Enabling and Localizing Omnidirectional Nonlinear Deformation in Liquid Crystalline Elastomers

Liquid crystalline elastomers (LCEs) are widely recognized for their exceptional promise as actuating materials. Here, the comparatively less celebrated but also compelling nonlinear response of these materials to mechanical load is examined. Prior examinations of planarly aligned LCEs exhibit unidi...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 30; no. 35; pp. e1802438 - n/a
Main Authors Auguste, Anesia D., Ward, Jeremy W., Hardin, James O., Kowalski, Benjamin A., Guin, Tyler C., Berrigan, J. Daniel, White, Timothy J.
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 29.08.2018
Subjects
Online AccessGet full text
ISSN0935-9648
1521-4095
1521-4095
DOI10.1002/adma.201802438

Cover

Abstract Liquid crystalline elastomers (LCEs) are widely recognized for their exceptional promise as actuating materials. Here, the comparatively less celebrated but also compelling nonlinear response of these materials to mechanical load is examined. Prior examinations of planarly aligned LCEs exhibit unidirectional nonlinear deformation to mechanical loads. A methodology is presented to realize surface‐templated homeotropic orientation in LCEs and omnidirectional nonlinearity in mechanical deformation. Inkjet printing of the homeotropic alignment surface localizes regions of homeotropic and planar orientation within a monolithic LCE element. The local control of the self‐assembly and orientation of the LCE, when subject to rational design, yield functional materials continuous in composition with discontinuous mechanical deformation. The variation in mechanical deformation in the film can enable the realization of nontrivial performance. For example, a patterned LCE is prepared and shown to exhibit a near‐zero Poisson's ratio. Further, it is demonstrated that the local control of deformation can enable the fabrication of rugged, flexible electronic devices. An additively manufactured device withstands complex mechanical deformations that would normally cause catastrophic failure. The synthesis of liquid crystal elastomers (LCEs) in the homeotropic orientation enables omnidirectional nonlinearity in mechanical deformation. Locally directing the self‐assembly of the orientation of the LCEs generates films of continuous composition but spatially distinguished mechanical responses. Local control of the mechanical deformation of the LCEs has functional benefits in realizing near‐zero Poisson's ratio or by ruggedizing flexible electronic devices.
AbstractList Liquid crystalline elastomers (LCEs) are widely recognized for their exceptional promise as actuating materials. Here, the comparatively less celebrated but also compelling nonlinear response of these materials to mechanical load is examined. Prior examinations of planarly aligned LCEs exhibit unidirectional nonlinear deformation to mechanical loads. A methodology is presented to realize surface‐templated homeotropic orientation in LCEs and omnidirectional nonlinearity in mechanical deformation. Inkjet printing of the homeotropic alignment surface localizes regions of homeotropic and planar orientation within a monolithic LCE element. The local control of the self‐assembly and orientation of the LCE, when subject to rational design, yield functional materials continuous in composition with discontinuous mechanical deformation. The variation in mechanical deformation in the film can enable the realization of nontrivial performance. For example, a patterned LCE is prepared and shown to exhibit a near‐zero Poisson's ratio. Further, it is demonstrated that the local control of deformation can enable the fabrication of rugged, flexible electronic devices. An additively manufactured device withstands complex mechanical deformations that would normally cause catastrophic failure.
Liquid crystalline elastomers (LCEs) are widely recognized for their exceptional promise as actuating materials. Here, the comparatively less celebrated but also compelling nonlinear response of these materials to mechanical load is examined. Prior examinations of planarly aligned LCEs exhibit unidirectional nonlinear deformation to mechanical loads. A methodology is presented to realize surface-templated homeotropic orientation in LCEs and omnidirectional nonlinearity in mechanical deformation. Inkjet printing of the homeotropic alignment surface localizes regions of homeotropic and planar orientation within a monolithic LCE element. The local control of the self-assembly and orientation of the LCE, when subject to rational design, yield functional materials continuous in composition with discontinuous mechanical deformation. The variation in mechanical deformation in the film can enable the realization of nontrivial performance. For example, a patterned LCE is prepared and shown to exhibit a near-zero Poisson's ratio. Further, it is demonstrated that the local control of deformation can enable the fabrication of rugged, flexible electronic devices. An additively manufactured device withstands complex mechanical deformations that would normally cause catastrophic failure.Liquid crystalline elastomers (LCEs) are widely recognized for their exceptional promise as actuating materials. Here, the comparatively less celebrated but also compelling nonlinear response of these materials to mechanical load is examined. Prior examinations of planarly aligned LCEs exhibit unidirectional nonlinear deformation to mechanical loads. A methodology is presented to realize surface-templated homeotropic orientation in LCEs and omnidirectional nonlinearity in mechanical deformation. Inkjet printing of the homeotropic alignment surface localizes regions of homeotropic and planar orientation within a monolithic LCE element. The local control of the self-assembly and orientation of the LCE, when subject to rational design, yield functional materials continuous in composition with discontinuous mechanical deformation. The variation in mechanical deformation in the film can enable the realization of nontrivial performance. For example, a patterned LCE is prepared and shown to exhibit a near-zero Poisson's ratio. Further, it is demonstrated that the local control of deformation can enable the fabrication of rugged, flexible electronic devices. An additively manufactured device withstands complex mechanical deformations that would normally cause catastrophic failure.
Liquid crystalline elastomers (LCEs) are widely recognized for their exceptional promise as actuating materials. Here, the comparatively less celebrated but also compelling nonlinear response of these materials to mechanical load is examined. Prior examinations of planarly aligned LCEs exhibit unidirectional nonlinear deformation to mechanical loads. A methodology is presented to realize surface‐templated homeotropic orientation in LCEs and omnidirectional nonlinearity in mechanical deformation. Inkjet printing of the homeotropic alignment surface localizes regions of homeotropic and planar orientation within a monolithic LCE element. The local control of the self‐assembly and orientation of the LCE, when subject to rational design, yield functional materials continuous in composition with discontinuous mechanical deformation. The variation in mechanical deformation in the film can enable the realization of nontrivial performance. For example, a patterned LCE is prepared and shown to exhibit a near‐zero Poisson's ratio. Further, it is demonstrated that the local control of deformation can enable the fabrication of rugged, flexible electronic devices. An additively manufactured device withstands complex mechanical deformations that would normally cause catastrophic failure. The synthesis of liquid crystal elastomers (LCEs) in the homeotropic orientation enables omnidirectional nonlinearity in mechanical deformation. Locally directing the self‐assembly of the orientation of the LCEs generates films of continuous composition but spatially distinguished mechanical responses. Local control of the mechanical deformation of the LCEs has functional benefits in realizing near‐zero Poisson's ratio or by ruggedizing flexible electronic devices.
Author Auguste, Anesia D.
Ward, Jeremy W.
Guin, Tyler C.
Berrigan, J. Daniel
Hardin, James O.
Kowalski, Benjamin A.
White, Timothy J.
Author_xml – sequence: 1
  givenname: Anesia D.
  surname: Auguste
  fullname: Auguste, Anesia D.
  organization: Wright‐Patterson Air Force Base
– sequence: 2
  givenname: Jeremy W.
  surname: Ward
  fullname: Ward, Jeremy W.
  organization: Wright‐Patterson Air Force Base
– sequence: 3
  givenname: James O.
  surname: Hardin
  fullname: Hardin, James O.
  organization: UES Inc
– sequence: 4
  givenname: Benjamin A.
  surname: Kowalski
  fullname: Kowalski, Benjamin A.
  organization: Azimuth Corporation
– sequence: 5
  givenname: Tyler C.
  surname: Guin
  fullname: Guin, Tyler C.
  organization: Azimuth Corporation
– sequence: 6
  givenname: J. Daniel
  surname: Berrigan
  fullname: Berrigan, J. Daniel
  organization: Wright‐Patterson Air Force Base
– sequence: 7
  givenname: Timothy J.
  orcidid: 0000-0001-8006-7173
  surname: White
  fullname: White, Timothy J.
  email: timothy.j.white@colorado.edu
  organization: Wright‐Patterson Air Force Base
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30009428$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtr3DAURkVIaSZpt1kGQzbdeHplyba0HCbTB0ybTbutuaNHUJClRLIJk19fu5OmEAhd6cE5uuj7TslxiMEQck5hSQGqj6h7XFZABVSciSOyoHVFSw6yPiYLkKwuZcPFCTnN-RYAZAPNW3LC5i2vxIL82gTceRduCgy62EaF3j3Ox-s-OO2SUYOLAX3xPYYJM5iKK2Nj6nG-L1wotu5-dLpYp30e0M9MsfGYh9iblN-RNxZ9Nu-f1jPy89Pmx_pLub3-_HW92paKy0qUGk0jORU7RFa3yFhlmWprg7rm1oq2tUJZLYzlXCMFBEOFsNpKyikDheyMfDi8e5fi_Wjy0PUuK-M9BhPH3FXQwhRR09YTevkCvY1jmr44U5JRxnnNJ-riiRp3vdHdXXI9pn33N7kJWB4AlWLOydhnhEI3V9PN1XTP1UwCfyEoN_xJcUjo_OuaPGgPzpv9f4Z0q6tvq3_ub38Oo5k
CitedBy_id crossref_primary_10_1002_anie_201905176
crossref_primary_10_1063_5_0075471
crossref_primary_10_1038_s41467_022_32865_1
crossref_primary_10_1039_D3MH02230G
crossref_primary_10_1016_j_polymer_2020_122740
crossref_primary_10_1002_adom_201801683
crossref_primary_10_1016_j_cej_2023_143368
crossref_primary_10_1002_admi_202001662
crossref_primary_10_1103_PhysRevLett_127_128001
crossref_primary_10_1021_acsapm_0c01423
crossref_primary_10_1021_acsaelm_4c02177
crossref_primary_10_1039_C9SM01923E
crossref_primary_10_1016_j_cej_2024_152185
crossref_primary_10_1021_acsmacrolett_2c00616
crossref_primary_10_1007_s42114_024_00988_2
crossref_primary_10_1016_j_jmst_2021_10_041
crossref_primary_10_1021_acs_macromol_3c01869
crossref_primary_10_1038_s41578_021_00359_z
crossref_primary_10_1002_aisy_202000022
crossref_primary_10_1002_admi_201901996
crossref_primary_10_1103_PhysRevE_107_L022701
crossref_primary_10_1002_adma_202200908
crossref_primary_10_1021_acs_macromol_2c02371
crossref_primary_10_1021_acs_macromol_4c01278
crossref_primary_10_1016_j_eurpolymj_2019_109287
crossref_primary_10_1063_5_0021143
crossref_primary_10_1002_adma_201906564
crossref_primary_10_1002_ange_201905176
crossref_primary_10_1021_acs_macromol_3c01465
crossref_primary_10_1002_rpm_20240021
crossref_primary_10_1016_j_apmt_2022_101501
crossref_primary_10_1021_acs_macromol_9b01092
crossref_primary_10_1016_j_molliq_2020_113955
crossref_primary_10_1016_j_progpolymsci_2024_101829
crossref_primary_10_1002_aisy_202100065
crossref_primary_10_1021_acsami_1c21096
crossref_primary_10_1002_adma_202105597
crossref_primary_10_1039_D4MH01056F
crossref_primary_10_1103_PhysRevE_100_022701
Cites_doi 10.3390/cryst3020363
10.1038/nmat4433
10.1515/epoly.2001.1.1.111
10.1021/acs.accounts.6b00570
10.1021/acsmacrolett.7b00116
10.1002/polb.24249
10.1016/B978-1-85617-663-7.00011-4
10.1002/adma.201204406
10.1021/ma071104y
10.1002/adma.201304464
10.1364/AO.23.003911
10.1002/anie.201310385
10.1039/c2sm27356j
10.1038/ncomms10781
10.1002/adma.201703817
10.1889/1.1828704
10.1126/science.1261019
10.1002/macp.200800265
10.1002/adfm.201701962
10.1002/anie.201105101
10.1021/acs.jpcb.5b07208
10.1051/jp2:1994116
10.1002/anie.200703238
10.1140/epje/i2011-11069-8
10.1038/ncomms4320
10.1002/adma.201502485
10.1002/macp.1994.021950419
10.1039/C5PY00640F
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201802438
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
Materials Research Database
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 30009428
10_1002_adma_201802438
ADMA201802438
Genre article
Journal Article
GrantInformation_xml – fundername: Materials and Manufacturing Directorate of the Air Force Research Laboratory
– fundername: Air Force Office of Scientific Research
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAHHS
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACCFJ
ACRPL
ACSCC
ACYXJ
ADNMO
ADZOD
AEEZP
AEQDE
AETEA
AFFNX
AGQPQ
AIWBW
AJBDE
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AEUQT
AFPWT
NPM
RWI
RWM
WRC
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c4928-dae69418baa357a332f3c75ead54ff877f8cfd8ef44da10a0e188fdf914130ca3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 01:11:35 EDT 2025
Fri Jul 25 05:14:11 EDT 2025
Wed Feb 19 02:42:42 EST 2025
Tue Jul 01 00:44:43 EDT 2025
Thu Apr 24 23:01:28 EDT 2025
Wed Aug 20 07:25:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 35
Keywords self-assembly
liquid crystal elastomers
nonlinear mechanics
flexible devices
Language English
License 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4928-dae69418baa357a332f3c75ead54ff877f8cfd8ef44da10a0e188fdf914130ca3
Notes Present address: Department of Chemical and Biological Engineering, 3414 Colorado Ave, University of Colorado Boulder, CO 80309, USA
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8006-7173
PMID 30009428
PQID 2093134454
PQPubID 2045203
PageCount 6
ParticipantIDs proquest_miscellaneous_2070802675
proquest_journals_2093134454
pubmed_primary_30009428
crossref_primary_10_1002_adma_201802438
crossref_citationtrail_10_1002_adma_201802438
wiley_primary_10_1002_adma_201802438_ADMA201802438
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 29, 2018
PublicationDateYYYYMMDD 2018-08-29
PublicationDate_xml – month: 08
  year: 2018
  text: August 29, 2018
  day: 29
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 6
2015; 14
2015; 6
2013; 3
2013; 25
2015; 347
2011
2017; 27
2000; 8
1984; 23
1994; 195
2008; 209
2014; 26
2011; 34
2017; 29
2013; 9
2012; 51
2017; 50
2016; 7
2014; 5
2015; 27
2017; 55
2008; 47
2015; 119
2001; 1
2007; 40
1994; 4
2014; 53
e_1_2_5_27_1
e_1_2_5_28_1
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_24_1
e_1_2_5_21_1
e_1_2_5_22_1
e_1_2_5_20_1
e_1_2_5_15_1
e_1_2_5_14_1
e_1_2_5_17_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_1_1
e_1_2_5_19_1
e_1_2_5_18_1
References_xml – year: 2011
– volume: 347
  start-page: 982
  year: 2015
  publication-title: Science
– volume: 195
  start-page: 1353
  year: 1994
  publication-title: Macromol. Chem. Phys.
– volume: 5
  start-page: 3320
  year: 2014
  publication-title: Nat. Commun.
– volume: 51
  start-page: 892
  year: 2012
  publication-title: Angew. Chem., Int. Ed. Engl.
– volume: 27
  start-page: 5523
  year: 2015
  publication-title: Adv. Mater.
– volume: 119
  start-page: 13450
  year: 2015
  publication-title: J. Phys. Chem. B
– volume: 23
  start-page: 3911
  year: 1984
  publication-title: Appl. Opt.
– volume: 27
  start-page: 1701962
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 55
  start-page: 157
  year: 2017
  publication-title: J. Polym. Sci., Part B: Polym. Phys.
– volume: 29
  start-page: 1703817
  year: 2017
  publication-title: Adv. Mater.
– volume: 34
  start-page: 69
  year: 2011
  publication-title: Eur. Phys. J. E: Soft Matter Biol. Phys.
– volume: 9
  start-page: 2646
  year: 2013
  publication-title: Soft Matter
– volume: 53
  start-page: 4418
  year: 2014
  publication-title: Angew. Chem., Int. Ed. Engl.
– volume: 7
  start-page: 10781
  year: 2016
  publication-title: Nat. Commun.
– volume: 6
  start-page: 4835
  year: 2015
  publication-title: Polym. Chem.
– volume: 25
  start-page: 1787
  year: 2013
  publication-title: Adv. Mater.
– volume: 14
  start-page: 1087
  year: 2015
  publication-title: Nat. Mater.
– volume: 26
  start-page: 2365
  year: 2014
  publication-title: Adv. Mater.
– volume: 4
  start-page: 93
  year: 1994
  publication-title: J. Phys. II
– volume: 50
  start-page: 161
  year: 2017
  publication-title: Acc. Chem. Res.
– volume: 209
  start-page: 1896
  year: 2008
  publication-title: Macromol. Chem. Phys.
– volume: 3
  start-page: 363
  year: 2013
  publication-title: Crystals
– volume: 6
  start-page: 436
  year: 2017
  publication-title: ACS Macro Lett.
– volume: 8
  start-page: 67
  year: 2000
  publication-title: J. Soc. Inf. Disp.
– volume: 40
  start-page: 7665
  year: 2007
  publication-title: Macromolecules
– volume: 47
  start-page: 5524
  year: 2008
  publication-title: Angew. Chem., Int. Ed. Engl.
– volume: 1
  start-page: 013
  year: 2001
  publication-title: e‐Polym.
– ident: e_1_2_5_13_1
  doi: 10.3390/cryst3020363
– ident: e_1_2_5_7_1
  doi: 10.1038/nmat4433
– ident: e_1_2_5_8_1
  doi: 10.1515/epoly.2001.1.1.111
– ident: e_1_2_5_5_1
  doi: 10.1021/acs.accounts.6b00570
– ident: e_1_2_5_11_1
  doi: 10.1021/acsmacrolett.7b00116
– ident: e_1_2_5_16_1
  doi: 10.1002/polb.24249
– ident: e_1_2_5_1_1
  doi: 10.1016/B978-1-85617-663-7.00011-4
– ident: e_1_2_5_22_1
  doi: 10.1002/adma.201204406
– ident: e_1_2_5_18_1
  doi: 10.1021/ma071104y
– ident: e_1_2_5_26_1
  doi: 10.1002/adma.201304464
– ident: e_1_2_5_23_1
  doi: 10.1364/AO.23.003911
– ident: e_1_2_5_2_1
  doi: 10.1002/anie.201310385
– ident: e_1_2_5_21_1
  doi: 10.1039/c2sm27356j
– ident: e_1_2_5_14_1
  doi: 10.1038/ncomms10781
– ident: e_1_2_5_28_1
  doi: 10.1002/adma.201703817
– ident: e_1_2_5_19_1
  doi: 10.1889/1.1828704
– ident: e_1_2_5_9_1
  doi: 10.1126/science.1261019
– ident: e_1_2_5_27_1
  doi: 10.1002/macp.200800265
– ident: e_1_2_5_4_1
  doi: 10.1002/adfm.201701962
– ident: e_1_2_5_10_1
  doi: 10.1002/anie.201105101
– ident: e_1_2_5_3_1
  doi: 10.1021/acs.jpcb.5b07208
– ident: e_1_2_5_12_1
  doi: 10.1051/jp2:1994116
– ident: e_1_2_5_15_1
  doi: 10.1002/anie.200703238
– ident: e_1_2_5_20_1
  doi: 10.1140/epje/i2011-11069-8
– ident: e_1_2_5_24_1
  doi: 10.1038/ncomms4320
– ident: e_1_2_5_25_1
  doi: 10.1002/adma.201502485
– ident: e_1_2_5_17_1
  doi: 10.1002/macp.1994.021950419
– ident: e_1_2_5_6_1
  doi: 10.1039/C5PY00640F
SSID ssj0009606
Score 2.458325
Snippet Liquid crystalline elastomers (LCEs) are widely recognized for their exceptional promise as actuating materials. Here, the comparatively less celebrated but...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1802438
SubjectTerms Catastrophic events
Continuity (mathematics)
Crystal structure
Crystallinity
Deformation
Deformation mechanisms
Elastomers
Electronic devices
flexible devices
Inkjet printing
liquid crystal elastomers
Liquid crystals
Materials science
nonlinear mechanics
Nonlinear response
Nonlinearity
Orientation
Poisson's ratio
self‐assembly
Title Enabling and Localizing Omnidirectional Nonlinear Deformation in Liquid Crystalline Elastomers
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201802438
https://www.ncbi.nlm.nih.gov/pubmed/30009428
https://www.proquest.com/docview/2093134454
https://www.proquest.com/docview/2070802675
