Multimodal assessment of brain stiffness variation in healthy subjects using magnetic resonance elastography and ultrasound time-harmonic elastography
Magnetic resonance elastography (MRE) is a noninvasive brain stiffness mapping method. Ultrasound-based transtemporal time-harmonic elastography (THE) is emerging as a cost-effective, fast alternative that has potential applications for bedside monitoring of intracranial pressure. We aim to investig...
Saved in:
Published in | Scientific reports Vol. 14; no. 1; pp. 28580 - 11 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
19.11.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/s41598-024-79991-y |
Cover
Abstract | Magnetic resonance elastography (MRE) is a noninvasive brain stiffness mapping method. Ultrasound-based transtemporal time-harmonic elastography (THE) is emerging as a cost-effective, fast alternative that has potential applications for bedside monitoring of intracranial pressure. We aim to investigate the accuracy of THE in comparison to MRE performed in the brain. Ten healthy volunteers (25–40 years old) underwent multifrequency MRE (20–35 Hz) and THE (27–56 Hz). Fiducial-marker-based optical tracking of the ultrasound field of view was used to align THE to 3D MRE. THE- and MRE-derived shear wave speed (SWS) was determined as a measure of brain stiffness and averaged within regions of various depths for cross-modality correlation analysis. MRE-measured SWS ranged from 1.0 to 1.3 m/s and was negatively correlated with age (R
2
= 0.44,
p
= 0.035). After registration of both modalities, SWS values were linearly correlated (MRE: 1.14 ± 0.08 m/s, THE: 1.13 ± 0.10 m/s; R
2
= 0.62,
p
= 0.007). Best agreement between modalities was achieved at depths of 40–60 mm, suggesting this range provides a viable trade-off between ultrasound attenuation and near-field bias. Similar brain regions can be consistently measured with both elastography modalities, despite the regional and individual variations of stiffness. Transtemporal THE yields stiffness values in a range similar to those obtained with more expensive MRE. |
---|---|
AbstractList | Magnetic resonance elastography (MRE) is a noninvasive brain stiffness mapping method. Ultrasound-based transtemporal time-harmonic elastography (THE) is emerging as a cost-effective, fast alternative that has potential applications for bedside monitoring of intracranial pressure. We aim to investigate the accuracy of THE in comparison to MRE performed in the brain. Ten healthy volunteers (25-40 years old) underwent multifrequency MRE (20-35 Hz) and THE (27-56 Hz). Fiducial-marker-based optical tracking of the ultrasound field of view was used to align THE to 3D MRE. THE- and MRE-derived shear wave speed (SWS) was determined as a measure of brain stiffness and averaged within regions of various depths for cross-modality correlation analysis. MRE-measured SWS ranged from 1.0 to 1.3 m/s and was negatively correlated with age (R
= 0.44, p = 0.035). After registration of both modalities, SWS values were linearly correlated (MRE: 1.14 ± 0.08 m/s, THE: 1.13 ± 0.10 m/s; R
= 0.62, p = 0.007). Best agreement between modalities was achieved at depths of 40-60 mm, suggesting this range provides a viable trade-off between ultrasound attenuation and near-field bias. Similar brain regions can be consistently measured with both elastography modalities, despite the regional and individual variations of stiffness. Transtemporal THE yields stiffness values in a range similar to those obtained with more expensive MRE. Magnetic resonance elastography (MRE) is a noninvasive brain stiffness mapping method. Ultrasound-based transtemporal time-harmonic elastography (THE) is emerging as a cost-effective, fast alternative that has potential applications for bedside monitoring of intracranial pressure. We aim to investigate the accuracy of THE in comparison to MRE performed in the brain. Ten healthy volunteers (25–40 years old) underwent multifrequency MRE (20–35 Hz) and THE (27–56 Hz). Fiducial-marker-based optical tracking of the ultrasound field of view was used to align THE to 3D MRE. THE- and MRE-derived shear wave speed (SWS) was determined as a measure of brain stiffness and averaged within regions of various depths for cross-modality correlation analysis. MRE-measured SWS ranged from 1.0 to 1.3 m/s and was negatively correlated with age (R2 = 0.44, p = 0.035). After registration of both modalities, SWS values were linearly correlated (MRE: 1.14 ± 0.08 m/s, THE: 1.13 ± 0.10 m/s; R2 = 0.62, p = 0.007). Best agreement between modalities was achieved at depths of 40–60 mm, suggesting this range provides a viable trade-off between ultrasound attenuation and near-field bias. Similar brain regions can be consistently measured with both elastography modalities, despite the regional and individual variations of stiffness. Transtemporal THE yields stiffness values in a range similar to those obtained with more expensive MRE. Magnetic resonance elastography (MRE) is a noninvasive brain stiffness mapping method. Ultrasound-based transtemporal time-harmonic elastography (THE) is emerging as a cost-effective, fast alternative that has potential applications for bedside monitoring of intracranial pressure. We aim to investigate the accuracy of THE in comparison to MRE performed in the brain. Ten healthy volunteers (25–40 years old) underwent multifrequency MRE (20–35 Hz) and THE (27–56 Hz). Fiducial-marker-based optical tracking of the ultrasound field of view was used to align THE to 3D MRE. THE- and MRE-derived shear wave speed (SWS) was determined as a measure of brain stiffness and averaged within regions of various depths for cross-modality correlation analysis. MRE-measured SWS ranged from 1.0 to 1.3 m/s and was negatively correlated with age (R 2 = 0.44, p = 0.035). After registration of both modalities, SWS values were linearly correlated (MRE: 1.14 ± 0.08 m/s, THE: 1.13 ± 0.10 m/s; R 2 = 0.62, p = 0.007). Best agreement between modalities was achieved at depths of 40–60 mm, suggesting this range provides a viable trade-off between ultrasound attenuation and near-field bias. Similar brain regions can be consistently measured with both elastography modalities, despite the regional and individual variations of stiffness. Transtemporal THE yields stiffness values in a range similar to those obtained with more expensive MRE. Abstract Magnetic resonance elastography (MRE) is a noninvasive brain stiffness mapping method. Ultrasound-based transtemporal time-harmonic elastography (THE) is emerging as a cost-effective, fast alternative that has potential applications for bedside monitoring of intracranial pressure. We aim to investigate the accuracy of THE in comparison to MRE performed in the brain. Ten healthy volunteers (25–40 years old) underwent multifrequency MRE (20–35 Hz) and THE (27–56 Hz). Fiducial-marker-based optical tracking of the ultrasound field of view was used to align THE to 3D MRE. THE- and MRE-derived shear wave speed (SWS) was determined as a measure of brain stiffness and averaged within regions of various depths for cross-modality correlation analysis. MRE-measured SWS ranged from 1.0 to 1.3 m/s and was negatively correlated with age (R2 = 0.44, p = 0.035). After registration of both modalities, SWS values were linearly correlated (MRE: 1.14 ± 0.08 m/s, THE: 1.13 ± 0.10 m/s; R2 = 0.62, p = 0.007). Best agreement between modalities was achieved at depths of 40–60 mm, suggesting this range provides a viable trade-off between ultrasound attenuation and near-field bias. Similar brain regions can be consistently measured with both elastography modalities, despite the regional and individual variations of stiffness. Transtemporal THE yields stiffness values in a range similar to those obtained with more expensive MRE. Magnetic resonance elastography (MRE) is a noninvasive brain stiffness mapping method. Ultrasound-based transtemporal time-harmonic elastography (THE) is emerging as a cost-effective, fast alternative that has potential applications for bedside monitoring of intracranial pressure. We aim to investigate the accuracy of THE in comparison to MRE performed in the brain. Ten healthy volunteers (25-40 years old) underwent multifrequency MRE (20-35 Hz) and THE (27-56 Hz). Fiducial-marker-based optical tracking of the ultrasound field of view was used to align THE to 3D MRE. THE- and MRE-derived shear wave speed (SWS) was determined as a measure of brain stiffness and averaged within regions of various depths for cross-modality correlation analysis. MRE-measured SWS ranged from 1.0 to 1.3 m/s and was negatively correlated with age (R2 = 0.44, p = 0.035). After registration of both modalities, SWS values were linearly correlated (MRE: 1.14 ± 0.08 m/s, THE: 1.13 ± 0.10 m/s; R2 = 0.62, p = 0.007). Best agreement between modalities was achieved at depths of 40-60 mm, suggesting this range provides a viable trade-off between ultrasound attenuation and near-field bias. Similar brain regions can be consistently measured with both elastography modalities, despite the regional and individual variations of stiffness. Transtemporal THE yields stiffness values in a range similar to those obtained with more expensive MRE.Magnetic resonance elastography (MRE) is a noninvasive brain stiffness mapping method. Ultrasound-based transtemporal time-harmonic elastography (THE) is emerging as a cost-effective, fast alternative that has potential applications for bedside monitoring of intracranial pressure. We aim to investigate the accuracy of THE in comparison to MRE performed in the brain. Ten healthy volunteers (25-40 years old) underwent multifrequency MRE (20-35 Hz) and THE (27-56 Hz). Fiducial-marker-based optical tracking of the ultrasound field of view was used to align THE to 3D MRE. THE- and MRE-derived shear wave speed (SWS) was determined as a measure of brain stiffness and averaged within regions of various depths for cross-modality correlation analysis. MRE-measured SWS ranged from 1.0 to 1.3 m/s and was negatively correlated with age (R2 = 0.44, p = 0.035). After registration of both modalities, SWS values were linearly correlated (MRE: 1.14 ± 0.08 m/s, THE: 1.13 ± 0.10 m/s; R2 = 0.62, p = 0.007). Best agreement between modalities was achieved at depths of 40-60 mm, suggesting this range provides a viable trade-off between ultrasound attenuation and near-field bias. Similar brain regions can be consistently measured with both elastography modalities, despite the regional and individual variations of stiffness. Transtemporal THE yields stiffness values in a range similar to those obtained with more expensive MRE. |
ArticleNumber | 28580 |
Author | Tzschätzsch, Heiko Klemmer Chandía, Stefan Schattenfroh, Jakob Brinker, Spencer T. Sack, Ingolf Meyer, Tom |
Author_xml | – sequence: 1 givenname: Stefan surname: Klemmer Chandía fullname: Klemmer Chandía, Stefan organization: Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health – sequence: 2 givenname: Jakob surname: Schattenfroh fullname: Schattenfroh, Jakob organization: Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health – sequence: 3 givenname: Spencer T. surname: Brinker fullname: Brinker, Spencer T. organization: Department of Neurology, Yale School of Medicine – sequence: 4 givenname: Heiko surname: Tzschätzsch fullname: Tzschätzsch, Heiko organization: Department of Medical Informatics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health – sequence: 5 givenname: Ingolf surname: Sack fullname: Sack, Ingolf organization: Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health – sequence: 6 givenname: Tom surname: Meyer fullname: Meyer, Tom email: tom.meyer@charite.de organization: Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39562835$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1v1DAQhiNUREvpH-CALHHhEvBHnNgnhCo-KhVxgbM1sSdZrxK72Eml_SP9vZjdUrYc8MXW-Jl3xuP3eXUSYsCqesnoW0aFepcbJrWqKW_qTmvN6t2T6ozTRtZccH5ydD6tLnLe0rIk1w3Tz6pToWXLlZBn1d3XdVr8HB1MBHLGnGcMC4kD6RP4QPLihyGUMLmF5GHxMZAS3iBMy2ZH8tpv0S6ZrNmHkcwwBly8JQlzDBAsEpwgL3FMcFNwCI6UeglyXMuxFMZ6A2mOoeQcky-qpwNMGS_u9_Pqx6eP3y-_1NffPl9dfriubaP5UjPJhWJ9GYRmXd9jy5iltBeO2c6BdCg5NqgGh61kjXXYUaWYkp2SFqmg4ry6Oui6CFtzk_wMaWcieLMPxDQaSOVBE5puQEk7zSVI3gy8Vc4JdOiaQdABmCpa7w9aN2s_o7NljgmmR6KPb4LfmDHeGsZk12rNi8Kbe4UUf66YFzP7bHGaIGBcsxFMUCUYVbqgr_9Bt3FNocxqTxVB3rJCvTpu6aGXP_9fAH4AbIo5JxweEEbNb5-Zg89M8ZnZ-8zsSpI4JOUChxHT39r_yfoF0cjaFg |
Cites_doi | 10.1371/journal.pone.0081668 10.1001/jama.2013.281053 10.1016/j.actbio.2020.12.027 10.1093/cercor/bhaa388 10.1088/1361-6560/aba5ea 10.1016/j.neuroimage.2015.02.016 10.1016/j.ultrasmedbio.2016.07.004 10.1016/j.neuroimage.2009.02.040 10.3389/fbioe.2022.1056131 10.3389/fbioe.2022.886363 10.1038/s42254-022-00543-2 10.1097/rli.0000000000000638 10.1002/9783527696017 10.1126/sciadv.abd0772 10.1016/j.media.2016.06.011 10.1177/0271678x231186571 10.1002/mrm.26006 10.1016/j.mric.2021.06.011 10.1016/j.zemedi.2024.03.001 10.1002/mrm.29320 10.1016/j.neuroimage.2022.119590 10.3389/fphys.2020.616984 10.1016/j.neuroimage.2021.117889 10.1016/1053-8119(92)90006-9 10.3389/fbioe.2023.1140734 10.1016/j.ultrasmedbio.2018.01.007 10.1038/s41598-018-36191-9 10.1109/tbme.2014.2322864 10.1002/mrm.27757 10.1097/rli.0000000000000862 10.1016/j.nicl.2015.12.007 10.1148/radiol.2019182574 10.1017/CBO9780511750885.004 10.1371/journal.pone.0121945 10.1111/jgh.14629 10.1088/1361-6560/abca00 10.1016/j.media.2016.01.001 10.1016/j.neuroimage.2017.10.008 10.1007/s00330-020-07054-7 10.1097/rli.0000000000000817 10.1088/0031-9155/61/24/r401 10.1109/T-SU.1985.31615 10.1109/TUFFC.2024.3366540 10.1002/jmri.26881 10.1002/nbm.1189 10.1001/jamaneurol.2017.3129 10.1038/s41598-022-22638-7 10.1097/rli.0000000000000590 10.1016/j.mri.2012.05.001 10.1371/journal.pone.0023451 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 2024 |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 2024 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-024-79991-y |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection (subscription) ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Proquest Medical Database Science Database (subscription) Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Publicly Available Content Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_7fe507925a524f268dd3eded4f30fa18 PMC11576992 39562835 10_1038_s41598_024_79991_y |
Genre | Journal Article |
GrantInformation_xml | – fundername: Charité - Universitätsmedizin Berlin (3093) |
GroupedDBID | 0R~ 4.4 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD AASML ABDBF ABUWG ACGFS ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M1P M2P M48 M7P M~E NAO OK1 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7XB 88A 8FK AARCD K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c492t-152381b598917bbe611c00b3d1c7da5de52e4e8fde6514cde7088185785ce0303 |
IEDL.DBID | AAJSJ |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:30:45 EDT 2025 Thu Aug 21 18:32:59 EDT 2025 Fri Sep 05 14:53:57 EDT 2025 Wed Aug 13 10:59:00 EDT 2025 Mon Jul 21 06:05:30 EDT 2025 Tue Jul 01 03:23:38 EDT 2025 Mon Jul 21 06:10:15 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Human brain Magnetic resonance elastography Optical tracking Fiducial markers Transtemporal ultrasound time-harmonic elastography |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c492t-152381b598917bbe611c00b3d1c7da5de52e4e8fde6514cde7088185785ce0303 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.nature.com/articles/s41598-024-79991-y |
PMID | 39562835 |
PQID | 3130576261 |
PQPubID | 2041939 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7fe507925a524f268dd3eded4f30fa18 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11576992 proquest_miscellaneous_3130831089 proquest_journals_3130576261 pubmed_primary_39562835 crossref_primary_10_1038_s41598_024_79991_y springer_journals_10_1038_s41598_024_79991_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-11-19 |
PublicationDateYYYYMMDD | 2024-11-19 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | McIlvainGMapping brain mechanical property maturation from childhood to adulthoodNeuroImage202226311959010.1016/j.neuroimage.2022.11959036030061 MurphyMCRegional brain stiffness changes across the alzheimer’s disease spectrumNeuroimage Clin.20161028329010.1016/j.nicl.2015.12.00726900568 Marticorena GarciaSRFull-field-of-view time-harmonic elastography of the native kidneyUltrasound Med. Biol.20184494995410.1016/j.ultrasmedbio.2018.01.00729478787 TzschätzschHIn vivo time-harmonic ultrasound elastography of the human brain detects acute cerebral stiffness changes induced by intracranial pressure variationsSci. Rep.20188178882018NatSR...817888T10.1038/s41598-018-36191-9305593676297160 MeyerTValsalva maneuver decreases liver and spleen stiffness measured by time-harmonic ultrasound elastographyFront. Bioeng. Biotechnol.20221088636310.3389/fbioe.2022.886363357116449195299 World medical association declaration of helsinki: Ethical principles for medical research involving human subjects. Report No. 0098-7484, 2191–2194. World Medical Association, (2013). HuangCThree-dimensional shear wave elastography on conventional ultrasound scanners with external vibrationPhys. Med. Biol.20206521500910.1088/1361-6560/aba5ea326638167880611 BurkhardtCUltrasound time-harmonic elastography of the pancreas: reference values and clinical feasibilityInvest. Radiol.20205527027610.1097/rli.000000000000063831985600 AraniAMeasuring the effects of aging and sex on regional brain stiffness with mr elastography in healthy older adultsNeuroImage2015111596410.1016/j.neuroimage.2015.02.01625698157 HerthumHCerebral tomoelastography based on multifrequency mr elastography in two and three dimensionsFront. Bioeng. Biotechnol.202210105613110.3389/fbioe.2022.1056131365325739755504 MorrASLiquid-liver phantom: mimicking the viscoelastic dispersion of human liver for ultrasound- and mri-based elastographyInvest. Radiol.20225750250910.1097/rli.000000000000086235195086 DittmannFIn vivo wideband multifrequency mr elastography of the human brain and liverMagn. Reson. Med.2016761116112610.1002/mrm.2600626485494 HerthumHSuperviscous properties of the in vivo brain at large scalesActa Biomater.202112139340410.1016/j.actbio.2020.12.02733326885 KrishnaVSammartinoFRezaiAA review of the current therapies, challenges, and future directions of transcranial focused ultrasound technology: advances in diagnosis and treatmentJAMA Neurol.20187524625410.1001/jamaneurol.2017.312929228074 Kreft, B. Development and validation of in vivo ultrasound time-harmonic elastography of the human brain towards clinical application, (2023). Hirsch, S., Braun, J. & Sack, I. Magnetic resonance elastography - physical background and medical applications. (2017). TzschätzschHTwo-dimensional time-harmonic elastography of the human liver and spleenUltrasound Med. Biol.2016422562257110.1016/j.ultrasmedbio.2016.07.00427567061 SchaafsLAUltrasound time-harmonic elastography of the aorta: Effect of age and hypertension on aortic stiffnessInvest. Radiol.20195467568010.1097/rli.000000000000059031299035 Friston, K. J. In Functional Neuroimaging: Technical Foundations79–93 (Academic, 1994). Martin, K. & Ramnarine, K. in Diagnostic ultrasound: Physics and equipment (eds Peter R. Hoskins, Kevin Martin, & Abigail Thrush) 4–22 (Cambridge University Press, 2010). MeyerTComparison of inversion methods in mr elastography: an open-access pipeline for processing multifrequency shear-wave data and demonstration in a phantom, human kidneys, and brainMagn. Reson. Med.2022881840185010.1002/mrm.2932035691940 SackIThe impact of aging and gender on brain viscoelasticityNeuroImage20094665265710.1016/j.neuroimage.2009.02.04019281851 UngiTLassoAFichtingerGOpen-source platforms for navigated image-guided interventionsMed. Image. Anal.20163318118610.1016/j.media.2016.06.01127344106 LvHMr Elastography frequency-dependent and independent parameters demonstrate accelerated decrease of brain stiffness in elder subjectsEur. Radiol.2020306614662310.1007/s00330-020-07054-7326835528121201 Meyer, T. et al. Stiffness pulsation of the human brain detected by non-invasive time-harmonic elastography. Front. Bioeng. Biotechnol.. 11. https://doi.org/10.3389/fbioe.2023.1140734 (2023). NanjappaMKolipakaAMagnetic resonance elastography of the brainMagn. Reson. Imaging Clin. N Am.20212961763010.1016/j.mric.2021.06.01134717849 ElgetiTThe effect of smoking on quantification of aortic stiffness by ultrasound time-harmonic elastographySci. Rep.202212177592022NatSR..1217759E10.1038/s41598-022-22638-7362730209588008 KreftBNoninvasive detection of intracranial hypertension by novel ultrasound time-harmonic elastographyInvest. Radiol.202257778410.1097/rli.000000000000081734380993 SackIStreitbergerKJKreftingDPaulFBraunJThe influence of physiological aging and atrophy on brain viscoelastic properties in humansPLoS One20116e234512011PLoSO...623451S10.1371/journal.pone.0023451219315993171401 Preiswerk, F., Brinker, S. T., McDannold, N. J. & Mariano, T. Y. Open-source neuronavigation for multimodal non-invasive brain stimulation using 3d slicer. arXiv: Med. Phys. (2019). GrossmannMUs time-harmonic elastography for the early detection of glomerulonephritisRadiology201929267668410.1148/radiol.201918257431287390 Herthum, H. et al. Cerebral tomoelastography based on multifrequency mr elastography in two and three dimensions. Front. Bioeng. Biotechnol.10. https://doi.org/10.3389/fbioe.2022.1056131 (2022). KreftBCerebral ultrasound time-harmonic elastography reveals softening of the human brain due to dehydrationFront. Physiol.20201161698410.3389/fphys.2020.61698433505319 HiscoxLVSchwarbHMcGarryMDJJohnsonCLAging brain mechanics: Progress and promise of magnetic resonance elastographyNeuroimage202123211788910.1016/j.neuroimage.2021.11788933617995 Ormachea, J. & Parker, K. J. Elastography imaging: the 30 year perspective. Phys. Med. Biol.65. https://doi.org/10.1088/1361-6560/abca00 (2020). HeuckeNNon-invasive structure-function assessment of the liver by 2d time-harmonic elastography and the dynamic liver maximum capacity (limax) testJ. Gastroenterol. Hepatol.2019341611161910.1111/jgh.1462930756433 TakamuraTInfluence of age on global and regional brain stiffness in young and middle-aged adultsJ. Magn. Reson. Imaging20205172773310.1002/jmri.2688131373136 DongZThree-dimensional shear wave elastography using acoustic radiation force and a 2-d row-column addressing (rca) arrayIEEE Trans. Ultrason. Ferroelectr. Freq. Control2024714484582024ITED...71..448Z10.1109/TUFFC.2024.336654038363671 DelgorioPLEffect of aging on the viscoelastic properties of hippocampal subfields assessed with high-resolution mr elastographyCereb. Cortex2021312799281110.1093/cercor/bhaa388334547458107787 KalraPRatermanBMoXKolipakaAMagnetic resonance elastography of brain: comparison between anisotropic and isotropic stiffness and its correlation to ageMagn. Reson. Med.20198267167910.1002/mrm.27757309573046510588 KasaiCNamekawaKKoyanoAOmotoRReal-time two-dimensional blood flow imaging using an autocorrelation techniqueIEEE Trans. Sonics Ultrason.19853245846410.1109/T-SU.1985.31615 Polaris vicra user guide. (Northern Digital Inc., Waterloo, Ontario, Canada, (2012). EvansACAnatomical mapping of functional activation in stereotactic coordinate spaceNeuroimage19921435310.1016/1053-8119(92)90006-99343556 MurphyMCHustonJEhmanRLMr Elastography of the brain and its application in neurological diseasesNeuroimage201918717618310.1016/j.neuroimage.2017.10.00828993232 FedorovA3d slicer as an image computing platform for the quantitative imaging networkMagn. Reson. Imaging2012301323134110.1016/j.mri.2012.05.001227706903466397 TzschätzschHTomoelastography by multifrequency wave number recovery from time-harmonic propagating shear wavesMed. Image. Anal.20163011010.1016/j.media.2016.01.00126845371 LassoAPlus: open-source toolkit for ultrasound-guided intervention systemsIEEE Trans. Biomed. Eng.2014612527253710.1109/tbme.2014.2322864248334124437531 HiscoxLVMagnetic resonance elastography (mre) of the human brain: technique, findings and clinical applicationsPhys. Med. Biol.201661R401r43710.1088/0031-9155/61/24/r40127845941 Chen, K. T. et al. Neuronavigation-guided focused ultrasound for transcranial blood-brain barrier opening and immunostimulation in brain tumors. Sci. Adv.7. https://doi.org/10.1126/sciadv.abd0772 (2021). DiedenhofenBMuschJCocorA comprehensive solution for the statistical comparison of correlationsPLOS ONE201510e012194510.1371/journal.pone.0121945258350014383486 MurphyMCMeasuring the characteristic topography of brain stiffness with magnetic resonance elastographyPLOS ONE20138e816682013PLoSO...881668M10.1371/journal.pone.0081668243125703847077 SackIBeierbachBHamhaberUKlattDBraunJNon-invasive measurement of brain viscoelasticity using magnetic resonance elastographyNMR Biomed.20082126527110.1002/nbm.118917614101 SackIMagnetic resonance elastography from fundamental soft-tissue mechanics to diagnostic imagingNat. Reviews Phys.2023525422023NatRP...5...25S10.1038/s42254-022-00543-2 YangYExplorative study using ultrasound time-harmonic elastography for stiffness-based quantification of skeletal muscle functionZ. Med. Phys.202410.1016/j.zemedi.2024.03.00138508947 SanjanaFVascular determinants of hippocampal viscoelastic properties in healthy adults across the lifespanJ. Cereb. Blood Flow. Metab.2023431931194110.1177/0271678x2311865713739547910676145 AS Morr (79991_CR12) 2022; 57 79991_CR36 MC Murphy (79991_CR3) 2019; 187 79991_CR39 B Kreft (79991_CR53) 2020; 11 M Grossmann (79991_CR15) 2019; 292 Y Yang (79991_CR18) 2024 H Lv (79991_CR46) 2020; 30 H Tzschätzsch (79991_CR35) 2016; 30 I Sack (79991_CR42) 2011; 6 79991_CR26 F Sanjana (79991_CR5) 2023; 43 79991_CR27 I Sack (79991_CR9) 2008; 21 79991_CR28 B Diedenhofen (79991_CR40) 2015; 10 M Nanjappa (79991_CR4) 2021; 29 B Kreft (79991_CR21) 2022; 57 MC Murphy (79991_CR24) 2013; 8 SR Marticorena Garcia (79991_CR16) 2018; 44 A Arani (79991_CR43) 2015; 111 T Ungi (79991_CR34) 2016; 33 PL Delgorio (79991_CR47) 2021; 31 C Huang (79991_CR54) 2020; 65 I Sack (79991_CR41) 2009; 46 79991_CR31 Z Dong (79991_CR55) 2024; 71 LV Hiscox (79991_CR48) 2021; 232 A Lasso (79991_CR32) 2014; 61 F Dittmann (79991_CR30) 2016; 76 LV Hiscox (79991_CR2) 2016; 61 T Meyer (79991_CR14) 2022; 10 N Heucke (79991_CR13) 2019; 34 T Elgeti (79991_CR19) 2022; 12 V Krishna (79991_CR23) 2018; 75 C Kasai (79991_CR37) 1985; 32 H Herthum (79991_CR25) 2022; 10 A Fedorov (79991_CR33) 2012; 30 H Tzschätzsch (79991_CR22) 2018; 8 C Burkhardt (79991_CR17) 2020; 55 MC Murphy (79991_CR7) 2016; 10 I Sack (79991_CR10) 2023; 5 T Meyer (79991_CR38) 2022; 88 AC Evans (79991_CR29) 1992; 1 79991_CR8 79991_CR6 H Herthum (79991_CR51) 2021; 121 79991_CR1 H Tzschätzsch (79991_CR11) 2016; 42 79991_CR50 G McIlvain (79991_CR49) 2022; 263 LA Schaafs (79991_CR20) 2019; 54 P Kalra (79991_CR44) 2019; 82 79991_CR52 T Takamura (79991_CR45) 2020; 51 |
References_xml | – reference: UngiTLassoAFichtingerGOpen-source platforms for navigated image-guided interventionsMed. Image. Anal.20163318118610.1016/j.media.2016.06.01127344106 – reference: MurphyMCRegional brain stiffness changes across the alzheimer’s disease spectrumNeuroimage Clin.20161028329010.1016/j.nicl.2015.12.00726900568 – reference: MorrASLiquid-liver phantom: mimicking the viscoelastic dispersion of human liver for ultrasound- and mri-based elastographyInvest. Radiol.20225750250910.1097/rli.000000000000086235195086 – reference: World medical association declaration of helsinki: Ethical principles for medical research involving human subjects. Report No. 0098-7484, 2191–2194. World Medical Association, (2013). – reference: KalraPRatermanBMoXKolipakaAMagnetic resonance elastography of brain: comparison between anisotropic and isotropic stiffness and its correlation to ageMagn. Reson. Med.20198267167910.1002/mrm.27757309573046510588 – reference: Marticorena GarciaSRFull-field-of-view time-harmonic elastography of the native kidneyUltrasound Med. Biol.20184494995410.1016/j.ultrasmedbio.2018.01.00729478787 – reference: TzschätzschHIn vivo time-harmonic ultrasound elastography of the human brain detects acute cerebral stiffness changes induced by intracranial pressure variationsSci. Rep.20188178882018NatSR...817888T10.1038/s41598-018-36191-9305593676297160 – reference: DongZThree-dimensional shear wave elastography using acoustic radiation force and a 2-d row-column addressing (rca) arrayIEEE Trans. Ultrason. Ferroelectr. Freq. Control2024714484582024ITED...71..448Z10.1109/TUFFC.2024.336654038363671 – reference: Ormachea, J. & Parker, K. J. Elastography imaging: the 30 year perspective. Phys. Med. Biol.65. https://doi.org/10.1088/1361-6560/abca00 (2020). – reference: LvHMr Elastography frequency-dependent and independent parameters demonstrate accelerated decrease of brain stiffness in elder subjectsEur. Radiol.2020306614662310.1007/s00330-020-07054-7326835528121201 – reference: McIlvainGMapping brain mechanical property maturation from childhood to adulthoodNeuroImage202226311959010.1016/j.neuroimage.2022.11959036030061 – reference: FedorovA3d slicer as an image computing platform for the quantitative imaging networkMagn. Reson. Imaging2012301323134110.1016/j.mri.2012.05.001227706903466397 – reference: HeuckeNNon-invasive structure-function assessment of the liver by 2d time-harmonic elastography and the dynamic liver maximum capacity (limax) testJ. Gastroenterol. Hepatol.2019341611161910.1111/jgh.1462930756433 – reference: HuangCThree-dimensional shear wave elastography on conventional ultrasound scanners with external vibrationPhys. Med. Biol.20206521500910.1088/1361-6560/aba5ea326638167880611 – reference: SanjanaFVascular determinants of hippocampal viscoelastic properties in healthy adults across the lifespanJ. Cereb. Blood Flow. Metab.2023431931194110.1177/0271678x2311865713739547910676145 – reference: Preiswerk, F., Brinker, S. T., McDannold, N. J. & Mariano, T. Y. Open-source neuronavigation for multimodal non-invasive brain stimulation using 3d slicer. arXiv: Med. Phys. (2019). – reference: HiscoxLVMagnetic resonance elastography (mre) of the human brain: technique, findings and clinical applicationsPhys. Med. Biol.201661R401r43710.1088/0031-9155/61/24/r40127845941 – reference: Meyer, T. et al. Stiffness pulsation of the human brain detected by non-invasive time-harmonic elastography. Front. Bioeng. Biotechnol.. 11. https://doi.org/10.3389/fbioe.2023.1140734 (2023). – reference: SackIStreitbergerKJKreftingDPaulFBraunJThe influence of physiological aging and atrophy on brain viscoelastic properties in humansPLoS One20116e234512011PLoSO...623451S10.1371/journal.pone.0023451219315993171401 – reference: Chen, K. T. et al. Neuronavigation-guided focused ultrasound for transcranial blood-brain barrier opening and immunostimulation in brain tumors. Sci. Adv.7. https://doi.org/10.1126/sciadv.abd0772 (2021). – reference: Martin, K. & Ramnarine, K. in Diagnostic ultrasound: Physics and equipment (eds Peter R. Hoskins, Kevin Martin, & Abigail Thrush) 4–22 (Cambridge University Press, 2010). – reference: BurkhardtCUltrasound time-harmonic elastography of the pancreas: reference values and clinical feasibilityInvest. Radiol.20205527027610.1097/rli.000000000000063831985600 – reference: HiscoxLVSchwarbHMcGarryMDJJohnsonCLAging brain mechanics: Progress and promise of magnetic resonance elastographyNeuroimage202123211788910.1016/j.neuroimage.2021.11788933617995 – reference: NanjappaMKolipakaAMagnetic resonance elastography of the brainMagn. Reson. Imaging Clin. N Am.20212961763010.1016/j.mric.2021.06.01134717849 – reference: KasaiCNamekawaKKoyanoAOmotoRReal-time two-dimensional blood flow imaging using an autocorrelation techniqueIEEE Trans. Sonics Ultrason.19853245846410.1109/T-SU.1985.31615 – reference: DelgorioPLEffect of aging on the viscoelastic properties of hippocampal subfields assessed with high-resolution mr elastographyCereb. Cortex2021312799281110.1093/cercor/bhaa388334547458107787 – reference: MurphyMCHustonJEhmanRLMr Elastography of the brain and its application in neurological diseasesNeuroimage201918717618310.1016/j.neuroimage.2017.10.00828993232 – reference: KreftBCerebral ultrasound time-harmonic elastography reveals softening of the human brain due to dehydrationFront. Physiol.20201161698410.3389/fphys.2020.61698433505319 – reference: SackIThe impact of aging and gender on brain viscoelasticityNeuroImage20094665265710.1016/j.neuroimage.2009.02.04019281851 – reference: ElgetiTThe effect of smoking on quantification of aortic stiffness by ultrasound time-harmonic elastographySci. Rep.202212177592022NatSR..1217759E10.1038/s41598-022-22638-7362730209588008 – reference: KreftBNoninvasive detection of intracranial hypertension by novel ultrasound time-harmonic elastographyInvest. Radiol.202257778410.1097/rli.000000000000081734380993 – reference: TzschätzschHTwo-dimensional time-harmonic elastography of the human liver and spleenUltrasound Med. Biol.2016422562257110.1016/j.ultrasmedbio.2016.07.00427567061 – reference: SackIMagnetic resonance elastography from fundamental soft-tissue mechanics to diagnostic imagingNat. Reviews Phys.2023525422023NatRP...5...25S10.1038/s42254-022-00543-2 – reference: Polaris vicra user guide. (Northern Digital Inc., Waterloo, Ontario, Canada, (2012). – reference: GrossmannMUs time-harmonic elastography for the early detection of glomerulonephritisRadiology201929267668410.1148/radiol.201918257431287390 – reference: SchaafsLAUltrasound time-harmonic elastography of the aorta: Effect of age and hypertension on aortic stiffnessInvest. Radiol.20195467568010.1097/rli.000000000000059031299035 – reference: KrishnaVSammartinoFRezaiAA review of the current therapies, challenges, and future directions of transcranial focused ultrasound technology: advances in diagnosis and treatmentJAMA Neurol.20187524625410.1001/jamaneurol.2017.312929228074 – reference: Kreft, B. Development and validation of in vivo ultrasound time-harmonic elastography of the human brain towards clinical application, (2023). – reference: DittmannFIn vivo wideband multifrequency mr elastography of the human brain and liverMagn. Reson. Med.2016761116112610.1002/mrm.2600626485494 – reference: HerthumHCerebral tomoelastography based on multifrequency mr elastography in two and three dimensionsFront. Bioeng. Biotechnol.202210105613110.3389/fbioe.2022.1056131365325739755504 – reference: AraniAMeasuring the effects of aging and sex on regional brain stiffness with mr elastography in healthy older adultsNeuroImage2015111596410.1016/j.neuroimage.2015.02.01625698157 – reference: HerthumHSuperviscous properties of the in vivo brain at large scalesActa Biomater.202112139340410.1016/j.actbio.2020.12.02733326885 – reference: TzschätzschHTomoelastography by multifrequency wave number recovery from time-harmonic propagating shear wavesMed. Image. Anal.20163011010.1016/j.media.2016.01.00126845371 – reference: LassoAPlus: open-source toolkit for ultrasound-guided intervention systemsIEEE Trans. Biomed. Eng.2014612527253710.1109/tbme.2014.2322864248334124437531 – reference: MeyerTComparison of inversion methods in mr elastography: an open-access pipeline for processing multifrequency shear-wave data and demonstration in a phantom, human kidneys, and brainMagn. Reson. Med.2022881840185010.1002/mrm.2932035691940 – reference: MurphyMCMeasuring the characteristic topography of brain stiffness with magnetic resonance elastographyPLOS ONE20138e816682013PLoSO...881668M10.1371/journal.pone.0081668243125703847077 – reference: DiedenhofenBMuschJCocorA comprehensive solution for the statistical comparison of correlationsPLOS ONE201510e012194510.1371/journal.pone.0121945258350014383486 – reference: TakamuraTInfluence of age on global and regional brain stiffness in young and middle-aged adultsJ. Magn. Reson. Imaging20205172773310.1002/jmri.2688131373136 – reference: YangYExplorative study using ultrasound time-harmonic elastography for stiffness-based quantification of skeletal muscle functionZ. Med. Phys.202410.1016/j.zemedi.2024.03.00138508947 – reference: Hirsch, S., Braun, J. & Sack, I. Magnetic resonance elastography - physical background and medical applications. (2017). – reference: EvansACAnatomical mapping of functional activation in stereotactic coordinate spaceNeuroimage19921435310.1016/1053-8119(92)90006-99343556 – reference: Herthum, H. et al. Cerebral tomoelastography based on multifrequency mr elastography in two and three dimensions. Front. Bioeng. Biotechnol.10. https://doi.org/10.3389/fbioe.2022.1056131 (2022). – reference: Friston, K. J. In Functional Neuroimaging: Technical Foundations79–93 (Academic, 1994). – reference: SackIBeierbachBHamhaberUKlattDBraunJNon-invasive measurement of brain viscoelasticity using magnetic resonance elastographyNMR Biomed.20082126527110.1002/nbm.118917614101 – reference: MeyerTValsalva maneuver decreases liver and spleen stiffness measured by time-harmonic ultrasound elastographyFront. Bioeng. Biotechnol.20221088636310.3389/fbioe.2022.886363357116449195299 – volume: 8 start-page: e81668 year: 2013 ident: 79991_CR24 publication-title: PLOS ONE doi: 10.1371/journal.pone.0081668 – ident: 79991_CR28 doi: 10.1001/jama.2013.281053 – volume: 121 start-page: 393 year: 2021 ident: 79991_CR51 publication-title: Acta Biomater. doi: 10.1016/j.actbio.2020.12.027 – volume: 31 start-page: 2799 year: 2021 ident: 79991_CR47 publication-title: Cereb. Cortex doi: 10.1093/cercor/bhaa388 – volume: 65 start-page: 215009 year: 2020 ident: 79991_CR54 publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/aba5ea – volume: 111 start-page: 59 year: 2015 ident: 79991_CR43 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.02.016 – volume: 42 start-page: 2562 year: 2016 ident: 79991_CR11 publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2016.07.004 – volume: 46 start-page: 652 year: 2009 ident: 79991_CR41 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.02.040 – ident: 79991_CR8 doi: 10.3389/fbioe.2022.1056131 – volume: 10 start-page: 886363 year: 2022 ident: 79991_CR14 publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2022.886363 – volume: 5 start-page: 25 year: 2023 ident: 79991_CR10 publication-title: Nat. Reviews Phys. doi: 10.1038/s42254-022-00543-2 – volume: 10 start-page: 1056131 year: 2022 ident: 79991_CR25 publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2022.1056131 – ident: 79991_CR27 – volume: 55 start-page: 270 year: 2020 ident: 79991_CR17 publication-title: Invest. Radiol. doi: 10.1097/rli.0000000000000638 – ident: 79991_CR36 doi: 10.1002/9783527696017 – ident: 79991_CR26 doi: 10.1126/sciadv.abd0772 – volume: 33 start-page: 181 year: 2016 ident: 79991_CR34 publication-title: Med. Image. Anal. doi: 10.1016/j.media.2016.06.011 – volume: 43 start-page: 1931 year: 2023 ident: 79991_CR5 publication-title: J. Cereb. Blood Flow. Metab. doi: 10.1177/0271678x231186571 – volume: 76 start-page: 1116 year: 2016 ident: 79991_CR30 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.26006 – volume: 29 start-page: 617 year: 2021 ident: 79991_CR4 publication-title: Magn. Reson. Imaging Clin. N Am. doi: 10.1016/j.mric.2021.06.011 – year: 2024 ident: 79991_CR18 publication-title: Z. Med. Phys. doi: 10.1016/j.zemedi.2024.03.001 – volume: 88 start-page: 1840 year: 2022 ident: 79991_CR38 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.29320 – volume: 263 start-page: 119590 year: 2022 ident: 79991_CR49 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2022.119590 – volume: 11 start-page: 616984 year: 2020 ident: 79991_CR53 publication-title: Front. Physiol. doi: 10.3389/fphys.2020.616984 – volume: 232 start-page: 117889 year: 2021 ident: 79991_CR48 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2021.117889 – volume: 1 start-page: 43 year: 1992 ident: 79991_CR29 publication-title: Neuroimage doi: 10.1016/1053-8119(92)90006-9 – ident: 79991_CR6 doi: 10.3389/fbioe.2023.1140734 – volume: 44 start-page: 949 year: 2018 ident: 79991_CR16 publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2018.01.007 – volume: 8 start-page: 17888 year: 2018 ident: 79991_CR22 publication-title: Sci. Rep. doi: 10.1038/s41598-018-36191-9 – volume: 61 start-page: 2527 year: 2014 ident: 79991_CR32 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/tbme.2014.2322864 – volume: 82 start-page: 671 year: 2019 ident: 79991_CR44 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.27757 – volume: 57 start-page: 502 year: 2022 ident: 79991_CR12 publication-title: Invest. Radiol. doi: 10.1097/rli.0000000000000862 – volume: 10 start-page: 283 year: 2016 ident: 79991_CR7 publication-title: Neuroimage Clin. doi: 10.1016/j.nicl.2015.12.007 – volume: 292 start-page: 676 year: 2019 ident: 79991_CR15 publication-title: Radiology doi: 10.1148/radiol.2019182574 – ident: 79991_CR50 doi: 10.1017/CBO9780511750885.004 – volume: 10 start-page: e0121945 year: 2015 ident: 79991_CR40 publication-title: PLOS ONE doi: 10.1371/journal.pone.0121945 – volume: 34 start-page: 1611 year: 2019 ident: 79991_CR13 publication-title: J. Gastroenterol. Hepatol. doi: 10.1111/jgh.14629 – ident: 79991_CR52 – ident: 79991_CR31 – ident: 79991_CR1 doi: 10.1088/1361-6560/abca00 – volume: 30 start-page: 1 year: 2016 ident: 79991_CR35 publication-title: Med. Image. Anal. doi: 10.1016/j.media.2016.01.001 – volume: 187 start-page: 176 year: 2019 ident: 79991_CR3 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.10.008 – volume: 30 start-page: 6614 year: 2020 ident: 79991_CR46 publication-title: Eur. Radiol. doi: 10.1007/s00330-020-07054-7 – volume: 57 start-page: 77 year: 2022 ident: 79991_CR21 publication-title: Invest. Radiol. doi: 10.1097/rli.0000000000000817 – volume: 61 start-page: R401 year: 2016 ident: 79991_CR2 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/61/24/r401 – volume: 32 start-page: 458 year: 1985 ident: 79991_CR37 publication-title: IEEE Trans. Sonics Ultrason. doi: 10.1109/T-SU.1985.31615 – ident: 79991_CR39 – volume: 71 start-page: 448 year: 2024 ident: 79991_CR55 publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2024.3366540 – volume: 51 start-page: 727 year: 2020 ident: 79991_CR45 publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.26881 – volume: 21 start-page: 265 year: 2008 ident: 79991_CR9 publication-title: NMR Biomed. doi: 10.1002/nbm.1189 – volume: 75 start-page: 246 year: 2018 ident: 79991_CR23 publication-title: JAMA Neurol. doi: 10.1001/jamaneurol.2017.3129 – volume: 12 start-page: 17759 year: 2022 ident: 79991_CR19 publication-title: Sci. Rep. doi: 10.1038/s41598-022-22638-7 – volume: 54 start-page: 675 year: 2019 ident: 79991_CR20 publication-title: Invest. Radiol. doi: 10.1097/rli.0000000000000590 – volume: 30 start-page: 1323 year: 2012 ident: 79991_CR33 publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2012.05.001 – volume: 6 start-page: e23451 year: 2011 ident: 79991_CR42 publication-title: PLoS One doi: 10.1371/journal.pone.0023451 |
SSID | ssj0000529419 |
Score | 2.4546707 |
Snippet | Magnetic resonance elastography (MRE) is a noninvasive brain stiffness mapping method. Ultrasound-based transtemporal time-harmonic elastography (THE) is... Abstract Magnetic resonance elastography (MRE) is a noninvasive brain stiffness mapping method. Ultrasound-based transtemporal time-harmonic elastography (THE)... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 28580 |
SubjectTerms | 639/166/985 692/308/2778 692/700/1421 692/700/1421/1628 692/700/1421/1860 692/700/1421/2025 692/700/1421/65 Adult Brain - diagnostic imaging Brain - physiology Brain mapping Correlation analysis Elasticity Imaging Techniques - methods Female Fiducial markers Healthy Volunteers Human brain Humanities and Social Sciences Humans Magnetic resonance elastography Magnetic Resonance Imaging - methods Male multidisciplinary Optical tracking Science Science (multidisciplinary) Transtemporal ultrasound time-harmonic elastography Ultrasonic imaging Ultrasonography - methods Ultrasound |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9UwEA-yIHgRv-26SgRvGrZN2jQ5qrgsgp5c2FtImsnqYftk-57w_hH_XmeSvufWD7x4TQINmZnM_JqZ3zD2QgcP0Q4gBgRfotVDEl55EFb3UDeA5hWpdvjDR3161r4_786vtfqinLBCD1wO7rhPgCGLlZ3vZJukNjEqiBDbpOrkm1zmW9v6GpgqrN7Sto2dq2RqZY4n9FRUTSZb0VNQJLYLT5QJ-_8UZf6eLPnLi2l2RCd32O05guSvy87vshsw3mM3S0_J7X32PZfUXq4irvF72k2-SjxQNwiOJp0S3W_8G8LkLBeOw6UecsunTaA_MxOnhPgLfukvRipz5IjKV8TNARww3l7PRNfcj5Hj9678RO2ZOHWqF0SGTYS7i5UP2NnJu09vT8XcfEEMrZVrgX4dnXnAM0NAFwLophnqOqjYDH30XYROQgsmRdAYcw0ReryviFjKdNSCrFYP2cG4GuEx4531iJMgBR1MG4MJIIOChDcHaNPbULGXO0G4r4Vjw-W3cWVcEZtDsbksNret2BuS1X4l8WPnAdQaN2uN-5fWVOxoJ2k3G-3kFPpzhF-IKSv2fD-N5kZvKH6E1aasod5sxlbsUVGM_U4UYk2ir6uYWajMYqvLmfHL50zpTZRH2lpZsVc77fq5r7-fxeH_OIsn7JYks6DcRnvEDtZXG3iKkdY6PMtG9QN5Qitp priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bi9QwFA66Ivgi3q2uEsE3Dds2bZo8iYrLIuiTC_MWkuZk9GHbdTojzB_x93pO2ulSb69tYDI995yc72PspfIOgmlBtFh8iUq1UTjpQBjVQF4Amleg2eFPn9XZefVxVa-mA7dhulZ58InJUYe-pTPyE4nOFnNjTPjfXH4XxBpF3dWJQuM6u1FgJkLUDc2qmc9YqItVFWaalcmlPhkwXtFMWVmJhlIjsV_EowTb_7dc888rk7_1TVM4Or3Dbk95JH87Cv4uuwbdPXZzZJbc32c_02DtRR9wjZvBN3kfuSdOCI6GHSN5Of4Di-UkHY6Px6nIPR92ns5nBk7X4tf8wq07GnbkWJv3hNABHDDr3k5w19x1gePvbdxAJE2c-OoFQWIT7O5i5QN2fvrhy_szMVEwiLYy5VZgdMeQ7vGbYVnnPaiiaPPcy1C0TXB1gLqECnQMoDDzagM06LUIXkrXRESWy4fsqOs7eMx4bRxWSxC98roKXnsovYSI_gOUbozP2KuDIOzliLRhU4dcajuKzaLYbBKb3WfsHclqXkko2elBv1nbyehsEwHTXVPWri6rWCodgoQAoYoyj67QGTs-SNpOpjvYK0XL2Iv5NRoddVJcB_1uXEMMbdpk7NGoGPNOJFacBGKXMb1QmcVWl2-6b18TsDcBHyljyoy9PmjX1b7-_S2e_P9vPGW3SlJ4urtojtnRdrODZ5hJbf3zZC6_AMWrIks priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fi9QwEA7nieDL4W-rp0TwTaPbtE2TBxEVj0PQJxfurSTNZD3wWt3uHvYf8e91Jm1XquuDr82UhsxMZqbJfB9jT5Wz4E0NosbiS-SqDsJmFoRRJSxSQPfy1Dv88ZM6XeYfzoqzAzbRHY0L2O0t7YhParn--uLH9_41OvyroWVcv-wwCFGjmMxFSfmO6K-wq_G8iK7yjen-gPUtTZ6asXdm_6uz-BRh_Pflnn9fofzjHDWGp5Mb7GjMK_mbwRBusgNobrFrA9Nkf5v9jI22F61HGbsD4-Rt4I44Ijg6egi06_FLLJ6jtjg-Hroke95tHf2v6Thdk1_xC7tqqPmRY63eEmIHcMAsfDPCX3PbeI7fW9uOSJs48dcLgsgmGN6Z5B22PHn_-d2pGCkZRJ0buREY7THEO1wzLPOcA5Wm9WLhMp_WpbeFh0JCDjp4UJiJ1R5K3MUIbkoXREy2yO6yw6Zt4D7jhbFYPUFwyuncO-1AugwC7iegdGlcwp5Niqi-DcgbVTwxz3Q1qK1CtVVRbVWfsLekq50koWbHB-16VY1OWJUBMP01srCFzINU2vsMPPg8ZItgU52w40nT1WSJVYZ2hEUZVpoJe7IbRiekkxXbQLsdZIixTZuE3RsMYzeTDCtQArVLmJ6ZzGyq85Hm_EsE-iYgJGWMTNjzybp-z-vfa_Hg_8QfsuuSHIDuNppjdrhZb-ERZlob9zi6zy-6eip4 priority: 102 providerName: Scholars Portal |
Title | Multimodal assessment of brain stiffness variation in healthy subjects using magnetic resonance elastography and ultrasound time-harmonic elastography |
URI | https://link.springer.com/article/10.1038/s41598-024-79991-y https://www.ncbi.nlm.nih.gov/pubmed/39562835 https://www.proquest.com/docview/3130576261 https://www.proquest.com/docview/3130831089 https://pubmed.ncbi.nlm.nih.gov/PMC11576992 https://doaj.org/article/7fe507925a524f268dd3eded4f30fa18 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61WyFxQbwJlJWRuEFEno593K5aVSu1QkClvUV2PF44NEH7QNo_wu9lxskuWigHLonkTBQr43nZM98AvJXWoNMNxg0FX3EhGx-b3GCsZYVJiiRejmuHr67l5U0xm5fzI8h2tTAhaT9AWgY1vcsO-7AiQ8PFYFkRV-zTxNtjOFEVqd8RnEwms8-z_c4Kn10VqR4qZJJc3fHygRUKYP13eZh_J0r-cVoajNDFQ3gweI9i0s_3ERxh-xju9f0kt0_gZyinve0c0Zg95KbovLDcCUKQOHvPuk38oBA58ETQcF8LuRWrjeVdmZXgZPiFuDWLlkscBUXkHeNyoEDytdcDyLUwrRP0vaVZcWsmwV3qYwbCZrDdA8qncHNx_mV6GQ-NF-Km0Nk6JptOhtzSP6NgzlqUadokic1d2lTOlA7LDAtU3qEkf6txWJGuYlApVXL7sSR_BqO2a_EFiFIbipHQW2lV4ayymNkcPWkNlKrSNoJ3O0bU33t8jTqci-eq7tlWE9vqwLZ6G8EZ82pPydjYYaBbLuphrdSVR3JydVaaMit8JpVzOTp0hc8Tb1IVwemO0_UgsKs6J1tOoRfFkxG82T8mUePzE9Nit-lpuC-b0hE87xfGfiY5xZkMXReBOlgyB1M9fNJ--xrgvBnuSGqdRfB-t7p-z-vf_-Ll_5G_gvsZCwBnMOpTGK2XG3xN_tTajuG4mlfjQYzofnZ-_fETjU7ldBz2KOh6VahfKFknZw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG8CBYwEJ4iaOC_7UCEKrVrarhBqpd6CHU8WDk3KZhe0f4Sfw29jJo-tltet18RKnMzDMx7P9wE8T61Bpwv0C0q-_DgtSt9EBn2dZhiESObluHf4aJzuncTvT5PTNfg59MLwscrBJ7aO2tUF75FvRuRsKTamgP_1-VefWaO4ujpQaJieWsFttRBjfWPHAS6-UwrXbO2_I3m_kHJ35_jtnt-zDPhFrOXMpwWMVi2baEWZi7WYhmERBDZyYZE5kzhMJMaoSocpBReFw4wMkxGUVMJcW0FEz70C6zFvoIxgfXtn_OHjcpeH62hxqPtunSBSmw2tmNzVJmM_4-DMX6ysiC1xwN-i3T8Pbf5WuW0XxN2bcKOPZMWbTvVuwRpWt-Fqx225uAM_2tbes9rRGLOE_xR1KSyzUghyLWXJflZ8o3S91Q9Bl7u-zIVo5pZ3iBrBB_Mn4sxMKm63FFPk3IE0VSDF_bMecFuYygl639Q0TBMl6MXoMyg3A_-ujLwLJ5cinnswquoKH4BItKF8DUubWhU7qyxKG2FJHgxTlWnrwctBEPl5h_WRtzX6SOWd2HISW96KLV94sM2yWo5knO72Qj2d5L3Z51mJFHBrmZhExqVMlXMROnRxGQWlCZUHG4Ok8955NPmFqnvwbHmbzJ5rOabCet6NYY44pT243ynGciYR5bwMo-eBWlGZlamu3qm-fG6hxRl6KdVaevBq0K6Lef37Xzz8_2c8hWt7x0eH-eH--OARXJes_HySUm_AaDad42OK62b2SW88Aj5dtr3-AqbeZNE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKEYgLYi2BAkaCE0STxE5iHxACyqilUHGg0tyCHT8PHJqUyQwof4Qfw6_jvSxTDdut18RKnLzdb_kYe5xZA06XEJYYfIUyK31ohIFQZzlEMaB4Oeodfn-U7R_Lt7N0tsV-jr0wVFY56sROUbu6pDPyiUBli74xOvwTP5RFfNibvjj9GhKCFGVaRziNnkUOof2O4Vvz_GAPaf0kSaZvPr7eDweEgbCUOlmGaLzQYtlUK4xarIUsjssossLFZe5M6iBNQILyDjJ0LEoHOQolTU9SKeFsRQKfe4FdzIWUBBuRz_L1-Q5l0GSshz6dSKhJg7aS-tkSGebkloXthi3sIAP-5uf-Wa75W862M4XTa-zq4MPylz3TXWdbUN1gl3pUy_Ym-9E19Z7UDteY9eBPXntuCY-Co1LxnjQs_4aBescZHC_3HZktb1aWzoYaTiX5c35i5hU1WvIFUNSAPMoBPf7lMGqbm8pxfN_CNAQQxfHFENI4bhr5u7HyFjs-F-LcZttVXcEdxlNtMFIDbzOrpLPKQmIFeNRdkKlc24A9HQlRnPZTPoouOy9U0ZOtQLIVHdmKNmCviFbrlTShu7tQL-bFIPBF7gFdbZ2kJk2kTzLlnAAHTnoReROrgO2OlC4GtdEUZ0wesEfr2yjwlMUxFdSrfg2hwykdsJ2eMdY7ERjt0gC9gKkNltnY6uad6svnbqg4DV3KtE4C9mzkrrN9_ftf3P3_Zzxkl1FKi3cHR4f32JWEeJ9KKPUu214uVnAfHbqlfdBJDmefzltUfwH32mJt |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multimodal+assessment+of+brain+stiffness+variation+in+healthy+subjects+using+magnetic+resonance+elastography+and+ultrasound+time-harmonic+elastography&rft.jtitle=Scientific+reports&rft.au=Klemmer+Chand%C3%ADa%2C+Stefan&rft.au=Schattenfroh%2C+Jakob&rft.au=Brinker%2C+Spencer+T.&rft.au=Tzsch%C3%A4tzsch%2C+Heiko&rft.date=2024-11-19&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-024-79991-y&rft.externalDocID=10_1038_s41598_024_79991_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |