Spectrum Curves for Sturm-Liouville Problem with Integral Boundary Condition

We consider Sturm-Liouville problem with one integral type nonlocal boundary condition depending on three parameters γ (multiplier in nonlocal condition), ξ 1 , ξ 2 ([ξ 1 , ξ 2 ] is a domain of integration). The distribution of zeroes, poles, and constant eigenvalue points of Complex Characteristic...

Full description

Saved in:
Bibliographic Details
Published inMathematical modelling and analysis Vol. 20; no. 6; pp. 802 - 818
Main Authors Skucaite, Agne, Stikonas, Arturas
Format Journal Article
LanguageEnglish
Published Taylor & Francis 02.11.2015
Vilnius Gediminas Technical University
Subjects
Online AccessGet full text
ISSN1392-6292
1648-3510
1648-3510
DOI10.3846/13926292.2015.1116470

Cover

Abstract We consider Sturm-Liouville problem with one integral type nonlocal boundary condition depending on three parameters γ (multiplier in nonlocal condition), ξ 1 , ξ 2 ([ξ 1 , ξ 2 ] is a domain of integration). The distribution of zeroes, poles, and constant eigenvalue points of Complex Characteristic Function is presented. We investigate how Spectrum Curves depend on the parameters of nonlocal boundary conditions. In this paper we describe the behaviour of Spectrum Curves and classify critical points of Complex-Real Characteristic function. Phase Trajectories of critical points in Phase Space of the parameters ξ 1 , ξ 2 are investigated. We present the results of modelling and computational analysis and illustrate those results with graphs.
AbstractList We consider Sturm–Liouville problem with one integral type nonlocal boundary condition depending on three parameters γ (multiplier in nonlocal condition), ξ1, ξ2 ([ξ1, ξ2] is a domain of integration). The distribution of zeroes, poles, and constant eigenvalue points of Complex Characteristic Function is presented. We investigate how Spectrum Curves depend on the parameters of nonlocal boundary conditions. In this paper we describe the behaviour of Spectrum Curves and classify critical points of Complex-Real Characteristic function. Phase Trajectories of critical points in Phase Space of the parameters ξ1, ξ2 are investigated. We present the results of modelling and computational analysis and illustrate those results with graphs.
We consider Sturm-Liouville problem with one integral type nonlocal boundary condition depending on three parameters γ (multiplier in nonlocal condition), ξ 1 , ξ 2 ([ξ 1 , ξ 2 ] is a domain of integration). The distribution of zeroes, poles, and constant eigenvalue points of Complex Characteristic Function is presented. We investigate how Spectrum Curves depend on the parameters of nonlocal boundary conditions. In this paper we describe the behaviour of Spectrum Curves and classify critical points of Complex-Real Characteristic function. Phase Trajectories of critical points in Phase Space of the parameters ξ 1 , ξ 2 are investigated. We present the results of modelling and computational analysis and illustrate those results with graphs.
We consider Sturm-Liouville problem with one integral type nonlocal boundary condition depending on three parameters [gamma] (multiplier in nonlocal condition), [[xi].sub.1], [[xi].sub.2] ([[[xi].sub.1], [[xi].sub.2]] is a domain of integration). The distribution of zeroes, poles, and constant eigenvalue points of Complex Characteristic Function is presented. We investigate how Spectrum Curves depend on the parameters of nonlocal boundary conditions. In this paper we describe the behaviour of Spectrum Curves and classify critical points of Complex-Real Characteristic function. Phase Trajectories of critical points in Phase Space of the parameters [[xi].sub.1], [[xi].sub.2] are investigated. We present the results of modelling and computational analysis and illustrate those results with graphs.Keywords: Sturm--Liouville problem, characteristic function, spectrum curves, critical point, integral boundary condition.AMS Subject Classification: 34[B.sub.2]4, 34[B.sub.0]9, 34[B.sub.1]5.
Audience Academic
Author Štikonas, Artūras
Skučaitė, Agnė
Author_xml – sequence: 1
  fullname: Skucaite, Agne
– sequence: 2
  fullname: Stikonas, Arturas
BookMark eNqNUUtv1DAQjlCRaAs_ASkHrln8iL2OuFBWpV1pJZAKZ2vix-KVY68cp6v99zik9MABkA9jjb7HzDdX1UWIwVTVW4xWVLT8PaYd4aQjK4IwW2GMebtGL6rLUkVDGUYX5V8wzQx6VV2N4wEhxohAl9Xu4WhUTtNQb6b0aMbaxlQ_5CkNzc7F6dF5b-qvKfbeDPXJ5R_1NmSzT-DrT3EKGtK53sSgXXYxvK5eWvCjefNUr6vvn2-_be6b3Ze77eZm16i2w7npAa-ZsYwrjBkSLeqs6so8HBDplO5Ih8yaEyA967HuuKaWA-NgFEZUU0avq-2iqyMc5DG5oYwhIzj5qxHTXkLKTnkjlRAtE4YIwWmrrRVdT5QGahQx1BpStPiiNYUjnE_g_bMgRnLOV_7OV875yqd8C3G1EPdQfFywMSdQ5WkzOFUuZF3p37A1Qi0v6xQCWwgqxXFMxv630Yc_eMplmPMuhs7_k_1uYZdTBjeN8hCnFMp1niMqofIC-7jA5kXSAKeYvJYZzj4mmyAoN0r6d6efBFPCzQ
CitedBy_id crossref_primary_10_3846_mma_2020_10787
crossref_primary_10_3846_mma_2023_17617
crossref_primary_10_3846_mma_2024_19829
crossref_primary_10_3934_math_2022624
Cites_doi 10.3846/13926292.2005.9637295
10.15388/NA.2004.9.2.15159
10.1007/s10986-007-0023-9
10.3846/13926292.2011.552260
10.15388/NA.2014.3.1
10.15388/NA.2006.11.1.14764
10.15388/NA.15.4.14321
10.1016/j.mcm.2008.10.021
10.1007/s10625-005-0242-y
10.1090/qam/678203
10.1023/A:1021115915575
10.3846/1392-6292.2009.14.229-246
10.3846/13926292.2001.9637157
10.1155/2011/767024
10.3846/1392-6292.2007.12.215-226
10.32917/hmj/1151105723
10.1023/A:1021167932414
10.15388/NA.2014.3.0
10.1090/qam/160437
10.15388/NA.2008.13.4.14552
ContentType Journal Article
Copyright 2015 Vilnius Gediminas Technical University 2015
Copyright (c) 2015 The Author(s). Published by Vilnius Gediminas Technical University.
COPYRIGHT 2015 Vilnius Gediminas Technical University
Copyright_xml – notice: 2015 Vilnius Gediminas Technical University 2015
– notice: Copyright (c) 2015 The Author(s). Published by Vilnius Gediminas Technical University.
– notice: COPYRIGHT 2015 Vilnius Gediminas Technical University
DBID ABJBJ
AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.3846/13926292.2015.1116470
DatabaseName VILNIUS TECH Press Open Access Scientific Journals
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ (Directory of Open Access Journals)
DatabaseTitle CrossRef
DatabaseTitleList


CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1648-3510
EndPage 818
ExternalDocumentID oai_doaj_org_article_c88458e288634dff89b2cda3ec2e3fe2
10.3846/13926292.2015.1116470
A570046762
10_3846_13926292_2015_1116470
oai:ojs2.journals.vilniustech.lt:article/1036
1116470
Genre Article
GrantInformation_xml – fundername: Research Council of Lithuania
  grantid: MIP-047/2014
GroupedDBID .7F
.QJ
4.4
5GY
AAENE
ABCCY
ABDBF
ABFIM
ABJBJ
ABJNI
ABPEM
ABTAI
ACGFO
ACGFS
ACIPV
ACIWK
ACUHS
ADCVX
AENEX
AGMYJ
AIJEM
ALMA_UNASSIGNED_HOLDINGS
AMVHM
AQTUD
AVBZW
CE4
CS3
DU5
EBS
EJD
EN8
ESX
E~A
E~B
GROUPED_DOAJ
GTTXZ
H13
HF~
HZ~
H~P
I-F
IAO
ITC
J.P
M4Z
NA5
NY~
O9-
OK1
P2P
S-T
TDBHL
TFL
TFW
TR2
TUS
UT5
UU3
~8M
~S~
AAYXX
CITATION
07G
8FE
8FG
8G5
AAIKQ
ABJCF
ABUWG
ADBBV
ADIYS
ADTOC
AFKRA
AGROQ
AMXXU
ARAPS
AZQEC
BCCOT
BCNDV
BENPR
BGLVJ
BPHCQ
BPLKW
C06
CCPQU
CRFIH
DMQIW
DWIFK
DWQXO
GNUQQ
GUQSH
HCIFZ
K6V
K7-
L6V
M2O
M7S
NUSFT
PADUT
PHGZM
PHGZT
PQGLB
PQQKQ
PTHSS
QCRFL
TFMCV
UB9
UNPAY
V3K
ID FETCH-LOGICAL-c491t-ba175ef56c11508409fc95526a029cd9290e762a2b5b1d96d3f6a56aec103d353
IEDL.DBID DOA
ISSN 1392-6292
1648-3510
IngestDate Fri Oct 03 12:51:40 EDT 2025
Tue Aug 19 21:10:26 EDT 2025
Mon Oct 20 16:42:46 EDT 2025
Tue Jul 01 04:16:24 EDT 2025
Thu Apr 24 23:12:39 EDT 2025
Tue Aug 12 21:21:57 EDT 2025
Mon Oct 20 23:44:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords integral boundary condition
critical point
spectrum curves
Sturm–Liouville problem
characteristic function
Language English
License http://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c491t-ba175ef56c11508409fc95526a029cd9290e762a2b5b1d96d3f6a56aec103d353
ORCID 0000-0002-5872-5501
OpenAccessLink https://doaj.org/article/c88458e288634dff89b2cda3ec2e3fe2
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_c88458e288634dff89b2cda3ec2e3fe2
unpaywall_primary_10_3846_13926292_2015_1116470
gale_infotracacademiconefile_A570046762
crossref_primary_10_3846_13926292_2015_1116470
crossref_citationtrail_10_3846_13926292_2015_1116470
vilnius_journals_article_1036
informaworld_taylorfrancis_310_3846_13926292_2015_1116470
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-11-02
PublicationDateYYYYMMDD 2015-11-02
PublicationDate_xml – month: 11
  year: 2015
  text: 2015-11-02
  day: 02
PublicationDecade 2010
PublicationTitle Mathematical modelling and analysis
PublicationTitleAbbrev MMA
PublicationYear 2015
Publisher Taylor & Francis
Vilnius Gediminas Technical University
Publisher_xml – name: Taylor & Francis
– name: Vilnius Gediminas Technical University
References CIT0030
Cannon J.R. (CIT0003) 1963; 21
Nakhushev A.M. (CIT0014) 1995
Gordeziani D.G. (CIT0009) 2001; 31
Gordeziani N. (CIT0010) 2000; 4
Pečiulytė S. (CIT0020) 2005; 10
Paukštaitė G. (CIT0016) 2015; 207
CIT0018
Bender C.M. (CIT0001) 2012; 45
CIT0017
CIT0023
CIT0022
Pečiulytė S. (CIT0019) 2006; 11
Čiegis R. (CIT0006) 2001; 6
Day W.A. (CIT0008) 1982; 40
Skučaitė A. (CIT0026) 2013; 54
Ionkin N.I. (CIT0011) 1977; 13
Bitsadze A.V. (CIT0002) 1969; 185
Pečiulytė S. (CIT0021) 2008; 13
CIT0024
CIT0005
Skučaitė A. (CIT0025) 2010; 15
CIT0027
CIT0004
Čiupaila R. (CIT0007) 2004; 9
CIT0029
Kamynin L.I. (CIT0012) 1964; 4
Novickij J. (CIT0015) 2014; 19
CIT0028
References_xml – volume: 10
  start-page: 377
  issue: 4
  year: 2005
  ident: CIT0020
  publication-title: Math. Model. Anal.
  doi: 10.3846/13926292.2005.9637295
– volume: 4
  start-page: 43
  year: 2000
  ident: CIT0010
  publication-title: Buletin of TICMI
– ident: CIT0017
– volume: 9
  start-page: 109
  issue: 2
  year: 2004
  ident: CIT0007
  publication-title: Nonlinear Anal. Model. Control
  doi: 10.15388/NA.2004.9.2.15159
– ident: CIT0027
  doi: 10.1007/s10986-007-0023-9
– ident: CIT0028
  doi: 10.3846/13926292.2011.552260
– ident: CIT0029
  doi: 10.15388/NA.2014.3.1
– volume: 11
  start-page: 47
  issue: 1
  year: 2006
  ident: CIT0019
  publication-title: Nonlinear Anal. Model. Control
  doi: 10.15388/NA.2006.11.1.14764
– volume: 15
  start-page: 501
  issue: 4
  year: 2010
  ident: CIT0025
  publication-title: Nonlinear Anal. Model. Control
  doi: 10.15388/NA.15.4.14321
– ident: CIT0004
  doi: 10.1016/j.mcm.2008.10.021
– ident: CIT0024
  doi: 10.1007/s10625-005-0242-y
– volume: 40
  start-page: 319
  year: 1982
  ident: CIT0008
  publication-title: Quart. Appl. Math.
  doi: 10.1090/qam/678203
– ident: CIT0023
  doi: 10.1023/A:1021115915575
– volume: 207
  start-page: 1
  year: 2015
  ident: CIT0016
  publication-title: Boundary Value Problems
– volume: 45
  start-page: 444004(11pp)
  issue: 44
  year: 2012
  ident: CIT0001
  publication-title: J. Phys. A: Math. Theor.
– ident: CIT0030
  doi: 10.3846/1392-6292.2009.14.229-246
– volume: 6
  start-page: 178
  issue: 2
  year: 2001
  ident: CIT0006
  publication-title: Math. Model. Anal.
  doi: 10.3846/13926292.2001.9637157
– ident: CIT0022
  doi: 10.1155/2011/767024
– volume: 185
  start-page: 739
  year: 1969
  ident: CIT0002
  publication-title: Dokl. Akad. Nauk SSSR
– ident: CIT0018
  doi: 10.3846/1392-6292.2007.12.215-226
– volume: 54
  start-page: 67
  year: 2013
  ident: CIT0026
  publication-title: Liet. Mat. Rink
– volume: 31
  start-page: 345
  year: 2001
  ident: CIT0009
  publication-title: Hirosima Math. J.
  doi: 10.32917/hmj/1151105723
– ident: CIT0005
  doi: 10.1023/A:1021167932414
– volume: 13
  start-page: 294
  issue: 2
  year: 1977
  ident: CIT0011
  publication-title: Differents. Uravn.
– volume: 4
  start-page: 1006
  issue: 6
  year: 1964
  ident: CIT0012
  publication-title: Z. Vychisl. Mat. Fiz.
– volume-title: Equations of Mathematical Biology
  year: 1995
  ident: CIT0014
– volume: 19
  start-page: 1
  issue: 3
  year: 2014
  ident: CIT0015
  publication-title: Nonlinear Anal. Model. Control
  doi: 10.15388/NA.2014.3.0
– volume: 21
  start-page: 155
  issue: 2
  year: 1963
  ident: CIT0003
  publication-title: Quart. Appl. Math.
  doi: 10.1090/qam/160437
– volume: 13
  start-page: 467
  issue: 4
  year: 2008
  ident: CIT0021
  publication-title: Nonlinear Anal. Model. Control
  doi: 10.15388/NA.2008.13.4.14552
SSID ssj0055280
Score 2.0444345
Snippet We consider Sturm-Liouville problem with one integral type nonlocal boundary condition depending on three parameters γ (multiplier in nonlocal condition), ξ 1...
We consider Sturm–Liouville problem with one integral type nonlocal boundary condition depending on three parameters γ (multiplier in nonlocal condition), ξ1,...
We consider Sturm-Liouville problem with one integral type nonlocal boundary condition depending on three parameters [gamma] (multiplier in nonlocal...
SourceID doaj
unpaywall
gale
crossref
vilnius
informaworld
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 802
SubjectTerms Boundary value problems
characteristic function
critical point
Curves (Geometry)
integral boundary condition
Mathematical research
spectrum curves
Sturm-Liouville problem
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Pb9MwFLegO8AO_J8oMJQDEqc0nR178THtOlrUtFXWjO1kObYzTVTttKVDcOI78A35JLyXplXhMhCXSIntyM_v2f49y-_3CHnHD61hNIf5jY_QWe5HljFfRqGD_UBLkWNwcjIS_Sz8eMbPtqL46xG8ad1elMvWrAwq0kBkigiSJA7q4QwsMskvtIVJz0RwKOV9siM4oPEG2clGk_i88rMk9QWt8iKDUxDhpfX2KoiHwa4bYDkW4_0ujkuHCDFl8db2VLH4b9bq36hMd8mD5fxKf_2iZzOAzreXs_nl8mZrazp-TPRaqNWNlM-tZZm3zLc_-B7_R-on5FGNW714Vecpuefmz8juFpvhczI6mfS60zRLvG6WnvZOPHAwPUCcafLz-4_hYJydDobDnjdJx51hL_E-DaZ9Dxl5P6Tx0OuMs9FRnJ573fHoaIDnZi9Idtybdvt-na7BN6E8KP1cAxRxBRcGUSY6joWRnFOh21QaCzis7WDp1TTn-YGVwrJCaC60MyCOZZztkcZ8MXcviSfBM0SmfYAveahlLrUTFnwZayJXSNZuknCtJWVqLnNMqTFT4NOgctVauQqVq2rlNklr0-xqReZxV4MOmsCmMnJxVx8W1xeq1ooyURTyyNEoEiy0RRHJnBqrmTPUscLRJnmPBqTQfKCTRteBDyAqcm-puEoxIGBomkRu25gqq0ObYpVhRbE7uhpsDPJvhduvzVat7W8jExrYq3_-42vyEF-rUE36hjTK66XbB8xW5m_rafkLVggwJw
  priority: 102
  providerName: Unpaywall
Title Spectrum Curves for Sturm-Liouville Problem with Integral Boundary Condition
URI https://www.tandfonline.com/doi/abs/10.3846/13926292.2015.1116470
https://journals.vilniustech.lt/index.php/MMA/article/view/1036
https://journals.vgtu.lt/index.php/MMA/article/download/1036/799
https://doaj.org/article/c88458e288634dff89b2cda3ec2e3fe2
UnpaywallVersion publishedVersion
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1648-3510
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0055280
  issn: 1392-6292
  databaseCode: ABDBF
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 1648-3510
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055280
  issn: 1392-6292
  databaseCode: AMVHM
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFLfQOMAOiPEhCmzyAYlTaGrHxj62hWpDUE2CSuNkObYjVcrSqW2KduN_4D_kL-G9OI2yUznsEilWLPt9-H0keb9HyDvx0TvOcjjfeMmCF4nynCdaZQH8gdUyx-Lkb3N5vsi-XImrXqsv_CcswgNHxg2dUplQgSkleeaLQumcOW95cCzwIjTWN1V6n0xFGywEU7E-WLNEMs1i7Q4HZzvEMRzC37oEWgyZYafinldqwPs7E30HwfSYPKqrG3v7y5YlRMy7ZVkt603PI82ekidtKEnHkYQT8iBUz8hxD2DwOZlje_ntur6m03q9CxsKa9Dv4GWu__7-83W5qndYCkgvY1cZii9l6UUEkCjppOm4tL6l0xV-1wYBviCL2ecf0_Ok7aCQuEyPtkluIToIhZAOAz_M5QqngTnSpkw7D6FRGsAaWpaLfOS19LyQVkgb3Cjlngv-khxVqyq8IlRDsobg9xBR5JnVubZBekgvvFOh0DwdkGzPQeNaeHHsclEaSDOQ8WbPeIOMNy3jB-RDN-0m4mscmjBB8XQPIzx2MwBKY1qlMYeUZkDeo3ANihY26WxbiwCkIhyWGTeo_xJYMyC6L3-zbd6jFLHpieEHtjrslOV_iTttVcq0pmTT0QQSka_vg_g35DGu2RRUsrfkCLQwnEJktc3PyMPx5NNkdtYcJrhbzC_HP_8BGnQbtQ
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Pb9MwFLegO8AO_J8oMJQDEqc0nR178THtOlrUtFXWjO1kObYzTVTttKVDcOI78A35JLyXplXhMhCXSIntyM_v2f49y-_3CHnHD61hNIf5jY_QWe5HljFfRqGD_UBLkWNwcjIS_Sz8eMbPtqL46xG8ad1elMvWrAwq0kBkigiSJA7q4QwsMskvtIVJz0RwKOV9siM4oPEG2clGk_i88rMk9QWt8iKDUxDhpfX2KoiHwa4bYDkW4_0ujkuHCDFl8db2VLH4b9bq36hMd8mD5fxKf_2iZzOAzreXs_nl8mZrazp-TPRaqNWNlM-tZZm3zLc_-B7_R-on5FGNW714Vecpuefmz8juFpvhczI6mfS60zRLvG6WnvZOPHAwPUCcafLz-4_hYJydDobDnjdJx51hL_E-DaZ9Dxl5P6Tx0OuMs9FRnJ573fHoaIDnZi9Idtybdvt-na7BN6E8KP1cAxRxBRcGUSY6joWRnFOh21QaCzis7WDp1TTn-YGVwrJCaC60MyCOZZztkcZ8MXcviSfBM0SmfYAveahlLrUTFnwZayJXSNZuknCtJWVqLnNMqTFT4NOgctVauQqVq2rlNklr0-xqReZxV4MOmsCmMnJxVx8W1xeq1ooyURTyyNEoEiy0RRHJnBqrmTPUscLRJnmPBqTQfKCTRteBDyAqcm-puEoxIGBomkRu25gqq0ObYpVhRbE7uhpsDPJvhduvzVat7W8jExrYq3_-42vyEF-rUE36hjTK66XbB8xW5m_rafkLVggwJw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SPECTRUM+CURVES+FOR+STURM%E2%80%93LIOUVILLE+PROBLEM+WITH+INTEGRAL+BOUNDARY+CONDITION&rft.jtitle=Mathematical+modelling+and+analysis&rft.au=Sku%C4%8Dait%C4%97%2C+Agn%C4%97&rft.au=%C5%A0tikonas%2C+Art%C5%ABras&rft.date=2015-11-02&rft.issn=1392-6292&rft.eissn=1648-3510&rft.volume=20&rft.issue=6&rft.spage=802&rft.epage=818&rft_id=info:doi/10.3846%2F13926292.2015.1116470&rft.externalDBID=n%2Fa&rft.externalDocID=10_3846_13926292_2015_1116470
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1392-6292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1392-6292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1392-6292&client=summon