Experimental study on effect of wick structures on thermal performance enhancement of cylindrical heat pipes

The effect of varying wick structures viz. mesh, sintered and composite wick (sintered-mesh) on the thermal enhancement of cylindrical heat pipes is experimentally investigated. In addition, the investigation focused on the effect of inclination angle and heat input of heat pipe. Surfactant free CuO...

Full description

Saved in:
Bibliographic Details
Published inJournal of thermal analysis and calorimetry Vol. 136; no. 1; pp. 389 - 400
Main Authors Kumaresan, G., Vijayakumar, P., Ravikumar, M., Kamatchi, R., Selvakumar, P.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.04.2019
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1388-6150
1588-2926
DOI10.1007/s10973-018-7842-2

Cover

Abstract The effect of varying wick structures viz. mesh, sintered and composite wick (sintered-mesh) on the thermal enhancement of cylindrical heat pipes is experimentally investigated. In addition, the investigation focused on the effect of inclination angle and heat input of heat pipe. Surfactant free CuO nano-fluid with a mass concentration of 1.0% is used as a working fluid. The energy and exergy analysis of heat pipe was also conducted at various conditions. To analyze the distinctive performance of composite heat pipe, a heat pipe is filled with DI water and the obtained results are compared with nanofluid results. The maximum heat transfer capability of composite heat pipe is improved by 35.71% and 18.75% compared with mesh and sintered wicks. The composite heat pipe with CuO nanofluid as working fluid instead of DI water improves the heat transport capacity by 11.76%. Surface temperature of heat pipe significantly reduces by varying the wick structure viz. mesh, sintered and composite wick. The composite heat pipe with 1.0 mass% of CuO nanofluid obtained 3.7 °C reduction in surface temperature at evaporator section compared with DI water. Thermal resistance of heat pipe is gradually reduces with increasing inclination angle. The maximum reduction is observed for composite wick, sintered and mesh wick heat pipes are 47.50, 43.70 and 24.39% respectively at 45° inclination angle compared with horizontal axis.
AbstractList The effect of varying wick structures viz. mesh, sintered and composite wick (sintered-mesh) on the thermal enhancement of cylindrical heat pipes is experimentally investigated. In addition, the investigation focused on the effect of inclination angle and heat input of heat pipe. Surfactant free CuO nano-fluid with a mass concentration of 1.0% is used as a working fluid. The energy and exergy analysis of heat pipe was also conducted at various conditions. To analyze the distinctive performance of composite heat pipe, a heat pipe is filled with DI water and the obtained results are compared with nanofluid results. The maximum heat transfer capability of composite heat pipe is improved by 35.71% and 18.75% compared with mesh and sintered wicks. The composite heat pipe with CuO nanofluid as working fluid instead of DI water improves the heat transport capacity by 11.76%. Surface temperature of heat pipe significantly reduces by varying the wick structure viz. mesh, sintered and composite wick. The composite heat pipe with 1.0 mass% of CuO nanofluid obtained 3.7 °C reduction in surface temperature at evaporator section compared with DI water. Thermal resistance of heat pipe is gradually reduces with increasing inclination angle. The maximum reduction is observed for composite wick, sintered and mesh wick heat pipes are 47.50, 43.70 and 24.39% respectively at 45° inclination angle compared with horizontal axis.
The effect of varying wick structures viz. mesh, sintered and composite wick (sintered-mesh) on the thermal enhancement of cylindrical heat pipes is experimentally investigated. In addition, the investigation focused on the effect of inclination angle and heat input of heat pipe. Surfactant free CuO nano-fluid with a mass concentration of 1.0% is used as a working fluid. The energy and exergy analysis of heat pipe was also conducted at various conditions. To analyze the distinctive performance of composite heat pipe, a heat pipe is filled with DI water and the obtained results are compared with nanofluid results. The maximum heat transfer capability of composite heat pipe is improved by 35.71% and 18.75% compared with mesh and sintered wicks. The composite heat pipe with CuO nanofluid as working fluid instead of DI water improves the heat transport capacity by 11.76%. Surface temperature of heat pipe significantly reduces by varying the wick structure viz. mesh, sintered and composite wick. The composite heat pipe with 1.0 mass% of CuO nanofluid obtained 3.7 °C reduction in surface temperature at evaporator section compared with DI water. Thermal resistance of heat pipe is gradually reduces with increasing inclination angle. The maximum reduction is observed for composite wick, sintered and mesh wick heat pipes are 47.50, 43.70 and 24.39% respectively at 45° inclination angle compared with horizontal axis.
Audience Academic
Author Kamatchi, R.
Vijayakumar, P.
Ravikumar, M.
Kumaresan, G.
Selvakumar, P.
Author_xml – sequence: 1
  givenname: G.
  surname: Kumaresan
  fullname: Kumaresan, G.
  email: kumareshgct@gmail.com
  organization: Department of Mechanical Engineering, Centre for Thermal and Fluid Sciences, Bannari Amman Institute of Technology
– sequence: 2
  givenname: P.
  surname: Vijayakumar
  fullname: Vijayakumar, P.
  organization: Department of Mechanical Engineering, Sri Shakthi Institute of Engineering and Technology
– sequence: 3
  givenname: M.
  surname: Ravikumar
  fullname: Ravikumar, M.
  organization: Department of Mechanical Engineering, Centre for Thermal and Fluid Sciences, Bannari Amman Institute of Technology
– sequence: 4
  givenname: R.
  surname: Kamatchi
  fullname: Kamatchi, R.
  organization: Department of Mechanical Engineering, Kongu Engineering College
– sequence: 5
  givenname: P.
  surname: Selvakumar
  fullname: Selvakumar, P.
  organization: School of Mechanical and Building Sciences, Vellore Institute of Technology
BookMark eNp9kV1rFTEQhoNUsK3-AO8WvPJia5LdfF2WUrVQEPy4DjnZyTmpe7JrksWef-8sK0gFJRczTN5nhpn3gpylKQEhrxm9YpSqd4VRo7qWMt0q3fOWPyPnTGjdcsPlGeYd5pIJ-oJclPJAKTWGsnMy3j7OkOMRUnVjU-oynJopNRAC-NpMofkZ_Xes58XXJUNZP-sB8hHVCIYJs-ShgXRY49pnpfxpjGnI0aPsAK42c5yhvCTPgxsLvPodL8m397dfbz62958-3N1c37e-N7y2jHZDEL2SVLLOCa-lGoISigklpaZGcjGI3cBDT3vRSW_MTjIFQbPdbqCm6y7Jm63vnKcfC5RqH6YlJxxpOUNccs4Fqq421d6NYGMKU83O4xvgGD2eN0SsXwtljNC95gi8fQKgpsJj3bulFHv35fNTLdu0Pk-lZAh2xiu7fLKM2tUxuzlm0TG7OmZXRv3F-FhdjTgmuzj-l-QbWXBK2kP-s_C_oV_z26uo
CitedBy_id crossref_primary_10_1007_s10973_019_08176_x
crossref_primary_10_1016_j_matpr_2020_04_250
crossref_primary_10_1016_j_applthermaleng_2023_120337
crossref_primary_10_3390_en16010563
crossref_primary_10_1016_j_est_2025_115475
crossref_primary_10_2298_TSCI210528263H
crossref_primary_10_1016_j_applthermaleng_2022_119023
crossref_primary_10_1007_s10973_019_08094_y
crossref_primary_10_1007_s10973_019_08930_1
crossref_primary_10_1016_j_matpr_2020_06_236
crossref_primary_10_1016_j_matpr_2020_04_249
crossref_primary_10_1007_s10973_024_13580_z
crossref_primary_10_1016_j_matpr_2020_04_248
crossref_primary_10_1007_s10973_023_12375_y
crossref_primary_10_1007_s42860_023_00225_9
crossref_primary_10_1007_s10973_021_10732_3
crossref_primary_10_1016_j_matpr_2020_04_244
crossref_primary_10_1016_j_ijthermalsci_2024_109398
crossref_primary_10_1115_1_4056241
crossref_primary_10_1007_s10973_020_09944_w
crossref_primary_10_2174_2666145413999200911141451
crossref_primary_10_1016_j_micpro_2021_104033
crossref_primary_10_1016_j_matpr_2022_06_452
crossref_primary_10_2298_TSCI201110210M
crossref_primary_10_1177_09544062221105987
crossref_primary_10_1016_j_applthermaleng_2023_120402
crossref_primary_10_1016_j_est_2022_104385
crossref_primary_10_1007_s10973_019_08414_2
crossref_primary_10_1016_j_applthermaleng_2023_121676
crossref_primary_10_1016_j_matpr_2020_07_231
crossref_primary_10_1016_j_applthermaleng_2024_123373
crossref_primary_10_1016_j_matpr_2023_08_055
crossref_primary_10_1088_1757_899X_755_1_012109
crossref_primary_10_1016_j_matpr_2020_04_251
crossref_primary_10_1016_j_enbuild_2020_110690
crossref_primary_10_2298_TSCI230816267R
Cites_doi 10.1016/j.icheatmasstransfer.2009.10.001
10.1007/s10973-018-7276-x
10.1016/j.jtice.2017.10.032
10.2514/1.38190
10.1016/j.ijheatmasstransfer.2014.04.007
10.1016/j.icheatmasstransfer.2014.08.001
10.1080/02533839.2005.9671001
10.1007/s10973-016-5550-3
10.1007/s00231-009-0565-y
10.1016/j.icheatmasstransfer.2014.07.015
10.1080/01457632.2014.916157
10.1080/01457630802125740
10.1007/s10973-018-7305-9
10.1080/01457630701421810
10.1080/089161500269517
10.1016/j.expthermflusci.2013.02.007
10.1007/s10973-018-7254-3
10.1016/j.ijheatmasstransfer.2012.11.037
10.1016/j.ijheatmasstransfer.2014.01.029
10.1007/s10973-018-7314-8
10.1080/01457632.2013.730426
ContentType Journal Article
Copyright Akadémiai Kiadó, Budapest, Hungary 2018
COPYRIGHT 2019 Springer
Copyright Springer Nature B.V. 2019
Copyright_xml – notice: Akadémiai Kiadó, Budapest, Hungary 2018
– notice: COPYRIGHT 2019 Springer
– notice: Copyright Springer Nature B.V. 2019
DBID AAYXX
CITATION
ISR
DOI 10.1007/s10973-018-7842-2
DatabaseName CrossRef
Gale In Context: Science
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1588-2926
EndPage 400
ExternalDocumentID A579958482
10_1007_s10973_018_7842_2
GroupedDBID -4Y
-58
-5G
-BR
-EM
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
203
29L
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BDATZ
BGNMA
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IAO
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P9N
PF0
PT4
PT5
QOK
QOR
QOS
R89
R9I
RKA
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SCG
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z88
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8R
Z8T
Z8W
Z91
Z92
ZMTXR
~02
~8M
-Y2
2.D
2P1
2VQ
5QI
AAIKT
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABMNI
ABQSL
ABRTQ
ABULA
ACBXY
ACSTC
ADHKG
ADPHR
AEBTG
AEFIE
AEKMD
AEZWR
AFDZB
AFEXP
AFGCZ
AFHIU
AFOHR
AGGDS
AGQPQ
AHPBZ
AHWEU
AI.
AIXLP
AJBLW
ATHPR
AYFIA
CAG
CITATION
COF
H13
MET
MKB
N2Q
NDZJH
O9-
OVD
RNI
RZC
RZE
RZK
S1Z
S26
S28
SCLPG
T16
TEORI
VH1
W4F
ZE2
ID FETCH-LOGICAL-c492t-103df54760613a5c867df75715766809625d5bd2f404536c99b617ef81bbd0933
IEDL.DBID U2A
ISSN 1388-6150
IngestDate Wed Sep 17 13:52:15 EDT 2025
Mon Oct 20 16:21:55 EDT 2025
Thu Oct 16 14:21:06 EDT 2025
Wed Oct 01 01:07:18 EDT 2025
Thu Apr 24 23:00:05 EDT 2025
Fri Feb 21 02:33:16 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Exergy
Thermal resistance
Heat transport capacity
Heat pipe
Composite wick
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c492t-103df54760613a5c867df75715766809625d5bd2f404536c99b617ef81bbd0933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2196262225
PQPubID 2043843
PageCount 12
ParticipantIDs proquest_journals_2196262225
gale_infotracacademiconefile_A579958482
gale_incontextgauss_ISR_A579958482
crossref_primary_10_1007_s10973_018_7842_2
crossref_citationtrail_10_1007_s10973_018_7842_2
springer_journals_10_1007_s10973_018_7842_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-01
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Dordrecht
PublicationSubtitle An International Forum for Thermal Studies
PublicationTitle Journal of thermal analysis and calorimetry
PublicationTitleAbbrev J Therm Anal Calorim
PublicationYear 2019
Publisher Springer International Publishing
Springer
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer
– name: Springer Nature B.V
References Kiatsiriroat, Nuntaphan, Tiansuwan (CR8) 2000; 13
Asirvatham, Nimmagadda, Wongwises (CR4) 2013; 60
Motevasel, Nazar, Jamialahmadi (CR6) 2018
Motlagh, Sharifi, Ahmadi, Badfar (CR7) 2018
Kumaresan, Venkatachalapathy, Asirvatham, Wongwises (CR21) 2014; 57
Kumar, Gangacharyulu, Tathgir (CR1) 2007; 28
Mashaei, Shahryari, Madani (CR18) 2016; 126
Hassan, Harmand (CR11) 2014
Solomon, Ramachandran, Asirvatham, Pillai (CR12) 2014; 75
Liu, Li (CR2) 2009; 23
CR15
Toghraie, Mahmoudi, Akbari, Pourfattah, Heydari (CR20) 2018
Franchi, Huang (CR22) 2010; 29
Vijayakumar, Navaneethakrishnan, Kumaresan, Kamatchi (CR3) 2017; 81
Wu, Cheng (CR13) 2010; 37
Mohseni-Gharyehsafa, Ebrahimi-Moghadam, Okati, Farzaneh-Gord, Ahmadi, Lorenzini (CR19) 2018
Paramatthanuwat, Boothaisong, Rittidech, Booddachan (CR9) 2017; 46
Hassan, Harmand (CR10) 2013; 34
Solomon, Ramachandran, Pillai (CR14) 2013; 48
Kumaresan, Venkatachalapathy (CR17) 2012; 3
Tsai, Chang, Chan, Wu, Chen (CR16) 2005; 28
Kumaresan, Venkatachalapathy, Asirvatham (CR5) 2014; 72
Khaleduzzaman, Sohel (CR23) 2014; 57
T Kiatsiriroat (7842_CR8) 2000; 13
SY Motlagh (7842_CR7) 2018
SS Khaleduzzaman (7842_CR23) 2014; 57
H Hassan (7842_CR10) 2013; 34
G Kumaresan (7842_CR5) 2014; 72
M Motevasel (7842_CR6) 2018
G Kumaresan (7842_CR17) 2012; 3
D Toghraie (7842_CR20) 2018
AB Solomon (7842_CR12) 2014; 75
H Hassan (7842_CR11) 2014
AB Solomon (7842_CR14) 2013; 48
HY Wu (7842_CR13) 2010; 37
LG Asirvatham (7842_CR4) 2013; 60
Y-S Tsai (7842_CR16) 2005; 28
George Franchi (7842_CR22) 2010; 29
PR Mashaei (7842_CR18) 2016; 126
T Paramatthanuwat (7842_CR9) 2017; 46
7842_CR15
M Vijayakumar (7842_CR3) 2017; 81
B Mohseni-Gharyehsafa (7842_CR19) 2018
G Kumaresan (7842_CR21) 2014; 57
V Kumar (7842_CR1) 2007; 28
ZH Liu (7842_CR2) 2009; 23
References_xml – volume: 37
  start-page: 111
  year: 2010
  end-page: 115
  ident: CR13
  article-title: Thermal performance of an oscillating heat pipe with Al O -water nanofluids
  publication-title: Int Commun Heat Mass Transf
  doi: 10.1016/j.icheatmasstransfer.2009.10.001
– year: 2018
  ident: CR19
  article-title: Optimizing flow properties of the different nanofluids inside a circular tube by using entropy generation minimization approach
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-018-7276-x
– volume: 81
  start-page: 190
  year: 2017
  end-page: 198
  ident: CR3
  article-title: A study on heat transfer characteristics of inclined copper sintered wick heat pipe using surfactant free CuO and Al2O3 nanofluids
  publication-title: J Taiwan Inst Chem Eng
  doi: 10.1016/j.jtice.2017.10.032
– volume: 23
  start-page: 170
  year: 2009
  end-page: 175
  ident: CR2
  article-title: Thermal performance of axially micro-grooved heat pipe using carbon nanotube suspensions
  publication-title: J Thermophys Heat Transfer
  doi: 10.2514/1.38190
– volume: 75
  start-page: 523
  year: 2014
  end-page: 533
  ident: CR12
  article-title: Numerical analysis of a screen mesh wick heat pipe with Cu/water nanofluid
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2014.04.007
– volume: 57
  start-page: 208
  year: 2014
  end-page: 215
  ident: CR21
  article-title: Comparative study on heat transfer characteristics of sintered and mesh wick heat pipes using CuO nanofluids
  publication-title: Int Commun Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2014.08.001
– volume: 28
  start-page: 359
  issue: 2
  year: 2005
  end-page: 363
  ident: CR16
  article-title: Enhancement of thermal performance in a sintered miniature heat pipe
  publication-title: J Chin Inst Eng
  doi: 10.1080/02533839.2005.9671001
– ident: CR15
– volume: 126
  start-page: 891
  issue: 2
  year: 2016
  end-page: 904
  ident: CR18
  article-title: Numerical hydrothermal analysis of water-Al O nanofluid forced convection in a narrow annulus filled by porous medium considering variable properties
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-016-5550-3
– volume: 3
  start-page: 1
  issue: 4
  year: 2012
  end-page: 8
  ident: CR17
  article-title: A review on heat Transfer enhancement studies of heat pipes using nanofluids
  publication-title: Front Heat Pipes
– volume: 46
  start-page: 281
  year: 2017
  end-page: 285
  ident: CR9
  article-title: Heat transfer characteristics of a two-phase closed thermosyphon using de ionized water mixed with silver nano
  publication-title: Heat Mass Transfer.
  doi: 10.1007/s00231-009-0565-y
– volume: 57
  start-page: 118
  year: 2014
  end-page: 127
  ident: CR23
  article-title: Energy and exergy analysis of alumina–water nanofluid for an electronic liquid cooling system
  publication-title: Int Commun Heat Mass Transf
  doi: 10.1016/j.icheatmasstransfer.2014.07.015
– year: 2014
  ident: CR11
  article-title: An experimental and numerical study on the effects of the flat heat pipe wick structure on its thermal performance
  publication-title: Heat Transf Eng
  doi: 10.1080/01457632.2014.916157
– volume: 29
  start-page: 873
  issue: 10
  year: 2010
  end-page: 884
  ident: CR22
  article-title: Development of composite wicks for heat pipe performance enhancement
  publication-title: Heat Transf Eng
  doi: 10.1080/01457630802125740
– year: 2018
  ident: CR7
  article-title: Presentation of new thermal conductivity expression for Al O –water and CuO–water nanofluids using gene expression programming (GEP)
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-018-7305-9
– volume: 28
  start-page: 954
  issue: 11
  year: 2007
  end-page: 965
  ident: CR1
  article-title: Heat transfer studies of a heat pipe
  publication-title: Heat Transf Eng
  doi: 10.1080/01457630701421810
– volume: 13
  start-page: 137
  issue: 2
  year: 2000
  end-page: 152
  ident: CR8
  article-title: Thermal performance enhancement of thermosyphon heat pipe with binary working fluids
  publication-title: Exp Heat Transf: A J Therm Energy Gener, Transp, Storage, Convers
  doi: 10.1080/089161500269517
– volume: 48
  start-page: 49
  year: 2013
  end-page: 57
  ident: CR14
  article-title: Thermal performance of anodized two phase closed thermosyphon (TPCT)
  publication-title: Exp Therm Fluid Sci
  doi: 10.1016/j.expthermflusci.2013.02.007
– year: 2018
  ident: CR20
  article-title: The effect of using water/CuO nanofluid and L-shaped porous ribs on the performance evaluation criterion of microchannels
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-018-7254-3
– volume: 60
  start-page: 201
  year: 2013
  end-page: 209
  ident: CR4
  article-title: Heat transfer performance of screen mesh wick heat pipes using silver–water nanofluid
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2012.11.037
– volume: 72
  start-page: 507
  year: 2014
  end-page: 516
  ident: CR5
  article-title: Experimental investigation on enhancement in thermal characteristics of sintered wick heat pipe using CuO nanofluids
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2014.01.029
– year: 2018
  ident: CR6
  article-title: Experimental study on turbulent convective heat transfer of water-based nanofluids containing alumina, copper oxides and silicon carbide nanoparticles
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-018-7314-8
– volume: 34
  start-page: 596
  issue: 7
  year: 2013
  end-page: 607
  ident: CR10
  article-title: A three-dimensional study of electronic component cooling using a flat heat pipe
  publication-title: Heat Transf Eng
  doi: 10.1080/01457632.2013.730426
– volume: 23
  start-page: 170
  year: 2009
  ident: 7842_CR2
  publication-title: J Thermophys Heat Transfer
  doi: 10.2514/1.38190
– year: 2014
  ident: 7842_CR11
  publication-title: Heat Transf Eng
  doi: 10.1080/01457632.2014.916157
– volume: 75
  start-page: 523
  year: 2014
  ident: 7842_CR12
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2014.04.007
– volume: 28
  start-page: 359
  issue: 2
  year: 2005
  ident: 7842_CR16
  publication-title: J Chin Inst Eng
  doi: 10.1080/02533839.2005.9671001
– volume: 57
  start-page: 118
  year: 2014
  ident: 7842_CR23
  publication-title: Int Commun Heat Mass Transf
  doi: 10.1016/j.icheatmasstransfer.2014.07.015
– year: 2018
  ident: 7842_CR7
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-018-7305-9
– volume: 3
  start-page: 1
  issue: 4
  year: 2012
  ident: 7842_CR17
  publication-title: Front Heat Pipes
– year: 2018
  ident: 7842_CR6
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-018-7314-8
– volume: 46
  start-page: 281
  year: 2017
  ident: 7842_CR9
  publication-title: Heat Mass Transfer.
  doi: 10.1007/s00231-009-0565-y
– volume: 37
  start-page: 111
  year: 2010
  ident: 7842_CR13
  publication-title: Int Commun Heat Mass Transf
  doi: 10.1016/j.icheatmasstransfer.2009.10.001
– volume: 60
  start-page: 201
  year: 2013
  ident: 7842_CR4
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2012.11.037
– volume: 13
  start-page: 137
  issue: 2
  year: 2000
  ident: 7842_CR8
  publication-title: Exp Heat Transf: A J Therm Energy Gener, Transp, Storage, Convers
  doi: 10.1080/089161500269517
– ident: 7842_CR15
– volume: 81
  start-page: 190
  year: 2017
  ident: 7842_CR3
  publication-title: J Taiwan Inst Chem Eng
  doi: 10.1016/j.jtice.2017.10.032
– volume: 28
  start-page: 954
  issue: 11
  year: 2007
  ident: 7842_CR1
  publication-title: Heat Transf Eng
  doi: 10.1080/01457630701421810
– volume: 126
  start-page: 891
  issue: 2
  year: 2016
  ident: 7842_CR18
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-016-5550-3
– volume: 72
  start-page: 507
  year: 2014
  ident: 7842_CR5
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2014.01.029
– volume: 57
  start-page: 208
  year: 2014
  ident: 7842_CR21
  publication-title: Int Commun Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2014.08.001
– volume: 48
  start-page: 49
  year: 2013
  ident: 7842_CR14
  publication-title: Exp Therm Fluid Sci
  doi: 10.1016/j.expthermflusci.2013.02.007
– year: 2018
  ident: 7842_CR20
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-018-7254-3
– year: 2018
  ident: 7842_CR19
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-018-7276-x
– volume: 29
  start-page: 873
  issue: 10
  year: 2010
  ident: 7842_CR22
  publication-title: Heat Transf Eng
  doi: 10.1080/01457630802125740
– volume: 34
  start-page: 596
  issue: 7
  year: 2013
  ident: 7842_CR10
  publication-title: Heat Transf Eng
  doi: 10.1080/01457632.2013.730426
SSID ssj0009901
Score 2.4098883
Snippet The effect of varying wick structures viz. mesh, sintered and composite wick (sintered-mesh) on the thermal enhancement of cylindrical heat pipes is...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 389
SubjectTerms Analytical Chemistry
Chemistry
Chemistry and Materials Science
Copper oxides
Evaporators
Exergy
Heat
Heat pipes
Inclination angle
Inorganic Chemistry
Measurement Science and Instrumentation
Nanofluids
Performance enhancement
Physical Chemistry
Polymer Sciences
Reduction
Sintering
Surface active agents
Surface temperature
Thermal resistance
Water
Water resistance
Wicks
Working fluids
Title Experimental study on effect of wick structures on thermal performance enhancement of cylindrical heat pipes
URI https://link.springer.com/article/10.1007/s10973-018-7842-2
https://www.proquest.com/docview/2196262225
Volume 136
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1588-2926
  dateEnd: 20241031
  omitProxy: true
  ssIdentifier: ssj0009901
  issn: 1388-6150
  databaseCode: ABDBF
  dateStart: 20030401
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1588-2926
  dateEnd: 20241031
  omitProxy: false
  ssIdentifier: ssj0009901
  issn: 1388-6150
  databaseCode: ADMLS
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1588-2926
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009901
  issn: 1388-6150
  databaseCode: AFBBN
  dateStart: 19690301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1588-2926
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009901
  issn: 1388-6150
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1588-2926
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009901
  issn: 1388-6150
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gO8AF8RSDMUUICQlUaWubtjl208YAsQMwaZyiNk0AaXSVuh3499h90I2XxKmHOGlrO46d2F8IOWNSWpozaUimTcPWOjK4tELDUdwNmEaIN9wauBs5w7F9M2GToo47LbPdyyPJzFIvFbtxF3N_PMP1sKZkndQZonmBEo9Nv0La5e08ygIVQLTz8ijzpyFWFqOvJvnb2Wi25Ay2yVbhK1I_F-4OWVPxLtnolVe07ZFpfwmfn2ZIsXQW0zxHg840xXvSaQ4Ru4C4GhvR4XsD6qSqGKAqfsEnjoO95DvwJ8qwQyjaapq8JirdJ-NB_7E3NIrrEwxpc3MOBtaKNLNdB5fsgEnge6Rd5nYgxHA8CF1MFrEwMrUNbp3lSM5DcGeUBkc2jHCj44DU4lmsDgm1wtAOtOlFKrBsS-lQBRymOofZrzrgkDVIu-SjkAW2OF5xMRUVKjKyXgDrBbJemA1y8dklyYE1_iI-ReEIBKyIMSPmOVikqbh-uBc-Q0g7z_aA6Lwg0jN4uQyKAgP4BcS4WqFslkIWxZRNBZhuCO4w_G2Qy1LwVfOv33b0L-pjsgkuF89zf5qkBhqgTsCtmYctUvcH3e4In1dPt_1WptYf7KDxGQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgHODCGzGeEUJCAhVBm7TNcUKD8TzAkOAUNWkCCOgmdTvAr8deW8Zb4tRDnTQP1_mc2F8ANoUxgZPCeEY43-POpZ40gfZCK6NEOKJ4o62B84uwdc1PbsRNmcedV9Hu1ZHkwFJ_SHaTEcX-xF4UU07JKIxx9E_8Gow1jm5Pm0OuXblX-FmoBMR3Xh1m_lTJp-Xoq1H-djo6WHQOp6BdNbeINXnc7ff0rnn9wuT4z_5Mw2QJQlmj0JoZGLHZLIwfVHe_zcFT8wPxPxtQ0LJOxorgD9ZxjC5gZwX3bB8ddnpJSPIZpbvDVARms3t6Uj1UyrxgQ9MBKQmjRYB1H7o2n4frw2b7oOWV9zJ4hku_h5Y7SJ3gUUhYIBEGJzR1kYj20XcJY_SJfJEKnfqOI14MQiOlRpxkHSJkndIOygLUsk5mF4EFWvPE-XFqk4AH1mmbSLQhEs2K3UekV4e9anqUKUnL6e6MJzWkW6ZhVDiMioZR-XXYfi_SLRg7_hLeoDlXxISRUajNXdLPc3V8dakagrjyYh6j0FYp5Dr4cZOUmQvYBSLP-iS5UumOKm1BrnBNQK-R_Oo67FSqMHz9a9uW_iW9DuOt9vmZOju-OF2GCcR1sggwWoEaaoNdRezU02vlv_IGDyENzw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEA4eoL6IJ66uGkQQlOLaJm3zuKwurheiLuxbaHOooG2h64P_3pke7q4X-NSHTNJ2JpnMJDPfELLPlfKs4MpR3LoOs1Y7Qnmx4xsRRNwixBseDVzf-Od9djHgg6rOaV5Hu9dXkmVOA6I0JcPjTNvjscQ3EWAcUOgEIeaXTJNZhjgJMKH7bnuEuitapccF0wGRz-trzZ-GmNiYvqrnb_ekxfbTXSKLld1I26Wgl8mUSVbIfKcu17ZKXs7GsPppgRpL04SW8Ro0tRRrptMSLvYNfGxsROPvFaizUfYANckTPnEc7KXegVe6wBGhqLdp9pyZfI30u2cPnXOnKqXgKCbcIShbT1vOAh-374grkIG2AQ9OwN3wQ3BjXK55rF3LwMTzfCVEDKaNsWDUxhoPPdbJTJImZoNQL45ZZN1Qm8hjnrGxiQQsewGawJyAcdYgrZqPUlU441ju4kWOEJKR9RJYL5H10m2Qw88uWQmy8RfxHgpHInhFgtExj9Fbnsve_Z1sc4S3C1kIRAcVkU3h5Sqqkg3gFxDvaoKyWQtZVss3l6DGwdFDV7hBjmrBj5p__bbNf1Hvkrnb06686t1cbpEFsMREGRLUJDMwGcw2WDvDeKeY0R8oIvUx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+study+on+effect+of+wick+structures+on+thermal+performance+enhancement+of+cylindrical+heat+pipes&rft.jtitle=Journal+of+thermal+analysis+and+calorimetry&rft.au=Kumaresan%2C+G&rft.au=Vijayakumar%2C+P&rft.au=Ravikumar%2C+M&rft.au=Kamatchi%2C+R&rft.date=2019-04-01&rft.pub=Springer&rft.issn=1388-6150&rft.volume=136&rft.issue=1&rft.spage=389&rft_id=info:doi/10.1007%2Fs10973-018-7842-2&rft.externalDocID=A579958482
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1388-6150&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1388-6150&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1388-6150&client=summon