A novel computer-aided diagnosis framework for EEG-based identification of neural diseases

Recent advances in electroencephalogram (EEG) signal classification have primarily focused on domain-specific approaches, which impede algorithm cross-discipline capability. This study introduces a new computer-aided diagnosis (CAD) system for the classification of two distinct EEG domains under a u...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 138; p. 104922
Main Authors Sadiq, Muhammad Tariq, Akbari, Hesam, Siuly, Siuly, Yousaf, Adnan, Rehman, Ateeq Ur
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.11.2021
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
1879-0534
DOI10.1016/j.compbiomed.2021.104922

Cover

Abstract Recent advances in electroencephalogram (EEG) signal classification have primarily focused on domain-specific approaches, which impede algorithm cross-discipline capability. This study introduces a new computer-aided diagnosis (CAD) system for the classification of two distinct EEG domains under a unified sequential framework. The key motivation to consider two neural diseases by one framework is to develop a unified algorithm for EEG classification. The main contributions of this study are five-fold. First, EEG signals are decomposed into 10 intrinsic mode functions (IMFs) with the help of empirical wavelet transform. Second, a novel two-dimensional (2D) modeling of IMFs is plotted to visualize the complexity of EEG signals. Third, several new geometrical features are extracted to analyze the dynamic and chaotic essence. Fourth, significant features are selected by binary particle swarm optimization algorithm (B–PSO). Fifth, selected features are fed to the k-nearest neighbor classifier for EEG signal classification purposes. All the experiments are executed on one depression and two epileptic EEG datasets in a leave one out cross-validation strategy. The proposed CAD system provides an average classification accuracy of 93.35% in depression detection, 99.33% for regular against ictal, and 97.33% for interictal versus ictal respectively. The overall empirical analysis authenticates that the proposed CAD outperforms the existing domain-specific methods in terms of classification accuracies and multirole adaptability, thus, can be endorsed as an effective automated neural rehabilitation system. •A Novel two-dimensional modeling is proposed to visualize chaotic behavior of EEG signals.•Novel computationally efficient geometrical features are introduce.•A computerized framework is proposed for automated detection of EEG signals.•The proposed framework is suitable for cross-domain EEG analysis.•Experimental results are better or comparable with state-of-art.
AbstractList Recent advances in electroencephalogram (EEG) signal classification have primarily focused on domain-specific approaches, which impede algorithm cross-discipline capability. This study introduces a new computer-aided diagnosis (CAD) system for the classification of two distinct EEG domains under a unified sequential framework. The key motivation to consider two neural diseases by one framework is to develop a unified algorithm for EEG classification. The main contributions of this study are five-fold. First, EEG signals are decomposed into 10 intrinsic mode functions (IMFs) with the help of empirical wavelet transform. Second, a novel two-dimensional (2D) modeling of IMFs is plotted to visualize the complexity of EEG signals. Third, several new geometrical features are extracted to analyze the dynamic and chaotic essence. Fourth, significant features are selected by binary particle swarm optimization algorithm (B-PSO). Fifth, selected features are fed to the k-nearest neighbor classifier for EEG signal classification purposes. All the experiments are executed on one depression and two epileptic EEG datasets in a leave one out cross-validation strategy. The proposed CAD system provides an average classification accuracy of 93.35% in depression detection, 99.33% for regular against ictal, and 97.33% for interictal versus ictal respectively. The overall empirical analysis authenticates that the proposed CAD outperforms the existing domain-specific methods in terms of classification accuracies and multirole adaptability, thus, can be endorsed as an effective automated neural rehabilitation system.Recent advances in electroencephalogram (EEG) signal classification have primarily focused on domain-specific approaches, which impede algorithm cross-discipline capability. This study introduces a new computer-aided diagnosis (CAD) system for the classification of two distinct EEG domains under a unified sequential framework. The key motivation to consider two neural diseases by one framework is to develop a unified algorithm for EEG classification. The main contributions of this study are five-fold. First, EEG signals are decomposed into 10 intrinsic mode functions (IMFs) with the help of empirical wavelet transform. Second, a novel two-dimensional (2D) modeling of IMFs is plotted to visualize the complexity of EEG signals. Third, several new geometrical features are extracted to analyze the dynamic and chaotic essence. Fourth, significant features are selected by binary particle swarm optimization algorithm (B-PSO). Fifth, selected features are fed to the k-nearest neighbor classifier for EEG signal classification purposes. All the experiments are executed on one depression and two epileptic EEG datasets in a leave one out cross-validation strategy. The proposed CAD system provides an average classification accuracy of 93.35% in depression detection, 99.33% for regular against ictal, and 97.33% for interictal versus ictal respectively. The overall empirical analysis authenticates that the proposed CAD outperforms the existing domain-specific methods in terms of classification accuracies and multirole adaptability, thus, can be endorsed as an effective automated neural rehabilitation system.
Recent advances in electroencephalogram (EEG) signal classification have primarily focused on domain-specific approaches, which impede algorithm cross-discipline capability. This study introduces a new computer-aided diagnosis (CAD) system for the classification of two distinct EEG domains under a unified sequential framework. The key motivation to consider two neural diseases by one framework is to develop a unified algorithm for EEG classification. The main contributions of this study are five-fold. First, EEG signals are decomposed into 10 intrinsic mode functions (IMFs) with the help of empirical wavelet transform. Second, a novel two-dimensional (2D) modeling of IMFs is plotted to visualize the complexity of EEG signals. Third, several new geometrical features are extracted to analyze the dynamic and chaotic essence. Fourth, significant features are selected by binary particle swarm optimization algorithm (B–PSO). Fifth, selected features are fed to the k-nearest neighbor classifier for EEG signal classification purposes. All the experiments are executed on one depression and two epileptic EEG datasets in a leave one out cross-validation strategy. The proposed CAD system provides an average classification accuracy of 93.35% in depression detection, 99.33% for regular against ictal, and 97.33% for interictal versus ictal respectively. The overall empirical analysis authenticates that the proposed CAD outperforms the existing domain-specific methods in terms of classification accuracies and multirole adaptability, thus, can be endorsed as an effective automated neural rehabilitation system.
Recent advances in electroencephalogram (EEG) signal classification have primarily focused on domain-specific approaches, which impede algorithm cross-discipline capability. This study introduces a new computer-aided diagnosis (CAD) system for the classification of two distinct EEG domains under a unified sequential framework. The key motivation to consider two neural diseases by one framework is to develop a unified algorithm for EEG classification. The main contributions of this study are five-fold. First, EEG signals are decomposed into 10 intrinsic mode functions (IMFs) with the help of empirical wavelet transform. Second, a novel two-dimensional (2D) modeling of IMFs is plotted to visualize the complexity of EEG signals. Third, several new geometrical features are extracted to analyze the dynamic and chaotic essence. Fourth, significant features are selected by binary particle swarm optimization algorithm (B–PSO). Fifth, selected features are fed to the k-nearest neighbor classifier for EEG signal classification purposes. All the experiments are executed on one depression and two epileptic EEG datasets in a leave one out cross-validation strategy. The proposed CAD system provides an average classification accuracy of 93.35% in depression detection, 99.33% for regular against ictal, and 97.33% for interictal versus ictal respectively. The overall empirical analysis authenticates that the proposed CAD outperforms the existing domain-specific methods in terms of classification accuracies and multirole adaptability, thus, can be endorsed as an effective automated neural rehabilitation system. •A Novel two-dimensional modeling is proposed to visualize chaotic behavior of EEG signals.•Novel computationally efficient geometrical features are introduce.•A computerized framework is proposed for automated detection of EEG signals.•The proposed framework is suitable for cross-domain EEG analysis.•Experimental results are better or comparable with state-of-art.
AbstractRecent advances in electroencephalogram (EEG) signal classification have primarily focused on domain-specific approaches, which impede algorithm cross-discipline capability. This study introduces a new computer-aided diagnosis (CAD) system for the classification of two distinct EEG domains under a unified sequential framework. The key motivation to consider two neural diseases by one framework is to develop a unified algorithm for EEG classification. The main contributions of this study are five-fold. First, EEG signals are decomposed into 10 intrinsic mode functions (IMFs) with the help of empirical wavelet transform. Second, a novel two-dimensional (2D) modeling of IMFs is plotted to visualize the complexity of EEG signals. Third, several new geometrical features are extracted to analyze the dynamic and chaotic essence. Fourth, significant features are selected by binary particle swarm optimization algorithm (B–PSO). Fifth, selected features are fed to the k-nearest neighbor classifier for EEG signal classification purposes. All the experiments are executed on one depression and two epileptic EEG datasets in a leave one out cross-validation strategy. The proposed CAD system provides an average classification accuracy of 93.35% in depression detection, 99.33% for regular against ictal, and 97.33% for interictal versus ictal respectively. The overall empirical analysis authenticates that the proposed CAD outperforms the existing domain-specific methods in terms of classification accuracies and multirole adaptability, thus, can be endorsed as an effective automated neural rehabilitation system.
ArticleNumber 104922
Author Siuly, Siuly
Akbari, Hesam
Rehman, Ateeq Ur
Yousaf, Adnan
Sadiq, Muhammad Tariq
Author_xml – sequence: 1
  givenname: Muhammad Tariq
  orcidid: 0000-0002-7410-5951
  surname: Sadiq
  fullname: Sadiq, Muhammad Tariq
  email: muhammad.sadiq1@ee.uol.edu.pk
  organization: School of Automation, Northwestern Polytechnical University, Xi'an, 710072, China
– sequence: 2
  givenname: Hesam
  surname: Akbari
  fullname: Akbari, Hesam
  email: hesamakbari09192037254@gmail.com
  organization: Department of Biomedical Engineering, Islamic Azad University, Tehran, 1411718541, Iran
– sequence: 3
  givenname: Siuly
  surname: Siuly
  fullname: Siuly, Siuly
  email: Siuly.Siuly@vu.edu.au
  organization: Institute for Sustainable Industries & Liveable Cities, Victoria University, Melbourne, 14428, Australia
– sequence: 4
  givenname: Adnan
  surname: Yousaf
  fullname: Yousaf, Adnan
  email: adnan.yousaf@superior.edu.pk
  organization: Department of Electrical Engineering, Superior University, Lahore, 54000, Pakistan
– sequence: 5
  givenname: Ateeq Ur
  orcidid: 0000-0001-5203-0621
  surname: Rehman
  fullname: Rehman, Ateeq Ur
  email: ateqrehman@gmail.com
  organization: Department of Electrical Engineering, Government College University, Lahore, 54000, Pakistan
BookMark eNqNkk1r3DAQhkVJoJuk_0HQSy_ejmT56xKahm1aCOSQ9NKLkKVR0caWtpKdkH9fuVsaWCjsSSCeeZh5Z87IiQ8eCaEM1gxY_XG71mHc9S6MaNYcOMvfouP8DVmxtukKqEpxQlYADArR8uotOUtpCwACSliRH1fUhycc6GKZJ4yFcgYNNU799CG5RG1UIz6H-EhtiHSzuSl6lTKRMT8567SaXPA0WOpxjmrIpQkzkS7IqVVDwnd_33Py_cvm4fprcXt38-366rbQomNTUXc9aq17YIimBgtaQF8b0WCeAzUzGkswvapbY0uwvUBtRdnVTDTGYKfKc_Jh793F8GvGNMnRJY3DoDyGOUletWXJG1FVGX1_gG7DHH3ubqHqrmmbts3U5Z7SMaQU0Urtpj9TTlG5QTKQS_RyK1-jl0v0ch99FrQHgl10o4ovx5R-3pdiTuzJYZRJO_QajYuoJ2mCO0ZyeSDRg_N5U8MjvmD6NzOTiUuQ98txLLfBGUDD6kXw6f-C43r4DUS30qA
CitedBy_id crossref_primary_10_1016_j_bspc_2023_105491
crossref_primary_10_1016_j_measurement_2024_115500
crossref_primary_10_3390_e24111540
crossref_primary_10_1186_s12911_022_01956_w
crossref_primary_10_3389_fbioe_2023_1190211
crossref_primary_10_1007_s13246_023_01225_8
crossref_primary_10_3390_app122110813
crossref_primary_10_1049_cit2_12293
crossref_primary_10_1007_s13755_022_00187_7
crossref_primary_10_3389_fpsyg_2022_880065
crossref_primary_10_1371_journal_pone_0277555
crossref_primary_10_1007_s13538_022_01231_3
crossref_primary_10_1155_2022_1992596
crossref_primary_10_1016_j_compbiomed_2022_105240
crossref_primary_10_1088_1402_4896_ad3b49
crossref_primary_10_3389_fphys_2022_1029298
Cites_doi 10.1016/j.knosys.2019.105367
10.1016/j.eswa.2011.09.093
10.1016/j.bspc.2017.01.001
10.1016/j.bspc.2011.07.007
10.1016/j.neucom.2011.04.029
10.3390/s17061385
10.3390/computation7010012
10.1016/j.cogsys.2018.07.010
10.1049/el.2020.2509
10.1016/j.cmpb.2013.11.014
10.1142/S0219519412400192
10.1155/2020/8889412
10.1016/j.eswa.2011.07.008
10.1016/j.bspc.2013.08.006
10.1007/s13534-013-0084-0
10.1016/j.neucom.2017.02.053
10.1016/j.eswa.2010.02.045
10.1002/ima.22199
10.1016/j.eswa.2014.08.030
10.1109/TCDS.2020.3040438
10.18280/ts.370108
10.1049/iet-smt.2017.0058
10.1016/j.cmpb.2010.11.014
10.1142/S0219519414500353
10.1016/j.apacoust.2021.108078
10.1142/S0219519417400024
10.1142/S0219519417400036
10.1016/j.spl.2012.05.017
10.1016/j.cmpb.2012.10.008
10.1007/s10916-020-01573-y
10.1007/s13755-021-00139-7
10.1016/j.eswa.2009.10.036
10.1016/j.cmpb.2017.11.023
10.1109/TSP.2013.2265222
10.3390/s20185283
10.1007/s13246-020-00963-3
10.1016/j.ijpsycho.2012.05.001
10.1016/j.cmpb.2018.04.012
10.1016/j.eswa.2020.114031
10.1109/ACCESS.2019.2956018
10.1007/s10462-019-09755-y
10.1109/78.317850
10.1109/ACCESS.2019.2939623
10.1159/000438457
10.1016/j.bspc.2016.07.006
10.1016/j.bspc.2018.05.019
10.1016/S0925-4927(00)00080-9
10.1177/1550059413480504
10.1016/j.eswa.2016.02.040
10.1016/j.cmpb.2014.04.001
10.1007/s00521-016-2646-4
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Elsevier Ltd
2021. Elsevier Ltd
Copyright © 2021 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Elsevier Ltd
– notice: 2021. Elsevier Ltd
– notice: Copyright © 2021 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.compbiomed.2021.104922
DatabaseName CrossRef
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Computing Database
Health & Medical Collection (Alumni)
Medical Database
Research Library
Biological Science Database
Biochemistry Abstracts 1
Research Library (Corporate)
ProQuest Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Research Library Prep



Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 104922
ExternalDocumentID 10_1016_j_compbiomed_2021_104922
S0010482521007162
1_s2_0_S0010482521007162
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77I
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
~HD
3V.
AACTN
AFCTW
AFKWA
AJOXV
ALIPV
AMFUW
M0N
RIG
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
LCYCR
AAYXX
CITATION
PUEGO
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c491t-69becccb01eed60f0c40b6d47e049ec1dce30dba68df30fb4ecf4396147dde9a3
IEDL.DBID .~1
ISSN 0010-4825
1879-0534
IngestDate Thu Oct 02 10:28:02 EDT 2025
Tue Oct 07 06:14:26 EDT 2025
Wed Oct 01 05:24:47 EDT 2025
Thu Apr 24 23:05:27 EDT 2025
Fri Feb 23 02:43:32 EST 2024
Tue Feb 25 20:08:37 EST 2025
Tue Oct 14 19:33:08 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Neural diseases
Electroencephalography
Two-dimensional modeling
Geometrical features
Computer-aided diagnosis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c491t-69becccb01eed60f0c40b6d47e049ec1dce30dba68df30fb4ecf4396147dde9a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5203-0621
0000-0002-7410-5951
PQID 2586978788
PQPubID 1226355
PageCount 1
ParticipantIDs proquest_miscellaneous_2583327455
proquest_journals_2586978788
crossref_citationtrail_10_1016_j_compbiomed_2021_104922
crossref_primary_10_1016_j_compbiomed_2021_104922
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2021_104922
elsevier_clinicalkeyesjournals_1_s2_0_S0010482521007162
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2021_104922
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computers in biology and medicine
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Akbari, Esmaili (bib54) 2020; 37
Deivasigamani, Senthilpari, Yong (bib26) 2016; 26
Bachmann, Päeske, Kalev, Aarma, Lehtmets, Ööpik, Lass, Hinrikus (bib57) 2018; 155
Sadiq, Yu, Yuan, Fan, Rehman, Li, Xiao (bib49) 2019; 7
Kung, Lin, Kao (bib55) 2012; 82
Ahmadlou, Adeli, Adeli (bib28) 2012; 85
Swami, Gandhi, Panigrahi, Tripathi, Anand (bib17) 2016; 56
Reddy, Rao (bib37) 2017; 20
Bachmann, Lass, Suhhova, Hinrikus (bib27) 2013
Joshi, Pachori, Vijesh (bib10) 2014; 9
Sadiq, Yu, Yuan (bib21) 2020; 164
Acharya, Sudarshan, Adeli, Santhosh, Koh, Puthankatti, Adeli (bib29) 2015; 74
Gandhi, Panigrahi, Anand (bib47) 2011; 74
World health organization epilepsy key facts (bib2) 2021
Mahato, Goyal, Ram, Paul (bib25) 2020; 44
Bajaj, Pachori (bib39) 2013; 3
Akbari, Sadiq, Rehman (bib35) 2021; 9
Bairy, Lih, Hagiwara, Puthankattil, Faust, Niranjan, Acharya (bib41) 2017; 7
Moridani, Setarehdan, Nasrabadi, Hajinasrollah (bib51) 2018; 45
Pachori, Patidar (bib22) 2014; 113
Akbari, Sadiq (bib32) 2021; 44
Gandhi, Chakraborty, Roy, Panigrahi (bib46) 2012; 39
D. Rafik, B. Larbi, Autoregressive modeling based empirical mode decomposition (emd) for epileptic seizures detection using eeg signals autoregressive modeling based empirical mode decomposition (emd) for epileptic seizures detection using eeg signals.
Bhattacharyya, Sharma, Pachori, Sircar, Acharya (bib24) 2018; 29
Sharma, Achuth, Deb, Puthankattil, Acharya (bib4) 2018; 52
Altunay, Telatar, Erogul (bib9) 2010; 37
Hosseinifard, Moradi, Rostami (bib36) 2013; 109
Fan, Jamil, Sadiq, Huang, Yu (bib14) 2020; 2020
Mumtaz, Xia, Ali, Yasin, Hussain, Malik (bib61) 2017; 31
Sharma, Pachori (bib23) 2015; 42
Gandhi, Panigrahi, Bhatia, Anand (bib45) 2010; 37
Ahmadlou, Adeli, Adeli (bib59) 2013; 44
Puthankattil, Joseph (bib43) 2012; 12
Sadiq, Yu, Yuan, Zeming, Rehman, Ullah, Li, Xiao (bib48) 2019; 7
Liao, Wu, Huang, Cheng, Liu (bib60) 2017; 17
Taran, Sharma, Bajaj (bib19) 2020; 192
Akbari, Ghofrani (bib53) 2019; 11
Sharma, Pachori (bib30) 2017; 17
Sharma, Pachori (bib56) 2017; 12
Mursalin, Zhang, Chen, Chawla (bib12) 2017; 241
Adeli, Ghosh-Dastidar, Dadmehr (bib38) 2007; 54
Alotaiby, Alshebeili, Abd El-Samie, Alabdulrazak, Alkhnaian (bib11) 2016
Alam, Bhuiyan (bib31) 2011
Too, Abdullah, Mohd Saad, Tee (bib52) 2019; 7
Ray (bib3) 1994; 42
Faust, Ang, Puthankattil, Joseph (bib33) 2014; 14
Sadiq, Yu, Yuan, Aziz (bib6) 2020; 20
Acharya, Oh, Hagiwara, Tan, Adeli, Subha (bib42) 2018; 161
Gilles (bib20) 2013; 61
Zhu, Li, Wen (bib8) 2014; 115
Andrzejak, Lehnertz, Mormann, Rieke, David, Elger (bib44) 2001; 64
Sadiq M. T., Yu X., Yuan Z., Aziz M. Z., Motor imagery bci classification based on novel two-dimensional modelling in empirical wavelet transform, Electron. Lett. 56 (25), doi:10.1049/el.2020.2509.
Singh, Pachori (bib15) 2017; 17
M.T. Sadiq, X. Yu, Z. Yuan, M.Z. Aziz, S. Siuly, W. Ding, A matrix determinant feature extraction approach for decoding motor and mental imagery eeg in subject specific tasks, IEEE. Trans. Cognit. Dev. Syst., Early Access, DOI: 10.1109/TCDS.2020.3040438.
Patidar, Panigrahi (bib18) 2017; 34
Nicolaou, Georgiou (bib7) 2012; 39
Akbari, Sadiq, Rehman, Ghazvini, Naqvi, Payan, Bagheri, Bagheri (bib40) 2021; 179
Li, Wen (bib13) 2011; 104
World health organization depression key facts (bib1) 2021
Zeng, Li, Yuan, Wang, Liu, Wang (bib16) 2020; 53
Acharya, Molinari, Sree, Chattopadhyay, Ng, Suri (bib34) 2012; 7
Knott, Mahoney, Kennedy, Evans (bib58) 2001; 106
Akbari (10.1016/j.compbiomed.2021.104922_bib35) 2021; 9
Alam (10.1016/j.compbiomed.2021.104922_bib31) 2011
Nicolaou (10.1016/j.compbiomed.2021.104922_bib7) 2012; 39
Sadiq (10.1016/j.compbiomed.2021.104922_bib48) 2019; 7
Sharma (10.1016/j.compbiomed.2021.104922_bib56) 2017; 12
Sharma (10.1016/j.compbiomed.2021.104922_bib30) 2017; 17
World health organization epilepsy key facts (10.1016/j.compbiomed.2021.104922_bib2)
Ahmadlou (10.1016/j.compbiomed.2021.104922_bib59) 2013; 44
Bhattacharyya (10.1016/j.compbiomed.2021.104922_bib24) 2018; 29
Mahato (10.1016/j.compbiomed.2021.104922_bib25) 2020; 44
Ray (10.1016/j.compbiomed.2021.104922_bib3) 1994; 42
Akbari (10.1016/j.compbiomed.2021.104922_bib40) 2021; 179
Alotaiby (10.1016/j.compbiomed.2021.104922_bib11) 2016
Zeng (10.1016/j.compbiomed.2021.104922_bib16) 2020; 53
Liao (10.1016/j.compbiomed.2021.104922_bib60) 2017; 17
Bairy (10.1016/j.compbiomed.2021.104922_bib41) 2017; 7
Acharya (10.1016/j.compbiomed.2021.104922_bib42) 2018; 161
Puthankattil (10.1016/j.compbiomed.2021.104922_bib43) 2012; 12
Sadiq (10.1016/j.compbiomed.2021.104922_bib21) 2020; 164
Akbari (10.1016/j.compbiomed.2021.104922_bib54) 2020; 37
Deivasigamani (10.1016/j.compbiomed.2021.104922_bib26) 2016; 26
Gandhi (10.1016/j.compbiomed.2021.104922_bib46) 2012; 39
Sadiq (10.1016/j.compbiomed.2021.104922_bib6) 2020; 20
Knott (10.1016/j.compbiomed.2021.104922_bib58) 2001; 106
Bachmann (10.1016/j.compbiomed.2021.104922_bib27) 2013
Moridani (10.1016/j.compbiomed.2021.104922_bib51) 2018; 45
Kung (10.1016/j.compbiomed.2021.104922_bib55) 2012; 82
10.1016/j.compbiomed.2021.104922_bib5
Gilles (10.1016/j.compbiomed.2021.104922_bib20) 2013; 61
Acharya (10.1016/j.compbiomed.2021.104922_bib34) 2012; 7
Bajaj (10.1016/j.compbiomed.2021.104922_bib39) 2013; 3
Singh (10.1016/j.compbiomed.2021.104922_bib15) 2017; 17
Patidar (10.1016/j.compbiomed.2021.104922_bib18) 2017; 34
Gandhi (10.1016/j.compbiomed.2021.104922_bib47) 2011; 74
Zhu (10.1016/j.compbiomed.2021.104922_bib8) 2014; 115
Taran (10.1016/j.compbiomed.2021.104922_bib19) 2020; 192
Hosseinifard (10.1016/j.compbiomed.2021.104922_bib36) 2013; 109
Andrzejak (10.1016/j.compbiomed.2021.104922_bib44) 2001; 64
Altunay (10.1016/j.compbiomed.2021.104922_bib9) 2010; 37
10.1016/j.compbiomed.2021.104922_bib50
Sharma (10.1016/j.compbiomed.2021.104922_bib4) 2018; 52
Fan (10.1016/j.compbiomed.2021.104922_bib14) 2020; 2020
World health organization depression key facts (10.1016/j.compbiomed.2021.104922_bib1)
Reddy (10.1016/j.compbiomed.2021.104922_bib37) 2017; 20
Adeli (10.1016/j.compbiomed.2021.104922_bib38) 2007; 54
Faust (10.1016/j.compbiomed.2021.104922_bib33) 2014; 14
Sharma (10.1016/j.compbiomed.2021.104922_bib23) 2015; 42
Mumtaz (10.1016/j.compbiomed.2021.104922_bib61) 2017; 31
Pachori (10.1016/j.compbiomed.2021.104922_bib22) 2014; 113
Gandhi (10.1016/j.compbiomed.2021.104922_bib45) 2010; 37
Ahmadlou (10.1016/j.compbiomed.2021.104922_bib28) 2012; 85
Akbari (10.1016/j.compbiomed.2021.104922_bib53) 2019; 11
Sadiq (10.1016/j.compbiomed.2021.104922_bib49) 2019; 7
Acharya (10.1016/j.compbiomed.2021.104922_bib29) 2015; 74
Swami (10.1016/j.compbiomed.2021.104922_bib17) 2016; 56
Bachmann (10.1016/j.compbiomed.2021.104922_bib57) 2018; 155
Mursalin (10.1016/j.compbiomed.2021.104922_bib12) 2017; 241
Li (10.1016/j.compbiomed.2021.104922_bib13) 2011; 104
10.1016/j.compbiomed.2021.104922_bib62
Akbari (10.1016/j.compbiomed.2021.104922_bib32) 2021; 44
Too (10.1016/j.compbiomed.2021.104922_bib52) 2019; 7
Joshi (10.1016/j.compbiomed.2021.104922_bib10) 2014; 9
References_xml – volume: 74
  start-page: 3051
  year: 2011
  end-page: 3057
  ident: bib47
  article-title: A comparative study of wavelet families for eeg signal classification
  publication-title: Neurocomputing
– volume: 192
  start-page: 105367
  year: 2020
  ident: bib19
  article-title: Automatic sleep stages classification using optimize flexible analytic wavelet transform
  publication-title: Knowl. Base Syst.
– volume: 7
  start-page: 12
  year: 2019
  ident: bib52
  article-title: Emg feature selection and classification using a pbest-guide binary particle swarm optimization
  publication-title: Computation
– volume: 37
  start-page: 3513
  year: 2010
  end-page: 3520
  ident: bib45
  article-title: Expert model for detection of epileptic activity in eeg signature
  publication-title: Expert Syst. Appl.
– volume: 64
  year: 2001
  ident: bib44
  article-title: Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state
  publication-title: Phys. Rev.
– volume: 85
  start-page: 206
  year: 2012
  end-page: 211
  ident: bib28
  article-title: Fractality analysis of frontal brain in major depressive disorder
  publication-title: Int. J. Psychophysiol.
– volume: 7
  start-page: 127678
  year: 2019
  end-page: 127692
  ident: bib49
  article-title: Motor imagery eeg signals classification based on mode amplitude and frequency components using empirical wavelet transform
  publication-title: IEEE Access
– volume: 109
  start-page: 339
  year: 2013
  end-page: 345
  ident: bib36
  article-title: Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from eeg signal
  publication-title: Comput. Methods Progr. Biomed.
– volume: 39
  start-page: 202
  year: 2012
  end-page: 209
  ident: bib7
  article-title: Detection of epileptic electroencephalogram based on permutation entropy and support vector machines
  publication-title: Expert Syst. Appl.
– start-page: 1
  year: 2016
  end-page: 4
  ident: bib11
  article-title: Channel selection and seizure detection using a statistical approach
  publication-title: 2016 5th International Conference on Electronic Devices, Systems and Applications (ICEDSA)
– volume: 11
  start-page: 29
  year: 2019
  end-page: 35
  ident: bib53
  article-title: Fast and accurate classification f and nf eeg by using sodp and ewt
  publication-title: Int. J. Image Graph. Signal Process.
– volume: 42
  start-page: 2276
  year: 1994
  end-page: 2279
  ident: bib3
  article-title: An algorithm to separate nonstationary part of a signal using mid-prediction filter
  publication-title: IEEE Trans. Signal Process.
– volume: 12
  start-page: 1240019
  year: 2012
  ident: bib43
  article-title: Classification of eeg signals in normal and depression conditions by ann using rwe and signal entropy
  publication-title: J. Mech. Med. Biol.
– reference: M.T. Sadiq, X. Yu, Z. Yuan, M.Z. Aziz, S. Siuly, W. Ding, A matrix determinant feature extraction approach for decoding motor and mental imagery eeg in subject specific tasks, IEEE. Trans. Cognit. Dev. Syst., Early Access, DOI: 10.1109/TCDS.2020.3040438.
– volume: 74
  start-page: 79
  year: 2015
  end-page: 83
  ident: bib29
  article-title: A novel depression diagnosis index using nonlinear features in eeg signals
  publication-title: Eur. Neurol.
– volume: 241
  start-page: 204
  year: 2017
  end-page: 214
  ident: bib12
  article-title: Automated epileptic seizure detection using improved correlation-based feature selection with random forest classifier
  publication-title: Neurocomputing
– volume: 106
  start-page: 123
  year: 2001
  end-page: 140
  ident: bib58
  article-title: Eeg power, frequency, asymmetry and coherence in male depression
  publication-title: Psychiatr. Res. Neuroimaging
– volume: 115
  start-page: 64
  year: 2014
  end-page: 75
  ident: bib8
  article-title: Epileptic seizure detection in eegs signals using a fast weighted horizontal visibility algorithm
  publication-title: Comput. Methods Progr. Biomed.
– volume: 61
  start-page: 3999
  year: 2013
  end-page: 4010
  ident: bib20
  article-title: Empirical wavelet transform
  publication-title: IEEE Trans. Signal Process.
– volume: 7
  start-page: 401
  year: 2012
  end-page: 408
  ident: bib34
  article-title: Automated diagnosis of epileptic eeg using entropies
  publication-title: Biomed. Signal Process Control
– volume: 17
  start-page: 1740003
  year: 2017
  ident: bib30
  article-title: A novel approach to detect epileptic seizures using a combination of tunable-q wavelet transform and fractal dimension
  publication-title: J. Mech. Med. Biol.
– volume: 42
  start-page: 1106
  year: 2015
  end-page: 1117
  ident: bib23
  article-title: Classification of epileptic seizures in eeg signals based on phase space representation of intrinsic mode functions
  publication-title: Expert Syst. Appl.
– volume: 20
  start-page: 5283
  year: 2020
  ident: bib6
  article-title: Identification of motor and mental imagery eeg in two and multiclass subject-dependent tasks using successive decomposition index
  publication-title: Sensors
– volume: 44
  start-page: 157
  year: 2021
  end-page: 171
  ident: bib32
  article-title: Detection of focal and non-focal eeg signals using non-linear features derived from empirical wavelet transform rhythms
  publication-title: Phys. Eng. Sci.Med.
– volume: 9
  start-page: 1
  year: 2021
  end-page: 15
  ident: bib35
  article-title: Classification of normal and depressed eeg signals based on centered correntropy of rhythms in empirical wavelet transform domain
  publication-title: Health Inf. Sci. Syst.
– reference: Sadiq M. T., Yu X., Yuan Z., Aziz M. Z., Motor imagery bci classification based on novel two-dimensional modelling in empirical wavelet transform, Electron. Lett. 56 (25), doi:10.1049/el.2020.2509.
– volume: 161
  start-page: 103
  year: 2018
  end-page: 113
  ident: bib42
  article-title: Automated eeg-based screening of depression using deep convolutional neural network
  publication-title: Comput. Methods Progr. Biomed.
– volume: 7
  start-page: 171431
  year: 2019
  end-page: 171451
  ident: bib48
  article-title: Motor imagery eeg signals decoding by multivariate empirical wavelet transform-based framework for robust brain–computer interfaces
  publication-title: IEEE Access
– volume: 34
  start-page: 74
  year: 2017
  end-page: 80
  ident: bib18
  article-title: Detection of epileptic seizure using kraskov entropy applied on tunable-q wavelet transform of eeg signals
  publication-title: Biomed. Signal Process Control
– volume: 37
  start-page: 59
  year: 2020
  end-page: 68
  ident: bib54
  article-title: A novel geometrical method for discrimination of normal, interictal and ictal eeg signals
  publication-title: Trait. Du. Signal
– volume: 56
  start-page: 116
  year: 2016
  end-page: 130
  ident: bib17
  article-title: A novel robust diagnostic model to detect seizures in electroencephalography
  publication-title: Expert Syst. Appl.
– volume: 82
  start-page: 1786
  year: 2012
  end-page: 1791
  ident: bib55
  article-title: An optimal k-nearest neighbor for density estimation
  publication-title: Stat. Probab. Lett.
– volume: 37
  start-page: 5661
  year: 2010
  end-page: 5665
  ident: bib9
  article-title: Epileptic eeg detection using the linear prediction error energy
  publication-title: Expert Syst. Appl.
– year: 2013
  ident: bib27
  article-title: Spectral Asymmetry and Higuchi's Fractal Dimension Measures of Depression Electroencephalogram, Computational and Mathematical Methods in Medicine
– volume: 44
  start-page: 1
  year: 2020
  end-page: 12
  ident: bib25
  article-title: Detection of depression and scaling of severity using six channel eeg data
  publication-title: J. Med. Syst.
– volume: 31
  start-page: 108
  year: 2017
  end-page: 115
  ident: bib61
  article-title: Electroencephalogram (eeg)-based computer-aided technique to diagnose major depressive disorder (mdd)
  publication-title: Biomed. Signal Process Control
– volume: 26
  start-page: 277
  year: 2016
  end-page: 283
  ident: bib26
  article-title: Classification of focal and nonfocal eeg signals using anfis classifier for epilepsy detection
  publication-title: Int. J. Imag. Syst. Technol.
– volume: 164
  start-page: 114031
  year: 2020
  ident: bib21
  article-title: Exploiting dimensionality reduction and neural network techniques for the development of expert brain–computer interfaces
  publication-title: Expert Syst. Appl.
– start-page: 1
  year: 2011
  end-page: 4
  ident: bib31
  article-title: Detection of epileptic seizures using chaotic and statistical features in the emd domain
  publication-title: 2011 Annual IEEE India Conference
– volume: 53
  start-page: 3059
  year: 2020
  end-page: 3088
  ident: bib16
  article-title: Identification of epileptic seizures in eeg signals using time-scale decomposition (itd), discrete wavelet transform (dwt), phase space reconstruction (psr) and neural networks
  publication-title: Artif. Intell. Rev.
– volume: 17
  start-page: 1740002
  year: 2017
  ident: bib15
  article-title: Classification of focal and nonfocal eeg signals using features derived from fourier-based rhythms
  publication-title: J. Mech. Med. Biol.
– volume: 7
  start-page: 1857
  year: 2017
  end-page: 1862
  ident: bib41
  article-title: Automated diagnosis of depression electroencephalograph signals using linear prediction coding and higher order spectra features
  publication-title: J. Med. Imag.Health Inf.
– reference: D. Rafik, B. Larbi, Autoregressive modeling based empirical mode decomposition (emd) for epileptic seizures detection using eeg signals autoregressive modeling based empirical mode decomposition (emd) for epileptic seizures detection using eeg signals.
– volume: 2020
  year: 2020
  ident: bib14
  article-title: Exploiting multiple optimizers with transfer learning techniques for the identification of covid-19 patients
  publication-title: J.Healthc. Eng.
– volume: 44
  start-page: 175
  year: 2013
  end-page: 181
  ident: bib59
  article-title: Spatiotemporal analysis of relative convergence of eegs reveals differences between brain dynamics of depressive women and men
  publication-title: Clin. EEG Neurosci.
– volume: 3
  start-page: 17
  year: 2013
  end-page: 21
  ident: bib39
  article-title: Epileptic seizure detection based on the instantaneous area of analytic intrinsic mode functions of eeg signals
  publication-title: Biomedical Engineering Letters
– volume: 104
  start-page: 358
  year: 2011
  end-page: 372
  ident: bib13
  article-title: Clustering technique-based least square support vector machine for eeg signal classification
  publication-title: Comput. Methods Progr. Biomed.
– volume: 39
  start-page: 4055
  year: 2012
  end-page: 4062
  ident: bib46
  article-title: Discrete harmony search based expert model for epileptic seizure detection in electroencephalography
  publication-title: Expert Syst. Appl.
– volume: 17
  start-page: 1385
  year: 2017
  ident: bib60
  article-title: Major depression detection from eeg signals using kernel eigen-filter-bank common spatial patterns
  publication-title: Sensors
– volume: 9
  start-page: 1
  year: 2014
  end-page: 5
  ident: bib10
  article-title: Classification of ictal and seizure-free eeg signals using fractional linear prediction
  publication-title: Biomed. Signal Process Control
– volume: 54
  start-page: 205
  year: 2007
  end-page: 211
  ident: bib38
  article-title: A wavelet-chaos methodology for analysis of eegs and eeg subbands to detect seizure and epilepsy
  publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng.
– volume: 12
  start-page: 72
  year: 2017
  end-page: 82
  ident: bib56
  article-title: Time–frequency representation using ievdhm–ht with application to classification of epileptic eeg signals
  publication-title: IET Sci. Meas. Technol.
– year: 2021
  ident: bib2
– volume: 113
  start-page: 494
  year: 2014
  end-page: 502
  ident: bib22
  article-title: Epileptic seizure classification in eeg signals using second-order difference plot of intrinsic mode functions
  publication-title: Comput. Methods Progr. Biomed.
– volume: 45
  start-page: 160
  year: 2018
  end-page: 173
  ident: bib51
  article-title: A novel approach to mortality prediction of icu cardiovascular patient based on fuzzy logic method
  publication-title: Biomed. Signal Process Control
– volume: 179
  start-page: 108078
  year: 2021
  ident: bib40
  article-title: Depression recognition based on the reconstruction of phase space of eeg signals and geometrical features
  publication-title: Appl. Acoust.
– volume: 52
  start-page: 508
  year: 2018
  end-page: 520
  ident: bib4
  article-title: An automated diagnosis of depression using three-channel bandwidth-duration localized wavelet filter bank with eeg signals
  publication-title: Cognit. Syst. Res.
– volume: 155
  start-page: 11
  year: 2018
  end-page: 17
  ident: bib57
  article-title: Methods for classifying depression in single channel eeg using linear and nonlinear signal analysis
  publication-title: Comput. Methods Progr. Biomed.
– volume: 14
  start-page: 1450035
  year: 2014
  ident: bib33
  article-title: Depression diagnosis support system based on eeg signal entropies
  publication-title: J. Mech. Med. Biol.
– year: 2021
  ident: bib1
– volume: 29
  start-page: 47
  year: 2018
  end-page: 57
  ident: bib24
  article-title: A novel approach for automated detection of focal eeg signals using empirical wavelet transform
  publication-title: Neural Comput. Appl.
– volume: 20
  start-page: 1486
  year: 2017
  end-page: 1493
  ident: bib37
  article-title: Automated identification system for seizure eeg signals using tunable-q wavelet transform, Engineering science and technology
  publication-title: Int. J.
– volume: 54
  start-page: 205
  issue: 2
  year: 2007
  ident: 10.1016/j.compbiomed.2021.104922_bib38
  article-title: A wavelet-chaos methodology for analysis of eegs and eeg subbands to detect seizure and epilepsy
  publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng.
– volume: 192
  start-page: 105367
  year: 2020
  ident: 10.1016/j.compbiomed.2021.104922_bib19
  article-title: Automatic sleep stages classification using optimize flexible analytic wavelet transform
  publication-title: Knowl. Base Syst.
  doi: 10.1016/j.knosys.2019.105367
– volume: 39
  start-page: 4055
  issue: 4
  year: 2012
  ident: 10.1016/j.compbiomed.2021.104922_bib46
  article-title: Discrete harmony search based expert model for epileptic seizure detection in electroencephalography
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.09.093
– volume: 34
  start-page: 74
  year: 2017
  ident: 10.1016/j.compbiomed.2021.104922_bib18
  article-title: Detection of epileptic seizure using kraskov entropy applied on tunable-q wavelet transform of eeg signals
  publication-title: Biomed. Signal Process Control
  doi: 10.1016/j.bspc.2017.01.001
– volume: 7
  start-page: 401
  issue: 4
  year: 2012
  ident: 10.1016/j.compbiomed.2021.104922_bib34
  article-title: Automated diagnosis of epileptic eeg using entropies
  publication-title: Biomed. Signal Process Control
  doi: 10.1016/j.bspc.2011.07.007
– volume: 74
  start-page: 3051
  issue: 17
  year: 2011
  ident: 10.1016/j.compbiomed.2021.104922_bib47
  article-title: A comparative study of wavelet families for eeg signal classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.04.029
– volume: 17
  start-page: 1385
  issue: 6
  year: 2017
  ident: 10.1016/j.compbiomed.2021.104922_bib60
  article-title: Major depression detection from eeg signals using kernel eigen-filter-bank common spatial patterns
  publication-title: Sensors
  doi: 10.3390/s17061385
– volume: 7
  start-page: 12
  issue: 1
  year: 2019
  ident: 10.1016/j.compbiomed.2021.104922_bib52
  article-title: Emg feature selection and classification using a pbest-guide binary particle swarm optimization
  publication-title: Computation
  doi: 10.3390/computation7010012
– start-page: 1
  year: 2016
  ident: 10.1016/j.compbiomed.2021.104922_bib11
  article-title: Channel selection and seizure detection using a statistical approach
– volume: 52
  start-page: 508
  year: 2018
  ident: 10.1016/j.compbiomed.2021.104922_bib4
  article-title: An automated diagnosis of depression using three-channel bandwidth-duration localized wavelet filter bank with eeg signals
  publication-title: Cognit. Syst. Res.
  doi: 10.1016/j.cogsys.2018.07.010
– ident: 10.1016/j.compbiomed.2021.104922_bib50
  doi: 10.1049/el.2020.2509
– volume: 113
  start-page: 494
  issue: 2
  year: 2014
  ident: 10.1016/j.compbiomed.2021.104922_bib22
  article-title: Epileptic seizure classification in eeg signals using second-order difference plot of intrinsic mode functions
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2013.11.014
– volume: 12
  start-page: 1240019
  year: 2012
  ident: 10.1016/j.compbiomed.2021.104922_bib43
  article-title: Classification of eeg signals in normal and depression conditions by ann using rwe and signal entropy
  publication-title: J. Mech. Med. Biol.
  doi: 10.1142/S0219519412400192
– volume: 2020
  year: 2020
  ident: 10.1016/j.compbiomed.2021.104922_bib14
  article-title: Exploiting multiple optimizers with transfer learning techniques for the identification of covid-19 patients
  publication-title: J.Healthc. Eng.
  doi: 10.1155/2020/8889412
– volume: 39
  start-page: 202
  issue: 1
  year: 2012
  ident: 10.1016/j.compbiomed.2021.104922_bib7
  article-title: Detection of epileptic electroencephalogram based on permutation entropy and support vector machines
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.07.008
– volume: 9
  start-page: 1
  year: 2014
  ident: 10.1016/j.compbiomed.2021.104922_bib10
  article-title: Classification of ictal and seizure-free eeg signals using fractional linear prediction
  publication-title: Biomed. Signal Process Control
  doi: 10.1016/j.bspc.2013.08.006
– volume: 3
  start-page: 17
  issue: 1
  year: 2013
  ident: 10.1016/j.compbiomed.2021.104922_bib39
  article-title: Epileptic seizure detection based on the instantaneous area of analytic intrinsic mode functions of eeg signals
  publication-title: Biomedical Engineering Letters
  doi: 10.1007/s13534-013-0084-0
– volume: 241
  start-page: 204
  year: 2017
  ident: 10.1016/j.compbiomed.2021.104922_bib12
  article-title: Automated epileptic seizure detection using improved correlation-based feature selection with random forest classifier
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.02.053
– volume: 37
  start-page: 5661
  issue: 8
  year: 2010
  ident: 10.1016/j.compbiomed.2021.104922_bib9
  article-title: Epileptic eeg detection using the linear prediction error energy
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.02.045
– ident: 10.1016/j.compbiomed.2021.104922_bib2
– volume: 26
  start-page: 277
  issue: 4
  year: 2016
  ident: 10.1016/j.compbiomed.2021.104922_bib26
  article-title: Classification of focal and nonfocal eeg signals using anfis classifier for epilepsy detection
  publication-title: Int. J. Imag. Syst. Technol.
  doi: 10.1002/ima.22199
– volume: 42
  start-page: 1106
  issue: 3
  year: 2015
  ident: 10.1016/j.compbiomed.2021.104922_bib23
  article-title: Classification of epileptic seizures in eeg signals based on phase space representation of intrinsic mode functions
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.08.030
– ident: 10.1016/j.compbiomed.2021.104922_bib5
  doi: 10.1109/TCDS.2020.3040438
– volume: 20
  start-page: 1486
  issue: 5
  year: 2017
  ident: 10.1016/j.compbiomed.2021.104922_bib37
  article-title: Automated identification system for seizure eeg signals using tunable-q wavelet transform, Engineering science and technology
  publication-title: Int. J.
– volume: 37
  start-page: 59
  issue: 1
  year: 2020
  ident: 10.1016/j.compbiomed.2021.104922_bib54
  article-title: A novel geometrical method for discrimination of normal, interictal and ictal eeg signals
  publication-title: Trait. Du. Signal
  doi: 10.18280/ts.370108
– volume: 12
  start-page: 72
  issue: 1
  year: 2017
  ident: 10.1016/j.compbiomed.2021.104922_bib56
  article-title: Time–frequency representation using ievdhm–ht with application to classification of epileptic eeg signals
  publication-title: IET Sci. Meas. Technol.
  doi: 10.1049/iet-smt.2017.0058
– ident: 10.1016/j.compbiomed.2021.104922_bib62
– year: 2013
  ident: 10.1016/j.compbiomed.2021.104922_bib27
– volume: 104
  start-page: 358
  issue: 3
  year: 2011
  ident: 10.1016/j.compbiomed.2021.104922_bib13
  article-title: Clustering technique-based least square support vector machine for eeg signal classification
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2010.11.014
– volume: 14
  start-page: 1450035
  year: 2014
  ident: 10.1016/j.compbiomed.2021.104922_bib33
  article-title: Depression diagnosis support system based on eeg signal entropies
  publication-title: J. Mech. Med. Biol.
  doi: 10.1142/S0219519414500353
– volume: 7
  start-page: 1857
  issue: 8
  year: 2017
  ident: 10.1016/j.compbiomed.2021.104922_bib41
  article-title: Automated diagnosis of depression electroencephalograph signals using linear prediction coding and higher order spectra features
  publication-title: J. Med. Imag.Health Inf.
– volume: 179
  start-page: 108078
  year: 2021
  ident: 10.1016/j.compbiomed.2021.104922_bib40
  article-title: Depression recognition based on the reconstruction of phase space of eeg signals and geometrical features
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2021.108078
– volume: 17
  start-page: 1740002
  year: 2017
  ident: 10.1016/j.compbiomed.2021.104922_bib15
  article-title: Classification of focal and nonfocal eeg signals using features derived from fourier-based rhythms
  publication-title: J. Mech. Med. Biol.
  doi: 10.1142/S0219519417400024
– volume: 17
  start-page: 1740003
  year: 2017
  ident: 10.1016/j.compbiomed.2021.104922_bib30
  article-title: A novel approach to detect epileptic seizures using a combination of tunable-q wavelet transform and fractal dimension
  publication-title: J. Mech. Med. Biol.
  doi: 10.1142/S0219519417400036
– ident: 10.1016/j.compbiomed.2021.104922_bib1
– volume: 82
  start-page: 1786
  issue: 10
  year: 2012
  ident: 10.1016/j.compbiomed.2021.104922_bib55
  article-title: An optimal k-nearest neighbor for density estimation
  publication-title: Stat. Probab. Lett.
  doi: 10.1016/j.spl.2012.05.017
– volume: 109
  start-page: 339
  issue: 3
  year: 2013
  ident: 10.1016/j.compbiomed.2021.104922_bib36
  article-title: Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from eeg signal
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2012.10.008
– volume: 44
  start-page: 1
  year: 2020
  ident: 10.1016/j.compbiomed.2021.104922_bib25
  article-title: Detection of depression and scaling of severity using six channel eeg data
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-020-01573-y
– volume: 9
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.compbiomed.2021.104922_bib35
  article-title: Classification of normal and depressed eeg signals based on centered correntropy of rhythms in empirical wavelet transform domain
  publication-title: Health Inf. Sci. Syst.
  doi: 10.1007/s13755-021-00139-7
– volume: 37
  start-page: 3513
  issue: 4
  year: 2010
  ident: 10.1016/j.compbiomed.2021.104922_bib45
  article-title: Expert model for detection of epileptic activity in eeg signature
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.10.036
– volume: 155
  start-page: 11
  year: 2018
  ident: 10.1016/j.compbiomed.2021.104922_bib57
  article-title: Methods for classifying depression in single channel eeg using linear and nonlinear signal analysis
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2017.11.023
– volume: 61
  start-page: 3999
  issue: 16
  year: 2013
  ident: 10.1016/j.compbiomed.2021.104922_bib20
  article-title: Empirical wavelet transform
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2013.2265222
– volume: 20
  start-page: 5283
  issue: 18
  year: 2020
  ident: 10.1016/j.compbiomed.2021.104922_bib6
  article-title: Identification of motor and mental imagery eeg in two and multiclass subject-dependent tasks using successive decomposition index
  publication-title: Sensors
  doi: 10.3390/s20185283
– volume: 44
  start-page: 157
  issue: 1
  year: 2021
  ident: 10.1016/j.compbiomed.2021.104922_bib32
  article-title: Detection of focal and non-focal eeg signals using non-linear features derived from empirical wavelet transform rhythms
  publication-title: Phys. Eng. Sci.Med.
  doi: 10.1007/s13246-020-00963-3
– volume: 64
  issue: 6
  year: 2001
  ident: 10.1016/j.compbiomed.2021.104922_bib44
  article-title: Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state
  publication-title: Phys. Rev.
– volume: 85
  start-page: 206
  issue: 2
  year: 2012
  ident: 10.1016/j.compbiomed.2021.104922_bib28
  article-title: Fractality analysis of frontal brain in major depressive disorder
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/j.ijpsycho.2012.05.001
– volume: 11
  start-page: 29
  issue: 11
  year: 2019
  ident: 10.1016/j.compbiomed.2021.104922_bib53
  article-title: Fast and accurate classification f and nf eeg by using sodp and ewt
  publication-title: Int. J. Image Graph. Signal Process.
– volume: 161
  start-page: 103
  year: 2018
  ident: 10.1016/j.compbiomed.2021.104922_bib42
  article-title: Automated eeg-based screening of depression using deep convolutional neural network
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2018.04.012
– volume: 164
  start-page: 114031
  year: 2020
  ident: 10.1016/j.compbiomed.2021.104922_bib21
  article-title: Exploiting dimensionality reduction and neural network techniques for the development of expert brain–computer interfaces
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.114031
– volume: 7
  start-page: 171431
  year: 2019
  ident: 10.1016/j.compbiomed.2021.104922_bib48
  article-title: Motor imagery eeg signals decoding by multivariate empirical wavelet transform-based framework for robust brain–computer interfaces
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2956018
– volume: 53
  start-page: 3059
  issue: 4
  year: 2020
  ident: 10.1016/j.compbiomed.2021.104922_bib16
  article-title: Identification of epileptic seizures in eeg signals using time-scale decomposition (itd), discrete wavelet transform (dwt), phase space reconstruction (psr) and neural networks
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-019-09755-y
– volume: 42
  start-page: 2276
  issue: 9
  year: 1994
  ident: 10.1016/j.compbiomed.2021.104922_bib3
  article-title: An algorithm to separate nonstationary part of a signal using mid-prediction filter
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.317850
– volume: 7
  start-page: 127678
  year: 2019
  ident: 10.1016/j.compbiomed.2021.104922_bib49
  article-title: Motor imagery eeg signals classification based on mode amplitude and frequency components using empirical wavelet transform
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2939623
– volume: 74
  start-page: 79
  issue: 1–2
  year: 2015
  ident: 10.1016/j.compbiomed.2021.104922_bib29
  article-title: A novel depression diagnosis index using nonlinear features in eeg signals
  publication-title: Eur. Neurol.
  doi: 10.1159/000438457
– volume: 31
  start-page: 108
  year: 2017
  ident: 10.1016/j.compbiomed.2021.104922_bib61
  article-title: Electroencephalogram (eeg)-based computer-aided technique to diagnose major depressive disorder (mdd)
  publication-title: Biomed. Signal Process Control
  doi: 10.1016/j.bspc.2016.07.006
– volume: 45
  start-page: 160
  year: 2018
  ident: 10.1016/j.compbiomed.2021.104922_bib51
  article-title: A novel approach to mortality prediction of icu cardiovascular patient based on fuzzy logic method
  publication-title: Biomed. Signal Process Control
  doi: 10.1016/j.bspc.2018.05.019
– volume: 106
  start-page: 123
  issue: 2
  year: 2001
  ident: 10.1016/j.compbiomed.2021.104922_bib58
  article-title: Eeg power, frequency, asymmetry and coherence in male depression
  publication-title: Psychiatr. Res. Neuroimaging
  doi: 10.1016/S0925-4927(00)00080-9
– start-page: 1
  year: 2011
  ident: 10.1016/j.compbiomed.2021.104922_bib31
  article-title: Detection of epileptic seizures using chaotic and statistical features in the emd domain
– volume: 44
  start-page: 175
  issue: 3
  year: 2013
  ident: 10.1016/j.compbiomed.2021.104922_bib59
  article-title: Spatiotemporal analysis of relative convergence of eegs reveals differences between brain dynamics of depressive women and men
  publication-title: Clin. EEG Neurosci.
  doi: 10.1177/1550059413480504
– volume: 56
  start-page: 116
  year: 2016
  ident: 10.1016/j.compbiomed.2021.104922_bib17
  article-title: A novel robust diagnostic model to detect seizures in electroencephalography
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.02.040
– volume: 115
  start-page: 64
  issue: 2
  year: 2014
  ident: 10.1016/j.compbiomed.2021.104922_bib8
  article-title: Epileptic seizure detection in eegs signals using a fast weighted horizontal visibility algorithm
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2014.04.001
– volume: 29
  start-page: 47
  issue: 8
  year: 2018
  ident: 10.1016/j.compbiomed.2021.104922_bib24
  article-title: A novel approach for automated detection of focal eeg signals using empirical wavelet transform
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2646-4
SSID ssj0004030
Score 2.418873
Snippet Recent advances in electroencephalogram (EEG) signal classification have primarily focused on domain-specific approaches, which impede algorithm...
AbstractRecent advances in electroencephalogram (EEG) signal classification have primarily focused on domain-specific approaches, which impede algorithm...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 104922
SubjectTerms Accuracy
Adaptability
Algorithms
Classification
Computer-aided diagnosis
Convulsions & seizures
Datasets
Decomposition
Diagnosis
EEG
Electroencephalography
Empirical analysis
Epilepsy
Feature extraction
Geometrical features
Internal Medicine
K-nearest neighbors algorithm
Medical diagnosis
Methods
Morphology
Motivation
Neural diseases
Other
Particle swarm optimization
Rehabilitation
Signal classification
Two dimensional models
Two-dimensional modeling
Wavelet transforms
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEB_qFcQX0ap4WiWFvi4m2a8LRaTK1SL0KLaF4kvIJlloKbtt99q_35lNcgeicq-7Oztskvna-c0MwL7x0tYzbrNcNZRmLFHmqjLPaiNUI6xCf47-Q54squOL4sdlebkFi1QLQ7DKpBNHRe16S__IP8lyVmHEgxHbl9u7jKZGUXY1jdAwcbSC-zy2GHsC25I6Y01g--t8cfpzXSnJ81CUgtqnwOAoYnsC4otA3KHoHeNGKSj9qaT8l8H6Q3WP9ujoBTyPjiQ7DDv_ErZ8twNPT2Kq_BX8OmRd_-hvmI1zGzJqBumYC9i6q4G1CZfF0HFl8_n3jEyaY1cuIojGTWN9y6jpJfKKyZzhNVwczc-_HWdxkEJmCyWWWaVop2zDBVrEirfcFrypXFF7_EJvhbM-564x1cy1OW-bwtsWHRW03DVqP2XyNzDp-s6_BWZ5a5SppRdGouw746hfvOQN6ga6PIU6rZa2scs4Dbu40QlOdq3X66xpnXVY5ymIFeVt6LSxAY1KG6JTJSnqPo3mYAPa-m-0fohCPGihB6m5Pht7GOFhkYQoERVSHqwoo58S_I8N-e6mk6NXrNanewp7q9so6ZS-MZ3vH8Zn8lzWRVm--_8r3sMz4hcqJndhsrx_8B_QdVo2H6M8_AYYUBmg
  priority: 102
  providerName: ProQuest
Title A novel computer-aided diagnosis framework for EEG-based identification of neural diseases
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482521007162
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482521007162
https://dx.doi.org/10.1016/j.compbiomed.2021.104922
https://www.proquest.com/docview/2586978788
https://www.proquest.com/docview/2583327455
Volume 138
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AKRWK
  dateStart: 19700101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20250905
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 8FG
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhgdJLaPqg26ZBhV6dSLJsWfS0DbvZtmQpoYGlFyFLMmwI3lBvcsxv74wlb-gLFnKx8WOQPNJ8M_I8RMgHG4RTFXNZrmt0MxYgc2WRZ8pyXXOnwZ7D_5Dn83J2Kb8sisUOOR1yYTCsMmF_xPQerdOdk8TNk5vlEnN8YSkBCxyBjn7e47CUCncxOL5_CPOQLI9pKIA3-HaK5okxXhi2HdPcYaUoODo8tRD_U1F_gHWvgabPyH4yHek49u6A7IT2OXlynpzjL8iPMW1Xd-GaurRTQ4blHz31MZpu2dFmiMSiYKrSyeQsQyXm6dKnmKF-mOiqoVjmEtpK7pvuJbmcTr6fzrK0dULmpObrrNQ4Nq5mHHRgyRrmJKtLL1WALwyOexdy5mtbVr7JWVPL4BowTUBXK8A7bfNXZLddteE1oY41VlslArcCpN1bjxXiBasBDfD2iKiBW8aluuK4vcW1GQLIrswDnw3y2UQ-jwjfUN7E2hpb0OhhQMyQOwpoZ0ABbEGr_kUbuiS2neGmE4aZv6bWiHzcUP42O7ds93CYOWbTlCiqElbwqqpG5P3mMcg2OmxsG1a3_Tt5LpQsijeP6sBb8hSvYgrlIdld_7wN78CWWtdHvbDAUS0UHKvp2RHZG3_-OpvD-dNk_u3iF8OyIu4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3daxQxEA-1BfWl-Ilnq0bQx8Uk-3WhFKl69Wp7h2gLxZc0m2ShUnbb7rXiP-ff5swmuQNRuZe-3t5s2NnkNzM7v5kh5JV2wpRDZpJUVphmzOHMFXmalJrLihsJ_hx-h5xMi_FR9uk4P14hv2ItDNIqIyb2QG1bg9_I34h8WEDEAxHb2_OLBKdGYXY1jtDQYbSC3e5bjIXCjn338weEcN323gd436-F2B0dvh8nYcpAYjLJZ0kh8TFMxTiYi4LVzGSsKmxWOnCeneHWuJTZShdDW6esrjJnarDiYNZKgAapU7jvLbKWpZmE4G_t3Wj6-cuiMpOlvggG0C6DYCxwiTzDDEnjvsge4lTBMd0qhfiXgfzDVPT2b_ceWQ-OK93xO-0-WXHNA3J7ElLzD8m3Hdq01-6MmjAnIsHmk5Zaz-U77WgdeWAUHGU6Gn1M0IRaemoDY6nfJLStKTbZhLVC8qh7RI5uRKWPyWrTNu4JoYbVWupSOK4FYI3VFvvTC1YBFuHPA1JGbSkTuprjcI0zFelr39VCzwr1rLyeB4TPJc99Z48lZGR8ISpWrgLWKjA_S8iWf5N1XQCNTnHVCcXU175nEmwWgQwWXoDk1lwy-EXe31ly3c24c9R8qcVpGpCX88uALJgu0o1rr_r_pKkoszx_-v9bvCB3xoeTA3WwN93fIHdxbV-tuUlWZ5dX7hm4bbPqeTgblJzc9HH8Daw5Wao
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEF9qheKLWD_wtK0r6GPofiTZW0RKsXe21hZBC4cva7K7gZaSVHNV_Nf865zJ7t6BqNxLXy83WTKZz8xvZgh5UXlh1ZjZTOoay4wF6FxZyExVXNfcaojn8DvkyWl5eJa_mxWzNfIr9cIgrDLZxMFQu87iN_JdUYxLyHggY9ttIiziw8F07-prhhuksNKa1mkEETn2P39A-ta_PjqAd_1SiOnk05vDLG4YyGyu-TwrNT6CrRkHV1Gyhtmc1aXLlYfA2VvurJfM1VU5do1kTZ1724AHB5emwCzoSsJ9b5HbSkqNcEI1U8ueTCZD-wvYuRzSsIgiCtgyhIuH9nrIUAXHQqsW4l-u8Q8nMXi-6T1yN4asdD_I2CZZ8-19snESi_IPyOd92nbf_SW1cUNEhmMnHXUBxXfe0yYhwCiEyHQyeZuh83T03EWs0iAetGsojteEs2LZqH9Izm6EoY_Ietu1_jGhljWVrpTwvBJgZVzlcDK9YDVYIfx5RFTilrFxnjmu1bg0Cbh2YZZ8NshnE_g8InxBeRVmeqxAo9MLMalnFaysAcezAq36G63vo7noDTe9MMx8HKYlgbAIxK7wEihfLShjRBQinRXP3UqSYxZHLfVoRJ4vLoNNwUJR1frueviPlELlRfHk_7d4RjZACc37o9Pjp-QOHh3aNLfI-vzbtd-GeG1e7wyKQcmXm9bE301kV0Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+computer-aided+diagnosis+framework+for+EEG-based+identification+of+neural+diseases&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Sadiq%2C+Muhammad+Tariq&rft.au=Akbari%2C+Hesam&rft.au=Siuly%2C+Siuly&rft.au=Yousaf%2C+Adnan&rft.date=2021-11-01&rft.issn=0010-4825&rft.volume=138&rft.spage=104922&rft_id=info:doi/10.1016%2Fj.compbiomed.2021.104922&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compbiomed_2021_104922
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482520X00229%2Fcov150h.gif