Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data
Land surface temperature (LST) is a crucial parameter in investigating environmental, ecological processes and climate change at various scales, and is also valuable in the studies of evapotranspiration, soil moisture conditions, surface energy balance, and urban heat islands. These studies require...
Saved in:
| Published in | Remote sensing of environment Vol. 145; pp. 55 - 67 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York, NY
Elsevier Inc
05.04.2014
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0034-4257 1879-0704 |
| DOI | 10.1016/j.rse.2014.02.003 |
Cover
| Abstract | Land surface temperature (LST) is a crucial parameter in investigating environmental, ecological processes and climate change at various scales, and is also valuable in the studies of evapotranspiration, soil moisture conditions, surface energy balance, and urban heat islands. These studies require thermal infrared (TIR) images at both high temporal and spatial resolution to retrieve LST. However, currently, no single satellite sensors can deliver TIR data at both high temporal and spatial resolution. Thus, various algorithms/models have been developed to enhance the spatial or the temporal resolution of TIR data, but rare of those can enhance both spatial and temporal details. This paper presents a new data fusion algorithm for producing Landsat-like LST data by blending daily MODIS and periodic Landsat TM datasets. The original Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) was improved and modified for predicting thermal radiance and LST data by considering annual temperature cycle (ATC) and urban thermal landscape heterogeneity. The technique of linear spectral mixture analysis was employed to relate the Landsat radiance with the MODIS one, so that the temporal changes in radiance can be incorporated in the fusion model. This paper details the theoretical basis and the implementation procedures of the proposed data fusion algorithm, Spatio-temporal Adaptive Data Fusion Algorithm for Temperature mapping (SADFAT). A case study was conducted that predicted LSTs of five dates in 2005 from July to October in Los Angeles County, California. The results indicate that the prediction accuracy for the whole study area ranged from 1.3K to 2K. Like existing spatio-temporal data fusion models, the SADFAT method has a limitation in predicting LST changes that were not recorded in the MODIS and/or Landsat pixels due to the model assumption.
•A fusion algorithm to produce Landsat-like LST by blending MODIS and Landsat data•Incorporate annual temperature cycle modeling into the prediction of LST change•MODIS radiance is spectrally unmixed to relate to the Landsat radiance.•Both Landsat reflective and TIR bands are utilized for searching for similar pixels.•Prediction accuracy for the whole Los Angeles area ranged from 1.3K to 2K. |
|---|---|
| AbstractList | Land surface temperature (LST) is a crucial parameter in investigating environmental, ecological processes and climate change at various scales, and is also valuable in the studies of evapotranspiration, soil moisture conditions, surface energy balance, and urban heat islands. These studies require thermal infrared (TIR) images at both high temporal and spatial resolution to retrieve LST. However, currently, no single satellite sensors can deliver TIR data at both high temporal and spatial resolution. Thus, various algorithms/models have been developed to enhance the spatial or the temporal resolution of TIR data, but rare of those can enhance both spatial and temporal details. This paper presents a new data fusion algorithm for producing Landsat-like LST data by blending daily MODIS and periodic Landsat TM datasets. The original Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM)was improved and modified for predicting thermal radiance and LST data by considering annual temperature cycle (ATC) and urban thermal landscape heterogeneity. The technique of linear spectral mixture analysis was employed to relate the Landsat radiance with the MODIS one, so that the temporal changes in radiance can be incorporated in the fusion model. This paper details the theoretical basis and the implementation procedures of the proposed data fusion algorithm, Spatio-temporal Adaptive Data Fusion Algorithm for Temperature mapping (SADFAT). A case study was conducted that predicted LSTs of five dates in 2005 from July to October in Los Angeles County, California. The results indicate that the prediction accuracy for the whole study area ranged from1.3 K to 2 K. Like existing spatio-temporal data fusion models, the SADFAT method has a limitation in predicting LST changes that were not recorded in the MODIS and/or Landsat pixels due to the model assumption. Land surface temperature (LST) is a crucial parameter in investigating environmental, ecological processes and climate change at various scales, and is also valuable in the studies of evapotranspiration, soil moisture conditions, surface energy balance, and urban heat islands. These studies require thermal infrared (TIR) images at both high temporal and spatial resolution to retrieve LST. However, currently, no single satellite sensors can deliver TIR data at both high temporal and spatial resolution. Thus, various algorithms/models have been developed to enhance the spatial or the temporal resolution of TIR data, but rare of those can enhance both spatial and temporal details. This paper presents a new data fusion algorithm for producing Landsat-like LST data by blending daily MODIS and periodic Landsat TM datasets. The original Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) was improved and modified for predicting thermal radiance and LST data by considering annual temperature cycle (ATC) and urban thermal landscape heterogeneity. The technique of linear spectral mixture analysis was employed to relate the Landsat radiance with the MODIS one, so that the temporal changes in radiance can be incorporated in the fusion model. This paper details the theoretical basis and the implementation procedures of the proposed data fusion algorithm, Spatio-temporal Adaptive Data Fusion Algorithm for Temperature mapping (SADFAT). A case study was conducted that predicted LSTs of five dates in 2005 from July to October in Los Angeles County, California. The results indicate that the prediction accuracy for the whole study area ranged from 1.3K to 2K. Like existing spatio-temporal data fusion models, the SADFAT method has a limitation in predicting LST changes that were not recorded in the MODIS and/or Landsat pixels due to the model assumption. •A fusion algorithm to produce Landsat-like LST by blending MODIS and Landsat data•Incorporate annual temperature cycle modeling into the prediction of LST change•MODIS radiance is spectrally unmixed to relate to the Landsat radiance.•Both Landsat reflective and TIR bands are utilized for searching for similar pixels.•Prediction accuracy for the whole Los Angeles area ranged from 1.3K to 2K. Land surface temperature (LST) is a crucial parameter in investigating environmental, ecological processes and climate change at various scales, and is also valuable in the studies of evapotranspiration, soil moisture conditions, surface energy balance, and urban heat islands. These studies require thermal infrared (TIR) images at both high temporal and spatial resolution to retrieve LST. However, currently, no single satellite sensors can deliver TIR data at both high temporal and spatial resolution. Thus, various algorithms/models have been developed to enhance the spatial or the temporal resolution of TIR data, but rare of those can enhance both spatial and temporal details. This paper presents a new data fusion algorithm for producing Landsat-like LST data by blending daily MODIS and periodic Landsat TM datasets. The original Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) was improved and modified for predicting thermal radiance and LST data by considering annual temperature cycle (ATC) and urban thermal landscape heterogeneity. The technique of linear spectral mixture analysis was employed to relate the Landsat radiance with the MODIS one, so that the temporal changes in radiance can be incorporated in the fusion model. This paper details the theoretical basis and the implementation procedures of the proposed data fusion algorithm, Spatio-temporal Adaptive Data Fusion Algorithm for Temperature mapping (SADFAT). A case study was conducted that predicted LSTs of five dates in 2005 from July to October in Los Angeles County, California. The results indicate that the prediction accuracy for the whole study area ranged from 1.3K to 2K. Like existing spatio-temporal data fusion models, the SADFAT method has a limitation in predicting LST changes that were not recorded in the MODIS and/or Landsat pixels due to the model assumption. |
| Author | Weng, Qihao Fu, Peng Gao, Feng |
| Author_xml | – sequence: 1 givenname: Qihao surname: Weng fullname: Weng, Qihao email: qweng@indstate.edu organization: Center for Urban and Environmental Change, Department of Earth and Environmental Systems, Indiana State University, Terre Haute, IN 47809, USA – sequence: 2 givenname: Peng surname: Fu fullname: Fu, Peng organization: Center for Urban and Environmental Change, Department of Earth and Environmental Systems, Indiana State University, Terre Haute, IN 47809, USA – sequence: 3 givenname: Feng surname: Gao fullname: Gao, Feng organization: USDA-ARS, Hydrology and Remote Sensing Laboratory, Beltsville, MD 20705, USA |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28395432$$DView record in Pascal Francis |
| BookMark | eNp9kMFO3DAQhq2KSl1oH4ATuVTqJenYjp1YnCraLkhbcaCcjWNPkFfZZGs7SPv2dbTAgQPyYSTP949mvlNyMk4jEnJOoaJA5fdtFSJWDGhdAasA-Aeyom2jSmigPiGr_FOXNRPNJ3Ia4xaAirahK_KwxhGDSX58LJzxw6EYzOiKOIfeWCwS7vZLew5YmFRsci_mGjBOw5z8NBbdoejnuMRfmkv-z-3Pm7s8MJnP5GNvhohfnusZuf_96-_Vdbm5Xd9c_diUtlY0la4TTOZLVCOEUsK6zraMGS4dt7V0VCBHBX3rnHICREubDtzyHJiutTU_I9-Oc_dh-jdjTHrno8Uhn4PTHDWVkksmFZcZ_fqMmmjN0AczWh_1PvidCQfNWq5EzVnm6JGzYYoxYP-KUNCLdb3V2bperGtgOjvOmeZNxvpkFlMpZL3vJi-Oyd5M2jyGvNH9XQYEAEjGmcjE5ZHA7PHJY9DRehwtOh_QJu0m_878__8Ep00 |
| CODEN | RSEEA7 |
| CitedBy_id | crossref_primary_10_3390_rs11010048 crossref_primary_10_1002_2015JD023718 crossref_primary_10_1080_01431161_2018_1538585 crossref_primary_10_3390_urbansci9020028 crossref_primary_10_1016_j_jag_2020_102156 crossref_primary_10_1007_s11707_019_0800_x crossref_primary_10_1016_j_jag_2018_05_013 crossref_primary_10_1016_j_rse_2017_08_003 crossref_primary_10_3390_rs10111694 crossref_primary_10_1016_j_rse_2022_113221 crossref_primary_10_1109_JSTARS_2020_3022997 crossref_primary_10_1007_s11676_023_01638_x crossref_primary_10_1109_MGRS_2015_2434351 crossref_primary_10_3390_pr9122262 crossref_primary_10_3390_rs11222612 crossref_primary_10_1016_j_jag_2021_102545 crossref_primary_10_1039_C5EM00254K crossref_primary_10_1109_TGRS_2023_3254211 crossref_primary_10_1109_TGRS_2020_2999943 crossref_primary_10_1016_j_jag_2022_102839 crossref_primary_10_1002_2016JD024891 crossref_primary_10_1007_s11356_021_17588_y crossref_primary_10_1016_j_inffus_2015_12_005 crossref_primary_10_1038_s41598_020_63701_5 crossref_primary_10_1080_01431161_2015_1083633 crossref_primary_10_3390_rs14092199 crossref_primary_10_1016_j_ejrs_2022_10_002 crossref_primary_10_1016_j_rse_2017_10_046 crossref_primary_10_3390_rs13020175 crossref_primary_10_1109_TGRS_2024_3443889 crossref_primary_10_1016_j_jag_2020_102056 crossref_primary_10_1109_TGRS_2022_3171331 crossref_primary_10_1080_01431161_2018_1504342 crossref_primary_10_1016_j_rsase_2018_10_020 crossref_primary_10_1016_j_rse_2020_111863 crossref_primary_10_1016_j_rse_2016_06_019 crossref_primary_10_1016_j_jag_2018_12_007 crossref_primary_10_1109_TGRS_2019_2894850 crossref_primary_10_3390_rs13020167 crossref_primary_10_1108_IJHMA_06_2024_0081 crossref_primary_10_3390_s24237424 crossref_primary_10_3389_fenvs_2022_1073914 crossref_primary_10_1016_j_rse_2017_08_018 crossref_primary_10_1109_JSTARS_2020_3030122 crossref_primary_10_1007_s41810_020_00067_1 crossref_primary_10_3390_rs12213673 crossref_primary_10_1016_j_rse_2020_111751 crossref_primary_10_1016_j_scitotenv_2018_11_223 crossref_primary_10_1007_s12040_024_02441_w crossref_primary_10_1016_j_isprsjprs_2023_10_011 crossref_primary_10_1016_j_buildenv_2021_107935 crossref_primary_10_1007_s11432_019_2785_y crossref_primary_10_1109_JSTARS_2022_3181505 crossref_primary_10_1016_j_isprsjprs_2016_12_002 crossref_primary_10_1016_j_scitotenv_2017_07_217 crossref_primary_10_1016_j_scitotenv_2018_04_361 crossref_primary_10_3390_rs14225752 crossref_primary_10_1080_07038992_2019_1704622 crossref_primary_10_29252_jgit_6_4_119 crossref_primary_10_1109_TGRS_2023_3336314 crossref_primary_10_1016_j_rse_2023_113784 crossref_primary_10_3390_rs14205170 crossref_primary_10_3103_S1068373921110078 crossref_primary_10_3390_rs13183645 crossref_primary_10_1109_JSTARS_2023_3339339 crossref_primary_10_1088_1755_1315_211_1_012010 crossref_primary_10_1016_j_isprsjprs_2023_10_004 crossref_primary_10_37636_recit_v53312330 crossref_primary_10_1016_j_pce_2022_103206 crossref_primary_10_1117_1_JRS_8_083582 crossref_primary_10_3390_land10040396 crossref_primary_10_34133_remotesensing_0208 crossref_primary_10_1016_j_rse_2017_08_036 crossref_primary_10_1016_j_rsase_2023_101005 crossref_primary_10_1016_j_rse_2020_111931 crossref_primary_10_3390_rs8080631 crossref_primary_10_3390_rs12244067 crossref_primary_10_3390_rs15020354 crossref_primary_10_3390_rs15235461 crossref_primary_10_1016_j_agrformet_2019_02_024 crossref_primary_10_1038_s41598_024_83944_w crossref_primary_10_1111_2041_210X_13018 crossref_primary_10_3390_rs15041129 crossref_primary_10_1117_1_JRS_12_046023 crossref_primary_10_3390_su16188195 crossref_primary_10_1007_s41651_024_00178_0 crossref_primary_10_1117_1_JRS_12_041501 crossref_primary_10_3390_jimaging10040091 crossref_primary_10_3390_rs10020158 crossref_primary_10_1109_JSTARS_2021_3051422 crossref_primary_10_1109_TGRS_2023_3335813 crossref_primary_10_3390_rs11101212 crossref_primary_10_3390_su13031419 crossref_primary_10_3390_rs70404139 crossref_primary_10_1080_01431161_2018_1547455 crossref_primary_10_1109_JSTARS_2024_3487623 crossref_primary_10_1016_j_catena_2017_12_011 crossref_primary_10_3390_s18114058 crossref_primary_10_1007_s11119_020_09711_9 crossref_primary_10_1109_JSTARS_2020_3028116 crossref_primary_10_1109_JSTARS_2020_3016135 crossref_primary_10_1016_j_jag_2019_05_012 crossref_primary_10_1016_j_jhydrol_2019_02_039 crossref_primary_10_1016_j_isprsjprs_2022_03_009 crossref_primary_10_3390_w11010168 crossref_primary_10_3390_rs12172764 crossref_primary_10_1080_01431161_2015_1047049 crossref_primary_10_1109_TGRS_2016_2529422 crossref_primary_10_3390_rs12081297 crossref_primary_10_1007_s10661_022_10252_z crossref_primary_10_29252_jgit_6_1_77 crossref_primary_10_3390_ijgi10120809 crossref_primary_10_1080_01431161_2018_1439202 crossref_primary_10_3390_rs9050481 crossref_primary_10_1016_j_landurbplan_2018_08_006 crossref_primary_10_3390_rs12030361 crossref_primary_10_1109_JSTARS_2022_3220897 crossref_primary_10_1007_s10668_021_01321_3 crossref_primary_10_1016_j_scitotenv_2020_138120 crossref_primary_10_3390_rs13193885 crossref_primary_10_1109_JSTARS_2021_3094184 crossref_primary_10_3390_rs13030343 crossref_primary_10_1016_j_rsase_2017_02_001 crossref_primary_10_1080_10106049_2018_1489421 crossref_primary_10_1097_MOP_0000000000000735 crossref_primary_10_3390_data1010007 crossref_primary_10_1016_j_uclim_2015_06_001 crossref_primary_10_3390_rs13152900 crossref_primary_10_3390_rs13122315 crossref_primary_10_1016_j_jclepro_2022_133890 crossref_primary_10_3390_ijgi9020067 crossref_primary_10_1016_j_rse_2025_114640 crossref_primary_10_1080_15481603_2021_2016262 crossref_primary_10_3390_rs15020413 crossref_primary_10_1109_JSTARS_2018_2790002 crossref_primary_10_1016_j_rse_2021_112612 crossref_primary_10_1117_1_JRS_14_016507 crossref_primary_10_1002_joc_6477 crossref_primary_10_1016_j_rse_2014_09_013 crossref_primary_10_3390_s150924002 crossref_primary_10_1016_j_asr_2022_02_033 crossref_primary_10_1016_j_agwat_2018_06_014 crossref_primary_10_1029_2018WR024162 crossref_primary_10_1016_j_jag_2018_02_002 crossref_primary_10_1371_journal_pone_0278667 crossref_primary_10_3390_rs12132134 crossref_primary_10_1016_j_rse_2019_111224 crossref_primary_10_3390_s23020913 crossref_primary_10_1016_j_scitotenv_2019_136193 crossref_primary_10_1007_s10668_021_01269_4 crossref_primary_10_1080_01431161_2019_1579386 crossref_primary_10_1109_JSTARS_2020_2965190 crossref_primary_10_3390_rs11151803 crossref_primary_10_1016_j_isprsjprs_2014_08_009 crossref_primary_10_1016_j_rse_2018_07_019 crossref_primary_10_3390_rs14205219 crossref_primary_10_1016_j_envres_2020_110424 crossref_primary_10_3390_rs17071119 crossref_primary_10_1016_j_scs_2024_105454 crossref_primary_10_1080_01431161_2023_2238327 crossref_primary_10_1016_j_agwat_2019_105844 crossref_primary_10_1016_j_sciaf_2025_e02590 crossref_primary_10_1109_TGRS_2021_3080384 crossref_primary_10_1016_j_scitotenv_2024_176638 crossref_primary_10_3390_cli6010016 crossref_primary_10_3390_land9060191 crossref_primary_10_3390_rs10020210 crossref_primary_10_1016_j_rse_2016_03_006 crossref_primary_10_1155_2020_3427321 crossref_primary_10_3390_rs15215211 crossref_primary_10_1109_TGRS_2019_2895351 crossref_primary_10_3390_app9183693 crossref_primary_10_1016_j_asr_2022_02_004 crossref_primary_10_1109_TGRS_2023_3313730 crossref_primary_10_3390_rs13204105 crossref_primary_10_1016_j_rse_2022_113083 crossref_primary_10_1080_01431161_2024_2370505 crossref_primary_10_1109_LGRS_2023_3255785 crossref_primary_10_1007_s11069_018_3363_3 crossref_primary_10_1016_j_isprsjprs_2016_03_011 crossref_primary_10_1109_JSTARS_2023_3235940 crossref_primary_10_3390_rs14143274 crossref_primary_10_3390_rs13183703 crossref_primary_10_1016_j_jksuci_2023_02_021 crossref_primary_10_1016_j_isprsjprs_2021_02_004 crossref_primary_10_1080_01431161_2019_1677969 crossref_primary_10_1371_journal_pone_0307711 crossref_primary_10_3390_rs11030222 crossref_primary_10_1007_s12665_023_10990_4 crossref_primary_10_1016_j_agwat_2017_04_016 crossref_primary_10_3390_rs13061155 crossref_primary_10_3390_s17040744 crossref_primary_10_3390_rs70404424 crossref_primary_10_3390_rs10030474 crossref_primary_10_3390_rs8040274 crossref_primary_10_1016_j_rse_2024_114546 crossref_primary_10_3390_rs12233900 crossref_primary_10_3390_rs14143385 crossref_primary_10_1016_j_rse_2020_112256 crossref_primary_10_3390_rs11192304 crossref_primary_10_1016_j_uclim_2023_101795 crossref_primary_10_3390_rs12183006 crossref_primary_10_1016_j_geoderma_2020_114617 crossref_primary_10_3389_fenvs_2021_795287 crossref_primary_10_3390_s20154337 crossref_primary_10_1109_TGRS_2024_3398067 crossref_primary_10_1007_s11442_022_2024_3 crossref_primary_10_3390_ijerph192417001 crossref_primary_10_1109_JSTARS_2018_2808469 crossref_primary_10_3390_rs11030324 crossref_primary_10_1016_j_rse_2017_12_003 crossref_primary_10_1109_JSTARS_2023_3333275 crossref_primary_10_1016_j_isprsjprs_2020_01_012 crossref_primary_10_1016_j_jag_2015_11_013 crossref_primary_10_1080_01431161_2023_2232548 crossref_primary_10_3390_rs11111319 crossref_primary_10_1016_j_isprsjprs_2020_01_014 crossref_primary_10_1109_TGRS_2022_3161070 crossref_primary_10_3390_atmos13020332 crossref_primary_10_1016_j_ecolind_2025_113336 crossref_primary_10_1080_00031305_2019_1700163 crossref_primary_10_3390_rs16132374 crossref_primary_10_1109_TGRS_2020_3010530 crossref_primary_10_1016_j_envadv_2020_100008 crossref_primary_10_1016_j_isprsjprs_2020_08_018 crossref_primary_10_1002_cl2_1149 crossref_primary_10_3390_rs15061583 crossref_primary_10_1007_s00484_020_02063_z crossref_primary_10_1080_15481603_2016_1258971 crossref_primary_10_1109_ACCESS_2020_3021034 crossref_primary_10_1016_j_scitotenv_2019_02_178 crossref_primary_10_3390_rs12050801 crossref_primary_10_1016_j_rse_2020_112156 crossref_primary_10_1371_journal_pone_0266541 crossref_primary_10_1016_j_compag_2024_108616 crossref_primary_10_1016_j_gloplacha_2018_05_007 crossref_primary_10_1109_JSTARS_2019_2954852 crossref_primary_10_3390_rs13071396 crossref_primary_10_1016_j_rsase_2023_100921 crossref_primary_10_3390_rs14133038 crossref_primary_10_1016_j_cageo_2019_01_004 crossref_primary_10_1080_01431161_2021_1966854 crossref_primary_10_1016_j_uclim_2024_101848 crossref_primary_10_1080_10095020_2024_2350175 crossref_primary_10_1080_2150704X_2017_1362125 crossref_primary_10_1371_journal_pone_0117755 crossref_primary_10_3390_rs10040527 crossref_primary_10_1016_j_rse_2024_114119 crossref_primary_10_1109_MGRS_2021_3050782 crossref_primary_10_5194_essd_15_4181_2023 crossref_primary_10_1016_j_isprsjprs_2021_04_021 crossref_primary_10_1016_j_isprsjprs_2019_06_011 crossref_primary_10_1038_s41598_018_27905_0 crossref_primary_10_3390_rs13040645 crossref_primary_10_1016_j_srs_2024_100152 crossref_primary_10_1080_10106049_2023_2250331 crossref_primary_10_1016_j_rse_2024_114357 crossref_primary_10_1016_j_rse_2021_112325 crossref_primary_10_1109_JSTARS_2023_3335896 crossref_primary_10_3390_rs11202345 crossref_primary_10_1007_s12665_016_5952_3 crossref_primary_10_3390_rs10040650 crossref_primary_10_1016_j_scs_2020_102508 crossref_primary_10_1016_j_uclim_2022_101230 crossref_primary_10_29252_jgit_8_2_93 crossref_primary_10_1016_j_jclepro_2020_120529 crossref_primary_10_1007_s10661_022_10677_6 crossref_primary_10_3390_rs10071047 crossref_primary_10_1016_j_jag_2018_09_019 crossref_primary_10_3390_ijgi7040140 crossref_primary_10_1109_TGRS_2021_3115136 crossref_primary_10_3390_rs15040960 crossref_primary_10_1016_j_eja_2019_03_001 crossref_primary_10_1016_j_jag_2017_07_005 crossref_primary_10_3390_rs13245044 crossref_primary_10_1016_j_asr_2022_04_021 crossref_primary_10_3390_ijerph120809920 crossref_primary_10_1016_j_isprsjprs_2017_03_014 crossref_primary_10_1109_TGRS_2024_3412154 crossref_primary_10_1007_s11069_024_06431_5 crossref_primary_10_1109_LGRS_2016_2622726 crossref_primary_10_1109_TGRS_2024_3498913 crossref_primary_10_1016_j_rse_2022_112962 crossref_primary_10_1016_j_rse_2020_112009 crossref_primary_10_1109_TGRS_2024_3357735 crossref_primary_10_3390_rs70201482 crossref_primary_10_1016_j_rse_2015_08_015 crossref_primary_10_3390_rs16020322 crossref_primary_10_1109_TGRS_2022_3154406 crossref_primary_10_1109_TGRS_2024_3523384 crossref_primary_10_1080_10106049_2019_1622598 crossref_primary_10_1080_10095020_2020_1712265 crossref_primary_10_1007_s11432_019_2805_y crossref_primary_10_1080_19475705_2023_2174904 crossref_primary_10_1080_10106049_2021_1920634 crossref_primary_10_3390_rs6109829 crossref_primary_10_3390_s18124425 crossref_primary_10_1080_10095020_2024_2380779 crossref_primary_10_1016_j_ecoinf_2024_102936 crossref_primary_10_1109_JSTARS_2023_3323742 crossref_primary_10_1007_s10661_024_13313_7 crossref_primary_10_1016_j_jvolgeores_2020_106976 crossref_primary_10_3389_fenvs_2021_731452 crossref_primary_10_1109_JSTARS_2015_2513598 crossref_primary_10_3390_ijgi6110374 crossref_primary_10_1109_TGRS_2022_3232624 crossref_primary_10_1016_j_isprsjprs_2018_02_021 crossref_primary_10_3390_rs11070741 crossref_primary_10_1109_LGRS_2015_2414897 crossref_primary_10_1080_10106049_2021_2022017 crossref_primary_10_1016_j_proeng_2017_10_113 crossref_primary_10_1007_s40808_022_01533_0 crossref_primary_10_1007_s13762_022_04510_3 crossref_primary_10_1007_s11707_022_1023_0 crossref_primary_10_3390_su132011203 crossref_primary_10_3390_rs15040901 crossref_primary_10_1016_j_scs_2023_104833 crossref_primary_10_1080_19475705_2024_2314578 crossref_primary_10_1016_j_scs_2023_104953 crossref_primary_10_3390_s23042040 crossref_primary_10_1088_2515_7620_ace760 crossref_primary_10_1109_TGRS_2022_3227074 crossref_primary_10_3390_rs13163231 crossref_primary_10_1016_j_isprsjprs_2020_06_016 crossref_primary_10_1016_j_inffus_2017_06_005 crossref_primary_10_1016_j_rse_2015_11_016 crossref_primary_10_3390_rs70201798 crossref_primary_10_1016_j_isprsjprs_2019_03_013 crossref_primary_10_1016_j_jag_2019_01_016 crossref_primary_10_1080_17538947_2016_1235621 crossref_primary_10_1109_JSTARS_2021_3132723 crossref_primary_10_1016_j_uclim_2021_100828 crossref_primary_10_1002_joc_5775 crossref_primary_10_1007_s44213_023_00017_w crossref_primary_10_1016_j_srs_2023_100102 crossref_primary_10_1109_TGRS_2023_3283614 crossref_primary_10_3390_rs8070541 crossref_primary_10_3390_rs11070761 crossref_primary_10_1016_j_rse_2018_02_067 crossref_primary_10_3390_rs71215826 crossref_primary_10_1029_2023WR036162 crossref_primary_10_3390_rs13071306 crossref_primary_10_3390_atmos15050598 crossref_primary_10_1016_j_rse_2019_02_006 crossref_primary_10_3390_rs10111748 crossref_primary_10_3390_rs14102390 crossref_primary_10_3390_rs8010075 crossref_primary_10_3390_rs13224723 crossref_primary_10_3390_ijgi4042542 crossref_primary_10_1007_s12517_021_08769_7 crossref_primary_10_3390_rs10060890 crossref_primary_10_1080_01431161_2018_1489164 crossref_primary_10_1016_j_rse_2024_114076 crossref_primary_10_1016_j_compag_2015_05_003 crossref_primary_10_1007_s10661_024_12800_1 crossref_primary_10_1109_ACCESS_2020_3011258 crossref_primary_10_3390_rs10060881 crossref_primary_10_1080_01431161_2018_1434326 crossref_primary_10_3390_rs12223774 crossref_primary_10_3390_rs12183050 crossref_primary_10_1007_s12145_024_01344_0 crossref_primary_10_3390_rs13081512 crossref_primary_10_1080_10095020_2023_2178335 crossref_primary_10_3390_ijgi4031423 crossref_primary_10_1038_s41598_018_20156_z crossref_primary_10_3390_su12176850 crossref_primary_10_3390_rs12091453 crossref_primary_10_1088_1748_9326_ab1b7d crossref_primary_10_1016_j_rcar_2024_12_010 crossref_primary_10_1109_JSTARS_2021_3079357 crossref_primary_10_1016_j_rse_2015_11_005 crossref_primary_10_3390_rs14153639 crossref_primary_10_3390_rs8100849 crossref_primary_10_1109_TGRS_2022_3145086 crossref_primary_10_3390_s23229206 crossref_primary_10_1016_j_rse_2018_02_009 crossref_primary_10_1016_j_jag_2024_103981 crossref_primary_10_1016_j_uclim_2023_101455 crossref_primary_10_3390_rs10091382 crossref_primary_10_3390_rs10081207 crossref_primary_10_3390_rs13173355 crossref_primary_10_32604_ee_2022_018750 crossref_primary_10_1109_JSTARS_2021_3067349 crossref_primary_10_3390_rs10091388 crossref_primary_10_3390_rs15153732 crossref_primary_10_1016_j_ecolind_2023_110481 crossref_primary_10_1029_2021JD035598 crossref_primary_10_1016_j_asr_2018_09_014 crossref_primary_10_1007_s42965_023_00318_5 crossref_primary_10_3390_rs11182077 crossref_primary_10_7717_peerj_17820 crossref_primary_10_1016_j_buildenv_2022_109793 crossref_primary_10_3390_rs15184441 crossref_primary_10_3390_rs16203908 crossref_primary_10_3390_rs14122902 crossref_primary_10_3390_rs9070684 crossref_primary_10_1109_JSTARS_2020_2968809 crossref_primary_10_3390_rs14081772 crossref_primary_10_1007_s11269_022_03108_1 |
| Cites_doi | 10.3390/s7081612 10.1016/j.rse.2011.03.008 10.1016/j.ufug.2009.02.003 10.1029/2003JD003480 10.1109/TGRS.2007.904834 10.14358/PERS.70.9.1053 10.1016/j.rse.2010.05.032 10.1016/0034-4257(92)90097-4 10.1080/014311600210876 10.1029/2007JD009048 10.1175/JCLI3334.1 10.1109/JSTARS.2008.917869 10.1029/2008GL034507 10.5194/hess-15-223-2011 10.1109/36.175321 10.5194/hessd-7-5957-2010 10.1029/2008GL036544 10.1016/S0034-4257(03)00036-1 10.1109/TGRS.2006.872081 10.1016/j.rse.2008.05.006 10.1016/j.rse.2009.07.017 10.1002/met.287 10.3390/rs4103184 10.1080/01431160802562289 10.1016/j.rse.2013.09.002 10.1109/LGRS.2005.857030 10.1080/014311697217026 10.1016/j.rse.2011.06.023 10.1016/j.rse.2009.05.005 10.1080/014311698214578 10.1016/j.rse.2011.05.027 10.1016/j.rse.2004.02.003 10.1016/S0034-4257(00)00214-5 10.1016/j.rse.2009.10.008 10.1016/S0034-4257(03)00007-5 10.3390/s8042695 10.1016/j.rse.2007.11.012 10.1016/j.rse.2005.09.022 10.1016/j.isprsjprs.2009.03.007 10.1109/LGRS.2012.2185034 10.1007/s10661-008-0618-6 10.1016/j.isprsjprs.2011.10.007 10.1016/j.rse.2003.11.005 10.1364/AO.4.000767 10.1016/j.socscimed.2006.07.030 10.3201/eid1008.040077 10.1016/j.rse.2009.03.007 10.1016/j.rse.2009.05.011 10.14358/PERS.75.5.547 |
| ContentType | Journal Article |
| Copyright | 2014 Elsevier Inc. 2015 INIST-CNRS |
| Copyright_xml | – notice: 2014 Elsevier Inc. – notice: 2015 INIST-CNRS |
| DBID | FBQ AAYXX CITATION IQODW 7S9 L.6 |
| DOI | 10.1016/j.rse.2014.02.003 |
| DatabaseName | AGRIS CrossRef Pascal-Francis AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Geology Environmental Sciences |
| EISSN | 1879-0704 |
| EndPage | 67 |
| ExternalDocumentID | 28395432 10_1016_j_rse_2014_02_003 US201500062325 S0034425714000479 |
| GeographicLocations | California Los Angeles County California United States |
| GeographicLocations_xml | – name: California |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABPPZ ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACIWK ACLVX ACPRK ACRLP ACSBN ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSE SSJ SSZ T5K TN5 TWZ WH7 ZCA ZMT ~02 ~G- ~KM 29P 41~ 6TJ AAHBH AAQXK AATTM AAXKI ABDPE ABEFU ABWVN ACRPL ADMUD ADNMO ADVLN AEGFY AEIPS AFFNX AFJKZ AKRWK ANKPU ASPBG AVWKF AZFZN BNPGV FA8 FBQ FEDTE FGOYB G-2 HMA HMC HVGLF HZ~ H~9 OHT R2- SEN SEP SEW SSH VOH WUQ XOL AAYWO AAYXX ACLOT ACVFH ADCNI ADXHL AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS ~HD IQODW 7S9 L.6 |
| ID | FETCH-LOGICAL-c491t-db5261019755995cdbc822a36d3c46d15e3e90f8dd9d505817b0d0d0dd0ab8c43 |
| IEDL.DBID | .~1 |
| ISSN | 0034-4257 |
| IngestDate | Sun Sep 28 11:00:47 EDT 2025 Wed Apr 02 07:46:51 EDT 2025 Thu Apr 24 22:52:42 EDT 2025 Wed Oct 01 02:18:10 EDT 2025 Thu Apr 03 09:45:06 EDT 2025 Fri Feb 23 02:30:04 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Annual temperature cycle Data fusion Thermal imagery sharpening Land surface temperature Urban landscape heterogeneity Thermal infrared data algorithms urban environment energy balance measurement sensor evapotranspiration Earth surface North America ecology imagery spatial resolution climate change models processes soil moisture Space remote sensing Landsat Urban heat island new data surface temperature Environment Parameter Surface energy |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c491t-db5261019755995cdbc822a36d3c46d15e3e90f8dd9d505817b0d0d0dd0ab8c43 |
| Notes | http://dx.doi.org/10.1016/j.rse.2014.02.003 http://handle.nal.usda.gov/10113/59904 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1663626936 |
| PQPubID | 24069 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_1663626936 pascalfrancis_primary_28395432 crossref_primary_10_1016_j_rse_2014_02_003 crossref_citationtrail_10_1016_j_rse_2014_02_003 fao_agris_US201500062325 elsevier_sciencedirect_doi_10_1016_j_rse_2014_02_003 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2014-04-05 |
| PublicationDateYYYYMMDD | 2014-04-05 |
| PublicationDate_xml | – month: 04 year: 2014 text: 2014-04-05 day: 05 |
| PublicationDecade | 2010 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY |
| PublicationTitle | Remote sensing of environment |
| PublicationYear | 2014 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | Trenberth (bb0250) 1992 Hilker, Wulder, Coops, Linke, McDermid, Masek (bb0065) 2009; 113 Jin, Dickinson, Zhang (bb0115) 2005; 18 Imhoff, Zhang, Wolfe, Bounoua (bb0090) 2010; 114 Inamdar, French, Hook, Vaughan, Luckett (bb0100) 2008; 113 Streutker (bb0240) 2003; 85 Rajasekar, Weng (bb0200) 2009; 30 Jensen (bb0105) 2005 Reisen, Lothrop, Chiles, Madon, Cossen, Woods (bb0205) 2004; 10 Weng (bb0255) 2009; 64 Jimenez-Munoz, Sobrino (bb0110) 2003; 108 Liu, Pu (bb1505) 2008; 8 Gao, Masek, Schwaller, Hall (bb0030) 2006; 44 Kustas, Norman, Anderson, French (bb0125) 2003; 85 Gillespie (bb0040) 1992; 42 Lafortezza, Carrus, Sanesi, Davies (bb0130) 2009; 8 Hansen, Roy, Lindquist, Adusei, Justice, Altstatt (bb0055) 2008; 112 Huang, Wang, Song, Fu, Wong (bb0075) 2012; 99 Bechtel (bb0010) 2012; 9 Gillies, Carlson, Cui, Kustas, Humes (bb0045) 1997; 18 Sobrino, Raissouni (bb0230) 2000; 21 Potapov, Hansen, Stehman, Loveland, Pittman (bb0190) 2008; 112 Bechtel, Zakšek, Hoshyaripour (bb0015) 2012; 4 Anderson, Kustas, Norman, Hain, Mecikalski, Schultz (bb1500) 2010; 7 Masek, Vermote, Saleous, Wolfe, Hall, Huemmrich (bb0155) 2006; 3 Oke (bb0185) 1982; 108 Liu, Weng (bb0140) 2012; 117 Nichol (bb0165) 1994; 60 Ruiz, Chaves, Hamer, Sun, Brown, Walker (bb0210) 2010; 3 Sabins (bb0215) 1997 Gottsche, Olesen (bb0050) 2001; 76 Pu, Gong, Michishita, Sasagawa (bb0195) 2006; 104 Weng, Lu, Schubring (bb0275) 2004; 89 Harlan, Brazel, Prashad, Stefanov, Larsen (bb0060) 2006; 63 Hulley, Hook (bb0080) 2009; 113 Weng, Fu (bb0260) 2014; 140 Hulley, Hook, Baldridge (bb0085) 2008; 35 Carlson (bb0020) 2007; 7 Zakšek, Oštir (bb0280) 2012; 117 Kaufman, Gao (bb0120) 1992; 30 Zhou, Weng, Gurney, Shuai, Hu (bb0285) 2012; 67 Oke (bb0180) 1979 Hilker, Wulder, Coops, Seitz, White, Gao (bb0070) 2009; 113 Sobrino, Jimenez-Munoz, Paolini (bb0220) 2004; 90 Dominguez, Kleissl, Luvall, Rickman (bb0025) 2011; 115 Lu, Weng (bb0150) 2004; 70 Stathopoulou, Cartalis (bb0235) 2009; 113 Anderson, Kustas, Norman, Hain, Mecikalski, Schultz (bb0005) 2011; 15 Inamdar, French (bb0095) 2009; 36 Tomlinson, Chapman, Thornes, Baker (bb0245) 2011; 18 Nichol (bb0170) 2009; 75 Sobrino, Jimenez-Munoz, Soria, Romaguera, Guanter, Moreno (bb0225) 2008; 46 Weng, Liu, Liang, Lu (bb0265) 2008; 1 Liu, Moore (bb0145) 1998; 19 Liu, Weng (bb0135) 2009; 159 Zhu, Chen, Gao, Chen, Masek (bb0290) 2010; 114 Moran (bb0160) 2004 Nicodemus (bb0175) 1965; 4 Jensen (10.1016/j.rse.2014.02.003_bb0105) 2005 Masek (10.1016/j.rse.2014.02.003_bb0155) 2006; 3 Bechtel (10.1016/j.rse.2014.02.003_bb0015) 2012; 4 Gottsche (10.1016/j.rse.2014.02.003_bb0050) 2001; 76 Hilker (10.1016/j.rse.2014.02.003_bb0065) 2009; 113 Carlson (10.1016/j.rse.2014.02.003_bb0020) 2007; 7 Zhu (10.1016/j.rse.2014.02.003_bb0290) 2010; 114 Sobrino (10.1016/j.rse.2014.02.003_bb0230) 2000; 21 Sobrino (10.1016/j.rse.2014.02.003_bb0225) 2008; 46 Lu (10.1016/j.rse.2014.02.003_bb0150) 2004; 70 Nichol (10.1016/j.rse.2014.02.003_bb0170) 2009; 75 Inamdar (10.1016/j.rse.2014.02.003_bb0100) 2008; 113 Oke (10.1016/j.rse.2014.02.003_bb0185) 1982; 108 Stathopoulou (10.1016/j.rse.2014.02.003_bb0235) 2009; 113 Weng (10.1016/j.rse.2014.02.003_bb0260) 2014; 140 Hansen (10.1016/j.rse.2014.02.003_bb0055) 2008; 112 Imhoff (10.1016/j.rse.2014.02.003_bb0090) 2010; 114 Potapov (10.1016/j.rse.2014.02.003_bb0190) 2008; 112 Oke (10.1016/j.rse.2014.02.003_bb0180) 1979 Zhou (10.1016/j.rse.2014.02.003_bb0285) 2012; 67 Liu (10.1016/j.rse.2014.02.003_bb1505) 2008; 8 Harlan (10.1016/j.rse.2014.02.003_bb0060) 2006; 63 Sobrino (10.1016/j.rse.2014.02.003_bb0220) 2004; 90 Liu (10.1016/j.rse.2014.02.003_bb0140) 2012; 117 Sabins (10.1016/j.rse.2014.02.003_bb0215) 1997 Streutker (10.1016/j.rse.2014.02.003_bb0240) 2003; 85 Dominguez (10.1016/j.rse.2014.02.003_bb0025) 2011; 115 Ruiz (10.1016/j.rse.2014.02.003_bb0210) 2010; 3 Weng (10.1016/j.rse.2014.02.003_bb0265) 2008; 1 Bechtel (10.1016/j.rse.2014.02.003_bb0010) 2012; 9 Kustas (10.1016/j.rse.2014.02.003_bb0125) 2003; 85 Gillespie (10.1016/j.rse.2014.02.003_bb0040) 1992; 42 Gillies (10.1016/j.rse.2014.02.003_bb0045) 1997; 18 Tomlinson (10.1016/j.rse.2014.02.003_bb0245) 2011; 18 Lafortezza (10.1016/j.rse.2014.02.003_bb0130) 2009; 8 Nichol (10.1016/j.rse.2014.02.003_bb0165) 1994; 60 Huang (10.1016/j.rse.2014.02.003_bb0075) 2012; 99 Liu (10.1016/j.rse.2014.02.003_bb0135) 2009; 159 Zakšek (10.1016/j.rse.2014.02.003_bb0280) 2012; 117 Weng (10.1016/j.rse.2014.02.003_bb0275) 2004; 89 Jin (10.1016/j.rse.2014.02.003_bb0115) 2005; 18 Liu (10.1016/j.rse.2014.02.003_bb0145) 1998; 19 Nicodemus (10.1016/j.rse.2014.02.003_bb0175) 1965; 4 Moran (10.1016/j.rse.2014.02.003_bb0160) 2004 Hulley (10.1016/j.rse.2014.02.003_bb0080) 2009; 113 Anderson (10.1016/j.rse.2014.02.003_bb0005) 2011; 15 Trenberth (10.1016/j.rse.2014.02.003_bb0250) 1992 Hilker (10.1016/j.rse.2014.02.003_bb0070) 2009; 113 Gao (10.1016/j.rse.2014.02.003_bb0030) 2006; 44 Hulley (10.1016/j.rse.2014.02.003_bb0085) 2008; 35 Reisen (10.1016/j.rse.2014.02.003_bb0205) 2004; 10 Weng (10.1016/j.rse.2014.02.003_bb0255) 2009; 64 Inamdar (10.1016/j.rse.2014.02.003_bb0095) 2009; 36 Anderson (10.1016/j.rse.2014.02.003_bb1500) 2010; 7 Pu (10.1016/j.rse.2014.02.003_bb0195) 2006; 104 Kaufman (10.1016/j.rse.2014.02.003_bb0120) 1992; 30 Jimenez-Munoz (10.1016/j.rse.2014.02.003_bb0110) 2003; 108 Rajasekar (10.1016/j.rse.2014.02.003_bb0200) 2009; 30 |
| References_xml | – volume: 3 start-page: 68 year: 2006 end-page: 72 ident: bb0155 article-title: A Landsat surface reflectance dataset for North America, 1990–2000 publication-title: IEEE Geoscience and Remote Sensing Letters – volume: 159 start-page: 143 year: 2009 end-page: 161 ident: bb0135 article-title: An examination of the effect of landscape pattern, land surface temperature, and socioeconomic conditions on WNV dissemination in Chicago publication-title: Environmental Monitoring and Assessment – volume: 30 start-page: 3531 year: 2009 end-page: 3548 ident: bb0200 article-title: Spatio-temporal modelling and analysis of urban heat islands by using Landsat TM and ETM plus imagery publication-title: International Journal of Remote Sensing – volume: 63 start-page: 2847 year: 2006 end-page: 2863 ident: bb0060 article-title: Neighborhood microclimates and vulnerability to heat stress publication-title: Social Science & Medicine – volume: 64 start-page: 335 year: 2009 end-page: 344 ident: bb0255 article-title: Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends publication-title: ISPRS Journal of Photogrammetry and Remote Sensing – year: 1992 ident: bb0250 article-title: Climate system modeling – volume: 4 start-page: 3184 year: 2012 end-page: 3200 ident: bb0015 article-title: Downscaling land surface temperature in an urban area: A case study for Hamburg, Germany publication-title: Remote Sensing – volume: 112 start-page: 2495 year: 2008 end-page: 2513 ident: bb0055 article-title: A method for integrating MODIS and Landsat data for systematic monitoring of forest cover and change in the Congo Basin publication-title: Remote Sensing of Environment – volume: 1 start-page: 154 year: 2008 end-page: 166 ident: bb0265 article-title: The spatial variations of urban land surface temperatures: Pertinent factors, zoning effect, and seasonal variability publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing – volume: 42 start-page: 137 year: 1992 end-page: 145 ident: bb0040 article-title: Spectral mixture analysis of multispectral thermal infrared images publication-title: Remote Sensing of Environment – volume: 113 start-page: D07107 year: 2008 ident: bb0100 article-title: Land surface temperature retrieval at high spatial and temporal resolutions over the southwestern United States publication-title: Journal of Geophysical Research — Atmospheres – volume: 60 start-page: 1225 year: 1994 end-page: 1232 ident: bb0165 article-title: A GIS-based approach to microclimate monitoring in Singapore's high-rise housing estates publication-title: Photogrammetric Engineering and Remote Sensing – volume: 117 start-page: 114 year: 2012 end-page: 124 ident: bb0280 article-title: Downscaling land surface temperature for urban heat island diurnal cycle analysis publication-title: Remote Sensing of Environment – volume: 67 start-page: 65 year: 2012 end-page: 72 ident: bb0285 article-title: Estimation of the relationship between remotely sensed anthropogenic heat discharge and building energy use publication-title: ISPRS Journal of Photogrammetry and Remote Sensing – volume: 114 start-page: 504 year: 2010 end-page: 513 ident: bb0090 article-title: Remote sensing of the urban heat island effect across biomes in the continental USA publication-title: Remote Sensing of Environment – volume: 7 start-page: 1612 year: 2007 end-page: 1629 ident: bb0020 article-title: An overview of the “triangle method” for estimating surface evapotranspiration and soil moisture from satellite imagery publication-title: Sensors – volume: 99 year: 2012 ident: bb0075 article-title: Generating high spatiotemporal resolution land surface temperature for urban heat island monitoring publication-title: IEEE Geoscience and Remote Sensing Letters – year: 2005 ident: bb0105 article-title: Introductory digital image processing: a remote sensing perspective – volume: 3 year: 2010 ident: bb0210 article-title: Local impact of temperature and precipitation on West Nile virus infection in publication-title: Parasites & Vectors – volume: 36 start-page: L02408 year: 2009 ident: bb0095 article-title: Disaggregation of GOES land surface temperatures using surface emissivity publication-title: Geophysical Research Letters – volume: 19 start-page: 2477 year: 1998 end-page: 2491 ident: bb0145 article-title: Pixel block intensity modulation: Adding spatial detail to TM band 6 thermal imagery publication-title: International Journal of Remote Sensing – volume: 112 start-page: 3708 year: 2008 end-page: 3719 ident: bb0190 article-title: Combining MODIS and Landsat imagery to estimate and map boreal forest cover loss publication-title: Remote Sensing of Environment – volume: 113 start-page: 1967 year: 2009 end-page: 1975 ident: bb0080 article-title: The North American ASTER Land Surface Emissivity Database (NAALSED) version 2.0 publication-title: Remote Sensing of Environment – volume: 18 start-page: 3145 year: 1997 end-page: 3166 ident: bb0045 article-title: A verification of the ‘triangle’ method for obtaining surface soil water content and energy fluxes from remote measurements of the Normalized Difference Vegetation Index (NDVI) and surface radiant temperature publication-title: International Journal of Remote Sensing – volume: 85 start-page: 429 year: 2003 end-page: 440 ident: bb0125 article-title: Estimating subpixel surface temperatures and energy fluxes from the vegetation index–radiometric temperature relationship publication-title: Remote Sensing of Environment – volume: 113 start-page: 1613 year: 2009 end-page: 1627 ident: bb0065 article-title: A new data fusion model for high spatial- and temporal-resolution mapping of forest disturbance based on Landsat and MODIS publication-title: Remote Sensing of Environment – volume: 89 start-page: 467 year: 2004 end-page: 483 ident: bb0275 article-title: Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies publication-title: Remote Sensing of Environment – volume: 113 start-page: 1988 year: 2009 end-page: 1999 ident: bb0070 article-title: Generation of dense time series synthetic Landsat data through data blending with MODIS using a spatial and temporal adaptive reflectance fusion model publication-title: Remote Sensing of Environment – volume: 18 start-page: 1551 year: 2005 end-page: 1565 ident: bb0115 article-title: The footprint of urban areas on global climate as characterized by MODIS publication-title: Journal of Climate – volume: 76 start-page: 337 year: 2001 end-page: 348 ident: bb0050 article-title: Modelling of diurnal cycles of brightness temperature extracted from METEOSAT data publication-title: Remote Sensing of Environment – volume: 75 start-page: 547 year: 2009 end-page: 556 ident: bb0170 article-title: An emissivity modulation method for spatial enhancement of thermal satellite images in urban heat island analysis publication-title: Photogrammetric Engineering and Remote Sensing – volume: 30 start-page: 871 year: 1992 end-page: 884 ident: bb0120 article-title: Remote-sensing of water-vapor in the near IR from Eos/Modis publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 10 start-page: 1369 year: 2004 end-page: 1378 ident: bb0205 article-title: West Nile virus in California publication-title: Emerging Infectious Diseases – start-page: 257 year: 2004 end-page: 282 ident: bb0160 article-title: Thermal infrared measurement as an indicator of plant ecosystem health publication-title: Thermal Remote Sensing in Land Surface Processes – volume: 21 start-page: 353 year: 2000 end-page: 366 ident: bb0230 article-title: Toward remote sensing methods for land cover dynamic monitoring: Application to Morocco publication-title: International Journal of Remote Sensing – volume: 8 start-page: 2695 year: 2008 end-page: 2706 ident: bb1505 article-title: Downscaling thermal infrared radiance for subpixel land surface temperature retrieval publication-title: Sensors – volume: 85 start-page: 282 year: 2003 end-page: 289 ident: bb0240 article-title: Satellite-measured growth of the urban heat island of Houston, Texas publication-title: Remote Sensing of Environment – volume: 7 start-page: 1 year: 2010 end-page: 34 ident: bb1500 article-title: Mapping daily evapotranspiration at field to global scales using geostationary and polar orbiting satellite imagery publication-title: Hydrology and Earth System Sciences Discussions – volume: 70 start-page: 1053 year: 2004 end-page: 1062 ident: bb0150 article-title: Spectral mixture analysis of the urban landscape in Indianapolis with landsat ETM plus imagery publication-title: Photogrammetric Engineering and Remote Sensing – volume: 9 start-page: 876 year: 2012 end-page: 880 ident: bb0010 article-title: Robustness of annual cycle parameters to characterize the urban thermal landscapes publication-title: IEEE Geoscience and Remote Sensing Letters – volume: 108 start-page: 4688 year: 2003 ident: bb0110 article-title: A generalized single-channel method for retrieving land surface temperature from remote sensing data publication-title: Journal of Geophysical Research — Atmospheres – volume: 18 start-page: 296 year: 2011 end-page: 306 ident: bb0245 article-title: Remote sensing land surface temperature for meteorology and climatology: A review publication-title: Meteorological Applications – volume: 8 start-page: 97 year: 2009 end-page: 108 ident: bb0130 article-title: Benefits and well-being perceived by people visiting green spaces in periods of heat stress publication-title: Urban Forestry & Urban Greening – volume: 35 start-page: L13401 year: 2008 ident: bb0085 article-title: ASTER land surface emissivity database of California and Nevada publication-title: Geophysical Research Letters – volume: 113 start-page: 2592 year: 2009 end-page: 2605 ident: bb0235 article-title: Downscaling AVHRR land surface temperatures for improved surface urban heat island intensity estimation publication-title: Remote Sensing of Environment – volume: 44 start-page: 2207 year: 2006 end-page: 2218 ident: bb0030 article-title: On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 115 start-page: 1772 year: 2011 end-page: 1780 ident: bb0025 article-title: High-resolution urban thermal sharpener (HUTS) publication-title: Remote Sensing of Environment – volume: 117 start-page: 57 year: 2012 end-page: 71 ident: bb0140 article-title: Enhancing temporal resolution of satellite imagery for public health studies: A case study of West Nile Virus outbreak in Los Angeles in 2007 publication-title: Remote Sensing of Environment – year: 1979 ident: bb0180 article-title: Technical note no. 169: Review of urban climatology – volume: 114 start-page: 2610 year: 2010 end-page: 2623 ident: bb0290 article-title: An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions publication-title: Remote Sensing of Environment – volume: 4 start-page: 767 year: 1965 end-page: 773 ident: bb0175 article-title: Directional reflectance and emissivity of an opaque surface publication-title: Applied Optics – year: 1997 ident: bb0215 article-title: Remote sensing. Principles and interpretation – volume: 108 start-page: 1 year: 1982 end-page: 24 ident: bb0185 article-title: The energetic basis of the urban heat island publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 46 start-page: 316 year: 2008 end-page: 327 ident: bb0225 article-title: Land surface emissivity retrieval from different VNIR and TIR sensors publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 140 start-page: 267 year: 2014 end-page: 278 ident: bb0260 article-title: Modeling annual parameters of land surface temperature variations and evaluating the impact of cloud cover using time series of Landsat TIR data publication-title: Remote Sensing of Environment – volume: 104 start-page: 211 year: 2006 end-page: 225 ident: bb0195 article-title: Assessment of multi-resolution and multi-sensor data for urban surface temperature retrieval publication-title: Remote Sensing of Environment – volume: 90 start-page: 434 year: 2004 end-page: 440 ident: bb0220 article-title: Land surface temperature retrieval from LANDSAT TM 5 publication-title: Remote Sensing of Environment – volume: 15 start-page: 223 year: 2011 end-page: 239 ident: bb0005 article-title: Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery publication-title: Hydrology and Earth System Sciences – volume: 7 start-page: 1612 issue: 8 year: 2007 ident: 10.1016/j.rse.2014.02.003_bb0020 article-title: An overview of the “triangle method” for estimating surface evapotranspiration and soil moisture from satellite imagery publication-title: Sensors doi: 10.3390/s7081612 – volume: 115 start-page: 1772 issue: 7 year: 2011 ident: 10.1016/j.rse.2014.02.003_bb0025 article-title: High-resolution urban thermal sharpener (HUTS) publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2011.03.008 – volume: 8 start-page: 97 issue: 2 year: 2009 ident: 10.1016/j.rse.2014.02.003_bb0130 article-title: Benefits and well-being perceived by people visiting green spaces in periods of heat stress publication-title: Urban Forestry & Urban Greening doi: 10.1016/j.ufug.2009.02.003 – volume: 108 start-page: 4688 issue: D22 year: 2003 ident: 10.1016/j.rse.2014.02.003_bb0110 article-title: A generalized single-channel method for retrieving land surface temperature from remote sensing data publication-title: Journal of Geophysical Research — Atmospheres doi: 10.1029/2003JD003480 – volume: 46 start-page: 316 issue: 2 year: 2008 ident: 10.1016/j.rse.2014.02.003_bb0225 article-title: Land surface emissivity retrieval from different VNIR and TIR sensors publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/TGRS.2007.904834 – volume: 70 start-page: 1053 issue: 9 year: 2004 ident: 10.1016/j.rse.2014.02.003_bb0150 article-title: Spectral mixture analysis of the urban landscape in Indianapolis with landsat ETM plus imagery publication-title: Photogrammetric Engineering and Remote Sensing doi: 10.14358/PERS.70.9.1053 – volume: 114 start-page: 2610 issue: 11 year: 2010 ident: 10.1016/j.rse.2014.02.003_bb0290 article-title: An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2010.05.032 – volume: 42 start-page: 137 issue: 2 year: 1992 ident: 10.1016/j.rse.2014.02.003_bb0040 article-title: Spectral mixture analysis of multispectral thermal infrared images publication-title: Remote Sensing of Environment doi: 10.1016/0034-4257(92)90097-4 – volume: 21 start-page: 353 issue: 2 year: 2000 ident: 10.1016/j.rse.2014.02.003_bb0230 article-title: Toward remote sensing methods for land cover dynamic monitoring: Application to Morocco publication-title: International Journal of Remote Sensing doi: 10.1080/014311600210876 – volume: 113 start-page: D07107 year: 2008 ident: 10.1016/j.rse.2014.02.003_bb0100 article-title: Land surface temperature retrieval at high spatial and temporal resolutions over the southwestern United States publication-title: Journal of Geophysical Research — Atmospheres doi: 10.1029/2007JD009048 – volume: 18 start-page: 1551 issue: 10 year: 2005 ident: 10.1016/j.rse.2014.02.003_bb0115 article-title: The footprint of urban areas on global climate as characterized by MODIS publication-title: Journal of Climate doi: 10.1175/JCLI3334.1 – volume: 1 start-page: 154 issue: 2 year: 2008 ident: 10.1016/j.rse.2014.02.003_bb0265 article-title: The spatial variations of urban land surface temperatures: Pertinent factors, zoning effect, and seasonal variability publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing doi: 10.1109/JSTARS.2008.917869 – volume: 35 start-page: L13401 issue: 13 year: 2008 ident: 10.1016/j.rse.2014.02.003_bb0085 article-title: ASTER land surface emissivity database of California and Nevada publication-title: Geophysical Research Letters doi: 10.1029/2008GL034507 – volume: 15 start-page: 223 issue: 1 year: 2011 ident: 10.1016/j.rse.2014.02.003_bb0005 article-title: Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery publication-title: Hydrology and Earth System Sciences doi: 10.5194/hess-15-223-2011 – volume: 30 start-page: 871 issue: 5 year: 1992 ident: 10.1016/j.rse.2014.02.003_bb0120 article-title: Remote-sensing of water-vapor in the near IR from Eos/Modis publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/36.175321 – volume: 7 start-page: 1 year: 2010 ident: 10.1016/j.rse.2014.02.003_bb1500 article-title: Mapping daily evapotranspiration at field to global scales using geostationary and polar orbiting satellite imagery publication-title: Hydrology and Earth System Sciences Discussions doi: 10.5194/hessd-7-5957-2010 – volume: 36 start-page: L02408 issue: 2 year: 2009 ident: 10.1016/j.rse.2014.02.003_bb0095 article-title: Disaggregation of GOES land surface temperatures using surface emissivity publication-title: Geophysical Research Letters doi: 10.1029/2008GL036544 – volume: 85 start-page: 429 issue: 4 year: 2003 ident: 10.1016/j.rse.2014.02.003_bb0125 article-title: Estimating subpixel surface temperatures and energy fluxes from the vegetation index–radiometric temperature relationship publication-title: Remote Sensing of Environment doi: 10.1016/S0034-4257(03)00036-1 – year: 1979 ident: 10.1016/j.rse.2014.02.003_bb0180 – volume: 44 start-page: 2207 issue: 8 year: 2006 ident: 10.1016/j.rse.2014.02.003_bb0030 article-title: On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/TGRS.2006.872081 – volume: 112 start-page: 3708 issue: 9 year: 2008 ident: 10.1016/j.rse.2014.02.003_bb0190 article-title: Combining MODIS and Landsat imagery to estimate and map boreal forest cover loss publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2008.05.006 – volume: 113 start-page: 2592 issue: 12 year: 2009 ident: 10.1016/j.rse.2014.02.003_bb0235 article-title: Downscaling AVHRR land surface temperatures for improved surface urban heat island intensity estimation publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2009.07.017 – volume: 18 start-page: 296 issue: 3 year: 2011 ident: 10.1016/j.rse.2014.02.003_bb0245 article-title: Remote sensing land surface temperature for meteorology and climatology: A review publication-title: Meteorological Applications doi: 10.1002/met.287 – volume: 4 start-page: 3184 issue: 10 year: 2012 ident: 10.1016/j.rse.2014.02.003_bb0015 article-title: Downscaling land surface temperature in an urban area: A case study for Hamburg, Germany publication-title: Remote Sensing doi: 10.3390/rs4103184 – volume: 30 start-page: 3531 issue: 13 year: 2009 ident: 10.1016/j.rse.2014.02.003_bb0200 article-title: Spatio-temporal modelling and analysis of urban heat islands by using Landsat TM and ETM plus imagery publication-title: International Journal of Remote Sensing doi: 10.1080/01431160802562289 – volume: 108 start-page: 1 issue: 455 year: 1982 ident: 10.1016/j.rse.2014.02.003_bb0185 article-title: The energetic basis of the urban heat island publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 140 start-page: 267 year: 2014 ident: 10.1016/j.rse.2014.02.003_bb0260 article-title: Modeling annual parameters of land surface temperature variations and evaluating the impact of cloud cover using time series of Landsat TIR data publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2013.09.002 – volume: 3 start-page: 68 issue: 1 year: 2006 ident: 10.1016/j.rse.2014.02.003_bb0155 article-title: A Landsat surface reflectance dataset for North America, 1990–2000 publication-title: IEEE Geoscience and Remote Sensing Letters doi: 10.1109/LGRS.2005.857030 – volume: 18 start-page: 3145 issue: 15 year: 1997 ident: 10.1016/j.rse.2014.02.003_bb0045 article-title: A verification of the ‘triangle’ method for obtaining surface soil water content and energy fluxes from remote measurements of the Normalized Difference Vegetation Index (NDVI) and surface radiant temperature publication-title: International Journal of Remote Sensing doi: 10.1080/014311697217026 – volume: 117 start-page: 57 year: 2012 ident: 10.1016/j.rse.2014.02.003_bb0140 article-title: Enhancing temporal resolution of satellite imagery for public health studies: A case study of West Nile Virus outbreak in Los Angeles in 2007 publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2011.06.023 – volume: 113 start-page: 1967 issue: 9 year: 2009 ident: 10.1016/j.rse.2014.02.003_bb0080 article-title: The North American ASTER Land Surface Emissivity Database (NAALSED) version 2.0 publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2009.05.005 – volume: 19 start-page: 2477 issue: 13 year: 1998 ident: 10.1016/j.rse.2014.02.003_bb0145 article-title: Pixel block intensity modulation: Adding spatial detail to TM band 6 thermal imagery publication-title: International Journal of Remote Sensing doi: 10.1080/014311698214578 – volume: 117 start-page: 114 year: 2012 ident: 10.1016/j.rse.2014.02.003_bb0280 article-title: Downscaling land surface temperature for urban heat island diurnal cycle analysis publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2011.05.027 – volume: 90 start-page: 434 issue: 4 year: 2004 ident: 10.1016/j.rse.2014.02.003_bb0220 article-title: Land surface temperature retrieval from LANDSAT TM 5 publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2004.02.003 – volume: 99 year: 2012 ident: 10.1016/j.rse.2014.02.003_bb0075 article-title: Generating high spatiotemporal resolution land surface temperature for urban heat island monitoring publication-title: IEEE Geoscience and Remote Sensing Letters – volume: 76 start-page: 337 issue: 3 year: 2001 ident: 10.1016/j.rse.2014.02.003_bb0050 article-title: Modelling of diurnal cycles of brightness temperature extracted from METEOSAT data publication-title: Remote Sensing of Environment doi: 10.1016/S0034-4257(00)00214-5 – volume: 114 start-page: 504 issue: 3 year: 2010 ident: 10.1016/j.rse.2014.02.003_bb0090 article-title: Remote sensing of the urban heat island effect across biomes in the continental USA publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2009.10.008 – volume: 85 start-page: 282 issue: 3 year: 2003 ident: 10.1016/j.rse.2014.02.003_bb0240 article-title: Satellite-measured growth of the urban heat island of Houston, Texas publication-title: Remote Sensing of Environment doi: 10.1016/S0034-4257(03)00007-5 – volume: 3 issue: 19 year: 2010 ident: 10.1016/j.rse.2014.02.003_bb0210 article-title: Local impact of temperature and precipitation on West Nile virus infection in Culex species mosquitoes in northeast Illinois, USA publication-title: Parasites & Vectors – volume: 8 start-page: 2695 year: 2008 ident: 10.1016/j.rse.2014.02.003_bb1505 article-title: Downscaling thermal infrared radiance for subpixel land surface temperature retrieval publication-title: Sensors doi: 10.3390/s8042695 – volume: 112 start-page: 2495 issue: 5 year: 2008 ident: 10.1016/j.rse.2014.02.003_bb0055 article-title: A method for integrating MODIS and Landsat data for systematic monitoring of forest cover and change in the Congo Basin publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2007.11.012 – year: 1997 ident: 10.1016/j.rse.2014.02.003_bb0215 – volume: 104 start-page: 211 issue: 2 year: 2006 ident: 10.1016/j.rse.2014.02.003_bb0195 article-title: Assessment of multi-resolution and multi-sensor data for urban surface temperature retrieval publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2005.09.022 – volume: 64 start-page: 335 issue: 4 year: 2009 ident: 10.1016/j.rse.2014.02.003_bb0255 article-title: Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends publication-title: ISPRS Journal of Photogrammetry and Remote Sensing doi: 10.1016/j.isprsjprs.2009.03.007 – volume: 9 start-page: 876 issue: 5 year: 2012 ident: 10.1016/j.rse.2014.02.003_bb0010 article-title: Robustness of annual cycle parameters to characterize the urban thermal landscapes publication-title: IEEE Geoscience and Remote Sensing Letters doi: 10.1109/LGRS.2012.2185034 – volume: 159 start-page: 143 issue: 1–4 year: 2009 ident: 10.1016/j.rse.2014.02.003_bb0135 article-title: An examination of the effect of landscape pattern, land surface temperature, and socioeconomic conditions on WNV dissemination in Chicago publication-title: Environmental Monitoring and Assessment doi: 10.1007/s10661-008-0618-6 – volume: 67 start-page: 65 year: 2012 ident: 10.1016/j.rse.2014.02.003_bb0285 article-title: Estimation of the relationship between remotely sensed anthropogenic heat discharge and building energy use publication-title: ISPRS Journal of Photogrammetry and Remote Sensing doi: 10.1016/j.isprsjprs.2011.10.007 – year: 2005 ident: 10.1016/j.rse.2014.02.003_bb0105 – volume: 89 start-page: 467 issue: 4 year: 2004 ident: 10.1016/j.rse.2014.02.003_bb0275 article-title: Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2003.11.005 – start-page: 257 year: 2004 ident: 10.1016/j.rse.2014.02.003_bb0160 article-title: Thermal infrared measurement as an indicator of plant ecosystem health publication-title: Thermal Remote Sensing in Land Surface Processes – volume: 4 start-page: 767 issue: 7 year: 1965 ident: 10.1016/j.rse.2014.02.003_bb0175 article-title: Directional reflectance and emissivity of an opaque surface publication-title: Applied Optics doi: 10.1364/AO.4.000767 – volume: 63 start-page: 2847 issue: 11 year: 2006 ident: 10.1016/j.rse.2014.02.003_bb0060 article-title: Neighborhood microclimates and vulnerability to heat stress publication-title: Social Science & Medicine doi: 10.1016/j.socscimed.2006.07.030 – volume: 60 start-page: 1225 issue: 10 year: 1994 ident: 10.1016/j.rse.2014.02.003_bb0165 article-title: A GIS-based approach to microclimate monitoring in Singapore's high-rise housing estates publication-title: Photogrammetric Engineering and Remote Sensing – volume: 10 start-page: 1369 issue: 8 year: 2004 ident: 10.1016/j.rse.2014.02.003_bb0205 article-title: West Nile virus in California publication-title: Emerging Infectious Diseases doi: 10.3201/eid1008.040077 – volume: 113 start-page: 1613 issue: 8 year: 2009 ident: 10.1016/j.rse.2014.02.003_bb0065 article-title: A new data fusion model for high spatial- and temporal-resolution mapping of forest disturbance based on Landsat and MODIS publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2009.03.007 – volume: 113 start-page: 1988 issue: 9 year: 2009 ident: 10.1016/j.rse.2014.02.003_bb0070 article-title: Generation of dense time series synthetic Landsat data through data blending with MODIS using a spatial and temporal adaptive reflectance fusion model publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2009.05.011 – year: 1992 ident: 10.1016/j.rse.2014.02.003_bb0250 – volume: 75 start-page: 547 issue: 5 year: 2009 ident: 10.1016/j.rse.2014.02.003_bb0170 article-title: An emissivity modulation method for spatial enhancement of thermal satellite images in urban heat island analysis publication-title: Photogrammetric Engineering and Remote Sensing doi: 10.14358/PERS.75.5.547 |
| SSID | ssj0015871 |
| Score | 2.6043997 |
| Snippet | Land surface temperature (LST) is a crucial parameter in investigating environmental, ecological processes and climate change at various scales, and is also... |
| SourceID | proquest pascalfrancis crossref fao elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 55 |
| SubjectTerms | algorithms Animal, plant and microbial ecology Annual temperature cycle Applied geophysics Biological and medical sciences California case studies climate change data collection Data fusion Earth sciences Earth, ocean, space energy balance evapotranspiration Exact sciences and technology Fundamental and applied biological sciences. Psychology General aspects. Techniques heat island image analysis Internal geophysics Land surface temperature Landsat landscapes moderate resolution imaging spectroradiometer prediction reflectance remote sensing soil water spatial variation surface temperature Teledetection and vegetation maps temporal variation Thermal imagery sharpening Thermal infrared data Urban landscape heterogeneity |
| Title | Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data |
| URI | https://dx.doi.org/10.1016/j.rse.2014.02.003 https://www.proquest.com/docview/1663626936 |
| Volume | 145 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0704 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015871 issn: 0034-4257 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-0704 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015871 issn: 0034-4257 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1879-0704 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015871 issn: 0034-4257 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1879-0704 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015871 issn: 0034-4257 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0704 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015871 issn: 0034-4257 databaseCode: AKRWK dateStart: 19930101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RUNVeKtiC2LasjMSpUooTOw8fEYUu7wNdiZuxY4duhXbRZvewl_72ziTOVqgqhyqHKLEdWfZ4PBN_8w3AgZOKjluKiFulIulwKVrcRaI4q3hisKAUFCh8dZ0NR_L8Lr1bg-MuFoZglUH3tzq90dbhzWEYzcOn8ZhifIUkiUMXoSFKpwh2mVMWgy-_VjCPOC3yNmuekBHV7k42G4zXrCamzFi2tJ3iX3vTq8pMCTRpahy3qk148Zfubjak0014FyxJdtR2dgvW_KQHOyd_AtewMKzcugdvQrbzH8sevP7WpPNdvof7lnWaoM_MmfHjkhHQkdWLWWVKz4i3KpAuMzNnlxQWjHf00IPAMrtkFUHnH1aF1P7q5uvZLSPw6TaMTk--Hw-jkHMhKqWK55GzKfpUaPflDRVZ6WyJJoQRmROlzFyceuEVrwrnlEPjqYhzyx1djhtblFLswPpkOvG7wGSa8EQZwas8kaIyhfJx4Y1w-E0rrOoD70Zbl4GQnPJiPOoOefZT4wRpmiDNE2Ix7cPnVZOnlo3jpcqym0L9TKQ07hYvNdvF6dbmAZWsHt0m9EuIIk1FkvZh8EwGVn1AG02lUiR92O-EQuMypbMXM_HTRa1jtOzQd1Qi-_B_3foIb-mpAQ2ln2B9Plv4PbSH5nbQCPwANo7OLobXvwHGVAaS |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61RahcqrJQdSktRuKEFOrEzsNH1Adb2C2HdqXejB07ZVG1W212D3vhtzOTOFtViB5QDpHiOLI84_FM_M03AB-cVHTcUkTcKhVJh0vR4i4SxVnFE4MNpaBE4dFlNhjLrzfpzQacdLkwBKsMtr-16Y21Dk-Ow2we308mlOMrJGkchggNUfomPJNpklME9un3GucRp0Xels0TMqLXu6PNBuQ1r4kqM5Ytb6f41-a0WZkZoSZNjRNXtRUv_jLezY50vgs7wZVkn9vRvoQNP-3B3tlD5ho2hqVb92A7lDv_uerB8y9NPd_VK_jR0k4T9pk5M7lbMUI6sno5r0zpGRFXBdZlZhZsSHnBeMcQPWgssytWEXb-dt1I_UffTy-uGKFPX8P4_Oz6ZBCFogtRKVW8iJxNMahCxy9vuMhKZ0v0IYzInChl5uLUC694VTinHHpPRZxb7uhy3NiilGIPtqazqd8HhtLgiTKCV3kiRWUK5ePCG-Hwm1ZY1QfezbYuAyM5Fca40x307JdGAWkSkOYJ0Zj24eO6y31Lx_HUy7IToX6kUxq3i6e67aO4tblFK6vHVwn9E6JUU5GkfTh6pAPrMaCTplIpkj6875RC4zqlwxcz9bNlrWN07TB4VCJ783_Degfbg-vRUA8vLr8dwAtqaRBE6VvYWsyX_hCdo4U9apT_D8UpCCc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generating+daily+land+surface+temperature+at+Landsat+resolution+by+fusing+Landsat+and+MODIS+data&rft.jtitle=Remote+sensing+of+environment&rft.au=Weng%2C+Qihao&rft.au=Fu%2C+P.+%28Peng%29&rft.au=Gao%2C+Feng&rft.date=2014-04-05&rft.issn=0034-4257&rft.volume=145+p.55-67&rft.spage=55&rft.epage=67&rft_id=info:doi/10.1016%2Fj.rse.2014.02.003&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon |