B.&rft.date=2024-09-10&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=15&rft_id=info:doi/10.1038%2Fs41467-024-52211-x&rft_id=info%3Apmid%2F39251596&rft.externalDocID=PMC11385223
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon