Multimodal assessment of brain stiffness variation in healthy subjects using magnetic resonance elastography and ultrasound time-harmonic elastography

Magnetic resonance elastography (MRE) is a noninvasive brain stiffness mapping method. Ultrasound-based transtemporal time-harmonic elastography (THE) is emerging as a cost-effective, fast alternative that has potential applications for bedside monitoring of intracranial pressure. We aim to investig...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; pp. 28580 - 11
Main Authors Klemmer Chandía, Stefan, Schattenfroh, Jakob, Brinker, Spencer T., Tzschätzsch, Heiko, Sack, Ingolf, Meyer, Tom
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 19.11.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-024-79991-y

Cover

Abstract Magnetic resonance elastography (MRE) is a noninvasive brain stiffness mapping method. Ultrasound-based transtemporal time-harmonic elastography (THE) is emerging as a cost-effective, fast alternative that has potential applications for bedside monitoring of intracranial pressure. We aim to investigate the accuracy of THE in comparison to MRE performed in the brain. Ten healthy volunteers (25–40 years old) underwent multifrequency MRE (20–35 Hz) and THE (27–56 Hz). Fiducial-marker-based optical tracking of the ultrasound field of view was used to align THE to 3D MRE. THE- and MRE-derived shear wave speed (SWS) was determined as a measure of brain stiffness and averaged within regions of various depths for cross-modality correlation analysis. MRE-measured SWS ranged from 1.0 to 1.3 m/s and was negatively correlated with age (R 2  = 0.44, p  = 0.035). After registration of both modalities, SWS values were linearly correlated (MRE: 1.14 ± 0.08 m/s, THE: 1.13 ± 0.10 m/s; R 2  = 0.62, p  = 0.007). Best agreement between modalities was achieved at depths of 40–60 mm, suggesting this range provides a viable trade-off between ultrasound attenuation and near-field bias. Similar brain regions can be consistently measured with both elastography modalities, despite the regional and individual variations of stiffness. Transtemporal THE yields stiffness values in a range similar to those obtained with more expensive MRE.
AbstractList Magnetic resonance elastography (MRE) is a noninvasive brain stiffness mapping method. Ultrasound-based transtemporal time-harmonic elastography (THE) is emerging as a cost-effective, fast alternative that has potential applications for bedside monitoring of intracranial pressure. We aim to investigate the accuracy of THE in comparison to MRE performed in the brain. Ten healthy volunteers (25-40 years old) underwent multifrequency MRE (20-35 Hz) and THE (27-56 Hz). Fiducial-marker-based optical tracking of the ultrasound field of view was used to align THE to 3D MRE. THE- and MRE-derived shear wave speed (SWS) was determined as a measure of brain stiffness and averaged within regions of various depths for cross-modality correlation analysis. MRE-measured SWS ranged from 1.0 to 1.3 m/s and was negatively correlated with age (R  = 0.44, p = 0.035). After registration of both modalities, SWS values were linearly correlated (MRE: 1.14 ± 0.08 m/s, THE: 1.13 ± 0.10 m/s; R  = 0.62, p = 0.007). Best agreement between modalities was achieved at depths of 40-60 mm, suggesting this range provides a viable trade-off between ultrasound attenuation and near-field bias. Similar brain regions can be consistently measured with both elastography modalities, despite the regional and individual variations of stiffness. Transtemporal THE yields stiffness values in a range similar to those obtained with more expensive MRE.
Magnetic resonance elastography (MRE) is a noninvasive brain stiffness mapping method. Ultrasound-based transtemporal time-harmonic elastography (THE) is emerging as a cost-effective, fast alternative that has potential applications for bedside monitoring of intracranial pressure. We aim to investigate the accuracy of THE in comparison to MRE performed in the brain. Ten healthy volunteers (25–40 years old) underwent multifrequency MRE (20–35 Hz) and THE (27–56 Hz). Fiducial-marker-based optical tracking of the ultrasound field of view was used to align THE to 3D MRE. THE- and MRE-derived shear wave speed (SWS) was determined as a measure of brain stiffness and averaged within regions of various depths for cross-modality correlation analysis. MRE-measured SWS ranged from 1.0 to 1.3 m/s and was negatively correlated with age (R2 = 0.44, p = 0.035). After registration of both modalities, SWS values were linearly correlated (MRE: 1.14 ± 0.08 m/s, THE: 1.13 ± 0.10 m/s; R2 = 0.62, p = 0.007). Best agreement between modalities was achieved at depths of 40–60 mm, suggesting this range provides a viable trade-off between ultrasound attenuation and near-field bias. Similar brain regions can be consistently measured with both elastography modalities, despite the regional and individual variations of stiffness. Transtemporal THE yields stiffness values in a range similar to those obtained with more expensive MRE.
Magnetic resonance elastography (MRE) is a noninvasive brain stiffness mapping method. Ultrasound-based transtemporal time-harmonic elastography (THE) is emerging as a cost-effective, fast alternative that has potential applications for bedside monitoring of intracranial pressure. We aim to investigate the accuracy of THE in comparison to MRE performed in the brain. Ten healthy volunteers (25–40 years old) underwent multifrequency MRE (20–35 Hz) and THE (27–56 Hz). Fiducial-marker-based optical tracking of the ultrasound field of view was used to align THE to 3D MRE. THE- and MRE-derived shear wave speed (SWS) was determined as a measure of brain stiffness and averaged within regions of various depths for cross-modality correlation analysis. MRE-measured SWS ranged from 1.0 to 1.3 m/s and was negatively correlated with age (R 2  = 0.44, p  = 0.035). After registration of both modalities, SWS values were linearly correlated (MRE: 1.14 ± 0.08 m/s, THE: 1.13 ± 0.10 m/s; R 2  = 0.62, p  = 0.007). Best agreement between modalities was achieved at depths of 40–60 mm, suggesting this range provides a viable trade-off between ultrasound attenuation and near-field bias. Similar brain regions can be consistently measured with both elastography modalities, despite the regional and individual variations of stiffness. Transtemporal THE yields stiffness values in a range similar to those obtained with more expensive MRE.
Abstract Magnetic resonance elastography (MRE) is a noninvasive brain stiffness mapping method. Ultrasound-based transtemporal time-harmonic elastography (THE) is emerging as a cost-effective, fast alternative that has potential applications for bedside monitoring of intracranial pressure. We aim to investigate the accuracy of THE in comparison to MRE performed in the brain. Ten healthy volunteers (25–40 years old) underwent multifrequency MRE (20–35 Hz) and THE (27–56 Hz). Fiducial-marker-based optical tracking of the ultrasound field of view was used to align THE to 3D MRE. THE- and MRE-derived shear wave speed (SWS) was determined as a measure of brain stiffness and averaged within regions of various depths for cross-modality correlation analysis. MRE-measured SWS ranged from 1.0 to 1.3 m/s and was negatively correlated with age (R2 = 0.44, p = 0.035). After registration of both modalities, SWS values were linearly correlated (MRE: 1.14 ± 0.08 m/s, THE: 1.13 ± 0.10 m/s; R2 = 0.62, p = 0.007). Best agreement between modalities was achieved at depths of 40–60 mm, suggesting this range provides a viable trade-off between ultrasound attenuation and near-field bias. Similar brain regions can be consistently measured with both elastography modalities, despite the regional and individual variations of stiffness. Transtemporal THE yields stiffness values in a range similar to those obtained with more expensive MRE.
Magnetic resonance elastography (MRE) is a noninvasive brain stiffness mapping method. Ultrasound-based transtemporal time-harmonic elastography (THE) is emerging as a cost-effective, fast alternative that has potential applications for bedside monitoring of intracranial pressure. We aim to investigate the accuracy of THE in comparison to MRE performed in the brain. Ten healthy volunteers (25-40 years old) underwent multifrequency MRE (20-35 Hz) and THE (27-56 Hz). Fiducial-marker-based optical tracking of the ultrasound field of view was used to align THE to 3D MRE. THE- and MRE-derived shear wave speed (SWS) was determined as a measure of brain stiffness and averaged within regions of various depths for cross-modality correlation analysis. MRE-measured SWS ranged from 1.0 to 1.3 m/s and was negatively correlated with age (R2 = 0.44, p = 0.035). After registration of both modalities, SWS values were linearly correlated (MRE: 1.14 ± 0.08 m/s, THE: 1.13 ± 0.10 m/s; R2 = 0.62, p = 0.007). Best agreement between modalities was achieved at depths of 40-60 mm, suggesting this range provides a viable trade-off between ultrasound attenuation and near-field bias. Similar brain regions can be consistently measured with both elastography modalities, despite the regional and individual variations of stiffness. Transtemporal THE yields stiffness values in a range similar to those obtained with more expensive MRE.Magnetic resonance elastography (MRE) is a noninvasive brain stiffness mapping method. Ultrasound-based transtemporal time-harmonic elastography (THE) is emerging as a cost-effective, fast alternative that has potential applications for bedside monitoring of intracranial pressure. We aim to investigate the accuracy of THE in comparison to MRE performed in the brain. Ten healthy volunteers (25-40 years old) underwent multifrequency MRE (20-35 Hz) and THE (27-56 Hz). Fiducial-marker-based optical tracking of the ultrasound field of view was used to align THE to 3D MRE. THE- and MRE-derived shear wave speed (SWS) was determined as a measure of brain stiffness and averaged within regions of various depths for cross-modality correlation analysis. MRE-measured SWS ranged from 1.0 to 1.3 m/s and was negatively correlated with age (R2 = 0.44, p = 0.035). After registration of both modalities, SWS values were linearly correlated (MRE: 1.14 ± 0.08 m/s, THE: 1.13 ± 0.10 m/s; R2 = 0.62, p = 0.007). Best agreement between modalities was achieved at depths of 40-60 mm, suggesting this range provides a viable trade-off between ultrasound attenuation and near-field bias. Similar brain regions can be consistently measured with both elastography modalities, despite the regional and individual variations of stiffness. Transtemporal THE yields stiffness values in a range similar to those obtained with more expensive MRE.
ArticleNumber 28580
Author Tzschätzsch, Heiko
Klemmer Chandía, Stefan
Schattenfroh, Jakob
Brinker, Spencer T.
Sack, Ingolf
Meyer, Tom
Author_xml – sequence: 1
  givenname: Stefan
  surname: Klemmer Chandía
  fullname: Klemmer Chandía, Stefan
  organization: Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health
– sequence: 2
  givenname: Jakob
  surname: Schattenfroh
  fullname: Schattenfroh, Jakob
  organization: Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health
– sequence: 3
  givenname: Spencer T.
  surname: Brinker
  fullname: Brinker, Spencer T.
  organization: Department of Neurology, Yale School of Medicine
– sequence: 4
  givenname: Heiko
  surname: Tzschätzsch
  fullname: Tzschätzsch, Heiko
  organization: Department of Medical Informatics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health
– sequence: 5
  givenname: Ingolf
  surname: Sack
  fullname: Sack, Ingolf
  organization: Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health
– sequence: 6
  givenname: Tom
  surname: Meyer
  fullname: Meyer, Tom
  email: tom.meyer@charite.de
  organization: Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39562835$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhiNUREvpH-CALHHhEvBHnNgnhCo-KhVxgbM1sSdZrxK72Eml_SP9vZjdUrYc8MXW-Jl3xuP3eXUSYsCqesnoW0aFepcbJrWqKW_qTmvN6t2T6ozTRtZccH5ydD6tLnLe0rIk1w3Tz6pToWXLlZBn1d3XdVr8HB1MBHLGnGcMC4kD6RP4QPLihyGUMLmF5GHxMZAS3iBMy2ZH8tpv0S6ZrNmHkcwwBly8JQlzDBAsEpwgL3FMcFNwCI6UeglyXMuxFMZ6A2mOoeQcky-qpwNMGS_u9_Pqx6eP3y-_1NffPl9dfriubaP5UjPJhWJ9GYRmXd9jy5iltBeO2c6BdCg5NqgGh61kjXXYUaWYkp2SFqmg4ry6Oui6CFtzk_wMaWcieLMPxDQaSOVBE5puQEk7zSVI3gy8Vc4JdOiaQdABmCpa7w9aN2s_o7NljgmmR6KPb4LfmDHeGsZk12rNi8Kbe4UUf66YFzP7bHGaIGBcsxFMUCUYVbqgr_9Bt3FNocxqTxVB3rJCvTpu6aGXP_9fAH4AbIo5JxweEEbNb5-Zg89M8ZnZ-8zsSpI4JOUChxHT39r_yfoF0cjaFg
Cites_doi 10.1371/journal.pone.0081668
10.1001/jama.2013.281053
10.1016/j.actbio.2020.12.027
10.1093/cercor/bhaa388
10.1088/1361-6560/aba5ea
10.1016/j.neuroimage.2015.02.016
10.1016/j.ultrasmedbio.2016.07.004
10.1016/j.neuroimage.2009.02.040
10.3389/fbioe.2022.1056131
10.3389/fbioe.2022.886363
10.1038/s42254-022-00543-2
10.1097/rli.0000000000000638
10.1002/9783527696017
10.1126/sciadv.abd0772
10.1016/j.media.2016.06.011
10.1177/0271678x231186571
10.1002/mrm.26006
10.1016/j.mric.2021.06.011
10.1016/j.zemedi.2024.03.001
10.1002/mrm.29320
10.1016/j.neuroimage.2022.119590
10.3389/fphys.2020.616984
10.1016/j.neuroimage.2021.117889
10.1016/1053-8119(92)90006-9
10.3389/fbioe.2023.1140734
10.1016/j.ultrasmedbio.2018.01.007
10.1038/s41598-018-36191-9
10.1109/tbme.2014.2322864
10.1002/mrm.27757
10.1097/rli.0000000000000862
10.1016/j.nicl.2015.12.007
10.1148/radiol.2019182574
10.1017/CBO9780511750885.004
10.1371/journal.pone.0121945
10.1111/jgh.14629
10.1088/1361-6560/abca00
10.1016/j.media.2016.01.001
10.1016/j.neuroimage.2017.10.008
10.1007/s00330-020-07054-7
10.1097/rli.0000000000000817
10.1088/0031-9155/61/24/r401
10.1109/T-SU.1985.31615
10.1109/TUFFC.2024.3366540
10.1002/jmri.26881
10.1002/nbm.1189
10.1001/jamaneurol.2017.3129
10.1038/s41598-022-22638-7
10.1097/rli.0000000000000590
10.1016/j.mri.2012.05.001
10.1371/journal.pone.0023451
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-024-79991-y
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection (subscription)
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Proquest Medical Database
Science Database (subscription)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
Publicly Available Content Database
CrossRef


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 11
ExternalDocumentID oai_doaj_org_article_7fe507925a524f268dd3eded4f30fa18
PMC11576992
39562835
10_1038_s41598_024_79991_y
Genre Journal Article
GrantInformation_xml – fundername: Charité - Universitätsmedizin Berlin (3093)
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M48
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
88A
8FK
AARCD
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c492t-152381b598917bbe611c00b3d1c7da5de52e4e8fde6514cde7088185785ce0303
IEDL.DBID AAJSJ
ISSN 2045-2322
IngestDate Wed Aug 27 01:30:45 EDT 2025
Thu Aug 21 18:32:59 EDT 2025
Fri Sep 05 14:53:57 EDT 2025
Wed Aug 13 10:59:00 EDT 2025
Mon Jul 21 06:05:30 EDT 2025
Tue Jul 01 03:23:38 EDT 2025
Mon Jul 21 06:10:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Human brain
Magnetic resonance elastography
Optical tracking
Fiducial markers
Transtemporal ultrasound time-harmonic elastography
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c492t-152381b598917bbe611c00b3d1c7da5de52e4e8fde6514cde7088185785ce0303
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.nature.com/articles/s41598-024-79991-y
PMID 39562835
PQID 3130576261
PQPubID 2041939
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_7fe507925a524f268dd3eded4f30fa18
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11576992
proquest_miscellaneous_3130831089
proquest_journals_3130576261
pubmed_primary_39562835
crossref_primary_10_1038_s41598_024_79991_y
springer_journals_10_1038_s41598_024_79991_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-19
PublicationDateYYYYMMDD 2024-11-19
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-19
  day: 19
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References McIlvainGMapping brain mechanical property maturation from childhood to adulthoodNeuroImage202226311959010.1016/j.neuroimage.2022.11959036030061
MurphyMCRegional brain stiffness changes across the alzheimer’s disease spectrumNeuroimage Clin.20161028329010.1016/j.nicl.2015.12.00726900568
Marticorena GarciaSRFull-field-of-view time-harmonic elastography of the native kidneyUltrasound Med. Biol.20184494995410.1016/j.ultrasmedbio.2018.01.00729478787
TzschätzschHIn vivo time-harmonic ultrasound elastography of the human brain detects acute cerebral stiffness changes induced by intracranial pressure variationsSci. Rep.20188178882018NatSR...817888T10.1038/s41598-018-36191-9305593676297160
MeyerTValsalva maneuver decreases liver and spleen stiffness measured by time-harmonic ultrasound elastographyFront. Bioeng. Biotechnol.20221088636310.3389/fbioe.2022.886363357116449195299
World medical association declaration of helsinki: Ethical principles for medical research involving human subjects. Report No. 0098-7484, 2191–2194. World Medical Association, (2013).
HuangCThree-dimensional shear wave elastography on conventional ultrasound scanners with external vibrationPhys. Med. Biol.20206521500910.1088/1361-6560/aba5ea326638167880611
BurkhardtCUltrasound time-harmonic elastography of the pancreas: reference values and clinical feasibilityInvest. Radiol.20205527027610.1097/rli.000000000000063831985600
AraniAMeasuring the effects of aging and sex on regional brain stiffness with mr elastography in healthy older adultsNeuroImage2015111596410.1016/j.neuroimage.2015.02.01625698157
HerthumHCerebral tomoelastography based on multifrequency mr elastography in two and three dimensionsFront. Bioeng. Biotechnol.202210105613110.3389/fbioe.2022.1056131365325739755504
MorrASLiquid-liver phantom: mimicking the viscoelastic dispersion of human liver for ultrasound- and mri-based elastographyInvest. Radiol.20225750250910.1097/rli.000000000000086235195086
DittmannFIn vivo wideband multifrequency mr elastography of the human brain and liverMagn. Reson. Med.2016761116112610.1002/mrm.2600626485494
HerthumHSuperviscous properties of the in vivo brain at large scalesActa Biomater.202112139340410.1016/j.actbio.2020.12.02733326885
KrishnaVSammartinoFRezaiAA review of the current therapies, challenges, and future directions of transcranial focused ultrasound technology: advances in diagnosis and treatmentJAMA Neurol.20187524625410.1001/jamaneurol.2017.312929228074
Kreft, B. Development and validation of in vivo ultrasound time-harmonic elastography of the human brain towards clinical application, (2023).
Hirsch, S., Braun, J. & Sack, I. Magnetic resonance elastography - physical background and medical applications. (2017).
TzschätzschHTwo-dimensional time-harmonic elastography of the human liver and spleenUltrasound Med. Biol.2016422562257110.1016/j.ultrasmedbio.2016.07.00427567061
SchaafsLAUltrasound time-harmonic elastography of the aorta: Effect of age and hypertension on aortic stiffnessInvest. Radiol.20195467568010.1097/rli.000000000000059031299035
Friston, K. J. In Functional Neuroimaging: Technical Foundations79–93 (Academic, 1994).
Martin, K. & Ramnarine, K. in Diagnostic ultrasound: Physics and equipment (eds Peter R. Hoskins, Kevin Martin, & Abigail Thrush) 4–22 (Cambridge University Press, 2010).
MeyerTComparison of inversion methods in mr elastography: an open-access pipeline for processing multifrequency shear-wave data and demonstration in a phantom, human kidneys, and brainMagn. Reson. Med.2022881840185010.1002/mrm.2932035691940
SackIThe impact of aging and gender on brain viscoelasticityNeuroImage20094665265710.1016/j.neuroimage.2009.02.04019281851
UngiTLassoAFichtingerGOpen-source platforms for navigated image-guided interventionsMed. Image. Anal.20163318118610.1016/j.media.2016.06.01127344106
LvHMr Elastography frequency-dependent and independent parameters demonstrate accelerated decrease of brain stiffness in elder subjectsEur. Radiol.2020306614662310.1007/s00330-020-07054-7326835528121201
Meyer, T. et al. Stiffness pulsation of the human brain detected by non-invasive time-harmonic elastography. Front. Bioeng. Biotechnol.. 11. https://doi.org/10.3389/fbioe.2023.1140734 (2023).
NanjappaMKolipakaAMagnetic resonance elastography of the brainMagn. Reson. Imaging Clin. N Am.20212961763010.1016/j.mric.2021.06.01134717849
ElgetiTThe effect of smoking on quantification of aortic stiffness by ultrasound time-harmonic elastographySci. Rep.202212177592022NatSR..1217759E10.1038/s41598-022-22638-7362730209588008
KreftBNoninvasive detection of intracranial hypertension by novel ultrasound time-harmonic elastographyInvest. Radiol.202257778410.1097/rli.000000000000081734380993
SackIStreitbergerKJKreftingDPaulFBraunJThe influence of physiological aging and atrophy on brain viscoelastic properties in humansPLoS One20116e234512011PLoSO...623451S10.1371/journal.pone.0023451219315993171401
Preiswerk, F., Brinker, S. T., McDannold, N. J. & Mariano, T. Y. Open-source neuronavigation for multimodal non-invasive brain stimulation using 3d slicer. arXiv: Med. Phys. (2019).
GrossmannMUs time-harmonic elastography for the early detection of glomerulonephritisRadiology201929267668410.1148/radiol.201918257431287390
Herthum, H. et al. Cerebral tomoelastography based on multifrequency mr elastography in two and three dimensions. Front. Bioeng. Biotechnol.10. https://doi.org/10.3389/fbioe.2022.1056131 (2022).
KreftBCerebral ultrasound time-harmonic elastography reveals softening of the human brain due to dehydrationFront. Physiol.20201161698410.3389/fphys.2020.61698433505319
HiscoxLVSchwarbHMcGarryMDJJohnsonCLAging brain mechanics: Progress and promise of magnetic resonance elastographyNeuroimage202123211788910.1016/j.neuroimage.2021.11788933617995
Ormachea, J. & Parker, K. J. Elastography imaging: the 30 year perspective. Phys. Med. Biol.65. https://doi.org/10.1088/1361-6560/abca00 (2020).
HeuckeNNon-invasive structure-function assessment of the liver by 2d time-harmonic elastography and the dynamic liver maximum capacity (limax) testJ. Gastroenterol. Hepatol.2019341611161910.1111/jgh.1462930756433
TakamuraTInfluence of age on global and regional brain stiffness in young and middle-aged adultsJ. Magn. Reson. Imaging20205172773310.1002/jmri.2688131373136
DongZThree-dimensional shear wave elastography using acoustic radiation force and a 2-d row-column addressing (rca) arrayIEEE Trans. Ultrason. Ferroelectr. Freq. Control2024714484582024ITED...71..448Z10.1109/TUFFC.2024.336654038363671
DelgorioPLEffect of aging on the viscoelastic properties of hippocampal subfields assessed with high-resolution mr elastographyCereb. Cortex2021312799281110.1093/cercor/bhaa388334547458107787
KalraPRatermanBMoXKolipakaAMagnetic resonance elastography of brain: comparison between anisotropic and isotropic stiffness and its correlation to ageMagn. Reson. Med.20198267167910.1002/mrm.27757309573046510588
KasaiCNamekawaKKoyanoAOmotoRReal-time two-dimensional blood flow imaging using an autocorrelation techniqueIEEE Trans. Sonics Ultrason.19853245846410.1109/T-SU.1985.31615
Polaris vicra user guide. (Northern Digital Inc., Waterloo, Ontario, Canada, (2012).
EvansACAnatomical mapping of functional activation in stereotactic coordinate spaceNeuroimage19921435310.1016/1053-8119(92)90006-99343556
MurphyMCHustonJEhmanRLMr Elastography of the brain and its application in neurological diseasesNeuroimage201918717618310.1016/j.neuroimage.2017.10.00828993232
FedorovA3d slicer as an image computing platform for the quantitative imaging networkMagn. Reson. Imaging2012301323134110.1016/j.mri.2012.05.001227706903466397
TzschätzschHTomoelastography by multifrequency wave number recovery from time-harmonic propagating shear wavesMed. Image. Anal.20163011010.1016/j.media.2016.01.00126845371
LassoAPlus: open-source toolkit for ultrasound-guided intervention systemsIEEE Trans. Biomed. Eng.2014612527253710.1109/tbme.2014.2322864248334124437531
HiscoxLVMagnetic resonance elastography (mre) of the human brain: technique, findings and clinical applicationsPhys. Med. Biol.201661R401r43710.1088/0031-9155/61/24/r40127845941
Chen, K. T. et al. Neuronavigation-guided focused ultrasound for transcranial blood-brain barrier opening and immunostimulation in brain tumors. Sci. Adv.7. https://doi.org/10.1126/sciadv.abd0772 (2021).
DiedenhofenBMuschJCocorA comprehensive solution for the statistical comparison of correlationsPLOS ONE201510e012194510.1371/journal.pone.0121945258350014383486
MurphyMCMeasuring the characteristic topography of brain stiffness with magnetic resonance elastographyPLOS ONE20138e816682013PLoSO...881668M10.1371/journal.pone.0081668243125703847077
SackIBeierbachBHamhaberUKlattDBraunJNon-invasive measurement of brain viscoelasticity using magnetic resonance elastographyNMR Biomed.20082126527110.1002/nbm.118917614101
SackIMagnetic resonance elastography from fundamental soft-tissue mechanics to diagnostic imagingNat. Reviews Phys.2023525422023NatRP...5...25S10.1038/s42254-022-00543-2
YangYExplorative study using ultrasound time-harmonic elastography for stiffness-based quantification of skeletal muscle functionZ. Med. Phys.202410.1016/j.zemedi.2024.03.00138508947
SanjanaFVascular determinants of hippocampal viscoelastic properties in healthy adults across the lifespanJ. Cereb. Blood Flow. Metab.2023431931194110.1177/0271678x2311865713739547910676145
AS Morr (79991_CR12) 2022; 57
79991_CR36
MC Murphy (79991_CR3) 2019; 187
79991_CR39
B Kreft (79991_CR53) 2020; 11
M Grossmann (79991_CR15) 2019; 292
Y Yang (79991_CR18) 2024
H Lv (79991_CR46) 2020; 30
H Tzschätzsch (79991_CR35) 2016; 30
I Sack (79991_CR42) 2011; 6
79991_CR26
F Sanjana (79991_CR5) 2023; 43
79991_CR27
I Sack (79991_CR9) 2008; 21
79991_CR28
B Diedenhofen (79991_CR40) 2015; 10
M Nanjappa (79991_CR4) 2021; 29
B Kreft (79991_CR21) 2022; 57
MC Murphy (79991_CR24) 2013; 8
SR Marticorena Garcia (79991_CR16) 2018; 44
A Arani (79991_CR43) 2015; 111
T Ungi (79991_CR34) 2016; 33
PL Delgorio (79991_CR47) 2021; 31
C Huang (79991_CR54) 2020; 65
I Sack (79991_CR41) 2009; 46
79991_CR31
Z Dong (79991_CR55) 2024; 71
LV Hiscox (79991_CR48) 2021; 232
A Lasso (79991_CR32) 2014; 61
F Dittmann (79991_CR30) 2016; 76
LV Hiscox (79991_CR2) 2016; 61
T Meyer (79991_CR14) 2022; 10
N Heucke (79991_CR13) 2019; 34
T Elgeti (79991_CR19) 2022; 12
V Krishna (79991_CR23) 2018; 75
C Kasai (79991_CR37) 1985; 32
H Herthum (79991_CR25) 2022; 10
A Fedorov (79991_CR33) 2012; 30
H Tzschätzsch (79991_CR22) 2018; 8
C Burkhardt (79991_CR17) 2020; 55
MC Murphy (79991_CR7) 2016; 10
I Sack (79991_CR10) 2023; 5
T Meyer (79991_CR38) 2022; 88
AC Evans (79991_CR29) 1992; 1
79991_CR8
79991_CR6
H Herthum (79991_CR51) 2021; 121
79991_CR1
H Tzschätzsch (79991_CR11) 2016; 42
79991_CR50
G McIlvain (79991_CR49) 2022; 263
LA Schaafs (79991_CR20) 2019; 54
P Kalra (79991_CR44) 2019; 82
79991_CR52
T Takamura (79991_CR45) 2020; 51
References_xml – reference: UngiTLassoAFichtingerGOpen-source platforms for navigated image-guided interventionsMed. Image. Anal.20163318118610.1016/j.media.2016.06.01127344106
– reference: MurphyMCRegional brain stiffness changes across the alzheimer’s disease spectrumNeuroimage Clin.20161028329010.1016/j.nicl.2015.12.00726900568
– reference: MorrASLiquid-liver phantom: mimicking the viscoelastic dispersion of human liver for ultrasound- and mri-based elastographyInvest. Radiol.20225750250910.1097/rli.000000000000086235195086
– reference: World medical association declaration of helsinki: Ethical principles for medical research involving human subjects. Report No. 0098-7484, 2191–2194. World Medical Association, (2013).
– reference: KalraPRatermanBMoXKolipakaAMagnetic resonance elastography of brain: comparison between anisotropic and isotropic stiffness and its correlation to ageMagn. Reson. Med.20198267167910.1002/mrm.27757309573046510588
– reference: Marticorena GarciaSRFull-field-of-view time-harmonic elastography of the native kidneyUltrasound Med. Biol.20184494995410.1016/j.ultrasmedbio.2018.01.00729478787
– reference: TzschätzschHIn vivo time-harmonic ultrasound elastography of the human brain detects acute cerebral stiffness changes induced by intracranial pressure variationsSci. Rep.20188178882018NatSR...817888T10.1038/s41598-018-36191-9305593676297160
– reference: DongZThree-dimensional shear wave elastography using acoustic radiation force and a 2-d row-column addressing (rca) arrayIEEE Trans. Ultrason. Ferroelectr. Freq. Control2024714484582024ITED...71..448Z10.1109/TUFFC.2024.336654038363671
– reference: Ormachea, J. & Parker, K. J. Elastography imaging: the 30 year perspective. Phys. Med. Biol.65. https://doi.org/10.1088/1361-6560/abca00 (2020).
– reference: LvHMr Elastography frequency-dependent and independent parameters demonstrate accelerated decrease of brain stiffness in elder subjectsEur. Radiol.2020306614662310.1007/s00330-020-07054-7326835528121201
– reference: McIlvainGMapping brain mechanical property maturation from childhood to adulthoodNeuroImage202226311959010.1016/j.neuroimage.2022.11959036030061
– reference: FedorovA3d slicer as an image computing platform for the quantitative imaging networkMagn. Reson. Imaging2012301323134110.1016/j.mri.2012.05.001227706903466397
– reference: HeuckeNNon-invasive structure-function assessment of the liver by 2d time-harmonic elastography and the dynamic liver maximum capacity (limax) testJ. Gastroenterol. Hepatol.2019341611161910.1111/jgh.1462930756433
– reference: HuangCThree-dimensional shear wave elastography on conventional ultrasound scanners with external vibrationPhys. Med. Biol.20206521500910.1088/1361-6560/aba5ea326638167880611
– reference: SanjanaFVascular determinants of hippocampal viscoelastic properties in healthy adults across the lifespanJ. Cereb. Blood Flow. Metab.2023431931194110.1177/0271678x2311865713739547910676145
– reference: Preiswerk, F., Brinker, S. T., McDannold, N. J. & Mariano, T. Y. Open-source neuronavigation for multimodal non-invasive brain stimulation using 3d slicer. arXiv: Med. Phys. (2019).
– reference: HiscoxLVMagnetic resonance elastography (mre) of the human brain: technique, findings and clinical applicationsPhys. Med. Biol.201661R401r43710.1088/0031-9155/61/24/r40127845941
– reference: Meyer, T. et al. Stiffness pulsation of the human brain detected by non-invasive time-harmonic elastography. Front. Bioeng. Biotechnol.. 11. https://doi.org/10.3389/fbioe.2023.1140734 (2023).
– reference: SackIStreitbergerKJKreftingDPaulFBraunJThe influence of physiological aging and atrophy on brain viscoelastic properties in humansPLoS One20116e234512011PLoSO...623451S10.1371/journal.pone.0023451219315993171401
– reference: Chen, K. T. et al. Neuronavigation-guided focused ultrasound for transcranial blood-brain barrier opening and immunostimulation in brain tumors. Sci. Adv.7. https://doi.org/10.1126/sciadv.abd0772 (2021).
– reference: Martin, K. & Ramnarine, K. in Diagnostic ultrasound: Physics and equipment (eds Peter R. Hoskins, Kevin Martin, & Abigail Thrush) 4–22 (Cambridge University Press, 2010).
– reference: BurkhardtCUltrasound time-harmonic elastography of the pancreas: reference values and clinical feasibilityInvest. Radiol.20205527027610.1097/rli.000000000000063831985600
– reference: HiscoxLVSchwarbHMcGarryMDJJohnsonCLAging brain mechanics: Progress and promise of magnetic resonance elastographyNeuroimage202123211788910.1016/j.neuroimage.2021.11788933617995
– reference: NanjappaMKolipakaAMagnetic resonance elastography of the brainMagn. Reson. Imaging Clin. N Am.20212961763010.1016/j.mric.2021.06.01134717849
– reference: KasaiCNamekawaKKoyanoAOmotoRReal-time two-dimensional blood flow imaging using an autocorrelation techniqueIEEE Trans. Sonics Ultrason.19853245846410.1109/T-SU.1985.31615
– reference: DelgorioPLEffect of aging on the viscoelastic properties of hippocampal subfields assessed with high-resolution mr elastographyCereb. Cortex2021312799281110.1093/cercor/bhaa388334547458107787
– reference: MurphyMCHustonJEhmanRLMr Elastography of the brain and its application in neurological diseasesNeuroimage201918717618310.1016/j.neuroimage.2017.10.00828993232
– reference: KreftBCerebral ultrasound time-harmonic elastography reveals softening of the human brain due to dehydrationFront. Physiol.20201161698410.3389/fphys.2020.61698433505319
– reference: SackIThe impact of aging and gender on brain viscoelasticityNeuroImage20094665265710.1016/j.neuroimage.2009.02.04019281851
– reference: ElgetiTThe effect of smoking on quantification of aortic stiffness by ultrasound time-harmonic elastographySci. Rep.202212177592022NatSR..1217759E10.1038/s41598-022-22638-7362730209588008
– reference: KreftBNoninvasive detection of intracranial hypertension by novel ultrasound time-harmonic elastographyInvest. Radiol.202257778410.1097/rli.000000000000081734380993
– reference: TzschätzschHTwo-dimensional time-harmonic elastography of the human liver and spleenUltrasound Med. Biol.2016422562257110.1016/j.ultrasmedbio.2016.07.00427567061
– reference: SackIMagnetic resonance elastography from fundamental soft-tissue mechanics to diagnostic imagingNat. Reviews Phys.2023525422023NatRP...5...25S10.1038/s42254-022-00543-2
– reference: Polaris vicra user guide. (Northern Digital Inc., Waterloo, Ontario, Canada, (2012).
– reference: GrossmannMUs time-harmonic elastography for the early detection of glomerulonephritisRadiology201929267668410.1148/radiol.201918257431287390
– reference: SchaafsLAUltrasound time-harmonic elastography of the aorta: Effect of age and hypertension on aortic stiffnessInvest. Radiol.20195467568010.1097/rli.000000000000059031299035
– reference: KrishnaVSammartinoFRezaiAA review of the current therapies, challenges, and future directions of transcranial focused ultrasound technology: advances in diagnosis and treatmentJAMA Neurol.20187524625410.1001/jamaneurol.2017.312929228074
– reference: Kreft, B. Development and validation of in vivo ultrasound time-harmonic elastography of the human brain towards clinical application, (2023).
– reference: DittmannFIn vivo wideband multifrequency mr elastography of the human brain and liverMagn. Reson. Med.2016761116112610.1002/mrm.2600626485494
– reference: HerthumHCerebral tomoelastography based on multifrequency mr elastography in two and three dimensionsFront. Bioeng. Biotechnol.202210105613110.3389/fbioe.2022.1056131365325739755504
– reference: AraniAMeasuring the effects of aging and sex on regional brain stiffness with mr elastography in healthy older adultsNeuroImage2015111596410.1016/j.neuroimage.2015.02.01625698157
– reference: HerthumHSuperviscous properties of the in vivo brain at large scalesActa Biomater.202112139340410.1016/j.actbio.2020.12.02733326885
– reference: TzschätzschHTomoelastography by multifrequency wave number recovery from time-harmonic propagating shear wavesMed. Image. Anal.20163011010.1016/j.media.2016.01.00126845371
– reference: LassoAPlus: open-source toolkit for ultrasound-guided intervention systemsIEEE Trans. Biomed. Eng.2014612527253710.1109/tbme.2014.2322864248334124437531
– reference: MeyerTComparison of inversion methods in mr elastography: an open-access pipeline for processing multifrequency shear-wave data and demonstration in a phantom, human kidneys, and brainMagn. Reson. Med.2022881840185010.1002/mrm.2932035691940
– reference: MurphyMCMeasuring the characteristic topography of brain stiffness with magnetic resonance elastographyPLOS ONE20138e816682013PLoSO...881668M10.1371/journal.pone.0081668243125703847077
– reference: DiedenhofenBMuschJCocorA comprehensive solution for the statistical comparison of correlationsPLOS ONE201510e012194510.1371/journal.pone.0121945258350014383486
– reference: TakamuraTInfluence of age on global and regional brain stiffness in young and middle-aged adultsJ. Magn. Reson. Imaging20205172773310.1002/jmri.2688131373136
– reference: YangYExplorative study using ultrasound time-harmonic elastography for stiffness-based quantification of skeletal muscle functionZ. Med. Phys.202410.1016/j.zemedi.2024.03.00138508947
– reference: Hirsch, S., Braun, J. & Sack, I. Magnetic resonance elastography - physical background and medical applications. (2017).
– reference: EvansACAnatomical mapping of functional activation in stereotactic coordinate spaceNeuroimage19921435310.1016/1053-8119(92)90006-99343556
– reference: Herthum, H. et al. Cerebral tomoelastography based on multifrequency mr elastography in two and three dimensions. Front. Bioeng. Biotechnol.10. https://doi.org/10.3389/fbioe.2022.1056131 (2022).
– reference: Friston, K. J. In Functional Neuroimaging: Technical Foundations79–93 (Academic, 1994).
– reference: SackIBeierbachBHamhaberUKlattDBraunJNon-invasive measurement of brain viscoelasticity using magnetic resonance elastographyNMR Biomed.20082126527110.1002/nbm.118917614101
– reference: MeyerTValsalva maneuver decreases liver and spleen stiffness measured by time-harmonic ultrasound elastographyFront. Bioeng. Biotechnol.20221088636310.3389/fbioe.2022.886363357116449195299
– volume: 8
  start-page: e81668
  year: 2013
  ident: 79991_CR24
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0081668
– ident: 79991_CR28
  doi: 10.1001/jama.2013.281053
– volume: 121
  start-page: 393
  year: 2021
  ident: 79991_CR51
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2020.12.027
– volume: 31
  start-page: 2799
  year: 2021
  ident: 79991_CR47
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhaa388
– volume: 65
  start-page: 215009
  year: 2020
  ident: 79991_CR54
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/aba5ea
– volume: 111
  start-page: 59
  year: 2015
  ident: 79991_CR43
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.02.016
– volume: 42
  start-page: 2562
  year: 2016
  ident: 79991_CR11
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2016.07.004
– volume: 46
  start-page: 652
  year: 2009
  ident: 79991_CR41
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.02.040
– ident: 79991_CR8
  doi: 10.3389/fbioe.2022.1056131
– volume: 10
  start-page: 886363
  year: 2022
  ident: 79991_CR14
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2022.886363
– volume: 5
  start-page: 25
  year: 2023
  ident: 79991_CR10
  publication-title: Nat. Reviews Phys.
  doi: 10.1038/s42254-022-00543-2
– volume: 10
  start-page: 1056131
  year: 2022
  ident: 79991_CR25
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2022.1056131
– ident: 79991_CR27
– volume: 55
  start-page: 270
  year: 2020
  ident: 79991_CR17
  publication-title: Invest. Radiol.
  doi: 10.1097/rli.0000000000000638
– ident: 79991_CR36
  doi: 10.1002/9783527696017
– ident: 79991_CR26
  doi: 10.1126/sciadv.abd0772
– volume: 33
  start-page: 181
  year: 2016
  ident: 79991_CR34
  publication-title: Med. Image. Anal.
  doi: 10.1016/j.media.2016.06.011
– volume: 43
  start-page: 1931
  year: 2023
  ident: 79991_CR5
  publication-title: J. Cereb. Blood Flow. Metab.
  doi: 10.1177/0271678x231186571
– volume: 76
  start-page: 1116
  year: 2016
  ident: 79991_CR30
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.26006
– volume: 29
  start-page: 617
  year: 2021
  ident: 79991_CR4
  publication-title: Magn. Reson. Imaging Clin. N Am.
  doi: 10.1016/j.mric.2021.06.011
– year: 2024
  ident: 79991_CR18
  publication-title: Z. Med. Phys.
  doi: 10.1016/j.zemedi.2024.03.001
– volume: 88
  start-page: 1840
  year: 2022
  ident: 79991_CR38
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.29320
– volume: 263
  start-page: 119590
  year: 2022
  ident: 79991_CR49
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2022.119590
– volume: 11
  start-page: 616984
  year: 2020
  ident: 79991_CR53
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2020.616984
– volume: 232
  start-page: 117889
  year: 2021
  ident: 79991_CR48
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2021.117889
– volume: 1
  start-page: 43
  year: 1992
  ident: 79991_CR29
  publication-title: Neuroimage
  doi: 10.1016/1053-8119(92)90006-9
– ident: 79991_CR6
  doi: 10.3389/fbioe.2023.1140734
– volume: 44
  start-page: 949
  year: 2018
  ident: 79991_CR16
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2018.01.007
– volume: 8
  start-page: 17888
  year: 2018
  ident: 79991_CR22
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-36191-9
– volume: 61
  start-page: 2527
  year: 2014
  ident: 79991_CR32
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/tbme.2014.2322864
– volume: 82
  start-page: 671
  year: 2019
  ident: 79991_CR44
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.27757
– volume: 57
  start-page: 502
  year: 2022
  ident: 79991_CR12
  publication-title: Invest. Radiol.
  doi: 10.1097/rli.0000000000000862
– volume: 10
  start-page: 283
  year: 2016
  ident: 79991_CR7
  publication-title: Neuroimage Clin.
  doi: 10.1016/j.nicl.2015.12.007
– volume: 292
  start-page: 676
  year: 2019
  ident: 79991_CR15
  publication-title: Radiology
  doi: 10.1148/radiol.2019182574
– ident: 79991_CR50
  doi: 10.1017/CBO9780511750885.004
– volume: 10
  start-page: e0121945
  year: 2015
  ident: 79991_CR40
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0121945
– volume: 34
  start-page: 1611
  year: 2019
  ident: 79991_CR13
  publication-title: J. Gastroenterol. Hepatol.
  doi: 10.1111/jgh.14629
– ident: 79991_CR52
– ident: 79991_CR31
– ident: 79991_CR1
  doi: 10.1088/1361-6560/abca00
– volume: 30
  start-page: 1
  year: 2016
  ident: 79991_CR35
  publication-title: Med. Image. Anal.
  doi: 10.1016/j.media.2016.01.001
– volume: 187
  start-page: 176
  year: 2019
  ident: 79991_CR3
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.10.008
– volume: 30
  start-page: 6614
  year: 2020
  ident: 79991_CR46
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-020-07054-7
– volume: 57
  start-page: 77
  year: 2022
  ident: 79991_CR21
  publication-title: Invest. Radiol.
  doi: 10.1097/rli.0000000000000817
– volume: 61
  start-page: R401
  year: 2016
  ident: 79991_CR2
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/61/24/r401
– volume: 32
  start-page: 458
  year: 1985
  ident: 79991_CR37
  publication-title: IEEE Trans. Sonics Ultrason.
  doi: 10.1109/T-SU.1985.31615
– ident: 79991_CR39
– volume: 71
  start-page: 448
  year: 2024
  ident: 79991_CR55
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2024.3366540
– volume: 51
  start-page: 727
  year: 2020
  ident: 79991_CR45
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.26881
– volume: 21
  start-page: 265
  year: 2008
  ident: 79991_CR9
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.1189
– volume: 75
  start-page: 246
  year: 2018
  ident: 79991_CR23
  publication-title: JAMA Neurol.
  doi: 10.1001/jamaneurol.2017.3129
– volume: 12
  start-page: 17759
  year: 2022
  ident: 79991_CR19
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-22638-7
– volume: 54
  start-page: 675
  year: 2019
  ident: 79991_CR20
  publication-title: Invest. Radiol.
  doi: 10.1097/rli.0000000000000590
– volume: 30
  start-page: 1323
  year: 2012
  ident: 79991_CR33
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2012.05.001
– volume: 6
  start-page: e23451
  year: 2011
  ident: 79991_CR42
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0023451
SSID ssj0000529419
Score 2.4546707
Snippet Magnetic resonance elastography (MRE) is a noninvasive brain stiffness mapping method. Ultrasound-based transtemporal time-harmonic elastography (THE) is...
Abstract Magnetic resonance elastography (MRE) is a noninvasive brain stiffness mapping method. Ultrasound-based transtemporal time-harmonic elastography (THE)...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 28580
SubjectTerms 639/166/985
692/308/2778
692/700/1421
692/700/1421/1628
692/700/1421/1860
692/700/1421/2025
692/700/1421/65
Adult
Brain - diagnostic imaging
Brain - physiology
Brain mapping
Correlation analysis
Elasticity Imaging Techniques - methods
Female
Fiducial markers
Healthy Volunteers
Human brain
Humanities and Social Sciences
Humans
Magnetic resonance elastography
Magnetic Resonance Imaging - methods
Male
multidisciplinary
Optical tracking
Science
Science (multidisciplinary)
Transtemporal ultrasound time-harmonic elastography
Ultrasonic imaging
Ultrasonography - methods
Ultrasound
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9UwEA-yIHgRv-26SgRvGrZN2jQ5qrgsgp5c2FtImsnqYftk-57w_hH_XmeSvufWD7x4TQINmZnM_JqZ3zD2QgcP0Q4gBgRfotVDEl55EFb3UDeA5hWpdvjDR3161r4_786vtfqinLBCD1wO7rhPgCGLlZ3vZJukNjEqiBDbpOrkm1zmW9v6GpgqrN7Sto2dq2RqZY4n9FRUTSZb0VNQJLYLT5QJ-_8UZf6eLPnLi2l2RCd32O05guSvy87vshsw3mM3S0_J7X32PZfUXq4irvF72k2-SjxQNwiOJp0S3W_8G8LkLBeOw6UecsunTaA_MxOnhPgLfukvRipz5IjKV8TNARww3l7PRNfcj5Hj9678RO2ZOHWqF0SGTYS7i5UP2NnJu09vT8XcfEEMrZVrgX4dnXnAM0NAFwLophnqOqjYDH30XYROQgsmRdAYcw0ReryviFjKdNSCrFYP2cG4GuEx4531iJMgBR1MG4MJIIOChDcHaNPbULGXO0G4r4Vjw-W3cWVcEZtDsbksNret2BuS1X4l8WPnAdQaN2uN-5fWVOxoJ2k3G-3kFPpzhF-IKSv2fD-N5kZvKH6E1aasod5sxlbsUVGM_U4UYk2ir6uYWajMYqvLmfHL50zpTZRH2lpZsVc77fq5r7-fxeH_OIsn7JYks6DcRnvEDtZXG3iKkdY6PMtG9QN5Qitp
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bi9QwFA66Ivgi3q2uEsE3Dds2bZo8iYrLIuiTC_MWkuZk9GHbdTojzB_x93pO2ulSb69tYDI995yc72PspfIOgmlBtFh8iUq1UTjpQBjVQF4Amleg2eFPn9XZefVxVa-mA7dhulZ58InJUYe-pTPyE4nOFnNjTPjfXH4XxBpF3dWJQuM6u1FgJkLUDc2qmc9YqItVFWaalcmlPhkwXtFMWVmJhlIjsV_EowTb_7dc888rk7_1TVM4Or3Dbk95JH87Cv4uuwbdPXZzZJbc32c_02DtRR9wjZvBN3kfuSdOCI6GHSN5Of4Di-UkHY6Px6nIPR92ns5nBk7X4tf8wq07GnbkWJv3hNABHDDr3k5w19x1gePvbdxAJE2c-OoFQWIT7O5i5QN2fvrhy_szMVEwiLYy5VZgdMeQ7vGbYVnnPaiiaPPcy1C0TXB1gLqECnQMoDDzagM06LUIXkrXRESWy4fsqOs7eMx4bRxWSxC98roKXnsovYSI_gOUbozP2KuDIOzliLRhU4dcajuKzaLYbBKb3WfsHclqXkko2elBv1nbyehsEwHTXVPWri6rWCodgoQAoYoyj67QGTs-SNpOpjvYK0XL2Iv5NRoddVJcB_1uXEMMbdpk7NGoGPNOJFacBGKXMb1QmcVWl2-6b18TsDcBHyljyoy9PmjX1b7-_S2e_P9vPGW3SlJ4urtojtnRdrODZ5hJbf3zZC6_AMWrIks
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fi9QwEA7nieDL4W-rp0TwTaPbtE2TBxEVj0PQJxfurSTNZD3wWt3uHvYf8e91Jm1XquuDr82UhsxMZqbJfB9jT5Wz4E0NosbiS-SqDsJmFoRRJSxSQPfy1Dv88ZM6XeYfzoqzAzbRHY0L2O0t7YhParn--uLH9_41OvyroWVcv-wwCFGjmMxFSfmO6K-wq_G8iK7yjen-gPUtTZ6asXdm_6uz-BRh_Pflnn9fofzjHDWGp5Mb7GjMK_mbwRBusgNobrFrA9Nkf5v9jI22F61HGbsD4-Rt4I44Ijg6egi06_FLLJ6jtjg-Hroke95tHf2v6Thdk1_xC7tqqPmRY63eEmIHcMAsfDPCX3PbeI7fW9uOSJs48dcLgsgmGN6Z5B22PHn_-d2pGCkZRJ0buREY7THEO1wzLPOcA5Wm9WLhMp_WpbeFh0JCDjp4UJiJ1R5K3MUIbkoXREy2yO6yw6Zt4D7jhbFYPUFwyuncO-1AugwC7iegdGlcwp5Niqi-DcgbVTwxz3Q1qK1CtVVRbVWfsLekq50koWbHB-16VY1OWJUBMP01srCFzINU2vsMPPg8ZItgU52w40nT1WSJVYZ2hEUZVpoJe7IbRiekkxXbQLsdZIixTZuE3RsMYzeTDCtQArVLmJ6ZzGyq85Hm_EsE-iYgJGWMTNjzybp-z-vfa_Hg_8QfsuuSHIDuNppjdrhZb-ERZlob9zi6zy-6eip4
  priority: 102
  providerName: Scholars Portal
Title Multimodal assessment of brain stiffness variation in healthy subjects using magnetic resonance elastography and ultrasound time-harmonic elastography
URI https://link.springer.com/article/10.1038/s41598-024-79991-y
https://www.ncbi.nlm.nih.gov/pubmed/39562835
https://www.proquest.com/docview/3130576261
https://www.proquest.com/docview/3130831089
https://pubmed.ncbi.nlm.nih.gov/PMC11576992
https://doaj.org/article/7fe507925a524f268dd3eded4f30fa18
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61WyFxQbwJlJWRuEFEno593K5aVSu1QkClvUV2PF44NEH7QNo_wu9lxskuWigHLonkTBQr43nZM98AvJXWoNMNxg0FX3EhGx-b3GCsZYVJiiRejmuHr67l5U0xm5fzI8h2tTAhaT9AWgY1vcsO-7AiQ8PFYFkRV-zTxNtjOFEVqd8RnEwms8-z_c4Kn10VqR4qZJJc3fHygRUKYP13eZh_J0r-cVoajNDFQ3gweI9i0s_3ERxh-xju9f0kt0_gZyinve0c0Zg95KbovLDcCUKQOHvPuk38oBA58ETQcF8LuRWrjeVdmZXgZPiFuDWLlkscBUXkHeNyoEDytdcDyLUwrRP0vaVZcWsmwV3qYwbCZrDdA8qncHNx_mV6GQ-NF-Km0Nk6JptOhtzSP6NgzlqUadokic1d2lTOlA7LDAtU3qEkf6txWJGuYlApVXL7sSR_BqO2a_EFiFIbipHQW2lV4ayymNkcPWkNlKrSNoJ3O0bU33t8jTqci-eq7tlWE9vqwLZ6G8EZ82pPydjYYaBbLuphrdSVR3JydVaaMit8JpVzOTp0hc8Tb1IVwemO0_UgsKs6J1tOoRfFkxG82T8mUePzE9Nit-lpuC-b0hE87xfGfiY5xZkMXReBOlgyB1M9fNJ--xrgvBnuSGqdRfB-t7p-z-vf_-Ll_5G_gvsZCwBnMOpTGK2XG3xN_tTajuG4mlfjQYzofnZ-_fETjU7ldBz2KOh6VahfKFknZw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG8CBYwEJ4iaOC_7UCEKrVrarhBqpd6CHU8WDk3KZhe0f4Sfw29jJo-tltet18RKnMzDMx7P9wE8T61Bpwv0C0q-_DgtSt9EBn2dZhiESObluHf4aJzuncTvT5PTNfg59MLwscrBJ7aO2tUF75FvRuRsKTamgP_1-VefWaO4ujpQaJieWsFttRBjfWPHAS6-UwrXbO2_I3m_kHJ35_jtnt-zDPhFrOXMpwWMVi2baEWZi7WYhmERBDZyYZE5kzhMJMaoSocpBReFw4wMkxGUVMJcW0FEz70C6zFvoIxgfXtn_OHjcpeH62hxqPtunSBSmw2tmNzVJmM_4-DMX6ysiC1xwN-i3T8Pbf5WuW0XxN2bcKOPZMWbTvVuwRpWt-Fqx225uAM_2tbes9rRGLOE_xR1KSyzUghyLWXJflZ8o3S91Q9Bl7u-zIVo5pZ3iBrBB_Mn4sxMKm63FFPk3IE0VSDF_bMecFuYygl639Q0TBMl6MXoMyg3A_-ujLwLJ5cinnswquoKH4BItKF8DUubWhU7qyxKG2FJHgxTlWnrwctBEPl5h_WRtzX6SOWd2HISW96KLV94sM2yWo5knO72Qj2d5L3Z51mJFHBrmZhExqVMlXMROnRxGQWlCZUHG4Ok8955NPmFqnvwbHmbzJ5rOabCet6NYY44pT243ynGciYR5bwMo-eBWlGZlamu3qm-fG6hxRl6KdVaevBq0K6Lef37Xzz8_2c8hWt7x0eH-eH--OARXJes_HySUm_AaDad42OK62b2SW88Aj5dtr3-AqbeZNE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKEYgLYi2BAkaCE0STxE5iHxACyqilUHGg0tyCHT8PHJqUyQwof4Qfw6_jvSxTDdut18RKnLzdb_kYe5xZA06XEJYYfIUyK31ohIFQZzlEMaB4Oeodfn-U7R_Lt7N0tsV-jr0wVFY56sROUbu6pDPyiUBli74xOvwTP5RFfNibvjj9GhKCFGVaRziNnkUOof2O4Vvz_GAPaf0kSaZvPr7eDweEgbCUOlmGaLzQYtlUK4xarIUsjssossLFZe5M6iBNQILyDjJ0LEoHOQolTU9SKeFsRQKfe4FdzIWUBBuRz_L1-Q5l0GSshz6dSKhJg7aS-tkSGebkloXthi3sIAP-5uf-Wa75W862M4XTa-zq4MPylz3TXWdbUN1gl3pUy_Ym-9E19Z7UDteY9eBPXntuCY-Co1LxnjQs_4aBescZHC_3HZktb1aWzoYaTiX5c35i5hU1WvIFUNSAPMoBPf7lMGqbm8pxfN_CNAQQxfHFENI4bhr5u7HyFjs-F-LcZttVXcEdxlNtMFIDbzOrpLPKQmIFeNRdkKlc24A9HQlRnPZTPoouOy9U0ZOtQLIVHdmKNmCviFbrlTShu7tQL-bFIPBF7gFdbZ2kJk2kTzLlnAAHTnoReROrgO2OlC4GtdEUZ0wesEfr2yjwlMUxFdSrfg2hwykdsJ2eMdY7ERjt0gC9gKkNltnY6uad6svnbqg4DV3KtE4C9mzkrrN9_ftf3P3_Zzxkl1FKi3cHR4f32JWEeJ9KKPUu214uVnAfHbqlfdBJDmefzltUfwH32mJt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multimodal+assessment+of+brain+stiffness+variation+in+healthy+subjects+using+magnetic+resonance+elastography+and+ultrasound+time-harmonic+elastography&rft.jtitle=Scientific+reports&rft.au=Klemmer+Chand%C3%ADa%2C+Stefan&rft.au=Schattenfroh%2C+Jakob&rft.au=Brinker%2C+Spencer+T.&rft.au=Tzsch%C3%A4tzsch%2C+Heiko&rft.date=2024-11-19&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-024-79991-y&rft.externalDocID=10_1038_s41598_024_79991_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon