A fuzzy clustering neural network architecture for classification of ECG arrhythmias

Accurate and computationally efficient means of classifying electrocardiography (ECG) arrhythmias has been the subject of considerable research effort in recent years. This study presents a comparative study of the classification accuracy of ECG signals using a well-known neural network architecture...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 36; no. 4; pp. 376 - 388
Main Authors Özbay, Yüksel, Ceylan, Rahime, Karlik, Bekir
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.04.2006
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
DOI10.1016/j.compbiomed.2005.01.006

Cover

Abstract Accurate and computationally efficient means of classifying electrocardiography (ECG) arrhythmias has been the subject of considerable research effort in recent years. This study presents a comparative study of the classification accuracy of ECG signals using a well-known neural network architecture named multi-layered perceptron (MLP) with backpropagation training algorithm, and a new fuzzy clustering NN architecture (FCNN) for early diagnosis. The ECG signals are taken from MIT-BIH ECG database, which are used to classify 10 different arrhythmias for training. These are normal sinus rhythm, sinus bradycardia, ventricular tachycardia, sinus arrhythmia, atrial premature contraction, paced beat, right bundle branch block, left bundle branch block, atrial fibrillation and atrial flutter. For testing, the proposed structures were trained by backpropagation algorithm. Both of them tested using experimental ECG records of 92 patients (40 male and 52 female, average age is 39.75 ± 19.06 ). The test results suggest that a new proposed FCNN architecture can generalize better than ordinary MLP architecture and also learn better and faster. The advantage of proposed structure is a result of decreasing the number of segments by grouping similar segments in training data with fuzzy c-means clustering.
AbstractList Accurate and computationally efficient means of classifying electrocardiography (ECG) arrhythmias has been the subject of considerable research effort in recent years. This study presents a comparative study of the classification accuracy of ECG signals using a well-known neural network architecture named multi-layered perceptron (MLP) with backpropagation training algorithm, and a new fuzzy clustering NN architecture (FCNN) for early diagnosis. The ECG signals are taken from MIT-BIH ECG database, which are used to classify 10 different arrhythmias for training. These are normal sinus rhythm, sinus bradycardia, ventricular tachycardia, sinus arrhythmia, atrial premature contraction, paced beat, right bundle branch block, left bundle branch block, atrial fibrillation and atrial flutter. For testing, the proposed structures were trained by backpropagation algorithm. Both of them tested using experimental ECG records of 92 patients (40 male and 52 female, average age is 39.75 +or- 19.06). The test results suggest that a new proposed FCNN architecture can generalize better than ordinary MLP architecture and also learn better and faster. The advantage of proposed structure is a result of decreasing the number of segments by grouping similar segments in training data with fuzzy c-means clustering. (Author abstract)
Accurate and computationally efficient means of classifying electrocardiography (ECG) arrhythmias has been the subject of considerable research effort in recent years. This study presents a comparative study of the classification accuracy of ECG signals using a well-known neural network architecture named multi-layered perceptron (MLP) with backpropagation training algorithm, and a new fuzzy clustering NN architecture (FCNN) for early diagnosis. The ECG signals are taken from MIT-BIH ECG database, which are used to classify 10 different arrhythmias for training. These are normal sinus rhythm, sinus bradycardia, ventricular tachycardia, sinus arrhythmia, atrial premature contraction, paced beat, right bundle branch block, left bundle branch block, atrial fibrillation and atrial flutter. For testing, the proposed structures were trained by backpropagation algorithm. Both of them tested using experimental ECG records of 92 patients (40 male and 52 female, average age is 39.75 +/- 19.06). The test results suggest that a new proposed FCNN architecture can generalize better than ordinary MLP architecture and also learn better and faster. The advantage of proposed structure is a result of decreasing the number of segments by grouping similar segments in training data with fuzzy c-means clustering.
Accurate and computationally efficient means of classifying electrocardiography (ECG) arrhythmias has been the subject of considerable research effort in recent years. This study presents a comparative study of the classification accuracy of ECG signals using a well-known neural network architecture named multi-layered perceptron (MLP) with backpropagation training algorithm, and a new fuzzy clustering NN architecture (FCNN) for early diagnosis. The ECG signals are taken from MIT-BIH ECG database, which are used to classify 10 different arrhythmias for training. These are normal sinus rhythm, sinus bradycardia, ventricular tachycardia, sinus arrhythmia, atrial premature contraction, paced beat, right bundle branch block, left bundle branch block, atrial fibrillation and atrial flutter. For testing, the proposed structures were trained by backpropagation algorithm. Both of them tested using experimental ECG records of 92 patients (40 male and 52 female, average age is 39.75 ± 19.06 ). The test results suggest that a new proposed FCNN architecture can generalize better than ordinary MLP architecture and also learn better and faster. The advantage of proposed structure is a result of decreasing the number of segments by grouping similar segments in training data with fuzzy c-means clustering.
Accurate and computationally efficient means of classifying electrocardiography (ECG) arrhythmias has been the subject of considerable research effort in recent years. This study presents a comparative study of the classification accuracy of ECG signals using a well-known neural network architecture named multi-layered perceptron (MLP) with backpropagation training algorithm, and a new fuzzy clustering NN architecture (FCNN) for early diagnosis. The ECG signals are taken from MIT-BIH ECG database, which are used to classify 10 different arrhythmias for training. These are normal sinus rhythm, sinus bradycardia, ventricular tachycardia, sinus arrhythmia, atrial premature contraction, paced beat, right bundle branch block, left bundle branch block, atrial fibrillation and atrial flutter. For testing, the proposed structures were trained by backpropagation algorithm. Both of them tested using experimental ECG records of 92 patients (40 male and 52 female, average age is 39.75 +/- 19.06). The test results suggest that a new proposed FCNN architecture can generalize better than ordinary MLP architecture and also learn better and faster. The advantage of proposed structure is a result of decreasing the number of segments by grouping similar segments in training data with fuzzy c-means clustering.Accurate and computationally efficient means of classifying electrocardiography (ECG) arrhythmias has been the subject of considerable research effort in recent years. This study presents a comparative study of the classification accuracy of ECG signals using a well-known neural network architecture named multi-layered perceptron (MLP) with backpropagation training algorithm, and a new fuzzy clustering NN architecture (FCNN) for early diagnosis. The ECG signals are taken from MIT-BIH ECG database, which are used to classify 10 different arrhythmias for training. These are normal sinus rhythm, sinus bradycardia, ventricular tachycardia, sinus arrhythmia, atrial premature contraction, paced beat, right bundle branch block, left bundle branch block, atrial fibrillation and atrial flutter. For testing, the proposed structures were trained by backpropagation algorithm. Both of them tested using experimental ECG records of 92 patients (40 male and 52 female, average age is 39.75 +/- 19.06). The test results suggest that a new proposed FCNN architecture can generalize better than ordinary MLP architecture and also learn better and faster. The advantage of proposed structure is a result of decreasing the number of segments by grouping similar segments in training data with fuzzy c-means clustering.
Author Özbay, Yüksel
Ceylan, Rahime
Karlik, Bekir
Author_xml – sequence: 1
  givenname: Yüksel
  surname: Özbay
  fullname: Özbay, Yüksel
  email: yozbay@selcuk.edu.tr
  organization: Department of Electrical & Electronics Engineering, Selcuk University, Konya, Turkey
– sequence: 2
  givenname: Rahime
  surname: Ceylan
  fullname: Ceylan, Rahime
  email: rpektatli@selcuk.edu.tr
  organization: Department of Electrical & Electronics Engineering, Selcuk University, Konya, Turkey
– sequence: 3
  givenname: Bekir
  surname: Karlik
  fullname: Karlik, Bekir
  email: bkarlik@halic.edu.tr
  organization: Department of Computer Engineering, Halic University, Istanbul, Turkey
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15878480$$D View this record in MEDLINE/PubMed
BookMark eNqNkUFv1DAQRi1URLeFv4By4pYwTuzEuSDKqhSkSlzK2XLsMettEi-2U7T99bhsUaVeuqe5vHmH752Rk9nPSEhBoaJA24_bSvtpNzg_oalqAF4BrQDaV2RFRdeXwBt2QlYAFEoman5KzmLcAgCDBt6QU8pFJ5iAFbm5KOxyf78v9LjEhMHNv4oZl6DGfNIfH24LFfTGJdRpCVhYHzKqYnTWaZWcnwtvi8v1VcbCZp82k1PxLXlt1Rjx3eM9Jz-_Xt6sv5XXP66-ry-uS816mkpqDLWD6oxRlJumH8AwWgsN0PCmYVzbATvskduuF0ajGHiPLaCyDI0Y-uacfDh4d8H_XjAmObmocRzVjH6Jsu3aLm8gXgR51wJ00LwI0p7VtRAsg-8fwWXIEeQuuEmFvfy_bAbEAdDBxxjQPiEgHyLKrXyKKB8iSqAyR8yvn569apf-bZ2CcuMxgi8HAebx7xwGGbXDWaNxIXeUxrtjJJ-fSfTo5hx9vMX9cYq_o5fWkA
CitedBy_id crossref_primary_10_1016_j_asoc_2012_07_007
crossref_primary_10_1038_s41598_017_09837_3
crossref_primary_10_1371_journal_pone_0024386
crossref_primary_10_3109_03091902_2013_831493
crossref_primary_10_1016_j_eswa_2017_02_005
crossref_primary_10_3390_s21165290
crossref_primary_10_15420_usc_2023_25
crossref_primary_10_1016_j_dsp_2009_10_016
crossref_primary_10_1016_j_eswa_2011_08_025
crossref_primary_10_1007_s10044_017_0628_5
crossref_primary_10_1155_2012_696194
crossref_primary_10_1007_s12652_012_0161_8
crossref_primary_10_33590_emjcardiol_20_00036
crossref_primary_10_1366_000370210790918508
crossref_primary_10_1155_2007_38405
crossref_primary_10_1016_j_neucom_2017_02_056
crossref_primary_10_1007_s10916_015_0290_7
crossref_primary_10_4015_S1016237214500756
crossref_primary_10_1186_1475_925X_8_31
crossref_primary_10_1080_15567030600829055
crossref_primary_10_1111_j_1468_0394_2008_00496_x
crossref_primary_10_1007_s10916_009_9355_9
crossref_primary_10_1155_2018_2016282
crossref_primary_10_1016_j_eswa_2010_07_118
crossref_primary_10_1007_s10916_010_9491_2
crossref_primary_10_4316_AECE_2017_03004
crossref_primary_10_1109_TBME_2017_2756869
crossref_primary_10_1016_j_bbe_2017_08_005
crossref_primary_10_1016_j_patcog_2007_03_008
crossref_primary_10_1080_10255842_2024_2332942
crossref_primary_10_1007_s00170_012_4552_y
crossref_primary_10_1016_j_compbiomed_2006_01_008
crossref_primary_10_1007_s10916_008_9205_1
crossref_primary_10_1016_j_eswa_2007_11_013
crossref_primary_10_1016_j_eswa_2011_02_025
crossref_primary_10_1049_iet_smt_2013_0156
crossref_primary_10_1016_j_bspc_2012_10_005
crossref_primary_10_1088_1742_6596_450_1_012019
crossref_primary_10_1016_j_eswa_2006_05_014
crossref_primary_10_1007_s00521_012_1063_6
crossref_primary_10_1016_j_eswa_2007_09_007
crossref_primary_10_1016_j_eswa_2012_01_093
crossref_primary_10_33590_emjcardiol_20_00063
crossref_primary_10_1016_j_engappai_2022_105242
crossref_primary_10_1109_TITB_2012_2188812
crossref_primary_10_1007_s40815_016_0174_0
crossref_primary_10_1111_j_1468_0394_2011_00606_x
crossref_primary_10_1007_s13239_024_00730_5
crossref_primary_10_1016_j_bspc_2022_103649
crossref_primary_10_3109_03091902_2012_702851
crossref_primary_10_1007_s13246_021_01072_5
crossref_primary_10_1016_j_eswa_2018_03_038
crossref_primary_10_3390_bdcc3020022
crossref_primary_10_1007_s10916_008_9142_z
crossref_primary_10_1016_j_asoc_2020_106275
crossref_primary_10_1260_2040_2295_4_4_465
crossref_primary_10_1016_j_engstruct_2012_04_013
crossref_primary_10_1155_2014_734072
crossref_primary_10_3109_03091902_2013_845699
crossref_primary_10_1007_s42979_023_02159_4
crossref_primary_10_1016_j_compbiomed_2014_02_012
crossref_primary_10_29130_dubited_824362
crossref_primary_10_1016_j_bspc_2020_102200
crossref_primary_10_3389_fphys_2023_1246746
crossref_primary_10_1007_s11760_024_03000_y
crossref_primary_10_1016_j_artmed_2008_05_003
crossref_primary_10_1142_S0219519416400121
crossref_primary_10_1016_j_imu_2018_03_002
crossref_primary_10_3390_hearts2040037
crossref_primary_10_1016_j_cmpb_2013_12_002
crossref_primary_10_1016_j_cmpb_2015_12_008
crossref_primary_10_1016_j_compbiomed_2024_108751
crossref_primary_10_1142_S0219622014500813
crossref_primary_10_1007_s00500_013_1079_6
crossref_primary_10_1080_10286600802506726
crossref_primary_10_1016_j_eswa_2019_02_035
crossref_primary_10_1155_2016_7359516
crossref_primary_10_1007_s00034_014_9864_8
crossref_primary_10_1155_2013_453402
crossref_primary_10_7763_IJIEE_2014_V4_433
crossref_primary_10_1016_j_mejo_2022_105492
crossref_primary_10_3390_s17112445
crossref_primary_10_1038_s41598_024_60500_0
crossref_primary_10_1016_j_artmed_2007_02_001
crossref_primary_10_1017_S0890060414000675
crossref_primary_10_1016_j_neucom_2016_08_042
crossref_primary_10_1016_j_comcom_2019_12_030
crossref_primary_10_1016_j_bspc_2011_10_001
crossref_primary_10_1109_RBME_2022_3154893
crossref_primary_10_1016_j_eswa_2007_08_025
crossref_primary_10_1016_j_neucom_2014_09_011
crossref_primary_10_1016_j_jbi_2008_01_014
crossref_primary_10_1016_j_compeleceng_2015_12_015
crossref_primary_10_1109_TBME_2006_881782
crossref_primary_10_1007_s00521_022_07953_4
crossref_primary_10_1007_s00530_020_00713_1
crossref_primary_10_1016_j_compbiomed_2008_12_008
crossref_primary_10_1016_j_eswa_2008_08_028
crossref_primary_10_1016_j_eswa_2011_08_156
crossref_primary_10_12989_sem_2007_27_2_117
crossref_primary_10_4028_p_6yc34j
crossref_primary_10_1016_j_eswa_2017_09_022
crossref_primary_10_1098_rsif_2017_0821
crossref_primary_10_1016_j_compbiomed_2008_01_003
crossref_primary_10_1142_S0219519413500188
Cites_doi 10.1109/10.959322
10.1109/72.238310
10.1016/S0165-0114(02)00136-7
10.1016/S0165-0114(98)00079-7
10.1023/A:1025515632674
10.1109/72.701174
10.1016/S0167-8655(02)00401-4
10.1016/S0165-1684(01)00051-2
10.1109/TBME.2003.818469
10.1016/S0165-0114(02)00123-9
10.1016/S0165-0114(01)00070-7
10.1109/72.159057
10.1109/ICCIMA.1999.798510
10.1016/S0165-0114(02)00050-7
10.1016/S0952-1976(02)00041-6
10.1016/S0952-1976(01)00032-X
10.1016/S1056-8727(00)00137-9
10.1016/S0165-0114(97)00314-X
10.1109/4233.945289
10.1109/72.655032
10.1109/IJCNN.2000.861428
10.1016/S0045-7906(99)00029-4
10.1016/S0019-0578(00)00027-6
ContentType Journal Article
Copyright 2005
Copyright_xml – notice: 2005
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
E3H
F2A
7X8
DOI 10.1016/j.compbiomed.2005.01.006
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
Library and Information Science Abstracts (LISA)
MEDLINE - Academic
DatabaseTitleList Library and Information Science Abstracts (LISA)
MEDLINE

Engineering Research Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 388
ExternalDocumentID 15878480
10_1016_j_compbiomed_2005_01_006
S0010482505000417
Genre Journal Article
Comparative Study
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77I
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
~HD
3V.
AACTN
AAIAV
ABLVK
ABYKQ
AFKWA
AHPSJ
AJBFU
AJOXV
AMFUW
LCYCR
M0N
RIG
AAYXX
CITATION
PUEGO
AFCTW
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
E3H
F2A
7X8
ID FETCH-LOGICAL-c491t-1dd1fba7dda15d39b0d4128c00353345cfbe7e9e5f798dce8b59e60eaf4ed8b93
IEDL.DBID AIKHN
ISSN 0010-4825
IngestDate Tue Oct 21 13:11:44 EDT 2025
Thu Oct 02 11:39:29 EDT 2025
Tue Oct 07 09:34:24 EDT 2025
Wed Feb 19 01:38:47 EST 2025
Wed Oct 01 04:07:08 EDT 2025
Thu Apr 24 23:04:35 EDT 2025
Fri Feb 23 02:32:58 EST 2024
Tue Oct 14 19:36:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Fuzzy clustering
Arrhythmia
ECG
Multilayer perceptron
Neural network
Pattern recognition
Fuzzy c-means
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c491t-1dd1fba7dda15d39b0d4128c00353345cfbe7e9e5f798dce8b59e60eaf4ed8b93
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 15878480
PQID 19422884
PQPubID 23462
PageCount 13
ParticipantIDs proquest_miscellaneous_67670018
proquest_miscellaneous_57600703
proquest_miscellaneous_19422884
pubmed_primary_15878480
crossref_primary_10_1016_j_compbiomed_2005_01_006
crossref_citationtrail_10_1016_j_compbiomed_2005_01_006
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2005_01_006
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2005_01_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-04-01
PublicationDateYYYYMMDD 2006-04-01
PublicationDate_xml – month: 04
  year: 2006
  text: 2006-04-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2006
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Yang, Liu (bib29) 2003; 135
Jang, Sun, Mizutani (bib10) 1997
Osowski, Linh (bib2) 2001; 48
V. Pilla, H.S. Lopes, Evolutionary training of a neuro-fuzzy network for detection of P wave of the ECG, Proceedings of the Third International Conference on Computational Intelligence and Multimedia Applications, New Delhi, India, 1999, pp. 102–106.
Y. Ozbay, Fast recognition of ECG arrhythmias, Ph.D. Thesis, Institute of Natural and Applied Science, Selcuk University, 1999.
Shaout, Scharbonea (bib27) 2000; 26
R. Acharya, P.S. Bhat, S.S. Iyengar, A. Roo, S. Dua, Classification of heart rate data using artificial neural network and fuzzy equivalence relation, J. Pattern Recognition Soc. (2002).
Dazzi, Taddei, Gavarini, Uggeri, Negra, Pezzarossa (bib19) 2001; 15
Haseyama, Kitajima (bib24) 2001; 81
Pal, Bezdek, Tsao (bib22) 1993; 4
De, Basak, Pal (bib20) 2002; 126
Ronen, Shabtai, Guterman (bib25) 1998; 22
R. Pektatli, Y. Ozbay, M. Ceylan, B. Karlik, Classification of ECG signals using fuzzy clustering neural networks (FCNN), Proceedings of the International XII, TAINN’03, vol. 1(1), Çanakkale, Turkey, 2003, pp. 105–108.
Haykin (bib8) 1994
Zhang, Kandel (bib13) 1998; 9
Sebzalli, Wang (bib26) 2001; 14
Stoeva, Nikov (bib28) 2000; 112
Y. Ozbay, B. Karlik, A recognition of ECG arrhythmias using artificial neural network, Proceedings of the 23rd Annual Conference, IEEE/EMBS, Istanbul, Turkey, 2001.
G. Castellano, A.M. Fanelli, A self-organizing neural fuzzy inference network, Proceedings of the IEEE International Joint Conference on Neural Networks, vol. 5, Italy, 2000, pp. 14–19.
Fan, Zhen, Xie (bib14) 2003; 24
Meesad, Yen (bib21) 2000; 39
Engin, Demirağ (bib7) 2003; 3
Seker, Evans, Aydin, Yazgan (bib12) 2001; 5
Karlık, Tokhi, Alcı (bib9) 2003; 50
Hall, Bensaid, Clarke, Velthuizen, Silbiger, Bezdek (bib30) 1992; 3
Leski, Czogala (bib31) 1999; 108
Pedrycz (bib23) 1998; 9
Foo, Stuart, Harvey, Meyer-Baese (bib5) 2002; 15
Li, Mukaidono, Turksen (bib15) 2002; 130
Castellano, Fanelli (bib18) 2000; 3
Liao, Celmins, Hammell II (bib11) 2003; 135
Ronen (10.1016/j.compbiomed.2005.01.006_bib25) 1998; 22
Liao (10.1016/j.compbiomed.2005.01.006_bib11) 2003; 135
Hall (10.1016/j.compbiomed.2005.01.006_bib30) 1992; 3
Meesad (10.1016/j.compbiomed.2005.01.006_bib21) 2000; 39
Shaout (10.1016/j.compbiomed.2005.01.006_bib27) 2000; 26
Dazzi (10.1016/j.compbiomed.2005.01.006_bib19) 2001; 15
Haseyama (10.1016/j.compbiomed.2005.01.006_bib24) 2001; 81
Stoeva (10.1016/j.compbiomed.2005.01.006_bib28) 2000; 112
Engin (10.1016/j.compbiomed.2005.01.006_bib7) 2003; 3
10.1016/j.compbiomed.2005.01.006_bib4
10.1016/j.compbiomed.2005.01.006_bib3
Foo (10.1016/j.compbiomed.2005.01.006_bib5) 2002; 15
Yang (10.1016/j.compbiomed.2005.01.006_bib29) 2003; 135
10.1016/j.compbiomed.2005.01.006_bib1
Jang (10.1016/j.compbiomed.2005.01.006_bib10) 1997
Haykin (10.1016/j.compbiomed.2005.01.006_bib8) 1994
10.1016/j.compbiomed.2005.01.006_bib16
10.1016/j.compbiomed.2005.01.006_bib17
Castellano (10.1016/j.compbiomed.2005.01.006_bib18) 2000; 3
Leski (10.1016/j.compbiomed.2005.01.006_bib31) 1999; 108
Seker (10.1016/j.compbiomed.2005.01.006_bib12) 2001; 5
Sebzalli (10.1016/j.compbiomed.2005.01.006_bib26) 2001; 14
Karlık (10.1016/j.compbiomed.2005.01.006_bib9) 2003; 50
Pedrycz (10.1016/j.compbiomed.2005.01.006_bib23) 1998; 9
De (10.1016/j.compbiomed.2005.01.006_bib20) 2002; 126
Osowski (10.1016/j.compbiomed.2005.01.006_bib2) 2001; 48
Zhang (10.1016/j.compbiomed.2005.01.006_bib13) 1998; 9
Pal (10.1016/j.compbiomed.2005.01.006_bib22) 1993; 4
10.1016/j.compbiomed.2005.01.006_bib6
Fan (10.1016/j.compbiomed.2005.01.006_bib14) 2003; 24
Li (10.1016/j.compbiomed.2005.01.006_bib15) 2002; 130
References_xml – volume: 135
  start-page: 305
  year: 2003
  end-page: 316
  ident: bib29
  article-title: Fuzzy least-squares algorithms for interactive fuzzy linear regression models
  publication-title: Fuzzy Sets Syst.
– volume: 9
  start-page: 83
  year: 1998
  end-page: 105
  ident: bib13
  article-title: Compensatory neuro-fuzzy systems with fast learning algorithms
  publication-title: IEEE Trans. Neural Networks
– volume: 48
  start-page: 1265
  year: 2001
  end-page: 1271
  ident: bib2
  article-title: ECG beat recognition using fuzzy hybrid neural network
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 9
  start-page: 601
  year: 1998
  end-page: 612
  ident: bib23
  article-title: Conditional fuzzy clustering in the design of radial basis function neural networks
  publication-title: IEEE Trans. Neural Networks
– reference: R. Acharya, P.S. Bhat, S.S. Iyengar, A. Roo, S. Dua, Classification of heart rate data using artificial neural network and fuzzy equivalence relation, J. Pattern Recognition Soc. (2002).
– volume: 14
  start-page: 607
  year: 2001
  end-page: 616
  ident: bib26
  article-title: Knowledge discovery from process operational data using PCA and fuzzy clustering
  publication-title: Eng. Appl. Artif. Intell.
– reference: Y. Ozbay, B. Karlik, A recognition of ECG arrhythmias using artificial neural network, Proceedings of the 23rd Annual Conference, IEEE/EMBS, Istanbul, Turkey, 2001.
– volume: 112
  start-page: 27
  year: 2000
  end-page: 39
  ident: bib28
  article-title: A fuzzy back-propagation algorithm
  publication-title: Fuzzy Sets Syst.
– volume: 130
  start-page: 101
  year: 2002
  end-page: 108
  ident: bib15
  article-title: A fuzzy neural network for pattern classification and feature selection
  publication-title: Fuzzy Sets Syst.
– volume: 3
  start-page: 361
  year: 2000
  end-page: 371
  ident: bib18
  article-title: Fuzzy inference and rule extraction using a neural network
  publication-title: Neural Network World J.
– volume: 26
  start-page: 125
  year: 2000
  end-page: 139
  ident: bib27
  article-title: Fuzzy logic based modification system for the learning rate in back-propagation
  publication-title: Comput. Electr. Eng.
– reference: V. Pilla, H.S. Lopes, Evolutionary training of a neuro-fuzzy network for detection of P wave of the ECG, Proceedings of the Third International Conference on Computational Intelligence and Multimedia Applications, New Delhi, India, 1999, pp. 102–106.
– volume: 135
  start-page: 241
  year: 2003
  end-page: 257
  ident: bib11
  article-title: A fuzzy c-means variant for the generation of fuzzy term sets
  publication-title: Fuzzy Sets Syst.
– reference: Y. Ozbay, Fast recognition of ECG arrhythmias, Ph.D. Thesis, Institute of Natural and Applied Science, Selcuk University, 1999.
– year: 1997
  ident: bib10
  article-title: Neuro-Fuzzy and Soft Computing
– reference: R. Pektatli, Y. Ozbay, M. Ceylan, B. Karlik, Classification of ECG signals using fuzzy clustering neural networks (FCNN), Proceedings of the International XII, TAINN’03, vol. 1(1), Çanakkale, Turkey, 2003, pp. 105–108.
– volume: 126
  start-page: 277
  year: 2002
  end-page: 291
  ident: bib20
  article-title: Unsupervised feature extraction using neuro-fuzzy approach
  publication-title: Fuzzy Sets Syst.
– volume: 4
  start-page: 549
  year: 1993
  end-page: 557
  ident: bib22
  article-title: Generalized clustering networks and Kohonen's self-organizing scheme
  publication-title: IEEE Trans. Neural Networks
– volume: 81
  start-page: 1331
  year: 2001
  end-page: 1335
  ident: bib24
  article-title: An ARMA order selection method with fuzzy reasoning
  publication-title: Signal Process.
– volume: 3
  start-page: 672
  year: 1992
  end-page: 682
  ident: bib30
  article-title: A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images on the brain
  publication-title: IEEE Trans. Neural Networks
– volume: 50
  start-page: 1255
  year: 2003
  end-page: 1261
  ident: bib9
  article-title: A fuzzy clustering neural network architecture for multifunction upper-limb prosthesis
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 3
  start-page: 71
  year: 2003
  end-page: 80
  ident: bib7
  article-title: Fuzzy-hybrid neural network based ECG beat recognition using three different types of feature set
  publication-title: Cardiovasc. Eng. Int. J.
– year: 1994
  ident: bib8
  article-title: Neural Networks: A Comprehensive Foundation
– volume: 15
  start-page: 80
  year: 2001
  end-page: 87
  ident: bib19
  article-title: The control of blood glucose in the critical diabetic patient: A neuro-fuzzy method
  publication-title: J. Diabetes Complications
– volume: 5
  start-page: 187
  year: 2001
  end-page: 194
  ident: bib12
  article-title: Compensatory fuzzy neural network-based intelligent detection of abnormal neonatal cerebral doppler ultrasound waveforms
  publication-title: IEEE Trans. Inform. Technol. Biomed.
– reference: G. Castellano, A.M. Fanelli, A self-organizing neural fuzzy inference network, Proceedings of the IEEE International Joint Conference on Neural Networks, vol. 5, Italy, 2000, pp. 14–19.
– volume: 39
  start-page: 293
  year: 2000
  end-page: 308
  ident: bib21
  article-title: Pattern classification by a neuro fuzzy network application to vibration monitoring
  publication-title: ISA Trans.
– volume: 22
  start-page: 1005
  year: 1998
  end-page: 1008
  ident: bib25
  article-title: Rapid process modelling-model building methodology combining unsupervised fuzzy clustering and supervised neural networks
  publication-title: Comput. Eng.
– volume: 108
  start-page: 289
  year: 1999
  end-page: 297
  ident: bib31
  article-title: A new artificial neural network based fuzzy inference system with moving consequents in if–then rules and selected applications
  publication-title: Fuzzy Sets Syst.
– volume: 24
  start-page: 1607
  year: 2003
  end-page: 1612
  ident: bib14
  article-title: Supervised fuzzy c-means clustering algorithm
  publication-title: Pattern Recognition Lett.
– volume: 15
  start-page: 253
  year: 2002
  end-page: 260
  ident: bib5
  article-title: Neural network-based ECG pattern recognition
  publication-title: Eng. Appl. Artif. Intell.
– volume: 48
  start-page: 1265
  issue: 11
  year: 2001
  ident: 10.1016/j.compbiomed.2005.01.006_bib2
  article-title: ECG beat recognition using fuzzy hybrid neural network
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.959322
– volume: 4
  start-page: 549
  issue: 4
  year: 1993
  ident: 10.1016/j.compbiomed.2005.01.006_bib22
  article-title: Generalized clustering networks and Kohonen's self-organizing scheme
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/72.238310
– volume: 135
  start-page: 241
  year: 2003
  ident: 10.1016/j.compbiomed.2005.01.006_bib11
  article-title: A fuzzy c-means variant for the generation of fuzzy term sets
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/S0165-0114(02)00136-7
– volume: 112
  start-page: 27
  year: 2000
  ident: 10.1016/j.compbiomed.2005.01.006_bib28
  article-title: A fuzzy back-propagation algorithm
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/S0165-0114(98)00079-7
– volume: 3
  start-page: 71
  issue: 2
  year: 2003
  ident: 10.1016/j.compbiomed.2005.01.006_bib7
  article-title: Fuzzy-hybrid neural network based ECG beat recognition using three different types of feature set
  publication-title: Cardiovasc. Eng. Int. J.
  doi: 10.1023/A:1025515632674
– volume: 9
  start-page: 601
  issue: 4
  year: 1998
  ident: 10.1016/j.compbiomed.2005.01.006_bib23
  article-title: Conditional fuzzy clustering in the design of radial basis function neural networks
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/72.701174
– volume: 24
  start-page: 1607
  year: 2003
  ident: 10.1016/j.compbiomed.2005.01.006_bib14
  article-title: Supervised fuzzy c-means clustering algorithm
  publication-title: Pattern Recognition Lett.
  doi: 10.1016/S0167-8655(02)00401-4
– volume: 81
  start-page: 1331
  year: 2001
  ident: 10.1016/j.compbiomed.2005.01.006_bib24
  article-title: An ARMA order selection method with fuzzy reasoning
  publication-title: Signal Process.
  doi: 10.1016/S0165-1684(01)00051-2
– volume: 50
  start-page: 1255
  issue: 11
  year: 2003
  ident: 10.1016/j.compbiomed.2005.01.006_bib9
  article-title: A fuzzy clustering neural network architecture for multifunction upper-limb prosthesis
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2003.818469
– volume: 135
  start-page: 305
  year: 2003
  ident: 10.1016/j.compbiomed.2005.01.006_bib29
  article-title: Fuzzy least-squares algorithms for interactive fuzzy linear regression models
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/S0165-0114(02)00123-9
– ident: 10.1016/j.compbiomed.2005.01.006_bib4
– volume: 126
  start-page: 277
  year: 2002
  ident: 10.1016/j.compbiomed.2005.01.006_bib20
  article-title: Unsupervised feature extraction using neuro-fuzzy approach
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/S0165-0114(01)00070-7
– year: 1997
  ident: 10.1016/j.compbiomed.2005.01.006_bib10
– volume: 3
  start-page: 672
  issue: 5
  year: 1992
  ident: 10.1016/j.compbiomed.2005.01.006_bib30
  article-title: A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images on the brain
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/72.159057
– ident: 10.1016/j.compbiomed.2005.01.006_bib6
  doi: 10.1109/ICCIMA.1999.798510
– year: 1994
  ident: 10.1016/j.compbiomed.2005.01.006_bib8
– ident: 10.1016/j.compbiomed.2005.01.006_bib16
– volume: 3
  start-page: 361
  year: 2000
  ident: 10.1016/j.compbiomed.2005.01.006_bib18
  article-title: Fuzzy inference and rule extraction using a neural network
  publication-title: Neural Network World J.
– volume: 130
  start-page: 101
  year: 2002
  ident: 10.1016/j.compbiomed.2005.01.006_bib15
  article-title: A fuzzy neural network for pattern classification and feature selection
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/S0165-0114(02)00050-7
– volume: 15
  start-page: 253
  year: 2002
  ident: 10.1016/j.compbiomed.2005.01.006_bib5
  article-title: Neural network-based ECG pattern recognition
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/S0952-1976(02)00041-6
– volume: 14
  start-page: 607
  year: 2001
  ident: 10.1016/j.compbiomed.2005.01.006_bib26
  article-title: Knowledge discovery from process operational data using PCA and fuzzy clustering
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/S0952-1976(01)00032-X
– volume: 22
  start-page: 1005
  year: 1998
  ident: 10.1016/j.compbiomed.2005.01.006_bib25
  article-title: Rapid process modelling-model building methodology combining unsupervised fuzzy clustering and supervised neural networks
  publication-title: Comput. Eng.
– volume: 15
  start-page: 80
  year: 2001
  ident: 10.1016/j.compbiomed.2005.01.006_bib19
  article-title: The control of blood glucose in the critical diabetic patient: A neuro-fuzzy method
  publication-title: J. Diabetes Complications
  doi: 10.1016/S1056-8727(00)00137-9
– volume: 108
  start-page: 289
  year: 1999
  ident: 10.1016/j.compbiomed.2005.01.006_bib31
  article-title: A new artificial neural network based fuzzy inference system with moving consequents in if–then rules and selected applications
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/S0165-0114(97)00314-X
– volume: 5
  start-page: 187
  issue: 3
  year: 2001
  ident: 10.1016/j.compbiomed.2005.01.006_bib12
  article-title: Compensatory fuzzy neural network-based intelligent detection of abnormal neonatal cerebral doppler ultrasound waveforms
  publication-title: IEEE Trans. Inform. Technol. Biomed.
  doi: 10.1109/4233.945289
– ident: 10.1016/j.compbiomed.2005.01.006_bib1
– volume: 9
  start-page: 83
  issue: 1
  year: 1998
  ident: 10.1016/j.compbiomed.2005.01.006_bib13
  article-title: Compensatory neuro-fuzzy systems with fast learning algorithms
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/72.655032
– ident: 10.1016/j.compbiomed.2005.01.006_bib3
– ident: 10.1016/j.compbiomed.2005.01.006_bib17
  doi: 10.1109/IJCNN.2000.861428
– volume: 26
  start-page: 125
  year: 2000
  ident: 10.1016/j.compbiomed.2005.01.006_bib27
  article-title: Fuzzy logic based modification system for the learning rate in back-propagation
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/S0045-7906(99)00029-4
– volume: 39
  start-page: 293
  year: 2000
  ident: 10.1016/j.compbiomed.2005.01.006_bib21
  article-title: Pattern classification by a neuro fuzzy network application to vibration monitoring
  publication-title: ISA Trans.
  doi: 10.1016/S0019-0578(00)00027-6
SSID ssj0004030
Score 2.218269
Snippet Accurate and computationally efficient means of classifying electrocardiography (ECG) arrhythmias has been the subject of considerable research effort in...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 376
SubjectTerms Adult
Algorithms
Arrhythmia
Arrhythmias, Cardiac - classification
Clustering
Computer applications
Diagnosis
ECG
Electrocardiograms
Electrocardiography
Female
Fuzzy c-means
Fuzzy clustering
Fuzzy Logic
Fuzzy set theory
Health care
Humans
Male
Medicine
Multilayer perceptron
Neural network
Neural networks
Neural Networks (Computer)
Pattern recognition
Pattern Recognition, Automated
Title A fuzzy clustering neural network architecture for classification of ECG arrhythmias
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482505000417
https://dx.doi.org/10.1016/j.compbiomed.2005.01.006
https://www.ncbi.nlm.nih.gov/pubmed/15878480
https://www.proquest.com/docview/19422884
https://www.proquest.com/docview/57600703
https://www.proquest.com/docview/67670018
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AKRWK
  dateStart: 19700101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1879-0534
  dateEnd: 20231231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 20250903
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: 8FG
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxsxEB4SB0ovpe-6j1SHXrdZsdJKIifX2HFbakpJwDexq5WIQ7oOiX1IDvntnbG0cXswGHrRwjIDYkaaGWm-GQF8akJwPCiVVUHkmfCqyExZ6wwPW06UNW-cXwNkp-XkTHybydkeDLtaGIJVJtsfbfraWqc_R0maR1fzOdX44lFCkwunwISrfThA_6N1Dw4GX79PppvyyLyIlShocoghAXoizIuQ27HSPV2wcIJ6bfNS26LQtTcaP4UnKYxkgzjTZ7Dn2-fw6EdKlL-A0wELq7u7W-YuV9QKAR0Uo9aVyNNG4Df7O4XAMHRFUgykCTm0VhZbBDYaniDZ9fnt8vz3vLp5CWfj0elwkqUHFDInDF9mvGl4qCvVNBWXTWHqvBHojxylD4tCSBdqr7zxMiijUSu6lsaXuUe9-UbXpngFvXbR-jfAvBQcI5fKeIUBQaEq50XptcmdosZNvA-qE5h1qbs4PXJxaTsY2YXdiJoev5Q25xZF3Qf-wHkVO2zswGM6ndiughRtnkU3sAPv8QPvPyttR-6P3RKwuBEpu1K1frG6sdxQNzUttlNISoKihd1OQd3z6JnEPryOq2sjEamVFjp_-1-zfweP4xUSIY_eQ295vfIfMKha1oew__me46hmCkc9PjlM2wi_X0bTn7_-AKMEJ20
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCa6Dth2GfZe9qoOu3q1ZsmSsFMRtMu2tqcU6E2w9UAzdE7RJof20N9e0pKb7RAgwK4GCQiURH4yP5IAn32MjkeliiaKshBBVYWpW13gY8uJuuXehZ4ge1xPTsTPU3m6BeOhFoZoldn3J5_ee-v8ZTdbc_diNqMaX3xKaArhBEy4egAPhfyq6AX25XbF8xBllepQ0OGQeKbzJJIX8bZTnXv-vcKJ6LUuRq3DoH0sOngGTzOIZHtpnc9hK3Qv4NFRTpO_hOkei8ubm2vmzpfUCAHDE6PGlajTJdo3-zuBwBC4oijCaOIN9VvF5pHtj7-j2OXZ9eLsz6y5egUnB_vT8aTI4xMKJwxfFNx7HttGed9w6SvTll5gNHKUPKwqIV1sgwomyKiMxj3RrTShLgPuWvC6NdVr2O7mXXgLLEjBEbc0JiiEA5VqXBB10KZ0ito28RGowWDW5d7iNOLi3A4kst92ZWoafSltyS2aegT8XvMi9dfYQMcMe2KH-lH0eBaDwAa63-51_zlnG2rvDEfA4jWk3ErThfnyynJDvdS0WC8hKQWK_nW9BPXOoyGJI3iTTtfKIlIrLXT57r9WvwOPJ9OjQ3v44_jXe3iSfiYRB-kDbC8ul-EjwqtF-6m_PncyMyTO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fuzzy+clustering+neural+network+architecture+for+classification+of+ECG+arrhythmias&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Ozbay%2C+Y%C3%BCksel&rft.au=Ceylan%2C+Rahime&rft.au=Karlik%2C+Bekir&rft.date=2006-04-01&rft.issn=0010-4825&rft.volume=36&rft.issue=4&rft.spage=376&rft_id=info:doi/10.1016%2Fj.compbiomed.2005.01.006&rft_id=info%3Apmid%2F15878480&rft.externalDocID=15878480
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon