A hybrid gene selection approach for microarray data classification using cellular learning automata and ant colony optimization

This paper proposes an approach for gene selection in microarray data. The proposed approach consists of a primary filter approach using Fisher criterion which reduces the initial genes and hence the search space and time complexity. Then, a wrapper approach which is based on cellular learning autom...

Full description

Saved in:
Bibliographic Details
Published inGenomics (San Diego, Calif.) Vol. 107; no. 6; pp. 231 - 238
Main Authors Vafaee Sharbaf, Fatemeh, Mosafer, Sara, Moattar, Mohammad Hossein
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.06.2016
Subjects
Online AccessGet full text
ISSN0888-7543
1089-8646
DOI10.1016/j.ygeno.2016.05.001

Cover

Abstract This paper proposes an approach for gene selection in microarray data. The proposed approach consists of a primary filter approach using Fisher criterion which reduces the initial genes and hence the search space and time complexity. Then, a wrapper approach which is based on cellular learning automata (CLA) optimized with ant colony method (ACO) is used to find the set of features which improve the classification accuracy. CLA is applied due to its capability to learn and model complicated relationships. The selected features from the last phase are evaluated using ROC curve and the most effective while smallest feature subset is determined. The classifiers which are evaluated in the proposed framework are K-nearest neighbor; support vector machine and naïve Bayes. The proposed approach is evaluated on 4 microarray datasets. The evaluations confirm that the proposed approach can find the smallest subset of genes while approaching the maximum accuracy. •This paper proposes a three stage scheme for gene selection from microarray data.•Fisher measure ranking is used to reduce the features and hence the search space.•Ant colony optimized Cellular Learning Automata is used as the wrapper approach.•Final gene(s) are selected so that the area under accuracy curve is maximized.•Evaluations show that the smallest set of genes with maximum accuracy is selected.
AbstractList This paper proposes an approach for gene selection in microarray data. The proposed approach consists of a primary filter approach using Fisher criterion which reduces the initial genes and hence the search space and time complexity. Then, a wrapper approach which is based on cellular learning automata (CLA) optimized with ant colony method (ACO) is used to find the set of features which improve the classification accuracy. CLA is applied due to its capability to learn and model complicated relationships. The selected features from the last phase are evaluated using ROC curve and the most effective while smallest feature subset is determined. The classifiers which are evaluated in the proposed framework are K-nearest neighbor; support vector machine and naïve Bayes. The proposed approach is evaluated on 4 microarray datasets. The evaluations confirm that the proposed approach can find the smallest subset of genes while approaching the maximum accuracy.
This paper proposes an approach for gene selection in microarray data. The proposed approach consists of a primary filter approach using Fisher criterion which reduces the initial genes and hence the search space and time complexity. Then, a wrapper approach which is based on cellular learning automata (CLA) optimized with ant colony method (ACO) is used to find the set of features which improve the classification accuracy. CLA is applied due to its capability to learn and model complicated relationships. The selected features from the last phase are evaluated using ROC curve and the most effective while smallest feature subset is determined. The classifiers which are evaluated in the proposed framework are K-nearest neighbor; support vector machine and naïve Bayes. The proposed approach is evaluated on 4 microarray datasets. The evaluations confirm that the proposed approach can find the smallest subset of genes while approaching the maximum accuracy. •This paper proposes a three stage scheme for gene selection from microarray data.•Fisher measure ranking is used to reduce the features and hence the search space.•Ant colony optimized Cellular Learning Automata is used as the wrapper approach.•Final gene(s) are selected so that the area under accuracy curve is maximized.•Evaluations show that the smallest set of genes with maximum accuracy is selected.
This paper proposes an approach for gene selection in microarray data. The proposed approach consists of a primary filter approach using Fisher criterion which reduces the initial genes and hence the search space and time complexity. Then, a wrapper approach which is based on cellular learning automata (CLA) optimized with ant colony method (ACO) is used to find the set of features which improve the classification accuracy. CLA is applied due to its capability to learn and model complicated relationships. The selected features from the last phase are evaluated using ROC curve and the most effective while smallest feature subset is determined. The classifiers which are evaluated in the proposed framework are K-nearest neighbor; support vector machine and naive Bayes. The proposed approach is evaluated on 4 microarray datasets. The evaluations confirm that the proposed approach can find the smallest subset of genes while approaching the maximum accuracy.
Author Vafaee Sharbaf, Fatemeh
Mosafer, Sara
Moattar, Mohammad Hossein
Author_xml – sequence: 1
  givenname: Fatemeh
  surname: Vafaee Sharbaf
  fullname: Vafaee Sharbaf, Fatemeh
  email: vafaeeshaarbaf@gmail.com
  organization: Department of Computer Engineering, Imam Reza International University, Mashhad, Iran
– sequence: 2
  givenname: Sara
  surname: Mosafer
  fullname: Mosafer, Sara
  email: sa.mosafer90@yahoo.com
  organization: Department of Computer Engineering, Imam Reza International University, Mashhad, Iran
– sequence: 3
  givenname: Mohammad Hossein
  surname: Moattar
  fullname: Moattar, Mohammad Hossein
  email: moattar@mshdiau.ac.ir
  organization: Department of Software Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27154739$$D View this record in MEDLINE/PubMed
BookMark eNqNkkFv1DAQhS1URLeFX4CEfOSSYDtOYh84VBXQSpW4wNmaOJPWq8Re7ARpOfHTcbLthUPhYFljfW80854vyJkPHgl5y1nJGW8-7MvjPfpQilyUrC4Z4y_IjjOlC9XI5ozsmFKqaGtZnZOLlPaMMV0p8Yqci5bXsq30jvy-og_HLrqe5l5IE45oZxc8hcMhBrAPdAiRTs7mIkY40h5moHaElNzgLGzskpy_pxbHcRkh0hEh-vUFljlMKw--z2emNozBH2k4zG5yvzbxa_JygDHhm8f7knz__Onb9U1x9_XL7fXVXWGl5nNRA-gWKmF1haC4lKqFQXKJWEu0nR4Yb7vOto21vK-05NYKlEpg09iuHVh1Sd6f-ua1fiyYZjO5tI4MHsOSDFciGyW0qP4DZdlg1TT832ibRxGi3tB3j-jSTdibQ3QTxKN5yiID-gRkr1OKOBjr5s2jOYIbDWdmzd3szZa7WXM3rDY596yt_tI-tX9e9fGkwmz8T4fRJOvQW-xdzN_A9ME9q_8DTvrKMw
CitedBy_id crossref_primary_10_1002_minf_201600099
crossref_primary_10_1016_j_jksuci_2018_02_013
crossref_primary_10_1142_S0218001423510011
crossref_primary_10_1016_j_compbiomed_2024_108984
crossref_primary_10_1016_j_ygeno_2019_01_006
crossref_primary_10_1007_s10044_022_01117_9
crossref_primary_10_1016_j_asoc_2025_112784
crossref_primary_10_1016_j_inffus_2018_11_008
crossref_primary_10_17341_gazimmfd_1064693
crossref_primary_10_1007_s11042_019_7181_8
crossref_primary_10_1016_j_eswa_2022_118946
crossref_primary_10_1109_TII_2019_2929086
crossref_primary_10_3233_KES_190134
crossref_primary_10_1016_j_asoc_2022_109699
crossref_primary_10_3390_pr11020562
crossref_primary_10_1007_s00521_019_04671_2
crossref_primary_10_1007_s13721_021_00313_7
crossref_primary_10_1016_j_mex_2025_103239
crossref_primary_10_1186_s12859_017_1810_x
crossref_primary_10_1142_S1793524519500396
crossref_primary_10_3390_sym14101955
crossref_primary_10_1142_S2196888824500246
crossref_primary_10_1016_j_gltp_2022_03_001
crossref_primary_10_1016_j_ygeno_2020_06_010
crossref_primary_10_1186_s12859_020_03717_w
crossref_primary_10_1016_j_ygeno_2019_07_002
crossref_primary_10_1016_j_ijcce_2020_11_001
crossref_primary_10_3389_fgene_2020_603808
crossref_primary_10_1007_s12652_020_02592_w
crossref_primary_10_1016_j_ygeno_2020_06_014
crossref_primary_10_1016_j_chemolab_2021_104305
crossref_primary_10_1007_s11517_017_1751_6
crossref_primary_10_7717_peerj_cs_562
crossref_primary_10_1007_s12652_020_02155_z
crossref_primary_10_1007_s00521_021_06459_9
crossref_primary_10_3390_info11010038
crossref_primary_10_1016_j_eswa_2021_115290
crossref_primary_10_1109_TCBB_2016_2623605
crossref_primary_10_1016_j_compbiomed_2023_107056
crossref_primary_10_1016_j_gene_2017_12_057
crossref_primary_10_1049_trit_2019_0028
crossref_primary_10_4018_IJSIR_2019040102
crossref_primary_10_1007_s12065_019_00306_6
crossref_primary_10_1016_j_jksuci_2019_04_002
crossref_primary_10_1016_j_asoc_2020_106994
crossref_primary_10_1051_ro_2018059
crossref_primary_10_1080_1206212X_2019_1662172
crossref_primary_10_3390_sym13101812
crossref_primary_10_1007_s00500_023_07988_2
crossref_primary_10_1007_s11042_024_18802_y
crossref_primary_10_1007_s11042_022_13532_5
crossref_primary_10_1016_j_patcog_2021_108079
crossref_primary_10_1155_2021_6680424
crossref_primary_10_1007_s00500_020_04793_z
crossref_primary_10_1016_j_eswa_2021_115882
crossref_primary_10_1016_j_heliyon_2021_e07356
crossref_primary_10_1016_j_gpb_2017_08_002
crossref_primary_10_1186_s12911_021_01696_3
crossref_primary_10_1016_j_ygeno_2018_04_004
crossref_primary_10_1155_2019_7828590
crossref_primary_10_1186_s12859_018_2023_7
crossref_primary_10_1007_s10489_021_03118_3
crossref_primary_10_1049_ccs2_12003
crossref_primary_10_1016_j_cmpb_2019_06_029
crossref_primary_10_1088_1757_899X_1074_1_012004
crossref_primary_10_1109_ACCESS_2019_2922987
crossref_primary_10_1007_s13171_024_00366_6
crossref_primary_10_3390_pr11071940
crossref_primary_10_1109_ACCESS_2021_3119233
crossref_primary_10_1007_s11277_021_09196_3
crossref_primary_10_1007_s13042_022_01726_0
crossref_primary_10_1186_s12859_017_1578_z
crossref_primary_10_1007_s11227_021_03962_7
crossref_primary_10_1016_j_procs_2018_10_358
crossref_primary_10_1007_s43674_022_00047_7
crossref_primary_10_1109_ACCESS_2019_2942413
crossref_primary_10_1016_j_compbiomed_2021_105051
crossref_primary_10_1016_j_ygeno_2019_09_015
crossref_primary_10_1016_j_knosys_2022_110250
Cites_doi 10.1142/S0218001412600038
10.1023/A:1026032530166
10.1016/S1535-6108(02)00030-2
10.1109/TSMCC.2012.2209416
10.1016/j.biosystems.2006.01.002
10.1016/j.patcog.2012.09.005
10.1109/TCBB.2011.151
10.1016/j.ins.2010.08.047
10.1186/1472-6947-6-27
10.1016/j.bbrc.2014.02.146
10.5121/ijci.2014.3201
10.1023/A:1012487302797
10.1155/2013/393020
10.7551/mitpress/1290.001.0001
10.1109/TKDE.2011.181
10.1016/j.eswa.2012.03.061
10.1016/j.asoc.2009.11.010
10.1126/science.286.5439.531
10.1038/ng765
10.1109/TNB.2009.2035284
10.1007/s10529-005-3253-0
10.1016/j.compbiomed.2011.02.004
ContentType Journal Article
Copyright 2016 Elsevier Inc.
Copyright © 2016 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2016 Elsevier Inc.
– notice: Copyright © 2016 Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
8FD
FR3
P64
RC3
7S9
L.6
DOI 10.1016/j.ygeno.2016.05.001
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Genetics Abstracts
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Genetics Abstracts
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Biology
EISSN 1089-8646
EndPage 238
ExternalDocumentID 27154739
10_1016_j_ygeno_2016_05_001
S0888754316300362
Genre Journal Article
GroupedDBID ---
--K
--M
-DZ
-~X
.55
.GJ
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29H
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYOK
ABEFU
ABFNM
ABFRF
ABGSF
ABJNI
ABLJU
ABMAC
ABUDA
ABVKL
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AHPSJ
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BAWUL
BKOJK
BLXMC
CAG
COF
CS3
DIK
DM4
DOVZS
DU5
E3Z
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HLW
HVGLF
HZ~
IHE
IXB
J1W
K-O
KOM
L7B
LG5
LX2
M41
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
TN5
TR2
VH1
WUQ
X7M
XPP
XSW
ZA5
ZGI
ZMT
ZU3
ZXP
~G-
~KM
AAFWJ
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPKN
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
BNPGV
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
8FD
FR3
P64
RC3
7S9
L.6
ID FETCH-LOGICAL-c491t-5aa97a32c93ea814487af414ee54ecb9f017bbc76cc1d3941cc2e482e66cb7f03
IEDL.DBID .~1
ISSN 0888-7543
IngestDate Sun Sep 28 01:50:09 EDT 2025
Sun Sep 28 00:27:04 EDT 2025
Thu Oct 02 11:57:42 EDT 2025
Thu Apr 03 07:09:31 EDT 2025
Thu Apr 24 23:09:52 EDT 2025
Wed Oct 01 02:30:23 EDT 2025
Fri Feb 23 02:26:27 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Ant colony optimization
Naïve Bayes
Gene selection
Microarray data
Cellular learning automata
K-nearest neighbor
Language English
License This article is made available under the Elsevier license.
Copyright © 2016 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c491t-5aa97a32c93ea814487af414ee54ecb9f017bbc76cc1d3941cc2e482e66cb7f03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0888754316300362
PMID 27154739
PQID 1794122561
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_1825432923
proquest_miscellaneous_1808648661
proquest_miscellaneous_1794122561
pubmed_primary_27154739
crossref_citationtrail_10_1016_j_ygeno_2016_05_001
crossref_primary_10_1016_j_ygeno_2016_05_001
elsevier_sciencedirect_doi_10_1016_j_ygeno_2016_05_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-06-01
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-06-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Genomics (San Diego, Calif.)
PublicationTitleAlternate Genomics
PublicationYear 2016
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Lee, Leu (bb0095) 2011; 11
Ding, Peng (bb0025) 2003
Guyon, Weston, Barnhill, Vapnik (bb0060) 2002; 46
Meybodi (bb0105) Augest 2000
Downing (bb0145) Jan 29, 2004
Shreem, Abdullah, Nazri, Alzaqebah (bb0085) 2012; 46
Skalak (bb0040) 1994
Singh, Febbo, Ross, Jackson, Manola, Ladd, Tamayo, Renshaw, D'Amico, Richie, Lander, Loda, Kantoff, Golub, Sellers (bb0120) 2002; 1
Chiang, Lin (bb0045) 2008
Jafari, Azuaje (bb0015) 2006; 6
M.Dorigo, T.Stuzle, Ant Colony Optimization 2004MTI Press.
Ye, Wu, Zhexue, Huang, Ng, Li (bb0070) 2013; 46
S.K. Pati, A.K. Das, A. Ghosh, “Gene Selection Using Multi-objective Genetic Algorithm Integrating Cellular Automata and Rough Set Theory,“Springer International Publishing Switzerland Lecture Notes in Computer Science Volume 8298, Vol. 2013, (2013), pp 144–155.
Maldonado, Weber, Basak (bb0065) 2011; 181
Golub, Slonim, Tamayo, Huard, Gassenbeek, Mesirov, Coller, Loh, Downing, Caligiuri, Bloomfield, Lander (bb0115) 1999; 286
Karzynski, Mateos, Dopazo (bb0050) 2003; 20
Yassi, Moattar (bb0100) 2014
Wang, Gotoh (bb0155) 2009; 2
Miyano, Imoto, Sharma (bb0035) 2012; 9
Canul-Reich, Hall, Goldgof, Korecki, Eschrich (bb0055) 2012; 26
Mundra, Rajapakse (bb0080) 2010; 9
Mitra, Ghosh (bb0135) 2012; 42
Ruiz, Riquelme, Aguilar-Ruize, Garcia-Torres (bb0010) 2012; 9
Ho, Hsieh, Chen, Huang (bb0005) 2006; 85
Wang (bb0020) 2005
Armstrong, Staunton, Silverman, Pieters, den Boer, Minden, Sallan, Lander, Golub, Korsemeyer (bb0125) 2002; 30
Moon (bb0150) 2013; 35
Chuang, Yang, Wu, Yang (bb0090) 2011; 41
Song, Ni, Wang (bb0075) 2013; 25
Cho, Won (bb0030) 2003
Wang, Huang (bb0160) 2005; 27
Lei Win, Htike, Yusof, Noorbatcha (bb0140) April 2014; 3
Song (10.1016/j.ygeno.2016.05.001_bb0075) 2013; 25
Chuang (10.1016/j.ygeno.2016.05.001_bb0090) 2011; 41
Jafari (10.1016/j.ygeno.2016.05.001_bb0015) 2006; 6
Moon (10.1016/j.ygeno.2016.05.001_bb0150) 2013; 35
Ruiz (10.1016/j.ygeno.2016.05.001_bb0010) 2012; 9
Wang (10.1016/j.ygeno.2016.05.001_bb0160) 2005; 27
Yassi (10.1016/j.ygeno.2016.05.001_bb0100) 2014
Wang (10.1016/j.ygeno.2016.05.001_bb0020) 2005
Canul-Reich (10.1016/j.ygeno.2016.05.001_bb0055) 2012; 26
10.1016/j.ygeno.2016.05.001_bb0110
Downing (10.1016/j.ygeno.2016.05.001_bb0145) 2004
Maldonado (10.1016/j.ygeno.2016.05.001_bb0065) 2011; 181
10.1016/j.ygeno.2016.05.001_bb0130
Ho (10.1016/j.ygeno.2016.05.001_bb0005) 2006; 85
Miyano (10.1016/j.ygeno.2016.05.001_bb0035) 2012; 9
Chiang (10.1016/j.ygeno.2016.05.001_bb0045) 2008
Lei Win (10.1016/j.ygeno.2016.05.001_bb0140) 2014; 3
Skalak (10.1016/j.ygeno.2016.05.001_bb0040) 1994
Ye (10.1016/j.ygeno.2016.05.001_bb0070) 2013; 46
Meybodi (10.1016/j.ygeno.2016.05.001_bb0105) 2000
Lee (10.1016/j.ygeno.2016.05.001_bb0095) 2011; 11
Golub (10.1016/j.ygeno.2016.05.001_bb0115) 1999; 286
Karzynski (10.1016/j.ygeno.2016.05.001_bb0050) 2003; 20
Armstrong (10.1016/j.ygeno.2016.05.001_bb0125) 2002; 30
Mundra (10.1016/j.ygeno.2016.05.001_bb0080) 2010; 9
Wang (10.1016/j.ygeno.2016.05.001_bb0155) 2009; 2
Cho (10.1016/j.ygeno.2016.05.001_bb0030) 2003
Ding (10.1016/j.ygeno.2016.05.001_bb0025) 2003
Mitra (10.1016/j.ygeno.2016.05.001_bb0135) 2012; 42
Shreem (10.1016/j.ygeno.2016.05.001_bb0085) 2012; 46
Guyon (10.1016/j.ygeno.2016.05.001_bb0060) 2002; 46
Singh (10.1016/j.ygeno.2016.05.001_bb0120) 2002; 1
References_xml – reference: S.K. Pati, A.K. Das, A. Ghosh, “Gene Selection Using Multi-objective Genetic Algorithm Integrating Cellular Automata and Rough Set Theory,“Springer International Publishing Switzerland Lecture Notes in Computer Science Volume 8298, Vol. 2013, (2013), pp 144–155.
– volume: 42
  start-page: 1590
  year: 2012
  end-page: 1599
  ident: bb0135
  article-title: Feature selection and clustering of gene expression profiles using biological knowledge
  publication-title: IEEE Trans. Syst. Man Cybern. Part C Appl. Rev.
– volume: 9
  start-page: 31
  year: 2010
  end-page: 37
  ident: bb0080
  article-title: “SVM-RFE with mRMR filter for gene selection,”
  publication-title: IEEE Trans. Nano. Biosci.
– reference: M.Dorigo, T.Stuzle, Ant Colony Optimization 2004MTI Press.
– volume: 41
  start-page: 228
  year: 2011
  end-page: 237
  ident: bb0090
  article-title: A hybrid feature selection method for DNA microarray data
  publication-title: Comput. Biol. Med.
– volume: 1
  start-page: 203
  year: 2002
  end-page: 209
  ident: bb0120
  article-title: Gene expression correlates of clinical prostate cancer behavior
  publication-title: Cancer Cell
– volume: 9
  start-page: 11094
  year: 2012
  end-page: 11102
  ident: bb0010
  article-title: Fast feature selection aimed at high-dimensional data via hybrid sequential ranked searches
  publication-title: Expert Syst. Appl.
– volume: 286
  start-page: 531
  year: 1999
  end-page: 537
  ident: bb0115
  article-title: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring
  publication-title: Science
– start-page: 241
  year: 2005
  end-page: 246
  ident: bb0020
  article-title: “Neuro-Fuzzy Modeling for Microarray Cancer Gene Expression Data,”
  publication-title: Proceedings of the Second International Symposium on Evolving Fuzzy Systems
– year: Augest 2000
  ident: bb0105
  article-title: “Expriment With Cellular Learning Automata,”
  publication-title: Technical Report
– volume: 181
  start-page: 115
  year: 2011
  end-page: 128
  ident: bb0065
  article-title: “Simultaneous feature selection and classification using kernel-penalized support vector machines,”
  publication-title: Inf. Sci.
– volume: 26
  start-page: 111
  year: 2012
  end-page: 135
  ident: bb0055
  article-title: Iterative feature perturbation as a gene selector for microarray data
  publication-title: Int. J. Pattern Recognit. Artif. Intell.
– year: Jan 29, 2004
  ident: bb0145
  article-title: “Classification and Prognosis Prediction of Acute Lymphoblastic Leukemia by Gene Expression Profiling”
  publication-title: U.S. Patent 2014/0018513
– start-page: 523
  year: 2003
  end-page: 528
  ident: bb0025
  article-title: “Minimum Redundancy Feature Selection from Microarray Gene Expression Data,”
  publication-title: Proceedings of the IEEE Conference on Computational Systems Bioinformatics
– volume: 30
  start-page: 41
  year: 2002
  end-page: 47
  ident: bb0125
  article-title: MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia
  publication-title: Nat. Genet.
– volume: 46
  start-page: 769
  year: 2013
  end-page: 787
  ident: bb0070
  article-title: “Stratified sampling for feature subspace selection in random forests for high dimensional data,”
  publication-title: Pattern Recogn.
– volume: 25
  start-page: 1
  year: 2013
  end-page: 14
  ident: bb0075
  article-title: “A fast clustering-based feature subset selection algorithm for high-dimensional data,”
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 2
  start-page: 64
  year: 2009
  ident: bb0155
  article-title: Accurate molecular classification of cancer using simple rules
  publication-title: BMC Med. Genet.
– volume: 20
  start-page: 39
  year: 2003
  end-page: 51
  ident: bb0050
  article-title: Using a genetic algorithm and a perceptron for feature selection and supervised class learning in DNA microarray data
  publication-title: Artif. Intell. Rev.
– volume: 46
  start-page: 1034
  year: 2012
  end-page: 1039
  ident: bb0085
  article-title: Hybridizing ReliefF, MRMR filters and GA wrapper approaches for gene selection
  publication-title: J. Theor. Appl. Inf. Technol
– start-page: 12
  year: 2008
  end-page: 15
  ident: bb0045
  article-title: “The Application of Ant Colony Optimization for Gene Selection in Microarray-based Cancer Classification,”
  publication-title: Proceedings of the Seventh International Conference on Machine Learning and Cybernetics
– volume: 46
  start-page: 389
  year: 2002
  end-page: 422
  ident: bb0060
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Mach. Learn.
– volume: 3
  year: April 2014
  ident: bb0140
  article-title: “Cancer recognition from DNA microarray gene expression data using averaged one-dependence estimators,”
  publication-title: IJCI
– volume: 27
  start-page: 597
  year: 2005
  end-page: 603
  ident: bb0160
  article-title: A gene selection algorithm based on the gene regulation probability using maximal likelihood estimation
  publication-title: Biotechnol. Lett.
– start-page: 189
  year: 2003
  end-page: 198
  ident: bb0030
  article-title: “Machine Learning in DNA Microarray Analysis for Cancer Classification,”
  publication-title: Proceedings of the First Asia-Pacific Bioinformatics Conference on Bioinformatics
– start-page: 293
  year: 1994
  end-page: 301
  ident: bb0040
  article-title: “Prototype and Feature Selection by Sampling and Random Mutation Hill Climbing Algorithms,”
  publication-title: Proceedings of the Eleventh International Conference on Machine Learning
– start-page: 850
  year: 2014
  end-page: 856
  ident: bb0100
  article-title: Robust and stable feature selection by integrating ranking methods and wrapper technique in genetic data classification
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 9
  start-page: 754
  year: 2012
  end-page: 764
  ident: bb0035
  article-title: A top-r feature selection algorithm for microarray gene expression data
  publication-title: IEEE/ACM Trans. Comp. Biol. Bioinf.
– volume: 35
  start-page: 661
  year: 2013
  end-page: 667
  ident: bb0150
  article-title: “Sex-specific genomic biomarkers for individualized treatment of life-threatening diseases,”
  publication-title: Dis. Markers
– volume: 6
  start-page: 27
  year: 2006
  ident: bb0015
  article-title: An assessment of recently published gene expression data analyses: reporting experimental design and statistical factors
  publication-title: BMC Med. Inform. Decis. Mak
– volume: 11
  start-page: 208
  year: 2011
  end-page: 213
  ident: bb0095
  article-title: A novel hybrid feature selection method for microarray data analysis
  publication-title: Appl. Soft Comput.
– volume: 85
  start-page: 165
  year: 2006
  end-page: 176
  ident: bb0005
  article-title: “Interpretable gene expression classifier with an accurate and compact fuzzy rule base for microarray data analysis”
  publication-title: Bio Systems
– volume: 26
  start-page: 111
  issue: 05
  year: 2012
  ident: 10.1016/j.ygeno.2016.05.001_bb0055
  article-title: Iterative feature perturbation as a gene selector for microarray data
  publication-title: Int. J. Pattern Recognit. Artif. Intell.
  doi: 10.1142/S0218001412600038
– volume: 20
  start-page: 39
  issue: 1
  year: 2003
  ident: 10.1016/j.ygeno.2016.05.001_bb0050
  article-title: Using a genetic algorithm and a perceptron for feature selection and supervised class learning in DNA microarray data
  publication-title: Artif. Intell. Rev.
  doi: 10.1023/A:1026032530166
– volume: 46
  start-page: 1034
  issue: 2
  year: 2012
  ident: 10.1016/j.ygeno.2016.05.001_bb0085
  article-title: Hybridizing ReliefF, MRMR filters and GA wrapper approaches for gene selection
  publication-title: J. Theor. Appl. Inf. Technol
– volume: 1
  start-page: 203
  year: 2002
  ident: 10.1016/j.ygeno.2016.05.001_bb0120
  article-title: Gene expression correlates of clinical prostate cancer behavior
  publication-title: Cancer Cell
  doi: 10.1016/S1535-6108(02)00030-2
– start-page: 293
  year: 1994
  ident: 10.1016/j.ygeno.2016.05.001_bb0040
  article-title: “Prototype and Feature Selection by Sampling and Random Mutation Hill Climbing Algorithms,”
– volume: 42
  start-page: 1590
  year: 2012
  ident: 10.1016/j.ygeno.2016.05.001_bb0135
  article-title: Feature selection and clustering of gene expression profiles using biological knowledge
  publication-title: IEEE Trans. Syst. Man Cybern. Part C Appl. Rev.
  doi: 10.1109/TSMCC.2012.2209416
– volume: 85
  start-page: 165
  year: 2006
  ident: 10.1016/j.ygeno.2016.05.001_bb0005
  article-title: “Interpretable gene expression classifier with an accurate and compact fuzzy rule base for microarray data analysis”
  publication-title: Bio Systems
  doi: 10.1016/j.biosystems.2006.01.002
– volume: 46
  start-page: 769
  issue: 3
  year: 2013
  ident: 10.1016/j.ygeno.2016.05.001_bb0070
  article-title: “Stratified sampling for feature subspace selection in random forests for high dimensional data,”
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2012.09.005
– volume: 9
  start-page: 754
  issue: 3
  year: 2012
  ident: 10.1016/j.ygeno.2016.05.001_bb0035
  article-title: A top-r feature selection algorithm for microarray gene expression data
  publication-title: IEEE/ACM Trans. Comp. Biol. Bioinf.
  doi: 10.1109/TCBB.2011.151
– start-page: 12
  year: 2008
  ident: 10.1016/j.ygeno.2016.05.001_bb0045
  article-title: “The Application of Ant Colony Optimization for Gene Selection in Microarray-based Cancer Classification,”
– volume: 181
  start-page: 115
  issue: 1
  year: 2011
  ident: 10.1016/j.ygeno.2016.05.001_bb0065
  article-title: “Simultaneous feature selection and classification using kernel-penalized support vector machines,”
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2010.08.047
– volume: 6
  start-page: 27
  year: 2006
  ident: 10.1016/j.ygeno.2016.05.001_bb0015
  article-title: An assessment of recently published gene expression data analyses: reporting experimental design and statistical factors
  publication-title: BMC Med. Inform. Decis. Mak
  doi: 10.1186/1472-6947-6-27
– start-page: 850
  year: 2014
  ident: 10.1016/j.ygeno.2016.05.001_bb0100
  article-title: Robust and stable feature selection by integrating ranking methods and wrapper technique in genetic data classification
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2014.02.146
– volume: 3
  issue: 2
  year: 2014
  ident: 10.1016/j.ygeno.2016.05.001_bb0140
  article-title: “Cancer recognition from DNA microarray gene expression data using averaged one-dependence estimators,”
  publication-title: IJCI
  doi: 10.5121/ijci.2014.3201
– volume: 46
  start-page: 389
  issue: 1–3
  year: 2002
  ident: 10.1016/j.ygeno.2016.05.001_bb0060
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Mach. Learn.
  doi: 10.1023/A:1012487302797
– ident: 10.1016/j.ygeno.2016.05.001_bb0130
– volume: 35
  start-page: 661
  issue: 6
  year: 2013
  ident: 10.1016/j.ygeno.2016.05.001_bb0150
  article-title: “Sex-specific genomic biomarkers for individualized treatment of life-threatening diseases,”
  publication-title: Dis. Markers
  doi: 10.1155/2013/393020
– ident: 10.1016/j.ygeno.2016.05.001_bb0110
  doi: 10.7551/mitpress/1290.001.0001
– start-page: 189
  year: 2003
  ident: 10.1016/j.ygeno.2016.05.001_bb0030
  article-title: “Machine Learning in DNA Microarray Analysis for Cancer Classification,”
– volume: 25
  start-page: 1
  issue: 1
  year: 2013
  ident: 10.1016/j.ygeno.2016.05.001_bb0075
  article-title: “A fast clustering-based feature subset selection algorithm for high-dimensional data,”
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2011.181
– volume: 9
  start-page: 11094
  year: 2012
  ident: 10.1016/j.ygeno.2016.05.001_bb0010
  article-title: Fast feature selection aimed at high-dimensional data via hybrid sequential ranked searches
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.03.061
– volume: 11
  start-page: 208
  issue: 1
  year: 2011
  ident: 10.1016/j.ygeno.2016.05.001_bb0095
  article-title: A novel hybrid feature selection method for microarray data analysis
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2009.11.010
– year: 2000
  ident: 10.1016/j.ygeno.2016.05.001_bb0105
  article-title: “Expriment With Cellular Learning Automata,”
– volume: 286
  start-page: 531
  year: 1999
  ident: 10.1016/j.ygeno.2016.05.001_bb0115
  article-title: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring
  publication-title: Science
  doi: 10.1126/science.286.5439.531
– volume: 30
  start-page: 41
  year: 2002
  ident: 10.1016/j.ygeno.2016.05.001_bb0125
  article-title: MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia
  publication-title: Nat. Genet.
  doi: 10.1038/ng765
– volume: 2
  start-page: 64
  year: 2009
  ident: 10.1016/j.ygeno.2016.05.001_bb0155
  article-title: Accurate molecular classification of cancer using simple rules
  publication-title: BMC Med. Genet.
– volume: 9
  start-page: 31
  issue: 1
  year: 2010
  ident: 10.1016/j.ygeno.2016.05.001_bb0080
  article-title: “SVM-RFE with mRMR filter for gene selection,”
  publication-title: IEEE Trans. Nano. Biosci.
  doi: 10.1109/TNB.2009.2035284
– volume: 27
  start-page: 597
  year: 2005
  ident: 10.1016/j.ygeno.2016.05.001_bb0160
  article-title: A gene selection algorithm based on the gene regulation probability using maximal likelihood estimation
  publication-title: Biotechnol. Lett.
  doi: 10.1007/s10529-005-3253-0
– start-page: 241
  year: 2005
  ident: 10.1016/j.ygeno.2016.05.001_bb0020
  article-title: “Neuro-Fuzzy Modeling for Microarray Cancer Gene Expression Data,”
– start-page: 523
  year: 2003
  ident: 10.1016/j.ygeno.2016.05.001_bb0025
  article-title: “Minimum Redundancy Feature Selection from Microarray Gene Expression Data,”
– year: 2004
  ident: 10.1016/j.ygeno.2016.05.001_bb0145
  article-title: “Classification and Prognosis Prediction of Acute Lymphoblastic Leukemia by Gene Expression Profiling”
– volume: 41
  start-page: 228
  issue: 4
  year: 2011
  ident: 10.1016/j.ygeno.2016.05.001_bb0090
  article-title: A hybrid feature selection method for DNA microarray data
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2011.02.004
SSID ssj0009382
Score 2.5233836
Snippet This paper proposes an approach for gene selection in microarray data. The proposed approach consists of a primary filter approach using Fisher criterion which...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 231
SubjectTerms Algorithms
ant colonies
Ant colony optimization
Cellular learning automata
Cluster Analysis
data collection
Data Interpretation, Statistical
Formicidae
Gene selection
genes
Humans
hybrids
K-nearest neighbor
Machine Learning
Microarray data
microarray technology
Naïve Bayes
Oligonucleotide Array Sequence Analysis - methods
Oligonucleotide Array Sequence Analysis - statistics & numerical data
space and time
Support Vector Machine
support vector machines
system optimization
Title A hybrid gene selection approach for microarray data classification using cellular learning automata and ant colony optimization
URI https://dx.doi.org/10.1016/j.ygeno.2016.05.001
https://www.ncbi.nlm.nih.gov/pubmed/27154739
https://www.proquest.com/docview/1794122561
https://www.proquest.com/docview/1808648661
https://www.proquest.com/docview/1825432923
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1089-8646
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009382
  issn: 0888-7543
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Open Access Journals
  customDbUrl:
  eissn: 1089-8646
  dateEnd: 20240502
  omitProxy: true
  ssIdentifier: ssj0009382
  issn: 0888-7543
  databaseCode: IXB
  dateStart: 20051201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1089-8646
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009382
  issn: 0888-7543
  databaseCode: ACRLP
  dateStart: 20051201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1089-8646
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009382
  issn: 0888-7543
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Journal Collection
  customDbUrl:
  eissn: 1089-8646
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009382
  issn: 0888-7543
  databaseCode: AIKHN
  dateStart: 20051201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1089-8646
  dateEnd: 20240502
  omitProxy: true
  ssIdentifier: ssj0009382
  issn: 0888-7543
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1089-8646
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009382
  issn: 0888-7543
  databaseCode: AKRWK
  dateStart: 19870901
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1VrRBwqGCBsnxURuJI2E3s2MlxWVFtQfQClfZm2Y5TirrZaps95IL46cw4TgEJ9sAhB0fjyPHEM-Po-T2A15mtMc3waVJiMZ8IVdkEV1GdGI7pSolKiqA89-lMLs7Fh2W-3IP5cBaGYJUx9vcxPUTreGcSZ3NyfXk5-YzrA4ttOsrNpzEOC6FIxeDt918wj5IHwSgyTsh6YB4KGK-OiFAJ3yUDfWdUhvlLdvpX9Rmy0MkDOIzlI5v1I3wIe74ZwZ1eULIbwd35oN82gvu_UQ0-gh8z9rWj01kMB-PZTZC_QZ-wgVScYfXKVgTPM5uN6RhBR5mj2prARMF_jEDyF4z-9RN4lUXFiQtmtu16RfamqfBqGVFhNx1bYzxaxYOej-H85P2X-SKJ6guJE2XaJrkxpTI8cyX3psB9V6FMLVLhfS68s2WNa9lap6RzacVLkTqXeVFkXkpnVT3lT2C_WTf-KTBpFe17vFQOH4N9Ve3SXHFhrKgyZceQDbOuXaQmJ4WMKz1g0L7p4CpNrtLTnJB4Y3hz2-m6Z-bYbS4Hd-o_PjCNuWN3x1eD8zV6kObYNH69vdEUy1KMh3KXTYF7RlHI3TbESJBhqT2Go_7run2jTKWkDl0--9_hP4d71OrRbS9gv91s_Uuso1p7HBbKMRzMTj8uzrB1unz3E-vAH5s
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1VRahwQLB8LeXDSBwJu7EdOzlWq1YLtL3QSr1ZtuO0RWy22mYPuSB-emecpIBU9sAhl2QcOR57Zhw9vwfwgbsK04yYJgUW84nUpUtwFVWJFZiutCyVjMpzR8dqfiq_nGVnWzAbzsIQrLKP_V1Mj9G6vzPpR3NydXk5-YbrA4ttOsotpl0cviczrmkH9unnb5xHIaJiFFknZD5QD0WQV0tMqATwUpG_s5eGuSM9_av8jGno4DE86utHttd18QlshXoE9ztFyXYEO7NBwG0ED__gGnwKv_bYRUvHsxh2JrDrqH-DTmEDqzjD8pUtCJ9nVyvbMsKOMk_FNaGJogMZoeTPGf3sJ_Qq6yUnzpldN8sF2du6xKthxIVdt2yJAWnRn_R8BqcH-yezedLLLyReFmmTZNYW2gruCxFsjhuvXNtKpjKETAbvigoXs3NeK-_TUhQy9Z4HmfOglHe6mornsF0v6_ASmHKaNj5BaY-vwba68mmmhbROlly7MfBh1I3vuclJIuOHGUBo3010lSFXmWlGULwxfLxtdNVRc2w2V4M7zV8zzGDy2Nzw_eB8gx6kMbZ1WK6vDQWzFAOi2mST46ZR5mqzDVEScKy1x_Cim123X8R1SvLQxav_7f472JmfHB2aw8_HX3fhAT3poG6vYbtZrcMbLKoa9zYumhudeSAs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+gene+selection+approach+for+microarray+data+classification+using+cellular+learning+automata+and+ant+colony+optimization&rft.jtitle=Genomics+%28San+Diego%2C+Calif.%29&rft.au=Vafaee+Sharbaf%2C+Fatemeh&rft.au=Mosafer%2C+Sara&rft.au=Moattar%2C+Mohammad+Hossein&rft.date=2016-06-01&rft.issn=0888-7543&rft.volume=107&rft.issue=6&rft.spage=231&rft.epage=238&rft_id=info:doi/10.1016%2Fj.ygeno.2016.05.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ygeno_2016_05_001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-7543&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-7543&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-7543&client=summon