A hybrid gene selection approach for microarray data classification using cellular learning automata and ant colony optimization
This paper proposes an approach for gene selection in microarray data. The proposed approach consists of a primary filter approach using Fisher criterion which reduces the initial genes and hence the search space and time complexity. Then, a wrapper approach which is based on cellular learning autom...
Saved in:
| Published in | Genomics (San Diego, Calif.) Vol. 107; no. 6; pp. 231 - 238 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Inc
01.06.2016
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0888-7543 1089-8646 |
| DOI | 10.1016/j.ygeno.2016.05.001 |
Cover
| Abstract | This paper proposes an approach for gene selection in microarray data. The proposed approach consists of a primary filter approach using Fisher criterion which reduces the initial genes and hence the search space and time complexity. Then, a wrapper approach which is based on cellular learning automata (CLA) optimized with ant colony method (ACO) is used to find the set of features which improve the classification accuracy. CLA is applied due to its capability to learn and model complicated relationships. The selected features from the last phase are evaluated using ROC curve and the most effective while smallest feature subset is determined. The classifiers which are evaluated in the proposed framework are K-nearest neighbor; support vector machine and naïve Bayes. The proposed approach is evaluated on 4 microarray datasets. The evaluations confirm that the proposed approach can find the smallest subset of genes while approaching the maximum accuracy.
•This paper proposes a three stage scheme for gene selection from microarray data.•Fisher measure ranking is used to reduce the features and hence the search space.•Ant colony optimized Cellular Learning Automata is used as the wrapper approach.•Final gene(s) are selected so that the area under accuracy curve is maximized.•Evaluations show that the smallest set of genes with maximum accuracy is selected. |
|---|---|
| AbstractList | This paper proposes an approach for gene selection in microarray data. The proposed approach consists of a primary filter approach using Fisher criterion which reduces the initial genes and hence the search space and time complexity. Then, a wrapper approach which is based on cellular learning automata (CLA) optimized with ant colony method (ACO) is used to find the set of features which improve the classification accuracy. CLA is applied due to its capability to learn and model complicated relationships. The selected features from the last phase are evaluated using ROC curve and the most effective while smallest feature subset is determined. The classifiers which are evaluated in the proposed framework are K-nearest neighbor; support vector machine and naïve Bayes. The proposed approach is evaluated on 4 microarray datasets. The evaluations confirm that the proposed approach can find the smallest subset of genes while approaching the maximum accuracy. This paper proposes an approach for gene selection in microarray data. The proposed approach consists of a primary filter approach using Fisher criterion which reduces the initial genes and hence the search space and time complexity. Then, a wrapper approach which is based on cellular learning automata (CLA) optimized with ant colony method (ACO) is used to find the set of features which improve the classification accuracy. CLA is applied due to its capability to learn and model complicated relationships. The selected features from the last phase are evaluated using ROC curve and the most effective while smallest feature subset is determined. The classifiers which are evaluated in the proposed framework are K-nearest neighbor; support vector machine and naïve Bayes. The proposed approach is evaluated on 4 microarray datasets. The evaluations confirm that the proposed approach can find the smallest subset of genes while approaching the maximum accuracy. •This paper proposes a three stage scheme for gene selection from microarray data.•Fisher measure ranking is used to reduce the features and hence the search space.•Ant colony optimized Cellular Learning Automata is used as the wrapper approach.•Final gene(s) are selected so that the area under accuracy curve is maximized.•Evaluations show that the smallest set of genes with maximum accuracy is selected. This paper proposes an approach for gene selection in microarray data. The proposed approach consists of a primary filter approach using Fisher criterion which reduces the initial genes and hence the search space and time complexity. Then, a wrapper approach which is based on cellular learning automata (CLA) optimized with ant colony method (ACO) is used to find the set of features which improve the classification accuracy. CLA is applied due to its capability to learn and model complicated relationships. The selected features from the last phase are evaluated using ROC curve and the most effective while smallest feature subset is determined. The classifiers which are evaluated in the proposed framework are K-nearest neighbor; support vector machine and naive Bayes. The proposed approach is evaluated on 4 microarray datasets. The evaluations confirm that the proposed approach can find the smallest subset of genes while approaching the maximum accuracy. |
| Author | Vafaee Sharbaf, Fatemeh Mosafer, Sara Moattar, Mohammad Hossein |
| Author_xml | – sequence: 1 givenname: Fatemeh surname: Vafaee Sharbaf fullname: Vafaee Sharbaf, Fatemeh email: vafaeeshaarbaf@gmail.com organization: Department of Computer Engineering, Imam Reza International University, Mashhad, Iran – sequence: 2 givenname: Sara surname: Mosafer fullname: Mosafer, Sara email: sa.mosafer90@yahoo.com organization: Department of Computer Engineering, Imam Reza International University, Mashhad, Iran – sequence: 3 givenname: Mohammad Hossein surname: Moattar fullname: Moattar, Mohammad Hossein email: moattar@mshdiau.ac.ir organization: Department of Software Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27154739$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkkFv1DAQhS1URLeFX4CEfOSSYDtOYh84VBXQSpW4wNmaOJPWq8Re7ARpOfHTcbLthUPhYFljfW80854vyJkPHgl5y1nJGW8-7MvjPfpQilyUrC4Z4y_IjjOlC9XI5ozsmFKqaGtZnZOLlPaMMV0p8Yqci5bXsq30jvy-og_HLrqe5l5IE45oZxc8hcMhBrAPdAiRTs7mIkY40h5moHaElNzgLGzskpy_pxbHcRkh0hEh-vUFljlMKw--z2emNozBH2k4zG5yvzbxa_JygDHhm8f7knz__Onb9U1x9_XL7fXVXWGl5nNRA-gWKmF1haC4lKqFQXKJWEu0nR4Yb7vOto21vK-05NYKlEpg09iuHVh1Sd6f-ua1fiyYZjO5tI4MHsOSDFciGyW0qP4DZdlg1TT832ibRxGi3tB3j-jSTdibQ3QTxKN5yiID-gRkr1OKOBjr5s2jOYIbDWdmzd3szZa7WXM3rDY596yt_tI-tX9e9fGkwmz8T4fRJOvQW-xdzN_A9ME9q_8DTvrKMw |
| CitedBy_id | crossref_primary_10_1002_minf_201600099 crossref_primary_10_1016_j_jksuci_2018_02_013 crossref_primary_10_1142_S0218001423510011 crossref_primary_10_1016_j_compbiomed_2024_108984 crossref_primary_10_1016_j_ygeno_2019_01_006 crossref_primary_10_1007_s10044_022_01117_9 crossref_primary_10_1016_j_asoc_2025_112784 crossref_primary_10_1016_j_inffus_2018_11_008 crossref_primary_10_17341_gazimmfd_1064693 crossref_primary_10_1007_s11042_019_7181_8 crossref_primary_10_1016_j_eswa_2022_118946 crossref_primary_10_1109_TII_2019_2929086 crossref_primary_10_3233_KES_190134 crossref_primary_10_1016_j_asoc_2022_109699 crossref_primary_10_3390_pr11020562 crossref_primary_10_1007_s00521_019_04671_2 crossref_primary_10_1007_s13721_021_00313_7 crossref_primary_10_1016_j_mex_2025_103239 crossref_primary_10_1186_s12859_017_1810_x crossref_primary_10_1142_S1793524519500396 crossref_primary_10_3390_sym14101955 crossref_primary_10_1142_S2196888824500246 crossref_primary_10_1016_j_gltp_2022_03_001 crossref_primary_10_1016_j_ygeno_2020_06_010 crossref_primary_10_1186_s12859_020_03717_w crossref_primary_10_1016_j_ygeno_2019_07_002 crossref_primary_10_1016_j_ijcce_2020_11_001 crossref_primary_10_3389_fgene_2020_603808 crossref_primary_10_1007_s12652_020_02592_w crossref_primary_10_1016_j_ygeno_2020_06_014 crossref_primary_10_1016_j_chemolab_2021_104305 crossref_primary_10_1007_s11517_017_1751_6 crossref_primary_10_7717_peerj_cs_562 crossref_primary_10_1007_s12652_020_02155_z crossref_primary_10_1007_s00521_021_06459_9 crossref_primary_10_3390_info11010038 crossref_primary_10_1016_j_eswa_2021_115290 crossref_primary_10_1109_TCBB_2016_2623605 crossref_primary_10_1016_j_compbiomed_2023_107056 crossref_primary_10_1016_j_gene_2017_12_057 crossref_primary_10_1049_trit_2019_0028 crossref_primary_10_4018_IJSIR_2019040102 crossref_primary_10_1007_s12065_019_00306_6 crossref_primary_10_1016_j_jksuci_2019_04_002 crossref_primary_10_1016_j_asoc_2020_106994 crossref_primary_10_1051_ro_2018059 crossref_primary_10_1080_1206212X_2019_1662172 crossref_primary_10_3390_sym13101812 crossref_primary_10_1007_s00500_023_07988_2 crossref_primary_10_1007_s11042_024_18802_y crossref_primary_10_1007_s11042_022_13532_5 crossref_primary_10_1016_j_patcog_2021_108079 crossref_primary_10_1155_2021_6680424 crossref_primary_10_1007_s00500_020_04793_z crossref_primary_10_1016_j_eswa_2021_115882 crossref_primary_10_1016_j_heliyon_2021_e07356 crossref_primary_10_1016_j_gpb_2017_08_002 crossref_primary_10_1186_s12911_021_01696_3 crossref_primary_10_1016_j_ygeno_2018_04_004 crossref_primary_10_1155_2019_7828590 crossref_primary_10_1186_s12859_018_2023_7 crossref_primary_10_1007_s10489_021_03118_3 crossref_primary_10_1049_ccs2_12003 crossref_primary_10_1016_j_cmpb_2019_06_029 crossref_primary_10_1088_1757_899X_1074_1_012004 crossref_primary_10_1109_ACCESS_2019_2922987 crossref_primary_10_1007_s13171_024_00366_6 crossref_primary_10_3390_pr11071940 crossref_primary_10_1109_ACCESS_2021_3119233 crossref_primary_10_1007_s11277_021_09196_3 crossref_primary_10_1007_s13042_022_01726_0 crossref_primary_10_1186_s12859_017_1578_z crossref_primary_10_1007_s11227_021_03962_7 crossref_primary_10_1016_j_procs_2018_10_358 crossref_primary_10_1007_s43674_022_00047_7 crossref_primary_10_1109_ACCESS_2019_2942413 crossref_primary_10_1016_j_compbiomed_2021_105051 crossref_primary_10_1016_j_ygeno_2019_09_015 crossref_primary_10_1016_j_knosys_2022_110250 |
| Cites_doi | 10.1142/S0218001412600038 10.1023/A:1026032530166 10.1016/S1535-6108(02)00030-2 10.1109/TSMCC.2012.2209416 10.1016/j.biosystems.2006.01.002 10.1016/j.patcog.2012.09.005 10.1109/TCBB.2011.151 10.1016/j.ins.2010.08.047 10.1186/1472-6947-6-27 10.1016/j.bbrc.2014.02.146 10.5121/ijci.2014.3201 10.1023/A:1012487302797 10.1155/2013/393020 10.7551/mitpress/1290.001.0001 10.1109/TKDE.2011.181 10.1016/j.eswa.2012.03.061 10.1016/j.asoc.2009.11.010 10.1126/science.286.5439.531 10.1038/ng765 10.1109/TNB.2009.2035284 10.1007/s10529-005-3253-0 10.1016/j.compbiomed.2011.02.004 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier Inc. Copyright © 2016 Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: 2016 Elsevier Inc. – notice: Copyright © 2016 Elsevier Inc. All rights reserved. |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 8FD FR3 P64 RC3 7S9 L.6 |
| DOI | 10.1016/j.ygeno.2016.05.001 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Genetics Abstracts Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Genetics Abstracts AGRICOLA |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry Biology |
| EISSN | 1089-8646 |
| EndPage | 238 |
| ExternalDocumentID | 27154739 10_1016_j_ygeno_2016_05_001 S0888754316300362 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -DZ -~X .55 .GJ .~1 0R~ 0SF 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYOK ABEFU ABFNM ABFRF ABGSF ABJNI ABLJU ABMAC ABUDA ABVKL ABXDB ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADFGL ADMUD ADUVX AEBSH AEFWE AEHWI AEKER AENEX AEXQZ AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AHPSJ AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BAWUL BKOJK BLXMC CAG COF CS3 DIK DM4 DOVZS DU5 E3Z EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HLW HVGLF HZ~ IHE IXB J1W K-O KOM L7B LG5 LX2 M41 MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K TN5 TR2 VH1 WUQ X7M XPP XSW ZA5 ZGI ZMT ZU3 ZXP ~G- ~KM AAFWJ AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPKN AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD BNPGV CGR CUY CVF ECM EIF NPM SSH 7X8 8FD FR3 P64 RC3 7S9 L.6 |
| ID | FETCH-LOGICAL-c491t-5aa97a32c93ea814487af414ee54ecb9f017bbc76cc1d3941cc2e482e66cb7f03 |
| IEDL.DBID | .~1 |
| ISSN | 0888-7543 |
| IngestDate | Sun Sep 28 01:50:09 EDT 2025 Sun Sep 28 00:27:04 EDT 2025 Thu Oct 02 11:57:42 EDT 2025 Thu Apr 03 07:09:31 EDT 2025 Thu Apr 24 23:09:52 EDT 2025 Wed Oct 01 02:30:23 EDT 2025 Fri Feb 23 02:26:27 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Ant colony optimization Naïve Bayes Gene selection Microarray data Cellular learning automata K-nearest neighbor |
| Language | English |
| License | This article is made available under the Elsevier license. Copyright © 2016 Elsevier Inc. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c491t-5aa97a32c93ea814487af414ee54ecb9f017bbc76cc1d3941cc2e482e66cb7f03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0888754316300362 |
| PMID | 27154739 |
| PQID | 1794122561 |
| PQPubID | 23479 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_1825432923 proquest_miscellaneous_1808648661 proquest_miscellaneous_1794122561 pubmed_primary_27154739 crossref_citationtrail_10_1016_j_ygeno_2016_05_001 crossref_primary_10_1016_j_ygeno_2016_05_001 elsevier_sciencedirect_doi_10_1016_j_ygeno_2016_05_001 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2016-06-01 |
| PublicationDateYYYYMMDD | 2016-06-01 |
| PublicationDate_xml | – month: 06 year: 2016 text: 2016-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Genomics (San Diego, Calif.) |
| PublicationTitleAlternate | Genomics |
| PublicationYear | 2016 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Lee, Leu (bb0095) 2011; 11 Ding, Peng (bb0025) 2003 Guyon, Weston, Barnhill, Vapnik (bb0060) 2002; 46 Meybodi (bb0105) Augest 2000 Downing (bb0145) Jan 29, 2004 Shreem, Abdullah, Nazri, Alzaqebah (bb0085) 2012; 46 Skalak (bb0040) 1994 Singh, Febbo, Ross, Jackson, Manola, Ladd, Tamayo, Renshaw, D'Amico, Richie, Lander, Loda, Kantoff, Golub, Sellers (bb0120) 2002; 1 Chiang, Lin (bb0045) 2008 Jafari, Azuaje (bb0015) 2006; 6 M.Dorigo, T.Stuzle, Ant Colony Optimization 2004MTI Press. Ye, Wu, Zhexue, Huang, Ng, Li (bb0070) 2013; 46 S.K. Pati, A.K. Das, A. Ghosh, “Gene Selection Using Multi-objective Genetic Algorithm Integrating Cellular Automata and Rough Set Theory,“Springer International Publishing Switzerland Lecture Notes in Computer Science Volume 8298, Vol. 2013, (2013), pp 144–155. Maldonado, Weber, Basak (bb0065) 2011; 181 Golub, Slonim, Tamayo, Huard, Gassenbeek, Mesirov, Coller, Loh, Downing, Caligiuri, Bloomfield, Lander (bb0115) 1999; 286 Karzynski, Mateos, Dopazo (bb0050) 2003; 20 Yassi, Moattar (bb0100) 2014 Wang, Gotoh (bb0155) 2009; 2 Miyano, Imoto, Sharma (bb0035) 2012; 9 Canul-Reich, Hall, Goldgof, Korecki, Eschrich (bb0055) 2012; 26 Mundra, Rajapakse (bb0080) 2010; 9 Mitra, Ghosh (bb0135) 2012; 42 Ruiz, Riquelme, Aguilar-Ruize, Garcia-Torres (bb0010) 2012; 9 Ho, Hsieh, Chen, Huang (bb0005) 2006; 85 Wang (bb0020) 2005 Armstrong, Staunton, Silverman, Pieters, den Boer, Minden, Sallan, Lander, Golub, Korsemeyer (bb0125) 2002; 30 Moon (bb0150) 2013; 35 Chuang, Yang, Wu, Yang (bb0090) 2011; 41 Song, Ni, Wang (bb0075) 2013; 25 Cho, Won (bb0030) 2003 Wang, Huang (bb0160) 2005; 27 Lei Win, Htike, Yusof, Noorbatcha (bb0140) April 2014; 3 Song (10.1016/j.ygeno.2016.05.001_bb0075) 2013; 25 Chuang (10.1016/j.ygeno.2016.05.001_bb0090) 2011; 41 Jafari (10.1016/j.ygeno.2016.05.001_bb0015) 2006; 6 Moon (10.1016/j.ygeno.2016.05.001_bb0150) 2013; 35 Ruiz (10.1016/j.ygeno.2016.05.001_bb0010) 2012; 9 Wang (10.1016/j.ygeno.2016.05.001_bb0160) 2005; 27 Yassi (10.1016/j.ygeno.2016.05.001_bb0100) 2014 Wang (10.1016/j.ygeno.2016.05.001_bb0020) 2005 Canul-Reich (10.1016/j.ygeno.2016.05.001_bb0055) 2012; 26 10.1016/j.ygeno.2016.05.001_bb0110 Downing (10.1016/j.ygeno.2016.05.001_bb0145) 2004 Maldonado (10.1016/j.ygeno.2016.05.001_bb0065) 2011; 181 10.1016/j.ygeno.2016.05.001_bb0130 Ho (10.1016/j.ygeno.2016.05.001_bb0005) 2006; 85 Miyano (10.1016/j.ygeno.2016.05.001_bb0035) 2012; 9 Chiang (10.1016/j.ygeno.2016.05.001_bb0045) 2008 Lei Win (10.1016/j.ygeno.2016.05.001_bb0140) 2014; 3 Skalak (10.1016/j.ygeno.2016.05.001_bb0040) 1994 Ye (10.1016/j.ygeno.2016.05.001_bb0070) 2013; 46 Meybodi (10.1016/j.ygeno.2016.05.001_bb0105) 2000 Lee (10.1016/j.ygeno.2016.05.001_bb0095) 2011; 11 Golub (10.1016/j.ygeno.2016.05.001_bb0115) 1999; 286 Karzynski (10.1016/j.ygeno.2016.05.001_bb0050) 2003; 20 Armstrong (10.1016/j.ygeno.2016.05.001_bb0125) 2002; 30 Mundra (10.1016/j.ygeno.2016.05.001_bb0080) 2010; 9 Wang (10.1016/j.ygeno.2016.05.001_bb0155) 2009; 2 Cho (10.1016/j.ygeno.2016.05.001_bb0030) 2003 Ding (10.1016/j.ygeno.2016.05.001_bb0025) 2003 Mitra (10.1016/j.ygeno.2016.05.001_bb0135) 2012; 42 Shreem (10.1016/j.ygeno.2016.05.001_bb0085) 2012; 46 Guyon (10.1016/j.ygeno.2016.05.001_bb0060) 2002; 46 Singh (10.1016/j.ygeno.2016.05.001_bb0120) 2002; 1 |
| References_xml | – reference: S.K. Pati, A.K. Das, A. Ghosh, “Gene Selection Using Multi-objective Genetic Algorithm Integrating Cellular Automata and Rough Set Theory,“Springer International Publishing Switzerland Lecture Notes in Computer Science Volume 8298, Vol. 2013, (2013), pp 144–155. – volume: 42 start-page: 1590 year: 2012 end-page: 1599 ident: bb0135 article-title: Feature selection and clustering of gene expression profiles using biological knowledge publication-title: IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. – volume: 9 start-page: 31 year: 2010 end-page: 37 ident: bb0080 article-title: “SVM-RFE with mRMR filter for gene selection,” publication-title: IEEE Trans. Nano. Biosci. – reference: M.Dorigo, T.Stuzle, Ant Colony Optimization 2004MTI Press. – volume: 41 start-page: 228 year: 2011 end-page: 237 ident: bb0090 article-title: A hybrid feature selection method for DNA microarray data publication-title: Comput. Biol. Med. – volume: 1 start-page: 203 year: 2002 end-page: 209 ident: bb0120 article-title: Gene expression correlates of clinical prostate cancer behavior publication-title: Cancer Cell – volume: 9 start-page: 11094 year: 2012 end-page: 11102 ident: bb0010 article-title: Fast feature selection aimed at high-dimensional data via hybrid sequential ranked searches publication-title: Expert Syst. Appl. – volume: 286 start-page: 531 year: 1999 end-page: 537 ident: bb0115 article-title: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring publication-title: Science – start-page: 241 year: 2005 end-page: 246 ident: bb0020 article-title: “Neuro-Fuzzy Modeling for Microarray Cancer Gene Expression Data,” publication-title: Proceedings of the Second International Symposium on Evolving Fuzzy Systems – year: Augest 2000 ident: bb0105 article-title: “Expriment With Cellular Learning Automata,” publication-title: Technical Report – volume: 181 start-page: 115 year: 2011 end-page: 128 ident: bb0065 article-title: “Simultaneous feature selection and classification using kernel-penalized support vector machines,” publication-title: Inf. Sci. – volume: 26 start-page: 111 year: 2012 end-page: 135 ident: bb0055 article-title: Iterative feature perturbation as a gene selector for microarray data publication-title: Int. J. Pattern Recognit. Artif. Intell. – year: Jan 29, 2004 ident: bb0145 article-title: “Classification and Prognosis Prediction of Acute Lymphoblastic Leukemia by Gene Expression Profiling” publication-title: U.S. Patent 2014/0018513 – start-page: 523 year: 2003 end-page: 528 ident: bb0025 article-title: “Minimum Redundancy Feature Selection from Microarray Gene Expression Data,” publication-title: Proceedings of the IEEE Conference on Computational Systems Bioinformatics – volume: 30 start-page: 41 year: 2002 end-page: 47 ident: bb0125 article-title: MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia publication-title: Nat. Genet. – volume: 46 start-page: 769 year: 2013 end-page: 787 ident: bb0070 article-title: “Stratified sampling for feature subspace selection in random forests for high dimensional data,” publication-title: Pattern Recogn. – volume: 25 start-page: 1 year: 2013 end-page: 14 ident: bb0075 article-title: “A fast clustering-based feature subset selection algorithm for high-dimensional data,” publication-title: IEEE Trans. Knowl. Data Eng. – volume: 2 start-page: 64 year: 2009 ident: bb0155 article-title: Accurate molecular classification of cancer using simple rules publication-title: BMC Med. Genet. – volume: 20 start-page: 39 year: 2003 end-page: 51 ident: bb0050 article-title: Using a genetic algorithm and a perceptron for feature selection and supervised class learning in DNA microarray data publication-title: Artif. Intell. Rev. – volume: 46 start-page: 1034 year: 2012 end-page: 1039 ident: bb0085 article-title: Hybridizing ReliefF, MRMR filters and GA wrapper approaches for gene selection publication-title: J. Theor. Appl. Inf. Technol – start-page: 12 year: 2008 end-page: 15 ident: bb0045 article-title: “The Application of Ant Colony Optimization for Gene Selection in Microarray-based Cancer Classification,” publication-title: Proceedings of the Seventh International Conference on Machine Learning and Cybernetics – volume: 46 start-page: 389 year: 2002 end-page: 422 ident: bb0060 article-title: Gene selection for cancer classification using support vector machines publication-title: Mach. Learn. – volume: 3 year: April 2014 ident: bb0140 article-title: “Cancer recognition from DNA microarray gene expression data using averaged one-dependence estimators,” publication-title: IJCI – volume: 27 start-page: 597 year: 2005 end-page: 603 ident: bb0160 article-title: A gene selection algorithm based on the gene regulation probability using maximal likelihood estimation publication-title: Biotechnol. Lett. – start-page: 189 year: 2003 end-page: 198 ident: bb0030 article-title: “Machine Learning in DNA Microarray Analysis for Cancer Classification,” publication-title: Proceedings of the First Asia-Pacific Bioinformatics Conference on Bioinformatics – start-page: 293 year: 1994 end-page: 301 ident: bb0040 article-title: “Prototype and Feature Selection by Sampling and Random Mutation Hill Climbing Algorithms,” publication-title: Proceedings of the Eleventh International Conference on Machine Learning – start-page: 850 year: 2014 end-page: 856 ident: bb0100 article-title: Robust and stable feature selection by integrating ranking methods and wrapper technique in genetic data classification publication-title: Biochem. Biophys. Res. Commun. – volume: 9 start-page: 754 year: 2012 end-page: 764 ident: bb0035 article-title: A top-r feature selection algorithm for microarray gene expression data publication-title: IEEE/ACM Trans. Comp. Biol. Bioinf. – volume: 35 start-page: 661 year: 2013 end-page: 667 ident: bb0150 article-title: “Sex-specific genomic biomarkers for individualized treatment of life-threatening diseases,” publication-title: Dis. Markers – volume: 6 start-page: 27 year: 2006 ident: bb0015 article-title: An assessment of recently published gene expression data analyses: reporting experimental design and statistical factors publication-title: BMC Med. Inform. Decis. Mak – volume: 11 start-page: 208 year: 2011 end-page: 213 ident: bb0095 article-title: A novel hybrid feature selection method for microarray data analysis publication-title: Appl. Soft Comput. – volume: 85 start-page: 165 year: 2006 end-page: 176 ident: bb0005 article-title: “Interpretable gene expression classifier with an accurate and compact fuzzy rule base for microarray data analysis” publication-title: Bio Systems – volume: 26 start-page: 111 issue: 05 year: 2012 ident: 10.1016/j.ygeno.2016.05.001_bb0055 article-title: Iterative feature perturbation as a gene selector for microarray data publication-title: Int. J. Pattern Recognit. Artif. Intell. doi: 10.1142/S0218001412600038 – volume: 20 start-page: 39 issue: 1 year: 2003 ident: 10.1016/j.ygeno.2016.05.001_bb0050 article-title: Using a genetic algorithm and a perceptron for feature selection and supervised class learning in DNA microarray data publication-title: Artif. Intell. Rev. doi: 10.1023/A:1026032530166 – volume: 46 start-page: 1034 issue: 2 year: 2012 ident: 10.1016/j.ygeno.2016.05.001_bb0085 article-title: Hybridizing ReliefF, MRMR filters and GA wrapper approaches for gene selection publication-title: J. Theor. Appl. Inf. Technol – volume: 1 start-page: 203 year: 2002 ident: 10.1016/j.ygeno.2016.05.001_bb0120 article-title: Gene expression correlates of clinical prostate cancer behavior publication-title: Cancer Cell doi: 10.1016/S1535-6108(02)00030-2 – start-page: 293 year: 1994 ident: 10.1016/j.ygeno.2016.05.001_bb0040 article-title: “Prototype and Feature Selection by Sampling and Random Mutation Hill Climbing Algorithms,” – volume: 42 start-page: 1590 year: 2012 ident: 10.1016/j.ygeno.2016.05.001_bb0135 article-title: Feature selection and clustering of gene expression profiles using biological knowledge publication-title: IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. doi: 10.1109/TSMCC.2012.2209416 – volume: 85 start-page: 165 year: 2006 ident: 10.1016/j.ygeno.2016.05.001_bb0005 article-title: “Interpretable gene expression classifier with an accurate and compact fuzzy rule base for microarray data analysis” publication-title: Bio Systems doi: 10.1016/j.biosystems.2006.01.002 – volume: 46 start-page: 769 issue: 3 year: 2013 ident: 10.1016/j.ygeno.2016.05.001_bb0070 article-title: “Stratified sampling for feature subspace selection in random forests for high dimensional data,” publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2012.09.005 – volume: 9 start-page: 754 issue: 3 year: 2012 ident: 10.1016/j.ygeno.2016.05.001_bb0035 article-title: A top-r feature selection algorithm for microarray gene expression data publication-title: IEEE/ACM Trans. Comp. Biol. Bioinf. doi: 10.1109/TCBB.2011.151 – start-page: 12 year: 2008 ident: 10.1016/j.ygeno.2016.05.001_bb0045 article-title: “The Application of Ant Colony Optimization for Gene Selection in Microarray-based Cancer Classification,” – volume: 181 start-page: 115 issue: 1 year: 2011 ident: 10.1016/j.ygeno.2016.05.001_bb0065 article-title: “Simultaneous feature selection and classification using kernel-penalized support vector machines,” publication-title: Inf. Sci. doi: 10.1016/j.ins.2010.08.047 – volume: 6 start-page: 27 year: 2006 ident: 10.1016/j.ygeno.2016.05.001_bb0015 article-title: An assessment of recently published gene expression data analyses: reporting experimental design and statistical factors publication-title: BMC Med. Inform. Decis. Mak doi: 10.1186/1472-6947-6-27 – start-page: 850 year: 2014 ident: 10.1016/j.ygeno.2016.05.001_bb0100 article-title: Robust and stable feature selection by integrating ranking methods and wrapper technique in genetic data classification publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2014.02.146 – volume: 3 issue: 2 year: 2014 ident: 10.1016/j.ygeno.2016.05.001_bb0140 article-title: “Cancer recognition from DNA microarray gene expression data using averaged one-dependence estimators,” publication-title: IJCI doi: 10.5121/ijci.2014.3201 – volume: 46 start-page: 389 issue: 1–3 year: 2002 ident: 10.1016/j.ygeno.2016.05.001_bb0060 article-title: Gene selection for cancer classification using support vector machines publication-title: Mach. Learn. doi: 10.1023/A:1012487302797 – ident: 10.1016/j.ygeno.2016.05.001_bb0130 – volume: 35 start-page: 661 issue: 6 year: 2013 ident: 10.1016/j.ygeno.2016.05.001_bb0150 article-title: “Sex-specific genomic biomarkers for individualized treatment of life-threatening diseases,” publication-title: Dis. Markers doi: 10.1155/2013/393020 – ident: 10.1016/j.ygeno.2016.05.001_bb0110 doi: 10.7551/mitpress/1290.001.0001 – start-page: 189 year: 2003 ident: 10.1016/j.ygeno.2016.05.001_bb0030 article-title: “Machine Learning in DNA Microarray Analysis for Cancer Classification,” – volume: 25 start-page: 1 issue: 1 year: 2013 ident: 10.1016/j.ygeno.2016.05.001_bb0075 article-title: “A fast clustering-based feature subset selection algorithm for high-dimensional data,” publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2011.181 – volume: 9 start-page: 11094 year: 2012 ident: 10.1016/j.ygeno.2016.05.001_bb0010 article-title: Fast feature selection aimed at high-dimensional data via hybrid sequential ranked searches publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.03.061 – volume: 11 start-page: 208 issue: 1 year: 2011 ident: 10.1016/j.ygeno.2016.05.001_bb0095 article-title: A novel hybrid feature selection method for microarray data analysis publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2009.11.010 – year: 2000 ident: 10.1016/j.ygeno.2016.05.001_bb0105 article-title: “Expriment With Cellular Learning Automata,” – volume: 286 start-page: 531 year: 1999 ident: 10.1016/j.ygeno.2016.05.001_bb0115 article-title: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring publication-title: Science doi: 10.1126/science.286.5439.531 – volume: 30 start-page: 41 year: 2002 ident: 10.1016/j.ygeno.2016.05.001_bb0125 article-title: MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia publication-title: Nat. Genet. doi: 10.1038/ng765 – volume: 2 start-page: 64 year: 2009 ident: 10.1016/j.ygeno.2016.05.001_bb0155 article-title: Accurate molecular classification of cancer using simple rules publication-title: BMC Med. Genet. – volume: 9 start-page: 31 issue: 1 year: 2010 ident: 10.1016/j.ygeno.2016.05.001_bb0080 article-title: “SVM-RFE with mRMR filter for gene selection,” publication-title: IEEE Trans. Nano. Biosci. doi: 10.1109/TNB.2009.2035284 – volume: 27 start-page: 597 year: 2005 ident: 10.1016/j.ygeno.2016.05.001_bb0160 article-title: A gene selection algorithm based on the gene regulation probability using maximal likelihood estimation publication-title: Biotechnol. Lett. doi: 10.1007/s10529-005-3253-0 – start-page: 241 year: 2005 ident: 10.1016/j.ygeno.2016.05.001_bb0020 article-title: “Neuro-Fuzzy Modeling for Microarray Cancer Gene Expression Data,” – start-page: 523 year: 2003 ident: 10.1016/j.ygeno.2016.05.001_bb0025 article-title: “Minimum Redundancy Feature Selection from Microarray Gene Expression Data,” – year: 2004 ident: 10.1016/j.ygeno.2016.05.001_bb0145 article-title: “Classification and Prognosis Prediction of Acute Lymphoblastic Leukemia by Gene Expression Profiling” – volume: 41 start-page: 228 issue: 4 year: 2011 ident: 10.1016/j.ygeno.2016.05.001_bb0090 article-title: A hybrid feature selection method for DNA microarray data publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2011.02.004 |
| SSID | ssj0009382 |
| Score | 2.5233836 |
| Snippet | This paper proposes an approach for gene selection in microarray data. The proposed approach consists of a primary filter approach using Fisher criterion which... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 231 |
| SubjectTerms | Algorithms ant colonies Ant colony optimization Cellular learning automata Cluster Analysis data collection Data Interpretation, Statistical Formicidae Gene selection genes Humans hybrids K-nearest neighbor Machine Learning Microarray data microarray technology Naïve Bayes Oligonucleotide Array Sequence Analysis - methods Oligonucleotide Array Sequence Analysis - statistics & numerical data space and time Support Vector Machine support vector machines system optimization |
| Title | A hybrid gene selection approach for microarray data classification using cellular learning automata and ant colony optimization |
| URI | https://dx.doi.org/10.1016/j.ygeno.2016.05.001 https://www.ncbi.nlm.nih.gov/pubmed/27154739 https://www.proquest.com/docview/1794122561 https://www.proquest.com/docview/1808648661 https://www.proquest.com/docview/1825432923 |
| Volume | 107 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1089-8646 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009382 issn: 0888-7543 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Open Access Journals customDbUrl: eissn: 1089-8646 dateEnd: 20240502 omitProxy: true ssIdentifier: ssj0009382 issn: 0888-7543 databaseCode: IXB dateStart: 20051201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1089-8646 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009382 issn: 0888-7543 databaseCode: ACRLP dateStart: 20051201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1089-8646 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009382 issn: 0888-7543 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Journal Collection customDbUrl: eissn: 1089-8646 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009382 issn: 0888-7543 databaseCode: AIKHN dateStart: 20051201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1089-8646 dateEnd: 20240502 omitProxy: true ssIdentifier: ssj0009382 issn: 0888-7543 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1089-8646 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009382 issn: 0888-7543 databaseCode: AKRWK dateStart: 19870901 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1VrRBwqGCBsnxURuJI2E3s2MlxWVFtQfQClfZm2Y5TirrZaps95IL46cw4TgEJ9sAhB0fjyPHEM-Po-T2A15mtMc3waVJiMZ8IVdkEV1GdGI7pSolKiqA89-lMLs7Fh2W-3IP5cBaGYJUx9vcxPUTreGcSZ3NyfXk5-YzrA4ttOsrNpzEOC6FIxeDt918wj5IHwSgyTsh6YB4KGK-OiFAJ3yUDfWdUhvlLdvpX9Rmy0MkDOIzlI5v1I3wIe74ZwZ1eULIbwd35oN82gvu_UQ0-gh8z9rWj01kMB-PZTZC_QZ-wgVScYfXKVgTPM5uN6RhBR5mj2prARMF_jEDyF4z-9RN4lUXFiQtmtu16RfamqfBqGVFhNx1bYzxaxYOej-H85P2X-SKJ6guJE2XaJrkxpTI8cyX3psB9V6FMLVLhfS68s2WNa9lap6RzacVLkTqXeVFkXkpnVT3lT2C_WTf-KTBpFe17vFQOH4N9Ve3SXHFhrKgyZceQDbOuXaQmJ4WMKz1g0L7p4CpNrtLTnJB4Y3hz2-m6Z-bYbS4Hd-o_PjCNuWN3x1eD8zV6kObYNH69vdEUy1KMh3KXTYF7RlHI3TbESJBhqT2Go_7run2jTKWkDl0--9_hP4d71OrRbS9gv91s_Uuso1p7HBbKMRzMTj8uzrB1unz3E-vAH5s |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1VRahwQLB8LeXDSBwJu7EdOzlWq1YLtL3QSr1ZtuO0RWy22mYPuSB-emecpIBU9sAhl2QcOR57Zhw9vwfwgbsK04yYJgUW84nUpUtwFVWJFZiutCyVjMpzR8dqfiq_nGVnWzAbzsIQrLKP_V1Mj9G6vzPpR3NydXk5-YbrA4ttOsotpl0cviczrmkH9unnb5xHIaJiFFknZD5QD0WQV0tMqATwUpG_s5eGuSM9_av8jGno4DE86utHttd18QlshXoE9ztFyXYEO7NBwG0ED__gGnwKv_bYRUvHsxh2JrDrqH-DTmEDqzjD8pUtCJ9nVyvbMsKOMk_FNaGJogMZoeTPGf3sJ_Qq6yUnzpldN8sF2du6xKthxIVdt2yJAWnRn_R8BqcH-yezedLLLyReFmmTZNYW2gruCxFsjhuvXNtKpjKETAbvigoXs3NeK-_TUhQy9Z4HmfOglHe6mornsF0v6_ASmHKaNj5BaY-vwba68mmmhbROlly7MfBh1I3vuclJIuOHGUBo3010lSFXmWlGULwxfLxtdNVRc2w2V4M7zV8zzGDy2Nzw_eB8gx6kMbZ1WK6vDQWzFAOi2mST46ZR5mqzDVEScKy1x_Cim123X8R1SvLQxav_7f472JmfHB2aw8_HX3fhAT3poG6vYbtZrcMbLKoa9zYumhudeSAs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+gene+selection+approach+for+microarray+data+classification+using+cellular+learning+automata+and+ant+colony+optimization&rft.jtitle=Genomics+%28San+Diego%2C+Calif.%29&rft.au=Vafaee+Sharbaf%2C+Fatemeh&rft.au=Mosafer%2C+Sara&rft.au=Moattar%2C+Mohammad+Hossein&rft.date=2016-06-01&rft.issn=0888-7543&rft.volume=107&rft.issue=6&rft.spage=231&rft.epage=238&rft_id=info:doi/10.1016%2Fj.ygeno.2016.05.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ygeno_2016_05_001 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-7543&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-7543&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-7543&client=summon |