Design of intelligent diabetes mellitus detection system using hybrid feature selection based XGBoost classifier
In this work, a non-invasive diabetes mellitus detection system is proposed based on the wristband photoplethysmography (PPG) signal and basic physiological parameters (PhyP) to enable easy detection of diabetes mellitus (DM). A dataset of 217 participants with diabetes, prediabetes and normal condi...
Saved in:
| Published in | Computers in biology and medicine Vol. 136; p. 104664 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Oxford
Elsevier Ltd
01.09.2021
Elsevier Limited |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0010-4825 1879-0534 1879-0534 |
| DOI | 10.1016/j.compbiomed.2021.104664 |
Cover
| Abstract | In this work, a non-invasive diabetes mellitus detection system is proposed based on the wristband photoplethysmography (PPG) signal and basic physiological parameters (PhyP) to enable easy detection of diabetes mellitus (DM). A dataset of 217 participants with diabetes, prediabetes and normal conditions is used to develop the system. The Mel frequency cepstral coefficients (MFCC) extracted from 5s PPG signal segments and the PhyP are used as input for the machine learning algorithms. The K-nearest neighbors, support vector machine, random forest and extreme gradient boost (XGBoost) classifiers are used for classification. In addition, a hybrid feature selection method (Hybrid FS) is proposed to reduce the size of the input data. The Hybrid FS-based XGBoost system achieves a high accuracy of 99.93 % for non-invasive diabetes detection with fewer features and less computational effort. The analysis suggests that the PPG signal from a wearable sensor is a good alternative for simple non-invasive blood glucose measurements in routine applications.
[Display omitted]
•An intelligent diabetes mellitus detection system based on the photoplethysmography (PPG) signal and physiological parameters is proposed.•Mel frequency cepstral coefficients (MFCC) features of the PPG signal are used.•XGBoost classifier with a hybrid feature selection technique is suggested for the classification.•A high accuracy of 99.93 % is achieved with fewer features and less computational effort. |
|---|---|
| AbstractList | In this work, a non-invasive diabetes mellitus detection system is proposed based on the wristband photoplethysmography (PPG) signal and basic physiological parameters (PhyP) to enable easy detection of diabetes mellitus (DM). A dataset of 217 participants with diabetes, prediabetes and normal conditions is used to develop the system. The Mel frequency cepstral coefficients (MFCC) extracted from 5s PPG signal segments and the PhyP are used as input for the machine learning algorithms. The K-nearest neighbors, support vector machine, random forest and extreme gradient boost (XGBoost) classifiers are used for classification. In addition, a hybrid feature selection method (Hybrid FS) is proposed to reduce the size of the input data. The Hybrid FS-based XGBoost system achieves a high accuracy of 99.93 % for non-invasive diabetes detection with fewer features and less computational effort. The analysis suggests that the PPG signal from a wearable sensor is a good alternative for simple non-invasive blood glucose measurements in routine applications.
[Display omitted]
•An intelligent diabetes mellitus detection system based on the photoplethysmography (PPG) signal and physiological parameters is proposed.•Mel frequency cepstral coefficients (MFCC) features of the PPG signal are used.•XGBoost classifier with a hybrid feature selection technique is suggested for the classification.•A high accuracy of 99.93 % is achieved with fewer features and less computational effort. AbstractIn this work, a non-invasive diabetes mellitus detection system is proposed based on the wristband photoplethysmography (PPG) signal and basic physiological parameters (PhyP) to enable easy detection of diabetes mellitus (DM). A dataset of 217 participants with diabetes, prediabetes and normal conditions is used to develop the system. The Mel frequency cepstral coefficients (MFCC) extracted from 5s PPG signal segments and the PhyP are used as input for the machine learning algorithms. The K-nearest neighbors, support vector machine, random forest and extreme gradient boost (XGBoost) classifiers are used for classification. In addition, a hybrid feature selection method (Hybrid FS) is proposed to reduce the size of the input data. The Hybrid FS-based XGBoost system achieves a high accuracy of 99.93 % for non-invasive diabetes detection with fewer features and less computational effort. The analysis suggests that the PPG signal from a wearable sensor is a good alternative for simple non-invasive blood glucose measurements in routine applications. In this work, a non-invasive diabetes mellitus detection system is proposed based on the wristband photoplethysmography (PPG) signal and basic physiological parameters (PhyP) to enable easy detection of diabetes mellitus (DM). A dataset of 217 participants with diabetes, prediabetes and normal conditions is used to develop the system. The Mel frequency cepstral coefficients (MFCC) extracted from 5s PPG signal segments and the PhyP are used as input for the machine learning algorithms. The K-nearest neighbors, support vector machine, random forest and extreme gradient boost (XGBoost) classifiers are used for classification. In addition, a hybrid feature selection method (Hybrid FS) is proposed to reduce the size of the input data. The Hybrid FS-based XGBoost system achieves a high accuracy of 99.93 % for non-invasive diabetes detection with fewer features and less computational effort. The analysis suggests that the PPG signal from a wearable sensor is a good alternative for simple non-invasive blood glucose measurements in routine applications.In this work, a non-invasive diabetes mellitus detection system is proposed based on the wristband photoplethysmography (PPG) signal and basic physiological parameters (PhyP) to enable easy detection of diabetes mellitus (DM). A dataset of 217 participants with diabetes, prediabetes and normal conditions is used to develop the system. The Mel frequency cepstral coefficients (MFCC) extracted from 5s PPG signal segments and the PhyP are used as input for the machine learning algorithms. The K-nearest neighbors, support vector machine, random forest and extreme gradient boost (XGBoost) classifiers are used for classification. In addition, a hybrid feature selection method (Hybrid FS) is proposed to reduce the size of the input data. The Hybrid FS-based XGBoost system achieves a high accuracy of 99.93 % for non-invasive diabetes detection with fewer features and less computational effort. The analysis suggests that the PPG signal from a wearable sensor is a good alternative for simple non-invasive blood glucose measurements in routine applications. In this work, a non-invasive diabetes mellitus detection system is proposed based on the wristband photoplethysmography (PPG) signal and basic physiological parameters (PhyP) to enable easy detection of diabetes mellitus (DM). A dataset of 217 participants with diabetes, prediabetes and normal conditions is used to develop the system. The Mel frequency cepstral coefficients (MFCC) extracted from 5s PPG signal segments and the PhyP are used as input for the machine learning algorithms. The K-nearest neighbors, support vector machine, random forest and extreme gradient boost (XGBoost) classifiers are used for classification. In addition, a hybrid feature selection method (Hybrid FS) is proposed to reduce the size of the input data. The Hybrid FS-based XGBoost system achieves a high accuracy of 99.93 % for non-invasive diabetes detection with fewer features and less computational effort. The analysis suggests that the PPG signal from a wearable sensor is a good alternative for simple non-invasive blood glucose measurements in routine applications. |
| ArticleNumber | 104664 |
| Author | Rani, Asha Yadav, Jyoti Singh, Vijander Prabha, Anju |
| Author_xml | – sequence: 1 givenname: Anju orcidid: 0000-0002-6427-3097 surname: Prabha fullname: Prabha, Anju email: anjuprabha.mec@gmail.com – sequence: 2 givenname: Jyoti surname: Yadav fullname: Yadav, Jyoti email: bmjyoti@gmail.com – sequence: 3 givenname: Asha orcidid: 0000-0003-1750-9789 surname: Rani fullname: Rani, Asha email: asha.rani@nsit.ac.in – sequence: 4 givenname: Vijander surname: Singh fullname: Singh, Vijander email: vijaydee@nsit.ac.in |
| BookMark | eNqVUk2LFDEUbGQFZ1f_Q8CLlx7z0d3pvojurq7CggcVvIV08jJm7E7GvLQw_940s6ywIKynkEe9ol5VnVdnIQaoKsLollHWvd5vTZwPo48z2C2nnJVx03XNk2rDejnUtBXNWbWhlNG66Xn7rDpH3FNKGyropjpcA_pdINERHzJMk99ByMR6PUIGJPM6ygsSW74m-xgIHjHDTBb0YUd-HMfkLXGg85KAIEx3qFEjWPL95jJGzMRMGtE7D-l59dTpCeHF3XtRffvw_uvVx_r2882nq3e3tWkGlmvtpJbUmpY30EhruR1bK-xohW6B6dYZPWo3aul0N_Z27B1IAD6IMhBycOKienXiPaT4awHMavZoyjU6QFxQ8baVXFDGZIG-fADdxyWFoq6gJG2E7LqhoPoTyqSImMCpQ_KzTkfFqFqjUHv1Nwq1RqFOUZTVNw9Wjc96tSkn7afHEFyeCKA49ru4qNB4CAasT8VvZaP_DxX3JGbywRs9_YQj4P3NTCFXVH1ZK7M2hrNSlrYXheDtvwkep-EPzCncnA |
| CitedBy_id | crossref_primary_10_1007_s00521_023_09208_2 crossref_primary_10_1111_exsy_13611 crossref_primary_10_1016_j_fuel_2023_127389 crossref_primary_10_1016_j_ijhydene_2024_09_295 crossref_primary_10_12677_mos_2024_135455 crossref_primary_10_35784_acs_2024_39 crossref_primary_10_3389_fgene_2023_1165765 crossref_primary_10_1109_JSEN_2024_3373048 crossref_primary_10_3390_biomedinformatics3040062 crossref_primary_10_3390_s23156836 crossref_primary_10_1158_2767_9764_CRC_23_0083 crossref_primary_10_2196_36010 crossref_primary_10_1002_ima_23059 crossref_primary_10_1016_j_engappai_2023_107226 crossref_primary_10_1016_j_jwpe_2023_104303 crossref_primary_10_1007_s11042_024_19000_6 crossref_primary_10_1007_s10115_024_02106_6 crossref_primary_10_1093_bib_bbac173 crossref_primary_10_1016_j_ces_2024_120733 crossref_primary_10_1016_j_compbiomed_2022_105975 crossref_primary_10_1016_j_compchemeng_2024_108747 crossref_primary_10_1080_10255842_2023_2267721 crossref_primary_10_1016_j_eswa_2023_122136 crossref_primary_10_1371_journal_pone_0311222 crossref_primary_10_1016_j_health_2023_100227 crossref_primary_10_1109_LSENS_2022_3203609 crossref_primary_10_1186_s13098_022_00969_9 crossref_primary_10_1155_2022_1581958 crossref_primary_10_3390_sym15030670 crossref_primary_10_1109_ACCESS_2023_3274484 crossref_primary_10_1016_j_bspc_2023_105425 crossref_primary_10_1016_j_cmpb_2022_106677 crossref_primary_10_1109_JSEN_2023_3314718 crossref_primary_10_1016_j_bspc_2023_104894 crossref_primary_10_1038_s41598_024_84365_5 crossref_primary_10_1016_j_bspc_2022_103876 crossref_primary_10_3389_fonc_2022_1042964 crossref_primary_10_1007_s40998_023_00644_3 crossref_primary_10_1016_j_heliyon_2023_e13289 crossref_primary_10_1016_j_knosys_2022_108743 crossref_primary_10_3390_electronics12132923 crossref_primary_10_29130_dubited_1014508 crossref_primary_10_3389_fcomp_2022_835242 crossref_primary_10_1016_j_heliyon_2023_e22727 crossref_primary_10_1242_bio_060468 crossref_primary_10_1002_advs_202405681 crossref_primary_10_1007_s42600_023_00287_7 crossref_primary_10_1016_j_health_2022_100112 crossref_primary_10_1016_j_compeleceng_2024_109644 crossref_primary_10_2139_ssrn_4145219 crossref_primary_10_1038_s41598_023_50646_8 crossref_primary_10_1142_S0219265923500226 crossref_primary_10_1016_j_cmpbup_2023_100094 crossref_primary_10_1016_j_compbiomed_2022_106162 crossref_primary_10_4103_jmss_jmss_54_23 |
| Cites_doi | 10.14423/SMJ.0000000000000214 10.4239/wjd.v6.i6.850 10.15406/ijbsbe.2018.04.00125 10.1016/j.bbe.2018.09.007 10.21037/atm.2016.03.37 10.1016/j.sbspro.2013.10.201 10.1109/72.991427 10.1016/j.artmed.2015.08.003 10.1900/RDS.2010.7.252 10.14445/22312803/IJCTT-V8P108 10.1016/j.isatra.2016.05.008 10.2337/dc17-1071 10.1109/5.237532 10.3390/s130607279 10.1136/bmjopen-2019-030158 10.5220/0006297205530560 10.1088/0967-3334/34/5/513 10.1023/A:1010933404324 10.1109/TII.2020.2975222 10.1016/j.icte.2018.10.005 10.1109/RBME.2020.2993591 10.1126/science.171.3977.1217 10.1016/S0735-1097(19)33778-7 10.1007/978-3-030-32033-1_5 10.3390/medicina55090546 10.3390/medicina55080436 10.1093/bioinformatics/bti721 10.1007/s40200-020-00520-5 10.1109/TPAMI.2010.215 10.1016/j.eswa.2013.02.005 10.1109/TITB.2009.2039485 10.1016/j.jcjd.2017.10.003 10.1016/j.patcog.2005.01.012 10.1111/j.2517-6161.1996.tb02080.x 10.1016/0169-7439(89)80095-4 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd Elsevier Ltd 2021. Elsevier Ltd Copyright © 2021 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Elsevier Ltd – notice: 2021. Elsevier Ltd – notice: Copyright © 2021 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
| DOI | 10.1016/j.compbiomed.2021.104664 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Biological Science Collection Computing Database Health & Medical Collection (Alumni Edition) ProQuest Medical Database Research Library Biological Science Database Biochemistry Abstracts 1 Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
| DatabaseTitle | CrossRef Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Research Library Prep |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1879-0534 |
| EndPage | 104664 |
| ExternalDocumentID | 10_1016_j_compbiomed_2021_104664 S0010482521004583 1_s2_0_S0010482521004583 |
| GroupedDBID | --- --K --M --Z -~X .1- .55 .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 77I 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABOCM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EFLBG EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HLZ HMCUK HMK HMO HVGLF HZ~ IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q38 R2- ROL RPZ RXW SAE SBC SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ SV3 T5K TAE UAP UKHRP WOW WUQ X7M XPP Z5R ZGI ~G- ~HD 3V. AACTN AFCTW AFKWA AJOXV ALIPV AMFUW M0N RIG AAIAV ABLVK ABYKQ AHPSJ AJBFU LCYCR AAYXX CITATION PUEGO 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 |
| ID | FETCH-LOGICAL-c491t-af7a70dc524e47dd2db5d3dbd3a5e1a5fcabafba7fa6b8db8fe7ee2937fa379f3 |
| IEDL.DBID | .~1 |
| ISSN | 0010-4825 1879-0534 |
| IngestDate | Sat Sep 27 16:16:05 EDT 2025 Tue Oct 07 06:33:08 EDT 2025 Wed Oct 01 05:29:15 EDT 2025 Thu Apr 24 23:11:32 EDT 2025 Fri Feb 23 02:39:44 EST 2024 Tue Feb 25 20:08:35 EST 2025 Tue Oct 14 19:33:02 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Feature selection MFCC PPG XGBoost Diabetes detection |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c491t-af7a70dc524e47dd2db5d3dbd3a5e1a5fcabafba7fa6b8db8fe7ee2937fa379f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-6427-3097 0000-0003-1750-9789 |
| PQID | 2570437669 |
| PQPubID | 1226355 |
| PageCount | 1 |
| ParticipantIDs | proquest_miscellaneous_2557230117 proquest_journals_2570437669 crossref_primary_10_1016_j_compbiomed_2021_104664 crossref_citationtrail_10_1016_j_compbiomed_2021_104664 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2021_104664 elsevier_clinicalkeyesjournals_1_s2_0_S0010482521004583 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2021_104664 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-09-01 |
| PublicationDateYYYYMMDD | 2021-09-01 |
| PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Computers in biology and medicine |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier Limited |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
| References | Chen, Guestrin (bib45) 2016 Sthle, Wold (bib53) 1989; 6 J Dekker (bib25) 2006 Vapnik (bib39) 1998 Yang, Shen, Ma, Huang, Zhou (bib48) 2011 Valverde-Albacete, Peláez-Moreno (bib52) 2016 Kharroubi (bib2) 2015; 6 Nirala, Periyasamy, Singh, Kumar (bib20) 2019; 39 S, V, S (bib17) 2018; 4 Jain, Nandakumar, Ross (bib37) 2005; 38 Naz, Ahuja (bib10) 2020; 19 Pilt, Ferenets, Meigas, Lindberg, Temitski, Viigimaa (bib26) 2013 Hsu, Lin (bib41) 2002; 13 Chen, Liu (bib42) 2005; 21 Lusted (bib51) 1971; 171 Tibshirani (bib50) 1996; 58 Ling, San, Nguyen (bib16) 2016; 64 Keikhosravi, Aghajani, Zahedi (bib18) 2013; 34 Ismail, Siddiqi, Akram (bib34) 2018 Picone (bib36) 1993; 81 Ghamari (bib24) 2018; 4 Muhammad (bib27) 2017; 40 Zhang (bib38) 2016; 4 Soliman, AboElhamd (bib14) 2014; 8 Gray, Picone, Sloan, Yashkin (bib28) 2015; 108 Reddy, Dutta Choudhury, Jayaraman, Kumar Thokala, Deshpande, Kaliaperumal (bib19) 2017 Othman, Wahab, Karim, Dzulkifli, Alshaikli (bib33) 2013; 97 Choudhury, Gupta (bib9) 2018 Daghistani, Alshammari (bib15) 2016; 7 Lekha, S (bib12) 2021; 14 Breiman (bib44) 2001; 45 Chaki, Thillai Ganesh, Cidham, Ananda Theertan (bib11) 2020 Ion Titapiccolo (bib43) 2013; 40 Sun, Thakor (bib23) 2016; 63 Prabha, Yadav, Rani, Singh (bib29) 2021 Saeedi (bib4) 2019; 157 Dobrică, Găman, Cozma, Bratu, Pantea Stoian, Diaconu (bib5) 2019; 55 Zhang (bib22) 2020; 16 Khan, Chua, Tan, Yang, Liao, Zhao (bib3) 2019; 55 Barakat, Bradley, Barakat (bib13) 2010; 14 Deller, Proakis, Hansen (bib35) 2000 Zeng, Cheung (bib46) 2011; 33 Shankaracharya, Odedra, Samanta, Vidyarthi (bib7) 2010; 7 Bantie (bib6) 2019; 9 Avram (bib21) 2019; 73 Salamea, Narvaez, Montalvo (bib30) 2020 Zokaee, Faez (bib32) 2012; 2 Hall (bib47) 1999 Punthakee, Goldenberg, Katz (bib1) 2018; 42 Kononenko (bib49) 1994; 94 Prabha, Trivedi, Kumar, Kumar (bib40) 2017 Zanon (bib54) 2013; 13 El-Sappagh, Elmogy, Riad (bib8) 2015; 65 Logan (bib31) 2000; 270 Choudhury (10.1016/j.compbiomed.2021.104664_bib9) 2018 Prabha (10.1016/j.compbiomed.2021.104664_bib29) 2021 El-Sappagh (10.1016/j.compbiomed.2021.104664_bib8) 2015; 65 Naz (10.1016/j.compbiomed.2021.104664_bib10) 2020; 19 Hall (10.1016/j.compbiomed.2021.104664_bib47) 1999 Sun (10.1016/j.compbiomed.2021.104664_bib23) 2016; 63 Chaki (10.1016/j.compbiomed.2021.104664_bib11) 2020 Othman (10.1016/j.compbiomed.2021.104664_bib33) 2013; 97 Bantie (10.1016/j.compbiomed.2021.104664_bib6) 2019; 9 Soliman (10.1016/j.compbiomed.2021.104664_bib14) 2014; 8 Ghamari (10.1016/j.compbiomed.2021.104664_bib24) 2018; 4 Kharroubi (10.1016/j.compbiomed.2021.104664_bib2) 2015; 6 S (10.1016/j.compbiomed.2021.104664_bib17) 2018; 4 Chen (10.1016/j.compbiomed.2021.104664_bib42) 2005; 21 Yang (10.1016/j.compbiomed.2021.104664_bib48) 2011 Pilt (10.1016/j.compbiomed.2021.104664_bib26) 2013 Salamea (10.1016/j.compbiomed.2021.104664_bib30) 2020 J Dekker (10.1016/j.compbiomed.2021.104664_bib25) 2006 Muhammad (10.1016/j.compbiomed.2021.104664_bib27) 2017; 40 Valverde-Albacete (10.1016/j.compbiomed.2021.104664_bib52) 2016 Daghistani (10.1016/j.compbiomed.2021.104664_bib15) 2016; 7 Logan (10.1016/j.compbiomed.2021.104664_bib31) 2000; 270 Shankaracharya (10.1016/j.compbiomed.2021.104664_bib7) 2010; 7 Punthakee (10.1016/j.compbiomed.2021.104664_bib1) 2018; 42 Dobrică (10.1016/j.compbiomed.2021.104664_bib5) 2019; 55 Jain (10.1016/j.compbiomed.2021.104664_bib37) 2005; 38 Breiman (10.1016/j.compbiomed.2021.104664_bib44) 2001; 45 Avram (10.1016/j.compbiomed.2021.104664_bib21) 2019; 73 Sthle (10.1016/j.compbiomed.2021.104664_bib53) 1989; 6 Khan (10.1016/j.compbiomed.2021.104664_bib3) 2019; 55 Keikhosravi (10.1016/j.compbiomed.2021.104664_bib18) 2013; 34 Zhang (10.1016/j.compbiomed.2021.104664_bib38) 2016; 4 Lusted (10.1016/j.compbiomed.2021.104664_bib51) 1971; 171 Kononenko (10.1016/j.compbiomed.2021.104664_bib49) 1994; 94 Nirala (10.1016/j.compbiomed.2021.104664_bib20) 2019; 39 Ling (10.1016/j.compbiomed.2021.104664_bib16) 2016; 64 Ismail (10.1016/j.compbiomed.2021.104664_bib34) 2018 Tibshirani (10.1016/j.compbiomed.2021.104664_bib50) 1996; 58 Lekha (10.1016/j.compbiomed.2021.104664_bib12) 2021; 14 Vapnik (10.1016/j.compbiomed.2021.104664_bib39) 1998 Prabha (10.1016/j.compbiomed.2021.104664_bib40) 2017 Zokaee (10.1016/j.compbiomed.2021.104664_bib32) 2012; 2 Zeng (10.1016/j.compbiomed.2021.104664_bib46) 2011; 33 Chen (10.1016/j.compbiomed.2021.104664_bib45) 2016 Gray (10.1016/j.compbiomed.2021.104664_bib28) 2015; 108 Picone (10.1016/j.compbiomed.2021.104664_bib36) 1993; 81 Saeedi (10.1016/j.compbiomed.2021.104664_bib4) 2019; 157 Ion Titapiccolo (10.1016/j.compbiomed.2021.104664_bib43) 2013; 40 Hsu (10.1016/j.compbiomed.2021.104664_bib41) 2002; 13 Zhang (10.1016/j.compbiomed.2021.104664_bib22) 2020; 16 Barakat (10.1016/j.compbiomed.2021.104664_bib13) 2010; 14 Deller (10.1016/j.compbiomed.2021.104664_bib35) 2000 Zanon (10.1016/j.compbiomed.2021.104664_bib54) 2013; 13 Reddy (10.1016/j.compbiomed.2021.104664_bib19) 2017 |
| References_xml | – start-page: 1 year: 2018 end-page: 27 ident: bib34 article-title: Localization and classification of heart beats in phonocardiography signals —a comprehensive review publication-title: EURASIP J. Appl. Signal Process. – volume: 73 start-page: 16 year: 2019 ident: bib21 article-title: Predicting diabetes from photoplethysmography using deep learning” publication-title: J. Am. Coll. Cardiol. – volume: 64 start-page: 440 year: 2016 end-page: 446 ident: bib16 article-title: Non-invasive hypoglycemia monitoring system using extreme learning machine for Type 1 diabetes publication-title: ISA (Instrum. Soc. Am.) Trans. – start-page: 67 year: 2018 end-page: 78 ident: bib9 article-title: A survey on medical diagnosis of diabetes using machine learning techniques publication-title: Adv. Intell. Syst.Comput. – volume: 39 start-page: 38 year: 2019 end-page: 51 ident: bib20 article-title: Detection of type-2 diabetes using characteristics of toe photoplethysmogram by applying support vector machine publication-title: Biocybern. Biomed. Eng. – volume: 8 start-page: 38 year: 2014 end-page: 44 ident: bib14 article-title: Classification of diabetes mellitus using modified particle swarm optimization and least squares support vector machine publication-title: Int. J. Comput. Trends Technol. – year: 1999 ident: bib47 article-title: "Correlation-based Feature Selection for Machine learning.” New Zealand – start-page: 44 year: 2020 end-page: 53 ident: bib30 article-title: Database proposal for correlation of glucose and photoplethysmography signals publication-title: Advances in Intelligent Systems and Computing – start-page: 1303 year: 2017 end-page: 1307 ident: bib40 article-title: Automated system for obstructive sleep apnea detection using heart rate variability and respiratory rate variability” publication-title: 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI) – volume: 14 start-page: 1114 year: 2010 end-page: 1120 ident: bib13 article-title: Intelligible support vector machines for diagnosis of diabetes mellitus publication-title: IEEE Trans. Inf. Technol. Biomed. – volume: 81 start-page: 1215 year: 1993 end-page: 1247 ident: bib36 article-title: Signal modeling techniques in speech recognition publication-title: Proc. IEEE – volume: 19 start-page: 391 year: 2020 end-page: 403 ident: bib10 article-title: Deep learning approach for diabetes prediction using PIMA Indian dataset publication-title: J. Diabetes Metab. Disord. – volume: 33 start-page: 1532 year: 2011 end-page: 1547 ident: bib46 article-title: Feature selection and kernel learning for local learning-based clustering publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 55 start-page: 546 year: 2019 ident: bib3 article-title: From pre-diabetes to diabetes: diagnosis, treatments and translational research publication-title: Medicina – year: 1998 ident: bib39 article-title: Statistical Learning Theory – volume: 65 start-page: 179 year: 2015 end-page: 208 ident: bib8 article-title: A fuzzy-ontology-oriented case-based reasoning framework for semantic diabetes diagnosis publication-title: Artif. Intell. Med. – volume: 7 year: 2016 ident: bib15 article-title: Diagnosis of diabetes by applying data mining classification techniques publication-title: Int. J. Adv. Comput. Sci. Appl. – start-page: 1 year: 2013 end-page: 9 ident: bib26 article-title: New photoplethysmographic signal analysis algorithm for arterial stiffness estimation” publication-title: Sci. World J. – volume: 6 start-page: 259 year: 1989 end-page: 272 ident: bib53 article-title: Analysis of variance (ANOVA) publication-title: Chemometr. Intell. Lab. Syst. – volume: 21 start-page: 4394 year: 2005 end-page: 4400 ident: bib42 article-title: Prediction of protein-protein interactions using random decision forest framework publication-title: Bioinformatics – volume: 13 start-page: 415 year: 2002 end-page: 425 ident: bib41 article-title: A comparison of methods for multiclass support vector machines publication-title: IEEE Trans. Neural Network. – volume: 55 start-page: 436 year: 2019 ident: bib5 article-title: Polypharmacy in type 2 diabetes mellitus: insights from an internal medicine department publication-title: Medicina – volume: 97 start-page: 30 year: 2013 end-page: 37 ident: bib33 article-title: EEG emotion recognition based on the dimensional models of emotions publication-title: Procedia - Social and Behavioral Sciences – volume: 58 start-page: 267 year: 1996 end-page: 288 ident: bib50 article-title: Regression shrinkage and selection via the lasso publication-title: J. Roy. Stat. Soc. B – volume: 16 start-page: 7209 year: 2020 end-page: 7218 ident: bib22 article-title: A noninvasive blood glucose monitoring system based on smartphone PPG signal processing and machine learning publication-title: IEEE Transactions on Industrial Informatics – volume: 94 start-page: 171 year: 1994 end-page: 182 ident: bib49 article-title: Estimating attributes: analysis and extensions of RELIEF publication-title: Mach. Learn.: ECML- – volume: 14 start-page: 127 year: 2021 end-page: 138 ident: bib12 article-title: Recent advancements and future prospects on E-nose sensors technology and machine learning approaches for non-invasive diabetes diagnosis: a review publication-title: IEEE.Rev. Biomed. Eng. – volume: 4 year: 2016 ident: bib38 article-title: Introduction to machine learning: k-nearest neighbors” publication-title: Ann. Transl. Med. – start-page: 785 year: 2016 end-page: 794 ident: bib45 article-title: XGBoost: a scalable tree boosting system publication-title: Proc. 22nd ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining – year: 2020 ident: bib11 article-title: Machine learning and artificial intelligence based Diabetes Mellitus detection and self-management: a systematic review publication-title: J. King Saud Univ.Comput. Inf.Sci. – volume: 108 start-page: 29 year: 2015 end-page: 36 ident: bib28 article-title: Relation between BMI and diabetes mellitus and its complications among US older adults publication-title: South. Med. J. – volume: 40 start-page: 4679 year: 2013 end-page: 4686 ident: bib43 article-title: Artificial intelligence models to stratify cardiovascular risk in incident hemodialysis patients publication-title: Expert Syst. Appl. – volume: 157 start-page: 107843 year: 2019 ident: bib4 publication-title: "Global and Regional Diabetes Prevalence Estimates for 2019 and Projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th Edition", Diabetes Research and Clinical Practice – year: 2011 ident: bib48 article-title: ℓ 2,1-Norm regularized discriminative feature selection for unsupervised learning publication-title: IJCAI International Joint Conference on Artificial Intelligence – volume: 4 start-page: 243 year: 2018 end-page: 246 ident: bib17 article-title: Diabetes detection using deep learning algorithms publication-title: ICT Express – volume: 34 start-page: 513 year: 2013 end-page: 525 ident: bib18 article-title: Discrimination of bilateral finger photoplethysmogram responses to reactive hyperemia in diabetic and healthy subjects using a differential vascular model framework publication-title: Physiol. Meas. – year: 2006 ident: bib25 article-title: "Monitoring Physiological Parameters Based on Variations in a Photoplethysmographic Signal", U.S. Patent 7,001,337, Feb. 21 – volume: 171 start-page: 1217 year: 1971 end-page: 1219 ident: bib51 article-title: Signal detectability and medical decision-making publication-title: Science – volume: 2 start-page: 261 year: 2012 ident: bib32 article-title: Human identification based on ECG and palmprint publication-title: Int. J. Electr. Comput. Eng. – volume: 13 start-page: 7279 year: 2013 end-page: 7295 ident: bib54 article-title: Non-invasive continuous glucose monitoring with multi-sensor systems: a Monte Carlo-based methodology for assessing calibration robustness publication-title: Sensors – volume: 38 start-page: 2270 year: 2005 end-page: 2285 ident: bib37 article-title: Score normalization in multimodal biometric systems publication-title: Pattern Recogn. – start-page: 647 year: 2016 end-page: 658 ident: bib52 article-title: “The Multivariate Entropy Triangle and Applications,” – volume: 6 start-page: 850 year: 2015 ident: bib2 article-title: Diabetes mellitus: the epidemic of the century publication-title: World J. Diabetes – volume: 9 year: 2019 ident: bib6 article-title: Prevalence of undiagnosed diabetes mellitus and associated factors among adult residents of Bahir Dar city, northwest Ethiopia: a community-based cross-sectional study” publication-title: BMJ Open – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib44 publication-title: Mach. Learn. – volume: 63 start-page: 463 year: 2016 end-page: 477 ident: bib23 article-title: Photoplethysmography revisited: from contact to noncontact, from point to imaging publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng. – year: 2000 ident: bib35 article-title: Discrete-time Processing of Speech Signals – start-page: 553 year: 2017 end-page: 560 ident: bib19 article-title: PerDMCS: weighted fusion of PPG signal features for robust and efficient diabetes mellitus classification” publication-title: Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies – volume: 7 start-page: 252 year: 2010 end-page: 262 ident: bib7 article-title: Computational intelligence in early diabetes diagnosis: a review publication-title: Rev. Diabet. Stud. – start-page: 948 year: 2021 end-page: 953 ident: bib29 article-title: Non-invasive diabetes mellitus detection system using machine learning techniques publication-title: 2021 11th International Conference on Cloud Computing, Data Science & Engineering (Confluence), – volume: 270 start-page: 1 year: 2000 end-page: 11 ident: bib31 article-title: Mel frequency cepstral coefficients for music modeling publication-title: In – volume: 4 start-page: 195 year: 2018 ident: bib24 article-title: A review on wearable photoplethysmography sensors and their potential future applications in health care publication-title: International Journal of Biosensors & Bioelectronics – volume: 42 start-page: S10 year: 2018 end-page: S15 ident: bib1 article-title: Definition, classification and diagnosis of diabetes, prediabetes and metabolic syndrome publication-title: Can. J. Diabetes – volume: 40 start-page: 1739 year: 2017 end-page: 1745 ident: bib27 article-title: Arterial stiffness and incidence of diabetes: a population-based cohort study publication-title: Diabetes Care – volume: 108 start-page: 29 issue: 1 year: 2015 ident: 10.1016/j.compbiomed.2021.104664_bib28 article-title: Relation between BMI and diabetes mellitus and its complications among US older adults publication-title: South. Med. J. doi: 10.14423/SMJ.0000000000000214 – volume: 2 start-page: 261 issue: 2 year: 2012 ident: 10.1016/j.compbiomed.2021.104664_bib32 article-title: Human identification based on ECG and palmprint publication-title: Int. J. Electr. Comput. Eng. – volume: 6 start-page: 850 issue: 6 year: 2015 ident: 10.1016/j.compbiomed.2021.104664_bib2 article-title: Diabetes mellitus: the epidemic of the century publication-title: World J. Diabetes doi: 10.4239/wjd.v6.i6.850 – year: 2011 ident: 10.1016/j.compbiomed.2021.104664_bib48 article-title: ℓ 2,1-Norm regularized discriminative feature selection for unsupervised learning – volume: 157 start-page: 107843 year: 2019 ident: 10.1016/j.compbiomed.2021.104664_bib4 – volume: 270 start-page: 1 year: 2000 ident: 10.1016/j.compbiomed.2021.104664_bib31 article-title: Mel frequency cepstral coefficients for music modeling publication-title: In Ismir – volume: 4 start-page: 195 issue: 4 year: 2018 ident: 10.1016/j.compbiomed.2021.104664_bib24 article-title: A review on wearable photoplethysmography sensors and their potential future applications in health care publication-title: International Journal of Biosensors & Bioelectronics doi: 10.15406/ijbsbe.2018.04.00125 – volume: 39 start-page: 38 issue: 1 year: 2019 ident: 10.1016/j.compbiomed.2021.104664_bib20 article-title: Detection of type-2 diabetes using characteristics of toe photoplethysmogram by applying support vector machine publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2018.09.007 – start-page: 785 year: 2016 ident: 10.1016/j.compbiomed.2021.104664_bib45 article-title: XGBoost: a scalable tree boosting system – year: 2000 ident: 10.1016/j.compbiomed.2021.104664_bib35 – volume: 4 issue: 11 year: 2016 ident: 10.1016/j.compbiomed.2021.104664_bib38 article-title: Introduction to machine learning: k-nearest neighbors” publication-title: Ann. Transl. Med. doi: 10.21037/atm.2016.03.37 – start-page: 1 year: 2013 ident: 10.1016/j.compbiomed.2021.104664_bib26 article-title: New photoplethysmographic signal analysis algorithm for arterial stiffness estimation” publication-title: Sci. World J. – year: 2020 ident: 10.1016/j.compbiomed.2021.104664_bib11 article-title: Machine learning and artificial intelligence based Diabetes Mellitus detection and self-management: a systematic review publication-title: J. King Saud Univ.Comput. Inf.Sci. – volume: 97 start-page: 30 year: 2013 ident: 10.1016/j.compbiomed.2021.104664_bib33 article-title: EEG emotion recognition based on the dimensional models of emotions publication-title: Procedia - Social and Behavioral Sciences doi: 10.1016/j.sbspro.2013.10.201 – volume: 13 start-page: 415 issue: 2 year: 2002 ident: 10.1016/j.compbiomed.2021.104664_bib41 article-title: A comparison of methods for multiclass support vector machines publication-title: IEEE Trans. Neural Network. doi: 10.1109/72.991427 – volume: 65 start-page: 179 issue: 3 year: 2015 ident: 10.1016/j.compbiomed.2021.104664_bib8 article-title: A fuzzy-ontology-oriented case-based reasoning framework for semantic diabetes diagnosis publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2015.08.003 – volume: 7 start-page: 252 issue: 4 year: 2010 ident: 10.1016/j.compbiomed.2021.104664_bib7 article-title: Computational intelligence in early diabetes diagnosis: a review publication-title: Rev. Diabet. Stud. doi: 10.1900/RDS.2010.7.252 – volume: 8 start-page: 38 issue: 1 year: 2014 ident: 10.1016/j.compbiomed.2021.104664_bib14 article-title: Classification of diabetes mellitus using modified particle swarm optimization and least squares support vector machine publication-title: Int. J. Comput. Trends Technol. doi: 10.14445/22312803/IJCTT-V8P108 – volume: 64 start-page: 440 year: 2016 ident: 10.1016/j.compbiomed.2021.104664_bib16 article-title: Non-invasive hypoglycemia monitoring system using extreme learning machine for Type 1 diabetes publication-title: ISA (Instrum. Soc. Am.) Trans. doi: 10.1016/j.isatra.2016.05.008 – volume: 40 start-page: 1739 issue: 12 year: 2017 ident: 10.1016/j.compbiomed.2021.104664_bib27 article-title: Arterial stiffness and incidence of diabetes: a population-based cohort study publication-title: Diabetes Care doi: 10.2337/dc17-1071 – volume: 63 start-page: 463 issue: 3 year: 2016 ident: 10.1016/j.compbiomed.2021.104664_bib23 article-title: Photoplethysmography revisited: from contact to noncontact, from point to imaging publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng. – volume: 81 start-page: 1215 issue: 9 year: 1993 ident: 10.1016/j.compbiomed.2021.104664_bib36 article-title: Signal modeling techniques in speech recognition publication-title: Proc. IEEE doi: 10.1109/5.237532 – volume: 7 issue: 7 year: 2016 ident: 10.1016/j.compbiomed.2021.104664_bib15 article-title: Diagnosis of diabetes by applying data mining classification techniques publication-title: Int. J. Adv. Comput. Sci. Appl. – volume: 13 start-page: 7279 issue: 6 year: 2013 ident: 10.1016/j.compbiomed.2021.104664_bib54 article-title: Non-invasive continuous glucose monitoring with multi-sensor systems: a Monte Carlo-based methodology for assessing calibration robustness publication-title: Sensors doi: 10.3390/s130607279 – volume: 9 issue: 10 year: 2019 ident: 10.1016/j.compbiomed.2021.104664_bib6 article-title: Prevalence of undiagnosed diabetes mellitus and associated factors among adult residents of Bahir Dar city, northwest Ethiopia: a community-based cross-sectional study” publication-title: BMJ Open doi: 10.1136/bmjopen-2019-030158 – start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.compbiomed.2021.104664_bib34 article-title: Localization and classification of heart beats in phonocardiography signals —a comprehensive review publication-title: EURASIP J. Appl. Signal Process. – start-page: 647 year: 2016 ident: 10.1016/j.compbiomed.2021.104664_bib52 – start-page: 553 year: 2017 ident: 10.1016/j.compbiomed.2021.104664_bib19 article-title: PerDMCS: weighted fusion of PPG signal features for robust and efficient diabetes mellitus classification” publication-title: Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies doi: 10.5220/0006297205530560 – volume: 34 start-page: 513 issue: 5 year: 2013 ident: 10.1016/j.compbiomed.2021.104664_bib18 article-title: Discrimination of bilateral finger photoplethysmogram responses to reactive hyperemia in diabetic and healthy subjects using a differential vascular model framework publication-title: Physiol. Meas. doi: 10.1088/0967-3334/34/5/513 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.compbiomed.2021.104664_bib44 publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – start-page: 1303 year: 2017 ident: 10.1016/j.compbiomed.2021.104664_bib40 article-title: Automated system for obstructive sleep apnea detection using heart rate variability and respiratory rate variability” – start-page: 67 year: 2018 ident: 10.1016/j.compbiomed.2021.104664_bib9 article-title: A survey on medical diagnosis of diabetes using machine learning techniques publication-title: Adv. Intell. Syst.Comput. – year: 1998 ident: 10.1016/j.compbiomed.2021.104664_bib39 – volume: 16 start-page: 7209 issue: 11 year: 2020 ident: 10.1016/j.compbiomed.2021.104664_bib22 article-title: A noninvasive blood glucose monitoring system based on smartphone PPG signal processing and machine learning publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2020.2975222 – volume: 4 start-page: 243 issue: 4 year: 2018 ident: 10.1016/j.compbiomed.2021.104664_bib17 article-title: Diabetes detection using deep learning algorithms publication-title: ICT Express doi: 10.1016/j.icte.2018.10.005 – volume: 14 start-page: 127 year: 2021 ident: 10.1016/j.compbiomed.2021.104664_bib12 article-title: Recent advancements and future prospects on E-nose sensors technology and machine learning approaches for non-invasive diabetes diagnosis: a review publication-title: IEEE.Rev. Biomed. Eng. doi: 10.1109/RBME.2020.2993591 – volume: 171 start-page: 1217 issue: 3977 year: 1971 ident: 10.1016/j.compbiomed.2021.104664_bib51 article-title: Signal detectability and medical decision-making publication-title: Science doi: 10.1126/science.171.3977.1217 – volume: 94 start-page: 171 year: 1994 ident: 10.1016/j.compbiomed.2021.104664_bib49 article-title: Estimating attributes: analysis and extensions of RELIEF publication-title: Mach. Learn.: ECML- – volume: 73 start-page: 16 issue: 9 year: 2019 ident: 10.1016/j.compbiomed.2021.104664_bib21 article-title: Predicting diabetes from photoplethysmography using deep learning” publication-title: J. Am. Coll. Cardiol. doi: 10.1016/S0735-1097(19)33778-7 – start-page: 948 year: 2021 ident: 10.1016/j.compbiomed.2021.104664_bib29 article-title: Non-invasive diabetes mellitus detection system using machine learning techniques – year: 1999 ident: 10.1016/j.compbiomed.2021.104664_bib47 – start-page: 44 year: 2020 ident: 10.1016/j.compbiomed.2021.104664_bib30 article-title: Database proposal for correlation of glucose and photoplethysmography signals doi: 10.1007/978-3-030-32033-1_5 – volume: 55 start-page: 546 issue: 9 year: 2019 ident: 10.1016/j.compbiomed.2021.104664_bib3 article-title: From pre-diabetes to diabetes: diagnosis, treatments and translational research publication-title: Medicina doi: 10.3390/medicina55090546 – volume: 55 start-page: 436 issue: 8 year: 2019 ident: 10.1016/j.compbiomed.2021.104664_bib5 article-title: Polypharmacy in type 2 diabetes mellitus: insights from an internal medicine department publication-title: Medicina doi: 10.3390/medicina55080436 – volume: 21 start-page: 4394 issue: 24 year: 2005 ident: 10.1016/j.compbiomed.2021.104664_bib42 article-title: Prediction of protein-protein interactions using random decision forest framework publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti721 – volume: 19 start-page: 391 issue: 1 year: 2020 ident: 10.1016/j.compbiomed.2021.104664_bib10 article-title: Deep learning approach for diabetes prediction using PIMA Indian dataset publication-title: J. Diabetes Metab. Disord. doi: 10.1007/s40200-020-00520-5 – year: 2006 ident: 10.1016/j.compbiomed.2021.104664_bib25 – volume: 33 start-page: 1532 issue: 8 year: 2011 ident: 10.1016/j.compbiomed.2021.104664_bib46 article-title: Feature selection and kernel learning for local learning-based clustering publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2010.215 – volume: 40 start-page: 4679 issue: 11 year: 2013 ident: 10.1016/j.compbiomed.2021.104664_bib43 article-title: Artificial intelligence models to stratify cardiovascular risk in incident hemodialysis patients publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.02.005 – volume: 14 start-page: 1114 issue: 4 year: 2010 ident: 10.1016/j.compbiomed.2021.104664_bib13 article-title: Intelligible support vector machines for diagnosis of diabetes mellitus publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2009.2039485 – volume: 42 start-page: S10 year: 2018 ident: 10.1016/j.compbiomed.2021.104664_bib1 article-title: Definition, classification and diagnosis of diabetes, prediabetes and metabolic syndrome publication-title: Can. J. Diabetes doi: 10.1016/j.jcjd.2017.10.003 – volume: 38 start-page: 2270 issue: 12 year: 2005 ident: 10.1016/j.compbiomed.2021.104664_bib37 article-title: Score normalization in multimodal biometric systems publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2005.01.012 – volume: 58 start-page: 267 issue: 1 year: 1996 ident: 10.1016/j.compbiomed.2021.104664_bib50 article-title: Regression shrinkage and selection via the lasso publication-title: J. Roy. Stat. Soc. B doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 6 start-page: 259 issue: 4 year: 1989 ident: 10.1016/j.compbiomed.2021.104664_bib53 article-title: Analysis of variance (ANOVA) publication-title: Chemometr. Intell. Lab. Syst. doi: 10.1016/0169-7439(89)80095-4 |
| SSID | ssj0004030 |
| Score | 2.5303402 |
| Snippet | In this work, a non-invasive diabetes mellitus detection system is proposed based on the wristband photoplethysmography (PPG) signal and basic physiological... AbstractIn this work, a non-invasive diabetes mellitus detection system is proposed based on the wristband photoplethysmography (PPG) signal and basic... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 104664 |
| SubjectTerms | Accuracy Age Algorithms Artificial intelligence Classification Classifiers Computer applications Datasets Decision trees Deep learning Diabetes Diabetes detection Diabetes mellitus Diabetic retinopathy Electrocardiography Feature selection Glucose Hybrid systems Insulin Internal Medicine Laboratories Learning algorithms Machine learning MFCC Neural networks Optimization techniques Other Physiology Polypharmacy PPG Smartphones Support vector machines XGBoost |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bi9QwFD6ssyC-iFccXSWCr8XekyAiru66CDuIujBvIWmSdUXb0XYe_Pfm5NIBUZnXticpuZxL8p3vADxjTS6Nom3GbMGz2uZdxlvbZpyVsrIuDjI-Kex81Z5d1O_XzfoAVikXBmGVSSd6Ra2HDs_In2O1tdrthpa_2vzIsGoU3q6mEhoyllbQLz3F2DU4LJEZawGHxyerDx93mZJ5FZJSnPapXXAUsT0B8YUg7pD07uLGsvDXn239L4P1h-r29uj0FtyMjiR5HWb-NhyY_g5cP49X5Xdh89ZjM8hgydVMuzmRdNZKvuOjaTsSbSYPx-pJYHUmCIW_JF9-YS4XscYzf5LR18vBr9DuabJ-dzwM40Q69L6vrPvXe3BxevL5zVkWyytkXc2LKZOWSprrrilrU1OtS60aXWmlK9mYQja2k0paJamVrWJaMWuoMc49cA8qym11Hxb90JsHQIzk2lKWS-WsvW1dFKZc6EU75topmOFLoGkMRRe5x7EExjeRQGZfxW70BY6-CKO_hGKW3AT-jT1keJomkfJLnUYUzkjsIUv_JmvGuLVHUYixFLn45JmN3BIqkXOvYdUSXsyS0XsJXsme_R6l9STmrnZrfglP59du_-OljuzNsMVvGlqilqYP_9_EI7iB_QV83BEspp9b89g5VJN6EnfJbyDNI_4 priority: 102 providerName: ProQuest |
| Title | Design of intelligent diabetes mellitus detection system using hybrid feature selection based XGBoost classifier |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482521004583 https://www.clinicalkey.es/playcontent/1-s2.0-S0010482521004583 https://dx.doi.org/10.1016/j.compbiomed.2021.104664 https://www.proquest.com/docview/2570437669 https://www.proquest.com/docview/2557230117 |
| Volume | 136 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AKRWK dateStart: 19700101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1879-0534 dateEnd: 20250905 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 8FG dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqIiEuqLzEQqmMxDU0Dyd2xKkt3S6grhCi0t4sO7ZhESSrJnvgwm9nxnZS8ZJW4uIojie2JvaMJ_5mhpAXokyV1bxKhMvqhLm0SerKVUktclU4sIOsdwq7XFaLK_Z2Va72yNnoC4Owyij7g0z30jrWHEduHm_Wa_TxBVMCDJwcg56VAiN-MsYxi8HLHzcwD5YWwQ0F5A22jmiegPFC2HZwcwdLMc_8gWfF_qWifhPWXgPND8jduHWkJ2F098iebe-T25fxcPwB2bz2aAzaObqeAm0OdPy7Sr9h1bDtqbGDB2C1NMRxpgh-_0Q_f0fvLeqsj_VJe58hB1uhpjN0dXHadf1AG9xvrx2M9SG5mp9_PFskMaFC0rA6GxLluOKpacqcWcaNyY0uTWG0KVRpM1W6RmnltOJOVVoYLZzl1sKGACoKXrviEdlvu9Y-JtSq2jguUqVBv7sK7C4NxhZvBLwnE7aeET7yUDYx2jgmvfgqR1jZF3nDfYncl4H7M5JNlJsQcWMHmnr8THL0KAUZKEEt7EDL_0Zr-7iYe5nJPpep_GPCzcirifKXObtjv4fjfJJTV5hTkIHMr4CBz6fHsOLxGEe1tttim5LnKJf5k_8awFNyB-8CYO6Q7A_XW_sMdliDPvJLCEq-4lCK-cURuXXy5t1iCdfT8-X7Dz8B7IMteQ |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKKwEXxFMsFDASHCPycOJYqEKUtmxpd4Wglfbm2rENRZAsJCvUP8dvY8ZxdiUEaC-9Oh47GtvzsL-ZIeRZmcfKal5EpUtExFxcRaJwRSTKVGUO_CDrg8Im02J8yt7N8tkG-TXEwiCscpCJXlCbpsI78hdYbY3BaSjEq_n3CKtG4evqUEJDhdIKZsenGAuBHUf24ie4cO3O4R6s9_M0Pdg_eTOOQpWBqGIi6SLluOKxqfKUWcaNSY3OTWa0yVRuE5W7SmnltOJOFbo0unSWWwtaEhoyLlwG414hWyxjApy_rd396fsPq8jMOOuDYEDaMXDGApaoR5ghaLwPsgc_NU38c2vB_qUg_1AVXv8d3CQ3guFKX_c77RbZsPVtcnUSnubvkPmex4LQxtHzZZrPjg53u_QbNnWLlhrbefhXTfss0hSh95_o5wuMHaPO-kyjtPX1ebAX6llDZ293m6btaIXW_rmDf71LTi-F0ffIZt3U9j6hVgnjeBkrDdaFK8Dr0-Dq8aqEcZLSihHhAw9lFXKdY8mNr3IAtX2RK-5L5L7suT8iyZJy3uf7WINGDMskh3hWkMASlNIatPxvtLYNoqSViWxTGcuPPpMSbKEUc_zlZTYiL5eUwVrqraA1590e9pNcTrU6YyPydPkZ5A0-IqnaNgvsk_MUtQJ_8P8hnpBr45PJsTw-nB49JNdx7h6bt002ux8L-wiMuU4_DieGkrPLPqS_AVhgZaI |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3daxQxEB9qheKL-ImnVSPo49L9zgYRUc-ztbYIWri3mGySWtHd091D-q_51zmT7N6BqNxLX7OZZJnNfG1-MwPwuCpiZTUvo8olIspdXEeidGUkqlRlDuMg65PCjo7L_ZP87byYb8GvMReGYJWjTvSK2rQ1_SPfo25rOUpDKfbcAIt4P509X3yPqIMU3bSO7TTCETm05z8xfOueHUzxWz9J09nrj6_2o6HDQFTnIukj5bjisamLNLc5NyY1ujCZ0SZThU1U4WqlldOKO1XqyujKWW4tWkgcyLhwGa57CS7zLBMEJ-Rzvs7JjLOQ_oJ6LscwbEARBWwZwcVDej1GqGniL1rL_F-m8Q8j4S3f7BpcHVxW9iKcseuwZZsbsHM0XMrfhMXUo0BY69jZqsBnz8a_uuwbDfXLjhnbe-BXw0L9aEag-1P2-ZyyxpizvsYo63xnHppFFtaw-ZuXbdv1rCY__8zhu96Ckwth823YbtrG3gFmlTCOV7HS6Fe4EuM9jUEerytcJ6msmAAfeSjroco5Ndv4Kkc42xe55r4k7svA_QkkK8pFqPSxAY0YP5McM1lR90o0RxvQ8r_R2m5QIp1MZJfKWH7wNZTwCKVU3a-osgk8XVEOflLwfzbcd3c8T3K11Vq6JvBo9Rg1DV0fqca2S5pT8JTsAb_7_yUewg6Kpnx3cHx4D67Q1gGUtwvb_Y-lvY9eXK8feHFh8Omi5fM3tuRjPA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+intelligent+diabetes+mellitus+detection+system+using+hybrid+feature+selection+based+XGBoost+classifier&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Prabha%2C+Anju&rft.au=Yadav%2C+Jyoti&rft.au=Rani%2C+Asha&rft.au=Singh%2C+Vijander&rft.date=2021-09-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4825&rft.eissn=1879-0534&rft.volume=136&rft_id=info:doi/10.1016%2Fj.compbiomed.2021.104664&rft.externalDocID=S0010482521004583 |
| thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482520X00205%2Fcov150h.gif |