A novel computer-aided diagnosis framework for EEG-based identification of neural diseases
Recent advances in electroencephalogram (EEG) signal classification have primarily focused on domain-specific approaches, which impede algorithm cross-discipline capability. This study introduces a new computer-aided diagnosis (CAD) system for the classification of two distinct EEG domains under a u...
Saved in:
| Published in | Computers in biology and medicine Vol. 138; p. 104922 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Oxford
Elsevier Ltd
01.11.2021
Elsevier Limited |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0010-4825 1879-0534 1879-0534 |
| DOI | 10.1016/j.compbiomed.2021.104922 |
Cover
| Abstract | Recent advances in electroencephalogram (EEG) signal classification have primarily focused on domain-specific approaches, which impede algorithm cross-discipline capability. This study introduces a new computer-aided diagnosis (CAD) system for the classification of two distinct EEG domains under a unified sequential framework. The key motivation to consider two neural diseases by one framework is to develop a unified algorithm for EEG classification. The main contributions of this study are five-fold. First, EEG signals are decomposed into 10 intrinsic mode functions (IMFs) with the help of empirical wavelet transform. Second, a novel two-dimensional (2D) modeling of IMFs is plotted to visualize the complexity of EEG signals. Third, several new geometrical features are extracted to analyze the dynamic and chaotic essence. Fourth, significant features are selected by binary particle swarm optimization algorithm (B–PSO). Fifth, selected features are fed to the k-nearest neighbor classifier for EEG signal classification purposes. All the experiments are executed on one depression and two epileptic EEG datasets in a leave one out cross-validation strategy. The proposed CAD system provides an average classification accuracy of 93.35% in depression detection, 99.33% for regular against ictal, and 97.33% for interictal versus ictal respectively. The overall empirical analysis authenticates that the proposed CAD outperforms the existing domain-specific methods in terms of classification accuracies and multirole adaptability, thus, can be endorsed as an effective automated neural rehabilitation system.
•A Novel two-dimensional modeling is proposed to visualize chaotic behavior of EEG signals.•Novel computationally efficient geometrical features are introduce.•A computerized framework is proposed for automated detection of EEG signals.•The proposed framework is suitable for cross-domain EEG analysis.•Experimental results are better or comparable with state-of-art. |
|---|---|
| AbstractList | Recent advances in electroencephalogram (EEG) signal classification have primarily focused on domain-specific approaches, which impede algorithm cross-discipline capability. This study introduces a new computer-aided diagnosis (CAD) system for the classification of two distinct EEG domains under a unified sequential framework. The key motivation to consider two neural diseases by one framework is to develop a unified algorithm for EEG classification. The main contributions of this study are five-fold. First, EEG signals are decomposed into 10 intrinsic mode functions (IMFs) with the help of empirical wavelet transform. Second, a novel two-dimensional (2D) modeling of IMFs is plotted to visualize the complexity of EEG signals. Third, several new geometrical features are extracted to analyze the dynamic and chaotic essence. Fourth, significant features are selected by binary particle swarm optimization algorithm (B-PSO). Fifth, selected features are fed to the k-nearest neighbor classifier for EEG signal classification purposes. All the experiments are executed on one depression and two epileptic EEG datasets in a leave one out cross-validation strategy. The proposed CAD system provides an average classification accuracy of 93.35% in depression detection, 99.33% for regular against ictal, and 97.33% for interictal versus ictal respectively. The overall empirical analysis authenticates that the proposed CAD outperforms the existing domain-specific methods in terms of classification accuracies and multirole adaptability, thus, can be endorsed as an effective automated neural rehabilitation system.Recent advances in electroencephalogram (EEG) signal classification have primarily focused on domain-specific approaches, which impede algorithm cross-discipline capability. This study introduces a new computer-aided diagnosis (CAD) system for the classification of two distinct EEG domains under a unified sequential framework. The key motivation to consider two neural diseases by one framework is to develop a unified algorithm for EEG classification. The main contributions of this study are five-fold. First, EEG signals are decomposed into 10 intrinsic mode functions (IMFs) with the help of empirical wavelet transform. Second, a novel two-dimensional (2D) modeling of IMFs is plotted to visualize the complexity of EEG signals. Third, several new geometrical features are extracted to analyze the dynamic and chaotic essence. Fourth, significant features are selected by binary particle swarm optimization algorithm (B-PSO). Fifth, selected features are fed to the k-nearest neighbor classifier for EEG signal classification purposes. All the experiments are executed on one depression and two epileptic EEG datasets in a leave one out cross-validation strategy. The proposed CAD system provides an average classification accuracy of 93.35% in depression detection, 99.33% for regular against ictal, and 97.33% for interictal versus ictal respectively. The overall empirical analysis authenticates that the proposed CAD outperforms the existing domain-specific methods in terms of classification accuracies and multirole adaptability, thus, can be endorsed as an effective automated neural rehabilitation system. Recent advances in electroencephalogram (EEG) signal classification have primarily focused on domain-specific approaches, which impede algorithm cross-discipline capability. This study introduces a new computer-aided diagnosis (CAD) system for the classification of two distinct EEG domains under a unified sequential framework. The key motivation to consider two neural diseases by one framework is to develop a unified algorithm for EEG classification. The main contributions of this study are five-fold. First, EEG signals are decomposed into 10 intrinsic mode functions (IMFs) with the help of empirical wavelet transform. Second, a novel two-dimensional (2D) modeling of IMFs is plotted to visualize the complexity of EEG signals. Third, several new geometrical features are extracted to analyze the dynamic and chaotic essence. Fourth, significant features are selected by binary particle swarm optimization algorithm (B–PSO). Fifth, selected features are fed to the k-nearest neighbor classifier for EEG signal classification purposes. All the experiments are executed on one depression and two epileptic EEG datasets in a leave one out cross-validation strategy. The proposed CAD system provides an average classification accuracy of 93.35% in depression detection, 99.33% for regular against ictal, and 97.33% for interictal versus ictal respectively. The overall empirical analysis authenticates that the proposed CAD outperforms the existing domain-specific methods in terms of classification accuracies and multirole adaptability, thus, can be endorsed as an effective automated neural rehabilitation system. Recent advances in electroencephalogram (EEG) signal classification have primarily focused on domain-specific approaches, which impede algorithm cross-discipline capability. This study introduces a new computer-aided diagnosis (CAD) system for the classification of two distinct EEG domains under a unified sequential framework. The key motivation to consider two neural diseases by one framework is to develop a unified algorithm for EEG classification. The main contributions of this study are five-fold. First, EEG signals are decomposed into 10 intrinsic mode functions (IMFs) with the help of empirical wavelet transform. Second, a novel two-dimensional (2D) modeling of IMFs is plotted to visualize the complexity of EEG signals. Third, several new geometrical features are extracted to analyze the dynamic and chaotic essence. Fourth, significant features are selected by binary particle swarm optimization algorithm (B–PSO). Fifth, selected features are fed to the k-nearest neighbor classifier for EEG signal classification purposes. All the experiments are executed on one depression and two epileptic EEG datasets in a leave one out cross-validation strategy. The proposed CAD system provides an average classification accuracy of 93.35% in depression detection, 99.33% for regular against ictal, and 97.33% for interictal versus ictal respectively. The overall empirical analysis authenticates that the proposed CAD outperforms the existing domain-specific methods in terms of classification accuracies and multirole adaptability, thus, can be endorsed as an effective automated neural rehabilitation system. •A Novel two-dimensional modeling is proposed to visualize chaotic behavior of EEG signals.•Novel computationally efficient geometrical features are introduce.•A computerized framework is proposed for automated detection of EEG signals.•The proposed framework is suitable for cross-domain EEG analysis.•Experimental results are better or comparable with state-of-art. AbstractRecent advances in electroencephalogram (EEG) signal classification have primarily focused on domain-specific approaches, which impede algorithm cross-discipline capability. This study introduces a new computer-aided diagnosis (CAD) system for the classification of two distinct EEG domains under a unified sequential framework. The key motivation to consider two neural diseases by one framework is to develop a unified algorithm for EEG classification. The main contributions of this study are five-fold. First, EEG signals are decomposed into 10 intrinsic mode functions (IMFs) with the help of empirical wavelet transform. Second, a novel two-dimensional (2D) modeling of IMFs is plotted to visualize the complexity of EEG signals. Third, several new geometrical features are extracted to analyze the dynamic and chaotic essence. Fourth, significant features are selected by binary particle swarm optimization algorithm (B–PSO). Fifth, selected features are fed to the k-nearest neighbor classifier for EEG signal classification purposes. All the experiments are executed on one depression and two epileptic EEG datasets in a leave one out cross-validation strategy. The proposed CAD system provides an average classification accuracy of 93.35% in depression detection, 99.33% for regular against ictal, and 97.33% for interictal versus ictal respectively. The overall empirical analysis authenticates that the proposed CAD outperforms the existing domain-specific methods in terms of classification accuracies and multirole adaptability, thus, can be endorsed as an effective automated neural rehabilitation system. |
| ArticleNumber | 104922 |
| Author | Siuly, Siuly Akbari, Hesam Rehman, Ateeq Ur Yousaf, Adnan Sadiq, Muhammad Tariq |
| Author_xml | – sequence: 1 givenname: Muhammad Tariq orcidid: 0000-0002-7410-5951 surname: Sadiq fullname: Sadiq, Muhammad Tariq email: muhammad.sadiq1@ee.uol.edu.pk organization: School of Automation, Northwestern Polytechnical University, Xi'an, 710072, China – sequence: 2 givenname: Hesam surname: Akbari fullname: Akbari, Hesam email: hesamakbari09192037254@gmail.com organization: Department of Biomedical Engineering, Islamic Azad University, Tehran, 1411718541, Iran – sequence: 3 givenname: Siuly surname: Siuly fullname: Siuly, Siuly email: Siuly.Siuly@vu.edu.au organization: Institute for Sustainable Industries & Liveable Cities, Victoria University, Melbourne, 14428, Australia – sequence: 4 givenname: Adnan surname: Yousaf fullname: Yousaf, Adnan email: adnan.yousaf@superior.edu.pk organization: Department of Electrical Engineering, Superior University, Lahore, 54000, Pakistan – sequence: 5 givenname: Ateeq Ur orcidid: 0000-0001-5203-0621 surname: Rehman fullname: Rehman, Ateeq Ur email: ateqrehman@gmail.com organization: Department of Electrical Engineering, Government College University, Lahore, 54000, Pakistan |
| BookMark | eNqNkk1r3DAQhkVJoJuk_0HQSy_ejmT56xKahm1aCOSQ9NKLkKVR0caWtpKdkH9fuVsaWCjsSSCeeZh5Z87IiQ8eCaEM1gxY_XG71mHc9S6MaNYcOMvfouP8DVmxtukKqEpxQlYADArR8uotOUtpCwACSliRH1fUhycc6GKZJ4yFcgYNNU799CG5RG1UIz6H-EhtiHSzuSl6lTKRMT8567SaXPA0WOpxjmrIpQkzkS7IqVVDwnd_33Py_cvm4fprcXt38-366rbQomNTUXc9aq17YIimBgtaQF8b0WCeAzUzGkswvapbY0uwvUBtRdnVTDTGYKfKc_Jh793F8GvGNMnRJY3DoDyGOUletWXJG1FVGX1_gG7DHH3ubqHqrmmbts3U5Z7SMaQU0Urtpj9TTlG5QTKQS_RyK1-jl0v0ch99FrQHgl10o4ovx5R-3pdiTuzJYZRJO_QajYuoJ2mCO0ZyeSDRg_N5U8MjvmD6NzOTiUuQ98txLLfBGUDD6kXw6f-C43r4DUS30qA |
| CitedBy_id | crossref_primary_10_1016_j_bspc_2023_105491 crossref_primary_10_1016_j_measurement_2024_115500 crossref_primary_10_3390_e24111540 crossref_primary_10_1186_s12911_022_01956_w crossref_primary_10_3389_fbioe_2023_1190211 crossref_primary_10_1007_s13246_023_01225_8 crossref_primary_10_3390_app122110813 crossref_primary_10_1049_cit2_12293 crossref_primary_10_1007_s13755_022_00187_7 crossref_primary_10_3389_fpsyg_2022_880065 crossref_primary_10_1371_journal_pone_0277555 crossref_primary_10_1007_s13538_022_01231_3 crossref_primary_10_1155_2022_1992596 crossref_primary_10_1016_j_compbiomed_2022_105240 crossref_primary_10_1088_1402_4896_ad3b49 crossref_primary_10_3389_fphys_2022_1029298 |
| Cites_doi | 10.1016/j.knosys.2019.105367 10.1016/j.eswa.2011.09.093 10.1016/j.bspc.2017.01.001 10.1016/j.bspc.2011.07.007 10.1016/j.neucom.2011.04.029 10.3390/s17061385 10.3390/computation7010012 10.1016/j.cogsys.2018.07.010 10.1049/el.2020.2509 10.1016/j.cmpb.2013.11.014 10.1142/S0219519412400192 10.1155/2020/8889412 10.1016/j.eswa.2011.07.008 10.1016/j.bspc.2013.08.006 10.1007/s13534-013-0084-0 10.1016/j.neucom.2017.02.053 10.1016/j.eswa.2010.02.045 10.1002/ima.22199 10.1016/j.eswa.2014.08.030 10.1109/TCDS.2020.3040438 10.18280/ts.370108 10.1049/iet-smt.2017.0058 10.1016/j.cmpb.2010.11.014 10.1142/S0219519414500353 10.1016/j.apacoust.2021.108078 10.1142/S0219519417400024 10.1142/S0219519417400036 10.1016/j.spl.2012.05.017 10.1016/j.cmpb.2012.10.008 10.1007/s10916-020-01573-y 10.1007/s13755-021-00139-7 10.1016/j.eswa.2009.10.036 10.1016/j.cmpb.2017.11.023 10.1109/TSP.2013.2265222 10.3390/s20185283 10.1007/s13246-020-00963-3 10.1016/j.ijpsycho.2012.05.001 10.1016/j.cmpb.2018.04.012 10.1016/j.eswa.2020.114031 10.1109/ACCESS.2019.2956018 10.1007/s10462-019-09755-y 10.1109/78.317850 10.1109/ACCESS.2019.2939623 10.1159/000438457 10.1016/j.bspc.2016.07.006 10.1016/j.bspc.2018.05.019 10.1016/S0925-4927(00)00080-9 10.1177/1550059413480504 10.1016/j.eswa.2016.02.040 10.1016/j.cmpb.2014.04.001 10.1007/s00521-016-2646-4 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd Elsevier Ltd 2021. Elsevier Ltd Copyright © 2021 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Elsevier Ltd – notice: 2021. Elsevier Ltd – notice: Copyright © 2021 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
| DOI | 10.1016/j.compbiomed.2021.104922 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Computing Database Health & Medical Collection (Alumni) Medical Database Research Library Biological Science Database Biochemistry Abstracts 1 Research Library (Corporate) ProQuest Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Proquest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
| DatabaseTitle | CrossRef Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Research Library Prep |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1879-0534 |
| EndPage | 104922 |
| ExternalDocumentID | 10_1016_j_compbiomed_2021_104922 S0010482521007162 1_s2_0_S0010482521007162 |
| GroupedDBID | --- --K --M --Z -~X .1- .55 .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 77I 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABOCM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EFLBG EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HLZ HMCUK HMK HMO HVGLF HZ~ IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q38 R2- ROL RPZ RXW SAE SBC SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ SV3 T5K TAE UAP UKHRP WOW WUQ X7M XPP Z5R ZGI ~G- ~HD 3V. AACTN AFCTW AFKWA AJOXV ALIPV AMFUW M0N RIG AAIAV ABLVK ABYKQ AHPSJ AJBFU LCYCR AAYXX CITATION PUEGO 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 |
| ID | FETCH-LOGICAL-c491t-69becccb01eed60f0c40b6d47e049ec1dce30dba68df30fb4ecf4396147dde9a3 |
| IEDL.DBID | .~1 |
| ISSN | 0010-4825 1879-0534 |
| IngestDate | Thu Oct 02 10:28:02 EDT 2025 Tue Oct 07 06:14:26 EDT 2025 Wed Oct 01 05:24:47 EDT 2025 Thu Apr 24 23:05:27 EDT 2025 Fri Feb 23 02:43:32 EST 2024 Tue Feb 25 20:08:37 EST 2025 Tue Oct 14 19:33:08 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Neural diseases Electroencephalography Two-dimensional modeling Geometrical features Computer-aided diagnosis |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c491t-69becccb01eed60f0c40b6d47e049ec1dce30dba68df30fb4ecf4396147dde9a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-5203-0621 0000-0002-7410-5951 |
| PQID | 2586978788 |
| PQPubID | 1226355 |
| PageCount | 1 |
| ParticipantIDs | proquest_miscellaneous_2583327455 proquest_journals_2586978788 crossref_citationtrail_10_1016_j_compbiomed_2021_104922 crossref_primary_10_1016_j_compbiomed_2021_104922 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2021_104922 elsevier_clinicalkeyesjournals_1_s2_0_S0010482521007162 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2021_104922 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-11-01 |
| PublicationDateYYYYMMDD | 2021-11-01 |
| PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Computers in biology and medicine |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier Limited |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
| References | Akbari, Esmaili (bib54) 2020; 37 Deivasigamani, Senthilpari, Yong (bib26) 2016; 26 Bachmann, Päeske, Kalev, Aarma, Lehtmets, Ööpik, Lass, Hinrikus (bib57) 2018; 155 Sadiq, Yu, Yuan, Fan, Rehman, Li, Xiao (bib49) 2019; 7 Kung, Lin, Kao (bib55) 2012; 82 Ahmadlou, Adeli, Adeli (bib28) 2012; 85 Swami, Gandhi, Panigrahi, Tripathi, Anand (bib17) 2016; 56 Reddy, Rao (bib37) 2017; 20 Bachmann, Lass, Suhhova, Hinrikus (bib27) 2013 Joshi, Pachori, Vijesh (bib10) 2014; 9 Sadiq, Yu, Yuan (bib21) 2020; 164 Acharya, Sudarshan, Adeli, Santhosh, Koh, Puthankatti, Adeli (bib29) 2015; 74 Gandhi, Panigrahi, Anand (bib47) 2011; 74 World health organization epilepsy key facts (bib2) 2021 Mahato, Goyal, Ram, Paul (bib25) 2020; 44 Bajaj, Pachori (bib39) 2013; 3 Akbari, Sadiq, Rehman (bib35) 2021; 9 Bairy, Lih, Hagiwara, Puthankattil, Faust, Niranjan, Acharya (bib41) 2017; 7 Moridani, Setarehdan, Nasrabadi, Hajinasrollah (bib51) 2018; 45 Pachori, Patidar (bib22) 2014; 113 Akbari, Sadiq (bib32) 2021; 44 Gandhi, Chakraborty, Roy, Panigrahi (bib46) 2012; 39 D. Rafik, B. Larbi, Autoregressive modeling based empirical mode decomposition (emd) for epileptic seizures detection using eeg signals autoregressive modeling based empirical mode decomposition (emd) for epileptic seizures detection using eeg signals. Bhattacharyya, Sharma, Pachori, Sircar, Acharya (bib24) 2018; 29 Sharma, Achuth, Deb, Puthankattil, Acharya (bib4) 2018; 52 Altunay, Telatar, Erogul (bib9) 2010; 37 Hosseinifard, Moradi, Rostami (bib36) 2013; 109 Fan, Jamil, Sadiq, Huang, Yu (bib14) 2020; 2020 Mumtaz, Xia, Ali, Yasin, Hussain, Malik (bib61) 2017; 31 Sharma, Pachori (bib23) 2015; 42 Gandhi, Panigrahi, Bhatia, Anand (bib45) 2010; 37 Ahmadlou, Adeli, Adeli (bib59) 2013; 44 Puthankattil, Joseph (bib43) 2012; 12 Sadiq, Yu, Yuan, Zeming, Rehman, Ullah, Li, Xiao (bib48) 2019; 7 Liao, Wu, Huang, Cheng, Liu (bib60) 2017; 17 Taran, Sharma, Bajaj (bib19) 2020; 192 Akbari, Ghofrani (bib53) 2019; 11 Sharma, Pachori (bib30) 2017; 17 Sharma, Pachori (bib56) 2017; 12 Mursalin, Zhang, Chen, Chawla (bib12) 2017; 241 Adeli, Ghosh-Dastidar, Dadmehr (bib38) 2007; 54 Alotaiby, Alshebeili, Abd El-Samie, Alabdulrazak, Alkhnaian (bib11) 2016 Alam, Bhuiyan (bib31) 2011 Too, Abdullah, Mohd Saad, Tee (bib52) 2019; 7 Ray (bib3) 1994; 42 Faust, Ang, Puthankattil, Joseph (bib33) 2014; 14 Sadiq, Yu, Yuan, Aziz (bib6) 2020; 20 Acharya, Oh, Hagiwara, Tan, Adeli, Subha (bib42) 2018; 161 Gilles (bib20) 2013; 61 Zhu, Li, Wen (bib8) 2014; 115 Andrzejak, Lehnertz, Mormann, Rieke, David, Elger (bib44) 2001; 64 Sadiq M. T., Yu X., Yuan Z., Aziz M. Z., Motor imagery bci classification based on novel two-dimensional modelling in empirical wavelet transform, Electron. Lett. 56 (25), doi:10.1049/el.2020.2509. Singh, Pachori (bib15) 2017; 17 M.T. Sadiq, X. Yu, Z. Yuan, M.Z. Aziz, S. Siuly, W. Ding, A matrix determinant feature extraction approach for decoding motor and mental imagery eeg in subject specific tasks, IEEE. Trans. Cognit. Dev. Syst., Early Access, DOI: 10.1109/TCDS.2020.3040438. Patidar, Panigrahi (bib18) 2017; 34 Nicolaou, Georgiou (bib7) 2012; 39 Akbari, Sadiq, Rehman, Ghazvini, Naqvi, Payan, Bagheri, Bagheri (bib40) 2021; 179 Li, Wen (bib13) 2011; 104 World health organization depression key facts (bib1) 2021 Zeng, Li, Yuan, Wang, Liu, Wang (bib16) 2020; 53 Acharya, Molinari, Sree, Chattopadhyay, Ng, Suri (bib34) 2012; 7 Knott, Mahoney, Kennedy, Evans (bib58) 2001; 106 Akbari (10.1016/j.compbiomed.2021.104922_bib35) 2021; 9 Alam (10.1016/j.compbiomed.2021.104922_bib31) 2011 Nicolaou (10.1016/j.compbiomed.2021.104922_bib7) 2012; 39 Sadiq (10.1016/j.compbiomed.2021.104922_bib48) 2019; 7 Sharma (10.1016/j.compbiomed.2021.104922_bib56) 2017; 12 Sharma (10.1016/j.compbiomed.2021.104922_bib30) 2017; 17 World health organization epilepsy key facts (10.1016/j.compbiomed.2021.104922_bib2) Ahmadlou (10.1016/j.compbiomed.2021.104922_bib59) 2013; 44 Bhattacharyya (10.1016/j.compbiomed.2021.104922_bib24) 2018; 29 Mahato (10.1016/j.compbiomed.2021.104922_bib25) 2020; 44 Ray (10.1016/j.compbiomed.2021.104922_bib3) 1994; 42 Akbari (10.1016/j.compbiomed.2021.104922_bib40) 2021; 179 Alotaiby (10.1016/j.compbiomed.2021.104922_bib11) 2016 Zeng (10.1016/j.compbiomed.2021.104922_bib16) 2020; 53 Liao (10.1016/j.compbiomed.2021.104922_bib60) 2017; 17 Bairy (10.1016/j.compbiomed.2021.104922_bib41) 2017; 7 Acharya (10.1016/j.compbiomed.2021.104922_bib42) 2018; 161 Puthankattil (10.1016/j.compbiomed.2021.104922_bib43) 2012; 12 Sadiq (10.1016/j.compbiomed.2021.104922_bib21) 2020; 164 Akbari (10.1016/j.compbiomed.2021.104922_bib54) 2020; 37 Deivasigamani (10.1016/j.compbiomed.2021.104922_bib26) 2016; 26 Gandhi (10.1016/j.compbiomed.2021.104922_bib46) 2012; 39 Sadiq (10.1016/j.compbiomed.2021.104922_bib6) 2020; 20 Knott (10.1016/j.compbiomed.2021.104922_bib58) 2001; 106 Bachmann (10.1016/j.compbiomed.2021.104922_bib27) 2013 Moridani (10.1016/j.compbiomed.2021.104922_bib51) 2018; 45 Kung (10.1016/j.compbiomed.2021.104922_bib55) 2012; 82 10.1016/j.compbiomed.2021.104922_bib5 Gilles (10.1016/j.compbiomed.2021.104922_bib20) 2013; 61 Acharya (10.1016/j.compbiomed.2021.104922_bib34) 2012; 7 Bajaj (10.1016/j.compbiomed.2021.104922_bib39) 2013; 3 Singh (10.1016/j.compbiomed.2021.104922_bib15) 2017; 17 Patidar (10.1016/j.compbiomed.2021.104922_bib18) 2017; 34 Gandhi (10.1016/j.compbiomed.2021.104922_bib47) 2011; 74 Zhu (10.1016/j.compbiomed.2021.104922_bib8) 2014; 115 Taran (10.1016/j.compbiomed.2021.104922_bib19) 2020; 192 Hosseinifard (10.1016/j.compbiomed.2021.104922_bib36) 2013; 109 Andrzejak (10.1016/j.compbiomed.2021.104922_bib44) 2001; 64 Altunay (10.1016/j.compbiomed.2021.104922_bib9) 2010; 37 10.1016/j.compbiomed.2021.104922_bib50 Sharma (10.1016/j.compbiomed.2021.104922_bib4) 2018; 52 Fan (10.1016/j.compbiomed.2021.104922_bib14) 2020; 2020 World health organization depression key facts (10.1016/j.compbiomed.2021.104922_bib1) Reddy (10.1016/j.compbiomed.2021.104922_bib37) 2017; 20 Adeli (10.1016/j.compbiomed.2021.104922_bib38) 2007; 54 Faust (10.1016/j.compbiomed.2021.104922_bib33) 2014; 14 Sharma (10.1016/j.compbiomed.2021.104922_bib23) 2015; 42 Mumtaz (10.1016/j.compbiomed.2021.104922_bib61) 2017; 31 Pachori (10.1016/j.compbiomed.2021.104922_bib22) 2014; 113 Gandhi (10.1016/j.compbiomed.2021.104922_bib45) 2010; 37 Ahmadlou (10.1016/j.compbiomed.2021.104922_bib28) 2012; 85 Akbari (10.1016/j.compbiomed.2021.104922_bib53) 2019; 11 Sadiq (10.1016/j.compbiomed.2021.104922_bib49) 2019; 7 Acharya (10.1016/j.compbiomed.2021.104922_bib29) 2015; 74 Swami (10.1016/j.compbiomed.2021.104922_bib17) 2016; 56 Bachmann (10.1016/j.compbiomed.2021.104922_bib57) 2018; 155 Mursalin (10.1016/j.compbiomed.2021.104922_bib12) 2017; 241 Li (10.1016/j.compbiomed.2021.104922_bib13) 2011; 104 10.1016/j.compbiomed.2021.104922_bib62 Akbari (10.1016/j.compbiomed.2021.104922_bib32) 2021; 44 Too (10.1016/j.compbiomed.2021.104922_bib52) 2019; 7 Joshi (10.1016/j.compbiomed.2021.104922_bib10) 2014; 9 |
| References_xml | – volume: 74 start-page: 3051 year: 2011 end-page: 3057 ident: bib47 article-title: A comparative study of wavelet families for eeg signal classification publication-title: Neurocomputing – volume: 192 start-page: 105367 year: 2020 ident: bib19 article-title: Automatic sleep stages classification using optimize flexible analytic wavelet transform publication-title: Knowl. Base Syst. – volume: 7 start-page: 12 year: 2019 ident: bib52 article-title: Emg feature selection and classification using a pbest-guide binary particle swarm optimization publication-title: Computation – volume: 37 start-page: 3513 year: 2010 end-page: 3520 ident: bib45 article-title: Expert model for detection of epileptic activity in eeg signature publication-title: Expert Syst. Appl. – volume: 64 year: 2001 ident: bib44 article-title: Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state publication-title: Phys. Rev. – volume: 85 start-page: 206 year: 2012 end-page: 211 ident: bib28 article-title: Fractality analysis of frontal brain in major depressive disorder publication-title: Int. J. Psychophysiol. – volume: 7 start-page: 127678 year: 2019 end-page: 127692 ident: bib49 article-title: Motor imagery eeg signals classification based on mode amplitude and frequency components using empirical wavelet transform publication-title: IEEE Access – volume: 109 start-page: 339 year: 2013 end-page: 345 ident: bib36 article-title: Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from eeg signal publication-title: Comput. Methods Progr. Biomed. – volume: 39 start-page: 202 year: 2012 end-page: 209 ident: bib7 article-title: Detection of epileptic electroencephalogram based on permutation entropy and support vector machines publication-title: Expert Syst. Appl. – start-page: 1 year: 2016 end-page: 4 ident: bib11 article-title: Channel selection and seizure detection using a statistical approach publication-title: 2016 5th International Conference on Electronic Devices, Systems and Applications (ICEDSA) – volume: 11 start-page: 29 year: 2019 end-page: 35 ident: bib53 article-title: Fast and accurate classification f and nf eeg by using sodp and ewt publication-title: Int. J. Image Graph. Signal Process. – volume: 42 start-page: 2276 year: 1994 end-page: 2279 ident: bib3 article-title: An algorithm to separate nonstationary part of a signal using mid-prediction filter publication-title: IEEE Trans. Signal Process. – volume: 12 start-page: 1240019 year: 2012 ident: bib43 article-title: Classification of eeg signals in normal and depression conditions by ann using rwe and signal entropy publication-title: J. Mech. Med. Biol. – reference: M.T. Sadiq, X. Yu, Z. Yuan, M.Z. Aziz, S. Siuly, W. Ding, A matrix determinant feature extraction approach for decoding motor and mental imagery eeg in subject specific tasks, IEEE. Trans. Cognit. Dev. Syst., Early Access, DOI: 10.1109/TCDS.2020.3040438. – volume: 74 start-page: 79 year: 2015 end-page: 83 ident: bib29 article-title: A novel depression diagnosis index using nonlinear features in eeg signals publication-title: Eur. Neurol. – volume: 241 start-page: 204 year: 2017 end-page: 214 ident: bib12 article-title: Automated epileptic seizure detection using improved correlation-based feature selection with random forest classifier publication-title: Neurocomputing – volume: 106 start-page: 123 year: 2001 end-page: 140 ident: bib58 article-title: Eeg power, frequency, asymmetry and coherence in male depression publication-title: Psychiatr. Res. Neuroimaging – volume: 115 start-page: 64 year: 2014 end-page: 75 ident: bib8 article-title: Epileptic seizure detection in eegs signals using a fast weighted horizontal visibility algorithm publication-title: Comput. Methods Progr. Biomed. – volume: 61 start-page: 3999 year: 2013 end-page: 4010 ident: bib20 article-title: Empirical wavelet transform publication-title: IEEE Trans. Signal Process. – volume: 7 start-page: 401 year: 2012 end-page: 408 ident: bib34 article-title: Automated diagnosis of epileptic eeg using entropies publication-title: Biomed. Signal Process Control – volume: 17 start-page: 1740003 year: 2017 ident: bib30 article-title: A novel approach to detect epileptic seizures using a combination of tunable-q wavelet transform and fractal dimension publication-title: J. Mech. Med. Biol. – volume: 42 start-page: 1106 year: 2015 end-page: 1117 ident: bib23 article-title: Classification of epileptic seizures in eeg signals based on phase space representation of intrinsic mode functions publication-title: Expert Syst. Appl. – volume: 20 start-page: 5283 year: 2020 ident: bib6 article-title: Identification of motor and mental imagery eeg in two and multiclass subject-dependent tasks using successive decomposition index publication-title: Sensors – volume: 44 start-page: 157 year: 2021 end-page: 171 ident: bib32 article-title: Detection of focal and non-focal eeg signals using non-linear features derived from empirical wavelet transform rhythms publication-title: Phys. Eng. Sci.Med. – volume: 9 start-page: 1 year: 2021 end-page: 15 ident: bib35 article-title: Classification of normal and depressed eeg signals based on centered correntropy of rhythms in empirical wavelet transform domain publication-title: Health Inf. Sci. Syst. – reference: Sadiq M. T., Yu X., Yuan Z., Aziz M. Z., Motor imagery bci classification based on novel two-dimensional modelling in empirical wavelet transform, Electron. Lett. 56 (25), doi:10.1049/el.2020.2509. – volume: 161 start-page: 103 year: 2018 end-page: 113 ident: bib42 article-title: Automated eeg-based screening of depression using deep convolutional neural network publication-title: Comput. Methods Progr. Biomed. – volume: 7 start-page: 171431 year: 2019 end-page: 171451 ident: bib48 article-title: Motor imagery eeg signals decoding by multivariate empirical wavelet transform-based framework for robust brain–computer interfaces publication-title: IEEE Access – volume: 34 start-page: 74 year: 2017 end-page: 80 ident: bib18 article-title: Detection of epileptic seizure using kraskov entropy applied on tunable-q wavelet transform of eeg signals publication-title: Biomed. Signal Process Control – volume: 37 start-page: 59 year: 2020 end-page: 68 ident: bib54 article-title: A novel geometrical method for discrimination of normal, interictal and ictal eeg signals publication-title: Trait. Du. Signal – volume: 56 start-page: 116 year: 2016 end-page: 130 ident: bib17 article-title: A novel robust diagnostic model to detect seizures in electroencephalography publication-title: Expert Syst. Appl. – volume: 82 start-page: 1786 year: 2012 end-page: 1791 ident: bib55 article-title: An optimal k-nearest neighbor for density estimation publication-title: Stat. Probab. Lett. – volume: 37 start-page: 5661 year: 2010 end-page: 5665 ident: bib9 article-title: Epileptic eeg detection using the linear prediction error energy publication-title: Expert Syst. Appl. – year: 2013 ident: bib27 article-title: Spectral Asymmetry and Higuchi's Fractal Dimension Measures of Depression Electroencephalogram, Computational and Mathematical Methods in Medicine – volume: 44 start-page: 1 year: 2020 end-page: 12 ident: bib25 article-title: Detection of depression and scaling of severity using six channel eeg data publication-title: J. Med. Syst. – volume: 31 start-page: 108 year: 2017 end-page: 115 ident: bib61 article-title: Electroencephalogram (eeg)-based computer-aided technique to diagnose major depressive disorder (mdd) publication-title: Biomed. Signal Process Control – volume: 26 start-page: 277 year: 2016 end-page: 283 ident: bib26 article-title: Classification of focal and nonfocal eeg signals using anfis classifier for epilepsy detection publication-title: Int. J. Imag. Syst. Technol. – volume: 164 start-page: 114031 year: 2020 ident: bib21 article-title: Exploiting dimensionality reduction and neural network techniques for the development of expert brain–computer interfaces publication-title: Expert Syst. Appl. – start-page: 1 year: 2011 end-page: 4 ident: bib31 article-title: Detection of epileptic seizures using chaotic and statistical features in the emd domain publication-title: 2011 Annual IEEE India Conference – volume: 53 start-page: 3059 year: 2020 end-page: 3088 ident: bib16 article-title: Identification of epileptic seizures in eeg signals using time-scale decomposition (itd), discrete wavelet transform (dwt), phase space reconstruction (psr) and neural networks publication-title: Artif. Intell. Rev. – volume: 17 start-page: 1740002 year: 2017 ident: bib15 article-title: Classification of focal and nonfocal eeg signals using features derived from fourier-based rhythms publication-title: J. Mech. Med. Biol. – volume: 7 start-page: 1857 year: 2017 end-page: 1862 ident: bib41 article-title: Automated diagnosis of depression electroencephalograph signals using linear prediction coding and higher order spectra features publication-title: J. Med. Imag.Health Inf. – reference: D. Rafik, B. Larbi, Autoregressive modeling based empirical mode decomposition (emd) for epileptic seizures detection using eeg signals autoregressive modeling based empirical mode decomposition (emd) for epileptic seizures detection using eeg signals. – volume: 2020 year: 2020 ident: bib14 article-title: Exploiting multiple optimizers with transfer learning techniques for the identification of covid-19 patients publication-title: J.Healthc. Eng. – volume: 44 start-page: 175 year: 2013 end-page: 181 ident: bib59 article-title: Spatiotemporal analysis of relative convergence of eegs reveals differences between brain dynamics of depressive women and men publication-title: Clin. EEG Neurosci. – volume: 3 start-page: 17 year: 2013 end-page: 21 ident: bib39 article-title: Epileptic seizure detection based on the instantaneous area of analytic intrinsic mode functions of eeg signals publication-title: Biomedical Engineering Letters – volume: 104 start-page: 358 year: 2011 end-page: 372 ident: bib13 article-title: Clustering technique-based least square support vector machine for eeg signal classification publication-title: Comput. Methods Progr. Biomed. – volume: 39 start-page: 4055 year: 2012 end-page: 4062 ident: bib46 article-title: Discrete harmony search based expert model for epileptic seizure detection in electroencephalography publication-title: Expert Syst. Appl. – volume: 17 start-page: 1385 year: 2017 ident: bib60 article-title: Major depression detection from eeg signals using kernel eigen-filter-bank common spatial patterns publication-title: Sensors – volume: 9 start-page: 1 year: 2014 end-page: 5 ident: bib10 article-title: Classification of ictal and seizure-free eeg signals using fractional linear prediction publication-title: Biomed. Signal Process Control – volume: 54 start-page: 205 year: 2007 end-page: 211 ident: bib38 article-title: A wavelet-chaos methodology for analysis of eegs and eeg subbands to detect seizure and epilepsy publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng. – volume: 12 start-page: 72 year: 2017 end-page: 82 ident: bib56 article-title: Time–frequency representation using ievdhm–ht with application to classification of epileptic eeg signals publication-title: IET Sci. Meas. Technol. – year: 2021 ident: bib2 – volume: 113 start-page: 494 year: 2014 end-page: 502 ident: bib22 article-title: Epileptic seizure classification in eeg signals using second-order difference plot of intrinsic mode functions publication-title: Comput. Methods Progr. Biomed. – volume: 45 start-page: 160 year: 2018 end-page: 173 ident: bib51 article-title: A novel approach to mortality prediction of icu cardiovascular patient based on fuzzy logic method publication-title: Biomed. Signal Process Control – volume: 179 start-page: 108078 year: 2021 ident: bib40 article-title: Depression recognition based on the reconstruction of phase space of eeg signals and geometrical features publication-title: Appl. Acoust. – volume: 52 start-page: 508 year: 2018 end-page: 520 ident: bib4 article-title: An automated diagnosis of depression using three-channel bandwidth-duration localized wavelet filter bank with eeg signals publication-title: Cognit. Syst. Res. – volume: 155 start-page: 11 year: 2018 end-page: 17 ident: bib57 article-title: Methods for classifying depression in single channel eeg using linear and nonlinear signal analysis publication-title: Comput. Methods Progr. Biomed. – volume: 14 start-page: 1450035 year: 2014 ident: bib33 article-title: Depression diagnosis support system based on eeg signal entropies publication-title: J. Mech. Med. Biol. – year: 2021 ident: bib1 – volume: 29 start-page: 47 year: 2018 end-page: 57 ident: bib24 article-title: A novel approach for automated detection of focal eeg signals using empirical wavelet transform publication-title: Neural Comput. Appl. – volume: 20 start-page: 1486 year: 2017 end-page: 1493 ident: bib37 article-title: Automated identification system for seizure eeg signals using tunable-q wavelet transform, Engineering science and technology publication-title: Int. J. – volume: 54 start-page: 205 issue: 2 year: 2007 ident: 10.1016/j.compbiomed.2021.104922_bib38 article-title: A wavelet-chaos methodology for analysis of eegs and eeg subbands to detect seizure and epilepsy publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng. – volume: 192 start-page: 105367 year: 2020 ident: 10.1016/j.compbiomed.2021.104922_bib19 article-title: Automatic sleep stages classification using optimize flexible analytic wavelet transform publication-title: Knowl. Base Syst. doi: 10.1016/j.knosys.2019.105367 – volume: 39 start-page: 4055 issue: 4 year: 2012 ident: 10.1016/j.compbiomed.2021.104922_bib46 article-title: Discrete harmony search based expert model for epileptic seizure detection in electroencephalography publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.09.093 – volume: 34 start-page: 74 year: 2017 ident: 10.1016/j.compbiomed.2021.104922_bib18 article-title: Detection of epileptic seizure using kraskov entropy applied on tunable-q wavelet transform of eeg signals publication-title: Biomed. Signal Process Control doi: 10.1016/j.bspc.2017.01.001 – volume: 7 start-page: 401 issue: 4 year: 2012 ident: 10.1016/j.compbiomed.2021.104922_bib34 article-title: Automated diagnosis of epileptic eeg using entropies publication-title: Biomed. Signal Process Control doi: 10.1016/j.bspc.2011.07.007 – volume: 74 start-page: 3051 issue: 17 year: 2011 ident: 10.1016/j.compbiomed.2021.104922_bib47 article-title: A comparative study of wavelet families for eeg signal classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.04.029 – volume: 17 start-page: 1385 issue: 6 year: 2017 ident: 10.1016/j.compbiomed.2021.104922_bib60 article-title: Major depression detection from eeg signals using kernel eigen-filter-bank common spatial patterns publication-title: Sensors doi: 10.3390/s17061385 – volume: 7 start-page: 12 issue: 1 year: 2019 ident: 10.1016/j.compbiomed.2021.104922_bib52 article-title: Emg feature selection and classification using a pbest-guide binary particle swarm optimization publication-title: Computation doi: 10.3390/computation7010012 – start-page: 1 year: 2016 ident: 10.1016/j.compbiomed.2021.104922_bib11 article-title: Channel selection and seizure detection using a statistical approach – volume: 52 start-page: 508 year: 2018 ident: 10.1016/j.compbiomed.2021.104922_bib4 article-title: An automated diagnosis of depression using three-channel bandwidth-duration localized wavelet filter bank with eeg signals publication-title: Cognit. Syst. Res. doi: 10.1016/j.cogsys.2018.07.010 – ident: 10.1016/j.compbiomed.2021.104922_bib50 doi: 10.1049/el.2020.2509 – volume: 113 start-page: 494 issue: 2 year: 2014 ident: 10.1016/j.compbiomed.2021.104922_bib22 article-title: Epileptic seizure classification in eeg signals using second-order difference plot of intrinsic mode functions publication-title: Comput. Methods Progr. Biomed. doi: 10.1016/j.cmpb.2013.11.014 – volume: 12 start-page: 1240019 year: 2012 ident: 10.1016/j.compbiomed.2021.104922_bib43 article-title: Classification of eeg signals in normal and depression conditions by ann using rwe and signal entropy publication-title: J. Mech. Med. Biol. doi: 10.1142/S0219519412400192 – volume: 2020 year: 2020 ident: 10.1016/j.compbiomed.2021.104922_bib14 article-title: Exploiting multiple optimizers with transfer learning techniques for the identification of covid-19 patients publication-title: J.Healthc. Eng. doi: 10.1155/2020/8889412 – volume: 39 start-page: 202 issue: 1 year: 2012 ident: 10.1016/j.compbiomed.2021.104922_bib7 article-title: Detection of epileptic electroencephalogram based on permutation entropy and support vector machines publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.07.008 – volume: 9 start-page: 1 year: 2014 ident: 10.1016/j.compbiomed.2021.104922_bib10 article-title: Classification of ictal and seizure-free eeg signals using fractional linear prediction publication-title: Biomed. Signal Process Control doi: 10.1016/j.bspc.2013.08.006 – volume: 3 start-page: 17 issue: 1 year: 2013 ident: 10.1016/j.compbiomed.2021.104922_bib39 article-title: Epileptic seizure detection based on the instantaneous area of analytic intrinsic mode functions of eeg signals publication-title: Biomedical Engineering Letters doi: 10.1007/s13534-013-0084-0 – volume: 241 start-page: 204 year: 2017 ident: 10.1016/j.compbiomed.2021.104922_bib12 article-title: Automated epileptic seizure detection using improved correlation-based feature selection with random forest classifier publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.02.053 – volume: 37 start-page: 5661 issue: 8 year: 2010 ident: 10.1016/j.compbiomed.2021.104922_bib9 article-title: Epileptic eeg detection using the linear prediction error energy publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.02.045 – ident: 10.1016/j.compbiomed.2021.104922_bib2 – volume: 26 start-page: 277 issue: 4 year: 2016 ident: 10.1016/j.compbiomed.2021.104922_bib26 article-title: Classification of focal and nonfocal eeg signals using anfis classifier for epilepsy detection publication-title: Int. J. Imag. Syst. Technol. doi: 10.1002/ima.22199 – volume: 42 start-page: 1106 issue: 3 year: 2015 ident: 10.1016/j.compbiomed.2021.104922_bib23 article-title: Classification of epileptic seizures in eeg signals based on phase space representation of intrinsic mode functions publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.08.030 – ident: 10.1016/j.compbiomed.2021.104922_bib5 doi: 10.1109/TCDS.2020.3040438 – volume: 20 start-page: 1486 issue: 5 year: 2017 ident: 10.1016/j.compbiomed.2021.104922_bib37 article-title: Automated identification system for seizure eeg signals using tunable-q wavelet transform, Engineering science and technology publication-title: Int. J. – volume: 37 start-page: 59 issue: 1 year: 2020 ident: 10.1016/j.compbiomed.2021.104922_bib54 article-title: A novel geometrical method for discrimination of normal, interictal and ictal eeg signals publication-title: Trait. Du. Signal doi: 10.18280/ts.370108 – volume: 12 start-page: 72 issue: 1 year: 2017 ident: 10.1016/j.compbiomed.2021.104922_bib56 article-title: Time–frequency representation using ievdhm–ht with application to classification of epileptic eeg signals publication-title: IET Sci. Meas. Technol. doi: 10.1049/iet-smt.2017.0058 – ident: 10.1016/j.compbiomed.2021.104922_bib62 – year: 2013 ident: 10.1016/j.compbiomed.2021.104922_bib27 – volume: 104 start-page: 358 issue: 3 year: 2011 ident: 10.1016/j.compbiomed.2021.104922_bib13 article-title: Clustering technique-based least square support vector machine for eeg signal classification publication-title: Comput. Methods Progr. Biomed. doi: 10.1016/j.cmpb.2010.11.014 – volume: 14 start-page: 1450035 year: 2014 ident: 10.1016/j.compbiomed.2021.104922_bib33 article-title: Depression diagnosis support system based on eeg signal entropies publication-title: J. Mech. Med. Biol. doi: 10.1142/S0219519414500353 – volume: 7 start-page: 1857 issue: 8 year: 2017 ident: 10.1016/j.compbiomed.2021.104922_bib41 article-title: Automated diagnosis of depression electroencephalograph signals using linear prediction coding and higher order spectra features publication-title: J. Med. Imag.Health Inf. – volume: 179 start-page: 108078 year: 2021 ident: 10.1016/j.compbiomed.2021.104922_bib40 article-title: Depression recognition based on the reconstruction of phase space of eeg signals and geometrical features publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2021.108078 – volume: 17 start-page: 1740002 year: 2017 ident: 10.1016/j.compbiomed.2021.104922_bib15 article-title: Classification of focal and nonfocal eeg signals using features derived from fourier-based rhythms publication-title: J. Mech. Med. Biol. doi: 10.1142/S0219519417400024 – volume: 17 start-page: 1740003 year: 2017 ident: 10.1016/j.compbiomed.2021.104922_bib30 article-title: A novel approach to detect epileptic seizures using a combination of tunable-q wavelet transform and fractal dimension publication-title: J. Mech. Med. Biol. doi: 10.1142/S0219519417400036 – ident: 10.1016/j.compbiomed.2021.104922_bib1 – volume: 82 start-page: 1786 issue: 10 year: 2012 ident: 10.1016/j.compbiomed.2021.104922_bib55 article-title: An optimal k-nearest neighbor for density estimation publication-title: Stat. Probab. Lett. doi: 10.1016/j.spl.2012.05.017 – volume: 109 start-page: 339 issue: 3 year: 2013 ident: 10.1016/j.compbiomed.2021.104922_bib36 article-title: Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from eeg signal publication-title: Comput. Methods Progr. Biomed. doi: 10.1016/j.cmpb.2012.10.008 – volume: 44 start-page: 1 year: 2020 ident: 10.1016/j.compbiomed.2021.104922_bib25 article-title: Detection of depression and scaling of severity using six channel eeg data publication-title: J. Med. Syst. doi: 10.1007/s10916-020-01573-y – volume: 9 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.compbiomed.2021.104922_bib35 article-title: Classification of normal and depressed eeg signals based on centered correntropy of rhythms in empirical wavelet transform domain publication-title: Health Inf. Sci. Syst. doi: 10.1007/s13755-021-00139-7 – volume: 37 start-page: 3513 issue: 4 year: 2010 ident: 10.1016/j.compbiomed.2021.104922_bib45 article-title: Expert model for detection of epileptic activity in eeg signature publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.10.036 – volume: 155 start-page: 11 year: 2018 ident: 10.1016/j.compbiomed.2021.104922_bib57 article-title: Methods for classifying depression in single channel eeg using linear and nonlinear signal analysis publication-title: Comput. Methods Progr. Biomed. doi: 10.1016/j.cmpb.2017.11.023 – volume: 61 start-page: 3999 issue: 16 year: 2013 ident: 10.1016/j.compbiomed.2021.104922_bib20 article-title: Empirical wavelet transform publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2013.2265222 – volume: 20 start-page: 5283 issue: 18 year: 2020 ident: 10.1016/j.compbiomed.2021.104922_bib6 article-title: Identification of motor and mental imagery eeg in two and multiclass subject-dependent tasks using successive decomposition index publication-title: Sensors doi: 10.3390/s20185283 – volume: 44 start-page: 157 issue: 1 year: 2021 ident: 10.1016/j.compbiomed.2021.104922_bib32 article-title: Detection of focal and non-focal eeg signals using non-linear features derived from empirical wavelet transform rhythms publication-title: Phys. Eng. Sci.Med. doi: 10.1007/s13246-020-00963-3 – volume: 64 issue: 6 year: 2001 ident: 10.1016/j.compbiomed.2021.104922_bib44 article-title: Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state publication-title: Phys. Rev. – volume: 85 start-page: 206 issue: 2 year: 2012 ident: 10.1016/j.compbiomed.2021.104922_bib28 article-title: Fractality analysis of frontal brain in major depressive disorder publication-title: Int. J. Psychophysiol. doi: 10.1016/j.ijpsycho.2012.05.001 – volume: 11 start-page: 29 issue: 11 year: 2019 ident: 10.1016/j.compbiomed.2021.104922_bib53 article-title: Fast and accurate classification f and nf eeg by using sodp and ewt publication-title: Int. J. Image Graph. Signal Process. – volume: 161 start-page: 103 year: 2018 ident: 10.1016/j.compbiomed.2021.104922_bib42 article-title: Automated eeg-based screening of depression using deep convolutional neural network publication-title: Comput. Methods Progr. Biomed. doi: 10.1016/j.cmpb.2018.04.012 – volume: 164 start-page: 114031 year: 2020 ident: 10.1016/j.compbiomed.2021.104922_bib21 article-title: Exploiting dimensionality reduction and neural network techniques for the development of expert brain–computer interfaces publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.114031 – volume: 7 start-page: 171431 year: 2019 ident: 10.1016/j.compbiomed.2021.104922_bib48 article-title: Motor imagery eeg signals decoding by multivariate empirical wavelet transform-based framework for robust brain–computer interfaces publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2956018 – volume: 53 start-page: 3059 issue: 4 year: 2020 ident: 10.1016/j.compbiomed.2021.104922_bib16 article-title: Identification of epileptic seizures in eeg signals using time-scale decomposition (itd), discrete wavelet transform (dwt), phase space reconstruction (psr) and neural networks publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-019-09755-y – volume: 42 start-page: 2276 issue: 9 year: 1994 ident: 10.1016/j.compbiomed.2021.104922_bib3 article-title: An algorithm to separate nonstationary part of a signal using mid-prediction filter publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.317850 – volume: 7 start-page: 127678 year: 2019 ident: 10.1016/j.compbiomed.2021.104922_bib49 article-title: Motor imagery eeg signals classification based on mode amplitude and frequency components using empirical wavelet transform publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2939623 – volume: 74 start-page: 79 issue: 1–2 year: 2015 ident: 10.1016/j.compbiomed.2021.104922_bib29 article-title: A novel depression diagnosis index using nonlinear features in eeg signals publication-title: Eur. Neurol. doi: 10.1159/000438457 – volume: 31 start-page: 108 year: 2017 ident: 10.1016/j.compbiomed.2021.104922_bib61 article-title: Electroencephalogram (eeg)-based computer-aided technique to diagnose major depressive disorder (mdd) publication-title: Biomed. Signal Process Control doi: 10.1016/j.bspc.2016.07.006 – volume: 45 start-page: 160 year: 2018 ident: 10.1016/j.compbiomed.2021.104922_bib51 article-title: A novel approach to mortality prediction of icu cardiovascular patient based on fuzzy logic method publication-title: Biomed. Signal Process Control doi: 10.1016/j.bspc.2018.05.019 – volume: 106 start-page: 123 issue: 2 year: 2001 ident: 10.1016/j.compbiomed.2021.104922_bib58 article-title: Eeg power, frequency, asymmetry and coherence in male depression publication-title: Psychiatr. Res. Neuroimaging doi: 10.1016/S0925-4927(00)00080-9 – start-page: 1 year: 2011 ident: 10.1016/j.compbiomed.2021.104922_bib31 article-title: Detection of epileptic seizures using chaotic and statistical features in the emd domain – volume: 44 start-page: 175 issue: 3 year: 2013 ident: 10.1016/j.compbiomed.2021.104922_bib59 article-title: Spatiotemporal analysis of relative convergence of eegs reveals differences between brain dynamics of depressive women and men publication-title: Clin. EEG Neurosci. doi: 10.1177/1550059413480504 – volume: 56 start-page: 116 year: 2016 ident: 10.1016/j.compbiomed.2021.104922_bib17 article-title: A novel robust diagnostic model to detect seizures in electroencephalography publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.02.040 – volume: 115 start-page: 64 issue: 2 year: 2014 ident: 10.1016/j.compbiomed.2021.104922_bib8 article-title: Epileptic seizure detection in eegs signals using a fast weighted horizontal visibility algorithm publication-title: Comput. Methods Progr. Biomed. doi: 10.1016/j.cmpb.2014.04.001 – volume: 29 start-page: 47 issue: 8 year: 2018 ident: 10.1016/j.compbiomed.2021.104922_bib24 article-title: A novel approach for automated detection of focal eeg signals using empirical wavelet transform publication-title: Neural Comput. Appl. doi: 10.1007/s00521-016-2646-4 |
| SSID | ssj0004030 |
| Score | 2.418873 |
| Snippet | Recent advances in electroencephalogram (EEG) signal classification have primarily focused on domain-specific approaches, which impede algorithm... AbstractRecent advances in electroencephalogram (EEG) signal classification have primarily focused on domain-specific approaches, which impede algorithm... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 104922 |
| SubjectTerms | Accuracy Adaptability Algorithms Classification Computer-aided diagnosis Convulsions & seizures Datasets Decomposition Diagnosis EEG Electroencephalography Empirical analysis Epilepsy Feature extraction Geometrical features Internal Medicine K-nearest neighbors algorithm Medical diagnosis Methods Morphology Motivation Neural diseases Other Particle swarm optimization Rehabilitation Signal classification Two dimensional models Two-dimensional modeling Wavelet transforms |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEB_qFcQX0ap4WiWFvi4m2a8LRaTK1SL0KLaF4kvIJlloKbtt99q_35lNcgeicq-7Oztskvna-c0MwL7x0tYzbrNcNZRmLFHmqjLPaiNUI6xCf47-Q54squOL4sdlebkFi1QLQ7DKpBNHRe16S__IP8lyVmHEgxHbl9u7jKZGUXY1jdAwcbSC-zy2GHsC25I6Y01g--t8cfpzXSnJ81CUgtqnwOAoYnsC4otA3KHoHeNGKSj9qaT8l8H6Q3WP9ujoBTyPjiQ7DDv_ErZ8twNPT2Kq_BX8OmRd_-hvmI1zGzJqBumYC9i6q4G1CZfF0HFl8_n3jEyaY1cuIojGTWN9y6jpJfKKyZzhNVwczc-_HWdxkEJmCyWWWaVop2zDBVrEirfcFrypXFF7_EJvhbM-564x1cy1OW-bwtsWHRW03DVqP2XyNzDp-s6_BWZ5a5SppRdGouw746hfvOQN6ga6PIU6rZa2scs4Dbu40QlOdq3X66xpnXVY5ymIFeVt6LSxAY1KG6JTJSnqPo3mYAPa-m-0fohCPGihB6m5Pht7GOFhkYQoERVSHqwoo58S_I8N-e6mk6NXrNanewp7q9so6ZS-MZ3vH8Zn8lzWRVm--_8r3sMz4hcqJndhsrx_8B_QdVo2H6M8_AYYUBmg priority: 102 providerName: ProQuest |
| Title | A novel computer-aided diagnosis framework for EEG-based identification of neural diseases |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482521007162 https://www.clinicalkey.es/playcontent/1-s2.0-S0010482521007162 https://dx.doi.org/10.1016/j.compbiomed.2021.104922 https://www.proquest.com/docview/2586978788 https://www.proquest.com/docview/2583327455 |
| Volume | 138 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AKRWK dateStart: 19700101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1879-0534 dateEnd: 20250905 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 8FG dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhgdJLaPqg26ZBhV6dSLJsWfS0DbvZtmQpoYGlFyFLMmwI3lBvcsxv74wlb-gLFnKx8WOQPNJ8M_I8RMgHG4RTFXNZrmt0MxYgc2WRZ8pyXXOnwZ7D_5Dn83J2Kb8sisUOOR1yYTCsMmF_xPQerdOdk8TNk5vlEnN8YSkBCxyBjn7e47CUCncxOL5_CPOQLI9pKIA3-HaK5okxXhi2HdPcYaUoODo8tRD_U1F_gHWvgabPyH4yHek49u6A7IT2OXlynpzjL8iPMW1Xd-GaurRTQ4blHz31MZpu2dFmiMSiYKrSyeQsQyXm6dKnmKF-mOiqoVjmEtpK7pvuJbmcTr6fzrK0dULmpObrrNQ4Nq5mHHRgyRrmJKtLL1WALwyOexdy5mtbVr7JWVPL4BowTUBXK8A7bfNXZLddteE1oY41VlslArcCpN1bjxXiBasBDfD2iKiBW8aluuK4vcW1GQLIrswDnw3y2UQ-jwjfUN7E2hpb0OhhQMyQOwpoZ0ABbEGr_kUbuiS2neGmE4aZv6bWiHzcUP42O7ds93CYOWbTlCiqElbwqqpG5P3mMcg2OmxsG1a3_Tt5LpQsijeP6sBb8hSvYgrlIdld_7wN78CWWtdHvbDAUS0UHKvp2RHZG3_-OpvD-dNk_u3iF8OyIu4 |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3daxQxEA-1BfWl-Ilnq0bQx8Uk-3WhFKl69Wp7h2gLxZc0m2ShUnbb7rXiP-ff5swmuQNRuZe-3t5s2NnkNzM7v5kh5JV2wpRDZpJUVphmzOHMFXmalJrLihsJ_hx-h5xMi_FR9uk4P14hv2ItDNIqIyb2QG1bg9_I34h8WEDEAxHb2_OLBKdGYXY1jtDQYbSC3e5bjIXCjn338weEcN323gd436-F2B0dvh8nYcpAYjLJZ0kh8TFMxTiYi4LVzGSsKmxWOnCeneHWuJTZShdDW6esrjJnarDiYNZKgAapU7jvLbKWpZmE4G_t3Wj6-cuiMpOlvggG0C6DYCxwiTzDDEnjvsge4lTBMd0qhfiXgfzDVPT2b_ceWQ-OK93xO-0-WXHNA3J7ElLzD8m3Hdq01-6MmjAnIsHmk5Zaz-U77WgdeWAUHGU6Gn1M0IRaemoDY6nfJLStKTbZhLVC8qh7RI5uRKWPyWrTNu4JoYbVWupSOK4FYI3VFvvTC1YBFuHPA1JGbSkTuprjcI0zFelr39VCzwr1rLyeB4TPJc99Z48lZGR8ISpWrgLWKjA_S8iWf5N1XQCNTnHVCcXU175nEmwWgQwWXoDk1lwy-EXe31ly3c24c9R8qcVpGpCX88uALJgu0o1rr_r_pKkoszx_-v9bvCB3xoeTA3WwN93fIHdxbV-tuUlWZ5dX7hm4bbPqeTgblJzc9HH8Daw5Wao |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEF9qheKLWD_wtK0r6GPofiTZW0RKsXe21hZBC4cva7K7gZaSVHNV_Nf865zJ7t6BqNxLXy83WTKZz8xvZgh5UXlh1ZjZTOoay4wF6FxZyExVXNfcaojn8DvkyWl5eJa_mxWzNfIr9cIgrDLZxMFQu87iN_JdUYxLyHggY9ttIiziw8F07-prhhuksNKa1mkEETn2P39A-ta_PjqAd_1SiOnk05vDLG4YyGyu-TwrNT6CrRkHV1Gyhtmc1aXLlYfA2VvurJfM1VU5do1kTZ1724AHB5emwCzoSsJ9b5HbSkqNcEI1U8ueTCZD-wvYuRzSsIgiCtgyhIuH9nrIUAXHQqsW4l-u8Q8nMXi-6T1yN4asdD_I2CZZ8-19snESi_IPyOd92nbf_SW1cUNEhmMnHXUBxXfe0yYhwCiEyHQyeZuh83T03EWs0iAetGsojteEs2LZqH9Izm6EoY_Ietu1_jGhljWVrpTwvBJgZVzlcDK9YDVYIfx5RFTilrFxnjmu1bg0Cbh2YZZ8NshnE_g8InxBeRVmeqxAo9MLMalnFaysAcezAq36G63vo7noDTe9MMx8HKYlgbAIxK7wEihfLShjRBQinRXP3UqSYxZHLfVoRJ4vLoNNwUJR1frueviPlELlRfHk_7d4RjZACc37o9Pjp-QOHh3aNLfI-vzbtd-GeG1e7wyKQcmXm9bE301kV0Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+computer-aided+diagnosis+framework+for+EEG-based+identification+of+neural+diseases&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Sadiq%2C+Muhammad+Tariq&rft.au=Akbari%2C+Hesam&rft.au=Siuly%2C+Siuly&rft.au=Yousaf%2C+Adnan&rft.date=2021-11-01&rft.issn=0010-4825&rft.volume=138&rft.spage=104922&rft_id=info:doi/10.1016%2Fj.compbiomed.2021.104922&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compbiomed_2021_104922 |
| thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482520X00229%2Fcov150h.gif |