Experimental study on effect of wick structures on thermal performance enhancement of cylindrical heat pipes
The effect of varying wick structures viz. mesh, sintered and composite wick (sintered-mesh) on the thermal enhancement of cylindrical heat pipes is experimentally investigated. In addition, the investigation focused on the effect of inclination angle and heat input of heat pipe. Surfactant free CuO...
Saved in:
| Published in | Journal of thermal analysis and calorimetry Vol. 136; no. 1; pp. 389 - 400 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Cham
Springer International Publishing
01.04.2019
Springer Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1388-6150 1588-2926 |
| DOI | 10.1007/s10973-018-7842-2 |
Cover
| Abstract | The effect of varying wick structures viz. mesh, sintered and composite wick (sintered-mesh) on the thermal enhancement of cylindrical heat pipes is experimentally investigated. In addition, the investigation focused on the effect of inclination angle and heat input of heat pipe. Surfactant free CuO nano-fluid with a mass concentration of 1.0% is used as a working fluid. The energy and exergy analysis of heat pipe was also conducted at various conditions. To analyze the distinctive performance of composite heat pipe, a heat pipe is filled with DI water and the obtained results are compared with nanofluid results. The maximum heat transfer capability of composite heat pipe is improved by 35.71% and 18.75% compared with mesh and sintered wicks. The composite heat pipe with CuO nanofluid as working fluid instead of DI water improves the heat transport capacity by 11.76%. Surface temperature of heat pipe significantly reduces by varying the wick structure viz. mesh, sintered and composite wick. The composite heat pipe with 1.0 mass% of CuO nanofluid obtained 3.7 °C reduction in surface temperature at evaporator section compared with DI water. Thermal resistance of heat pipe is gradually reduces with increasing inclination angle. The maximum reduction is observed for composite wick, sintered and mesh wick heat pipes are 47.50, 43.70 and 24.39% respectively at 45° inclination angle compared with horizontal axis. |
|---|---|
| AbstractList | The effect of varying wick structures viz. mesh, sintered and composite wick (sintered-mesh) on the thermal enhancement of cylindrical heat pipes is experimentally investigated. In addition, the investigation focused on the effect of inclination angle and heat input of heat pipe. Surfactant free CuO nano-fluid with a mass concentration of 1.0% is used as a working fluid. The energy and exergy analysis of heat pipe was also conducted at various conditions. To analyze the distinctive performance of composite heat pipe, a heat pipe is filled with DI water and the obtained results are compared with nanofluid results. The maximum heat transfer capability of composite heat pipe is improved by 35.71% and 18.75% compared with mesh and sintered wicks. The composite heat pipe with CuO nanofluid as working fluid instead of DI water improves the heat transport capacity by 11.76%. Surface temperature of heat pipe significantly reduces by varying the wick structure viz. mesh, sintered and composite wick. The composite heat pipe with 1.0 mass% of CuO nanofluid obtained 3.7 °C reduction in surface temperature at evaporator section compared with DI water. Thermal resistance of heat pipe is gradually reduces with increasing inclination angle. The maximum reduction is observed for composite wick, sintered and mesh wick heat pipes are 47.50, 43.70 and 24.39% respectively at 45° inclination angle compared with horizontal axis. The effect of varying wick structures viz. mesh, sintered and composite wick (sintered-mesh) on the thermal enhancement of cylindrical heat pipes is experimentally investigated. In addition, the investigation focused on the effect of inclination angle and heat input of heat pipe. Surfactant free CuO nano-fluid with a mass concentration of 1.0% is used as a working fluid. The energy and exergy analysis of heat pipe was also conducted at various conditions. To analyze the distinctive performance of composite heat pipe, a heat pipe is filled with DI water and the obtained results are compared with nanofluid results. The maximum heat transfer capability of composite heat pipe is improved by 35.71% and 18.75% compared with mesh and sintered wicks. The composite heat pipe with CuO nanofluid as working fluid instead of DI water improves the heat transport capacity by 11.76%. Surface temperature of heat pipe significantly reduces by varying the wick structure viz. mesh, sintered and composite wick. The composite heat pipe with 1.0 mass% of CuO nanofluid obtained 3.7 °C reduction in surface temperature at evaporator section compared with DI water. Thermal resistance of heat pipe is gradually reduces with increasing inclination angle. The maximum reduction is observed for composite wick, sintered and mesh wick heat pipes are 47.50, 43.70 and 24.39% respectively at 45° inclination angle compared with horizontal axis. |
| Audience | Academic |
| Author | Kamatchi, R. Vijayakumar, P. Ravikumar, M. Kumaresan, G. Selvakumar, P. |
| Author_xml | – sequence: 1 givenname: G. surname: Kumaresan fullname: Kumaresan, G. email: kumareshgct@gmail.com organization: Department of Mechanical Engineering, Centre for Thermal and Fluid Sciences, Bannari Amman Institute of Technology – sequence: 2 givenname: P. surname: Vijayakumar fullname: Vijayakumar, P. organization: Department of Mechanical Engineering, Sri Shakthi Institute of Engineering and Technology – sequence: 3 givenname: M. surname: Ravikumar fullname: Ravikumar, M. organization: Department of Mechanical Engineering, Centre for Thermal and Fluid Sciences, Bannari Amman Institute of Technology – sequence: 4 givenname: R. surname: Kamatchi fullname: Kamatchi, R. organization: Department of Mechanical Engineering, Kongu Engineering College – sequence: 5 givenname: P. surname: Selvakumar fullname: Selvakumar, P. organization: School of Mechanical and Building Sciences, Vellore Institute of Technology |
| BookMark | eNp9kV1rFTEQhoNUsK3-AO8WvPJia5LdfF2WUrVQEPy4DjnZyTmpe7JrksWef-8sK0gFJRczTN5nhpn3gpylKQEhrxm9YpSqd4VRo7qWMt0q3fOWPyPnTGjdcsPlGeYd5pIJ-oJclPJAKTWGsnMy3j7OkOMRUnVjU-oynJopNRAC-NpMofkZ_Xes58XXJUNZP-sB8hHVCIYJs-ShgXRY49pnpfxpjGnI0aPsAK42c5yhvCTPgxsLvPodL8m397dfbz62958-3N1c37e-N7y2jHZDEL2SVLLOCa-lGoISigklpaZGcjGI3cBDT3vRSW_MTjIFQbPdbqCm6y7Jm63vnKcfC5RqH6YlJxxpOUNccs4Fqq421d6NYGMKU83O4xvgGD2eN0SsXwtljNC95gi8fQKgpsJj3bulFHv35fNTLdu0Pk-lZAh2xiu7fLKM2tUxuzlm0TG7OmZXRv3F-FhdjTgmuzj-l-QbWXBK2kP-s_C_oV_z26uo |
| CitedBy_id | crossref_primary_10_1007_s10973_019_08176_x crossref_primary_10_1016_j_matpr_2020_04_250 crossref_primary_10_1016_j_applthermaleng_2023_120337 crossref_primary_10_3390_en16010563 crossref_primary_10_1016_j_est_2025_115475 crossref_primary_10_2298_TSCI210528263H crossref_primary_10_1016_j_applthermaleng_2022_119023 crossref_primary_10_1007_s10973_019_08094_y crossref_primary_10_1007_s10973_019_08930_1 crossref_primary_10_1016_j_matpr_2020_06_236 crossref_primary_10_1016_j_matpr_2020_04_249 crossref_primary_10_1007_s10973_024_13580_z crossref_primary_10_1016_j_matpr_2020_04_248 crossref_primary_10_1007_s10973_023_12375_y crossref_primary_10_1007_s42860_023_00225_9 crossref_primary_10_1007_s10973_021_10732_3 crossref_primary_10_1016_j_matpr_2020_04_244 crossref_primary_10_1016_j_ijthermalsci_2024_109398 crossref_primary_10_1115_1_4056241 crossref_primary_10_1007_s10973_020_09944_w crossref_primary_10_2174_2666145413999200911141451 crossref_primary_10_1016_j_micpro_2021_104033 crossref_primary_10_1016_j_matpr_2022_06_452 crossref_primary_10_2298_TSCI201110210M crossref_primary_10_1177_09544062221105987 crossref_primary_10_1016_j_applthermaleng_2023_120402 crossref_primary_10_1016_j_est_2022_104385 crossref_primary_10_1007_s10973_019_08414_2 crossref_primary_10_1016_j_applthermaleng_2023_121676 crossref_primary_10_1016_j_matpr_2020_07_231 crossref_primary_10_1016_j_applthermaleng_2024_123373 crossref_primary_10_1016_j_matpr_2023_08_055 crossref_primary_10_1088_1757_899X_755_1_012109 crossref_primary_10_1016_j_matpr_2020_04_251 crossref_primary_10_1016_j_enbuild_2020_110690 crossref_primary_10_2298_TSCI230816267R |
| Cites_doi | 10.1016/j.icheatmasstransfer.2009.10.001 10.1007/s10973-018-7276-x 10.1016/j.jtice.2017.10.032 10.2514/1.38190 10.1016/j.ijheatmasstransfer.2014.04.007 10.1016/j.icheatmasstransfer.2014.08.001 10.1080/02533839.2005.9671001 10.1007/s10973-016-5550-3 10.1007/s00231-009-0565-y 10.1016/j.icheatmasstransfer.2014.07.015 10.1080/01457632.2014.916157 10.1080/01457630802125740 10.1007/s10973-018-7305-9 10.1080/01457630701421810 10.1080/089161500269517 10.1016/j.expthermflusci.2013.02.007 10.1007/s10973-018-7254-3 10.1016/j.ijheatmasstransfer.2012.11.037 10.1016/j.ijheatmasstransfer.2014.01.029 10.1007/s10973-018-7314-8 10.1080/01457632.2013.730426 |
| ContentType | Journal Article |
| Copyright | Akadémiai Kiadó, Budapest, Hungary 2018 COPYRIGHT 2019 Springer Copyright Springer Nature B.V. 2019 |
| Copyright_xml | – notice: Akadémiai Kiadó, Budapest, Hungary 2018 – notice: COPYRIGHT 2019 Springer – notice: Copyright Springer Nature B.V. 2019 |
| DBID | AAYXX CITATION ISR |
| DOI | 10.1007/s10973-018-7842-2 |
| DatabaseName | CrossRef Gale In Context: Science |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1588-2926 |
| EndPage | 400 |
| ExternalDocumentID | A579958482 10_1007_s10973_018_7842_2 |
| GroupedDBID | -4Y -58 -5G -BR -EM -~C .86 .VR 06C 06D 0R~ 0VY 1N0 203 29L 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ AXYYD AYJHY AZFZN B-. B0M BA0 BDATZ BGNMA BSONS CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F IAO IHE IJ- IKXTQ ISR ITC ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P9N PF0 PT4 PT5 QOK QOR QOS R89 R9I RKA RNS ROL RPX RSV S16 S27 S3B SAP SCG SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z88 Z8M Z8N Z8O Z8P Z8Q Z8R Z8T Z8W Z91 Z92 ZMTXR ~02 ~8M -Y2 2.D 2P1 2VQ 5QI AAIKT AAPKM AARHV AAYTO AAYXX ABBRH ABDBE ABFSG ABMNI ABQSL ABRTQ ABULA ACBXY ACSTC ADHKG ADPHR AEBTG AEFIE AEKMD AEZWR AFDZB AFEXP AFGCZ AFHIU AFOHR AGGDS AGQPQ AHPBZ AHWEU AI. AIXLP AJBLW ATHPR AYFIA CAG CITATION COF H13 MET MKB N2Q NDZJH O9- OVD RNI RZC RZE RZK S1Z S26 S28 SCLPG T16 TEORI VH1 W4F ZE2 |
| ID | FETCH-LOGICAL-c492t-103df54760613a5c867df75715766809625d5bd2f404536c99b617ef81bbd0933 |
| IEDL.DBID | U2A |
| ISSN | 1388-6150 |
| IngestDate | Wed Sep 17 13:52:15 EDT 2025 Mon Oct 20 16:21:55 EDT 2025 Thu Oct 16 14:21:06 EDT 2025 Wed Oct 01 01:07:18 EDT 2025 Thu Apr 24 23:00:05 EDT 2025 Fri Feb 21 02:33:16 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Exergy Thermal resistance Heat transport capacity Heat pipe Composite wick |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c492t-103df54760613a5c867df75715766809625d5bd2f404536c99b617ef81bbd0933 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2196262225 |
| PQPubID | 2043843 |
| PageCount | 12 |
| ParticipantIDs | proquest_journals_2196262225 gale_infotracacademiconefile_A579958482 gale_incontextgauss_ISR_A579958482 crossref_primary_10_1007_s10973_018_7842_2 crossref_citationtrail_10_1007_s10973_018_7842_2 springer_journals_10_1007_s10973_018_7842_2 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-04-01 |
| PublicationDateYYYYMMDD | 2019-04-01 |
| PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Dordrecht |
| PublicationSubtitle | An International Forum for Thermal Studies |
| PublicationTitle | Journal of thermal analysis and calorimetry |
| PublicationTitleAbbrev | J Therm Anal Calorim |
| PublicationYear | 2019 |
| Publisher | Springer International Publishing Springer Springer Nature B.V |
| Publisher_xml | – name: Springer International Publishing – name: Springer – name: Springer Nature B.V |
| References | Kiatsiriroat, Nuntaphan, Tiansuwan (CR8) 2000; 13 Asirvatham, Nimmagadda, Wongwises (CR4) 2013; 60 Motevasel, Nazar, Jamialahmadi (CR6) 2018 Motlagh, Sharifi, Ahmadi, Badfar (CR7) 2018 Kumaresan, Venkatachalapathy, Asirvatham, Wongwises (CR21) 2014; 57 Kumar, Gangacharyulu, Tathgir (CR1) 2007; 28 Mashaei, Shahryari, Madani (CR18) 2016; 126 Hassan, Harmand (CR11) 2014 Solomon, Ramachandran, Asirvatham, Pillai (CR12) 2014; 75 Liu, Li (CR2) 2009; 23 CR15 Toghraie, Mahmoudi, Akbari, Pourfattah, Heydari (CR20) 2018 Franchi, Huang (CR22) 2010; 29 Vijayakumar, Navaneethakrishnan, Kumaresan, Kamatchi (CR3) 2017; 81 Wu, Cheng (CR13) 2010; 37 Mohseni-Gharyehsafa, Ebrahimi-Moghadam, Okati, Farzaneh-Gord, Ahmadi, Lorenzini (CR19) 2018 Paramatthanuwat, Boothaisong, Rittidech, Booddachan (CR9) 2017; 46 Hassan, Harmand (CR10) 2013; 34 Solomon, Ramachandran, Pillai (CR14) 2013; 48 Kumaresan, Venkatachalapathy (CR17) 2012; 3 Tsai, Chang, Chan, Wu, Chen (CR16) 2005; 28 Kumaresan, Venkatachalapathy, Asirvatham (CR5) 2014; 72 Khaleduzzaman, Sohel (CR23) 2014; 57 T Kiatsiriroat (7842_CR8) 2000; 13 SY Motlagh (7842_CR7) 2018 SS Khaleduzzaman (7842_CR23) 2014; 57 H Hassan (7842_CR10) 2013; 34 G Kumaresan (7842_CR5) 2014; 72 M Motevasel (7842_CR6) 2018 G Kumaresan (7842_CR17) 2012; 3 D Toghraie (7842_CR20) 2018 AB Solomon (7842_CR12) 2014; 75 H Hassan (7842_CR11) 2014 AB Solomon (7842_CR14) 2013; 48 HY Wu (7842_CR13) 2010; 37 LG Asirvatham (7842_CR4) 2013; 60 Y-S Tsai (7842_CR16) 2005; 28 George Franchi (7842_CR22) 2010; 29 PR Mashaei (7842_CR18) 2016; 126 T Paramatthanuwat (7842_CR9) 2017; 46 7842_CR15 M Vijayakumar (7842_CR3) 2017; 81 B Mohseni-Gharyehsafa (7842_CR19) 2018 G Kumaresan (7842_CR21) 2014; 57 V Kumar (7842_CR1) 2007; 28 ZH Liu (7842_CR2) 2009; 23 |
| References_xml | – volume: 37 start-page: 111 year: 2010 end-page: 115 ident: CR13 article-title: Thermal performance of an oscillating heat pipe with Al O -water nanofluids publication-title: Int Commun Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2009.10.001 – year: 2018 ident: CR19 article-title: Optimizing flow properties of the different nanofluids inside a circular tube by using entropy generation minimization approach publication-title: J Therm Anal Calorim doi: 10.1007/s10973-018-7276-x – volume: 81 start-page: 190 year: 2017 end-page: 198 ident: CR3 article-title: A study on heat transfer characteristics of inclined copper sintered wick heat pipe using surfactant free CuO and Al2O3 nanofluids publication-title: J Taiwan Inst Chem Eng doi: 10.1016/j.jtice.2017.10.032 – volume: 23 start-page: 170 year: 2009 end-page: 175 ident: CR2 article-title: Thermal performance of axially micro-grooved heat pipe using carbon nanotube suspensions publication-title: J Thermophys Heat Transfer doi: 10.2514/1.38190 – volume: 75 start-page: 523 year: 2014 end-page: 533 ident: CR12 article-title: Numerical analysis of a screen mesh wick heat pipe with Cu/water nanofluid publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2014.04.007 – volume: 57 start-page: 208 year: 2014 end-page: 215 ident: CR21 article-title: Comparative study on heat transfer characteristics of sintered and mesh wick heat pipes using CuO nanofluids publication-title: Int Commun Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2014.08.001 – volume: 28 start-page: 359 issue: 2 year: 2005 end-page: 363 ident: CR16 article-title: Enhancement of thermal performance in a sintered miniature heat pipe publication-title: J Chin Inst Eng doi: 10.1080/02533839.2005.9671001 – ident: CR15 – volume: 126 start-page: 891 issue: 2 year: 2016 end-page: 904 ident: CR18 article-title: Numerical hydrothermal analysis of water-Al O nanofluid forced convection in a narrow annulus filled by porous medium considering variable properties publication-title: J Therm Anal Calorim doi: 10.1007/s10973-016-5550-3 – volume: 3 start-page: 1 issue: 4 year: 2012 end-page: 8 ident: CR17 article-title: A review on heat Transfer enhancement studies of heat pipes using nanofluids publication-title: Front Heat Pipes – volume: 46 start-page: 281 year: 2017 end-page: 285 ident: CR9 article-title: Heat transfer characteristics of a two-phase closed thermosyphon using de ionized water mixed with silver nano publication-title: Heat Mass Transfer. doi: 10.1007/s00231-009-0565-y – volume: 57 start-page: 118 year: 2014 end-page: 127 ident: CR23 article-title: Energy and exergy analysis of alumina–water nanofluid for an electronic liquid cooling system publication-title: Int Commun Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2014.07.015 – year: 2014 ident: CR11 article-title: An experimental and numerical study on the effects of the flat heat pipe wick structure on its thermal performance publication-title: Heat Transf Eng doi: 10.1080/01457632.2014.916157 – volume: 29 start-page: 873 issue: 10 year: 2010 end-page: 884 ident: CR22 article-title: Development of composite wicks for heat pipe performance enhancement publication-title: Heat Transf Eng doi: 10.1080/01457630802125740 – year: 2018 ident: CR7 article-title: Presentation of new thermal conductivity expression for Al O –water and CuO–water nanofluids using gene expression programming (GEP) publication-title: J Therm Anal Calorim doi: 10.1007/s10973-018-7305-9 – volume: 28 start-page: 954 issue: 11 year: 2007 end-page: 965 ident: CR1 article-title: Heat transfer studies of a heat pipe publication-title: Heat Transf Eng doi: 10.1080/01457630701421810 – volume: 13 start-page: 137 issue: 2 year: 2000 end-page: 152 ident: CR8 article-title: Thermal performance enhancement of thermosyphon heat pipe with binary working fluids publication-title: Exp Heat Transf: A J Therm Energy Gener, Transp, Storage, Convers doi: 10.1080/089161500269517 – volume: 48 start-page: 49 year: 2013 end-page: 57 ident: CR14 article-title: Thermal performance of anodized two phase closed thermosyphon (TPCT) publication-title: Exp Therm Fluid Sci doi: 10.1016/j.expthermflusci.2013.02.007 – year: 2018 ident: CR20 article-title: The effect of using water/CuO nanofluid and L-shaped porous ribs on the performance evaluation criterion of microchannels publication-title: J Therm Anal Calorim doi: 10.1007/s10973-018-7254-3 – volume: 60 start-page: 201 year: 2013 end-page: 209 ident: CR4 article-title: Heat transfer performance of screen mesh wick heat pipes using silver–water nanofluid publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2012.11.037 – volume: 72 start-page: 507 year: 2014 end-page: 516 ident: CR5 article-title: Experimental investigation on enhancement in thermal characteristics of sintered wick heat pipe using CuO nanofluids publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2014.01.029 – year: 2018 ident: CR6 article-title: Experimental study on turbulent convective heat transfer of water-based nanofluids containing alumina, copper oxides and silicon carbide nanoparticles publication-title: J Therm Anal Calorim doi: 10.1007/s10973-018-7314-8 – volume: 34 start-page: 596 issue: 7 year: 2013 end-page: 607 ident: CR10 article-title: A three-dimensional study of electronic component cooling using a flat heat pipe publication-title: Heat Transf Eng doi: 10.1080/01457632.2013.730426 – volume: 23 start-page: 170 year: 2009 ident: 7842_CR2 publication-title: J Thermophys Heat Transfer doi: 10.2514/1.38190 – year: 2014 ident: 7842_CR11 publication-title: Heat Transf Eng doi: 10.1080/01457632.2014.916157 – volume: 75 start-page: 523 year: 2014 ident: 7842_CR12 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2014.04.007 – volume: 28 start-page: 359 issue: 2 year: 2005 ident: 7842_CR16 publication-title: J Chin Inst Eng doi: 10.1080/02533839.2005.9671001 – volume: 57 start-page: 118 year: 2014 ident: 7842_CR23 publication-title: Int Commun Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2014.07.015 – year: 2018 ident: 7842_CR7 publication-title: J Therm Anal Calorim doi: 10.1007/s10973-018-7305-9 – volume: 3 start-page: 1 issue: 4 year: 2012 ident: 7842_CR17 publication-title: Front Heat Pipes – year: 2018 ident: 7842_CR6 publication-title: J Therm Anal Calorim doi: 10.1007/s10973-018-7314-8 – volume: 46 start-page: 281 year: 2017 ident: 7842_CR9 publication-title: Heat Mass Transfer. doi: 10.1007/s00231-009-0565-y – volume: 37 start-page: 111 year: 2010 ident: 7842_CR13 publication-title: Int Commun Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2009.10.001 – volume: 60 start-page: 201 year: 2013 ident: 7842_CR4 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2012.11.037 – volume: 13 start-page: 137 issue: 2 year: 2000 ident: 7842_CR8 publication-title: Exp Heat Transf: A J Therm Energy Gener, Transp, Storage, Convers doi: 10.1080/089161500269517 – ident: 7842_CR15 – volume: 81 start-page: 190 year: 2017 ident: 7842_CR3 publication-title: J Taiwan Inst Chem Eng doi: 10.1016/j.jtice.2017.10.032 – volume: 28 start-page: 954 issue: 11 year: 2007 ident: 7842_CR1 publication-title: Heat Transf Eng doi: 10.1080/01457630701421810 – volume: 126 start-page: 891 issue: 2 year: 2016 ident: 7842_CR18 publication-title: J Therm Anal Calorim doi: 10.1007/s10973-016-5550-3 – volume: 72 start-page: 507 year: 2014 ident: 7842_CR5 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2014.01.029 – volume: 57 start-page: 208 year: 2014 ident: 7842_CR21 publication-title: Int Commun Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2014.08.001 – volume: 48 start-page: 49 year: 2013 ident: 7842_CR14 publication-title: Exp Therm Fluid Sci doi: 10.1016/j.expthermflusci.2013.02.007 – year: 2018 ident: 7842_CR20 publication-title: J Therm Anal Calorim doi: 10.1007/s10973-018-7254-3 – year: 2018 ident: 7842_CR19 publication-title: J Therm Anal Calorim doi: 10.1007/s10973-018-7276-x – volume: 29 start-page: 873 issue: 10 year: 2010 ident: 7842_CR22 publication-title: Heat Transf Eng doi: 10.1080/01457630802125740 – volume: 34 start-page: 596 issue: 7 year: 2013 ident: 7842_CR10 publication-title: Heat Transf Eng doi: 10.1080/01457632.2013.730426 |
| SSID | ssj0009901 |
| Score | 2.4098883 |
| Snippet | The effect of varying wick structures viz. mesh, sintered and composite wick (sintered-mesh) on the thermal enhancement of cylindrical heat pipes is... |
| SourceID | proquest gale crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 389 |
| SubjectTerms | Analytical Chemistry Chemistry Chemistry and Materials Science Copper oxides Evaporators Exergy Heat Heat pipes Inclination angle Inorganic Chemistry Measurement Science and Instrumentation Nanofluids Performance enhancement Physical Chemistry Polymer Sciences Reduction Sintering Surface active agents Surface temperature Thermal resistance Water Water resistance Wicks Working fluids |
| Title | Experimental study on effect of wick structures on thermal performance enhancement of cylindrical heat pipes |
| URI | https://link.springer.com/article/10.1007/s10973-018-7842-2 https://www.proquest.com/docview/2196262225 |
| Volume | 136 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1588-2926 dateEnd: 20241031 omitProxy: true ssIdentifier: ssj0009901 issn: 1388-6150 databaseCode: ABDBF dateStart: 20030401 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1588-2926 dateEnd: 20241031 omitProxy: false ssIdentifier: ssj0009901 issn: 1388-6150 databaseCode: ADMLS dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1588-2926 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009901 issn: 1388-6150 databaseCode: AFBBN dateStart: 19690301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1588-2926 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009901 issn: 1388-6150 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1588-2926 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009901 issn: 1388-6150 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gO8AF8RSDMUUICQlUaWubtjl208YAsQMwaZyiNk0AaXSVuh3499h90I2XxKmHOGlrO46d2F8IOWNSWpozaUimTcPWOjK4tELDUdwNmEaIN9wauBs5w7F9M2GToo47LbPdyyPJzFIvFbtxF3N_PMP1sKZkndQZonmBEo9Nv0La5e08ygIVQLTz8ijzpyFWFqOvJvnb2Wi25Ay2yVbhK1I_F-4OWVPxLtnolVe07ZFpfwmfn2ZIsXQW0zxHg840xXvSaQ4Ru4C4GhvR4XsD6qSqGKAqfsEnjoO95DvwJ8qwQyjaapq8JirdJ-NB_7E3NIrrEwxpc3MOBtaKNLNdB5fsgEnge6Rd5nYgxHA8CF1MFrEwMrUNbp3lSM5DcGeUBkc2jHCj44DU4lmsDgm1wtAOtOlFKrBsS-lQBRymOofZrzrgkDVIu-SjkAW2OF5xMRUVKjKyXgDrBbJemA1y8dklyYE1_iI-ReEIBKyIMSPmOVikqbh-uBc-Q0g7z_aA6Lwg0jN4uQyKAgP4BcS4WqFslkIWxZRNBZhuCO4w_G2Qy1LwVfOv33b0L-pjsgkuF89zf5qkBhqgTsCtmYctUvcH3e4In1dPt_1WptYf7KDxGQ |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgHODCGzGeEUJCAhVBm7TNcUKD8TzAkOAUNWkCCOgmdTvAr8deW8Zb4tRDnTQP1_mc2F8ANoUxgZPCeEY43-POpZ40gfZCK6NEOKJ4o62B84uwdc1PbsRNmcedV9Hu1ZHkwFJ_SHaTEcX-xF4UU07JKIxx9E_8Gow1jm5Pm0OuXblX-FmoBMR3Xh1m_lTJp-Xoq1H-djo6WHQOp6BdNbeINXnc7ff0rnn9wuT4z_5Mw2QJQlmj0JoZGLHZLIwfVHe_zcFT8wPxPxtQ0LJOxorgD9ZxjC5gZwX3bB8ddnpJSPIZpbvDVARms3t6Uj1UyrxgQ9MBKQmjRYB1H7o2n4frw2b7oOWV9zJ4hku_h5Y7SJ3gUUhYIBEGJzR1kYj20XcJY_SJfJEKnfqOI14MQiOlRpxkHSJkndIOygLUsk5mF4EFWvPE-XFqk4AH1mmbSLQhEs2K3UekV4e9anqUKUnL6e6MJzWkW6ZhVDiMioZR-XXYfi_SLRg7_hLeoDlXxISRUajNXdLPc3V8dakagrjyYh6j0FYp5Dr4cZOUmQvYBSLP-iS5UumOKm1BrnBNQK-R_Oo67FSqMHz9a9uW_iW9DuOt9vmZOju-OF2GCcR1sggwWoEaaoNdRezU02vlv_IGDyENzw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEA4eoL6IJ66uGkQQlOLaJm3zuKwurheiLuxbaHOooG2h64P_3pke7q4X-NSHTNJ2JpnMJDPfELLPlfKs4MpR3LoOs1Y7Qnmx4xsRRNwixBseDVzf-Od9djHgg6rOaV5Hu9dXkmVOA6I0JcPjTNvjscQ3EWAcUOgEIeaXTJNZhjgJMKH7bnuEuitapccF0wGRz-trzZ-GmNiYvqrnb_ekxfbTXSKLld1I26Wgl8mUSVbIfKcu17ZKXs7GsPppgRpL04SW8Ro0tRRrptMSLvYNfGxsROPvFaizUfYANckTPnEc7KXegVe6wBGhqLdp9pyZfI30u2cPnXOnKqXgKCbcIShbT1vOAh-374grkIG2AQ9OwN3wQ3BjXK55rF3LwMTzfCVEDKaNsWDUxhoPPdbJTJImZoNQL45ZZN1Qm8hjnrGxiQQsewGawJyAcdYgrZqPUlU441ju4kWOEJKR9RJYL5H10m2Qw88uWQmy8RfxHgpHInhFgtExj9Fbnsve_Z1sc4S3C1kIRAcVkU3h5Sqqkg3gFxDvaoKyWQtZVss3l6DGwdFDV7hBjmrBj5p__bbNf1Hvkrnb06686t1cbpEFsMREGRLUJDMwGcw2WDvDeKeY0R8oIvUx |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+study+on+effect+of+wick+structures+on+thermal+performance+enhancement+of+cylindrical+heat+pipes&rft.jtitle=Journal+of+thermal+analysis+and+calorimetry&rft.au=Kumaresan%2C+G&rft.au=Vijayakumar%2C+P&rft.au=Ravikumar%2C+M&rft.au=Kamatchi%2C+R&rft.date=2019-04-01&rft.pub=Springer&rft.issn=1388-6150&rft.volume=136&rft.issue=1&rft.spage=389&rft_id=info:doi/10.1007%2Fs10973-018-7842-2&rft.externalDocID=A579958482 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1388-6150&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1388-6150&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1388-6150&client=summon |