Design of intelligent diabetes mellitus detection system using hybrid feature selection based XGBoost classifier

In this work, a non-invasive diabetes mellitus detection system is proposed based on the wristband photoplethysmography (PPG) signal and basic physiological parameters (PhyP) to enable easy detection of diabetes mellitus (DM). A dataset of 217 participants with diabetes, prediabetes and normal condi...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 136; p. 104664
Main Authors Prabha, Anju, Yadav, Jyoti, Rani, Asha, Singh, Vijander
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.09.2021
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
1879-0534
DOI10.1016/j.compbiomed.2021.104664

Cover

Abstract In this work, a non-invasive diabetes mellitus detection system is proposed based on the wristband photoplethysmography (PPG) signal and basic physiological parameters (PhyP) to enable easy detection of diabetes mellitus (DM). A dataset of 217 participants with diabetes, prediabetes and normal conditions is used to develop the system. The Mel frequency cepstral coefficients (MFCC) extracted from 5s PPG signal segments and the PhyP are used as input for the machine learning algorithms. The K-nearest neighbors, support vector machine, random forest and extreme gradient boost (XGBoost) classifiers are used for classification. In addition, a hybrid feature selection method (Hybrid FS) is proposed to reduce the size of the input data. The Hybrid FS-based XGBoost system achieves a high accuracy of 99.93 % for non-invasive diabetes detection with fewer features and less computational effort. The analysis suggests that the PPG signal from a wearable sensor is a good alternative for simple non-invasive blood glucose measurements in routine applications. [Display omitted] •An intelligent diabetes mellitus detection system based on the photoplethysmography (PPG) signal and physiological parameters is proposed.•Mel frequency cepstral coefficients (MFCC) features of the PPG signal are used.•XGBoost classifier with a hybrid feature selection technique is suggested for the classification.•A high accuracy of 99.93 % is achieved with fewer features and less computational effort.
AbstractList In this work, a non-invasive diabetes mellitus detection system is proposed based on the wristband photoplethysmography (PPG) signal and basic physiological parameters (PhyP) to enable easy detection of diabetes mellitus (DM). A dataset of 217 participants with diabetes, prediabetes and normal conditions is used to develop the system. The Mel frequency cepstral coefficients (MFCC) extracted from 5s PPG signal segments and the PhyP are used as input for the machine learning algorithms. The K-nearest neighbors, support vector machine, random forest and extreme gradient boost (XGBoost) classifiers are used for classification. In addition, a hybrid feature selection method (Hybrid FS) is proposed to reduce the size of the input data. The Hybrid FS-based XGBoost system achieves a high accuracy of 99.93 % for non-invasive diabetes detection with fewer features and less computational effort. The analysis suggests that the PPG signal from a wearable sensor is a good alternative for simple non-invasive blood glucose measurements in routine applications. [Display omitted] •An intelligent diabetes mellitus detection system based on the photoplethysmography (PPG) signal and physiological parameters is proposed.•Mel frequency cepstral coefficients (MFCC) features of the PPG signal are used.•XGBoost classifier with a hybrid feature selection technique is suggested for the classification.•A high accuracy of 99.93 % is achieved with fewer features and less computational effort.
AbstractIn this work, a non-invasive diabetes mellitus detection system is proposed based on the wristband photoplethysmography (PPG) signal and basic physiological parameters (PhyP) to enable easy detection of diabetes mellitus (DM). A dataset of 217 participants with diabetes, prediabetes and normal conditions is used to develop the system. The Mel frequency cepstral coefficients (MFCC) extracted from 5s PPG signal segments and the PhyP are used as input for the machine learning algorithms. The K-nearest neighbors, support vector machine, random forest and extreme gradient boost (XGBoost) classifiers are used for classification. In addition, a hybrid feature selection method (Hybrid FS) is proposed to reduce the size of the input data. The Hybrid FS-based XGBoost system achieves a high accuracy of 99.93 % for non-invasive diabetes detection with fewer features and less computational effort. The analysis suggests that the PPG signal from a wearable sensor is a good alternative for simple non-invasive blood glucose measurements in routine applications.
In this work, a non-invasive diabetes mellitus detection system is proposed based on the wristband photoplethysmography (PPG) signal and basic physiological parameters (PhyP) to enable easy detection of diabetes mellitus (DM). A dataset of 217 participants with diabetes, prediabetes and normal conditions is used to develop the system. The Mel frequency cepstral coefficients (MFCC) extracted from 5s PPG signal segments and the PhyP are used as input for the machine learning algorithms. The K-nearest neighbors, support vector machine, random forest and extreme gradient boost (XGBoost) classifiers are used for classification. In addition, a hybrid feature selection method (Hybrid FS) is proposed to reduce the size of the input data. The Hybrid FS-based XGBoost system achieves a high accuracy of 99.93 % for non-invasive diabetes detection with fewer features and less computational effort. The analysis suggests that the PPG signal from a wearable sensor is a good alternative for simple non-invasive blood glucose measurements in routine applications.In this work, a non-invasive diabetes mellitus detection system is proposed based on the wristband photoplethysmography (PPG) signal and basic physiological parameters (PhyP) to enable easy detection of diabetes mellitus (DM). A dataset of 217 participants with diabetes, prediabetes and normal conditions is used to develop the system. The Mel frequency cepstral coefficients (MFCC) extracted from 5s PPG signal segments and the PhyP are used as input for the machine learning algorithms. The K-nearest neighbors, support vector machine, random forest and extreme gradient boost (XGBoost) classifiers are used for classification. In addition, a hybrid feature selection method (Hybrid FS) is proposed to reduce the size of the input data. The Hybrid FS-based XGBoost system achieves a high accuracy of 99.93 % for non-invasive diabetes detection with fewer features and less computational effort. The analysis suggests that the PPG signal from a wearable sensor is a good alternative for simple non-invasive blood glucose measurements in routine applications.
In this work, a non-invasive diabetes mellitus detection system is proposed based on the wristband photoplethysmography (PPG) signal and basic physiological parameters (PhyP) to enable easy detection of diabetes mellitus (DM). A dataset of 217 participants with diabetes, prediabetes and normal conditions is used to develop the system. The Mel frequency cepstral coefficients (MFCC) extracted from 5s PPG signal segments and the PhyP are used as input for the machine learning algorithms. The K-nearest neighbors, support vector machine, random forest and extreme gradient boost (XGBoost) classifiers are used for classification. In addition, a hybrid feature selection method (Hybrid FS) is proposed to reduce the size of the input data. The Hybrid FS-based XGBoost system achieves a high accuracy of 99.93 % for non-invasive diabetes detection with fewer features and less computational effort. The analysis suggests that the PPG signal from a wearable sensor is a good alternative for simple non-invasive blood glucose measurements in routine applications.
ArticleNumber 104664
Author Rani, Asha
Yadav, Jyoti
Singh, Vijander
Prabha, Anju
Author_xml – sequence: 1
  givenname: Anju
  orcidid: 0000-0002-6427-3097
  surname: Prabha
  fullname: Prabha, Anju
  email: anjuprabha.mec@gmail.com
– sequence: 2
  givenname: Jyoti
  surname: Yadav
  fullname: Yadav, Jyoti
  email: bmjyoti@gmail.com
– sequence: 3
  givenname: Asha
  orcidid: 0000-0003-1750-9789
  surname: Rani
  fullname: Rani, Asha
  email: asha.rani@nsit.ac.in
– sequence: 4
  givenname: Vijander
  surname: Singh
  fullname: Singh, Vijander
  email: vijaydee@nsit.ac.in
BookMark eNqVUk2LFDEUbGQFZ1f_Q8CLlx7z0d3pvojurq7CggcVvIV08jJm7E7GvLQw_940s6ywIKynkEe9ol5VnVdnIQaoKsLollHWvd5vTZwPo48z2C2nnJVx03XNk2rDejnUtBXNWbWhlNG66Xn7rDpH3FNKGyropjpcA_pdINERHzJMk99ByMR6PUIGJPM6ygsSW74m-xgIHjHDTBb0YUd-HMfkLXGg85KAIEx3qFEjWPL95jJGzMRMGtE7D-l59dTpCeHF3XtRffvw_uvVx_r2882nq3e3tWkGlmvtpJbUmpY30EhruR1bK-xohW6B6dYZPWo3aul0N_Z27B1IAD6IMhBycOKienXiPaT4awHMavZoyjU6QFxQ8baVXFDGZIG-fADdxyWFoq6gJG2E7LqhoPoTyqSImMCpQ_KzTkfFqFqjUHv1Nwq1RqFOUZTVNw9Wjc96tSkn7afHEFyeCKA49ru4qNB4CAasT8VvZaP_DxX3JGbywRs9_YQj4P3NTCFXVH1ZK7M2hrNSlrYXheDtvwkep-EPzCncnA
CitedBy_id crossref_primary_10_1007_s00521_023_09208_2
crossref_primary_10_1111_exsy_13611
crossref_primary_10_1016_j_fuel_2023_127389
crossref_primary_10_1016_j_ijhydene_2024_09_295
crossref_primary_10_12677_mos_2024_135455
crossref_primary_10_35784_acs_2024_39
crossref_primary_10_3389_fgene_2023_1165765
crossref_primary_10_1109_JSEN_2024_3373048
crossref_primary_10_3390_biomedinformatics3040062
crossref_primary_10_3390_s23156836
crossref_primary_10_1158_2767_9764_CRC_23_0083
crossref_primary_10_2196_36010
crossref_primary_10_1002_ima_23059
crossref_primary_10_1016_j_engappai_2023_107226
crossref_primary_10_1016_j_jwpe_2023_104303
crossref_primary_10_1007_s11042_024_19000_6
crossref_primary_10_1007_s10115_024_02106_6
crossref_primary_10_1093_bib_bbac173
crossref_primary_10_1016_j_ces_2024_120733
crossref_primary_10_1016_j_compbiomed_2022_105975
crossref_primary_10_1016_j_compchemeng_2024_108747
crossref_primary_10_1080_10255842_2023_2267721
crossref_primary_10_1016_j_eswa_2023_122136
crossref_primary_10_1371_journal_pone_0311222
crossref_primary_10_1016_j_health_2023_100227
crossref_primary_10_1109_LSENS_2022_3203609
crossref_primary_10_1186_s13098_022_00969_9
crossref_primary_10_1155_2022_1581958
crossref_primary_10_3390_sym15030670
crossref_primary_10_1109_ACCESS_2023_3274484
crossref_primary_10_1016_j_bspc_2023_105425
crossref_primary_10_1016_j_cmpb_2022_106677
crossref_primary_10_1109_JSEN_2023_3314718
crossref_primary_10_1016_j_bspc_2023_104894
crossref_primary_10_1038_s41598_024_84365_5
crossref_primary_10_1016_j_bspc_2022_103876
crossref_primary_10_3389_fonc_2022_1042964
crossref_primary_10_1007_s40998_023_00644_3
crossref_primary_10_1016_j_heliyon_2023_e13289
crossref_primary_10_1016_j_knosys_2022_108743
crossref_primary_10_3390_electronics12132923
crossref_primary_10_29130_dubited_1014508
crossref_primary_10_3389_fcomp_2022_835242
crossref_primary_10_1016_j_heliyon_2023_e22727
crossref_primary_10_1242_bio_060468
crossref_primary_10_1002_advs_202405681
crossref_primary_10_1007_s42600_023_00287_7
crossref_primary_10_1016_j_health_2022_100112
crossref_primary_10_1016_j_compeleceng_2024_109644
crossref_primary_10_2139_ssrn_4145219
crossref_primary_10_1038_s41598_023_50646_8
crossref_primary_10_1142_S0219265923500226
crossref_primary_10_1016_j_cmpbup_2023_100094
crossref_primary_10_1016_j_compbiomed_2022_106162
crossref_primary_10_4103_jmss_jmss_54_23
Cites_doi 10.14423/SMJ.0000000000000214
10.4239/wjd.v6.i6.850
10.15406/ijbsbe.2018.04.00125
10.1016/j.bbe.2018.09.007
10.21037/atm.2016.03.37
10.1016/j.sbspro.2013.10.201
10.1109/72.991427
10.1016/j.artmed.2015.08.003
10.1900/RDS.2010.7.252
10.14445/22312803/IJCTT-V8P108
10.1016/j.isatra.2016.05.008
10.2337/dc17-1071
10.1109/5.237532
10.3390/s130607279
10.1136/bmjopen-2019-030158
10.5220/0006297205530560
10.1088/0967-3334/34/5/513
10.1023/A:1010933404324
10.1109/TII.2020.2975222
10.1016/j.icte.2018.10.005
10.1109/RBME.2020.2993591
10.1126/science.171.3977.1217
10.1016/S0735-1097(19)33778-7
10.1007/978-3-030-32033-1_5
10.3390/medicina55090546
10.3390/medicina55080436
10.1093/bioinformatics/bti721
10.1007/s40200-020-00520-5
10.1109/TPAMI.2010.215
10.1016/j.eswa.2013.02.005
10.1109/TITB.2009.2039485
10.1016/j.jcjd.2017.10.003
10.1016/j.patcog.2005.01.012
10.1111/j.2517-6161.1996.tb02080.x
10.1016/0169-7439(89)80095-4
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Elsevier Ltd
2021. Elsevier Ltd
Copyright © 2021 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Elsevier Ltd
– notice: 2021. Elsevier Ltd
– notice: Copyright © 2021 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.compbiomed.2021.104664
DatabaseName CrossRef
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
Computing Database
Health & Medical Collection (Alumni Edition)
ProQuest Medical Database
Research Library
Biological Science Database
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic
Research Library Prep
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 104664
ExternalDocumentID 10_1016_j_compbiomed_2021_104664
S0010482521004583
1_s2_0_S0010482521004583
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77I
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
~HD
3V.
AACTN
AFCTW
AFKWA
AJOXV
ALIPV
AMFUW
M0N
RIG
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
LCYCR
AAYXX
CITATION
PUEGO
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c491t-af7a70dc524e47dd2db5d3dbd3a5e1a5fcabafba7fa6b8db8fe7ee2937fa379f3
IEDL.DBID .~1
ISSN 0010-4825
1879-0534
IngestDate Sat Sep 27 16:16:05 EDT 2025
Tue Oct 07 06:33:08 EDT 2025
Wed Oct 01 05:29:15 EDT 2025
Thu Apr 24 23:11:32 EDT 2025
Fri Feb 23 02:39:44 EST 2024
Tue Feb 25 20:08:35 EST 2025
Tue Oct 14 19:33:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Feature selection
MFCC
PPG
XGBoost
Diabetes detection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c491t-af7a70dc524e47dd2db5d3dbd3a5e1a5fcabafba7fa6b8db8fe7ee2937fa379f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6427-3097
0000-0003-1750-9789
PQID 2570437669
PQPubID 1226355
PageCount 1
ParticipantIDs proquest_miscellaneous_2557230117
proquest_journals_2570437669
crossref_primary_10_1016_j_compbiomed_2021_104664
crossref_citationtrail_10_1016_j_compbiomed_2021_104664
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2021_104664
elsevier_clinicalkeyesjournals_1_s2_0_S0010482521004583
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2021_104664
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computers in biology and medicine
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Chen, Guestrin (bib45) 2016
Sthle, Wold (bib53) 1989; 6
J Dekker (bib25) 2006
Vapnik (bib39) 1998
Yang, Shen, Ma, Huang, Zhou (bib48) 2011
Valverde-Albacete, Peláez-Moreno (bib52) 2016
Kharroubi (bib2) 2015; 6
Nirala, Periyasamy, Singh, Kumar (bib20) 2019; 39
S, V, S (bib17) 2018; 4
Jain, Nandakumar, Ross (bib37) 2005; 38
Naz, Ahuja (bib10) 2020; 19
Pilt, Ferenets, Meigas, Lindberg, Temitski, Viigimaa (bib26) 2013
Hsu, Lin (bib41) 2002; 13
Chen, Liu (bib42) 2005; 21
Lusted (bib51) 1971; 171
Tibshirani (bib50) 1996; 58
Ling, San, Nguyen (bib16) 2016; 64
Keikhosravi, Aghajani, Zahedi (bib18) 2013; 34
Ismail, Siddiqi, Akram (bib34) 2018
Picone (bib36) 1993; 81
Ghamari (bib24) 2018; 4
Muhammad (bib27) 2017; 40
Zhang (bib38) 2016; 4
Soliman, AboElhamd (bib14) 2014; 8
Gray, Picone, Sloan, Yashkin (bib28) 2015; 108
Reddy, Dutta Choudhury, Jayaraman, Kumar Thokala, Deshpande, Kaliaperumal (bib19) 2017
Othman, Wahab, Karim, Dzulkifli, Alshaikli (bib33) 2013; 97
Choudhury, Gupta (bib9) 2018
Daghistani, Alshammari (bib15) 2016; 7
Lekha, S (bib12) 2021; 14
Breiman (bib44) 2001; 45
Chaki, Thillai Ganesh, Cidham, Ananda Theertan (bib11) 2020
Ion Titapiccolo (bib43) 2013; 40
Sun, Thakor (bib23) 2016; 63
Prabha, Yadav, Rani, Singh (bib29) 2021
Saeedi (bib4) 2019; 157
Dobrică, Găman, Cozma, Bratu, Pantea Stoian, Diaconu (bib5) 2019; 55
Zhang (bib22) 2020; 16
Khan, Chua, Tan, Yang, Liao, Zhao (bib3) 2019; 55
Barakat, Bradley, Barakat (bib13) 2010; 14
Deller, Proakis, Hansen (bib35) 2000
Zeng, Cheung (bib46) 2011; 33
Shankaracharya, Odedra, Samanta, Vidyarthi (bib7) 2010; 7
Bantie (bib6) 2019; 9
Avram (bib21) 2019; 73
Salamea, Narvaez, Montalvo (bib30) 2020
Zokaee, Faez (bib32) 2012; 2
Hall (bib47) 1999
Punthakee, Goldenberg, Katz (bib1) 2018; 42
Kononenko (bib49) 1994; 94
Prabha, Trivedi, Kumar, Kumar (bib40) 2017
Zanon (bib54) 2013; 13
El-Sappagh, Elmogy, Riad (bib8) 2015; 65
Logan (bib31) 2000; 270
Choudhury (10.1016/j.compbiomed.2021.104664_bib9) 2018
Prabha (10.1016/j.compbiomed.2021.104664_bib29) 2021
El-Sappagh (10.1016/j.compbiomed.2021.104664_bib8) 2015; 65
Naz (10.1016/j.compbiomed.2021.104664_bib10) 2020; 19
Hall (10.1016/j.compbiomed.2021.104664_bib47) 1999
Sun (10.1016/j.compbiomed.2021.104664_bib23) 2016; 63
Chaki (10.1016/j.compbiomed.2021.104664_bib11) 2020
Othman (10.1016/j.compbiomed.2021.104664_bib33) 2013; 97
Bantie (10.1016/j.compbiomed.2021.104664_bib6) 2019; 9
Soliman (10.1016/j.compbiomed.2021.104664_bib14) 2014; 8
Ghamari (10.1016/j.compbiomed.2021.104664_bib24) 2018; 4
Kharroubi (10.1016/j.compbiomed.2021.104664_bib2) 2015; 6
S (10.1016/j.compbiomed.2021.104664_bib17) 2018; 4
Chen (10.1016/j.compbiomed.2021.104664_bib42) 2005; 21
Yang (10.1016/j.compbiomed.2021.104664_bib48) 2011
Pilt (10.1016/j.compbiomed.2021.104664_bib26) 2013
Salamea (10.1016/j.compbiomed.2021.104664_bib30) 2020
J Dekker (10.1016/j.compbiomed.2021.104664_bib25) 2006
Muhammad (10.1016/j.compbiomed.2021.104664_bib27) 2017; 40
Valverde-Albacete (10.1016/j.compbiomed.2021.104664_bib52) 2016
Daghistani (10.1016/j.compbiomed.2021.104664_bib15) 2016; 7
Logan (10.1016/j.compbiomed.2021.104664_bib31) 2000; 270
Shankaracharya (10.1016/j.compbiomed.2021.104664_bib7) 2010; 7
Punthakee (10.1016/j.compbiomed.2021.104664_bib1) 2018; 42
Dobrică (10.1016/j.compbiomed.2021.104664_bib5) 2019; 55
Jain (10.1016/j.compbiomed.2021.104664_bib37) 2005; 38
Breiman (10.1016/j.compbiomed.2021.104664_bib44) 2001; 45
Avram (10.1016/j.compbiomed.2021.104664_bib21) 2019; 73
Sthle (10.1016/j.compbiomed.2021.104664_bib53) 1989; 6
Khan (10.1016/j.compbiomed.2021.104664_bib3) 2019; 55
Keikhosravi (10.1016/j.compbiomed.2021.104664_bib18) 2013; 34
Zhang (10.1016/j.compbiomed.2021.104664_bib38) 2016; 4
Lusted (10.1016/j.compbiomed.2021.104664_bib51) 1971; 171
Kononenko (10.1016/j.compbiomed.2021.104664_bib49) 1994; 94
Nirala (10.1016/j.compbiomed.2021.104664_bib20) 2019; 39
Ling (10.1016/j.compbiomed.2021.104664_bib16) 2016; 64
Ismail (10.1016/j.compbiomed.2021.104664_bib34) 2018
Tibshirani (10.1016/j.compbiomed.2021.104664_bib50) 1996; 58
Lekha (10.1016/j.compbiomed.2021.104664_bib12) 2021; 14
Vapnik (10.1016/j.compbiomed.2021.104664_bib39) 1998
Prabha (10.1016/j.compbiomed.2021.104664_bib40) 2017
Zokaee (10.1016/j.compbiomed.2021.104664_bib32) 2012; 2
Zeng (10.1016/j.compbiomed.2021.104664_bib46) 2011; 33
Chen (10.1016/j.compbiomed.2021.104664_bib45) 2016
Gray (10.1016/j.compbiomed.2021.104664_bib28) 2015; 108
Picone (10.1016/j.compbiomed.2021.104664_bib36) 1993; 81
Saeedi (10.1016/j.compbiomed.2021.104664_bib4) 2019; 157
Ion Titapiccolo (10.1016/j.compbiomed.2021.104664_bib43) 2013; 40
Hsu (10.1016/j.compbiomed.2021.104664_bib41) 2002; 13
Zhang (10.1016/j.compbiomed.2021.104664_bib22) 2020; 16
Barakat (10.1016/j.compbiomed.2021.104664_bib13) 2010; 14
Deller (10.1016/j.compbiomed.2021.104664_bib35) 2000
Zanon (10.1016/j.compbiomed.2021.104664_bib54) 2013; 13
Reddy (10.1016/j.compbiomed.2021.104664_bib19) 2017
References_xml – start-page: 1
  year: 2018
  end-page: 27
  ident: bib34
  article-title: Localization and classification of heart beats in phonocardiography signals —a comprehensive review
  publication-title: EURASIP J. Appl. Signal Process.
– volume: 73
  start-page: 16
  year: 2019
  ident: bib21
  article-title: Predicting diabetes from photoplethysmography using deep learning”
  publication-title: J. Am. Coll. Cardiol.
– volume: 64
  start-page: 440
  year: 2016
  end-page: 446
  ident: bib16
  article-title: Non-invasive hypoglycemia monitoring system using extreme learning machine for Type 1 diabetes
  publication-title: ISA (Instrum. Soc. Am.) Trans.
– start-page: 67
  year: 2018
  end-page: 78
  ident: bib9
  article-title: A survey on medical diagnosis of diabetes using machine learning techniques
  publication-title: Adv. Intell. Syst.Comput.
– volume: 39
  start-page: 38
  year: 2019
  end-page: 51
  ident: bib20
  article-title: Detection of type-2 diabetes using characteristics of toe photoplethysmogram by applying support vector machine
  publication-title: Biocybern. Biomed. Eng.
– volume: 8
  start-page: 38
  year: 2014
  end-page: 44
  ident: bib14
  article-title: Classification of diabetes mellitus using modified particle swarm optimization and least squares support vector machine
  publication-title: Int. J. Comput. Trends Technol.
– year: 1999
  ident: bib47
  article-title: "Correlation-based Feature Selection for Machine learning.” New Zealand
– start-page: 44
  year: 2020
  end-page: 53
  ident: bib30
  article-title: Database proposal for correlation of glucose and photoplethysmography signals
  publication-title: Advances in Intelligent Systems and Computing
– start-page: 1303
  year: 2017
  end-page: 1307
  ident: bib40
  article-title: Automated system for obstructive sleep apnea detection using heart rate variability and respiratory rate variability”
  publication-title: 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI)
– volume: 14
  start-page: 1114
  year: 2010
  end-page: 1120
  ident: bib13
  article-title: Intelligible support vector machines for diagnosis of diabetes mellitus
  publication-title: IEEE Trans. Inf. Technol. Biomed.
– volume: 81
  start-page: 1215
  year: 1993
  end-page: 1247
  ident: bib36
  article-title: Signal modeling techniques in speech recognition
  publication-title: Proc. IEEE
– volume: 19
  start-page: 391
  year: 2020
  end-page: 403
  ident: bib10
  article-title: Deep learning approach for diabetes prediction using PIMA Indian dataset
  publication-title: J. Diabetes Metab. Disord.
– volume: 33
  start-page: 1532
  year: 2011
  end-page: 1547
  ident: bib46
  article-title: Feature selection and kernel learning for local learning-based clustering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 55
  start-page: 546
  year: 2019
  ident: bib3
  article-title: From pre-diabetes to diabetes: diagnosis, treatments and translational research
  publication-title: Medicina
– year: 1998
  ident: bib39
  article-title: Statistical Learning Theory
– volume: 65
  start-page: 179
  year: 2015
  end-page: 208
  ident: bib8
  article-title: A fuzzy-ontology-oriented case-based reasoning framework for semantic diabetes diagnosis
  publication-title: Artif. Intell. Med.
– volume: 7
  year: 2016
  ident: bib15
  article-title: Diagnosis of diabetes by applying data mining classification techniques
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– start-page: 1
  year: 2013
  end-page: 9
  ident: bib26
  article-title: New photoplethysmographic signal analysis algorithm for arterial stiffness estimation”
  publication-title: Sci. World J.
– volume: 6
  start-page: 259
  year: 1989
  end-page: 272
  ident: bib53
  article-title: Analysis of variance (ANOVA)
  publication-title: Chemometr. Intell. Lab. Syst.
– volume: 21
  start-page: 4394
  year: 2005
  end-page: 4400
  ident: bib42
  article-title: Prediction of protein-protein interactions using random decision forest framework
  publication-title: Bioinformatics
– volume: 13
  start-page: 415
  year: 2002
  end-page: 425
  ident: bib41
  article-title: A comparison of methods for multiclass support vector machines
  publication-title: IEEE Trans. Neural Network.
– volume: 55
  start-page: 436
  year: 2019
  ident: bib5
  article-title: Polypharmacy in type 2 diabetes mellitus: insights from an internal medicine department
  publication-title: Medicina
– volume: 97
  start-page: 30
  year: 2013
  end-page: 37
  ident: bib33
  article-title: EEG emotion recognition based on the dimensional models of emotions
  publication-title: Procedia - Social and Behavioral Sciences
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: bib50
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. Roy. Stat. Soc. B
– volume: 16
  start-page: 7209
  year: 2020
  end-page: 7218
  ident: bib22
  article-title: A noninvasive blood glucose monitoring system based on smartphone PPG signal processing and machine learning
  publication-title: IEEE Transactions on Industrial Informatics
– volume: 94
  start-page: 171
  year: 1994
  end-page: 182
  ident: bib49
  article-title: Estimating attributes: analysis and extensions of RELIEF
  publication-title: Mach. Learn.: ECML-
– volume: 14
  start-page: 127
  year: 2021
  end-page: 138
  ident: bib12
  article-title: Recent advancements and future prospects on E-nose sensors technology and machine learning approaches for non-invasive diabetes diagnosis: a review
  publication-title: IEEE.Rev. Biomed. Eng.
– volume: 4
  year: 2016
  ident: bib38
  article-title: Introduction to machine learning: k-nearest neighbors”
  publication-title: Ann. Transl. Med.
– start-page: 785
  year: 2016
  end-page: 794
  ident: bib45
  article-title: XGBoost: a scalable tree boosting system
  publication-title: Proc. 22nd ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining
– year: 2020
  ident: bib11
  article-title: Machine learning and artificial intelligence based Diabetes Mellitus detection and self-management: a systematic review
  publication-title: J. King Saud Univ.Comput. Inf.Sci.
– volume: 108
  start-page: 29
  year: 2015
  end-page: 36
  ident: bib28
  article-title: Relation between BMI and diabetes mellitus and its complications among US older adults
  publication-title: South. Med. J.
– volume: 40
  start-page: 4679
  year: 2013
  end-page: 4686
  ident: bib43
  article-title: Artificial intelligence models to stratify cardiovascular risk in incident hemodialysis patients
  publication-title: Expert Syst. Appl.
– volume: 157
  start-page: 107843
  year: 2019
  ident: bib4
  publication-title: "Global and Regional Diabetes Prevalence Estimates for 2019 and Projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th Edition", Diabetes Research and Clinical Practice
– year: 2011
  ident: bib48
  article-title: ℓ 2,1-Norm regularized discriminative feature selection for unsupervised learning
  publication-title: IJCAI International Joint Conference on Artificial Intelligence
– volume: 4
  start-page: 243
  year: 2018
  end-page: 246
  ident: bib17
  article-title: Diabetes detection using deep learning algorithms
  publication-title: ICT Express
– volume: 34
  start-page: 513
  year: 2013
  end-page: 525
  ident: bib18
  article-title: Discrimination of bilateral finger photoplethysmogram responses to reactive hyperemia in diabetic and healthy subjects using a differential vascular model framework
  publication-title: Physiol. Meas.
– year: 2006
  ident: bib25
  article-title: "Monitoring Physiological Parameters Based on Variations in a Photoplethysmographic Signal", U.S. Patent 7,001,337, Feb. 21
– volume: 171
  start-page: 1217
  year: 1971
  end-page: 1219
  ident: bib51
  article-title: Signal detectability and medical decision-making
  publication-title: Science
– volume: 2
  start-page: 261
  year: 2012
  ident: bib32
  article-title: Human identification based on ECG and palmprint
  publication-title: Int. J. Electr. Comput. Eng.
– volume: 13
  start-page: 7279
  year: 2013
  end-page: 7295
  ident: bib54
  article-title: Non-invasive continuous glucose monitoring with multi-sensor systems: a Monte Carlo-based methodology for assessing calibration robustness
  publication-title: Sensors
– volume: 38
  start-page: 2270
  year: 2005
  end-page: 2285
  ident: bib37
  article-title: Score normalization in multimodal biometric systems
  publication-title: Pattern Recogn.
– start-page: 647
  year: 2016
  end-page: 658
  ident: bib52
  article-title: “The Multivariate Entropy Triangle and Applications,”
– volume: 6
  start-page: 850
  year: 2015
  ident: bib2
  article-title: Diabetes mellitus: the epidemic of the century
  publication-title: World J. Diabetes
– volume: 9
  year: 2019
  ident: bib6
  article-title: Prevalence of undiagnosed diabetes mellitus and associated factors among adult residents of Bahir Dar city, northwest Ethiopia: a community-based cross-sectional study”
  publication-title: BMJ Open
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib44
  publication-title: Mach. Learn.
– volume: 63
  start-page: 463
  year: 2016
  end-page: 477
  ident: bib23
  article-title: Photoplethysmography revisited: from contact to noncontact, from point to imaging
  publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng.
– year: 2000
  ident: bib35
  article-title: Discrete-time Processing of Speech Signals
– start-page: 553
  year: 2017
  end-page: 560
  ident: bib19
  article-title: PerDMCS: weighted fusion of PPG signal features for robust and efficient diabetes mellitus classification”
  publication-title: Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies
– volume: 7
  start-page: 252
  year: 2010
  end-page: 262
  ident: bib7
  article-title: Computational intelligence in early diabetes diagnosis: a review
  publication-title: Rev. Diabet. Stud.
– start-page: 948
  year: 2021
  end-page: 953
  ident: bib29
  article-title: Non-invasive diabetes mellitus detection system using machine learning techniques
  publication-title: 2021 11th International Conference on Cloud Computing, Data Science & Engineering (Confluence),
– volume: 270
  start-page: 1
  year: 2000
  end-page: 11
  ident: bib31
  article-title: Mel frequency cepstral coefficients for music modeling
  publication-title: In
– volume: 4
  start-page: 195
  year: 2018
  ident: bib24
  article-title: A review on wearable photoplethysmography sensors and their potential future applications in health care
  publication-title: International Journal of Biosensors & Bioelectronics
– volume: 42
  start-page: S10
  year: 2018
  end-page: S15
  ident: bib1
  article-title: Definition, classification and diagnosis of diabetes, prediabetes and metabolic syndrome
  publication-title: Can. J. Diabetes
– volume: 40
  start-page: 1739
  year: 2017
  end-page: 1745
  ident: bib27
  article-title: Arterial stiffness and incidence of diabetes: a population-based cohort study
  publication-title: Diabetes Care
– volume: 108
  start-page: 29
  issue: 1
  year: 2015
  ident: 10.1016/j.compbiomed.2021.104664_bib28
  article-title: Relation between BMI and diabetes mellitus and its complications among US older adults
  publication-title: South. Med. J.
  doi: 10.14423/SMJ.0000000000000214
– volume: 2
  start-page: 261
  issue: 2
  year: 2012
  ident: 10.1016/j.compbiomed.2021.104664_bib32
  article-title: Human identification based on ECG and palmprint
  publication-title: Int. J. Electr. Comput. Eng.
– volume: 6
  start-page: 850
  issue: 6
  year: 2015
  ident: 10.1016/j.compbiomed.2021.104664_bib2
  article-title: Diabetes mellitus: the epidemic of the century
  publication-title: World J. Diabetes
  doi: 10.4239/wjd.v6.i6.850
– year: 2011
  ident: 10.1016/j.compbiomed.2021.104664_bib48
  article-title: ℓ 2,1-Norm regularized discriminative feature selection for unsupervised learning
– volume: 157
  start-page: 107843
  year: 2019
  ident: 10.1016/j.compbiomed.2021.104664_bib4
– volume: 270
  start-page: 1
  year: 2000
  ident: 10.1016/j.compbiomed.2021.104664_bib31
  article-title: Mel frequency cepstral coefficients for music modeling
  publication-title: In Ismir
– volume: 4
  start-page: 195
  issue: 4
  year: 2018
  ident: 10.1016/j.compbiomed.2021.104664_bib24
  article-title: A review on wearable photoplethysmography sensors and their potential future applications in health care
  publication-title: International Journal of Biosensors & Bioelectronics
  doi: 10.15406/ijbsbe.2018.04.00125
– volume: 39
  start-page: 38
  issue: 1
  year: 2019
  ident: 10.1016/j.compbiomed.2021.104664_bib20
  article-title: Detection of type-2 diabetes using characteristics of toe photoplethysmogram by applying support vector machine
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2018.09.007
– start-page: 785
  year: 2016
  ident: 10.1016/j.compbiomed.2021.104664_bib45
  article-title: XGBoost: a scalable tree boosting system
– year: 2000
  ident: 10.1016/j.compbiomed.2021.104664_bib35
– volume: 4
  issue: 11
  year: 2016
  ident: 10.1016/j.compbiomed.2021.104664_bib38
  article-title: Introduction to machine learning: k-nearest neighbors”
  publication-title: Ann. Transl. Med.
  doi: 10.21037/atm.2016.03.37
– start-page: 1
  year: 2013
  ident: 10.1016/j.compbiomed.2021.104664_bib26
  article-title: New photoplethysmographic signal analysis algorithm for arterial stiffness estimation”
  publication-title: Sci. World J.
– year: 2020
  ident: 10.1016/j.compbiomed.2021.104664_bib11
  article-title: Machine learning and artificial intelligence based Diabetes Mellitus detection and self-management: a systematic review
  publication-title: J. King Saud Univ.Comput. Inf.Sci.
– volume: 97
  start-page: 30
  year: 2013
  ident: 10.1016/j.compbiomed.2021.104664_bib33
  article-title: EEG emotion recognition based on the dimensional models of emotions
  publication-title: Procedia - Social and Behavioral Sciences
  doi: 10.1016/j.sbspro.2013.10.201
– volume: 13
  start-page: 415
  issue: 2
  year: 2002
  ident: 10.1016/j.compbiomed.2021.104664_bib41
  article-title: A comparison of methods for multiclass support vector machines
  publication-title: IEEE Trans. Neural Network.
  doi: 10.1109/72.991427
– volume: 65
  start-page: 179
  issue: 3
  year: 2015
  ident: 10.1016/j.compbiomed.2021.104664_bib8
  article-title: A fuzzy-ontology-oriented case-based reasoning framework for semantic diabetes diagnosis
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2015.08.003
– volume: 7
  start-page: 252
  issue: 4
  year: 2010
  ident: 10.1016/j.compbiomed.2021.104664_bib7
  article-title: Computational intelligence in early diabetes diagnosis: a review
  publication-title: Rev. Diabet. Stud.
  doi: 10.1900/RDS.2010.7.252
– volume: 8
  start-page: 38
  issue: 1
  year: 2014
  ident: 10.1016/j.compbiomed.2021.104664_bib14
  article-title: Classification of diabetes mellitus using modified particle swarm optimization and least squares support vector machine
  publication-title: Int. J. Comput. Trends Technol.
  doi: 10.14445/22312803/IJCTT-V8P108
– volume: 64
  start-page: 440
  year: 2016
  ident: 10.1016/j.compbiomed.2021.104664_bib16
  article-title: Non-invasive hypoglycemia monitoring system using extreme learning machine for Type 1 diabetes
  publication-title: ISA (Instrum. Soc. Am.) Trans.
  doi: 10.1016/j.isatra.2016.05.008
– volume: 40
  start-page: 1739
  issue: 12
  year: 2017
  ident: 10.1016/j.compbiomed.2021.104664_bib27
  article-title: Arterial stiffness and incidence of diabetes: a population-based cohort study
  publication-title: Diabetes Care
  doi: 10.2337/dc17-1071
– volume: 63
  start-page: 463
  issue: 3
  year: 2016
  ident: 10.1016/j.compbiomed.2021.104664_bib23
  article-title: Photoplethysmography revisited: from contact to noncontact, from point to imaging
  publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng.
– volume: 81
  start-page: 1215
  issue: 9
  year: 1993
  ident: 10.1016/j.compbiomed.2021.104664_bib36
  article-title: Signal modeling techniques in speech recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.237532
– volume: 7
  issue: 7
  year: 2016
  ident: 10.1016/j.compbiomed.2021.104664_bib15
  article-title: Diagnosis of diabetes by applying data mining classification techniques
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– volume: 13
  start-page: 7279
  issue: 6
  year: 2013
  ident: 10.1016/j.compbiomed.2021.104664_bib54
  article-title: Non-invasive continuous glucose monitoring with multi-sensor systems: a Monte Carlo-based methodology for assessing calibration robustness
  publication-title: Sensors
  doi: 10.3390/s130607279
– volume: 9
  issue: 10
  year: 2019
  ident: 10.1016/j.compbiomed.2021.104664_bib6
  article-title: Prevalence of undiagnosed diabetes mellitus and associated factors among adult residents of Bahir Dar city, northwest Ethiopia: a community-based cross-sectional study”
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2019-030158
– start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.compbiomed.2021.104664_bib34
  article-title: Localization and classification of heart beats in phonocardiography signals —a comprehensive review
  publication-title: EURASIP J. Appl. Signal Process.
– start-page: 647
  year: 2016
  ident: 10.1016/j.compbiomed.2021.104664_bib52
– start-page: 553
  year: 2017
  ident: 10.1016/j.compbiomed.2021.104664_bib19
  article-title: PerDMCS: weighted fusion of PPG signal features for robust and efficient diabetes mellitus classification”
  publication-title: Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies
  doi: 10.5220/0006297205530560
– volume: 34
  start-page: 513
  issue: 5
  year: 2013
  ident: 10.1016/j.compbiomed.2021.104664_bib18
  article-title: Discrimination of bilateral finger photoplethysmogram responses to reactive hyperemia in diabetic and healthy subjects using a differential vascular model framework
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/34/5/513
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.compbiomed.2021.104664_bib44
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– start-page: 1303
  year: 2017
  ident: 10.1016/j.compbiomed.2021.104664_bib40
  article-title: Automated system for obstructive sleep apnea detection using heart rate variability and respiratory rate variability”
– start-page: 67
  year: 2018
  ident: 10.1016/j.compbiomed.2021.104664_bib9
  article-title: A survey on medical diagnosis of diabetes using machine learning techniques
  publication-title: Adv. Intell. Syst.Comput.
– year: 1998
  ident: 10.1016/j.compbiomed.2021.104664_bib39
– volume: 16
  start-page: 7209
  issue: 11
  year: 2020
  ident: 10.1016/j.compbiomed.2021.104664_bib22
  article-title: A noninvasive blood glucose monitoring system based on smartphone PPG signal processing and machine learning
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2020.2975222
– volume: 4
  start-page: 243
  issue: 4
  year: 2018
  ident: 10.1016/j.compbiomed.2021.104664_bib17
  article-title: Diabetes detection using deep learning algorithms
  publication-title: ICT Express
  doi: 10.1016/j.icte.2018.10.005
– volume: 14
  start-page: 127
  year: 2021
  ident: 10.1016/j.compbiomed.2021.104664_bib12
  article-title: Recent advancements and future prospects on E-nose sensors technology and machine learning approaches for non-invasive diabetes diagnosis: a review
  publication-title: IEEE.Rev. Biomed. Eng.
  doi: 10.1109/RBME.2020.2993591
– volume: 171
  start-page: 1217
  issue: 3977
  year: 1971
  ident: 10.1016/j.compbiomed.2021.104664_bib51
  article-title: Signal detectability and medical decision-making
  publication-title: Science
  doi: 10.1126/science.171.3977.1217
– volume: 94
  start-page: 171
  year: 1994
  ident: 10.1016/j.compbiomed.2021.104664_bib49
  article-title: Estimating attributes: analysis and extensions of RELIEF
  publication-title: Mach. Learn.: ECML-
– volume: 73
  start-page: 16
  issue: 9
  year: 2019
  ident: 10.1016/j.compbiomed.2021.104664_bib21
  article-title: Predicting diabetes from photoplethysmography using deep learning”
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/S0735-1097(19)33778-7
– start-page: 948
  year: 2021
  ident: 10.1016/j.compbiomed.2021.104664_bib29
  article-title: Non-invasive diabetes mellitus detection system using machine learning techniques
– year: 1999
  ident: 10.1016/j.compbiomed.2021.104664_bib47
– start-page: 44
  year: 2020
  ident: 10.1016/j.compbiomed.2021.104664_bib30
  article-title: Database proposal for correlation of glucose and photoplethysmography signals
  doi: 10.1007/978-3-030-32033-1_5
– volume: 55
  start-page: 546
  issue: 9
  year: 2019
  ident: 10.1016/j.compbiomed.2021.104664_bib3
  article-title: From pre-diabetes to diabetes: diagnosis, treatments and translational research
  publication-title: Medicina
  doi: 10.3390/medicina55090546
– volume: 55
  start-page: 436
  issue: 8
  year: 2019
  ident: 10.1016/j.compbiomed.2021.104664_bib5
  article-title: Polypharmacy in type 2 diabetes mellitus: insights from an internal medicine department
  publication-title: Medicina
  doi: 10.3390/medicina55080436
– volume: 21
  start-page: 4394
  issue: 24
  year: 2005
  ident: 10.1016/j.compbiomed.2021.104664_bib42
  article-title: Prediction of protein-protein interactions using random decision forest framework
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti721
– volume: 19
  start-page: 391
  issue: 1
  year: 2020
  ident: 10.1016/j.compbiomed.2021.104664_bib10
  article-title: Deep learning approach for diabetes prediction using PIMA Indian dataset
  publication-title: J. Diabetes Metab. Disord.
  doi: 10.1007/s40200-020-00520-5
– year: 2006
  ident: 10.1016/j.compbiomed.2021.104664_bib25
– volume: 33
  start-page: 1532
  issue: 8
  year: 2011
  ident: 10.1016/j.compbiomed.2021.104664_bib46
  article-title: Feature selection and kernel learning for local learning-based clustering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2010.215
– volume: 40
  start-page: 4679
  issue: 11
  year: 2013
  ident: 10.1016/j.compbiomed.2021.104664_bib43
  article-title: Artificial intelligence models to stratify cardiovascular risk in incident hemodialysis patients
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.02.005
– volume: 14
  start-page: 1114
  issue: 4
  year: 2010
  ident: 10.1016/j.compbiomed.2021.104664_bib13
  article-title: Intelligible support vector machines for diagnosis of diabetes mellitus
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2009.2039485
– volume: 42
  start-page: S10
  year: 2018
  ident: 10.1016/j.compbiomed.2021.104664_bib1
  article-title: Definition, classification and diagnosis of diabetes, prediabetes and metabolic syndrome
  publication-title: Can. J. Diabetes
  doi: 10.1016/j.jcjd.2017.10.003
– volume: 38
  start-page: 2270
  issue: 12
  year: 2005
  ident: 10.1016/j.compbiomed.2021.104664_bib37
  article-title: Score normalization in multimodal biometric systems
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2005.01.012
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  ident: 10.1016/j.compbiomed.2021.104664_bib50
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. Roy. Stat. Soc. B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 6
  start-page: 259
  issue: 4
  year: 1989
  ident: 10.1016/j.compbiomed.2021.104664_bib53
  article-title: Analysis of variance (ANOVA)
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/0169-7439(89)80095-4
SSID ssj0004030
Score 2.5303402
Snippet In this work, a non-invasive diabetes mellitus detection system is proposed based on the wristband photoplethysmography (PPG) signal and basic physiological...
AbstractIn this work, a non-invasive diabetes mellitus detection system is proposed based on the wristband photoplethysmography (PPG) signal and basic...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 104664
SubjectTerms Accuracy
Age
Algorithms
Artificial intelligence
Classification
Classifiers
Computer applications
Datasets
Decision trees
Deep learning
Diabetes
Diabetes detection
Diabetes mellitus
Diabetic retinopathy
Electrocardiography
Feature selection
Glucose
Hybrid systems
Insulin
Internal Medicine
Laboratories
Learning algorithms
Machine learning
MFCC
Neural networks
Optimization techniques
Other
Physiology
Polypharmacy
PPG
Smartphones
Support vector machines
XGBoost
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bi9QwFD6ssyC-iFccXSWCr8XekyAiru66CDuIujBvIWmSdUXb0XYe_Pfm5NIBUZnXticpuZxL8p3vADxjTS6Nom3GbMGz2uZdxlvbZpyVsrIuDjI-Kex81Z5d1O_XzfoAVikXBmGVSSd6Ra2HDs_In2O1tdrthpa_2vzIsGoU3q6mEhoyllbQLz3F2DU4LJEZawGHxyerDx93mZJ5FZJSnPapXXAUsT0B8YUg7pD07uLGsvDXn239L4P1h-r29uj0FtyMjiR5HWb-NhyY_g5cP49X5Xdh89ZjM8hgydVMuzmRdNZKvuOjaTsSbSYPx-pJYHUmCIW_JF9-YS4XscYzf5LR18vBr9DuabJ-dzwM40Q69L6vrPvXe3BxevL5zVkWyytkXc2LKZOWSprrrilrU1OtS60aXWmlK9mYQja2k0paJamVrWJaMWuoMc49cA8qym11Hxb90JsHQIzk2lKWS-WsvW1dFKZc6EU75topmOFLoGkMRRe5x7EExjeRQGZfxW70BY6-CKO_hGKW3AT-jT1keJomkfJLnUYUzkjsIUv_JmvGuLVHUYixFLn45JmN3BIqkXOvYdUSXsyS0XsJXsme_R6l9STmrnZrfglP59du_-OljuzNsMVvGlqilqYP_9_EI7iB_QV83BEspp9b89g5VJN6EnfJbyDNI_4
  priority: 102
  providerName: ProQuest
Title Design of intelligent diabetes mellitus detection system using hybrid feature selection based XGBoost classifier
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482521004583
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482521004583
https://dx.doi.org/10.1016/j.compbiomed.2021.104664
https://www.proquest.com/docview/2570437669
https://www.proquest.com/docview/2557230117
Volume 136
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AKRWK
  dateStart: 19700101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20250905
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 8FG
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqIiEuqLzEQqmMxDU0Dyd2xKkt3S6grhCi0t4sO7ZhESSrJnvgwm9nxnZS8ZJW4uIojie2JvaMJ_5mhpAXokyV1bxKhMvqhLm0SerKVUktclU4sIOsdwq7XFaLK_Z2Va72yNnoC4Owyij7g0z30jrWHEduHm_Wa_TxBVMCDJwcg56VAiN-MsYxi8HLHzcwD5YWwQ0F5A22jmiegPFC2HZwcwdLMc_8gWfF_qWifhPWXgPND8jduHWkJ2F098iebe-T25fxcPwB2bz2aAzaObqeAm0OdPy7Sr9h1bDtqbGDB2C1NMRxpgh-_0Q_f0fvLeqsj_VJe58hB1uhpjN0dXHadf1AG9xvrx2M9SG5mp9_PFskMaFC0rA6GxLluOKpacqcWcaNyY0uTWG0KVRpM1W6RmnltOJOVVoYLZzl1sKGACoKXrviEdlvu9Y-JtSq2jguUqVBv7sK7C4NxhZvBLwnE7aeET7yUDYx2jgmvfgqR1jZF3nDfYncl4H7M5JNlJsQcWMHmnr8THL0KAUZKEEt7EDL_0Zr-7iYe5nJPpep_GPCzcirifKXObtjv4fjfJJTV5hTkIHMr4CBz6fHsOLxGEe1tttim5LnKJf5k_8awFNyB-8CYO6Q7A_XW_sMdliDPvJLCEq-4lCK-cURuXXy5t1iCdfT8-X7Dz8B7IMteQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKKwEXxFMsFDASHCPycOJYqEKUtmxpd4Wglfbm2rENRZAsJCvUP8dvY8ZxdiUEaC-9Oh47GtvzsL-ZIeRZmcfKal5EpUtExFxcRaJwRSTKVGUO_CDrg8Im02J8yt7N8tkG-TXEwiCscpCJXlCbpsI78hdYbY3BaSjEq_n3CKtG4evqUEJDhdIKZsenGAuBHUf24ie4cO3O4R6s9_M0Pdg_eTOOQpWBqGIi6SLluOKxqfKUWcaNSY3OTWa0yVRuE5W7SmnltOJOFbo0unSWWwtaEhoyLlwG414hWyxjApy_rd396fsPq8jMOOuDYEDaMXDGApaoR5ghaLwPsgc_NU38c2vB_qUg_1AVXv8d3CQ3guFKX_c77RbZsPVtcnUSnubvkPmex4LQxtHzZZrPjg53u_QbNnWLlhrbefhXTfss0hSh95_o5wuMHaPO-kyjtPX1ebAX6llDZ293m6btaIXW_rmDf71LTi-F0ffIZt3U9j6hVgnjeBkrDdaFK8Dr0-Dq8aqEcZLSihHhAw9lFXKdY8mNr3IAtX2RK-5L5L7suT8iyZJy3uf7WINGDMskh3hWkMASlNIatPxvtLYNoqSViWxTGcuPPpMSbKEUc_zlZTYiL5eUwVrqraA1590e9pNcTrU6YyPydPkZ5A0-IqnaNgvsk_MUtQJ_8P8hnpBr45PJsTw-nB49JNdx7h6bt002ux8L-wiMuU4_DieGkrPLPqS_AVhgZaI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3daxQxEB9qheKL-ImnVSPo49L9zgYRUc-ztbYIWri3mGySWtHd091D-q_51zmT7N6BqNxLX7OZZJnNfG1-MwPwuCpiZTUvo8olIspdXEeidGUkqlRlDuMg65PCjo7L_ZP87byYb8GvMReGYJWjTvSK2rQ1_SPfo25rOUpDKfbcAIt4P509X3yPqIMU3bSO7TTCETm05z8xfOueHUzxWz9J09nrj6_2o6HDQFTnIukj5bjisamLNLc5NyY1ujCZ0SZThU1U4WqlldOKO1XqyujKWW4tWkgcyLhwGa57CS7zLBMEJ-Rzvs7JjLOQ_oJ6LscwbEARBWwZwcVDej1GqGniL1rL_F-m8Q8j4S3f7BpcHVxW9iKcseuwZZsbsHM0XMrfhMXUo0BY69jZqsBnz8a_uuwbDfXLjhnbe-BXw0L9aEag-1P2-ZyyxpizvsYo63xnHppFFtaw-ZuXbdv1rCY__8zhu96Ckwth823YbtrG3gFmlTCOV7HS6Fe4EuM9jUEerytcJ6msmAAfeSjroco5Ndv4Kkc42xe55r4k7svA_QkkK8pFqPSxAY0YP5McM1lR90o0RxvQ8r_R2m5QIp1MZJfKWH7wNZTwCKVU3a-osgk8XVEOflLwfzbcd3c8T3K11Vq6JvBo9Rg1DV0fqca2S5pT8JTsAb_7_yUewg6Kpnx3cHx4D67Q1gGUtwvb_Y-lvY9eXK8feHFh8Omi5fM3tuRjPA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+intelligent+diabetes+mellitus+detection+system+using+hybrid+feature+selection+based+XGBoost+classifier&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Prabha%2C+Anju&rft.au=Yadav%2C+Jyoti&rft.au=Rani%2C+Asha&rft.au=Singh%2C+Vijander&rft.date=2021-09-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4825&rft.eissn=1879-0534&rft.volume=136&rft_id=info:doi/10.1016%2Fj.compbiomed.2021.104664&rft.externalDocID=S0010482521004583
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482520X00205%2Fcov150h.gif