Enabling and Localizing Omnidirectional Nonlinear Deformation in Liquid Crystalline Elastomers
Liquid crystalline elastomers (LCEs) are widely recognized for their exceptional promise as actuating materials. Here, the comparatively less celebrated but also compelling nonlinear response of these materials to mechanical load is examined. Prior examinations of planarly aligned LCEs exhibit unidi...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 30; no. 35; pp. e1802438 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
29.08.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0935-9648 1521-4095 1521-4095 |
DOI | 10.1002/adma.201802438 |
Cover
Abstract | Liquid crystalline elastomers (LCEs) are widely recognized for their exceptional promise as actuating materials. Here, the comparatively less celebrated but also compelling nonlinear response of these materials to mechanical load is examined. Prior examinations of planarly aligned LCEs exhibit unidirectional nonlinear deformation to mechanical loads. A methodology is presented to realize surface‐templated homeotropic orientation in LCEs and omnidirectional nonlinearity in mechanical deformation. Inkjet printing of the homeotropic alignment surface localizes regions of homeotropic and planar orientation within a monolithic LCE element. The local control of the self‐assembly and orientation of the LCE, when subject to rational design, yield functional materials continuous in composition with discontinuous mechanical deformation. The variation in mechanical deformation in the film can enable the realization of nontrivial performance. For example, a patterned LCE is prepared and shown to exhibit a near‐zero Poisson's ratio. Further, it is demonstrated that the local control of deformation can enable the fabrication of rugged, flexible electronic devices. An additively manufactured device withstands complex mechanical deformations that would normally cause catastrophic failure.
The synthesis of liquid crystal elastomers (LCEs) in the homeotropic orientation enables omnidirectional nonlinearity in mechanical deformation. Locally directing the self‐assembly of the orientation of the LCEs generates films of continuous composition but spatially distinguished mechanical responses. Local control of the mechanical deformation of the LCEs has functional benefits in realizing near‐zero Poisson's ratio or by ruggedizing flexible electronic devices. |
---|---|
AbstractList | Liquid crystalline elastomers (LCEs) are widely recognized for their exceptional promise as actuating materials. Here, the comparatively less celebrated but also compelling nonlinear response of these materials to mechanical load is examined. Prior examinations of planarly aligned LCEs exhibit unidirectional nonlinear deformation to mechanical loads. A methodology is presented to realize surface‐templated homeotropic orientation in LCEs and omnidirectional nonlinearity in mechanical deformation. Inkjet printing of the homeotropic alignment surface localizes regions of homeotropic and planar orientation within a monolithic LCE element. The local control of the self‐assembly and orientation of the LCE, when subject to rational design, yield functional materials continuous in composition with discontinuous mechanical deformation. The variation in mechanical deformation in the film can enable the realization of nontrivial performance. For example, a patterned LCE is prepared and shown to exhibit a near‐zero Poisson's ratio. Further, it is demonstrated that the local control of deformation can enable the fabrication of rugged, flexible electronic devices. An additively manufactured device withstands complex mechanical deformations that would normally cause catastrophic failure. Liquid crystalline elastomers (LCEs) are widely recognized for their exceptional promise as actuating materials. Here, the comparatively less celebrated but also compelling nonlinear response of these materials to mechanical load is examined. Prior examinations of planarly aligned LCEs exhibit unidirectional nonlinear deformation to mechanical loads. A methodology is presented to realize surface-templated homeotropic orientation in LCEs and omnidirectional nonlinearity in mechanical deformation. Inkjet printing of the homeotropic alignment surface localizes regions of homeotropic and planar orientation within a monolithic LCE element. The local control of the self-assembly and orientation of the LCE, when subject to rational design, yield functional materials continuous in composition with discontinuous mechanical deformation. The variation in mechanical deformation in the film can enable the realization of nontrivial performance. For example, a patterned LCE is prepared and shown to exhibit a near-zero Poisson's ratio. Further, it is demonstrated that the local control of deformation can enable the fabrication of rugged, flexible electronic devices. An additively manufactured device withstands complex mechanical deformations that would normally cause catastrophic failure.Liquid crystalline elastomers (LCEs) are widely recognized for their exceptional promise as actuating materials. Here, the comparatively less celebrated but also compelling nonlinear response of these materials to mechanical load is examined. Prior examinations of planarly aligned LCEs exhibit unidirectional nonlinear deformation to mechanical loads. A methodology is presented to realize surface-templated homeotropic orientation in LCEs and omnidirectional nonlinearity in mechanical deformation. Inkjet printing of the homeotropic alignment surface localizes regions of homeotropic and planar orientation within a monolithic LCE element. The local control of the self-assembly and orientation of the LCE, when subject to rational design, yield functional materials continuous in composition with discontinuous mechanical deformation. The variation in mechanical deformation in the film can enable the realization of nontrivial performance. For example, a patterned LCE is prepared and shown to exhibit a near-zero Poisson's ratio. Further, it is demonstrated that the local control of deformation can enable the fabrication of rugged, flexible electronic devices. An additively manufactured device withstands complex mechanical deformations that would normally cause catastrophic failure. Liquid crystalline elastomers (LCEs) are widely recognized for their exceptional promise as actuating materials. Here, the comparatively less celebrated but also compelling nonlinear response of these materials to mechanical load is examined. Prior examinations of planarly aligned LCEs exhibit unidirectional nonlinear deformation to mechanical loads. A methodology is presented to realize surface‐templated homeotropic orientation in LCEs and omnidirectional nonlinearity in mechanical deformation. Inkjet printing of the homeotropic alignment surface localizes regions of homeotropic and planar orientation within a monolithic LCE element. The local control of the self‐assembly and orientation of the LCE, when subject to rational design, yield functional materials continuous in composition with discontinuous mechanical deformation. The variation in mechanical deformation in the film can enable the realization of nontrivial performance. For example, a patterned LCE is prepared and shown to exhibit a near‐zero Poisson's ratio. Further, it is demonstrated that the local control of deformation can enable the fabrication of rugged, flexible electronic devices. An additively manufactured device withstands complex mechanical deformations that would normally cause catastrophic failure. The synthesis of liquid crystal elastomers (LCEs) in the homeotropic orientation enables omnidirectional nonlinearity in mechanical deformation. Locally directing the self‐assembly of the orientation of the LCEs generates films of continuous composition but spatially distinguished mechanical responses. Local control of the mechanical deformation of the LCEs has functional benefits in realizing near‐zero Poisson's ratio or by ruggedizing flexible electronic devices. |
Author | Auguste, Anesia D. Ward, Jeremy W. Guin, Tyler C. Berrigan, J. Daniel Hardin, James O. Kowalski, Benjamin A. White, Timothy J. |
Author_xml | – sequence: 1 givenname: Anesia D. surname: Auguste fullname: Auguste, Anesia D. organization: Wright‐Patterson Air Force Base – sequence: 2 givenname: Jeremy W. surname: Ward fullname: Ward, Jeremy W. organization: Wright‐Patterson Air Force Base – sequence: 3 givenname: James O. surname: Hardin fullname: Hardin, James O. organization: UES Inc – sequence: 4 givenname: Benjamin A. surname: Kowalski fullname: Kowalski, Benjamin A. organization: Azimuth Corporation – sequence: 5 givenname: Tyler C. surname: Guin fullname: Guin, Tyler C. organization: Azimuth Corporation – sequence: 6 givenname: J. Daniel surname: Berrigan fullname: Berrigan, J. Daniel organization: Wright‐Patterson Air Force Base – sequence: 7 givenname: Timothy J. orcidid: 0000-0001-8006-7173 surname: White fullname: White, Timothy J. email: timothy.j.white@colorado.edu organization: Wright‐Patterson Air Force Base |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30009428$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtr3DAURkVIaSZpt1kGQzbdeHplyba0HCbTB0ybTbutuaNHUJClRLIJk19fu5OmEAhd6cE5uuj7TslxiMEQck5hSQGqj6h7XFZABVSciSOyoHVFSw6yPiYLkKwuZcPFCTnN-RYAZAPNW3LC5i2vxIL82gTceRduCgy62EaF3j3Ox-s-OO2SUYOLAX3xPYYJM5iKK2Nj6nG-L1wotu5-dLpYp30e0M9MsfGYh9iblN-RNxZ9Nu-f1jPy89Pmx_pLub3-_HW92paKy0qUGk0jORU7RFa3yFhlmWprg7rm1oq2tUJZLYzlXCMFBEOFsNpKyikDheyMfDi8e5fi_Wjy0PUuK-M9BhPH3FXQwhRR09YTevkCvY1jmr44U5JRxnnNJ-riiRp3vdHdXXI9pn33N7kJWB4AlWLOydhnhEI3V9PN1XTP1UwCfyEoN_xJcUjo_OuaPGgPzpv9f4Z0q6tvq3_ub38Oo5k |
CitedBy_id | crossref_primary_10_1002_anie_201905176 crossref_primary_10_1063_5_0075471 crossref_primary_10_1038_s41467_022_32865_1 crossref_primary_10_1039_D3MH02230G crossref_primary_10_1016_j_polymer_2020_122740 crossref_primary_10_1002_adom_201801683 crossref_primary_10_1016_j_cej_2023_143368 crossref_primary_10_1002_admi_202001662 crossref_primary_10_1103_PhysRevLett_127_128001 crossref_primary_10_1021_acsapm_0c01423 crossref_primary_10_1021_acsaelm_4c02177 crossref_primary_10_1039_C9SM01923E crossref_primary_10_1016_j_cej_2024_152185 crossref_primary_10_1021_acsmacrolett_2c00616 crossref_primary_10_1007_s42114_024_00988_2 crossref_primary_10_1016_j_jmst_2021_10_041 crossref_primary_10_1021_acs_macromol_3c01869 crossref_primary_10_1038_s41578_021_00359_z crossref_primary_10_1002_aisy_202000022 crossref_primary_10_1002_admi_201901996 crossref_primary_10_1103_PhysRevE_107_L022701 crossref_primary_10_1002_adma_202200908 crossref_primary_10_1021_acs_macromol_2c02371 crossref_primary_10_1021_acs_macromol_4c01278 crossref_primary_10_1016_j_eurpolymj_2019_109287 crossref_primary_10_1063_5_0021143 crossref_primary_10_1002_adma_201906564 crossref_primary_10_1002_ange_201905176 crossref_primary_10_1021_acs_macromol_3c01465 crossref_primary_10_1002_rpm_20240021 crossref_primary_10_1016_j_apmt_2022_101501 crossref_primary_10_1021_acs_macromol_9b01092 crossref_primary_10_1016_j_molliq_2020_113955 crossref_primary_10_1016_j_progpolymsci_2024_101829 crossref_primary_10_1002_aisy_202100065 crossref_primary_10_1021_acsami_1c21096 crossref_primary_10_1002_adma_202105597 crossref_primary_10_1039_D4MH01056F crossref_primary_10_1103_PhysRevE_100_022701 |
Cites_doi | 10.3390/cryst3020363 10.1038/nmat4433 10.1515/epoly.2001.1.1.111 10.1021/acs.accounts.6b00570 10.1021/acsmacrolett.7b00116 10.1002/polb.24249 10.1016/B978-1-85617-663-7.00011-4 10.1002/adma.201204406 10.1021/ma071104y 10.1002/adma.201304464 10.1364/AO.23.003911 10.1002/anie.201310385 10.1039/c2sm27356j 10.1038/ncomms10781 10.1002/adma.201703817 10.1889/1.1828704 10.1126/science.1261019 10.1002/macp.200800265 10.1002/adfm.201701962 10.1002/anie.201105101 10.1021/acs.jpcb.5b07208 10.1051/jp2:1994116 10.1002/anie.200703238 10.1140/epje/i2011-11069-8 10.1038/ncomms4320 10.1002/adma.201502485 10.1002/macp.1994.021950419 10.1039/C5PY00640F |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201802438 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 30009428 10_1002_adma_201802438 ADMA201802438 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Materials and Manufacturing Directorate of the Air Force Research Laboratory – fundername: Air Force Office of Scientific Research |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AAHHS AANHP AAYOK AAYXX ABEML ACBWZ ACCFJ ACRPL ACSCC ACYXJ ADNMO ADZOD AEEZP AEQDE AETEA AFFNX AGQPQ AIWBW AJBDE ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 AEUQT AFPWT NPM RWI RWM WRC 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-c4928-dae69418baa357a332f3c75ead54ff877f8cfd8ef44da10a0e188fdf914130ca3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 01:11:35 EDT 2025 Fri Jul 25 05:14:11 EDT 2025 Wed Feb 19 02:42:42 EST 2025 Tue Jul 01 00:44:43 EDT 2025 Thu Apr 24 23:01:28 EDT 2025 Wed Aug 20 07:25:53 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 35 |
Keywords | self-assembly liquid crystal elastomers nonlinear mechanics flexible devices |
Language | English |
License | 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4928-dae69418baa357a332f3c75ead54ff877f8cfd8ef44da10a0e188fdf914130ca3 |
Notes | Present address: Department of Chemical and Biological Engineering, 3414 Colorado Ave, University of Colorado Boulder, CO 80309, USA ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8006-7173 |
PMID | 30009428 |
PQID | 2093134454 |
PQPubID | 2045203 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2070802675 proquest_journals_2093134454 pubmed_primary_30009428 crossref_primary_10_1002_adma_201802438 crossref_citationtrail_10_1002_adma_201802438 wiley_primary_10_1002_adma_201802438_ADMA201802438 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 29, 2018 |
PublicationDateYYYYMMDD | 2018-08-29 |
PublicationDate_xml | – month: 08 year: 2018 text: August 29, 2018 day: 29 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 6 2015; 14 2015; 6 2013; 3 2013; 25 2015; 347 2011 2017; 27 2000; 8 1984; 23 1994; 195 2008; 209 2014; 26 2011; 34 2017; 29 2013; 9 2012; 51 2017; 50 2016; 7 2014; 5 2015; 27 2017; 55 2008; 47 2015; 119 2001; 1 2007; 40 1994; 4 2014; 53 e_1_2_5_27_1 e_1_2_5_28_1 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_24_1 e_1_2_5_21_1 e_1_2_5_22_1 e_1_2_5_20_1 e_1_2_5_15_1 e_1_2_5_14_1 e_1_2_5_17_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_1_1 e_1_2_5_19_1 e_1_2_5_18_1 |
References_xml | – year: 2011 – volume: 347 start-page: 982 year: 2015 publication-title: Science – volume: 195 start-page: 1353 year: 1994 publication-title: Macromol. Chem. Phys. – volume: 5 start-page: 3320 year: 2014 publication-title: Nat. Commun. – volume: 51 start-page: 892 year: 2012 publication-title: Angew. Chem., Int. Ed. Engl. – volume: 27 start-page: 5523 year: 2015 publication-title: Adv. Mater. – volume: 119 start-page: 13450 year: 2015 publication-title: J. Phys. Chem. B – volume: 23 start-page: 3911 year: 1984 publication-title: Appl. Opt. – volume: 27 start-page: 1701962 year: 2017 publication-title: Adv. Funct. Mater. – volume: 55 start-page: 157 year: 2017 publication-title: J. Polym. Sci., Part B: Polym. Phys. – volume: 29 start-page: 1703817 year: 2017 publication-title: Adv. Mater. – volume: 34 start-page: 69 year: 2011 publication-title: Eur. Phys. J. E: Soft Matter Biol. Phys. – volume: 9 start-page: 2646 year: 2013 publication-title: Soft Matter – volume: 53 start-page: 4418 year: 2014 publication-title: Angew. Chem., Int. Ed. Engl. – volume: 7 start-page: 10781 year: 2016 publication-title: Nat. Commun. – volume: 6 start-page: 4835 year: 2015 publication-title: Polym. Chem. – volume: 25 start-page: 1787 year: 2013 publication-title: Adv. Mater. – volume: 14 start-page: 1087 year: 2015 publication-title: Nat. Mater. – volume: 26 start-page: 2365 year: 2014 publication-title: Adv. Mater. – volume: 4 start-page: 93 year: 1994 publication-title: J. Phys. II – volume: 50 start-page: 161 year: 2017 publication-title: Acc. Chem. Res. – volume: 209 start-page: 1896 year: 2008 publication-title: Macromol. Chem. Phys. – volume: 3 start-page: 363 year: 2013 publication-title: Crystals – volume: 6 start-page: 436 year: 2017 publication-title: ACS Macro Lett. – volume: 8 start-page: 67 year: 2000 publication-title: J. Soc. Inf. Disp. – volume: 40 start-page: 7665 year: 2007 publication-title: Macromolecules – volume: 47 start-page: 5524 year: 2008 publication-title: Angew. Chem., Int. Ed. Engl. – volume: 1 start-page: 013 year: 2001 publication-title: e‐Polym. – ident: e_1_2_5_13_1 doi: 10.3390/cryst3020363 – ident: e_1_2_5_7_1 doi: 10.1038/nmat4433 – ident: e_1_2_5_8_1 doi: 10.1515/epoly.2001.1.1.111 – ident: e_1_2_5_5_1 doi: 10.1021/acs.accounts.6b00570 – ident: e_1_2_5_11_1 doi: 10.1021/acsmacrolett.7b00116 – ident: e_1_2_5_16_1 doi: 10.1002/polb.24249 – ident: e_1_2_5_1_1 doi: 10.1016/B978-1-85617-663-7.00011-4 – ident: e_1_2_5_22_1 doi: 10.1002/adma.201204406 – ident: e_1_2_5_18_1 doi: 10.1021/ma071104y – ident: e_1_2_5_26_1 doi: 10.1002/adma.201304464 – ident: e_1_2_5_23_1 doi: 10.1364/AO.23.003911 – ident: e_1_2_5_2_1 doi: 10.1002/anie.201310385 – ident: e_1_2_5_21_1 doi: 10.1039/c2sm27356j – ident: e_1_2_5_14_1 doi: 10.1038/ncomms10781 – ident: e_1_2_5_28_1 doi: 10.1002/adma.201703817 – ident: e_1_2_5_19_1 doi: 10.1889/1.1828704 – ident: e_1_2_5_9_1 doi: 10.1126/science.1261019 – ident: e_1_2_5_27_1 doi: 10.1002/macp.200800265 – ident: e_1_2_5_4_1 doi: 10.1002/adfm.201701962 – ident: e_1_2_5_10_1 doi: 10.1002/anie.201105101 – ident: e_1_2_5_3_1 doi: 10.1021/acs.jpcb.5b07208 – ident: e_1_2_5_12_1 doi: 10.1051/jp2:1994116 – ident: e_1_2_5_15_1 doi: 10.1002/anie.200703238 – ident: e_1_2_5_20_1 doi: 10.1140/epje/i2011-11069-8 – ident: e_1_2_5_24_1 doi: 10.1038/ncomms4320 – ident: e_1_2_5_25_1 doi: 10.1002/adma.201502485 – ident: e_1_2_5_17_1 doi: 10.1002/macp.1994.021950419 – ident: e_1_2_5_6_1 doi: 10.1039/C5PY00640F |
SSID | ssj0009606 |
Score | 2.458325 |
Snippet | Liquid crystalline elastomers (LCEs) are widely recognized for their exceptional promise as actuating materials. Here, the comparatively less celebrated but... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1802438 |
SubjectTerms | Catastrophic events Continuity (mathematics) Crystal structure Crystallinity Deformation Deformation mechanisms Elastomers Electronic devices flexible devices Inkjet printing liquid crystal elastomers Liquid crystals Materials science nonlinear mechanics Nonlinear response Nonlinearity Orientation Poisson's ratio self‐assembly |
Title | Enabling and Localizing Omnidirectional Nonlinear Deformation in Liquid Crystalline Elastomers |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201802438 https://www.ncbi.nlm.nih.gov/pubmed/30009428 https://www.proquest.com/docview/2093134454 https://www.proquest.com/docview/2070802675 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hcoED5c2WUhkJiZPbxI_YOa66W1VoKRJQqSeiiR9SBGRhu3ugvx5Pspt2QQgJbrE8dhzb4_k88XwGeGV8Udc-L3iUteGqQMmtko4XXpeFyyRtSei0xVlxeq7eXOiLG1H8PT_E4HAjzejWa1JwrC-PrklD0Xe8QcRgpiRF--ayIPL8yftr_iiC5x3ZntS8LJTdsDZm4mi7-LZV-g1qbiPXzvSc7AJuGt2fOPl8uFrWh-7qFz7H__mq-3BvjUvZuJ9ID-BWaB_C3RtshY_g05TirNIjw9azGRnB5oqS7762TW8aO78iO-sbggs2CUNwJGtaNmu-rxrPjhc_EiYlMvDApgm9L-fkPH8M5yfTj8enfH09A3eqFJZ7DBQFa2tEqQ1KKaJ0RqepqVWM1phoXfQ2RKU85hlmIbc2-ljmZDgdyiew087b8AyY8CZmKJRLC4zCaG1AHUyqXmcxpP3yCPhmeCq35i6nKzS-VD3rsqio36qh30bwepD_1rN2_FFyfzPa1Vp7L1NuKXOplFYjeDlkJ72jnynYhvmKZAyFKaf91gie9rNkeJXsDmyKVLnoxvovbajGk7fjIbX3L4Wewx16Jme3KPdhZ7lYhRcJLS3rA7idJGcfDjrN-AnWKw1C |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOUAPvCkLBYyExMlt4kfsHFftVgtsFwm1Eicixw8pArKw7B7or8fjbFIWhJDgFsePOLbH83ns-QzwQrmirl1e0MBrRUVhONWCW1o4WRY247gkwdMW82J6Ll6_l_1pQvSF6fghBoMbSkaar1HA0SB9eMkaalwiDkIKM8H1VbiWNukQF727ZJBCgJ7o9rikZSF0z9uYscPt_Nt66TewuY1dk_I5uQV1X-3uzMnHg_WqPrAXvzA6_td_3YabG2hKxt1YugNXfHsXdn8iLLwHHyboahUfiWkdmaEebC4w-PZz23TaMZkWybyriVmSYz_4R5KmJbPm67px5Gj5PcJS5AP3ZBIB_GqB9vP7cH4yOTua0s0NDdSKkmnqjEdHWF0bw6UynLPArZJxdEoRglYqaBuc9kEIZ_LMZD7XOrhQ5qg7reEPYKddtP4hEOZUyAwTNs4xwgStvZFexeJlFnxcMo-A9v1T2Q19Od6i8anqiJdZhe1WDe02gpdD-i8dcccfU-733V1tBPhbjC15zoWQYgTPh-goerifYlq_WGMahZ7Kcck1gr1umAyf4unMJouFs9TZf6lDNT4-HQ-hR_-S6Rlcn56dzqrZq_mbx3AD36Ptm5X7sLNarv2TCJ5W9dMkHj8AMU8PzA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD4am4TYA9u4FjYwEhJP3hJfYuexWlsN6ApCTNoTkeOLFMHSUdoH9uvxSdpsZUJI8BbH19g-Pp9PfD4DvFYuK0uXZjTwUlGRGU614JZmTuaZTThuSfC0xSQ7ORPvzuX5DS_-lh-iM7ihZDTrNQr4pQtH16ShxjW8QchgJri-A1sii7oSYdGnawIpxOcN2x6XNM-EXtE2JuxoPf-6WrqFNdeha6N7RjtgVq1uj5x8PVzMy0N79Ruh4_981i7cXwJT0m9n0h5s-PoBbN-gK3wIX4boaBUfiakdGaMWrK4w-OGirlrd2BgWyaRtiJmRge-8I0lVk3H1fVE5cjz7GUEpsoF7MozwfT5F6_kjOBsNPx-f0OX9DNSKnGnqjEc3WF0aw6UynLPArZJxbkoRglYqaBuc9kEIZ9LEJD7VOriQp6g5reGPYbOe1v4pEOZUSAwTNq4wwgStvZFexeJlEnzcMPeAroansEvycrxD41vR0i6zAvut6PqtB2-69JctbccfU-6vRrtYiu-PGJvzlAshRQ9eddFR8PBviqn9dIFpFPopxw1XD560s6SrijcnNlksnDVj_Zc2FP3Bab8LPfuXTC_h7sfBqBi_nbx_DvfwNRq-Wb4Pm_PZwh9E5DQvXzTC8QvwJA57 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enabling+and+Localizing+Omnidirectional+Nonlinear+Deformation+in+Liquid+Crystalline+Elastomers&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Auguste%2C+Anesia+D.&rft.au=Ward%2C+Jeremy+W.&rft.au=Hardin%2C+James+O.&rft.au=Kowalski%2C+Benjamin+A.&rft.date=2018-08-29&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=30&rft.issue=35&rft_id=info:doi/10.1002%2Fadma.201802438&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_201802438 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |