Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data

Land surface temperature (LST) is a crucial parameter in investigating environmental, ecological processes and climate change at various scales, and is also valuable in the studies of evapotranspiration, soil moisture conditions, surface energy balance, and urban heat islands. These studies require...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing of environment Vol. 145; pp. 55 - 67
Main Authors Weng, Qihao, Fu, Peng, Gao, Feng
Format Journal Article
LanguageEnglish
Published New York, NY Elsevier Inc 05.04.2014
Elsevier
Subjects
Online AccessGet full text
ISSN0034-4257
1879-0704
DOI10.1016/j.rse.2014.02.003

Cover

Abstract Land surface temperature (LST) is a crucial parameter in investigating environmental, ecological processes and climate change at various scales, and is also valuable in the studies of evapotranspiration, soil moisture conditions, surface energy balance, and urban heat islands. These studies require thermal infrared (TIR) images at both high temporal and spatial resolution to retrieve LST. However, currently, no single satellite sensors can deliver TIR data at both high temporal and spatial resolution. Thus, various algorithms/models have been developed to enhance the spatial or the temporal resolution of TIR data, but rare of those can enhance both spatial and temporal details. This paper presents a new data fusion algorithm for producing Landsat-like LST data by blending daily MODIS and periodic Landsat TM datasets. The original Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) was improved and modified for predicting thermal radiance and LST data by considering annual temperature cycle (ATC) and urban thermal landscape heterogeneity. The technique of linear spectral mixture analysis was employed to relate the Landsat radiance with the MODIS one, so that the temporal changes in radiance can be incorporated in the fusion model. This paper details the theoretical basis and the implementation procedures of the proposed data fusion algorithm, Spatio-temporal Adaptive Data Fusion Algorithm for Temperature mapping (SADFAT). A case study was conducted that predicted LSTs of five dates in 2005 from July to October in Los Angeles County, California. The results indicate that the prediction accuracy for the whole study area ranged from 1.3K to 2K. Like existing spatio-temporal data fusion models, the SADFAT method has a limitation in predicting LST changes that were not recorded in the MODIS and/or Landsat pixels due to the model assumption. •A fusion algorithm to produce Landsat-like LST by blending MODIS and Landsat data•Incorporate annual temperature cycle modeling into the prediction of LST change•MODIS radiance is spectrally unmixed to relate to the Landsat radiance.•Both Landsat reflective and TIR bands are utilized for searching for similar pixels.•Prediction accuracy for the whole Los Angeles area ranged from 1.3K to 2K.
AbstractList Land surface temperature (LST) is a crucial parameter in investigating environmental, ecological processes and climate change at various scales, and is also valuable in the studies of evapotranspiration, soil moisture conditions, surface energy balance, and urban heat islands. These studies require thermal infrared (TIR) images at both high temporal and spatial resolution to retrieve LST. However, currently, no single satellite sensors can deliver TIR data at both high temporal and spatial resolution. Thus, various algorithms/models have been developed to enhance the spatial or the temporal resolution of TIR data, but rare of those can enhance both spatial and temporal details. This paper presents a new data fusion algorithm for producing Landsat-like LST data by blending daily MODIS and periodic Landsat TM datasets. The original Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM)was improved and modified for predicting thermal radiance and LST data by considering annual temperature cycle (ATC) and urban thermal landscape heterogeneity. The technique of linear spectral mixture analysis was employed to relate the Landsat radiance with the MODIS one, so that the temporal changes in radiance can be incorporated in the fusion model. This paper details the theoretical basis and the implementation procedures of the proposed data fusion algorithm, Spatio-temporal Adaptive Data Fusion Algorithm for Temperature mapping (SADFAT). A case study was conducted that predicted LSTs of five dates in 2005 from July to October in Los Angeles County, California. The results indicate that the prediction accuracy for the whole study area ranged from1.3 K to 2 K. Like existing spatio-temporal data fusion models, the SADFAT method has a limitation in predicting LST changes that were not recorded in the MODIS and/or Landsat pixels due to the model assumption.
Land surface temperature (LST) is a crucial parameter in investigating environmental, ecological processes and climate change at various scales, and is also valuable in the studies of evapotranspiration, soil moisture conditions, surface energy balance, and urban heat islands. These studies require thermal infrared (TIR) images at both high temporal and spatial resolution to retrieve LST. However, currently, no single satellite sensors can deliver TIR data at both high temporal and spatial resolution. Thus, various algorithms/models have been developed to enhance the spatial or the temporal resolution of TIR data, but rare of those can enhance both spatial and temporal details. This paper presents a new data fusion algorithm for producing Landsat-like LST data by blending daily MODIS and periodic Landsat TM datasets. The original Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) was improved and modified for predicting thermal radiance and LST data by considering annual temperature cycle (ATC) and urban thermal landscape heterogeneity. The technique of linear spectral mixture analysis was employed to relate the Landsat radiance with the MODIS one, so that the temporal changes in radiance can be incorporated in the fusion model. This paper details the theoretical basis and the implementation procedures of the proposed data fusion algorithm, Spatio-temporal Adaptive Data Fusion Algorithm for Temperature mapping (SADFAT). A case study was conducted that predicted LSTs of five dates in 2005 from July to October in Los Angeles County, California. The results indicate that the prediction accuracy for the whole study area ranged from 1.3K to 2K. Like existing spatio-temporal data fusion models, the SADFAT method has a limitation in predicting LST changes that were not recorded in the MODIS and/or Landsat pixels due to the model assumption. •A fusion algorithm to produce Landsat-like LST by blending MODIS and Landsat data•Incorporate annual temperature cycle modeling into the prediction of LST change•MODIS radiance is spectrally unmixed to relate to the Landsat radiance.•Both Landsat reflective and TIR bands are utilized for searching for similar pixels.•Prediction accuracy for the whole Los Angeles area ranged from 1.3K to 2K.
Land surface temperature (LST) is a crucial parameter in investigating environmental, ecological processes and climate change at various scales, and is also valuable in the studies of evapotranspiration, soil moisture conditions, surface energy balance, and urban heat islands. These studies require thermal infrared (TIR) images at both high temporal and spatial resolution to retrieve LST. However, currently, no single satellite sensors can deliver TIR data at both high temporal and spatial resolution. Thus, various algorithms/models have been developed to enhance the spatial or the temporal resolution of TIR data, but rare of those can enhance both spatial and temporal details. This paper presents a new data fusion algorithm for producing Landsat-like LST data by blending daily MODIS and periodic Landsat TM datasets. The original Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) was improved and modified for predicting thermal radiance and LST data by considering annual temperature cycle (ATC) and urban thermal landscape heterogeneity. The technique of linear spectral mixture analysis was employed to relate the Landsat radiance with the MODIS one, so that the temporal changes in radiance can be incorporated in the fusion model. This paper details the theoretical basis and the implementation procedures of the proposed data fusion algorithm, Spatio-temporal Adaptive Data Fusion Algorithm for Temperature mapping (SADFAT). A case study was conducted that predicted LSTs of five dates in 2005 from July to October in Los Angeles County, California. The results indicate that the prediction accuracy for the whole study area ranged from 1.3K to 2K. Like existing spatio-temporal data fusion models, the SADFAT method has a limitation in predicting LST changes that were not recorded in the MODIS and/or Landsat pixels due to the model assumption.
Author Weng, Qihao
Fu, Peng
Gao, Feng
Author_xml – sequence: 1
  givenname: Qihao
  surname: Weng
  fullname: Weng, Qihao
  email: qweng@indstate.edu
  organization: Center for Urban and Environmental Change, Department of Earth and Environmental Systems, Indiana State University, Terre Haute, IN 47809, USA
– sequence: 2
  givenname: Peng
  surname: Fu
  fullname: Fu, Peng
  organization: Center for Urban and Environmental Change, Department of Earth and Environmental Systems, Indiana State University, Terre Haute, IN 47809, USA
– sequence: 3
  givenname: Feng
  surname: Gao
  fullname: Gao, Feng
  organization: USDA-ARS, Hydrology and Remote Sensing Laboratory, Beltsville, MD 20705, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28395432$$DView record in Pascal Francis
BookMark eNp9kMFO3DAQhq2KSl1oH4ATuVTqJenYjp1YnCraLkhbcaCcjWNPkFfZZGs7SPv2dbTAgQPyYSTP949mvlNyMk4jEnJOoaJA5fdtFSJWDGhdAasA-Aeyom2jSmigPiGr_FOXNRPNJ3Ia4xaAirahK_KwxhGDSX58LJzxw6EYzOiKOIfeWCwS7vZLew5YmFRsci_mGjBOw5z8NBbdoejnuMRfmkv-z-3Pm7s8MJnP5GNvhohfnusZuf_96-_Vdbm5Xd9c_diUtlY0la4TTOZLVCOEUsK6zraMGS4dt7V0VCBHBX3rnHICREubDtzyHJiutTU_I9-Oc_dh-jdjTHrno8Uhn4PTHDWVkksmFZcZ_fqMmmjN0AczWh_1PvidCQfNWq5EzVnm6JGzYYoxYP-KUNCLdb3V2bperGtgOjvOmeZNxvpkFlMpZL3vJi-Oyd5M2jyGvNH9XQYEAEjGmcjE5ZHA7PHJY9DRehwtOh_QJu0m_878__8Ep00
CODEN RSEEA7
CitedBy_id crossref_primary_10_3390_rs11010048
crossref_primary_10_1002_2015JD023718
crossref_primary_10_1080_01431161_2018_1538585
crossref_primary_10_3390_urbansci9020028
crossref_primary_10_1016_j_jag_2020_102156
crossref_primary_10_1007_s11707_019_0800_x
crossref_primary_10_1016_j_jag_2018_05_013
crossref_primary_10_1016_j_rse_2017_08_003
crossref_primary_10_3390_rs10111694
crossref_primary_10_1016_j_rse_2022_113221
crossref_primary_10_1109_JSTARS_2020_3022997
crossref_primary_10_1007_s11676_023_01638_x
crossref_primary_10_1109_MGRS_2015_2434351
crossref_primary_10_3390_pr9122262
crossref_primary_10_3390_rs11222612
crossref_primary_10_1016_j_jag_2021_102545
crossref_primary_10_1039_C5EM00254K
crossref_primary_10_1109_TGRS_2023_3254211
crossref_primary_10_1109_TGRS_2020_2999943
crossref_primary_10_1016_j_jag_2022_102839
crossref_primary_10_1002_2016JD024891
crossref_primary_10_1007_s11356_021_17588_y
crossref_primary_10_1016_j_inffus_2015_12_005
crossref_primary_10_1038_s41598_020_63701_5
crossref_primary_10_1080_01431161_2015_1083633
crossref_primary_10_3390_rs14092199
crossref_primary_10_1016_j_ejrs_2022_10_002
crossref_primary_10_1016_j_rse_2017_10_046
crossref_primary_10_3390_rs13020175
crossref_primary_10_1109_TGRS_2024_3443889
crossref_primary_10_1016_j_jag_2020_102056
crossref_primary_10_1109_TGRS_2022_3171331
crossref_primary_10_1080_01431161_2018_1504342
crossref_primary_10_1016_j_rsase_2018_10_020
crossref_primary_10_1016_j_rse_2020_111863
crossref_primary_10_1016_j_rse_2016_06_019
crossref_primary_10_1016_j_jag_2018_12_007
crossref_primary_10_1109_TGRS_2019_2894850
crossref_primary_10_3390_rs13020167
crossref_primary_10_1108_IJHMA_06_2024_0081
crossref_primary_10_3390_s24237424
crossref_primary_10_3389_fenvs_2022_1073914
crossref_primary_10_1016_j_rse_2017_08_018
crossref_primary_10_1109_JSTARS_2020_3030122
crossref_primary_10_1007_s41810_020_00067_1
crossref_primary_10_3390_rs12213673
crossref_primary_10_1016_j_rse_2020_111751
crossref_primary_10_1016_j_scitotenv_2018_11_223
crossref_primary_10_1007_s12040_024_02441_w
crossref_primary_10_1016_j_isprsjprs_2023_10_011
crossref_primary_10_1016_j_buildenv_2021_107935
crossref_primary_10_1007_s11432_019_2785_y
crossref_primary_10_1109_JSTARS_2022_3181505
crossref_primary_10_1016_j_isprsjprs_2016_12_002
crossref_primary_10_1016_j_scitotenv_2017_07_217
crossref_primary_10_1016_j_scitotenv_2018_04_361
crossref_primary_10_3390_rs14225752
crossref_primary_10_1080_07038992_2019_1704622
crossref_primary_10_29252_jgit_6_4_119
crossref_primary_10_1109_TGRS_2023_3336314
crossref_primary_10_1016_j_rse_2023_113784
crossref_primary_10_3390_rs14205170
crossref_primary_10_3103_S1068373921110078
crossref_primary_10_3390_rs13183645
crossref_primary_10_1109_JSTARS_2023_3339339
crossref_primary_10_1088_1755_1315_211_1_012010
crossref_primary_10_1016_j_isprsjprs_2023_10_004
crossref_primary_10_37636_recit_v53312330
crossref_primary_10_1016_j_pce_2022_103206
crossref_primary_10_1117_1_JRS_8_083582
crossref_primary_10_3390_land10040396
crossref_primary_10_34133_remotesensing_0208
crossref_primary_10_1016_j_rse_2017_08_036
crossref_primary_10_1016_j_rsase_2023_101005
crossref_primary_10_1016_j_rse_2020_111931
crossref_primary_10_3390_rs8080631
crossref_primary_10_3390_rs12244067
crossref_primary_10_3390_rs15020354
crossref_primary_10_3390_rs15235461
crossref_primary_10_1016_j_agrformet_2019_02_024
crossref_primary_10_1038_s41598_024_83944_w
crossref_primary_10_1111_2041_210X_13018
crossref_primary_10_3390_rs15041129
crossref_primary_10_1117_1_JRS_12_046023
crossref_primary_10_3390_su16188195
crossref_primary_10_1007_s41651_024_00178_0
crossref_primary_10_1117_1_JRS_12_041501
crossref_primary_10_3390_jimaging10040091
crossref_primary_10_3390_rs10020158
crossref_primary_10_1109_JSTARS_2021_3051422
crossref_primary_10_1109_TGRS_2023_3335813
crossref_primary_10_3390_rs11101212
crossref_primary_10_3390_su13031419
crossref_primary_10_3390_rs70404139
crossref_primary_10_1080_01431161_2018_1547455
crossref_primary_10_1109_JSTARS_2024_3487623
crossref_primary_10_1016_j_catena_2017_12_011
crossref_primary_10_3390_s18114058
crossref_primary_10_1007_s11119_020_09711_9
crossref_primary_10_1109_JSTARS_2020_3028116
crossref_primary_10_1109_JSTARS_2020_3016135
crossref_primary_10_1016_j_jag_2019_05_012
crossref_primary_10_1016_j_jhydrol_2019_02_039
crossref_primary_10_1016_j_isprsjprs_2022_03_009
crossref_primary_10_3390_w11010168
crossref_primary_10_3390_rs12172764
crossref_primary_10_1080_01431161_2015_1047049
crossref_primary_10_1109_TGRS_2016_2529422
crossref_primary_10_3390_rs12081297
crossref_primary_10_1007_s10661_022_10252_z
crossref_primary_10_29252_jgit_6_1_77
crossref_primary_10_3390_ijgi10120809
crossref_primary_10_1080_01431161_2018_1439202
crossref_primary_10_3390_rs9050481
crossref_primary_10_1016_j_landurbplan_2018_08_006
crossref_primary_10_3390_rs12030361
crossref_primary_10_1109_JSTARS_2022_3220897
crossref_primary_10_1007_s10668_021_01321_3
crossref_primary_10_1016_j_scitotenv_2020_138120
crossref_primary_10_3390_rs13193885
crossref_primary_10_1109_JSTARS_2021_3094184
crossref_primary_10_3390_rs13030343
crossref_primary_10_1016_j_rsase_2017_02_001
crossref_primary_10_1080_10106049_2018_1489421
crossref_primary_10_1097_MOP_0000000000000735
crossref_primary_10_3390_data1010007
crossref_primary_10_1016_j_uclim_2015_06_001
crossref_primary_10_3390_rs13152900
crossref_primary_10_3390_rs13122315
crossref_primary_10_1016_j_jclepro_2022_133890
crossref_primary_10_3390_ijgi9020067
crossref_primary_10_1016_j_rse_2025_114640
crossref_primary_10_1080_15481603_2021_2016262
crossref_primary_10_3390_rs15020413
crossref_primary_10_1109_JSTARS_2018_2790002
crossref_primary_10_1016_j_rse_2021_112612
crossref_primary_10_1117_1_JRS_14_016507
crossref_primary_10_1002_joc_6477
crossref_primary_10_1016_j_rse_2014_09_013
crossref_primary_10_3390_s150924002
crossref_primary_10_1016_j_asr_2022_02_033
crossref_primary_10_1016_j_agwat_2018_06_014
crossref_primary_10_1029_2018WR024162
crossref_primary_10_1016_j_jag_2018_02_002
crossref_primary_10_1371_journal_pone_0278667
crossref_primary_10_3390_rs12132134
crossref_primary_10_1016_j_rse_2019_111224
crossref_primary_10_3390_s23020913
crossref_primary_10_1016_j_scitotenv_2019_136193
crossref_primary_10_1007_s10668_021_01269_4
crossref_primary_10_1080_01431161_2019_1579386
crossref_primary_10_1109_JSTARS_2020_2965190
crossref_primary_10_3390_rs11151803
crossref_primary_10_1016_j_isprsjprs_2014_08_009
crossref_primary_10_1016_j_rse_2018_07_019
crossref_primary_10_3390_rs14205219
crossref_primary_10_1016_j_envres_2020_110424
crossref_primary_10_3390_rs17071119
crossref_primary_10_1016_j_scs_2024_105454
crossref_primary_10_1080_01431161_2023_2238327
crossref_primary_10_1016_j_agwat_2019_105844
crossref_primary_10_1016_j_sciaf_2025_e02590
crossref_primary_10_1109_TGRS_2021_3080384
crossref_primary_10_1016_j_scitotenv_2024_176638
crossref_primary_10_3390_cli6010016
crossref_primary_10_3390_land9060191
crossref_primary_10_3390_rs10020210
crossref_primary_10_1016_j_rse_2016_03_006
crossref_primary_10_1155_2020_3427321
crossref_primary_10_3390_rs15215211
crossref_primary_10_1109_TGRS_2019_2895351
crossref_primary_10_3390_app9183693
crossref_primary_10_1016_j_asr_2022_02_004
crossref_primary_10_1109_TGRS_2023_3313730
crossref_primary_10_3390_rs13204105
crossref_primary_10_1016_j_rse_2022_113083
crossref_primary_10_1080_01431161_2024_2370505
crossref_primary_10_1109_LGRS_2023_3255785
crossref_primary_10_1007_s11069_018_3363_3
crossref_primary_10_1016_j_isprsjprs_2016_03_011
crossref_primary_10_1109_JSTARS_2023_3235940
crossref_primary_10_3390_rs14143274
crossref_primary_10_3390_rs13183703
crossref_primary_10_1016_j_jksuci_2023_02_021
crossref_primary_10_1016_j_isprsjprs_2021_02_004
crossref_primary_10_1080_01431161_2019_1677969
crossref_primary_10_1371_journal_pone_0307711
crossref_primary_10_3390_rs11030222
crossref_primary_10_1007_s12665_023_10990_4
crossref_primary_10_1016_j_agwat_2017_04_016
crossref_primary_10_3390_rs13061155
crossref_primary_10_3390_s17040744
crossref_primary_10_3390_rs70404424
crossref_primary_10_3390_rs10030474
crossref_primary_10_3390_rs8040274
crossref_primary_10_1016_j_rse_2024_114546
crossref_primary_10_3390_rs12233900
crossref_primary_10_3390_rs14143385
crossref_primary_10_1016_j_rse_2020_112256
crossref_primary_10_3390_rs11192304
crossref_primary_10_1016_j_uclim_2023_101795
crossref_primary_10_3390_rs12183006
crossref_primary_10_1016_j_geoderma_2020_114617
crossref_primary_10_3389_fenvs_2021_795287
crossref_primary_10_3390_s20154337
crossref_primary_10_1109_TGRS_2024_3398067
crossref_primary_10_1007_s11442_022_2024_3
crossref_primary_10_3390_ijerph192417001
crossref_primary_10_1109_JSTARS_2018_2808469
crossref_primary_10_3390_rs11030324
crossref_primary_10_1016_j_rse_2017_12_003
crossref_primary_10_1109_JSTARS_2023_3333275
crossref_primary_10_1016_j_isprsjprs_2020_01_012
crossref_primary_10_1016_j_jag_2015_11_013
crossref_primary_10_1080_01431161_2023_2232548
crossref_primary_10_3390_rs11111319
crossref_primary_10_1016_j_isprsjprs_2020_01_014
crossref_primary_10_1109_TGRS_2022_3161070
crossref_primary_10_3390_atmos13020332
crossref_primary_10_1016_j_ecolind_2025_113336
crossref_primary_10_1080_00031305_2019_1700163
crossref_primary_10_3390_rs16132374
crossref_primary_10_1109_TGRS_2020_3010530
crossref_primary_10_1016_j_envadv_2020_100008
crossref_primary_10_1016_j_isprsjprs_2020_08_018
crossref_primary_10_1002_cl2_1149
crossref_primary_10_3390_rs15061583
crossref_primary_10_1007_s00484_020_02063_z
crossref_primary_10_1080_15481603_2016_1258971
crossref_primary_10_1109_ACCESS_2020_3021034
crossref_primary_10_1016_j_scitotenv_2019_02_178
crossref_primary_10_3390_rs12050801
crossref_primary_10_1016_j_rse_2020_112156
crossref_primary_10_1371_journal_pone_0266541
crossref_primary_10_1016_j_compag_2024_108616
crossref_primary_10_1016_j_gloplacha_2018_05_007
crossref_primary_10_1109_JSTARS_2019_2954852
crossref_primary_10_3390_rs13071396
crossref_primary_10_1016_j_rsase_2023_100921
crossref_primary_10_3390_rs14133038
crossref_primary_10_1016_j_cageo_2019_01_004
crossref_primary_10_1080_01431161_2021_1966854
crossref_primary_10_1016_j_uclim_2024_101848
crossref_primary_10_1080_10095020_2024_2350175
crossref_primary_10_1080_2150704X_2017_1362125
crossref_primary_10_1371_journal_pone_0117755
crossref_primary_10_3390_rs10040527
crossref_primary_10_1016_j_rse_2024_114119
crossref_primary_10_1109_MGRS_2021_3050782
crossref_primary_10_5194_essd_15_4181_2023
crossref_primary_10_1016_j_isprsjprs_2021_04_021
crossref_primary_10_1016_j_isprsjprs_2019_06_011
crossref_primary_10_1038_s41598_018_27905_0
crossref_primary_10_3390_rs13040645
crossref_primary_10_1016_j_srs_2024_100152
crossref_primary_10_1080_10106049_2023_2250331
crossref_primary_10_1016_j_rse_2024_114357
crossref_primary_10_1016_j_rse_2021_112325
crossref_primary_10_1109_JSTARS_2023_3335896
crossref_primary_10_3390_rs11202345
crossref_primary_10_1007_s12665_016_5952_3
crossref_primary_10_3390_rs10040650
crossref_primary_10_1016_j_scs_2020_102508
crossref_primary_10_1016_j_uclim_2022_101230
crossref_primary_10_29252_jgit_8_2_93
crossref_primary_10_1016_j_jclepro_2020_120529
crossref_primary_10_1007_s10661_022_10677_6
crossref_primary_10_3390_rs10071047
crossref_primary_10_1016_j_jag_2018_09_019
crossref_primary_10_3390_ijgi7040140
crossref_primary_10_1109_TGRS_2021_3115136
crossref_primary_10_3390_rs15040960
crossref_primary_10_1016_j_eja_2019_03_001
crossref_primary_10_1016_j_jag_2017_07_005
crossref_primary_10_3390_rs13245044
crossref_primary_10_1016_j_asr_2022_04_021
crossref_primary_10_3390_ijerph120809920
crossref_primary_10_1016_j_isprsjprs_2017_03_014
crossref_primary_10_1109_TGRS_2024_3412154
crossref_primary_10_1007_s11069_024_06431_5
crossref_primary_10_1109_LGRS_2016_2622726
crossref_primary_10_1109_TGRS_2024_3498913
crossref_primary_10_1016_j_rse_2022_112962
crossref_primary_10_1016_j_rse_2020_112009
crossref_primary_10_1109_TGRS_2024_3357735
crossref_primary_10_3390_rs70201482
crossref_primary_10_1016_j_rse_2015_08_015
crossref_primary_10_3390_rs16020322
crossref_primary_10_1109_TGRS_2022_3154406
crossref_primary_10_1109_TGRS_2024_3523384
crossref_primary_10_1080_10106049_2019_1622598
crossref_primary_10_1080_10095020_2020_1712265
crossref_primary_10_1007_s11432_019_2805_y
crossref_primary_10_1080_19475705_2023_2174904
crossref_primary_10_1080_10106049_2021_1920634
crossref_primary_10_3390_rs6109829
crossref_primary_10_3390_s18124425
crossref_primary_10_1080_10095020_2024_2380779
crossref_primary_10_1016_j_ecoinf_2024_102936
crossref_primary_10_1109_JSTARS_2023_3323742
crossref_primary_10_1007_s10661_024_13313_7
crossref_primary_10_1016_j_jvolgeores_2020_106976
crossref_primary_10_3389_fenvs_2021_731452
crossref_primary_10_1109_JSTARS_2015_2513598
crossref_primary_10_3390_ijgi6110374
crossref_primary_10_1109_TGRS_2022_3232624
crossref_primary_10_1016_j_isprsjprs_2018_02_021
crossref_primary_10_3390_rs11070741
crossref_primary_10_1109_LGRS_2015_2414897
crossref_primary_10_1080_10106049_2021_2022017
crossref_primary_10_1016_j_proeng_2017_10_113
crossref_primary_10_1007_s40808_022_01533_0
crossref_primary_10_1007_s13762_022_04510_3
crossref_primary_10_1007_s11707_022_1023_0
crossref_primary_10_3390_su132011203
crossref_primary_10_3390_rs15040901
crossref_primary_10_1016_j_scs_2023_104833
crossref_primary_10_1080_19475705_2024_2314578
crossref_primary_10_1016_j_scs_2023_104953
crossref_primary_10_3390_s23042040
crossref_primary_10_1088_2515_7620_ace760
crossref_primary_10_1109_TGRS_2022_3227074
crossref_primary_10_3390_rs13163231
crossref_primary_10_1016_j_isprsjprs_2020_06_016
crossref_primary_10_1016_j_inffus_2017_06_005
crossref_primary_10_1016_j_rse_2015_11_016
crossref_primary_10_3390_rs70201798
crossref_primary_10_1016_j_isprsjprs_2019_03_013
crossref_primary_10_1016_j_jag_2019_01_016
crossref_primary_10_1080_17538947_2016_1235621
crossref_primary_10_1109_JSTARS_2021_3132723
crossref_primary_10_1016_j_uclim_2021_100828
crossref_primary_10_1002_joc_5775
crossref_primary_10_1007_s44213_023_00017_w
crossref_primary_10_1016_j_srs_2023_100102
crossref_primary_10_1109_TGRS_2023_3283614
crossref_primary_10_3390_rs8070541
crossref_primary_10_3390_rs11070761
crossref_primary_10_1016_j_rse_2018_02_067
crossref_primary_10_3390_rs71215826
crossref_primary_10_1029_2023WR036162
crossref_primary_10_3390_rs13071306
crossref_primary_10_3390_atmos15050598
crossref_primary_10_1016_j_rse_2019_02_006
crossref_primary_10_3390_rs10111748
crossref_primary_10_3390_rs14102390
crossref_primary_10_3390_rs8010075
crossref_primary_10_3390_rs13224723
crossref_primary_10_3390_ijgi4042542
crossref_primary_10_1007_s12517_021_08769_7
crossref_primary_10_3390_rs10060890
crossref_primary_10_1080_01431161_2018_1489164
crossref_primary_10_1016_j_rse_2024_114076
crossref_primary_10_1016_j_compag_2015_05_003
crossref_primary_10_1007_s10661_024_12800_1
crossref_primary_10_1109_ACCESS_2020_3011258
crossref_primary_10_3390_rs10060881
crossref_primary_10_1080_01431161_2018_1434326
crossref_primary_10_3390_rs12223774
crossref_primary_10_3390_rs12183050
crossref_primary_10_1007_s12145_024_01344_0
crossref_primary_10_3390_rs13081512
crossref_primary_10_1080_10095020_2023_2178335
crossref_primary_10_3390_ijgi4031423
crossref_primary_10_1038_s41598_018_20156_z
crossref_primary_10_3390_su12176850
crossref_primary_10_3390_rs12091453
crossref_primary_10_1088_1748_9326_ab1b7d
crossref_primary_10_1016_j_rcar_2024_12_010
crossref_primary_10_1109_JSTARS_2021_3079357
crossref_primary_10_1016_j_rse_2015_11_005
crossref_primary_10_3390_rs14153639
crossref_primary_10_3390_rs8100849
crossref_primary_10_1109_TGRS_2022_3145086
crossref_primary_10_3390_s23229206
crossref_primary_10_1016_j_rse_2018_02_009
crossref_primary_10_1016_j_jag_2024_103981
crossref_primary_10_1016_j_uclim_2023_101455
crossref_primary_10_3390_rs10091382
crossref_primary_10_3390_rs10081207
crossref_primary_10_3390_rs13173355
crossref_primary_10_32604_ee_2022_018750
crossref_primary_10_1109_JSTARS_2021_3067349
crossref_primary_10_3390_rs10091388
crossref_primary_10_3390_rs15153732
crossref_primary_10_1016_j_ecolind_2023_110481
crossref_primary_10_1029_2021JD035598
crossref_primary_10_1016_j_asr_2018_09_014
crossref_primary_10_1007_s42965_023_00318_5
crossref_primary_10_3390_rs11182077
crossref_primary_10_7717_peerj_17820
crossref_primary_10_1016_j_buildenv_2022_109793
crossref_primary_10_3390_rs15184441
crossref_primary_10_3390_rs16203908
crossref_primary_10_3390_rs14122902
crossref_primary_10_3390_rs9070684
crossref_primary_10_1109_JSTARS_2020_2968809
crossref_primary_10_3390_rs14081772
crossref_primary_10_1007_s11269_022_03108_1
Cites_doi 10.3390/s7081612
10.1016/j.rse.2011.03.008
10.1016/j.ufug.2009.02.003
10.1029/2003JD003480
10.1109/TGRS.2007.904834
10.14358/PERS.70.9.1053
10.1016/j.rse.2010.05.032
10.1016/0034-4257(92)90097-4
10.1080/014311600210876
10.1029/2007JD009048
10.1175/JCLI3334.1
10.1109/JSTARS.2008.917869
10.1029/2008GL034507
10.5194/hess-15-223-2011
10.1109/36.175321
10.5194/hessd-7-5957-2010
10.1029/2008GL036544
10.1016/S0034-4257(03)00036-1
10.1109/TGRS.2006.872081
10.1016/j.rse.2008.05.006
10.1016/j.rse.2009.07.017
10.1002/met.287
10.3390/rs4103184
10.1080/01431160802562289
10.1016/j.rse.2013.09.002
10.1109/LGRS.2005.857030
10.1080/014311697217026
10.1016/j.rse.2011.06.023
10.1016/j.rse.2009.05.005
10.1080/014311698214578
10.1016/j.rse.2011.05.027
10.1016/j.rse.2004.02.003
10.1016/S0034-4257(00)00214-5
10.1016/j.rse.2009.10.008
10.1016/S0034-4257(03)00007-5
10.3390/s8042695
10.1016/j.rse.2007.11.012
10.1016/j.rse.2005.09.022
10.1016/j.isprsjprs.2009.03.007
10.1109/LGRS.2012.2185034
10.1007/s10661-008-0618-6
10.1016/j.isprsjprs.2011.10.007
10.1016/j.rse.2003.11.005
10.1364/AO.4.000767
10.1016/j.socscimed.2006.07.030
10.3201/eid1008.040077
10.1016/j.rse.2009.03.007
10.1016/j.rse.2009.05.011
10.14358/PERS.75.5.547
ContentType Journal Article
Copyright 2014 Elsevier Inc.
2015 INIST-CNRS
Copyright_xml – notice: 2014 Elsevier Inc.
– notice: 2015 INIST-CNRS
DBID FBQ
AAYXX
CITATION
IQODW
7S9
L.6
DOI 10.1016/j.rse.2014.02.003
DatabaseName AGRIS
CrossRef
Pascal-Francis
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA
Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
Environmental Sciences
EISSN 1879-0704
EndPage 67
ExternalDocumentID 28395432
10_1016_j_rse_2014_02_003
US201500062325
S0034425714000479
GeographicLocations California
Los Angeles County California
United States
GeographicLocations_xml – name: California
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABPPZ
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACPRK
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TN5
TWZ
WH7
ZCA
ZMT
~02
~G-
~KM
29P
41~
6TJ
AAHBH
AAQXK
AATTM
AAXKI
ABDPE
ABEFU
ABWVN
ACRPL
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AFFNX
AFJKZ
AKRWK
ANKPU
ASPBG
AVWKF
AZFZN
BNPGV
FA8
FBQ
FEDTE
FGOYB
G-2
HMA
HMC
HVGLF
HZ~
H~9
OHT
R2-
SEN
SEP
SEW
SSH
VOH
WUQ
XOL
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
ADXHL
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
~HD
IQODW
7S9
L.6
ID FETCH-LOGICAL-c491t-db5261019755995cdbc822a36d3c46d15e3e90f8dd9d505817b0d0d0dd0ab8c43
IEDL.DBID .~1
ISSN 0034-4257
IngestDate Sun Sep 28 11:00:47 EDT 2025
Wed Apr 02 07:46:51 EDT 2025
Thu Apr 24 22:52:42 EDT 2025
Wed Oct 01 02:18:10 EDT 2025
Thu Apr 03 09:45:06 EDT 2025
Fri Feb 23 02:30:04 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Annual temperature cycle
Data fusion
Thermal imagery sharpening
Land surface temperature
Urban landscape heterogeneity
Thermal infrared data
algorithms
urban environment
energy balance
measurement sensor
evapotranspiration
Earth surface
North America
ecology
imagery
spatial resolution
climate change
models
processes
soil moisture
Space remote sensing
Landsat
Urban heat island
new data
surface temperature
Environment
Parameter
Surface energy
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c491t-db5261019755995cdbc822a36d3c46d15e3e90f8dd9d505817b0d0d0dd0ab8c43
Notes http://dx.doi.org/10.1016/j.rse.2014.02.003
http://handle.nal.usda.gov/10113/59904
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1663626936
PQPubID 24069
PageCount 13
ParticipantIDs proquest_miscellaneous_1663626936
pascalfrancis_primary_28395432
crossref_primary_10_1016_j_rse_2014_02_003
crossref_citationtrail_10_1016_j_rse_2014_02_003
fao_agris_US201500062325
elsevier_sciencedirect_doi_10_1016_j_rse_2014_02_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-04-05
PublicationDateYYYYMMDD 2014-04-05
PublicationDate_xml – month: 04
  year: 2014
  text: 2014-04-05
  day: 05
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle Remote sensing of environment
PublicationYear 2014
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Trenberth (bb0250) 1992
Hilker, Wulder, Coops, Linke, McDermid, Masek (bb0065) 2009; 113
Jin, Dickinson, Zhang (bb0115) 2005; 18
Imhoff, Zhang, Wolfe, Bounoua (bb0090) 2010; 114
Inamdar, French, Hook, Vaughan, Luckett (bb0100) 2008; 113
Streutker (bb0240) 2003; 85
Rajasekar, Weng (bb0200) 2009; 30
Jensen (bb0105) 2005
Reisen, Lothrop, Chiles, Madon, Cossen, Woods (bb0205) 2004; 10
Weng (bb0255) 2009; 64
Jimenez-Munoz, Sobrino (bb0110) 2003; 108
Liu, Pu (bb1505) 2008; 8
Gao, Masek, Schwaller, Hall (bb0030) 2006; 44
Kustas, Norman, Anderson, French (bb0125) 2003; 85
Gillespie (bb0040) 1992; 42
Lafortezza, Carrus, Sanesi, Davies (bb0130) 2009; 8
Hansen, Roy, Lindquist, Adusei, Justice, Altstatt (bb0055) 2008; 112
Huang, Wang, Song, Fu, Wong (bb0075) 2012; 99
Bechtel (bb0010) 2012; 9
Gillies, Carlson, Cui, Kustas, Humes (bb0045) 1997; 18
Sobrino, Raissouni (bb0230) 2000; 21
Potapov, Hansen, Stehman, Loveland, Pittman (bb0190) 2008; 112
Bechtel, Zakšek, Hoshyaripour (bb0015) 2012; 4
Anderson, Kustas, Norman, Hain, Mecikalski, Schultz (bb1500) 2010; 7
Masek, Vermote, Saleous, Wolfe, Hall, Huemmrich (bb0155) 2006; 3
Oke (bb0185) 1982; 108
Liu, Weng (bb0140) 2012; 117
Nichol (bb0165) 1994; 60
Ruiz, Chaves, Hamer, Sun, Brown, Walker (bb0210) 2010; 3
Sabins (bb0215) 1997
Gottsche, Olesen (bb0050) 2001; 76
Pu, Gong, Michishita, Sasagawa (bb0195) 2006; 104
Weng, Lu, Schubring (bb0275) 2004; 89
Harlan, Brazel, Prashad, Stefanov, Larsen (bb0060) 2006; 63
Hulley, Hook (bb0080) 2009; 113
Weng, Fu (bb0260) 2014; 140
Hulley, Hook, Baldridge (bb0085) 2008; 35
Carlson (bb0020) 2007; 7
Zakšek, Oštir (bb0280) 2012; 117
Kaufman, Gao (bb0120) 1992; 30
Zhou, Weng, Gurney, Shuai, Hu (bb0285) 2012; 67
Oke (bb0180) 1979
Hilker, Wulder, Coops, Seitz, White, Gao (bb0070) 2009; 113
Sobrino, Jimenez-Munoz, Paolini (bb0220) 2004; 90
Dominguez, Kleissl, Luvall, Rickman (bb0025) 2011; 115
Lu, Weng (bb0150) 2004; 70
Stathopoulou, Cartalis (bb0235) 2009; 113
Anderson, Kustas, Norman, Hain, Mecikalski, Schultz (bb0005) 2011; 15
Inamdar, French (bb0095) 2009; 36
Tomlinson, Chapman, Thornes, Baker (bb0245) 2011; 18
Nichol (bb0170) 2009; 75
Sobrino, Jimenez-Munoz, Soria, Romaguera, Guanter, Moreno (bb0225) 2008; 46
Weng, Liu, Liang, Lu (bb0265) 2008; 1
Liu, Moore (bb0145) 1998; 19
Liu, Weng (bb0135) 2009; 159
Zhu, Chen, Gao, Chen, Masek (bb0290) 2010; 114
Moran (bb0160) 2004
Nicodemus (bb0175) 1965; 4
Jensen (10.1016/j.rse.2014.02.003_bb0105) 2005
Masek (10.1016/j.rse.2014.02.003_bb0155) 2006; 3
Bechtel (10.1016/j.rse.2014.02.003_bb0015) 2012; 4
Gottsche (10.1016/j.rse.2014.02.003_bb0050) 2001; 76
Hilker (10.1016/j.rse.2014.02.003_bb0065) 2009; 113
Carlson (10.1016/j.rse.2014.02.003_bb0020) 2007; 7
Zhu (10.1016/j.rse.2014.02.003_bb0290) 2010; 114
Sobrino (10.1016/j.rse.2014.02.003_bb0230) 2000; 21
Sobrino (10.1016/j.rse.2014.02.003_bb0225) 2008; 46
Lu (10.1016/j.rse.2014.02.003_bb0150) 2004; 70
Nichol (10.1016/j.rse.2014.02.003_bb0170) 2009; 75
Inamdar (10.1016/j.rse.2014.02.003_bb0100) 2008; 113
Oke (10.1016/j.rse.2014.02.003_bb0185) 1982; 108
Stathopoulou (10.1016/j.rse.2014.02.003_bb0235) 2009; 113
Weng (10.1016/j.rse.2014.02.003_bb0260) 2014; 140
Hansen (10.1016/j.rse.2014.02.003_bb0055) 2008; 112
Imhoff (10.1016/j.rse.2014.02.003_bb0090) 2010; 114
Potapov (10.1016/j.rse.2014.02.003_bb0190) 2008; 112
Oke (10.1016/j.rse.2014.02.003_bb0180) 1979
Zhou (10.1016/j.rse.2014.02.003_bb0285) 2012; 67
Liu (10.1016/j.rse.2014.02.003_bb1505) 2008; 8
Harlan (10.1016/j.rse.2014.02.003_bb0060) 2006; 63
Sobrino (10.1016/j.rse.2014.02.003_bb0220) 2004; 90
Liu (10.1016/j.rse.2014.02.003_bb0140) 2012; 117
Sabins (10.1016/j.rse.2014.02.003_bb0215) 1997
Streutker (10.1016/j.rse.2014.02.003_bb0240) 2003; 85
Dominguez (10.1016/j.rse.2014.02.003_bb0025) 2011; 115
Ruiz (10.1016/j.rse.2014.02.003_bb0210) 2010; 3
Weng (10.1016/j.rse.2014.02.003_bb0265) 2008; 1
Bechtel (10.1016/j.rse.2014.02.003_bb0010) 2012; 9
Kustas (10.1016/j.rse.2014.02.003_bb0125) 2003; 85
Gillespie (10.1016/j.rse.2014.02.003_bb0040) 1992; 42
Gillies (10.1016/j.rse.2014.02.003_bb0045) 1997; 18
Tomlinson (10.1016/j.rse.2014.02.003_bb0245) 2011; 18
Lafortezza (10.1016/j.rse.2014.02.003_bb0130) 2009; 8
Nichol (10.1016/j.rse.2014.02.003_bb0165) 1994; 60
Huang (10.1016/j.rse.2014.02.003_bb0075) 2012; 99
Liu (10.1016/j.rse.2014.02.003_bb0135) 2009; 159
Zakšek (10.1016/j.rse.2014.02.003_bb0280) 2012; 117
Weng (10.1016/j.rse.2014.02.003_bb0275) 2004; 89
Jin (10.1016/j.rse.2014.02.003_bb0115) 2005; 18
Liu (10.1016/j.rse.2014.02.003_bb0145) 1998; 19
Nicodemus (10.1016/j.rse.2014.02.003_bb0175) 1965; 4
Moran (10.1016/j.rse.2014.02.003_bb0160) 2004
Hulley (10.1016/j.rse.2014.02.003_bb0080) 2009; 113
Anderson (10.1016/j.rse.2014.02.003_bb0005) 2011; 15
Trenberth (10.1016/j.rse.2014.02.003_bb0250) 1992
Hilker (10.1016/j.rse.2014.02.003_bb0070) 2009; 113
Gao (10.1016/j.rse.2014.02.003_bb0030) 2006; 44
Hulley (10.1016/j.rse.2014.02.003_bb0085) 2008; 35
Reisen (10.1016/j.rse.2014.02.003_bb0205) 2004; 10
Weng (10.1016/j.rse.2014.02.003_bb0255) 2009; 64
Inamdar (10.1016/j.rse.2014.02.003_bb0095) 2009; 36
Anderson (10.1016/j.rse.2014.02.003_bb1500) 2010; 7
Pu (10.1016/j.rse.2014.02.003_bb0195) 2006; 104
Kaufman (10.1016/j.rse.2014.02.003_bb0120) 1992; 30
Jimenez-Munoz (10.1016/j.rse.2014.02.003_bb0110) 2003; 108
Rajasekar (10.1016/j.rse.2014.02.003_bb0200) 2009; 30
References_xml – volume: 3
  start-page: 68
  year: 2006
  end-page: 72
  ident: bb0155
  article-title: A Landsat surface reflectance dataset for North America, 1990–2000
  publication-title: IEEE Geoscience and Remote Sensing Letters
– volume: 159
  start-page: 143
  year: 2009
  end-page: 161
  ident: bb0135
  article-title: An examination of the effect of landscape pattern, land surface temperature, and socioeconomic conditions on WNV dissemination in Chicago
  publication-title: Environmental Monitoring and Assessment
– volume: 30
  start-page: 3531
  year: 2009
  end-page: 3548
  ident: bb0200
  article-title: Spatio-temporal modelling and analysis of urban heat islands by using Landsat TM and ETM plus imagery
  publication-title: International Journal of Remote Sensing
– volume: 63
  start-page: 2847
  year: 2006
  end-page: 2863
  ident: bb0060
  article-title: Neighborhood microclimates and vulnerability to heat stress
  publication-title: Social Science & Medicine
– volume: 64
  start-page: 335
  year: 2009
  end-page: 344
  ident: bb0255
  article-title: Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
– year: 1992
  ident: bb0250
  article-title: Climate system modeling
– volume: 4
  start-page: 3184
  year: 2012
  end-page: 3200
  ident: bb0015
  article-title: Downscaling land surface temperature in an urban area: A case study for Hamburg, Germany
  publication-title: Remote Sensing
– volume: 112
  start-page: 2495
  year: 2008
  end-page: 2513
  ident: bb0055
  article-title: A method for integrating MODIS and Landsat data for systematic monitoring of forest cover and change in the Congo Basin
  publication-title: Remote Sensing of Environment
– volume: 1
  start-page: 154
  year: 2008
  end-page: 166
  ident: bb0265
  article-title: The spatial variations of urban land surface temperatures: Pertinent factors, zoning effect, and seasonal variability
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
– volume: 42
  start-page: 137
  year: 1992
  end-page: 145
  ident: bb0040
  article-title: Spectral mixture analysis of multispectral thermal infrared images
  publication-title: Remote Sensing of Environment
– volume: 113
  start-page: D07107
  year: 2008
  ident: bb0100
  article-title: Land surface temperature retrieval at high spatial and temporal resolutions over the southwestern United States
  publication-title: Journal of Geophysical Research — Atmospheres
– volume: 60
  start-page: 1225
  year: 1994
  end-page: 1232
  ident: bb0165
  article-title: A GIS-based approach to microclimate monitoring in Singapore's high-rise housing estates
  publication-title: Photogrammetric Engineering and Remote Sensing
– volume: 117
  start-page: 114
  year: 2012
  end-page: 124
  ident: bb0280
  article-title: Downscaling land surface temperature for urban heat island diurnal cycle analysis
  publication-title: Remote Sensing of Environment
– volume: 67
  start-page: 65
  year: 2012
  end-page: 72
  ident: bb0285
  article-title: Estimation of the relationship between remotely sensed anthropogenic heat discharge and building energy use
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
– volume: 114
  start-page: 504
  year: 2010
  end-page: 513
  ident: bb0090
  article-title: Remote sensing of the urban heat island effect across biomes in the continental USA
  publication-title: Remote Sensing of Environment
– volume: 7
  start-page: 1612
  year: 2007
  end-page: 1629
  ident: bb0020
  article-title: An overview of the “triangle method” for estimating surface evapotranspiration and soil moisture from satellite imagery
  publication-title: Sensors
– volume: 99
  year: 2012
  ident: bb0075
  article-title: Generating high spatiotemporal resolution land surface temperature for urban heat island monitoring
  publication-title: IEEE Geoscience and Remote Sensing Letters
– year: 2005
  ident: bb0105
  article-title: Introductory digital image processing: a remote sensing perspective
– volume: 3
  year: 2010
  ident: bb0210
  article-title: Local impact of temperature and precipitation on West Nile virus infection in
  publication-title: Parasites & Vectors
– volume: 36
  start-page: L02408
  year: 2009
  ident: bb0095
  article-title: Disaggregation of GOES land surface temperatures using surface emissivity
  publication-title: Geophysical Research Letters
– volume: 19
  start-page: 2477
  year: 1998
  end-page: 2491
  ident: bb0145
  article-title: Pixel block intensity modulation: Adding spatial detail to TM band 6 thermal imagery
  publication-title: International Journal of Remote Sensing
– volume: 112
  start-page: 3708
  year: 2008
  end-page: 3719
  ident: bb0190
  article-title: Combining MODIS and Landsat imagery to estimate and map boreal forest cover loss
  publication-title: Remote Sensing of Environment
– volume: 113
  start-page: 1967
  year: 2009
  end-page: 1975
  ident: bb0080
  article-title: The North American ASTER Land Surface Emissivity Database (NAALSED) version 2.0
  publication-title: Remote Sensing of Environment
– volume: 18
  start-page: 3145
  year: 1997
  end-page: 3166
  ident: bb0045
  article-title: A verification of the ‘triangle’ method for obtaining surface soil water content and energy fluxes from remote measurements of the Normalized Difference Vegetation Index (NDVI) and surface radiant temperature
  publication-title: International Journal of Remote Sensing
– volume: 85
  start-page: 429
  year: 2003
  end-page: 440
  ident: bb0125
  article-title: Estimating subpixel surface temperatures and energy fluxes from the vegetation index–radiometric temperature relationship
  publication-title: Remote Sensing of Environment
– volume: 113
  start-page: 1613
  year: 2009
  end-page: 1627
  ident: bb0065
  article-title: A new data fusion model for high spatial- and temporal-resolution mapping of forest disturbance based on Landsat and MODIS
  publication-title: Remote Sensing of Environment
– volume: 89
  start-page: 467
  year: 2004
  end-page: 483
  ident: bb0275
  article-title: Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies
  publication-title: Remote Sensing of Environment
– volume: 113
  start-page: 1988
  year: 2009
  end-page: 1999
  ident: bb0070
  article-title: Generation of dense time series synthetic Landsat data through data blending with MODIS using a spatial and temporal adaptive reflectance fusion model
  publication-title: Remote Sensing of Environment
– volume: 18
  start-page: 1551
  year: 2005
  end-page: 1565
  ident: bb0115
  article-title: The footprint of urban areas on global climate as characterized by MODIS
  publication-title: Journal of Climate
– volume: 76
  start-page: 337
  year: 2001
  end-page: 348
  ident: bb0050
  article-title: Modelling of diurnal cycles of brightness temperature extracted from METEOSAT data
  publication-title: Remote Sensing of Environment
– volume: 75
  start-page: 547
  year: 2009
  end-page: 556
  ident: bb0170
  article-title: An emissivity modulation method for spatial enhancement of thermal satellite images in urban heat island analysis
  publication-title: Photogrammetric Engineering and Remote Sensing
– volume: 30
  start-page: 871
  year: 1992
  end-page: 884
  ident: bb0120
  article-title: Remote-sensing of water-vapor in the near IR from Eos/Modis
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 10
  start-page: 1369
  year: 2004
  end-page: 1378
  ident: bb0205
  article-title: West Nile virus in California
  publication-title: Emerging Infectious Diseases
– start-page: 257
  year: 2004
  end-page: 282
  ident: bb0160
  article-title: Thermal infrared measurement as an indicator of plant ecosystem health
  publication-title: Thermal Remote Sensing in Land Surface Processes
– volume: 21
  start-page: 353
  year: 2000
  end-page: 366
  ident: bb0230
  article-title: Toward remote sensing methods for land cover dynamic monitoring: Application to Morocco
  publication-title: International Journal of Remote Sensing
– volume: 8
  start-page: 2695
  year: 2008
  end-page: 2706
  ident: bb1505
  article-title: Downscaling thermal infrared radiance for subpixel land surface temperature retrieval
  publication-title: Sensors
– volume: 85
  start-page: 282
  year: 2003
  end-page: 289
  ident: bb0240
  article-title: Satellite-measured growth of the urban heat island of Houston, Texas
  publication-title: Remote Sensing of Environment
– volume: 7
  start-page: 1
  year: 2010
  end-page: 34
  ident: bb1500
  article-title: Mapping daily evapotranspiration at field to global scales using geostationary and polar orbiting satellite imagery
  publication-title: Hydrology and Earth System Sciences Discussions
– volume: 70
  start-page: 1053
  year: 2004
  end-page: 1062
  ident: bb0150
  article-title: Spectral mixture analysis of the urban landscape in Indianapolis with landsat ETM plus imagery
  publication-title: Photogrammetric Engineering and Remote Sensing
– volume: 9
  start-page: 876
  year: 2012
  end-page: 880
  ident: bb0010
  article-title: Robustness of annual cycle parameters to characterize the urban thermal landscapes
  publication-title: IEEE Geoscience and Remote Sensing Letters
– volume: 108
  start-page: 4688
  year: 2003
  ident: bb0110
  article-title: A generalized single-channel method for retrieving land surface temperature from remote sensing data
  publication-title: Journal of Geophysical Research — Atmospheres
– volume: 18
  start-page: 296
  year: 2011
  end-page: 306
  ident: bb0245
  article-title: Remote sensing land surface temperature for meteorology and climatology: A review
  publication-title: Meteorological Applications
– volume: 8
  start-page: 97
  year: 2009
  end-page: 108
  ident: bb0130
  article-title: Benefits and well-being perceived by people visiting green spaces in periods of heat stress
  publication-title: Urban Forestry & Urban Greening
– volume: 35
  start-page: L13401
  year: 2008
  ident: bb0085
  article-title: ASTER land surface emissivity database of California and Nevada
  publication-title: Geophysical Research Letters
– volume: 113
  start-page: 2592
  year: 2009
  end-page: 2605
  ident: bb0235
  article-title: Downscaling AVHRR land surface temperatures for improved surface urban heat island intensity estimation
  publication-title: Remote Sensing of Environment
– volume: 44
  start-page: 2207
  year: 2006
  end-page: 2218
  ident: bb0030
  article-title: On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 115
  start-page: 1772
  year: 2011
  end-page: 1780
  ident: bb0025
  article-title: High-resolution urban thermal sharpener (HUTS)
  publication-title: Remote Sensing of Environment
– volume: 117
  start-page: 57
  year: 2012
  end-page: 71
  ident: bb0140
  article-title: Enhancing temporal resolution of satellite imagery for public health studies: A case study of West Nile Virus outbreak in Los Angeles in 2007
  publication-title: Remote Sensing of Environment
– year: 1979
  ident: bb0180
  article-title: Technical note no. 169: Review of urban climatology
– volume: 114
  start-page: 2610
  year: 2010
  end-page: 2623
  ident: bb0290
  article-title: An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions
  publication-title: Remote Sensing of Environment
– volume: 4
  start-page: 767
  year: 1965
  end-page: 773
  ident: bb0175
  article-title: Directional reflectance and emissivity of an opaque surface
  publication-title: Applied Optics
– year: 1997
  ident: bb0215
  article-title: Remote sensing. Principles and interpretation
– volume: 108
  start-page: 1
  year: 1982
  end-page: 24
  ident: bb0185
  article-title: The energetic basis of the urban heat island
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 46
  start-page: 316
  year: 2008
  end-page: 327
  ident: bb0225
  article-title: Land surface emissivity retrieval from different VNIR and TIR sensors
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 140
  start-page: 267
  year: 2014
  end-page: 278
  ident: bb0260
  article-title: Modeling annual parameters of land surface temperature variations and evaluating the impact of cloud cover using time series of Landsat TIR data
  publication-title: Remote Sensing of Environment
– volume: 104
  start-page: 211
  year: 2006
  end-page: 225
  ident: bb0195
  article-title: Assessment of multi-resolution and multi-sensor data for urban surface temperature retrieval
  publication-title: Remote Sensing of Environment
– volume: 90
  start-page: 434
  year: 2004
  end-page: 440
  ident: bb0220
  article-title: Land surface temperature retrieval from LANDSAT TM 5
  publication-title: Remote Sensing of Environment
– volume: 15
  start-page: 223
  year: 2011
  end-page: 239
  ident: bb0005
  article-title: Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery
  publication-title: Hydrology and Earth System Sciences
– volume: 7
  start-page: 1612
  issue: 8
  year: 2007
  ident: 10.1016/j.rse.2014.02.003_bb0020
  article-title: An overview of the “triangle method” for estimating surface evapotranspiration and soil moisture from satellite imagery
  publication-title: Sensors
  doi: 10.3390/s7081612
– volume: 115
  start-page: 1772
  issue: 7
  year: 2011
  ident: 10.1016/j.rse.2014.02.003_bb0025
  article-title: High-resolution urban thermal sharpener (HUTS)
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2011.03.008
– volume: 8
  start-page: 97
  issue: 2
  year: 2009
  ident: 10.1016/j.rse.2014.02.003_bb0130
  article-title: Benefits and well-being perceived by people visiting green spaces in periods of heat stress
  publication-title: Urban Forestry & Urban Greening
  doi: 10.1016/j.ufug.2009.02.003
– volume: 108
  start-page: 4688
  issue: D22
  year: 2003
  ident: 10.1016/j.rse.2014.02.003_bb0110
  article-title: A generalized single-channel method for retrieving land surface temperature from remote sensing data
  publication-title: Journal of Geophysical Research — Atmospheres
  doi: 10.1029/2003JD003480
– volume: 46
  start-page: 316
  issue: 2
  year: 2008
  ident: 10.1016/j.rse.2014.02.003_bb0225
  article-title: Land surface emissivity retrieval from different VNIR and TIR sensors
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2007.904834
– volume: 70
  start-page: 1053
  issue: 9
  year: 2004
  ident: 10.1016/j.rse.2014.02.003_bb0150
  article-title: Spectral mixture analysis of the urban landscape in Indianapolis with landsat ETM plus imagery
  publication-title: Photogrammetric Engineering and Remote Sensing
  doi: 10.14358/PERS.70.9.1053
– volume: 114
  start-page: 2610
  issue: 11
  year: 2010
  ident: 10.1016/j.rse.2014.02.003_bb0290
  article-title: An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2010.05.032
– volume: 42
  start-page: 137
  issue: 2
  year: 1992
  ident: 10.1016/j.rse.2014.02.003_bb0040
  article-title: Spectral mixture analysis of multispectral thermal infrared images
  publication-title: Remote Sensing of Environment
  doi: 10.1016/0034-4257(92)90097-4
– volume: 21
  start-page: 353
  issue: 2
  year: 2000
  ident: 10.1016/j.rse.2014.02.003_bb0230
  article-title: Toward remote sensing methods for land cover dynamic monitoring: Application to Morocco
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/014311600210876
– volume: 113
  start-page: D07107
  year: 2008
  ident: 10.1016/j.rse.2014.02.003_bb0100
  article-title: Land surface temperature retrieval at high spatial and temporal resolutions over the southwestern United States
  publication-title: Journal of Geophysical Research — Atmospheres
  doi: 10.1029/2007JD009048
– volume: 18
  start-page: 1551
  issue: 10
  year: 2005
  ident: 10.1016/j.rse.2014.02.003_bb0115
  article-title: The footprint of urban areas on global climate as characterized by MODIS
  publication-title: Journal of Climate
  doi: 10.1175/JCLI3334.1
– volume: 1
  start-page: 154
  issue: 2
  year: 2008
  ident: 10.1016/j.rse.2014.02.003_bb0265
  article-title: The spatial variations of urban land surface temperatures: Pertinent factors, zoning effect, and seasonal variability
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
  doi: 10.1109/JSTARS.2008.917869
– volume: 35
  start-page: L13401
  issue: 13
  year: 2008
  ident: 10.1016/j.rse.2014.02.003_bb0085
  article-title: ASTER land surface emissivity database of California and Nevada
  publication-title: Geophysical Research Letters
  doi: 10.1029/2008GL034507
– volume: 15
  start-page: 223
  issue: 1
  year: 2011
  ident: 10.1016/j.rse.2014.02.003_bb0005
  article-title: Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery
  publication-title: Hydrology and Earth System Sciences
  doi: 10.5194/hess-15-223-2011
– volume: 30
  start-page: 871
  issue: 5
  year: 1992
  ident: 10.1016/j.rse.2014.02.003_bb0120
  article-title: Remote-sensing of water-vapor in the near IR from Eos/Modis
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/36.175321
– volume: 7
  start-page: 1
  year: 2010
  ident: 10.1016/j.rse.2014.02.003_bb1500
  article-title: Mapping daily evapotranspiration at field to global scales using geostationary and polar orbiting satellite imagery
  publication-title: Hydrology and Earth System Sciences Discussions
  doi: 10.5194/hessd-7-5957-2010
– volume: 36
  start-page: L02408
  issue: 2
  year: 2009
  ident: 10.1016/j.rse.2014.02.003_bb0095
  article-title: Disaggregation of GOES land surface temperatures using surface emissivity
  publication-title: Geophysical Research Letters
  doi: 10.1029/2008GL036544
– volume: 85
  start-page: 429
  issue: 4
  year: 2003
  ident: 10.1016/j.rse.2014.02.003_bb0125
  article-title: Estimating subpixel surface temperatures and energy fluxes from the vegetation index–radiometric temperature relationship
  publication-title: Remote Sensing of Environment
  doi: 10.1016/S0034-4257(03)00036-1
– year: 1979
  ident: 10.1016/j.rse.2014.02.003_bb0180
– volume: 44
  start-page: 2207
  issue: 8
  year: 2006
  ident: 10.1016/j.rse.2014.02.003_bb0030
  article-title: On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2006.872081
– volume: 112
  start-page: 3708
  issue: 9
  year: 2008
  ident: 10.1016/j.rse.2014.02.003_bb0190
  article-title: Combining MODIS and Landsat imagery to estimate and map boreal forest cover loss
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2008.05.006
– volume: 113
  start-page: 2592
  issue: 12
  year: 2009
  ident: 10.1016/j.rse.2014.02.003_bb0235
  article-title: Downscaling AVHRR land surface temperatures for improved surface urban heat island intensity estimation
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2009.07.017
– volume: 18
  start-page: 296
  issue: 3
  year: 2011
  ident: 10.1016/j.rse.2014.02.003_bb0245
  article-title: Remote sensing land surface temperature for meteorology and climatology: A review
  publication-title: Meteorological Applications
  doi: 10.1002/met.287
– volume: 4
  start-page: 3184
  issue: 10
  year: 2012
  ident: 10.1016/j.rse.2014.02.003_bb0015
  article-title: Downscaling land surface temperature in an urban area: A case study for Hamburg, Germany
  publication-title: Remote Sensing
  doi: 10.3390/rs4103184
– volume: 30
  start-page: 3531
  issue: 13
  year: 2009
  ident: 10.1016/j.rse.2014.02.003_bb0200
  article-title: Spatio-temporal modelling and analysis of urban heat islands by using Landsat TM and ETM plus imagery
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/01431160802562289
– volume: 108
  start-page: 1
  issue: 455
  year: 1982
  ident: 10.1016/j.rse.2014.02.003_bb0185
  article-title: The energetic basis of the urban heat island
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 140
  start-page: 267
  year: 2014
  ident: 10.1016/j.rse.2014.02.003_bb0260
  article-title: Modeling annual parameters of land surface temperature variations and evaluating the impact of cloud cover using time series of Landsat TIR data
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2013.09.002
– volume: 3
  start-page: 68
  issue: 1
  year: 2006
  ident: 10.1016/j.rse.2014.02.003_bb0155
  article-title: A Landsat surface reflectance dataset for North America, 1990–2000
  publication-title: IEEE Geoscience and Remote Sensing Letters
  doi: 10.1109/LGRS.2005.857030
– volume: 18
  start-page: 3145
  issue: 15
  year: 1997
  ident: 10.1016/j.rse.2014.02.003_bb0045
  article-title: A verification of the ‘triangle’ method for obtaining surface soil water content and energy fluxes from remote measurements of the Normalized Difference Vegetation Index (NDVI) and surface radiant temperature
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/014311697217026
– volume: 117
  start-page: 57
  year: 2012
  ident: 10.1016/j.rse.2014.02.003_bb0140
  article-title: Enhancing temporal resolution of satellite imagery for public health studies: A case study of West Nile Virus outbreak in Los Angeles in 2007
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2011.06.023
– volume: 113
  start-page: 1967
  issue: 9
  year: 2009
  ident: 10.1016/j.rse.2014.02.003_bb0080
  article-title: The North American ASTER Land Surface Emissivity Database (NAALSED) version 2.0
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2009.05.005
– volume: 19
  start-page: 2477
  issue: 13
  year: 1998
  ident: 10.1016/j.rse.2014.02.003_bb0145
  article-title: Pixel block intensity modulation: Adding spatial detail to TM band 6 thermal imagery
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/014311698214578
– volume: 117
  start-page: 114
  year: 2012
  ident: 10.1016/j.rse.2014.02.003_bb0280
  article-title: Downscaling land surface temperature for urban heat island diurnal cycle analysis
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2011.05.027
– volume: 90
  start-page: 434
  issue: 4
  year: 2004
  ident: 10.1016/j.rse.2014.02.003_bb0220
  article-title: Land surface temperature retrieval from LANDSAT TM 5
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2004.02.003
– volume: 99
  year: 2012
  ident: 10.1016/j.rse.2014.02.003_bb0075
  article-title: Generating high spatiotemporal resolution land surface temperature for urban heat island monitoring
  publication-title: IEEE Geoscience and Remote Sensing Letters
– volume: 76
  start-page: 337
  issue: 3
  year: 2001
  ident: 10.1016/j.rse.2014.02.003_bb0050
  article-title: Modelling of diurnal cycles of brightness temperature extracted from METEOSAT data
  publication-title: Remote Sensing of Environment
  doi: 10.1016/S0034-4257(00)00214-5
– volume: 114
  start-page: 504
  issue: 3
  year: 2010
  ident: 10.1016/j.rse.2014.02.003_bb0090
  article-title: Remote sensing of the urban heat island effect across biomes in the continental USA
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2009.10.008
– volume: 85
  start-page: 282
  issue: 3
  year: 2003
  ident: 10.1016/j.rse.2014.02.003_bb0240
  article-title: Satellite-measured growth of the urban heat island of Houston, Texas
  publication-title: Remote Sensing of Environment
  doi: 10.1016/S0034-4257(03)00007-5
– volume: 3
  issue: 19
  year: 2010
  ident: 10.1016/j.rse.2014.02.003_bb0210
  article-title: Local impact of temperature and precipitation on West Nile virus infection in Culex species mosquitoes in northeast Illinois, USA
  publication-title: Parasites & Vectors
– volume: 8
  start-page: 2695
  year: 2008
  ident: 10.1016/j.rse.2014.02.003_bb1505
  article-title: Downscaling thermal infrared radiance for subpixel land surface temperature retrieval
  publication-title: Sensors
  doi: 10.3390/s8042695
– volume: 112
  start-page: 2495
  issue: 5
  year: 2008
  ident: 10.1016/j.rse.2014.02.003_bb0055
  article-title: A method for integrating MODIS and Landsat data for systematic monitoring of forest cover and change in the Congo Basin
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2007.11.012
– year: 1997
  ident: 10.1016/j.rse.2014.02.003_bb0215
– volume: 104
  start-page: 211
  issue: 2
  year: 2006
  ident: 10.1016/j.rse.2014.02.003_bb0195
  article-title: Assessment of multi-resolution and multi-sensor data for urban surface temperature retrieval
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2005.09.022
– volume: 64
  start-page: 335
  issue: 4
  year: 2009
  ident: 10.1016/j.rse.2014.02.003_bb0255
  article-title: Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
  doi: 10.1016/j.isprsjprs.2009.03.007
– volume: 9
  start-page: 876
  issue: 5
  year: 2012
  ident: 10.1016/j.rse.2014.02.003_bb0010
  article-title: Robustness of annual cycle parameters to characterize the urban thermal landscapes
  publication-title: IEEE Geoscience and Remote Sensing Letters
  doi: 10.1109/LGRS.2012.2185034
– volume: 159
  start-page: 143
  issue: 1–4
  year: 2009
  ident: 10.1016/j.rse.2014.02.003_bb0135
  article-title: An examination of the effect of landscape pattern, land surface temperature, and socioeconomic conditions on WNV dissemination in Chicago
  publication-title: Environmental Monitoring and Assessment
  doi: 10.1007/s10661-008-0618-6
– volume: 67
  start-page: 65
  year: 2012
  ident: 10.1016/j.rse.2014.02.003_bb0285
  article-title: Estimation of the relationship between remotely sensed anthropogenic heat discharge and building energy use
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
  doi: 10.1016/j.isprsjprs.2011.10.007
– year: 2005
  ident: 10.1016/j.rse.2014.02.003_bb0105
– volume: 89
  start-page: 467
  issue: 4
  year: 2004
  ident: 10.1016/j.rse.2014.02.003_bb0275
  article-title: Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2003.11.005
– start-page: 257
  year: 2004
  ident: 10.1016/j.rse.2014.02.003_bb0160
  article-title: Thermal infrared measurement as an indicator of plant ecosystem health
  publication-title: Thermal Remote Sensing in Land Surface Processes
– volume: 4
  start-page: 767
  issue: 7
  year: 1965
  ident: 10.1016/j.rse.2014.02.003_bb0175
  article-title: Directional reflectance and emissivity of an opaque surface
  publication-title: Applied Optics
  doi: 10.1364/AO.4.000767
– volume: 63
  start-page: 2847
  issue: 11
  year: 2006
  ident: 10.1016/j.rse.2014.02.003_bb0060
  article-title: Neighborhood microclimates and vulnerability to heat stress
  publication-title: Social Science & Medicine
  doi: 10.1016/j.socscimed.2006.07.030
– volume: 60
  start-page: 1225
  issue: 10
  year: 1994
  ident: 10.1016/j.rse.2014.02.003_bb0165
  article-title: A GIS-based approach to microclimate monitoring in Singapore's high-rise housing estates
  publication-title: Photogrammetric Engineering and Remote Sensing
– volume: 10
  start-page: 1369
  issue: 8
  year: 2004
  ident: 10.1016/j.rse.2014.02.003_bb0205
  article-title: West Nile virus in California
  publication-title: Emerging Infectious Diseases
  doi: 10.3201/eid1008.040077
– volume: 113
  start-page: 1613
  issue: 8
  year: 2009
  ident: 10.1016/j.rse.2014.02.003_bb0065
  article-title: A new data fusion model for high spatial- and temporal-resolution mapping of forest disturbance based on Landsat and MODIS
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2009.03.007
– volume: 113
  start-page: 1988
  issue: 9
  year: 2009
  ident: 10.1016/j.rse.2014.02.003_bb0070
  article-title: Generation of dense time series synthetic Landsat data through data blending with MODIS using a spatial and temporal adaptive reflectance fusion model
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2009.05.011
– year: 1992
  ident: 10.1016/j.rse.2014.02.003_bb0250
– volume: 75
  start-page: 547
  issue: 5
  year: 2009
  ident: 10.1016/j.rse.2014.02.003_bb0170
  article-title: An emissivity modulation method for spatial enhancement of thermal satellite images in urban heat island analysis
  publication-title: Photogrammetric Engineering and Remote Sensing
  doi: 10.14358/PERS.75.5.547
SSID ssj0015871
Score 2.6043997
Snippet Land surface temperature (LST) is a crucial parameter in investigating environmental, ecological processes and climate change at various scales, and is also...
SourceID proquest
pascalfrancis
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 55
SubjectTerms algorithms
Animal, plant and microbial ecology
Annual temperature cycle
Applied geophysics
Biological and medical sciences
California
case studies
climate change
data collection
Data fusion
Earth sciences
Earth, ocean, space
energy balance
evapotranspiration
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
General aspects. Techniques
heat island
image analysis
Internal geophysics
Land surface temperature
Landsat
landscapes
moderate resolution imaging spectroradiometer
prediction
reflectance
remote sensing
soil water
spatial variation
surface temperature
Teledetection and vegetation maps
temporal variation
Thermal imagery sharpening
Thermal infrared data
Urban landscape heterogeneity
Title Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data
URI https://dx.doi.org/10.1016/j.rse.2014.02.003
https://www.proquest.com/docview/1663626936
Volume 145
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0704
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015871
  issn: 0034-4257
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-0704
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015871
  issn: 0034-4257
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-0704
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015871
  issn: 0034-4257
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-0704
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015871
  issn: 0034-4257
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0704
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015871
  issn: 0034-4257
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RUNVeKtiC2LasjMSpUooTOw8fEYUu7wNdiZuxY4duhXbRZvewl_72ziTOVqgqhyqHKLEdWfZ4PBN_8w3AgZOKjluKiFulIulwKVrcRaI4q3hisKAUFCh8dZ0NR_L8Lr1bg-MuFoZglUH3tzq90dbhzWEYzcOn8ZhifIUkiUMXoSFKpwh2mVMWgy-_VjCPOC3yNmuekBHV7k42G4zXrCamzFi2tJ3iX3vTq8pMCTRpahy3qk148Zfubjak0014FyxJdtR2dgvW_KQHOyd_AtewMKzcugdvQrbzH8sevP7WpPNdvof7lnWaoM_MmfHjkhHQkdWLWWVKz4i3KpAuMzNnlxQWjHf00IPAMrtkFUHnH1aF1P7q5uvZLSPw6TaMTk--Hw-jkHMhKqWK55GzKfpUaPflDRVZ6WyJJoQRmROlzFyceuEVrwrnlEPjqYhzyx1djhtblFLswPpkOvG7wGSa8EQZwas8kaIyhfJx4Y1w-E0rrOoD70Zbl4GQnPJiPOoOefZT4wRpmiDNE2Ix7cPnVZOnlo3jpcqym0L9TKQ07hYvNdvF6dbmAZWsHt0m9EuIIk1FkvZh8EwGVn1AG02lUiR92O-EQuMypbMXM_HTRa1jtOzQd1Qi-_B_3foIb-mpAQ2ln2B9Plv4PbSH5nbQCPwANo7OLobXvwHGVAaS
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61RahcqrJQdSktRuKEFOrEzsNH1Adb2C2HdqXejB07ZVG1W212D3vhtzOTOFtViB5QDpHiOLI84_FM_M03AB-cVHTcUkTcKhVJh0vR4i4SxVnFE4MNpaBE4dFlNhjLrzfpzQacdLkwBKsMtr-16Y21Dk-Ow2we308mlOMrJGkchggNUfomPJNpklME9un3GucRp0Xels0TMqLXu6PNBuQ1r4kqM5Ytb6f41-a0WZkZoSZNjRNXtRUv_jLezY50vgs7wZVkn9vRvoQNP-3B3tlD5ho2hqVb92A7lDv_uerB8y9NPd_VK_jR0k4T9pk5M7lbMUI6sno5r0zpGRFXBdZlZhZsSHnBeMcQPWgssytWEXb-dt1I_UffTy-uGKFPX8P4_Oz6ZBCFogtRKVW8iJxNMahCxy9vuMhKZ0v0IYzInChl5uLUC694VTinHHpPRZxb7uhy3NiilGIPtqazqd8HhtLgiTKCV3kiRWUK5ePCG-Hwm1ZY1QfezbYuAyM5Fca40x307JdGAWkSkOYJ0Zj24eO6y31Lx_HUy7IToX6kUxq3i6e67aO4tblFK6vHVwn9E6JUU5GkfTh6pAPrMaCTplIpkj6875RC4zqlwxcz9bNlrWN07TB4VCJ783_Degfbg-vRUA8vLr8dwAtqaRBE6VvYWsyX_hCdo4U9apT_D8UpCCc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generating+daily+land+surface+temperature+at+Landsat+resolution+by+fusing+Landsat+and+MODIS+data&rft.jtitle=Remote+sensing+of+environment&rft.au=Weng%2C+Qihao&rft.au=Fu%2C+P.+%28Peng%29&rft.au=Gao%2C+Feng&rft.date=2014-04-05&rft.issn=0034-4257&rft.volume=145+p.55-67&rft.spage=55&rft.epage=67&rft_id=info:doi/10.1016%2Fj.rse.2014.02.003&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon