A multi-step approach for tongue image classification in patients with diabetes

In China, diabetes is a common, high-incidence chronic disease. Diabetes has become a severe public health problem. However, the current diagnosis and treatment methods are difficult to control the progress of diabetes. Traditional Chinese Medicine (TCM) has become an option for the treatment of dia...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 149; p. 105935
Main Authors Li, Jun, Huang, Jingbin, Jiang, Tao, Tu, Liping, Cui, Longtao, Cui, Ji, Ma, Xuxiang, Yao, Xinghua, Shi, Yulin, Wang, Sihan, Wang, Yu, Liu, Jiayi, Li, Yongzhi, Zhou, Changle, Hu, Xiaojuan, Xu, Jiatuo
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.10.2022
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
1879-0534
DOI10.1016/j.compbiomed.2022.105935

Cover

Abstract In China, diabetes is a common, high-incidence chronic disease. Diabetes has become a severe public health problem. However, the current diagnosis and treatment methods are difficult to control the progress of diabetes. Traditional Chinese Medicine (TCM) has become an option for the treatment of diabetes due to its low cost, good curative effect, and good accessibility. Based on the tongue images data to realize the fine classification of the diabetic population, provide a diagnostic basis for the formulation of individualized treatment plans for diabetes, ensure the accuracy and consistency of the TCM diagnosis, and promote the objective and standardized development of TCM diagnosis. We use the TFDA-1 tongue examination instrument to collect the tongue images of the subjects. Tongue Diagnosis Analysis System (TDAS) is used to extract the TDAS features of the tongue images. Vector Quantized Variational Autoencoder (VQ-VAE) extracts VQ-VAE features from tongue images. Based on VQ-VAE features, K-means clustering tongue images. TDAS features are used to describe the differences between clusters. Vision Transformer (ViT) combined with Grad-weighted Class Activation Mapping (Grad-CAM) is used to verify the clustering results and calculate positioning diagnostic information. Based on VQ-VAE features, K-means divides the diabetic population into 4 clusters with clear boundaries. The silhouette, calinski harabasz, and davies bouldin scores are 0.391, 673.256, and 0.809, respectively. Cluster 1 had the highest Tongue Body L (TB-L) and Tongue Coating L (TC-L) and the lowest Tongue Coating Angular second moment (TC-ASM), with a pale red tongue and white coating. Cluster 2 had the highest TC-b with a yellow tongue coating. Cluster 3 had the highest TB-a with a red tongue. Group 4 had the lowest TB-L, TC-L, and TB-b and the highest Per-all with a purple tongue and the largest tongue coating area. ViT verifies the clustering results of K-means, the highest Top-1 Classification Accuracy (CA) is 87.8%, and the average CA is 84.4%. The study organically combined unsupervised learning, self-supervised learning, and supervised learning and designed a complete diabetic tongue image classification method. This method does not rely on human intervention, makes decisions based entirely on tongue image data, and achieves state-of-the-art results. Our research will help TCM deeply participate in the individualized treatment of diabetes and provide new ideas for promoting the standardization of TCM diagnosis. •This study has given us new insights into the developmental stages of diabetes.•This study presents a new method of classifying diabetic tongue images without manual intervention.•This study will help improve the consistency and accuracy of TCM diagnosis of diabetes.
AbstractList In China, diabetes is a common, high-incidence chronic disease. Diabetes has become a severe public health problem. However, the current diagnosis and treatment methods are difficult to control the progress of diabetes. Traditional Chinese Medicine (TCM) has become an option for the treatment of diabetes due to its low cost, good curative effect, and good accessibility. Based on the tongue images data to realize the fine classification of the diabetic population, provide a diagnostic basis for the formulation of individualized treatment plans for diabetes, ensure the accuracy and consistency of the TCM diagnosis, and promote the objective and standardized development of TCM diagnosis. We use the TFDA-1 tongue examination instrument to collect the tongue images of the subjects. Tongue Diagnosis Analysis System (TDAS) is used to extract the TDAS features of the tongue images. Vector Quantized Variational Autoencoder (VQ-VAE) extracts VQ-VAE features from tongue images. Based on VQ-VAE features, K-means clustering tongue images. TDAS features are used to describe the differences between clusters. Vision Transformer (ViT) combined with Grad-weighted Class Activation Mapping (Grad-CAM) is used to verify the clustering results and calculate positioning diagnostic information. Based on VQ-VAE features, K-means divides the diabetic population into 4 clusters with clear boundaries. The silhouette, calinski harabasz, and davies bouldin scores are 0.391, 673.256, and 0.809, respectively. Cluster 1 had the highest Tongue Body L (TB-L) and Tongue Coating L (TC-L) and the lowest Tongue Coating Angular second moment (TC-ASM), with a pale red tongue and white coating. Cluster 2 had the highest TC-b with a yellow tongue coating. Cluster 3 had the highest TB-a with a red tongue. Group 4 had the lowest TB-L, TC-L, and TB-b and the highest Per-all with a purple tongue and the largest tongue coating area. ViT verifies the clustering results of K-means, the highest Top-1 Classification Accuracy (CA) is 87.8%, and the average CA is 84.4%. The study organically combined unsupervised learning, self-supervised learning, and supervised learning and designed a complete diabetic tongue image classification method. This method does not rely on human intervention, makes decisions based entirely on tongue image data, and achieves state-of-the-art results. Our research will help TCM deeply participate in the individualized treatment of diabetes and provide new ideas for promoting the standardization of TCM diagnosis. •This study has given us new insights into the developmental stages of diabetes.•This study presents a new method of classifying diabetic tongue images without manual intervention.•This study will help improve the consistency and accuracy of TCM diagnosis of diabetes.
In China, diabetes is a common, high-incidence chronic disease. Diabetes has become a severe public health problem. However, the current diagnosis and treatment methods are difficult to control the progress of diabetes. Traditional Chinese Medicine (TCM) has become an option for the treatment of diabetes due to its low cost, good curative effect, and good accessibility.BACKGROUNDIn China, diabetes is a common, high-incidence chronic disease. Diabetes has become a severe public health problem. However, the current diagnosis and treatment methods are difficult to control the progress of diabetes. Traditional Chinese Medicine (TCM) has become an option for the treatment of diabetes due to its low cost, good curative effect, and good accessibility.Based on the tongue images data to realize the fine classification of the diabetic population, provide a diagnostic basis for the formulation of individualized treatment plans for diabetes, ensure the accuracy and consistency of the TCM diagnosis, and promote the objective and standardized development of TCM diagnosis.OBJECTIVEBased on the tongue images data to realize the fine classification of the diabetic population, provide a diagnostic basis for the formulation of individualized treatment plans for diabetes, ensure the accuracy and consistency of the TCM diagnosis, and promote the objective and standardized development of TCM diagnosis.We use the TFDA-1 tongue examination instrument to collect the tongue images of the subjects. Tongue Diagnosis Analysis System (TDAS) is used to extract the TDAS features of the tongue images. Vector Quantized Variational Autoencoder (VQ-VAE) extracts VQ-VAE features from tongue images. Based on VQ-VAE features, K-means clustering tongue images. TDAS features are used to describe the differences between clusters. Vision Transformer (ViT) combined with Grad-weighted Class Activation Mapping (Grad-CAM) is used to verify the clustering results and calculate positioning diagnostic information.METHODSWe use the TFDA-1 tongue examination instrument to collect the tongue images of the subjects. Tongue Diagnosis Analysis System (TDAS) is used to extract the TDAS features of the tongue images. Vector Quantized Variational Autoencoder (VQ-VAE) extracts VQ-VAE features from tongue images. Based on VQ-VAE features, K-means clustering tongue images. TDAS features are used to describe the differences between clusters. Vision Transformer (ViT) combined with Grad-weighted Class Activation Mapping (Grad-CAM) is used to verify the clustering results and calculate positioning diagnostic information.Based on VQ-VAE features, K-means divides the diabetic population into 4 clusters with clear boundaries. The silhouette, calinski harabasz, and davies bouldin scores are 0.391, 673.256, and 0.809, respectively. Cluster 1 had the highest Tongue Body L (TB-L) and Tongue Coating L (TC-L) and the lowest Tongue Coating Angular second moment (TC-ASM), with a pale red tongue and white coating. Cluster 2 had the highest TC-b with a yellow tongue coating. Cluster 3 had the highest TB-a with a red tongue. Group 4 had the lowest TB-L, TC-L, and TB-b and the highest Per-all with a purple tongue and the largest tongue coating area. ViT verifies the clustering results of K-means, the highest Top-1 Classification Accuracy (CA) is 87.8%, and the average CA is 84.4%.RESULTSBased on VQ-VAE features, K-means divides the diabetic population into 4 clusters with clear boundaries. The silhouette, calinski harabasz, and davies bouldin scores are 0.391, 673.256, and 0.809, respectively. Cluster 1 had the highest Tongue Body L (TB-L) and Tongue Coating L (TC-L) and the lowest Tongue Coating Angular second moment (TC-ASM), with a pale red tongue and white coating. Cluster 2 had the highest TC-b with a yellow tongue coating. Cluster 3 had the highest TB-a with a red tongue. Group 4 had the lowest TB-L, TC-L, and TB-b and the highest Per-all with a purple tongue and the largest tongue coating area. ViT verifies the clustering results of K-means, the highest Top-1 Classification Accuracy (CA) is 87.8%, and the average CA is 84.4%.The study organically combined unsupervised learning, self-supervised learning, and supervised learning and designed a complete diabetic tongue image classification method. This method does not rely on human intervention, makes decisions based entirely on tongue image data, and achieves state-of-the-art results. Our research will help TCM deeply participate in the individualized treatment of diabetes and provide new ideas for promoting the standardization of TCM diagnosis.CONCLUSIONSThe study organically combined unsupervised learning, self-supervised learning, and supervised learning and designed a complete diabetic tongue image classification method. This method does not rely on human intervention, makes decisions based entirely on tongue image data, and achieves state-of-the-art results. Our research will help TCM deeply participate in the individualized treatment of diabetes and provide new ideas for promoting the standardization of TCM diagnosis.
BackgroundIn China, diabetes is a common, high-incidence chronic disease. Diabetes has become a severe public health problem. However, the current diagnosis and treatment methods are difficult to control the progress of diabetes. Traditional Chinese Medicine (TCM) has become an option for the treatment of diabetes due to its low cost, good curative effect, and good accessibility.ObjectiveBased on the tongue images data to realize the fine classification of the diabetic population, provide a diagnostic basis for the formulation of individualized treatment plans for diabetes, ensure the accuracy and consistency of the TCM diagnosis, and promote the objective and standardized development of TCM diagnosis.MethodsWe use the TFDA-1 tongue examination instrument to collect the tongue images of the subjects. Tongue Diagnosis Analysis System (TDAS) is used to extract the TDAS features of the tongue images. Vector Quantized Variational Autoencoder (VQ-VAE) extracts VQ-VAE features from tongue images. Based on VQ-VAE features, K-means clustering tongue images. TDAS features are used to describe the differences between clusters. Vision Transformer (ViT) combined with Grad-weighted Class Activation Mapping (Grad-CAM) is used to verify the clustering results and calculate positioning diagnostic information.ResultsBased on VQ-VAE features, K-means divides the diabetic population into 4 clusters with clear boundaries. The silhouette, calinski harabasz, and davies bouldin scores are 0.391, 673.256, and 0.809, respectively.Cluster 1 had the highest Tongue Body L (TB-L) and Tongue Coating L (TC-L) and the lowest Tongue Coating Angular second moment (TC-ASM), with a pale red tongue and white coating. Cluster 2 had the highest TC-b with a yellow tongue coating. Cluster 3 had the highest TB-a with a red tongue. Group 4 had the lowest TB-L, TC-L, and TB-b and the highest Per-all with a purple tongue and the largest tongue coating area. ViT verifies the clustering results of K-means, the highest Top-1 Classification Accuracy (CA) is 87.8%, and the average CA is 84.4%.ConclusionsThe study organically combined unsupervised learning, self-supervised learning, and supervised learning and designed a complete diabetic tongue image classification method. This method does not rely on human intervention, makes decisions based entirely on tongue image data, and achieves state-of-the-art results. Our research will help TCM deeply participate in the individualized treatment of diabetes and provide new ideas for promoting the standardization of TCM diagnosis.
AbstractBackgroundIn China, diabetes is a common, high-incidence chronic disease. Diabetes has become a severe public health problem. However, the current diagnosis and treatment methods are difficult to control the progress of diabetes. Traditional Chinese Medicine (TCM) has become an option for the treatment of diabetes due to its low cost, good curative effect, and good accessibility. ObjectiveBased on the tongue images data to realize the fine classification of the diabetic population, provide a diagnostic basis for the formulation of individualized treatment plans for diabetes, ensure the accuracy and consistency of the TCM diagnosis, and promote the objective and standardized development of TCM diagnosis. MethodsWe use the TFDA-1 tongue examination instrument to collect the tongue images of the subjects. Tongue Diagnosis Analysis System (TDAS) is used to extract the TDAS features of the tongue images. Vector Quantized Variational Autoencoder (VQ-VAE) extracts VQ-VAE features from tongue images. Based on VQ-VAE features, K-means clustering tongue images. TDAS features are used to describe the differences between clusters. Vision Transformer (ViT) combined with Grad-weighted Class Activation Mapping (Grad-CAM) is used to verify the clustering results and calculate positioning diagnostic information. ResultsBased on VQ-VAE features, K-means divides the diabetic population into 4 clusters with clear boundaries. The silhouette, calinski harabasz, and davies bouldin scores are 0.391, 673.256, and 0.809, respectively. Cluster 1 had the highest Tongue Body L (TB-L) and Tongue Coating L (TC-L) and the lowest Tongue Coating Angular second moment (TC-ASM), with a pale red tongue and white coating. Cluster 2 had the highest TC-b with a yellow tongue coating. Cluster 3 had the highest TB-a with a red tongue. Group 4 had the lowest TB-L, TC-L, and TB-b and the highest Per-all with a purple tongue and the largest tongue coating area. ViT verifies the clustering results of K-means, the highest Top-1 Classification Accuracy (CA) is 87.8%, and the average CA is 84.4%. ConclusionsThe study organically combined unsupervised learning, self-supervised learning, and supervised learning and designed a complete diabetic tongue image classification method. This method does not rely on human intervention, makes decisions based entirely on tongue image data, and achieves state-of-the-art results. Our research will help TCM deeply participate in the individualized treatment of diabetes and provide new ideas for promoting the standardization of TCM diagnosis.
ArticleNumber 105935
Author Xu, Jiatuo
Tu, Liping
Wang, Yu
Zhou, Changle
Huang, Jingbin
Hu, Xiaojuan
Cui, Ji
Shi, Yulin
Li, Jun
Cui, Longtao
Yao, Xinghua
Wang, Sihan
Jiang, Tao
Ma, Xuxiang
Li, Yongzhi
Liu, Jiayi
Author_xml – sequence: 1
  givenname: Jun
  orcidid: 0000-0001-5624-2146
  surname: Li
  fullname: Li, Jun
  organization: Basic Medical College, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
– sequence: 2
  givenname: Jingbin
  surname: Huang
  fullname: Huang, Jingbin
  organization: Basic Medical College, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
– sequence: 3
  givenname: Tao
  surname: Jiang
  fullname: Jiang, Tao
  organization: Basic Medical College, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
– sequence: 4
  givenname: Liping
  surname: Tu
  fullname: Tu, Liping
  organization: Basic Medical College, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
– sequence: 5
  givenname: Longtao
  surname: Cui
  fullname: Cui, Longtao
  organization: Basic Medical College, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
– sequence: 6
  givenname: Ji
  surname: Cui
  fullname: Cui, Ji
  organization: Basic Medical College, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
– sequence: 7
  givenname: Xuxiang
  surname: Ma
  fullname: Ma, Xuxiang
  organization: Basic Medical College, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
– sequence: 8
  givenname: Xinghua
  surname: Yao
  fullname: Yao, Xinghua
  organization: Basic Medical College, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
– sequence: 9
  givenname: Yulin
  surname: Shi
  fullname: Shi, Yulin
  organization: Basic Medical College, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
– sequence: 10
  givenname: Sihan
  surname: Wang
  fullname: Wang, Sihan
  organization: Basic Medical College, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
– sequence: 11
  givenname: Yu
  surname: Wang
  fullname: Wang, Yu
  organization: Basic Medical College, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
– sequence: 12
  givenname: Jiayi
  surname: Liu
  fullname: Liu, Jiayi
  organization: Basic Medical College, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
– sequence: 13
  givenname: Yongzhi
  surname: Li
  fullname: Li, Yongzhi
  organization: China Astronaut Research and Training Center, Beijing, 100084, China
– sequence: 14
  givenname: Changle
  surname: Zhou
  fullname: Zhou, Changle
  organization: Department of Intelligent Science and Technology, Xiamen University, 422 Siming South Road, Xiamen, Fujian, 361005, China
– sequence: 15
  givenname: Xiaojuan
  surname: Hu
  fullname: Hu, Xiaojuan
  email: xjhu2017@shutcm.edu.cn
  organization: Shanghai Collaborative Innovation Center of Health Service in Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
– sequence: 16
  givenname: Jiatuo
  surname: Xu
  fullname: Xu, Jiatuo
  email: xjt@fudan.edu.cn
  organization: Basic Medical College, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
BookMark eNqNkk1v1DAQhi1UJLaF_2CJC5cs4691cqkoFdBKlXoAzpbjTFovSRxsB9R_j8MikFZC2pMt651HM4_nnJxNYUJCKIMtA7Z7u9-6MM6tDyN2Ww6cl2fVCPWMbFitmwqUkGdkA8CgkjVXL8h5SnsAkCBgQ-6v6LgM2Vcp40ztPMdg3SPtQ6Q5TA8LUj_aB6RusCn53jubfZion-hcbjjlRH_6_Eg7b1vMmF6S570dEr76c16Qrx8_fLm-qe7uP91eX91VTjYsVx3vm4ZZa4VEobWsNQhVs0Yq1LbvtOOWNdyKvtVtV3fC1q1opZZWNFyD7MUFeXPgloa_L5iyGX1yOAx2wrAks6bqXa2lKtHXR9F9WOJUuispprhQWqypy0PKxZBSxN44n38Pm6P1g2FgVt9mb_75Nqtvc_BdAPURYI7FXXw6pfT9oRSLsR8eo0muuHXY-Ygumy74UyCXRxA3-Kl82PANnzD9nZmZxA2Yz-tGrAvBOcBOMyiAd_8HnNbDL5L7zRU
CitedBy_id crossref_primary_10_1007_s11831_023_09899_9
crossref_primary_10_1080_10255842_2023_2252957
crossref_primary_10_1142_S0192415X25500144
crossref_primary_10_1016_j_eujim_2023_102311
crossref_primary_10_1177_20552076231191044
crossref_primary_10_3389_fcimb_2024_1477638
crossref_primary_10_1016_j_bspc_2024_107426
crossref_primary_10_3389_frai_2024_1501184
crossref_primary_10_3389_fphys_2024_1473659
crossref_primary_10_1016_j_dcmed_2024_04_002
crossref_primary_10_1016_j_dcmed_2024_09_004
crossref_primary_10_1080_07391102_2024_2313156
crossref_primary_10_1016_j_compbiomed_2023_107613
crossref_primary_10_1097_MD_0000000000038575
crossref_primary_10_3390_app14104124
crossref_primary_10_3390_technologies12070097
crossref_primary_10_1080_09540091_2024_2325496
crossref_primary_10_3390_jpm13020271
crossref_primary_10_3389_fcvm_2024_1384977
crossref_primary_10_2147_DMSO_S491897
crossref_primary_10_1155_2024_5551209
crossref_primary_10_1177_00037028231214802
Cites_doi 10.1016/j.compbiomed.2022.105618
10.1002/ima.20075
10.1109/ACCESS.2019.2946681
10.4097/kjae.2017.70.4.407
10.1023/A:1012801612483
10.1007/978-0-387-73003-5_196
10.1007/s10620-020-06637-0
10.1016/S0169-2607(99)00031-0
10.1007/s00521-010-0484-3
10.1038/s41591-018-0239-8
10.1016/j.compbiomed.2021.104782
10.1016/j.jbi.2021.103693
10.1016/0377-0427(87)90125-7
10.1016/S2213-8587(18)30051-2
10.1016/S2213-8587(19)30087-7
10.1109/TITB.2010.2076378
10.1007/s00125-018-4557-7
10.1109/ACCESS.2020.3047452
10.1002/col.22234
10.1016/j.ijmedinf.2021.104429
10.1109/JBHI.2020.2986376
10.1155/2016/3510807
10.1016/j.neucom.2012.12.080
10.1016/j.neucom.2015.08.104
10.1016/j.neucom.2015.10.008
10.1016/j.neucom.2017.02.039
10.1007/s11227-021-03630-w
10.1007/s11892-021-01387-3
10.21105/joss.01169
10.1016/j.phrs.2020.105034
10.1038/s41592-019-0686-2
10.1021/acs.jproteome.8b00799
10.1016/j.bspc.2021.102782
10.1016/j.artmed.2019.03.008
10.1016/j.compbiomed.2022.105726
10.5551/jat.RV17014
10.1016/j.patrec.2006.06.004
10.1007/s00357-014-9161-z
10.1109/TPAMI.1979.4766909
10.2337/dc20-S002
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Elsevier Ltd
2022. Elsevier Ltd
Copyright © 2022 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Elsevier Ltd
– notice: 2022. Elsevier Ltd
– notice: Copyright © 2022 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.compbiomed.2022.105935
DatabaseName CrossRef
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Computing Database
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Research Library
Biological Science Database
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Research Library Prep


Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Public Health
EISSN 1879-0534
EndPage 105935
ExternalDocumentID 10_1016_j_compbiomed_2022_105935
S0010482522006710
1_s2_0_S0010482522006710
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77I
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
~HD
3V.
AACTN
AFCTW
AFKWA
AJOXV
ALIPV
AMFUW
M0N
RIG
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
LCYCR
AAYXX
CITATION
PUEGO
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c491t-d2f991aaa34e37748703581945e7afd7c2a192a3fb7bd8d3a8b3b474a392704f3
IEDL.DBID .~1
ISSN 0010-4825
1879-0534
IngestDate Thu Oct 02 06:14:36 EDT 2025
Tue Oct 07 06:31:01 EDT 2025
Wed Oct 01 05:22:21 EDT 2025
Thu Apr 24 23:03:58 EDT 2025
Fri Feb 23 02:40:07 EST 2024
Tue Feb 25 20:12:01 EST 2025
Tue Oct 14 19:33:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Tongue image
K-means
Deep learning
Vision transformer
Machine learning
Vector quantized variational autoencoder
Diabetes
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c491t-d2f991aaa34e37748703581945e7afd7c2a192a3fb7bd8d3a8b3b474a392704f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5624-2146
PQID 2715235735
PQPubID 1226355
PageCount 1
ParticipantIDs proquest_miscellaneous_2704868745
proquest_journals_2715235735
crossref_citationtrail_10_1016_j_compbiomed_2022_105935
crossref_primary_10_1016_j_compbiomed_2022_105935
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2022_105935
elsevier_clinicalkeyesjournals_1_s2_0_S0010482522006710
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2022_105935
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computers in biology and medicine
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Xing (bib12) 2021
Li (bib47) 2021; 115
Xu (bib20) 2021; 66
Xu (bib39) 2008
Apelqvist (bib5) 2014
Wu (bib18) 2022
Yuan, Liao (bib44) 2021; 9
Van Den Oord, Vinyals (bib46) 2017
Tang, He (bib51) 2017; 241
Wang (bib41) 2005; 22
Zhang (bib14) 2021; 77
Association (bib49) 2020; 43
Dennis (bib8) 2019; 7
Caron (bib70) 2018
Gulli, Pal (bib69) 2017
Virtanen (bib67) 2020; 17
Katakami (bib2) 2018; 25
Zhuo (bib28) 2016; 174
Li (bib45) 2021
Zhuo (bib27) 2014; 134
Chiu (bib40) 2000; 61
Dosovitskiy (bib48) 2020
Yuan, Liao (bib56) 2020; 9
Zhou (bib10) 2019; 18
Zhang (bib31) 2006; 16
Su (bib17) 2022; 146
Ma (bib6) 2018; 61
An (bib21) 2021
Vaswani (bib64) 2017
Wang (bib38) 2007; 28
Ma (bib43) 2019; 96
Anastasi, Currie, Kim (bib22) 2009; 15
Pedregosa (bib68) 2011; 12
Halkidi, Batistakis, Vazirgiannis (bib63) 2001; 17
Xu (bib37) 2020; 24
Song (bib4) 2018; 8
Kwak, Kim (bib52) 2017; 70
Selvaraju (bib65) 2017
Wang, Zhang (bib26) 2010; 14
Rousseeuw (bib60) 1987; 20
Ahlqvist (bib7) 2018; 6
Yu (bib11) 2022
Li (bib23) 2021
Lin (bib3) 2021; 21
Ning (bib33) 2012; 21
Ravizza (bib13) 2019; 25
Dai (bib16) 2022
Song (bib53) 2013
Smiti (bib50) 2020; 38
Murtagh, Legendre (bib58) 2014; 31
Hu, Cheng, Lan (bib30) 2016
Wang, Yao, Zhao (bib54) 2016; 184
Reynolds (bib59) 2009; 741
Terpilowski (bib66) 2019; 4
Chen, Sung-Tae (bib36) 2020; 13
Zhou, Fan, Li (bib35) 2019; 7
Zhang (bib42) 2005
Li (bib1) 2020; 369
Tania, Lwin, Hossain (bib19) 2018
Jang, Woobeom (bib32) 2016; 16
Davies, Bouldin (bib62) 1979
Zhang, Nie, Zhao (bib29) 2018; 43
Zhou, Zhang, Zhang (bib55) 2021; 137
Qi (bib25) 2016; 2016
Gholami, Tabbakh (bib57) 2021; 69
Zhou, Zhang, Jiang (bib15) 2021
Yang (bib9) 2020; 159
Caliński, Harabasz (bib61) 1974; 3
Shi, Li, Li (bib34) 2013
Xu (bib24) 2009; 7
Zhuo (10.1016/j.compbiomed.2022.105935_bib28) 2016; 174
Van Den Oord (10.1016/j.compbiomed.2022.105935_bib46) 2017
Hu (10.1016/j.compbiomed.2022.105935_bib30) 2016
Song (10.1016/j.compbiomed.2022.105935_bib53) 2013
Smiti (10.1016/j.compbiomed.2022.105935_bib50) 2020; 38
Kwak (10.1016/j.compbiomed.2022.105935_bib52) 2017; 70
Zhuo (10.1016/j.compbiomed.2022.105935_bib27) 2014; 134
Jang (10.1016/j.compbiomed.2022.105935_bib32) 2016; 16
Ahlqvist (10.1016/j.compbiomed.2022.105935_bib7) 2018; 6
Association (10.1016/j.compbiomed.2022.105935_bib49) 2020; 43
Selvaraju (10.1016/j.compbiomed.2022.105935_bib65) 2017
Qi (10.1016/j.compbiomed.2022.105935_bib25) 2016; 2016
Caliński (10.1016/j.compbiomed.2022.105935_bib61) 1974; 3
Katakami (10.1016/j.compbiomed.2022.105935_bib2) 2018; 25
Wang (10.1016/j.compbiomed.2022.105935_bib38) 2007; 28
Virtanen (10.1016/j.compbiomed.2022.105935_bib67) 2020; 17
Rousseeuw (10.1016/j.compbiomed.2022.105935_bib60) 1987; 20
Yang (10.1016/j.compbiomed.2022.105935_bib9) 2020; 159
Ning (10.1016/j.compbiomed.2022.105935_bib33) 2012; 21
Gholami (10.1016/j.compbiomed.2022.105935_bib57) 2021; 69
Xu (10.1016/j.compbiomed.2022.105935_bib24) 2009; 7
Vaswani (10.1016/j.compbiomed.2022.105935_bib64) 2017
Reynolds (10.1016/j.compbiomed.2022.105935_bib59) 2009; 741
Gulli (10.1016/j.compbiomed.2022.105935_bib69) 2017
Su (10.1016/j.compbiomed.2022.105935_bib17) 2022; 146
Song (10.1016/j.compbiomed.2022.105935_bib4) 2018; 8
Li (10.1016/j.compbiomed.2022.105935_bib45) 2021
Zhang (10.1016/j.compbiomed.2022.105935_bib14) 2021; 77
Apelqvist (10.1016/j.compbiomed.2022.105935_bib5) 2014
Caron (10.1016/j.compbiomed.2022.105935_bib70) 2018
Ma (10.1016/j.compbiomed.2022.105935_bib43) 2019; 96
Dosovitskiy (10.1016/j.compbiomed.2022.105935_bib48) 2020
Chiu (10.1016/j.compbiomed.2022.105935_bib40) 2000; 61
Zhang (10.1016/j.compbiomed.2022.105935_bib29) 2018; 43
Anastasi (10.1016/j.compbiomed.2022.105935_bib22) 2009; 15
Shi (10.1016/j.compbiomed.2022.105935_bib34) 2013
Davies (10.1016/j.compbiomed.2022.105935_bib62) 1979
Zhou (10.1016/j.compbiomed.2022.105935_bib15) 2021
Tania (10.1016/j.compbiomed.2022.105935_bib19) 2018
Xing (10.1016/j.compbiomed.2022.105935_bib12) 2021
Terpilowski (10.1016/j.compbiomed.2022.105935_bib66) 2019; 4
Pedregosa (10.1016/j.compbiomed.2022.105935_bib68) 2011; 12
Tang (10.1016/j.compbiomed.2022.105935_bib51) 2017; 241
Dennis (10.1016/j.compbiomed.2022.105935_bib8) 2019; 7
Zhang (10.1016/j.compbiomed.2022.105935_bib31) 2006; 16
Ma (10.1016/j.compbiomed.2022.105935_bib6) 2018; 61
Zhou (10.1016/j.compbiomed.2022.105935_bib55) 2021; 137
Yu (10.1016/j.compbiomed.2022.105935_bib11) 2022
Wang (10.1016/j.compbiomed.2022.105935_bib26) 2010; 14
Yuan (10.1016/j.compbiomed.2022.105935_bib56) 2020; 9
Zhou (10.1016/j.compbiomed.2022.105935_bib35) 2019; 7
Chen (10.1016/j.compbiomed.2022.105935_bib36) 2020; 13
Li (10.1016/j.compbiomed.2022.105935_bib47) 2021; 115
Xu (10.1016/j.compbiomed.2022.105935_bib39) 2008
Ravizza (10.1016/j.compbiomed.2022.105935_bib13) 2019; 25
Zhou (10.1016/j.compbiomed.2022.105935_bib10) 2019; 18
Xu (10.1016/j.compbiomed.2022.105935_bib37) 2020; 24
Dai (10.1016/j.compbiomed.2022.105935_bib16) 2022
Yuan (10.1016/j.compbiomed.2022.105935_bib44) 2021; 9
Wang (10.1016/j.compbiomed.2022.105935_bib54) 2016; 184
Xu (10.1016/j.compbiomed.2022.105935_bib20) 2021; 66
Wu (10.1016/j.compbiomed.2022.105935_bib18) 2022
Lin (10.1016/j.compbiomed.2022.105935_bib3) 2021; 21
Zhang (10.1016/j.compbiomed.2022.105935_bib42) 2005
Li (10.1016/j.compbiomed.2022.105935_bib1) 2020; 369
An (10.1016/j.compbiomed.2022.105935_bib21) 2021
Halkidi (10.1016/j.compbiomed.2022.105935_bib63) 2001; 17
Wang (10.1016/j.compbiomed.2022.105935_bib41) 2005; 22
Li (10.1016/j.compbiomed.2022.105935_bib23) 2021
Murtagh (10.1016/j.compbiomed.2022.105935_bib58) 2014; 31
References_xml – volume: 38
  start-page: 100306
  year: 2020
  ident: bib50
  article-title: A critical overview of outlier detection methods
  publication-title: omputer Sci. Rev.
– volume: 25
  start-page: 27
  year: 2018
  end-page: 39
  ident: bib2
  article-title: Mechanism of development of atherosclerosis and cardiovascular disease in diabetes mellitus
  publication-title: J. Atherosclerosis Thromb.
– volume: 7
  start-page: 148779
  year: 2019
  end-page: 148789
  ident: bib35
  article-title: Tonguenet: accurate localization and segmentation for tongue images using deep neural networks
  publication-title: IEEE Access
– volume: 159
  start-page: 105034
  year: 2020
  ident: bib9
  article-title: Exploring the mechanism of TCM formulae in the treatment of different types of coronary heart disease by network pharmacology and machining learning
  publication-title: Pharmacol. Res.
– start-page: 3
  year: 2014
  end-page: 9
  ident: bib5
  article-title: Epidemiology of Diabetic Foot Disease and Etiology of Ulceration, in
– year: 2017
  ident: bib69
  article-title: Deep Learning with Keras
– start-page: 105726
  year: 2022
  ident: bib18
  article-title: How to ensure the confidentiality of electronic medical records on the cloud: a technical perspective
  publication-title: Comput. Biol. Med.
– year: 2013
  ident: bib53
  article-title: Auto-encoder based data clustering
  publication-title: Iberoamerican Congress on Pattern Recognition
– start-page: 132
  year: 2018
  end-page: 149
  ident: bib70
  article-title: Deep clustering for unsupervised learning of visual features
  publication-title: Proc. Europe Conf. Computer Vision.
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: bib68
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 20
  start-page: 53
  year: 1987
  end-page: 65
  ident: bib60
  article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis
  publication-title: J. Comput. Appl. Math.
– volume: 61
  start-page: 1249
  year: 2018
  end-page: 1260
  ident: bib6
  article-title: Epidemiology of diabetes and diabetic complications in China
  publication-title: Diabetologia
– start-page: 103693
  year: 2021
  ident: bib23
  article-title: A tongue features fusion approach to predicting prediabetes and diabetes with machine learning
  publication-title: J. Biomed. Inf.
– volume: 17
  start-page: 261
  year: 2020
  end-page: 272
  ident: bib67
  article-title: SciPy 1.0: fundamental algorithms for scientific computing in Python
  publication-title: Nat. Methods
– volume: 77
  start-page: 8674
  year: 2021
  end-page: 8693
  ident: bib14
  article-title: Adoption value of deep learning and serological indicators in the screening of atrophic gastritis based on artificial intelligence
  publication-title: J. Supercomput.
– volume: 115
  start-page: 103693
  year: 2021
  ident: bib47
  article-title: A tongue features fusion approach to predicting prediabetes and diabetes with machine learning
  publication-title: J. Biomed. Inf.
– volume: 137
  start-page: 104782
  year: 2021
  ident: bib55
  article-title: Two-phase non-invasive multi-disease detection via sublingual region
  publication-title: Comput. Biol. Med.
– volume: 69
  start-page: 102782
  year: 2021
  ident: bib57
  article-title: Increasing the accuracy in the diagnosis of stomach cancer based on color and lint features of tongue
  publication-title: Biomed. Signal Process Control
– start-page: 1
  year: 2018
  end-page: 18
  ident: bib19
  article-title: Advances in automated tongue diagnosis techniques
  publication-title: Integrate Med. Res.
– volume: 43
  start-page: 749
  year: 2018
  end-page: 759
  ident: bib29
  article-title: A novel Color Rendition Chart for digital tongue image calibration
  publication-title: Color Res. Appl.
– start-page: 56
  year: 2013
  ident: bib34
  article-title: C(2)G(2)FSnake: automatic tongue image segmentation utilizing prior knowledge
  publication-title: Sci. China Inf. Sci.
– volume: 16
  start-page: 125
  year: 2016
  end-page: 131
  ident: bib32
  article-title: Improved snakes algorithm for tongue image segmentation in oriental tongue diagnosis. The journal of the institute of internet
  publication-title: Broadcaste. Commun.
– volume: 4
  start-page: 1169
  year: 2019
  ident: bib66
  article-title: scikit-posthocs: pairwise multiple comparison tests in Python
  publication-title: J. Open Source Software.
– volume: 28
  start-page: 11
  year: 2007
  end-page: 19
  ident: bib38
  article-title: Region partition and feature matching based color recognition of tongue image
  publication-title: Pattern Recogn. Lett.
– volume: 70
  start-page: 407
  year: 2017
  ident: bib52
  article-title: Statistical data preparation: management of missing values and outliers
  publication-title: Korea J. Anesthesiol.
– volume: 43
  start-page: S14
  year: 2020
  end-page: S31
  ident: bib49
  article-title: Classification and diagnosis of diabetes: standards of medical care in diabetes-2020
  publication-title: Diabetes Care
– volume: 25
  start-page: 57
  year: 2019
  end-page: 59
  ident: bib13
  article-title: Predicting the early risk of chronic kidney disease in patients with diabetes using real-world data
  publication-title: Nat. Med.
– year: 2021
  ident: bib21
  article-title: Automatic diagnosis of tongue using mask-RCNN
  publication-title: 2021 36th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC)
– volume: 13
  start-page: 313
  year: 2020
  end-page: 322
  ident: bib36
  article-title: Enhancement of tongue segmentation by using data augmentation
  publication-title: J. Korea Insitute Info. Electronic. Commun. Technol.
– volume: 3
  start-page: 1
  year: 1974
  end-page: 27
  ident: bib61
  article-title: A dendrite method for cluster analysis
  publication-title: Commun. Stat.
– volume: 134
  start-page: 111
  year: 2014
  end-page: 116
  ident: bib27
  article-title: An SA-GA-BP neural network-based color correction algorithm for TCM tongue images
  publication-title: Neurocomputing
– volume: 2016
  start-page: 3510807
  year: 2016
  ident: bib25
  article-title: The classification of tongue colors with standardized acquisition and ICC profile correction in traditional Chinese medicine
  publication-title: BioMed Res. Int.
– volume: 16
  start-page: 103
  year: 2006
  end-page: 112
  ident: bib31
  article-title: A snake-based approach to automated segmentation of tongue image using polar edge detector
  publication-title: Int. J. Imag. Syst. Technol.
– start-page: 40
  year: 2016
  ident: bib30
  article-title: Color correction parameter estimation on the smartphone and its application to automatic tongue diagnosis
  publication-title: J. Med. Syst.
– volume: 241
  start-page: 171
  year: 2017
  end-page: 180
  ident: bib51
  article-title: A local density-based approach for outlier detection
  publication-title: Neurocomputing
– year: 2008
  ident: bib39
  article-title: The region partition of quality and coating for tongue image based on color image segmentation method
  publication-title: 2008 IEEE International Symposium on IT in Medicine and Education
– volume: 61
  start-page: 77
  year: 2000
  end-page: 89
  ident: bib40
  article-title: A novel approach based on computerized image analysis for traditional Chinese medical diagnosis of the tongue
  publication-title: Comput. Methods Progr. Biomed.
– start-page: 6754
  year: 2005
  end-page: 6757
  ident: bib42
  article-title: Computer aided tongue diagnosis system. Conference proceedings :... Annual international conference of the IEEE engineering in medicine and biology society. IEEE engineering in medicine and biology society
  publication-title: Annual Conference
– start-page: 2021
  year: 2021
  ident: bib15
  article-title: Recognition of imbalanced epileptic EEG signals by a graph-based extreme learning machine
  publication-title: Wireless Commun. Mobile Comput.
– volume: 146
  start-page: 105618
  year: 2022
  ident: bib17
  article-title: Multilevel threshold image segmentation for COVID-19 chest radiography: a framework using horizontal and vertical multiverse optimization
  publication-title: Comput. Biol. Med.
– start-page: 224
  year: 1979
  end-page: 227
  ident: bib62
  article-title: A cluster separation measure
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 369
  start-page: 11
  year: 2020
  ident: bib1
  article-title: Prevalence of diabetes recorded in mainland China using 2018 diagnostic criteria from the American Diabetes Association: national cross sectional study
  publication-title: BMJ Br. Med. J. (Clin. Res. Ed.)
– start-page: 1
  year: 2022
  end-page: 23
  ident: bib16
  article-title: MSEva: a musculoskeletal rehabilitation evaluation system Based on EMG signals
  publication-title: ACM Trans. Sens. Netw.
– start-page: 618
  year: 2017
  end-page: 626
  ident: bib65
  article-title: Grad-cam: visual explanations from deep networks via gradient-based localization
  publication-title: Proc. IEEE Int. Conf. Computer Vision.
– volume: 21
  start-page: 1
  year: 2021
  end-page: 11
  ident: bib3
  article-title: The prevalence of diabetic microvascular complications in China and the USA
  publication-title: Curr. Diabetes Rep.
– start-page: 1
  year: 2022
  end-page: 5
  ident: bib11
  article-title: A novel Diagnostic and therapeutic Strategy for cancer Patients by integrating Chinese medicine syndrome Differentiation and precision medicine
  publication-title: Chin. J. Integr. Med.
– volume: 96
  start-page: 123
  year: 2019
  end-page: 133
  ident: bib43
  article-title: Complexity perception classification method for tongue constitution recognition
  publication-title: Artif. Intell. Med.
– year: 2020
  ident: bib48
  article-title: An Image Is Worth 16x16 Words: Transformers for Image Recognition at Scale
– start-page: 1
  year: 2017
  end-page: 11
  ident: bib64
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 21
  start-page: 1819
  year: 2012
  end-page: 1826
  ident: bib33
  article-title: Automatic tongue image segmentation based on gradient vector flow and region merging
  publication-title: Neural Comput. Appl.
– volume: 7
  start-page: 422
  year: 2009
  end-page: 427
  ident: bib24
  article-title: Analysis of tongue color under natural daylight based on chromatic aberration correction
  publication-title: Zhong xi yi jie he xue bao = Journal of Chinese integrative medicine
– start-page: 104429
  year: 2021
  ident: bib45
  article-title: Establishment of noninvasive diabetes risk prediction model based on tongue features and machine learning techniques
  publication-title: Int. J. Med. Inf.
– volume: 17
  start-page: 107
  year: 2001
  end-page: 145
  ident: bib63
  article-title: On clustering validation techniques
  publication-title: J. Intell. Inf. Syst.
– volume: 24
  start-page: 2481
  year: 2020
  end-page: 2489
  ident: bib37
  article-title: Multi-task joint learning Model for Segmenting and classifying tongue images Using a deep neural network
  publication-title: IEEE J. Biomed. Health Info.
– start-page: 30
  year: 2017
  ident: bib46
  article-title: Neural discrete representation learning
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 31
  start-page: 274
  year: 2014
  end-page: 295
  ident: bib58
  article-title: Ward's hierarchical agglomerative clustering method: which algorithms implement Ward's criterion?
  publication-title: J. Classif.
– volume: 8
  start-page: 16
  year: 2018
  ident: bib4
  article-title: Prevalence, risk factors and burden of diabetic retinopathy in China: a systematic review and meta-analysis
  publication-title: J. Global Health.
– volume: 6
  start-page: 361
  year: 2018
  end-page: 369
  ident: bib7
  article-title: Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables
  publication-title: Lancet Diabetes Endocrinol.
– volume: 14
  start-page: 1355
  year: 2010
  end-page: 1364
  ident: bib26
  article-title: An optimized tongue image color correction scheme
  publication-title: IEEE Trans. Inf. Technol. Biomed.
– volume: 15
  start-page: 18
  year: 2009
  end-page: 28
  ident: bib22
  article-title: Understanding diagnostic reasoning in TCM practice: tongue diagnosis
  publication-title: Alternative Ther. Health Med.
– volume: 22
  start-page: 1116
  year: 2005
  end-page: 1120
  ident: bib41
  article-title: Tongue image color recognition in traditional Chinese medicine
  publication-title: Sheng wu yi xue gong cheng xue za zhi = J. Biomed. Eng. = Shengwu yixue gongchengxue zazhi
– start-page: 2021
  year: 2021
  ident: bib12
  article-title: Study on the TCM syndromes evolution and Chinese herbal characteristics of type 2 diabetes patients with different courses of disease in TCM “heat stage”: a real-world study
  publication-title: Evid. base Compl. Alternative Med.
– volume: 174
  start-page: 815
  year: 2016
  end-page: 821
  ident: bib28
  article-title: A K-PLSR-based color correction method for TCM tongue images under different illumination conditions
  publication-title: Neurocomputing
– volume: 741
  year: 2009
  ident: bib59
  article-title: Gaussian mixture models
  publication-title: Encyclopedia Biometric.
– volume: 184
  start-page: 232
  year: 2016
  end-page: 242
  ident: bib54
  article-title: Auto-encoder based dimensionality reduction
  publication-title: Neurocomputing
– volume: 66
  start-page: 2964
  year: 2021
  end-page: 2980
  ident: bib20
  article-title: Tongue coating bacteria as a potential stable biomarker for gastric cancer independent of lifestyle
  publication-title: Dig. Dis. Sci.
– volume: 9
  start-page: 4266
  year: 2021
  end-page: 4278
  ident: bib44
  article-title: Design and implementation of the traditional Chinese medicine constitution system based on the diagnosis of tongue and consultation
  publication-title: IEEE Access
– volume: 9
  start-page: 4266
  year: 2020
  end-page: 4278
  ident: bib56
  article-title: Design and implementation of the traditional Chinese medicine constitution system based on the diagnosis of tongue and consultation
  publication-title: IEEE Access
– volume: 7
  start-page: 442
  year: 2019
  end-page: 451
  ident: bib8
  article-title: Disease progression and treatment response in data-driven subgroups of type 2 diabetes compared with models based on simple clinical features: an analysis using clinical trial data
  publication-title: Lancet Diabetes Endocrinol.
– volume: 18
  start-page: 1994
  year: 2019
  end-page: 2003
  ident: bib10
  article-title: A large-scale, multi-center urine biomarkers identification of coronary heart disease in TCM syndrome differentiation
  publication-title: J. Proteome Res.
– volume: 3
  start-page: 1
  issue: 1
  year: 1974
  ident: 10.1016/j.compbiomed.2022.105935_bib61
  article-title: A dendrite method for cluster analysis
  publication-title: Commun. Stat.
– volume: 146
  start-page: 105618
  year: 2022
  ident: 10.1016/j.compbiomed.2022.105935_bib17
  article-title: Multilevel threshold image segmentation for COVID-19 chest radiography: a framework using horizontal and vertical multiverse optimization
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105618
– volume: 16
  start-page: 103
  issue: 4
  year: 2006
  ident: 10.1016/j.compbiomed.2022.105935_bib31
  article-title: A snake-based approach to automated segmentation of tongue image using polar edge detector
  publication-title: Int. J. Imag. Syst. Technol.
  doi: 10.1002/ima.20075
– volume: 7
  start-page: 148779
  year: 2019
  ident: 10.1016/j.compbiomed.2022.105935_bib35
  article-title: Tonguenet: accurate localization and segmentation for tongue images using deep neural networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2946681
– volume: 70
  start-page: 407
  issue: 4
  year: 2017
  ident: 10.1016/j.compbiomed.2022.105935_bib52
  article-title: Statistical data preparation: management of missing values and outliers
  publication-title: Korea J. Anesthesiol.
  doi: 10.4097/kjae.2017.70.4.407
– volume: 17
  start-page: 107
  issue: 2
  year: 2001
  ident: 10.1016/j.compbiomed.2022.105935_bib63
  article-title: On clustering validation techniques
  publication-title: J. Intell. Inf. Syst.
  doi: 10.1023/A:1012801612483
– volume: 741
  issue: 659–663
  year: 2009
  ident: 10.1016/j.compbiomed.2022.105935_bib59
  article-title: Gaussian mixture models
  publication-title: Encyclopedia Biometric.
  doi: 10.1007/978-0-387-73003-5_196
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.compbiomed.2022.105935_bib68
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 66
  start-page: 2964
  issue: 9
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105935_bib20
  article-title: Tongue coating bacteria as a potential stable biomarker for gastric cancer independent of lifestyle
  publication-title: Dig. Dis. Sci.
  doi: 10.1007/s10620-020-06637-0
– volume: 61
  start-page: 77
  issue: 2
  year: 2000
  ident: 10.1016/j.compbiomed.2022.105935_bib40
  article-title: A novel approach based on computerized image analysis for traditional Chinese medical diagnosis of the tongue
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/S0169-2607(99)00031-0
– volume: 21
  start-page: 1819
  issue: 8
  year: 2012
  ident: 10.1016/j.compbiomed.2022.105935_bib33
  article-title: Automatic tongue image segmentation based on gradient vector flow and region merging
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-010-0484-3
– volume: 25
  start-page: 57
  issue: 1
  year: 2019
  ident: 10.1016/j.compbiomed.2022.105935_bib13
  article-title: Predicting the early risk of chronic kidney disease in patients with diabetes using real-world data
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0239-8
– year: 2017
  ident: 10.1016/j.compbiomed.2022.105935_bib69
– start-page: 3
  year: 2014
  ident: 10.1016/j.compbiomed.2022.105935_bib5
– volume: 137
  start-page: 104782
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105935_bib55
  article-title: Two-phase non-invasive multi-disease detection via sublingual region
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104782
– start-page: 103693
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105935_bib23
  article-title: A tongue features fusion approach to predicting prediabetes and diabetes with machine learning
  publication-title: J. Biomed. Inf.
  doi: 10.1016/j.jbi.2021.103693
– volume: 20
  start-page: 53
  year: 1987
  ident: 10.1016/j.compbiomed.2022.105935_bib60
  article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/0377-0427(87)90125-7
– volume: 38
  start-page: 100306
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105935_bib50
  article-title: A critical overview of outlier detection methods
  publication-title: omputer Sci. Rev.
– volume: 6
  start-page: 361
  issue: 5
  year: 2018
  ident: 10.1016/j.compbiomed.2022.105935_bib7
  article-title: Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables
  publication-title: Lancet Diabetes Endocrinol.
  doi: 10.1016/S2213-8587(18)30051-2
– volume: 7
  start-page: 442
  issue: 6
  year: 2019
  ident: 10.1016/j.compbiomed.2022.105935_bib8
  article-title: Disease progression and treatment response in data-driven subgroups of type 2 diabetes compared with models based on simple clinical features: an analysis using clinical trial data
  publication-title: Lancet Diabetes Endocrinol.
  doi: 10.1016/S2213-8587(19)30087-7
– year: 2021
  ident: 10.1016/j.compbiomed.2022.105935_bib21
  article-title: Automatic diagnosis of tongue using mask-RCNN
– year: 2013
  ident: 10.1016/j.compbiomed.2022.105935_bib53
  article-title: Auto-encoder based data clustering
– volume: 115
  start-page: 103693
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105935_bib47
  article-title: A tongue features fusion approach to predicting prediabetes and diabetes with machine learning
  publication-title: J. Biomed. Inf.
  doi: 10.1016/j.jbi.2021.103693
– volume: 13
  start-page: 313
  issue: 5
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105935_bib36
  article-title: Enhancement of tongue segmentation by using data augmentation
  publication-title: J. Korea Insitute Info. Electronic. Commun. Technol.
– volume: 14
  start-page: 1355
  issue: 6
  year: 2010
  ident: 10.1016/j.compbiomed.2022.105935_bib26
  article-title: An optimized tongue image color correction scheme
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2010.2076378
– volume: 61
  start-page: 1249
  issue: 6
  year: 2018
  ident: 10.1016/j.compbiomed.2022.105935_bib6
  article-title: Epidemiology of diabetes and diabetic complications in China
  publication-title: Diabetologia
  doi: 10.1007/s00125-018-4557-7
– start-page: 132
  year: 2018
  ident: 10.1016/j.compbiomed.2022.105935_bib70
  article-title: Deep clustering for unsupervised learning of visual features
  publication-title: Proc. Europe Conf. Computer Vision.
– volume: 7
  start-page: 422
  issue: 5
  year: 2009
  ident: 10.1016/j.compbiomed.2022.105935_bib24
  article-title: Analysis of tongue color under natural daylight based on chromatic aberration correction
  publication-title: Zhong xi yi jie he xue bao = Journal of Chinese integrative medicine
– volume: 22
  start-page: 1116
  issue: 6
  year: 2005
  ident: 10.1016/j.compbiomed.2022.105935_bib41
  article-title: Tongue image color recognition in traditional Chinese medicine
  publication-title: Sheng wu yi xue gong cheng xue za zhi = J. Biomed. Eng. = Shengwu yixue gongchengxue zazhi
– volume: 9
  start-page: 4266
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105935_bib44
  article-title: Design and implementation of the traditional Chinese medicine constitution system based on the diagnosis of tongue and consultation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3047452
– volume: 43
  start-page: 749
  issue: 5
  year: 2018
  ident: 10.1016/j.compbiomed.2022.105935_bib29
  article-title: A novel Color Rendition Chart for digital tongue image calibration
  publication-title: Color Res. Appl.
  doi: 10.1002/col.22234
– volume: 15
  start-page: 18
  issue: 3
  year: 2009
  ident: 10.1016/j.compbiomed.2022.105935_bib22
  article-title: Understanding diagnostic reasoning in TCM practice: tongue diagnosis
  publication-title: Alternative Ther. Health Med.
– start-page: 104429
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105935_bib45
  article-title: Establishment of noninvasive diabetes risk prediction model based on tongue features and machine learning techniques
  publication-title: Int. J. Med. Inf.
  doi: 10.1016/j.ijmedinf.2021.104429
– start-page: 1
  year: 2022
  ident: 10.1016/j.compbiomed.2022.105935_bib11
  article-title: A novel Diagnostic and therapeutic Strategy for cancer Patients by integrating Chinese medicine syndrome Differentiation and precision medicine
  publication-title: Chin. J. Integr. Med.
– start-page: 40
  issue: 1
  year: 2016
  ident: 10.1016/j.compbiomed.2022.105935_bib30
  article-title: Color correction parameter estimation on the smartphone and its application to automatic tongue diagnosis
  publication-title: J. Med. Syst.
– volume: 8
  start-page: 16
  issue: 1
  year: 2018
  ident: 10.1016/j.compbiomed.2022.105935_bib4
  article-title: Prevalence, risk factors and burden of diabetic retinopathy in China: a systematic review and meta-analysis
  publication-title: J. Global Health.
– volume: 24
  start-page: 2481
  issue: 9
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105935_bib37
  article-title: Multi-task joint learning Model for Segmenting and classifying tongue images Using a deep neural network
  publication-title: IEEE J. Biomed. Health Info.
  doi: 10.1109/JBHI.2020.2986376
– start-page: 6754
  year: 2005
  ident: 10.1016/j.compbiomed.2022.105935_bib42
  article-title: Computer aided tongue diagnosis system. Conference proceedings :... Annual international conference of the IEEE engineering in medicine and biology society. IEEE engineering in medicine and biology society
  publication-title: Annual Conference
– volume: 2016
  start-page: 3510807
  year: 2016
  ident: 10.1016/j.compbiomed.2022.105935_bib25
  article-title: The classification of tongue colors with standardized acquisition and ICC profile correction in traditional Chinese medicine
  publication-title: BioMed Res. Int.
  doi: 10.1155/2016/3510807
– start-page: 1
  year: 2022
  ident: 10.1016/j.compbiomed.2022.105935_bib16
  article-title: MSEva: a musculoskeletal rehabilitation evaluation system Based on EMG signals
  publication-title: ACM Trans. Sens. Netw.
– volume: 134
  start-page: 111
  year: 2014
  ident: 10.1016/j.compbiomed.2022.105935_bib27
  article-title: An SA-GA-BP neural network-based color correction algorithm for TCM tongue images
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.12.080
– volume: 184
  start-page: 232
  year: 2016
  ident: 10.1016/j.compbiomed.2022.105935_bib54
  article-title: Auto-encoder based dimensionality reduction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.08.104
– volume: 174
  start-page: 815
  year: 2016
  ident: 10.1016/j.compbiomed.2022.105935_bib28
  article-title: A K-PLSR-based color correction method for TCM tongue images under different illumination conditions
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.10.008
– start-page: 56
  issue: 9
  year: 2013
  ident: 10.1016/j.compbiomed.2022.105935_bib34
  article-title: C(2)G(2)FSnake: automatic tongue image segmentation utilizing prior knowledge
  publication-title: Sci. China Inf. Sci.
– volume: 241
  start-page: 171
  year: 2017
  ident: 10.1016/j.compbiomed.2022.105935_bib51
  article-title: A local density-based approach for outlier detection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.02.039
– volume: 77
  start-page: 8674
  issue: 8
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105935_bib14
  article-title: Adoption value of deep learning and serological indicators in the screening of atrophic gastritis based on artificial intelligence
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-021-03630-w
– volume: 9
  start-page: 4266
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105935_bib56
  article-title: Design and implementation of the traditional Chinese medicine constitution system based on the diagnosis of tongue and consultation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3047452
– volume: 21
  start-page: 1
  issue: 6
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105935_bib3
  article-title: The prevalence of diabetic microvascular complications in China and the USA
  publication-title: Curr. Diabetes Rep.
  doi: 10.1007/s11892-021-01387-3
– volume: 4
  start-page: 1169
  issue: 36
  year: 2019
  ident: 10.1016/j.compbiomed.2022.105935_bib66
  article-title: scikit-posthocs: pairwise multiple comparison tests in Python
  publication-title: J. Open Source Software.
  doi: 10.21105/joss.01169
– volume: 159
  start-page: 105034
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105935_bib9
  article-title: Exploring the mechanism of TCM formulae in the treatment of different types of coronary heart disease by network pharmacology and machining learning
  publication-title: Pharmacol. Res.
  doi: 10.1016/j.phrs.2020.105034
– volume: 17
  start-page: 261
  issue: 3
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105935_bib67
  article-title: SciPy 1.0: fundamental algorithms for scientific computing in Python
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0686-2
– volume: 18
  start-page: 1994
  issue: 5
  year: 2019
  ident: 10.1016/j.compbiomed.2022.105935_bib10
  article-title: A large-scale, multi-center urine biomarkers identification of coronary heart disease in TCM syndrome differentiation
  publication-title: J. Proteome Res.
  doi: 10.1021/acs.jproteome.8b00799
– volume: 69
  start-page: 102782
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105935_bib57
  article-title: Increasing the accuracy in the diagnosis of stomach cancer based on color and lint features of tongue
  publication-title: Biomed. Signal Process Control
  doi: 10.1016/j.bspc.2021.102782
– volume: 96
  start-page: 123
  year: 2019
  ident: 10.1016/j.compbiomed.2022.105935_bib43
  article-title: Complexity perception classification method for tongue constitution recognition
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2019.03.008
– start-page: 105726
  year: 2022
  ident: 10.1016/j.compbiomed.2022.105935_bib18
  article-title: How to ensure the confidentiality of electronic medical records on the cloud: a technical perspective
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105726
– volume: 25
  start-page: 27
  issue: 1
  year: 2018
  ident: 10.1016/j.compbiomed.2022.105935_bib2
  article-title: Mechanism of development of atherosclerosis and cardiovascular disease in diabetes mellitus
  publication-title: J. Atherosclerosis Thromb.
  doi: 10.5551/jat.RV17014
– start-page: 2021
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105935_bib12
  article-title: Study on the TCM syndromes evolution and Chinese herbal characteristics of type 2 diabetes patients with different courses of disease in TCM “heat stage”: a real-world study
  publication-title: Evid. base Compl. Alternative Med.
– volume: 28
  start-page: 11
  issue: 1
  year: 2007
  ident: 10.1016/j.compbiomed.2022.105935_bib38
  article-title: Region partition and feature matching based color recognition of tongue image
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2006.06.004
– volume: 16
  start-page: 125
  issue: 4
  year: 2016
  ident: 10.1016/j.compbiomed.2022.105935_bib32
  article-title: Improved snakes algorithm for tongue image segmentation in oriental tongue diagnosis. The journal of the institute of internet
  publication-title: Broadcaste. Commun.
– start-page: 30
  year: 2017
  ident: 10.1016/j.compbiomed.2022.105935_bib46
  article-title: Neural discrete representation learning
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 31
  start-page: 274
  issue: 3
  year: 2014
  ident: 10.1016/j.compbiomed.2022.105935_bib58
  article-title: Ward's hierarchical agglomerative clustering method: which algorithms implement Ward's criterion?
  publication-title: J. Classif.
  doi: 10.1007/s00357-014-9161-z
– start-page: 1
  year: 2018
  ident: 10.1016/j.compbiomed.2022.105935_bib19
  article-title: Advances in automated tongue diagnosis techniques
  publication-title: Integrate Med. Res.
– year: 2020
  ident: 10.1016/j.compbiomed.2022.105935_bib48
– start-page: 1
  year: 2017
  ident: 10.1016/j.compbiomed.2022.105935_bib64
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 369
  start-page: 11
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105935_bib1
  article-title: Prevalence of diabetes recorded in mainland China using 2018 diagnostic criteria from the American Diabetes Association: national cross sectional study
  publication-title: BMJ Br. Med. J. (Clin. Res. Ed.)
– year: 2008
  ident: 10.1016/j.compbiomed.2022.105935_bib39
  article-title: The region partition of quality and coating for tongue image based on color image segmentation method
– start-page: 618
  year: 2017
  ident: 10.1016/j.compbiomed.2022.105935_bib65
  article-title: Grad-cam: visual explanations from deep networks via gradient-based localization
  publication-title: Proc. IEEE Int. Conf. Computer Vision.
– start-page: 224
  issue: 2
  year: 1979
  ident: 10.1016/j.compbiomed.2022.105935_bib62
  article-title: A cluster separation measure
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.1979.4766909
– start-page: 2021
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105935_bib15
  article-title: Recognition of imbalanced epileptic EEG signals by a graph-based extreme learning machine
  publication-title: Wireless Commun. Mobile Comput.
– volume: 43
  start-page: S14
  issue: Supplement 1
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105935_bib49
  article-title: Classification and diagnosis of diabetes: standards of medical care in diabetes-2020
  publication-title: Diabetes Care
  doi: 10.2337/dc20-S002
SSID ssj0004030
Score 2.4645708
Snippet In China, diabetes is a common, high-incidence chronic disease. Diabetes has become a severe public health problem. However, the current diagnosis and...
AbstractBackgroundIn China, diabetes is a common, high-incidence chronic disease. Diabetes has become a severe public health problem. However, the current...
BackgroundIn China, diabetes is a common, high-incidence chronic disease. Diabetes has become a severe public health problem. However, the current diagnosis...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 105935
SubjectTerms Accuracy
Algorithms
Artificial intelligence
Automation
Chronic illnesses
Classification
Cluster analysis
Clustering
Coating
Coatings
Confidentiality
Deep learning
Diabetes
Diabetes mellitus
Diabetic retinopathy
Diagnosis
Diagnostic systems
Digital cameras
Feature extraction
Image classification
Internal Medicine
K-means
Kidney diseases
Labeling
Learning
Machine learning
Medical imaging
Other
Patients
Physicians
Public health
Software
Standardization
Supervised learning
Tongue
Tongue image
Traditional Chinese medicine
Vector quantization
Vector quantized variational autoencoder
Vision transformer
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Ra9swED66BMaglLbbWNauqLBXs1iSI5tSSjtaQqHZ2Fbom5AseXSsTtok_393lpTAKCXP9lmgk06fT3ffB_BZytp6ZUiAOHeZNF5llfU2G5XclIb42htqcL6ZjMa38vquuNuCSeqFobLKFBO7QO2mNeXIv3CFJ40olCjOZo8ZqUbR7WqS0DBRWsGddhRjr6DPiRmrB_2Ly8n3H-tOyaEITSkYfST-HMXanlDxRUXcoekd_xs5JwncqpOBe_bA-i90d-fR1S7sRCDJzoPn92DLt_vw-iZele_DdkjIsdBn9Ba-nbOueDBDt85YohJniFkZwr_fS8_uHzC2sJrgNNUPdS5j9y2L1KtzRjlblpK17-D26vLX13EW1RSyWlb5InO8QSxojBHSCwR9uFGJ-6ySBfqqcarmBtGeEY1V1pVOmNIKK5U0iKDUUDbiPfTaaes_AHO8zktVNqUfOelkUzWCe0Ry-JotKukHoNKU6TpSjZPixV-dasr-6PVka5psHSZ7APnKchboNjawqZJXdGonxQCo8UzYwFY9Z-vncSfPda7nXA_1z47ICFcMpxwMwrIBnKwsI1gJIGTDcQ_T8tGrodZLfADHq8e43ekOx7R-uqR3iCORNAo-vvyJA3hD44W6w0PoLZ6W_hPip4U9ipviH6JMGeQ
  priority: 102
  providerName: ProQuest
Title A multi-step approach for tongue image classification in patients with diabetes
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482522006710
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482522006710
https://dx.doi.org/10.1016/j.compbiomed.2022.105935
https://www.proquest.com/docview/2715235735
https://www.proquest.com/docview/2704868745
Volume 149
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AKRWK
  dateStart: 19700101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20250902
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 8FG
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA-iIL6InzidEsHX6ppkS4tPc2xOxSmisLeQtKlUtBt2e_Vv965NK348DHxpaZsj5ZJcf5f-7o6QEyEiY6XGAsR-7AltpRcaa7xOwHSgMV97ggHOt6PO8Elcj9vjJdKrYmGQVulsf2nTC2vt7pw5bZ5N0xRjfMGVAAeHoVcsizArISRWMTj9-KJ5iBYvw1DA3mBrx-YpOV5I2y7D3MFTZAyL3oZF4bc_P1E_jHXxBRpskHUHHWm3fLtNsmSzLbJ6636Ob5O7Li3ogR4M3JRWycIpoFIKAO95bmn6BtaDRgiYkSFUDApNM-qSq-YUd2VptR27Q54G_cfe0HP1ErxIhP7Mi1kCaE9rzYXlAOtgKWJ2s1C0YTSSWEZMA57TPDHSxEHMdWC4EVJowEiyJRK-S5azSWb3CI1Z5AcySALbiUUskjDhzAJWg2amHQrbILJSkYpcMnGsafGqKtbYi_pSrkLlqlK5DeLXktMyocYCMmE1CqoKGAUTp8DqLyAr_5K1uVurufJVzlRL_ZpPDXJeS36bkgv226ymi6q7YhLgEm9LfHxcP4YFjX9pdGYnc2yDWRCxCsH-v17ggKzhVUk8bJLl2fvcHgKAmpmjYoXAUY4lHIPB5RFZ6V7dDEdwvuiP7h8-AZhtHno
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwED6NTYJJCMEArbCBkeAxorGdOhGa0AabOrYWBJu0N-PEDhqCtJBWiD_Hb-MutlsJTagve24uVi_nu8_nu_sAnktZlU4ZIiBObSKNU0lRujIZ5Nzkhua119TgPBoPhufy3UV2sQZ_Yi8MlVVGn9g5ajupKEf-kiuMNCJTIns9_ZEQaxTdrkYKDROoFexeN2IsNHacuN-_8AjX7h2_xe_9gvOjw7M3wySwDCSVLNJZYnmNGMkYI6QTCIbQgGkmWCEz_A-1VRU3iIKMqEtV2twKk5eilEoaRBaqL2uB770BG1LIAg9_GweH4w8fl52ZfeGbYNDbSTyMhVoiX2FGReO-yR7PqZwT5W7R0c5dGSD_CRVd_Du6C3cCcGX73tLuwZprtuDmKFzNb8FtnwBkvq_pPrzfZ12xYoJmNGVxdDlDjMwQbn6ZO3b5HX0Zqwi-U71SZyLssmFh1GvLKEfMYnL4AZxfi14fwnozadw2MMurNFd5nbuBlVbWRS24Q-SIj5VZIV0PVFSZrsJoc2LY-KZjDdtXvVS2JmVrr-wepAvJqR_vsYJMEb-Kju2r6HA1xqAVZNVVsq4NnqPVqW657utP3eAktBhOOR-EgT14tZAM4MiDnhXX3YnmoxdLLbdUD54tfkb3QndGpnGTOT1DMxmJE-HR_1_xFG4Nz0an-vR4fPIYNmltX_O4A-uzn3O3i9htVj4JG4TB5-vek38BaoNWVA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1RaxQxEB5qhSKIaFV6tWoEfVx6m2Qvu4hIsR6ttVXQwr3FZJNIxe6d7h3iX_PXObPZ3IEUuZc-387mmJ3MfJl8MwPwXMraemVoAHHuMmm8yirrbTYquSkN9WsPVOB8ejY6OpfvJsVkA_6kWhiiVSaf2DlqN60pR77PFUYaUShR7IeeFvHxcPx69iOjCVJ005rGaUQTOfG_f-HxrX11fIjf-gXn47ef3xxl_YSBrJZVPs8cD4iPjDFCeoFACI2X-oFVssD_H5yquUEEZESwyrrSCVNaYaWSBlGFGsog8L034KYSoiI6oZqoVU3mUMTyF_RzEo9hPYsocsuILh7L6_GEyjkN2626gXNXhsZ_gkQX-cZ34U4PWdlBtLF7sOGbbdg67S_lt-F2TP2xWNF0Hz4csI6mmKEBzVhqWs4QHTMEml8Xnl1cohdjNQF3Yip1xsEuGtY3eW0ZZYdZSgs_gPNr0epD2Gymjd8B5nidl6oMpR856WSoguAeMSM-ZotK-gGopDJd903NabbGd53Ya9_0StmalK2jsgeQLyVnsbHHGjJV-io6Fa6iq9UYfdaQVVfJ-rb3Ga3Odcv1UH_qWiahxXDK9iAAHMDLpWQPiyLcWXPdvWQ-ernUajMN4NnyZ3QsdFtkGj9d0DPUjZGmIez-_xVPYQt3on5_fHbyCG7R0pHsuAeb858L_xhB29w-6XYHgy_XvR3_AgckU-4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-step+approach+for+tongue+image+classification+in+patients+with+diabetes&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Li%2C+Jun&rft.au=Huang%2C+Jingbin&rft.au=Jiang%2C+Tao&rft.au=Tu%2C+Liping&rft.date=2022-10-01&rft.issn=0010-4825&rft.volume=149&rft.spage=105935&rft_id=info:doi/10.1016%2Fj.compbiomed.2022.105935&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compbiomed_2022_105935
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482522X00085%2Fcov150h.gif