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hcoED5c2WUhkJiZPbxI_YOa66W1VoKRJQqSeiiR9SBGRhu3ugvx5Pspt2QQgJbrE8dhzb4_k88XwGeGV8Udc-L3iUteGqQMmtko4XXpeFyyRtSei0xVlxeq7eXOiLG1H8PT_E4HAjzejWa1JwrC-PrklD0Xe8QcRgpiRF--ayIPL8yftr_iiC5x3ZntS8LJTdsDZm4mi7-LZV-g1qbiPXzvSc7AJuGt2fOPl8uFrWh-7qFz7H__mq-3BvjUvZuJ9ID-BWaB_C3RtshY_g05TirNIjw9azGRnB5oqS7762TW8aO78iO-sbggs2CUNwJGtaNmu-rxrPjhc_EiYlMvDApgm9L-fkPH8M5yfTj8enfH09A3eqFJZ7DBQFa2tEqQ1KKaJ0RqepqVWM1phoXfQ2RKU85hlmIbc2-ljmZDgdyiew087b8AyY8CZmKJRLC4zCaG1AHUyqXmcxpP3yCPhmeCq35i6nKzS-VD3rsqio36qh30bwepD_1rN2_FFyfzPa1Vp7L1NuKXOplFYjeDlkJ72jnynYhvmKZAyFKaf91gie9rNkeJXsDmyKVLnoxvovbajGk7fjIbX3L4Wewx16Jme3KPdhZ7lYhRcJLS3rA7idJGcfDjrN-AnWKw1C
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOUAPvCkLBYyExMlt4kfsHFftVgtsFwm1Eicixw8pArKw7B7or8fjbFIWhJDgFsePOLbH83ns-QzwQrmirl1e0MBrRUVhONWCW1o4WRY247gkwdMW82J6Ll6_l_1pQvSF6fghBoMbSkaar1HA0SB9eMkaalwiDkIKM8H1VbiWNukQF727ZJBCgJ7o9rikZSF0z9uYscPt_Nt66TewuY1dk_I5uQV1X-3uzMnHg_WqPrAXvzA6_td_3YabG2hKxt1YugNXfHsXdn8iLLwHHyboahUfiWkdmaEebC4w-PZz23TaMZkWybyriVmSYz_4R5KmJbPm67px5Gj5PcJS5AP3ZBIB_GqB9vP7cH4yOTua0s0NDdSKkmnqjEdHWF0bw6UynLPArZJxdEoRglYqaBuc9kEIZ_LMZD7XOrhQ5qg7reEPYKddtP4hEOZUyAwTNs4xwgStvZFexeJlFnxcMo-A9v1T2Q19Od6i8anqiJdZhe1WDe02gpdD-i8dcccfU-733V1tBPhbjC15zoWQYgTPh-goerifYlq_WGMahZ7Kcck1gr1umAyf4unMJouFs9TZf6lDNT4-HQ-hR_-S6Rlcn56dzqrZq_mbx3AD36Ptm5X7sLNarv2TCJ5W9dMkHj8AMU8PzA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD4am4TYA9u4FjYwEhJP3hJfYuexWlsN6ApCTNoTkeOLFMHSUdoH9uvxSdpsZUJI8BbH19g-Pp9PfD4DvFYuK0uXZjTwUlGRGU614JZmTuaZTThuSfC0xSQ7ORPvzuX5DS_-lh-iM7ihZDTrNQr4pQtH16ShxjW8QchgJri-A1sii7oSYdGnawIpxOcN2x6XNM-EXtE2JuxoPf-6WrqFNdeha6N7RjtgVq1uj5x8PVzMy0N79Ruh4_981i7cXwJT0m9n0h5s-PoBbN-gK3wIX4boaBUfiakdGaMWrK4w-OGirlrd2BgWyaRtiJmRge-8I0lVk3H1fVE5cjz7GUEpsoF7MozwfT5F6_kjOBsNPx-f0OX9DNSKnGnqjEc3WF0aw6UynLPArZJxbkoRglYqaBuc9kEIZ9LEJD7VOriQp6g5reGPYbOe1v4pEOZUSAwTNq4wwgStvZFexeJlEnzcMPeAroansEvycrxD41vR0i6zAvut6PqtB2-69JctbccfU-6vRrtYiu-PGJvzlAshRQ9eddFR8PBviqn9dIFpFPopxw1XD560s6SrijcnNlksnDVj_Zc2FP3Bab8LPfuXTC_h7sfBqBi_nbx_DvfwNRq-Wb4Pm_PZwh9E5DQvXzTC8QvwJA57
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enabling+and+Localizing+Omnidirectional+Nonlinear+Deformation+in+Liquid+Crystalline+Elastomers&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Auguste%2C+Anesia+D.&rft.au=Ward%2C+Jeremy+W.&rft.au=Hardin%2C+James+O.&rft.au=Kowalski%2C+Benjamin+A.&rft.date=2018-08-29&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=30&rft.issue=35&rft_id=info:doi/10.1002%2Fadma.201802438&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_201802438
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon