A fuzzy clustering neural network architecture for classification of ECG arrhythmias
Accurate and computationally efficient means of classifying electrocardiography (ECG) arrhythmias has been the subject of considerable research effort in recent years. This study presents a comparative study of the classification accuracy of ECG signals using a well-known neural network architecture...
Saved in:
| Published in | Computers in biology and medicine Vol. 36; no. 4; pp. 376 - 388 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Ltd
01.04.2006
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0010-4825 1879-0534 |
| DOI | 10.1016/j.compbiomed.2005.01.006 |
Cover
| Abstract | Accurate and computationally efficient means of classifying electrocardiography (ECG) arrhythmias has been the subject of considerable research effort in recent years. This study presents a comparative study of the classification accuracy of ECG signals using a well-known neural network architecture named multi-layered perceptron (MLP) with backpropagation training algorithm, and a new fuzzy clustering NN architecture (FCNN) for early diagnosis. The ECG signals are taken from MIT-BIH ECG database, which are used to classify 10 different arrhythmias for training. These are normal sinus rhythm, sinus bradycardia, ventricular tachycardia, sinus arrhythmia, atrial premature contraction, paced beat, right bundle branch block, left bundle branch block, atrial fibrillation and atrial flutter. For testing, the proposed structures were trained by backpropagation algorithm. Both of them tested using experimental ECG records of 92 patients (40 male and 52 female, average age is
39.75
±
19.06
). The test results suggest that a new proposed FCNN architecture can generalize better than ordinary MLP architecture and also learn better and faster. The advantage of proposed structure is a result of decreasing the number of segments by grouping similar segments in training data with fuzzy c-means clustering. |
|---|---|
| AbstractList | Accurate and computationally efficient means of classifying electrocardiography (ECG) arrhythmias has been the subject of considerable research effort in recent years. This study presents a comparative study of the classification accuracy of ECG signals using a well-known neural network architecture named multi-layered perceptron (MLP) with backpropagation training algorithm, and a new fuzzy clustering NN architecture (FCNN) for early diagnosis. The ECG signals are taken from MIT-BIH ECG database, which are used to classify 10 different arrhythmias for training. These are normal sinus rhythm, sinus bradycardia, ventricular tachycardia, sinus arrhythmia, atrial premature contraction, paced beat, right bundle branch block, left bundle branch block, atrial fibrillation and atrial flutter. For testing, the proposed structures were trained by backpropagation algorithm. Both of them tested using experimental ECG records of 92 patients (40 male and 52 female, average age is 39.75 +or- 19.06). The test results suggest that a new proposed FCNN architecture can generalize better than ordinary MLP architecture and also learn better and faster. The advantage of proposed structure is a result of decreasing the number of segments by grouping similar segments in training data with fuzzy c-means clustering. (Author abstract) Accurate and computationally efficient means of classifying electrocardiography (ECG) arrhythmias has been the subject of considerable research effort in recent years. This study presents a comparative study of the classification accuracy of ECG signals using a well-known neural network architecture named multi-layered perceptron (MLP) with backpropagation training algorithm, and a new fuzzy clustering NN architecture (FCNN) for early diagnosis. The ECG signals are taken from MIT-BIH ECG database, which are used to classify 10 different arrhythmias for training. These are normal sinus rhythm, sinus bradycardia, ventricular tachycardia, sinus arrhythmia, atrial premature contraction, paced beat, right bundle branch block, left bundle branch block, atrial fibrillation and atrial flutter. For testing, the proposed structures were trained by backpropagation algorithm. Both of them tested using experimental ECG records of 92 patients (40 male and 52 female, average age is 39.75 +/- 19.06). The test results suggest that a new proposed FCNN architecture can generalize better than ordinary MLP architecture and also learn better and faster. The advantage of proposed structure is a result of decreasing the number of segments by grouping similar segments in training data with fuzzy c-means clustering. Accurate and computationally efficient means of classifying electrocardiography (ECG) arrhythmias has been the subject of considerable research effort in recent years. This study presents a comparative study of the classification accuracy of ECG signals using a well-known neural network architecture named multi-layered perceptron (MLP) with backpropagation training algorithm, and a new fuzzy clustering NN architecture (FCNN) for early diagnosis. The ECG signals are taken from MIT-BIH ECG database, which are used to classify 10 different arrhythmias for training. These are normal sinus rhythm, sinus bradycardia, ventricular tachycardia, sinus arrhythmia, atrial premature contraction, paced beat, right bundle branch block, left bundle branch block, atrial fibrillation and atrial flutter. For testing, the proposed structures were trained by backpropagation algorithm. Both of them tested using experimental ECG records of 92 patients (40 male and 52 female, average age is 39.75 ± 19.06 ). The test results suggest that a new proposed FCNN architecture can generalize better than ordinary MLP architecture and also learn better and faster. The advantage of proposed structure is a result of decreasing the number of segments by grouping similar segments in training data with fuzzy c-means clustering. Accurate and computationally efficient means of classifying electrocardiography (ECG) arrhythmias has been the subject of considerable research effort in recent years. This study presents a comparative study of the classification accuracy of ECG signals using a well-known neural network architecture named multi-layered perceptron (MLP) with backpropagation training algorithm, and a new fuzzy clustering NN architecture (FCNN) for early diagnosis. The ECG signals are taken from MIT-BIH ECG database, which are used to classify 10 different arrhythmias for training. These are normal sinus rhythm, sinus bradycardia, ventricular tachycardia, sinus arrhythmia, atrial premature contraction, paced beat, right bundle branch block, left bundle branch block, atrial fibrillation and atrial flutter. For testing, the proposed structures were trained by backpropagation algorithm. Both of them tested using experimental ECG records of 92 patients (40 male and 52 female, average age is 39.75 +/- 19.06). The test results suggest that a new proposed FCNN architecture can generalize better than ordinary MLP architecture and also learn better and faster. The advantage of proposed structure is a result of decreasing the number of segments by grouping similar segments in training data with fuzzy c-means clustering.Accurate and computationally efficient means of classifying electrocardiography (ECG) arrhythmias has been the subject of considerable research effort in recent years. This study presents a comparative study of the classification accuracy of ECG signals using a well-known neural network architecture named multi-layered perceptron (MLP) with backpropagation training algorithm, and a new fuzzy clustering NN architecture (FCNN) for early diagnosis. The ECG signals are taken from MIT-BIH ECG database, which are used to classify 10 different arrhythmias for training. These are normal sinus rhythm, sinus bradycardia, ventricular tachycardia, sinus arrhythmia, atrial premature contraction, paced beat, right bundle branch block, left bundle branch block, atrial fibrillation and atrial flutter. For testing, the proposed structures were trained by backpropagation algorithm. Both of them tested using experimental ECG records of 92 patients (40 male and 52 female, average age is 39.75 +/- 19.06). The test results suggest that a new proposed FCNN architecture can generalize better than ordinary MLP architecture and also learn better and faster. The advantage of proposed structure is a result of decreasing the number of segments by grouping similar segments in training data with fuzzy c-means clustering. |
| Author | Özbay, Yüksel Ceylan, Rahime Karlik, Bekir |
| Author_xml | – sequence: 1 givenname: Yüksel surname: Özbay fullname: Özbay, Yüksel email: yozbay@selcuk.edu.tr organization: Department of Electrical & Electronics Engineering, Selcuk University, Konya, Turkey – sequence: 2 givenname: Rahime surname: Ceylan fullname: Ceylan, Rahime email: rpektatli@selcuk.edu.tr organization: Department of Electrical & Electronics Engineering, Selcuk University, Konya, Turkey – sequence: 3 givenname: Bekir surname: Karlik fullname: Karlik, Bekir email: bkarlik@halic.edu.tr organization: Department of Computer Engineering, Halic University, Istanbul, Turkey |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15878480$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkUFv1DAQRi1URLeFv4By4pYwTuzEuSDKqhSkSlzK2XLsMettEi-2U7T99bhsUaVeuqe5vHmH752Rk9nPSEhBoaJA24_bSvtpNzg_oalqAF4BrQDaV2RFRdeXwBt2QlYAFEoman5KzmLcAgCDBt6QU8pFJ5iAFbm5KOxyf78v9LjEhMHNv4oZl6DGfNIfH24LFfTGJdRpCVhYHzKqYnTWaZWcnwtvi8v1VcbCZp82k1PxLXlt1Rjx3eM9Jz-_Xt6sv5XXP66-ry-uS816mkpqDLWD6oxRlJumH8AwWgsN0PCmYVzbATvskduuF0ajGHiPLaCyDI0Y-uacfDh4d8H_XjAmObmocRzVjH6Jsu3aLm8gXgR51wJ00LwI0p7VtRAsg-8fwWXIEeQuuEmFvfy_bAbEAdDBxxjQPiEgHyLKrXyKKB8iSqAyR8yvn569apf-bZ2CcuMxgi8HAebx7xwGGbXDWaNxIXeUxrtjJJ-fSfTo5hx9vMX9cYq_o5fWkA |
| CitedBy_id | crossref_primary_10_1016_j_asoc_2012_07_007 crossref_primary_10_1038_s41598_017_09837_3 crossref_primary_10_1371_journal_pone_0024386 crossref_primary_10_3109_03091902_2013_831493 crossref_primary_10_1016_j_eswa_2017_02_005 crossref_primary_10_3390_s21165290 crossref_primary_10_15420_usc_2023_25 crossref_primary_10_1016_j_dsp_2009_10_016 crossref_primary_10_1016_j_eswa_2011_08_025 crossref_primary_10_1007_s10044_017_0628_5 crossref_primary_10_1155_2012_696194 crossref_primary_10_1007_s12652_012_0161_8 crossref_primary_10_33590_emjcardiol_20_00036 crossref_primary_10_1366_000370210790918508 crossref_primary_10_1155_2007_38405 crossref_primary_10_1016_j_neucom_2017_02_056 crossref_primary_10_1007_s10916_015_0290_7 crossref_primary_10_4015_S1016237214500756 crossref_primary_10_1186_1475_925X_8_31 crossref_primary_10_1080_15567030600829055 crossref_primary_10_1111_j_1468_0394_2008_00496_x crossref_primary_10_1007_s10916_009_9355_9 crossref_primary_10_1155_2018_2016282 crossref_primary_10_1016_j_eswa_2010_07_118 crossref_primary_10_1007_s10916_010_9491_2 crossref_primary_10_4316_AECE_2017_03004 crossref_primary_10_1109_TBME_2017_2756869 crossref_primary_10_1016_j_bbe_2017_08_005 crossref_primary_10_1016_j_patcog_2007_03_008 crossref_primary_10_1080_10255842_2024_2332942 crossref_primary_10_1007_s00170_012_4552_y crossref_primary_10_1016_j_compbiomed_2006_01_008 crossref_primary_10_1007_s10916_008_9205_1 crossref_primary_10_1016_j_eswa_2007_11_013 crossref_primary_10_1016_j_eswa_2011_02_025 crossref_primary_10_1049_iet_smt_2013_0156 crossref_primary_10_1016_j_bspc_2012_10_005 crossref_primary_10_1088_1742_6596_450_1_012019 crossref_primary_10_1016_j_eswa_2006_05_014 crossref_primary_10_1007_s00521_012_1063_6 crossref_primary_10_1016_j_eswa_2007_09_007 crossref_primary_10_1016_j_eswa_2012_01_093 crossref_primary_10_33590_emjcardiol_20_00063 crossref_primary_10_1016_j_engappai_2022_105242 crossref_primary_10_1109_TITB_2012_2188812 crossref_primary_10_1007_s40815_016_0174_0 crossref_primary_10_1111_j_1468_0394_2011_00606_x crossref_primary_10_1007_s13239_024_00730_5 crossref_primary_10_1016_j_bspc_2022_103649 crossref_primary_10_3109_03091902_2012_702851 crossref_primary_10_1007_s13246_021_01072_5 crossref_primary_10_1016_j_eswa_2018_03_038 crossref_primary_10_3390_bdcc3020022 crossref_primary_10_1007_s10916_008_9142_z crossref_primary_10_1016_j_asoc_2020_106275 crossref_primary_10_1260_2040_2295_4_4_465 crossref_primary_10_1016_j_engstruct_2012_04_013 crossref_primary_10_1155_2014_734072 crossref_primary_10_3109_03091902_2013_845699 crossref_primary_10_1007_s42979_023_02159_4 crossref_primary_10_1016_j_compbiomed_2014_02_012 crossref_primary_10_29130_dubited_824362 crossref_primary_10_1016_j_bspc_2020_102200 crossref_primary_10_3389_fphys_2023_1246746 crossref_primary_10_1007_s11760_024_03000_y crossref_primary_10_1016_j_artmed_2008_05_003 crossref_primary_10_1142_S0219519416400121 crossref_primary_10_1016_j_imu_2018_03_002 crossref_primary_10_3390_hearts2040037 crossref_primary_10_1016_j_cmpb_2013_12_002 crossref_primary_10_1016_j_cmpb_2015_12_008 crossref_primary_10_1016_j_compbiomed_2024_108751 crossref_primary_10_1142_S0219622014500813 crossref_primary_10_1007_s00500_013_1079_6 crossref_primary_10_1080_10286600802506726 crossref_primary_10_1016_j_eswa_2019_02_035 crossref_primary_10_1155_2016_7359516 crossref_primary_10_1007_s00034_014_9864_8 crossref_primary_10_1155_2013_453402 crossref_primary_10_7763_IJIEE_2014_V4_433 crossref_primary_10_1016_j_mejo_2022_105492 crossref_primary_10_3390_s17112445 crossref_primary_10_1038_s41598_024_60500_0 crossref_primary_10_1016_j_artmed_2007_02_001 crossref_primary_10_1017_S0890060414000675 crossref_primary_10_1016_j_neucom_2016_08_042 crossref_primary_10_1016_j_comcom_2019_12_030 crossref_primary_10_1016_j_bspc_2011_10_001 crossref_primary_10_1109_RBME_2022_3154893 crossref_primary_10_1016_j_eswa_2007_08_025 crossref_primary_10_1016_j_neucom_2014_09_011 crossref_primary_10_1016_j_jbi_2008_01_014 crossref_primary_10_1016_j_compeleceng_2015_12_015 crossref_primary_10_1109_TBME_2006_881782 crossref_primary_10_1007_s00521_022_07953_4 crossref_primary_10_1007_s00530_020_00713_1 crossref_primary_10_1016_j_compbiomed_2008_12_008 crossref_primary_10_1016_j_eswa_2008_08_028 crossref_primary_10_1016_j_eswa_2011_08_156 crossref_primary_10_12989_sem_2007_27_2_117 crossref_primary_10_4028_p_6yc34j crossref_primary_10_1016_j_eswa_2017_09_022 crossref_primary_10_1098_rsif_2017_0821 crossref_primary_10_1016_j_compbiomed_2008_01_003 crossref_primary_10_1142_S0219519413500188 |
| Cites_doi | 10.1109/10.959322 10.1109/72.238310 10.1016/S0165-0114(02)00136-7 10.1016/S0165-0114(98)00079-7 10.1023/A:1025515632674 10.1109/72.701174 10.1016/S0167-8655(02)00401-4 10.1016/S0165-1684(01)00051-2 10.1109/TBME.2003.818469 10.1016/S0165-0114(02)00123-9 10.1016/S0165-0114(01)00070-7 10.1109/72.159057 10.1109/ICCIMA.1999.798510 10.1016/S0165-0114(02)00050-7 10.1016/S0952-1976(02)00041-6 10.1016/S0952-1976(01)00032-X 10.1016/S1056-8727(00)00137-9 10.1016/S0165-0114(97)00314-X 10.1109/4233.945289 10.1109/72.655032 10.1109/IJCNN.2000.861428 10.1016/S0045-7906(99)00029-4 10.1016/S0019-0578(00)00027-6 |
| ContentType | Journal Article |
| Copyright | 2005 |
| Copyright_xml | – notice: 2005 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 E3H F2A 7X8 |
| DOI | 10.1016/j.compbiomed.2005.01.006 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts Library and Information Science Abstracts (LISA) MEDLINE - Academic |
| DatabaseTitleList | Library and Information Science Abstracts (LISA) MEDLINE Engineering Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1879-0534 |
| EndPage | 388 |
| ExternalDocumentID | 15878480 10_1016_j_compbiomed_2005_01_006 S0010482505000417 |
| Genre | Journal Article Comparative Study |
| GroupedDBID | --- --K --M --Z -~X .1- .55 .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 77I 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABOCM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EFLBG EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HLZ HMCUK HMK HMO HVGLF HZ~ IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q38 R2- ROL RPZ RXW SAE SBC SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ SV3 T5K TAE UAP UKHRP WOW WUQ X7M XPP Z5R ZGI ~G- ~HD 3V. AACTN AAIAV ABLVK ABYKQ AFKWA AHPSJ AJBFU AJOXV AMFUW LCYCR M0N RIG AAYXX CITATION PUEGO AFCTW ALIPV CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 E3H F2A 7X8 |
| ID | FETCH-LOGICAL-c491t-1dd1fba7dda15d39b0d4128c00353345cfbe7e9e5f798dce8b59e60eaf4ed8b93 |
| IEDL.DBID | AIKHN |
| ISSN | 0010-4825 |
| IngestDate | Tue Oct 21 13:11:44 EDT 2025 Thu Oct 02 11:39:29 EDT 2025 Tue Oct 07 09:34:24 EDT 2025 Wed Feb 19 01:38:47 EST 2025 Wed Oct 01 04:07:08 EDT 2025 Thu Apr 24 23:04:35 EDT 2025 Fri Feb 23 02:32:58 EST 2024 Tue Oct 14 19:36:06 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Fuzzy clustering Arrhythmia ECG Multilayer perceptron Neural network Pattern recognition Fuzzy c-means |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c491t-1dd1fba7dda15d39b0d4128c00353345cfbe7e9e5f798dce8b59e60eaf4ed8b93 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
| PMID | 15878480 |
| PQID | 19422884 |
| PQPubID | 23462 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_67670018 proquest_miscellaneous_57600703 proquest_miscellaneous_19422884 pubmed_primary_15878480 crossref_primary_10_1016_j_compbiomed_2005_01_006 crossref_citationtrail_10_1016_j_compbiomed_2005_01_006 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2005_01_006 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2005_01_006 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2006-04-01 |
| PublicationDateYYYYMMDD | 2006-04-01 |
| PublicationDate_xml | – month: 04 year: 2006 text: 2006-04-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Computers in biology and medicine |
| PublicationTitleAlternate | Comput Biol Med |
| PublicationYear | 2006 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Yang, Liu (bib29) 2003; 135 Jang, Sun, Mizutani (bib10) 1997 Osowski, Linh (bib2) 2001; 48 V. Pilla, H.S. Lopes, Evolutionary training of a neuro-fuzzy network for detection of P wave of the ECG, Proceedings of the Third International Conference on Computational Intelligence and Multimedia Applications, New Delhi, India, 1999, pp. 102–106. Y. Ozbay, Fast recognition of ECG arrhythmias, Ph.D. Thesis, Institute of Natural and Applied Science, Selcuk University, 1999. Shaout, Scharbonea (bib27) 2000; 26 R. Acharya, P.S. Bhat, S.S. Iyengar, A. Roo, S. Dua, Classification of heart rate data using artificial neural network and fuzzy equivalence relation, J. Pattern Recognition Soc. (2002). Dazzi, Taddei, Gavarini, Uggeri, Negra, Pezzarossa (bib19) 2001; 15 Haseyama, Kitajima (bib24) 2001; 81 Pal, Bezdek, Tsao (bib22) 1993; 4 De, Basak, Pal (bib20) 2002; 126 Ronen, Shabtai, Guterman (bib25) 1998; 22 R. Pektatli, Y. Ozbay, M. Ceylan, B. Karlik, Classification of ECG signals using fuzzy clustering neural networks (FCNN), Proceedings of the International XII, TAINN’03, vol. 1(1), Çanakkale, Turkey, 2003, pp. 105–108. Haykin (bib8) 1994 Zhang, Kandel (bib13) 1998; 9 Sebzalli, Wang (bib26) 2001; 14 Stoeva, Nikov (bib28) 2000; 112 Y. Ozbay, B. Karlik, A recognition of ECG arrhythmias using artificial neural network, Proceedings of the 23rd Annual Conference, IEEE/EMBS, Istanbul, Turkey, 2001. G. Castellano, A.M. Fanelli, A self-organizing neural fuzzy inference network, Proceedings of the IEEE International Joint Conference on Neural Networks, vol. 5, Italy, 2000, pp. 14–19. Fan, Zhen, Xie (bib14) 2003; 24 Meesad, Yen (bib21) 2000; 39 Engin, Demirağ (bib7) 2003; 3 Seker, Evans, Aydin, Yazgan (bib12) 2001; 5 Karlık, Tokhi, Alcı (bib9) 2003; 50 Hall, Bensaid, Clarke, Velthuizen, Silbiger, Bezdek (bib30) 1992; 3 Leski, Czogala (bib31) 1999; 108 Pedrycz (bib23) 1998; 9 Foo, Stuart, Harvey, Meyer-Baese (bib5) 2002; 15 Li, Mukaidono, Turksen (bib15) 2002; 130 Castellano, Fanelli (bib18) 2000; 3 Liao, Celmins, Hammell II (bib11) 2003; 135 Ronen (10.1016/j.compbiomed.2005.01.006_bib25) 1998; 22 Liao (10.1016/j.compbiomed.2005.01.006_bib11) 2003; 135 Hall (10.1016/j.compbiomed.2005.01.006_bib30) 1992; 3 Meesad (10.1016/j.compbiomed.2005.01.006_bib21) 2000; 39 Shaout (10.1016/j.compbiomed.2005.01.006_bib27) 2000; 26 Dazzi (10.1016/j.compbiomed.2005.01.006_bib19) 2001; 15 Haseyama (10.1016/j.compbiomed.2005.01.006_bib24) 2001; 81 Stoeva (10.1016/j.compbiomed.2005.01.006_bib28) 2000; 112 Engin (10.1016/j.compbiomed.2005.01.006_bib7) 2003; 3 10.1016/j.compbiomed.2005.01.006_bib4 10.1016/j.compbiomed.2005.01.006_bib3 Foo (10.1016/j.compbiomed.2005.01.006_bib5) 2002; 15 Yang (10.1016/j.compbiomed.2005.01.006_bib29) 2003; 135 10.1016/j.compbiomed.2005.01.006_bib1 Jang (10.1016/j.compbiomed.2005.01.006_bib10) 1997 Haykin (10.1016/j.compbiomed.2005.01.006_bib8) 1994 10.1016/j.compbiomed.2005.01.006_bib16 10.1016/j.compbiomed.2005.01.006_bib17 Castellano (10.1016/j.compbiomed.2005.01.006_bib18) 2000; 3 Leski (10.1016/j.compbiomed.2005.01.006_bib31) 1999; 108 Seker (10.1016/j.compbiomed.2005.01.006_bib12) 2001; 5 Sebzalli (10.1016/j.compbiomed.2005.01.006_bib26) 2001; 14 Karlık (10.1016/j.compbiomed.2005.01.006_bib9) 2003; 50 Pedrycz (10.1016/j.compbiomed.2005.01.006_bib23) 1998; 9 De (10.1016/j.compbiomed.2005.01.006_bib20) 2002; 126 Osowski (10.1016/j.compbiomed.2005.01.006_bib2) 2001; 48 Zhang (10.1016/j.compbiomed.2005.01.006_bib13) 1998; 9 Pal (10.1016/j.compbiomed.2005.01.006_bib22) 1993; 4 10.1016/j.compbiomed.2005.01.006_bib6 Fan (10.1016/j.compbiomed.2005.01.006_bib14) 2003; 24 Li (10.1016/j.compbiomed.2005.01.006_bib15) 2002; 130 |
| References_xml | – volume: 135 start-page: 305 year: 2003 end-page: 316 ident: bib29 article-title: Fuzzy least-squares algorithms for interactive fuzzy linear regression models publication-title: Fuzzy Sets Syst. – volume: 9 start-page: 83 year: 1998 end-page: 105 ident: bib13 article-title: Compensatory neuro-fuzzy systems with fast learning algorithms publication-title: IEEE Trans. Neural Networks – volume: 48 start-page: 1265 year: 2001 end-page: 1271 ident: bib2 article-title: ECG beat recognition using fuzzy hybrid neural network publication-title: IEEE Trans. Biomed. Eng. – volume: 9 start-page: 601 year: 1998 end-page: 612 ident: bib23 article-title: Conditional fuzzy clustering in the design of radial basis function neural networks publication-title: IEEE Trans. Neural Networks – reference: R. Acharya, P.S. Bhat, S.S. Iyengar, A. Roo, S. Dua, Classification of heart rate data using artificial neural network and fuzzy equivalence relation, J. Pattern Recognition Soc. (2002). – volume: 14 start-page: 607 year: 2001 end-page: 616 ident: bib26 article-title: Knowledge discovery from process operational data using PCA and fuzzy clustering publication-title: Eng. Appl. Artif. Intell. – reference: Y. Ozbay, B. Karlik, A recognition of ECG arrhythmias using artificial neural network, Proceedings of the 23rd Annual Conference, IEEE/EMBS, Istanbul, Turkey, 2001. – volume: 112 start-page: 27 year: 2000 end-page: 39 ident: bib28 article-title: A fuzzy back-propagation algorithm publication-title: Fuzzy Sets Syst. – volume: 130 start-page: 101 year: 2002 end-page: 108 ident: bib15 article-title: A fuzzy neural network for pattern classification and feature selection publication-title: Fuzzy Sets Syst. – volume: 3 start-page: 361 year: 2000 end-page: 371 ident: bib18 article-title: Fuzzy inference and rule extraction using a neural network publication-title: Neural Network World J. – volume: 26 start-page: 125 year: 2000 end-page: 139 ident: bib27 article-title: Fuzzy logic based modification system for the learning rate in back-propagation publication-title: Comput. Electr. Eng. – reference: V. Pilla, H.S. Lopes, Evolutionary training of a neuro-fuzzy network for detection of P wave of the ECG, Proceedings of the Third International Conference on Computational Intelligence and Multimedia Applications, New Delhi, India, 1999, pp. 102–106. – volume: 135 start-page: 241 year: 2003 end-page: 257 ident: bib11 article-title: A fuzzy c-means variant for the generation of fuzzy term sets publication-title: Fuzzy Sets Syst. – reference: Y. Ozbay, Fast recognition of ECG arrhythmias, Ph.D. Thesis, Institute of Natural and Applied Science, Selcuk University, 1999. – year: 1997 ident: bib10 article-title: Neuro-Fuzzy and Soft Computing – reference: R. Pektatli, Y. Ozbay, M. Ceylan, B. Karlik, Classification of ECG signals using fuzzy clustering neural networks (FCNN), Proceedings of the International XII, TAINN’03, vol. 1(1), Çanakkale, Turkey, 2003, pp. 105–108. – volume: 126 start-page: 277 year: 2002 end-page: 291 ident: bib20 article-title: Unsupervised feature extraction using neuro-fuzzy approach publication-title: Fuzzy Sets Syst. – volume: 4 start-page: 549 year: 1993 end-page: 557 ident: bib22 article-title: Generalized clustering networks and Kohonen's self-organizing scheme publication-title: IEEE Trans. Neural Networks – volume: 81 start-page: 1331 year: 2001 end-page: 1335 ident: bib24 article-title: An ARMA order selection method with fuzzy reasoning publication-title: Signal Process. – volume: 3 start-page: 672 year: 1992 end-page: 682 ident: bib30 article-title: A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images on the brain publication-title: IEEE Trans. Neural Networks – volume: 50 start-page: 1255 year: 2003 end-page: 1261 ident: bib9 article-title: A fuzzy clustering neural network architecture for multifunction upper-limb prosthesis publication-title: IEEE Trans. Biomed. Eng. – volume: 3 start-page: 71 year: 2003 end-page: 80 ident: bib7 article-title: Fuzzy-hybrid neural network based ECG beat recognition using three different types of feature set publication-title: Cardiovasc. Eng. Int. J. – year: 1994 ident: bib8 article-title: Neural Networks: A Comprehensive Foundation – volume: 15 start-page: 80 year: 2001 end-page: 87 ident: bib19 article-title: The control of blood glucose in the critical diabetic patient: A neuro-fuzzy method publication-title: J. Diabetes Complications – volume: 5 start-page: 187 year: 2001 end-page: 194 ident: bib12 article-title: Compensatory fuzzy neural network-based intelligent detection of abnormal neonatal cerebral doppler ultrasound waveforms publication-title: IEEE Trans. Inform. Technol. Biomed. – reference: G. Castellano, A.M. Fanelli, A self-organizing neural fuzzy inference network, Proceedings of the IEEE International Joint Conference on Neural Networks, vol. 5, Italy, 2000, pp. 14–19. – volume: 39 start-page: 293 year: 2000 end-page: 308 ident: bib21 article-title: Pattern classification by a neuro fuzzy network application to vibration monitoring publication-title: ISA Trans. – volume: 22 start-page: 1005 year: 1998 end-page: 1008 ident: bib25 article-title: Rapid process modelling-model building methodology combining unsupervised fuzzy clustering and supervised neural networks publication-title: Comput. Eng. – volume: 108 start-page: 289 year: 1999 end-page: 297 ident: bib31 article-title: A new artificial neural network based fuzzy inference system with moving consequents in if–then rules and selected applications publication-title: Fuzzy Sets Syst. – volume: 24 start-page: 1607 year: 2003 end-page: 1612 ident: bib14 article-title: Supervised fuzzy c-means clustering algorithm publication-title: Pattern Recognition Lett. – volume: 15 start-page: 253 year: 2002 end-page: 260 ident: bib5 article-title: Neural network-based ECG pattern recognition publication-title: Eng. Appl. Artif. Intell. – volume: 48 start-page: 1265 issue: 11 year: 2001 ident: 10.1016/j.compbiomed.2005.01.006_bib2 article-title: ECG beat recognition using fuzzy hybrid neural network publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.959322 – volume: 4 start-page: 549 issue: 4 year: 1993 ident: 10.1016/j.compbiomed.2005.01.006_bib22 article-title: Generalized clustering networks and Kohonen's self-organizing scheme publication-title: IEEE Trans. Neural Networks doi: 10.1109/72.238310 – volume: 135 start-page: 241 year: 2003 ident: 10.1016/j.compbiomed.2005.01.006_bib11 article-title: A fuzzy c-means variant for the generation of fuzzy term sets publication-title: Fuzzy Sets Syst. doi: 10.1016/S0165-0114(02)00136-7 – volume: 112 start-page: 27 year: 2000 ident: 10.1016/j.compbiomed.2005.01.006_bib28 article-title: A fuzzy back-propagation algorithm publication-title: Fuzzy Sets Syst. doi: 10.1016/S0165-0114(98)00079-7 – volume: 3 start-page: 71 issue: 2 year: 2003 ident: 10.1016/j.compbiomed.2005.01.006_bib7 article-title: Fuzzy-hybrid neural network based ECG beat recognition using three different types of feature set publication-title: Cardiovasc. Eng. Int. J. doi: 10.1023/A:1025515632674 – volume: 9 start-page: 601 issue: 4 year: 1998 ident: 10.1016/j.compbiomed.2005.01.006_bib23 article-title: Conditional fuzzy clustering in the design of radial basis function neural networks publication-title: IEEE Trans. Neural Networks doi: 10.1109/72.701174 – volume: 24 start-page: 1607 year: 2003 ident: 10.1016/j.compbiomed.2005.01.006_bib14 article-title: Supervised fuzzy c-means clustering algorithm publication-title: Pattern Recognition Lett. doi: 10.1016/S0167-8655(02)00401-4 – volume: 81 start-page: 1331 year: 2001 ident: 10.1016/j.compbiomed.2005.01.006_bib24 article-title: An ARMA order selection method with fuzzy reasoning publication-title: Signal Process. doi: 10.1016/S0165-1684(01)00051-2 – volume: 50 start-page: 1255 issue: 11 year: 2003 ident: 10.1016/j.compbiomed.2005.01.006_bib9 article-title: A fuzzy clustering neural network architecture for multifunction upper-limb prosthesis publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2003.818469 – volume: 135 start-page: 305 year: 2003 ident: 10.1016/j.compbiomed.2005.01.006_bib29 article-title: Fuzzy least-squares algorithms for interactive fuzzy linear regression models publication-title: Fuzzy Sets Syst. doi: 10.1016/S0165-0114(02)00123-9 – ident: 10.1016/j.compbiomed.2005.01.006_bib4 – volume: 126 start-page: 277 year: 2002 ident: 10.1016/j.compbiomed.2005.01.006_bib20 article-title: Unsupervised feature extraction using neuro-fuzzy approach publication-title: Fuzzy Sets Syst. doi: 10.1016/S0165-0114(01)00070-7 – year: 1997 ident: 10.1016/j.compbiomed.2005.01.006_bib10 – volume: 3 start-page: 672 issue: 5 year: 1992 ident: 10.1016/j.compbiomed.2005.01.006_bib30 article-title: A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images on the brain publication-title: IEEE Trans. Neural Networks doi: 10.1109/72.159057 – ident: 10.1016/j.compbiomed.2005.01.006_bib6 doi: 10.1109/ICCIMA.1999.798510 – year: 1994 ident: 10.1016/j.compbiomed.2005.01.006_bib8 – ident: 10.1016/j.compbiomed.2005.01.006_bib16 – volume: 3 start-page: 361 year: 2000 ident: 10.1016/j.compbiomed.2005.01.006_bib18 article-title: Fuzzy inference and rule extraction using a neural network publication-title: Neural Network World J. – volume: 130 start-page: 101 year: 2002 ident: 10.1016/j.compbiomed.2005.01.006_bib15 article-title: A fuzzy neural network for pattern classification and feature selection publication-title: Fuzzy Sets Syst. doi: 10.1016/S0165-0114(02)00050-7 – volume: 15 start-page: 253 year: 2002 ident: 10.1016/j.compbiomed.2005.01.006_bib5 article-title: Neural network-based ECG pattern recognition publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/S0952-1976(02)00041-6 – volume: 14 start-page: 607 year: 2001 ident: 10.1016/j.compbiomed.2005.01.006_bib26 article-title: Knowledge discovery from process operational data using PCA and fuzzy clustering publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/S0952-1976(01)00032-X – volume: 22 start-page: 1005 year: 1998 ident: 10.1016/j.compbiomed.2005.01.006_bib25 article-title: Rapid process modelling-model building methodology combining unsupervised fuzzy clustering and supervised neural networks publication-title: Comput. Eng. – volume: 15 start-page: 80 year: 2001 ident: 10.1016/j.compbiomed.2005.01.006_bib19 article-title: The control of blood glucose in the critical diabetic patient: A neuro-fuzzy method publication-title: J. Diabetes Complications doi: 10.1016/S1056-8727(00)00137-9 – volume: 108 start-page: 289 year: 1999 ident: 10.1016/j.compbiomed.2005.01.006_bib31 article-title: A new artificial neural network based fuzzy inference system with moving consequents in if–then rules and selected applications publication-title: Fuzzy Sets Syst. doi: 10.1016/S0165-0114(97)00314-X – volume: 5 start-page: 187 issue: 3 year: 2001 ident: 10.1016/j.compbiomed.2005.01.006_bib12 article-title: Compensatory fuzzy neural network-based intelligent detection of abnormal neonatal cerebral doppler ultrasound waveforms publication-title: IEEE Trans. Inform. Technol. Biomed. doi: 10.1109/4233.945289 – ident: 10.1016/j.compbiomed.2005.01.006_bib1 – volume: 9 start-page: 83 issue: 1 year: 1998 ident: 10.1016/j.compbiomed.2005.01.006_bib13 article-title: Compensatory neuro-fuzzy systems with fast learning algorithms publication-title: IEEE Trans. Neural Networks doi: 10.1109/72.655032 – ident: 10.1016/j.compbiomed.2005.01.006_bib3 – ident: 10.1016/j.compbiomed.2005.01.006_bib17 doi: 10.1109/IJCNN.2000.861428 – volume: 26 start-page: 125 year: 2000 ident: 10.1016/j.compbiomed.2005.01.006_bib27 article-title: Fuzzy logic based modification system for the learning rate in back-propagation publication-title: Comput. Electr. Eng. doi: 10.1016/S0045-7906(99)00029-4 – volume: 39 start-page: 293 year: 2000 ident: 10.1016/j.compbiomed.2005.01.006_bib21 article-title: Pattern classification by a neuro fuzzy network application to vibration monitoring publication-title: ISA Trans. doi: 10.1016/S0019-0578(00)00027-6 |
| SSID | ssj0004030 |
| Score | 2.218269 |
| Snippet | Accurate and computationally efficient means of classifying electrocardiography (ECG) arrhythmias has been the subject of considerable research effort in... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 376 |
| SubjectTerms | Adult Algorithms Arrhythmia Arrhythmias, Cardiac - classification Clustering Computer applications Diagnosis ECG Electrocardiograms Electrocardiography Female Fuzzy c-means Fuzzy clustering Fuzzy Logic Fuzzy set theory Health care Humans Male Medicine Multilayer perceptron Neural network Neural networks Neural Networks (Computer) Pattern recognition Pattern Recognition, Automated |
| Title | A fuzzy clustering neural network architecture for classification of ECG arrhythmias |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482505000417 https://dx.doi.org/10.1016/j.compbiomed.2005.01.006 https://www.ncbi.nlm.nih.gov/pubmed/15878480 https://www.proquest.com/docview/19422884 https://www.proquest.com/docview/57600703 https://www.proquest.com/docview/67670018 |
| Volume | 36 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0534 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: AKRWK dateStart: 19700101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1879-0534 dateEnd: 20231231 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1879-0534 dateEnd: 20250903 omitProxy: true ssIdentifier: ssj0004030 issn: 0010-4825 databaseCode: 8FG dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxsxEB4SB0ovpe-6j1SHXrdZsdJKIifX2HFbakpJwDexq5WIQ7oOiX1IDvntnbG0cXswGHrRwjIDYkaaGWm-GQF8akJwPCiVVUHkmfCqyExZ6wwPW06UNW-cXwNkp-XkTHybydkeDLtaGIJVJtsfbfraWqc_R0maR1fzOdX44lFCkwunwISrfThA_6N1Dw4GX79PppvyyLyIlShocoghAXoizIuQ27HSPV2wcIJ6bfNS26LQtTcaP4UnKYxkgzjTZ7Dn2-fw6EdKlL-A0wELq7u7W-YuV9QKAR0Uo9aVyNNG4Df7O4XAMHRFUgykCTm0VhZbBDYaniDZ9fnt8vz3vLp5CWfj0elwkqUHFDInDF9mvGl4qCvVNBWXTWHqvBHojxylD4tCSBdqr7zxMiijUSu6lsaXuUe9-UbXpngFvXbR-jfAvBQcI5fKeIUBQaEq50XptcmdosZNvA-qE5h1qbs4PXJxaTsY2YXdiJoev5Q25xZF3Qf-wHkVO2zswGM6ndiughRtnkU3sAPv8QPvPyttR-6P3RKwuBEpu1K1frG6sdxQNzUttlNISoKihd1OQd3z6JnEPryOq2sjEamVFjp_-1-zfweP4xUSIY_eQ295vfIfMKha1oew__me46hmCkc9PjlM2wi_X0bTn7_-AKMEJ20 |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCa6Dth2GfZe9qoOu3q1ZsmSsFMRtMu2tqcU6E2w9UAzdE7RJof20N9e0pKb7RAgwK4GCQiURH4yP5IAn32MjkeliiaKshBBVYWpW13gY8uJuuXehZ4ge1xPTsTPU3m6BeOhFoZoldn3J5_ee-v8ZTdbc_diNqMaX3xKaArhBEy4egAPhfyq6AX25XbF8xBllepQ0OGQeKbzJJIX8bZTnXv-vcKJ6LUuRq3DoH0sOngGTzOIZHtpnc9hK3Qv4NFRTpO_hOkei8ubm2vmzpfUCAHDE6PGlajTJdo3-zuBwBC4oijCaOIN9VvF5pHtj7-j2OXZ9eLsz6y5egUnB_vT8aTI4xMKJwxfFNx7HttGed9w6SvTll5gNHKUPKwqIV1sgwomyKiMxj3RrTShLgPuWvC6NdVr2O7mXXgLLEjBEbc0JiiEA5VqXBB10KZ0ito28RGowWDW5d7iNOLi3A4kst92ZWoafSltyS2aegT8XvMi9dfYQMcMe2KH-lH0eBaDwAa63-51_zlnG2rvDEfA4jWk3ErThfnyynJDvdS0WC8hKQWK_nW9BPXOoyGJI3iTTtfKIlIrLXT57r9WvwOPJ9OjQ3v44_jXe3iSfiYRB-kDbC8ul-EjwqtF-6m_PncyMyTO |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fuzzy+clustering+neural+network+architecture+for+classification+of+ECG+arrhythmias&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Ozbay%2C+Y%C3%BCksel&rft.au=Ceylan%2C+Rahime&rft.au=Karlik%2C+Bekir&rft.date=2006-04-01&rft.issn=0010-4825&rft.volume=36&rft.issue=4&rft.spage=376&rft_id=info:doi/10.1016%2Fj.compbiomed.2005.01.006&rft_id=info%3Apmid%2F15878480&rft.externalDocID=15878480 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon |