Intrinsic and extrinsic control of peripheral T-cell tolerance by costimulatory molecules of the CD28/ B7 family
Positive and negative costimulation by members of the CD28 family is critical for the development of productive immune responses against foreign pathogens and their proper termination to prevent inflammation‐induced tissue damage. In addition, costimulatory signals are critical for the establishment...
Saved in:
Published in | Immunological reviews Vol. 241; no. 1; pp. 180 - 205 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.05.2011
Blackwell |
Subjects | |
Online Access | Get full text |
ISSN | 0105-2896 1600-065X 1600-065X |
DOI | 10.1111/j.1600-065X.2011.01011.x |
Cover
Abstract | Positive and negative costimulation by members of the CD28 family is critical for the development of productive immune responses against foreign pathogens and their proper termination to prevent inflammation‐induced tissue damage. In addition, costimulatory signals are critical for the establishment and maintenance of peripheral tolerance. This paradigm has been established in many animal models and has led to the development of immunotherapies targeting costimulation pathways for the treatment of cancer, autoimmune disease, and allograft rejection. During the last decade, the complexity of the biology of costimulatory pathways has greatly increased due to the realization that costimulation does not affect only effector T cells but also influences regulatory T cells and antigen‐presenting cells. Thus, costimulation controls T‐cell tolerance through both intrinsic and extrinsic pathways. In this review, we discuss the influence of costimulation on intrinsic and extrinsic pathways of peripheral tolerance, with emphasis on members of the CD28 family, CD28, cytotoxic T‐lymphocyte antigen‐4 (CTLA‐4), and programmed death‐1 (PD‐1), as well as the downstream cytokine interleukin‐1 (IL‐2). |
---|---|
AbstractList | Positive and negative costimulation by members of the CD28 family is critical for the development of productive immune responses against foreign pathogens and their proper termination to prevent inflammation-induced tissue damage. In addition, costimulatory signals are critical for the establishment and maintenance of peripheral tolerance. This paradigm has been established in many animal models and has led to the development of immunotherapies targeting costimulation pathways for the treatment of cancer, autoimmune disease, and allograft rejection. During the last decade, the complexity of the biology of costimulatory pathways has greatly increased due to the realization that costimulation does not affect only effector T cells but also influences regulatory T cells and antigen-presenting cells. Thus, costimulation controls T-cell tolerance through both intrinsic and extrinsic pathways. In this review, we discuss the influence of costimulation on intrinsic and extrinsic pathways of peripheral tolerance, with emphasis on members of the CD28 family, CD28, cytotoxic T-lymphocyte antigen-4 (CTLA-4), and programmed death-1 (PD-1), as well as the downstream cytokine interleukin-1 (IL-2). Positive and negative costimulation by members of the CD28 family is critical for the development of productive immune responses against foreign pathogens and their proper termination to prevent inflammation-induced tissue damage. In addition, costimulatory signals are critical for the establishment and maintenance of peripheral tolerance. This paradigm has been established in many animal models and has led to the development of immunotherapies targeting costimulation pathways for the treatment of cancer, autoimmune disease, and allograft rejection. During the last decade, the complexity of the biology of costimulatory pathways has greatly increased due to the realization that costimulation does not affect only effector T cells but also influences regulatory T cells and antigen-presenting cells. Thus, costimulation controls T-cell tolerance through both intrinsic and extrinsic pathways. In this review, we discuss the influence of costimulation on intrinsic and extrinsic pathways of peripheral tolerance, with emphasis on members of the CD28 family, CD28, cytotoxic T-lymphocyte antigen-4 (CTLA-4), and programmed death-1 (PD-1), as well as the downstream cytokine interleukin-1 (IL-2).Positive and negative costimulation by members of the CD28 family is critical for the development of productive immune responses against foreign pathogens and their proper termination to prevent inflammation-induced tissue damage. In addition, costimulatory signals are critical for the establishment and maintenance of peripheral tolerance. This paradigm has been established in many animal models and has led to the development of immunotherapies targeting costimulation pathways for the treatment of cancer, autoimmune disease, and allograft rejection. During the last decade, the complexity of the biology of costimulatory pathways has greatly increased due to the realization that costimulation does not affect only effector T cells but also influences regulatory T cells and antigen-presenting cells. Thus, costimulation controls T-cell tolerance through both intrinsic and extrinsic pathways. In this review, we discuss the influence of costimulation on intrinsic and extrinsic pathways of peripheral tolerance, with emphasis on members of the CD28 family, CD28, cytotoxic T-lymphocyte antigen-4 (CTLA-4), and programmed death-1 (PD-1), as well as the downstream cytokine interleukin-1 (IL-2). |
Author | Penaranda, Cristina Stumpf, Melanie Martinez-Llordella, Marc Esensten, Jonathan H. Bluestone, Jeffrey A. Bour-Jordan, Hélène |
Author_xml | – sequence: 1 givenname: Hélène surname: Bour-Jordan fullname: Bour-Jordan, Hélène organization: UCSF Diabetes Center, University of California at San Francisco, San Francisco, CA, USA – sequence: 2 givenname: Jonathan H. surname: Esensten fullname: Esensten, Jonathan H. organization: UCSF Diabetes Center, University of California at San Francisco, San Francisco, CA, USA – sequence: 3 givenname: Marc surname: Martinez-Llordella fullname: Martinez-Llordella, Marc organization: UCSF Diabetes Center, University of California at San Francisco, San Francisco, CA, USA – sequence: 4 givenname: Cristina surname: Penaranda fullname: Penaranda, Cristina organization: UCSF Diabetes Center, University of California at San Francisco, San Francisco, CA, USA – sequence: 5 givenname: Melanie surname: Stumpf fullname: Stumpf, Melanie organization: UCSF Diabetes Center, University of California at San Francisco, San Francisco, CA, USA – sequence: 6 givenname: Jeffrey A. surname: Bluestone fullname: Bluestone, Jeffrey A. organization: UCSF Diabetes Center, University of California at San Francisco, San Francisco, CA, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24073810$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21488898$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUU9v0zAUt9AQ6wZfAfmCOKWz4yR2DiCxAqNoHQINwc1ynWfq4sTFTqG9ceZj8klwaNfBbT7Yfv79eXr-naCjzneAEKZkTNM6W45pRUhGqvLzOCeUjgkd9s09NDoAR2iUXsssF3V1jE5iXBJCOcuLB-g4p4UQohYjFKZdH2wXrcaqazBsbirtE-Ad9gavINjVAoJy-DrT4BzuvUtlpwHPt4kZe9uunep92OI2QXrtIA7KfgF48jIXZ79__jrn2KjWuu1DdN8oF-HR_jxFH1-_up68yS7fXUwnLy4zXdSUZkVBcwFNSesCFOMNlIaaOfCmVjkDQ1RTC02bBozIdcmBg5gTU-YwLw3hgrJT9Hznu1rPW2g0pIGUk6tgWxW20isr_0c6u5Bf_HfJCOeCsGTwdG8Q_Lc1xF62Ng7zqw78OkpR5XklBCsT8_G_rQ49bv45EZ7sCSpq5czweTbe8grCmaAk8cSOp4OPMYA5UCiRQ_RyKYeE5ZCwHKKXf6OXm9txD1Jte9XbIUdl3V0Mnu0MflgH2zs3ltPZh-GW9NlOb2MPm4Neha-y4oyX8tPVhSRXM_b2_ayQFfsDxVTaEg |
CODEN | IMRED2 |
CitedBy_id | crossref_primary_10_1084_jem_20182232 crossref_primary_10_1172_JCI78089 crossref_primary_10_3389_fimmu_2021_758267 crossref_primary_10_4049_jimmunol_1200972 crossref_primary_10_1155_2013_245928 crossref_primary_10_4049_jimmunol_1203567 crossref_primary_10_5551_jat_10934 crossref_primary_10_1111_imm_12725 crossref_primary_10_1111_imr_12185 crossref_primary_10_1111_imr_12061 crossref_primary_10_1016_j_arr_2015_07_005 crossref_primary_10_1016_j_intimp_2014_05_033 crossref_primary_10_1177_11795549241227421 crossref_primary_10_1186_s13046_024_02973_5 crossref_primary_10_7759_cureus_20604 crossref_primary_10_3389_fimmu_2021_645699 crossref_primary_10_4049_jimmunol_1700003 crossref_primary_10_1074_jbc_M115_684795 crossref_primary_10_1016_j_jaut_2017_09_005 crossref_primary_10_1007_s00011_016_0970_x crossref_primary_10_4049_jimmunol_1302091 crossref_primary_10_1016_j_compbiomed_2014_11_019 crossref_primary_10_1016_j_ccr_2012_06_009 crossref_primary_10_3109_0284186X_2015_1071918 crossref_primary_10_1172_JCI70355 crossref_primary_10_3389_fgene_2022_1038222 crossref_primary_10_4049_jimmunol_1402591 crossref_primary_10_3389_fimmu_2016_00215 crossref_primary_10_3389_fonc_2014_00077 crossref_primary_10_3390_pathogens10111458 crossref_primary_10_3390_toxics12110802 crossref_primary_10_1146_annurev_immunol_032414_112049 crossref_primary_10_1074_jbc_M112_425371 crossref_primary_10_1038_ncomms10182 crossref_primary_10_1371_journal_pone_0155676 crossref_primary_10_3390_ijms18102129 crossref_primary_10_1586_17474086_2016_1135047 crossref_primary_10_1002_eji_201343891 crossref_primary_10_1136_postgradmedj_2018_136081 crossref_primary_10_1002_hep_32417 crossref_primary_10_4049_jimmunol_1201362 crossref_primary_10_1111_imr_12165 crossref_primary_10_2217_imt_16_7 crossref_primary_10_1007_s12016_021_08871_4 crossref_primary_10_1186_s13075_017_1261_9 crossref_primary_10_1016_j_gendis_2021_08_009 crossref_primary_10_1038_srep03345 crossref_primary_10_1152_physiol_00028_2017 crossref_primary_10_1016_j_celrep_2017_07_027 crossref_primary_10_1038_ni_2404 crossref_primary_10_1002_ijc_28449 crossref_primary_10_1186_s12967_014_0362_3 crossref_primary_10_3389_fimmu_2015_00292 crossref_primary_10_1038_ni_2762 crossref_primary_10_1002_eji_201444688 crossref_primary_10_1155_2012_269756 crossref_primary_10_1128_mBio_02824_21 crossref_primary_10_1007_s12020_015_0567_0 crossref_primary_10_1158_1078_0432_CCR_11_1595 crossref_primary_10_1172_jci_insight_143385 crossref_primary_10_2337_dbi18_0002 crossref_primary_10_1007_s12035_021_02447_1 crossref_primary_10_12688_f1000research_17119_1 crossref_primary_10_2147_CMAR_S321402 crossref_primary_10_1002_art_37910 crossref_primary_10_1016_j_jaci_2012_08_049 crossref_primary_10_1016_j_immuni_2016_04_020 crossref_primary_10_3389_fonc_2015_00058 crossref_primary_10_1182_blood_2015_02_567453 crossref_primary_10_1007_s10549_014_2988_5 crossref_primary_10_1002_iub_2898 crossref_primary_10_4049_jimmunol_1300945 crossref_primary_10_1016_j_it_2013_07_006 crossref_primary_10_1161_ATVBAHA_115_306848 crossref_primary_10_1038_nm_3393 crossref_primary_10_1016_j_molimm_2021_02_014 crossref_primary_10_1038_s41577_024_01010_y crossref_primary_10_1038_srep39247 crossref_primary_10_1111_ejh_12697 crossref_primary_10_3389_fmicb_2024_1493561 crossref_primary_10_1016_j_bbrc_2011_08_099 crossref_primary_10_1111_jdi_13091 crossref_primary_10_1126_science_aac7888 crossref_primary_10_1111_j_1600_6143_2012_04180_x crossref_primary_10_1002_eji_201142209 crossref_primary_10_1016_j_micinf_2018_10_003 crossref_primary_10_2337_db15_1175 crossref_primary_10_1172_JCI65013 crossref_primary_10_1084_jem_20122387 crossref_primary_10_1016_j_atherosclerosis_2013_03_014 crossref_primary_10_1007_s00011_024_01900_w crossref_primary_10_1038_s41598_019_44523_6 crossref_primary_10_1002_eji_201646390 crossref_primary_10_1530_ERC_18_0320 crossref_primary_10_1093_protein_gzw002 crossref_primary_10_1002_adma_202109661 crossref_primary_10_3389_fimmu_2020_01519 crossref_primary_10_1016_j_bbmt_2013_09_003 crossref_primary_10_3390_cancers12102828 crossref_primary_10_1016_j_pnpbp_2013_06_019 crossref_primary_10_1016_j_ccell_2018_03_012 crossref_primary_10_1002_eji_201646500 crossref_primary_10_4049_jimmunol_1200077 crossref_primary_10_1021_nn3037573 crossref_primary_10_6061_clinics_2015_02_13 crossref_primary_10_1155_2012_485781 crossref_primary_10_1007_s40259_025_00712_6 crossref_primary_10_4049_jimmunol_1301253 crossref_primary_10_1007_s00432_017_2450_2 crossref_primary_10_1073_pnas_1219985110 crossref_primary_10_1517_14728214_2016_1150999 crossref_primary_10_1016_j_exppara_2014_03_017 crossref_primary_10_1016_j_imlet_2018_09_007 crossref_primary_10_1586_17474086_2016_1122513 crossref_primary_10_1177_0300060518799567 crossref_primary_10_1002_ijc_28362 crossref_primary_10_3389_fimmu_2022_1095140 crossref_primary_10_1016_j_clml_2016_06_011 crossref_primary_10_1016_j_jaci_2016_04_025 crossref_primary_10_1080_08830185_2021_1884247 crossref_primary_10_2217_fca_15_72 crossref_primary_10_1111_imm_12579 crossref_primary_10_1016_j_imlet_2013_01_014 crossref_primary_10_1097_PPO_0000000000000164 crossref_primary_10_3760_cma_j_issn_0366_6999_20122326 crossref_primary_10_1073_pnas_1216353110 crossref_primary_10_1172_JCI174647 crossref_primary_10_1038_mt_2014_160 crossref_primary_10_1055_s_0042_1757232 crossref_primary_10_1016_j_ando_2018_07_001 crossref_primary_10_1042_CS20210042 crossref_primary_10_1097_MOT_0000000000000151 crossref_primary_10_1016_j_it_2011_06_002 crossref_primary_10_1073_pnas_1208573110 crossref_primary_10_1007_s00467_013_2438_3 crossref_primary_10_1161_CIRCULATIONAHA_119_040563 crossref_primary_10_1016_j_coi_2011_08_004 crossref_primary_10_1038_cr_2015_3 crossref_primary_10_18632_genesandcancer_78 crossref_primary_10_4049_jimmunol_1200695 crossref_primary_10_1016_j_humimm_2013_04_002 crossref_primary_10_1016_j_blre_2016_03_001 crossref_primary_10_4161_21624011_2014_956579 crossref_primary_10_1038_s41416_023_02363_2 crossref_primary_10_5966_sctm_2012_0125 crossref_primary_10_1161_CIRCRESAHA_112_276501 crossref_primary_10_1038_s41598_023_42238_3 crossref_primary_10_1080_2162402X_2020_1758011 crossref_primary_10_4103_jfmpc_jfmpc_493_20 crossref_primary_10_1371_journal_pone_0030713 crossref_primary_10_4103_jcrt_jcrt_2013_21 crossref_primary_10_1146_annurev_immunol_042617_053344 crossref_primary_10_1158_1078_0432_CCR_14_1495 crossref_primary_10_1161_CIRCULATIONAHA_112_123653 crossref_primary_10_5500_wjt_v6_i3_532 crossref_primary_10_1016_j_it_2017_10_001 crossref_primary_10_4251_wjgo_v14_i1_163 crossref_primary_10_3390_cancers15092624 crossref_primary_10_1002_bmm2_12134 crossref_primary_10_1590_S0074_02762012000900024 crossref_primary_10_1097_ACI_0000000000000431 crossref_primary_10_1186_1741_7015_10_3 crossref_primary_10_1051_e3sconf_202018503007 crossref_primary_10_1242_dmm_015099 crossref_primary_10_1136_jitc_2022_006007 crossref_primary_10_4049_jimmunol_1103581 crossref_primary_10_1097_TP_0000000000000421 crossref_primary_10_1155_2019_5421985 crossref_primary_10_1111_j_1600_0463_2012_02914_x crossref_primary_10_1200_JCO_2013_49_2314 crossref_primary_10_1590_S1516_89132013005000003 crossref_primary_10_1038_icb_2013_54 crossref_primary_10_3390_jpm14030322 crossref_primary_10_1517_14728222_2014_863875 crossref_primary_10_1093_beheco_arab004 crossref_primary_10_3389_fimmu_2021_647385 crossref_primary_10_1038_s41598_019_50479_4 crossref_primary_10_1186_s12964_016_0160_z crossref_primary_10_1007_s40265_014_0305_6 crossref_primary_10_4236_oji_2012_21002 crossref_primary_10_1016_j_humimm_2019_08_005 crossref_primary_10_3389_fimmu_2017_01356 crossref_primary_10_1189_jlb_3MR1115_500R crossref_primary_10_1038_nbt_2960 crossref_primary_10_1007_s10147_016_0958_0 crossref_primary_10_1007_s10528_024_10794_6 crossref_primary_10_3389_fgene_2022_982162 crossref_primary_10_2174_1568026620666200616143247 crossref_primary_10_1016_j_coph_2015_05_003 crossref_primary_10_1371_journal_pone_0131539 crossref_primary_10_3389_fimmu_2021_651634 crossref_primary_10_1111_j_1365_2249_2012_04565_x crossref_primary_10_1111_apm_12364 crossref_primary_10_1016_j_trre_2022_100712 crossref_primary_10_3389_fimmu_2015_00456 crossref_primary_10_1517_14728222_2014_955794 crossref_primary_10_1016_j_jaad_2012_12_963 crossref_primary_10_14450_2318_9312_v31_e1_a2019_pp13_19 crossref_primary_10_3390_ijms20112810 crossref_primary_10_4049_jimmunol_1600133 crossref_primary_10_1016_j_neurol_2022_10_006 crossref_primary_10_3389_fphar_2022_809454 crossref_primary_10_1016_j_jaut_2013_06_006 crossref_primary_10_1016_j_pep_2012_01_012 crossref_primary_10_1146_annurev_immunol_032414_112103 crossref_primary_10_3390_ijms19051283 crossref_primary_10_1093_annonc_mdz129 crossref_primary_10_1016_j_jaut_2013_06_005 crossref_primary_10_1016_j_micres_2023_127393 crossref_primary_10_1093_dote_doaa035 crossref_primary_10_3389_fimmu_2020_00167 crossref_primary_10_4239_wjd_v12_i7_1010 crossref_primary_10_1111_ajd_13210 crossref_primary_10_1111_ajt_12834 crossref_primary_10_3390_cancers12030586 crossref_primary_10_1002_jcp_24852 crossref_primary_10_1038_nrneph_2013_183 crossref_primary_10_1210_endrev_bnae005 crossref_primary_10_1371_journal_pone_0089263 crossref_primary_10_3389_fimmu_2023_1081999 crossref_primary_10_3389_fimmu_2015_00229 crossref_primary_10_1016_j_autrev_2011_08_007 crossref_primary_10_1053_j_seminoncol_2015_05_014 crossref_primary_10_4049_jimmunol_1203085 crossref_primary_10_1111_j_1600_065X_2011_01019_x crossref_primary_10_17343_sdutfd_1391007 crossref_primary_10_1016_j_urolonc_2016_10_006 crossref_primary_10_4048_jbc_2016_19_3_242 crossref_primary_10_1182_blood_2017_06_741033 crossref_primary_10_4049_jimmunol_1102422 crossref_primary_10_1002_glia_23581 crossref_primary_10_1111_ajt_12938 crossref_primary_10_3389_fimmu_2019_02843 crossref_primary_10_1155_2012_836485 crossref_primary_10_1155_2017_5295164 crossref_primary_10_3390_cancers13184573 crossref_primary_10_1111_imr_12014 crossref_primary_10_1007_s11904_011_0106_4 crossref_primary_10_1080_13543784_2020_1826436 crossref_primary_10_1007_s40265_015_0376_z crossref_primary_10_1016_j_phymed_2024_155608 crossref_primary_10_1016_j_cellimm_2016_12_002 crossref_primary_10_2147_OTT_S258332 crossref_primary_10_1182_asheducation_2015_1_69 crossref_primary_10_1371_journal_pone_0083139 crossref_primary_10_3389_fimmu_2015_00488 crossref_primary_10_1155_2019_8505021 crossref_primary_10_1371_journal_pone_0233578 crossref_primary_10_1189_jlb_3A0213_079RRR crossref_primary_10_3389_fphys_2014_00196 crossref_primary_10_1007_s12094_017_1656_8 crossref_primary_10_1016_j_stem_2013_12_003 crossref_primary_10_1053_j_ajkd_2019_03_433 crossref_primary_10_1073_pnas_1406218111 crossref_primary_10_12677_ACM_2018_81009 crossref_primary_10_18632_oncotarget_15621 crossref_primary_10_3389_fphar_2019_00562 crossref_primary_10_2337_db13_1915 crossref_primary_10_1111_cei_12997 crossref_primary_10_1007_s11255_016_1249_4 crossref_primary_10_1007_s12307_012_0125_8 crossref_primary_10_1080_2162402X_2019_1644109 crossref_primary_10_1586_1744666X_2013_828875 crossref_primary_10_1182_bloodadvances_2022008545 crossref_primary_10_1016_j_breast_2017_05_013 crossref_primary_10_1016_j_jns_2015_09_346 crossref_primary_10_1371_journal_pone_0029320 crossref_primary_10_3390_cancers10070211 crossref_primary_10_1002_jcp_25016 crossref_primary_10_1007_s00281_020_00835_8 crossref_primary_10_1016_j_bios_2020_112389 crossref_primary_10_1210_clinem_dgaa553 crossref_primary_10_1016_j_smim_2013_10_010 crossref_primary_10_1186_1746_1596_8_42 crossref_primary_10_1053_j_seminoncol_2012_10_001 |
Cites_doi | 10.4049/jimmunol.174.1.180 10.1038/ng1958 10.1073/pnas.94.17.9273 10.1084/jem.20032196 10.1016/j.immuni.2008.08.011 10.1111/j.0105-2896.2006.00419.x 10.1038/ng1323 10.1084/jem.180.5.1705 10.1111/j.1600-065X.2009.00779.x 10.1084/jem.190.11.1561 10.1002/eji.200425143 10.4049/jimmunol.158.2.580 10.1016/S0165-2478(02)00142-6 10.1086/429843 10.1038/83713 10.1016/S1074-7613(00)80089-8 10.1038/ni1318 10.1084/jem.188.2.287 10.1084/jem.20090847 10.1016/j.immuni.2008.09.012 10.1016/j.immuni.2004.06.017 10.1084/jem.20041982 10.1084/jem.181.1.351 10.4049/jimmunol.164.1.144 10.4049/jimmunol.0803628 10.1111/j.1600-6143.2007.01999.x 10.4049/jimmunol.172.10.5973 10.4049/jimmunol.170.8.4127 10.1016/S1074-7613(02)00367-9 10.1126/science.7770771 10.4049/jimmunol.164.1.265 10.1146/annurev.immunol.24.021605.090535 10.1038/nri1131 10.1038/nature05673 10.1002/1521-4141(200202)32:2<447::AID-IMMU447>3.0.CO;2-5 10.1126/science.1159407 10.1146/annurev.immunol.23.021704.115611 10.1046/j.1365-3083.2003.01232.x 10.1126/science.291.5502.319 10.1016/0092-8674(94)90056-6 10.1002/ana.20514 10.4049/jimmunol.173.8.5028 10.4049/jimmunol.0903940 10.1101/gr.10.4.446 10.1038/ng2068 10.1101/gad.14.10.1236 10.1038/ncb1492 10.1084/jem.191.6.915 10.1084/jem.190.3.375 10.1016/S0022-1759(00)00344-6 10.1056/NEJMoa050085 10.1128/MCB.17.7.4051 10.4049/jimmunol.168.9.4420 10.1093/intimm/dxn108 10.4049/jimmunol.171.7.3348 10.1038/ni884 10.4049/jimmunol.168.10.5070 10.1038/83144 10.4049/jimmunol.156.11.4154 10.1126/science.1160062 10.1016/S0140-6736(08)60998-8 10.4049/jimmunol.177.7.4376 10.1146/annurev.immunol.19.1.225 10.1016/j.it.2008.02.011 10.1093/intimm/8.5.773 10.1146/annurev.med.58.061705.145449 10.1073/pnas.0308688101 10.1016/S1074-7613(00)80195-8 10.1093/intimm/dxh178 10.1080/08916930500050210 10.1002/1521-4141(200006)30:6<1538::AID-IMMU1538>3.0.CO;2-X 10.1093/intimm/dxh055 10.1016/j.immuni.2010.09.006 10.4049/jimmunol.163.3.1128 10.1172/JCI200420483 10.1006/bbrc.2000.2234 10.1016/j.imlet.2010.01.007 10.1073/pnas.89.22.11102 10.4049/jimmunol.164.9.4433 10.4049/jimmunol.169.2.633 10.1002/eji.200324632 10.1038/ni1160 10.1002/art.27601 10.1146/annurev.iy.07.040189.002305 10.1146/annurev.med.58.080205.154004 10.4049/jimmunol.175.1.177 10.1046/j.1399-0039.2003.00136.x 10.1172/JCI36604 10.1084/jem.20100209 10.4049/jimmunol.0904028 10.4049/jimmunol.164.10.5015 10.4049/jimmunol.157.9.3909 10.1056/NEJMoa050524 10.1084/jem.20082824 10.1093/intimm/dxh221 10.4049/jimmunol.164.10.5319 10.1007/s12026-009-8097-6 10.1038/nature01621 10.4049/jimmunol.177.8.5169 10.1073/pnas.0505497102 10.1038/ni846 10.1385/IR:28:3:241 10.1084/jem.20040942 10.1007/3-540-27702-1_2 10.4049/jimmunol.178.4.2018 10.1128/MCB.20.5.1461-1477.2000 10.1111/j.1600-065X.2010.00923.x 10.1038/nri2550 10.1016/S1074-7613(04)00110-4 10.1126/science.1075958 10.1146/annurev.immunol.21.120601.141040 10.1038/ni904 10.1182/blood-2010-03-272153 10.1016/S1074-7613(01)00259-X 10.1084/jem.20022119 10.1016/1074-7613(95)90161-2 10.1038/ni1572 10.3109/07853899708998786 10.4049/jimmunol.162.10.5784 10.1038/nri1457 10.1016/S1074-7613(00)80284-8 10.1016/j.coi.2009.08.007 10.4049/jimmunol.178.7.4315 10.4049/jimmunol.174.6.3359 10.1038/ng1020 10.1038/ni.1835 10.1016/j.cell.2008.05.009 10.1016/j.immuni.2006.03.001 10.1023/A:1014256417651 10.4049/jimmunol.177.4.2186 10.1016/j.coi.2007.05.005 10.1084/jem.183.6.2541 10.1038/ni939 10.4049/jimmunol.0903369 10.1172/JCI119762 10.1126/science.273.5271.104 10.1016/1074-7613(94)90071-X 10.4049/jimmunol.158.11.5091 10.1038/ni1263 10.1084/jem.186.10.1645 10.4049/jimmunol.169.4.1852 10.1016/S1074-7613(01)00167-4 10.1038/ni737 10.1172/JCI5857 10.1073/pnas.200348397 10.1038/35069112 10.4049/jimmunol.172.5.2778 10.1038/86302 10.1016/1074-7613(95)90125-6 10.1111/j.1600-065X.2008.00649.x 10.1172/JCI27856 10.4049/jimmunol.166.9.5331 10.1146/annurev.immunol.14.1.233 10.1126/science.7520604 10.1084/jem.193.11.1285 10.1016/S1074-7613(00)80323-4 10.1111/j.1600-6143.2005.00749.x 10.4049/jimmunol.151.7.3489 10.1016/S1074-7613(02)00323-0 10.1038/ni.1729 10.1038/ni1398 10.1038/ni.1818 10.1073/pnas.162359999 10.1016/S1074-7613(00)80566-X 10.1002/(SICI)1521-4141(199807)28:07<2131::AID-IMMU2131>3.0.CO;2-Q 10.1038/ni836 10.1371/journal.pone.0005087 10.1111/j.1600-065X.2009.00770.x 10.1073/pnas.252771499 10.1073/pnas.0910341107 10.1073/pnas.092284399 10.1084/jem.20061577 10.1111/j.1600-065X.2008.00697.x 10.4049/jimmunol.179.10.6494 10.1172/JCI13220 10.1038/86327 10.1111/j.1365-2567.2006.02362.x 10.1111/j.0105-2896.2005.00249.x 10.1016/S1074-7613(00)80308-8 10.1084/jem.20021024 10.4049/jimmunol.179.11.7924 10.4049/jimmunol.182.1.274 10.1038/15260 10.1038/nri1032 10.1084/jem.189.2.435 10.1084/jem.20041033 10.1126/science.1122927 10.4049/jimmunol.178.7.4022 10.1093/intimm/dxh019 10.4049/jimmunol.159.1.144 10.4049/jimmunol.161.4.1659 10.1056/NEJMoa063842 10.1084/jem.20021646 10.1038/ni1264 10.4049/jimmunol.164.11.5805 10.1084/jem.20051776 10.4049/jimmunol.159.7.3220 10.4049/jimmunol.147.8.2461 10.4049/jimmunol.0900691 10.1002/eji.200324228 10.1038/ni.1774 10.4049/jimmunol.0802610 10.1084/jem.20082492 10.1016/1074-7613(95)90180-9 10.1146/annurev.immunol.23.021704.115643 10.1084/jem.20040139 10.1038/ni.1790 10.1111/j.1600-065X.2009.00780.x 10.1097/MOT.0b013e328306115b 10.1084/jem.180.6.2049 10.1111/j.1600-065X.2009.00775.x 10.1111/j.1600-6143.2009.02839.x 10.1016/j.immuni.2007.12.017 10.1073/pnas.0711106105 10.4049/jimmunol.182.1.102 10.1084/jem.20030315 10.4049/jimmunol.179.7.4685 10.1126/science.283.5402.680 10.1038/35069118 10.1038/ni1178 10.1093/intimm/10.12.1969 10.1016/0092-8674(93)90404-E 10.1038/85330 10.1146/annurev.immunol.22.012703.104721 10.1016/0092-8674(93)80067-O 10.1371/journal.pone.0003842 10.1111/j.1600-065X.2008.00639.x 10.1172/JCI119093 10.1084/jem.194.5.677 10.1016/j.immuni.2008.03.016 10.1084/jem.192.2.303 10.1002/(SICI)1521-4141(199903)29:03<789::AID-IMMU789>3.0.CO;2-5 10.1016/S1074-7613(00)00031-5 10.4049/jimmunol.156.3.1047 10.1084/jem.20030686 10.1056/NEJMoa1003466 10.1016/S1074-7613(00)80346-5 10.1084/jem.20081811 10.1126/science.1323143 10.1128/MCB.01869-08 10.4049/jimmunol.147.3.1037 10.1016/S0140-6736(97)09278-7 10.4049/jimmunol.164.9.4465 10.1002/1521-4141(200204)32:4<972::AID-IMMU972>3.0.CO;2-M 10.4049/jimmunol.177.11.7698 10.1038/ni.1817 10.1002/1521-4141(200208)32:8<2365::AID-IMMU2365>3.0.CO;2-2 10.4049/jimmunol.176.8.4666 10.1016/S1074-7613(02)00362-X 10.1038/ni1289 10.1084/jem.182.6.1769 10.1084/jem.20051060 10.1038/ni1003 10.4049/jimmunol.158.2.658 10.1073/pnas.0712237105 10.1073/pnas.94.7.3168 10.4049/jimmunol.172.8.4676 10.1126/science.282.5397.2263 10.1126/science.287.5455.1040 10.1016/S1074-7613(00)80480-X 10.1111/j.1600-065X.2008.00637.x 10.1038/369327a0 10.4049/jimmunol.166.2.727 10.4049/jimmunol.165.5.2432 10.1002/eji.200737159 10.1146/annurev.immunol.21.120601.141110 10.4049/jimmunol.152.6.2675 10.1111/j.1600-065X.2008.00662.x 10.1073/pnas.90.6.2189 10.1182/blood-2006-07-035279 10.1111/j.1600-6143.2008.02377.x |
ContentType | Journal Article |
Copyright | 2011 John Wiley & Sons A/S 2015 INIST-CNRS 2011 John Wiley & Sons A/S. |
Copyright_xml | – notice: 2011 John Wiley & Sons A/S – notice: 2015 INIST-CNRS – notice: 2011 John Wiley & Sons A/S. |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1111/j.1600-065X.2011.01011.x |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1600-065X |
EndPage | 205 |
ExternalDocumentID | PMC3077803 21488898 24073810 10_1111_j_1600_065X_2011_01011_x IMR1011 ark_67375_WNG_0NM3JQM4_6 |
Genre | reviewArticle Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R01 AI050834 – fundername: NIAID NIH HHS grantid: P01 AI035294 – fundername: NIDDK NIH HHS grantid: P30 DK063720 – fundername: NIAID NIH HHS grantid: R37 AI046643 |
GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 29I 31~ 33P 36B 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8F7 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAKAS AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACFBH ACGFO ACGFS ACGOF ACMXC ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZCM ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AETEA AEUYR AEYWJ AFBPY AFEBI AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AI. AIACR AIAGR AIDQK AIDYY AIQQE AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AOETA ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 E3Z EAD EAP EAS EBB EBC EBD EBS EBX EJD EMB EMK EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FUBAC FZ0 G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IH2 IHE IX1 J0M K48 KBYEO L7B LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MVM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OBC OBS OEB OIG OVD P2P P2W P2X P2Z P4B P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 V8K VH1 W8V W99 WBKPD WHWMO WIH WIJ WIK WOHZO WOW WQJ WVDHM WXI WXSBR X7N XG1 XV2 YFH YOC YUY YYP ZGI ZXP ZZTAW ~IA ~KM ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RWI WRC WUP AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c4911-44128ed5194ea37de5f1fbe7d9a23ef0ad98c1ddef82c57e7e8b0f52eb5f07813 |
IEDL.DBID | DR2 |
ISSN | 0105-2896 1600-065X |
IngestDate | Thu Aug 21 17:44:23 EDT 2025 Fri Jul 11 02:53:56 EDT 2025 Mon Jul 21 06:04:06 EDT 2025 Mon Jul 21 09:18:21 EDT 2025 Thu Apr 24 23:10:17 EDT 2025 Wed Oct 01 00:31:24 EDT 2025 Wed Jan 22 16:21:55 EST 2025 Sun Sep 21 06:18:08 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Family study Tregs Biochemistry Programmed cell death protein 1 Costimulatory molecule Cytotoxic T lymphocyte antigen 4 Costimulation Immune tolerance Family environment CD28 B7 molecule CTLA-4 PD-1 tolerance |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 2011 John Wiley & Sons A/S. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4911-44128ed5194ea37de5f1fbe7d9a23ef0ad98c1ddef82c57e7e8b0f52eb5f07813 |
Notes | ark:/67375/WNG-0NM3JQM4-6 istex:50A098714702438531C3DFA3CF931FF73B9AF8E0 ArticleID:IMR1011 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 21488898 |
PQID | 862268835 |
PQPubID | 23479 |
PageCount | 26 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3077803 proquest_miscellaneous_862268835 pubmed_primary_21488898 pascalfrancis_primary_24073810 crossref_primary_10_1111_j_1600_065X_2011_01011_x crossref_citationtrail_10_1111_j_1600_065X_2011_01011_x wiley_primary_10_1111_j_1600_065X_2011_01011_x_IMR1011 istex_primary_ark_67375_WNG_0NM3JQM4_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2011 |
PublicationDateYYYYMMDD | 2011-05-01 |
PublicationDate_xml | – month: 05 year: 2011 text: May 2011 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford – name: England |
PublicationTitle | Immunological reviews |
PublicationTitleAlternate | Immunol Rev |
PublicationYear | 2011 |
Publisher | Blackwell Publishing Ltd Blackwell |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Blackwell |
References | Setoguchi R, Hori S, Takahashi T, Sakaguchi S. Homeostatic maintenance of natural Foxp3(+) CD25(+) CD4(+) regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization. J Exp Med 2005;201:723-735. Francisco LM, et al. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med 2009;206:3015-3029. Holdorf AD, et al. Proline residues in CD28 and the Src homology (SH)3 domain of Lck are required for T cell costimulation. J Exp Med 1999;190:375-384. Takeda K, et al. CD28 stimulation triggers NF-kappaB activation through the CARMA1-PKCtheta-Grb2/Gads axis. Int Immunol 2008;20:1507-1515. Holmberg D, Cilio CM, Lundholm M, Motta V. CTLA-4 (CD152) and its involvement in autoimmune disease. Autoimmunity 2005;38:225-233. Anderson MS, et al. Projection of an immunological self shadow within the thymus by the aire protein. Science 2002;298:1395-1401. Tivol EA, Gorski J. Re-establishing peripheral tolerance in the absence of CTLA-4: complementation by wild-type T cells points to an indirect role for CTLA-4. J Immunol 2002;169:1852-1858. Pages F, et al. Binding of phosphatidylinositol-3-OH kinase to CD28 is required for T-cell signalling. Nature 1994;369:327-329. Scalapino KJ, Daikh DI. CTLA-4: a key regulatory point in the control of autoimmune disease. Immunol Rev 2008;223:143-155. Ruperto N, et al. Abatacept in children with juvenile idiopathic arthritis: a randomised, double-blind, placebo-controlled withdrawal trial. Lancet 2008;372:383. Francisco LM, Sage PT, Sharpe AH. The PD-1 pathway in tolerance and autoimmunity. Immunol Rev 2010;236:219-242. Zheng Y, Manzotti CN, Liu M, Burke F, Mead KI, Sansom DM. CD86 and CD80 differentially modulate the suppressive function of human regulatory T cells. J Immunol 2004;172:2778-2784. Yi LA, Hajialiasgar S, Chuang E. Tyrosine-mediated inhibitory signals contribute to CTLA-4 function in vivo. Int Immunol 2004;16:539-547. Liu MF, Wang CR, Chen PC, Fung LL. Increased expression of soluble cytotoxic T-lymphocyte-associated antigen-4 molecule in patients with systemic lupus erythematosus. Scand J Immunol 2003;57:568-572. Onishi Y, Fehervari Z, Yamaguchi T, Sakaguchi S. Foxp3+ natural regulatory T cells preferentially form aggregates on dendritic cells in vitro and actively inhibit their maturation. Proc Natl Acad Sci USA 2008;105:10113-10118. Wing K, Sakaguchi S. Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nat Immunol 2010;11:7-13. Croft M, Bradley LM, Swain SL. Naive versus memory CD4 T cell response to antigen. Memory cells are less dependent on accessory cell costimulation and can respond to many antigen-presenting cell types including resting B cells. J Immunol 1994;152:2675-2685. Riley JL, et al. Modulation of TCR-induced transcriptional profiles by ligation of CD28, ICOS, and CTLA-4 receptors. Proc Natl Acad Sci USA 2002;99:11790-11795. Sasaki T, et al. Function of PI3Kgamma in thymocyte development, T cell activation, and neutrophil migration. Science 2000;287:1040-1046. Valk E, Rudd CE, Schneider H. CTLA-4 trafficking and surface expression. Trends Immunol 2008;29:272-279. Birebent B, et al. Suppressive properties of human CD4+ CD25+ regulatory T cells are dependent on CTLA-4 expression. Eur J Immunol 2004;34:3485-3496. Pan M, Winslow MM, Chen L, Kuo A, Felsher D, Crabtree GR. Enhanced NFATc1 nuclear occupancy causes T cell activation independent of CD28 costimulation. J Immunol 2007;178:4315-4321. Gozalo-Sanmillan S, McNally JM, Lin MY, Chambers CA, Berg LJ. Cutting edge: two distinct mechanisms lead to impaired T cell homeostasis in Janus kinase 3- and CTLA-4-deficient mice. J Immunol 2001;166:727-730. Boonen GJ, van Dijk AM, Verdonck LF, van Lier RA, Rijksen G, Medema RH. CD28 induces cell cycle progression by IL-2-independent down-regulation of p27kip1 expression in human peripheral T lymphocytes. Eur J Immunol 1999;29:789-798. Ise W, et al. CTLA-4 suppresses the pathogenicity of self antigen-specific T cells by cell-intrinsic and cell-extrinsic mechanisms. Nat Immunol 2010;11:129-135. Read S, et al. Blockade of CTLA-4 on CD4+ CD25+ regulatory T cells abrogates their function in vivo. J Immunol 2006;177:4376-4383. Fallarino F, et al. CTLA-4-Ig activates forkhead transcription factors and protects dendritic cells from oxidative stress in nonobese diabetic mice. J Exp Med 2004;200:1051-1062. Lenschow DJ, et al. CD28/B7 regulation of Th1 and Th2 subsets in the development of autoimmune diabetes. Immunity 1996;5:285-293. Rowell EA, Wang L, Hancock WW, Wells AD. The cyclin-dependent kinase inhibitor p27kip1 is required for transplantation tolerance induced by costimulatory blockade. J Immunol 2006;177:5169-5176. London CA, Lodge MP, Abbas AK. Functional responses and costimulator dependence of memory CD4+ T cells. J Immunol 2000;164:265-272. Yokosuka T, et al. Spatiotemporal basis of CTLA-4 costimulatory molecule-mediated negative regulation of T cell activation. Immunity 2010;33:326-339. Marengere LE, et al. The SH3 domain of Itk/Emt binds to proline-rich sequences in the cytoplasmic domain of the T cell costimulatory receptor CD28. J Immunol 1997;159:3220-3229. Luhder F, et al. Topological requirements and signaling properties of T cell-activating, anti-CD28 antibody superagonists. J Exp Med 2003;197:955-966. Nielsen C, Hansen D, Husby S, Jacobsen BB, Lillevang ST. Association of a putative regulatory polymorphism in the PD-1 gene with susceptibility to type 1 diabetes. Tissue Antigens 2003;62:492-497. Chikuma S, Abbas AK, Bluestone JA. B7-independent inhibition of T cells by CTLA-4. J Immunol 2005;175:177-181. Wicker LS, Todd JA, Prins JB, Podolin PL, Renjilian RJ, Peterson LB. Resistance alleles at two non-major histocompatibility complex-linked insulin-dependent diabetes loci on chromosome 3, Idd3 and Idd10, protect nonobese diabetic mice from diabetes. J Exp Med 1994;180:1705-1713. Gardner JM, et al. Deletional tolerance mediated by extrathymic Aire-expressing cells. Science 2008;321:843-847. Krinzman SJ, et al. Inhibition of T cell costimulation abrogates airway hyperresponsiveness in a murine model. J Clin Invest 1996;98:2693-2699. Ellis JH, Ashman C, Burden MN, Kilpatrick KE, Morse MA, Hamblin PA. GRID: a novel Grb-2-related adapter protein that interacts with the activated T cell costimulatory receptor CD28. J Immunol 2000;164:5805-5814. Suzuki H, Zhou YW, Kato M, Mak TW, Nakashima I. Normal regulatory alpha/beta T cells effectively eliminate abnormally activated T cells lacking the interleukin 2 receptor beta in vivo. J Exp Med 1999;190:1561-1572. Boyman O, Kovar M, Rubinstein MP, Surh CD, Sprent J. Selective stimulation of T cell subsets with antibody-cytokine immune complexes. Science 2006;311:1924-1927. Fife BT, Bluestone JA. Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways. Immunol Rev 2008;224:166-182. Lee KM, et al. Molecular basis of T cell inactivation by CTLA-4. Science 1998;282:2263-2266. Hughes PD, Belz GT, Fortner KA, Budd RC, Strasser A, Bouillet P. Apoptosis regulators Fas and Bim cooperate in shutdown of chronic immune responses and prevention of autoimmunity. Immunity 2008;28:197-205. Tavano R, et al. CD28 interaction with filamin-A controls lipid raft accumulation at the T-cell immunological synapse. Nat Cell Biol 2006;8:1270-1276. Tang Q, et al. Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice. Nat Immunol 2006;7:83-92. Mueller DL. Mechanisms maintaining peripheral tolerance. Nat Immunol 2010;11:21-27. Yokosuka T, Saito T. Dynamic regulation of T-cell costimulation through TCR-CD28 microclusters. Immunol Rev 2009;229:27-40. Chikuma S, Imboden JB, Bluestone JA. Negative regulation of T cell receptor-lipid raft interaction by cytotoxic T lymphocyte-associated antigen 4. J Exp Med 2003;197:129-135. Mueller DL, Jenkins MK, Schwartz RH. Clonal expansion versus functional clonal inactivation: a costimulatory signaling pathway determines the outcome of T cell antigen receptor occupancy. Annu Rev Immunol 1989;7:445-480. Nishimura H, Nose M, Hiai H, Minato N, Honjo T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 1999;11:141-151. Schwartz JC, Zhang X, Fedorov AA, Nathenson SG, Almo SC. Structural basis for co-stimulation by the human CTLA-4/B7-2 complex. Nature 2001;410:604-608. Gough SC, Walker LS, Sansom DM. CTLA4 gene polymorphism and autoimmunity. Immunol Rev 2005;204:102-115. Peggs KS, Quezada SA, Chambers CA, Korman AJ, Allison JP. Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti-CTLA-4 antibodies. J Exp Med 2009;206:1717-1725. Schmidt EM, et al. Ctla-4 controls regulatory T cell peripheral homeostasis and is required for suppression of pancreatic islet autoimmunity. J Immunol 2009;182:274-282. Yokosuka T, et al. Spatiotemporal regulation of T cell costimulation by TCR-CD28 microclusters and protein kinase C theta translocation. Immunity 2008;29:589-601. Araki M, et al. Genetic evidence that the differential expression of the ligand-independent isoform of CTLA-4 is the molecular basis of the Idd5.1 type 1 diabetes region in nonobese diabetic mice. J Immunol 2009;183:5146-5157. Turka LA, et al. T-cell activation by the CD28 ligand B7 is required for cardiac allograft rejection in vivo. Proc Natl Acad Sci USA 1992;89:11102. Greenwald RJ, Freeman GJ, Sharpe AH. The B7 family revisited. Annu Rev Immunol 2005;23:515-548. Perez VL, Van Parijs L, Biuckians A, Zheng XX, Strom TB, Abbas AK. Induction of peripheral T cell tolerance in vivo requires CTLA-4 engagement. Immunity 1997;6:411-417. Guntermann C, Alexander DR. CTLA-4 suppresses proximal TCR signaling in resting human CD4(+) T cells by inhibiting ZAP-70 Tyr(319) phosphorylation: a potential role for tyrosine phosphatases. J Immunol 2002;168:4420-4429. Agarwal A, Newell KA. The role of positive costimulatory molecules in 2002; 16 2004; 21 2004; 200 2010; 11 1997; 158 2002; 17 2004; 22 1997; 159 2004; 20 2005; 293 2005; 174 2005; 175 2010; 107 2002; 99 2003; 57 2004; 4 1999; 283 1999; 162 2010; 185 2006; 176 1999; 163 2008; 105 2008; 226 2010; 184 2008; 224 2008; 223 1997; 6 2009; 119 2007; 109 2006; 177 2006; 212 1992; 7 2007; 178 2001; 410 2007; 179 1994; 265 2009; 10 2000; 14 2006; 24 2010; 116 2000; 12 2000; 13 2002; 84 2005; 102 2008; 29 2004; 36 2000; 10 2010; 236 2004; 173 2004; 172 2004; 34 2008; 28 2000; 97 1994; 77 2007; 7 2005; 76 2008; 20 2006; 203 1998; 10 1998; 161 1998; 282 2001; 166 2010; 33 2007; 19 2007; 446 1999; 190 2010; 207 2005; 353 2009; 182 1999; 29 1989; 7 1994; 152 2002; 3 2003; 171 2003; 170 2001; 27 1999; 103 1999; 189 1996; 14 2006; 116 2006; 118 1995; 3 1996; 98 2003; 33 2000; 191 2000; 192 2006; 355 1992; 257 2005; 5 2005; 6 1999; 31 2003; 28 2009; 183 1995; 268 2009; 229 2008; 133 2005; 17 2003; 100 2008; 372 2003; 21 1998; 8 2009; 45 2007; 39 1997; 350 2008; 9 1996; 183 2008; 8 2008; 3 2001; 108 2005; 23 2003; 198 2010; 62 2003; 197 2007; 37 1991; 147 1997; 94 1993; 72 1994; 180 2001; 291 1997; 186 1997; 100 1993; 75 2001; 19 2003; 3 2003; 4 1997; 17 1999; 11 2000; 164 2001; 15 2000; 165 2000; 287 1996; 4 2009; 206 1996; 5 2005; 38 1992; 89 1996; 8 2004; 101 1998; 28 2009; 21 2010; 129 2002; 298 2002; 32 2000; 20 2006; 7 2010; 363 2006; 8 2008; 13 1993; 90 2008; 322 2008; 321 1999; 5 2007; 58 2009; 29 2001; 248 2006; 311 2004; 199 1994; 369 2001; 194 2004; 114 2000; 269 2004; 16 2001; 193 2005; 201 2002; 168 2005; 202 2002; 169 2005; 204 2000; 30 2002; 22 2009; 9 1993; 151 2001; 2 1996; 273 2009; 4 1994; 1 2003; 423 1998; 188 1996; 157 2003; 62 1996; 156 1995; 182 1995; 181 2005; 58 e_1_2_8_49_2 e_1_2_8_241_2 e_1_2_8_264_2 e_1_2_8_26_2 e_1_2_8_9_2 e_1_2_8_249_2 e_1_2_8_226_2 Tivol EA (e_1_2_8_234_2) 1997; 158 e_1_2_8_203_2 e_1_2_8_132_2 e_1_2_8_178_2 e_1_2_8_41_2 e_1_2_8_87_2 Harper K (e_1_2_8_113_2) 1991; 147 e_1_2_8_170_2 e_1_2_8_64_2 e_1_2_8_117_2 e_1_2_8_193_2 e_1_2_8_155_2 e_1_2_8_38_2 e_1_2_8_230_2 e_1_2_8_253_2 e_1_2_8_15_2 e_1_2_8_238_2 e_1_2_8_215_2 e_1_2_8_91_2 e_1_2_8_143_2 e_1_2_8_189_2 e_1_2_8_120_2 e_1_2_8_99_2 e_1_2_8_30_2 e_1_2_8_105_2 e_1_2_8_53_2 e_1_2_8_166_2 e_1_2_8_242_2 e_1_2_8_25_2 e_1_2_8_48_2 Lindsten T (e_1_2_8_151_2) 1993; 151 e_1_2_8_227_2 e_1_2_8_265_2 e_1_2_8_204_2 e_1_2_8_2_2 e_1_2_8_110_2 e_1_2_8_179_2 e_1_2_8_63_2 e_1_2_8_86_2 e_1_2_8_118_2 e_1_2_8_171_2 e_1_2_8_194_2 e_1_2_8_40_2 e_1_2_8_133_2 e_1_2_8_156_2 e_1_2_8_231_2 e_1_2_8_37_2 Bachmann MF (e_1_2_8_228_2) 1999; 163 e_1_2_8_239_2 e_1_2_8_216_2 e_1_2_8_254_2 e_1_2_8_90_2 e_1_2_8_121_2 e_1_2_8_98_2 e_1_2_8_106_2 e_1_2_8_129_2 e_1_2_8_182_2 e_1_2_8_144_2 e_1_2_8_167_2 e_1_2_8_28_2 e_1_2_8_220_2 Chuang E (e_1_2_8_128_2) 1997; 159 e_1_2_8_89_2 e_1_2_8_243_2 e_1_2_8_266_2 e_1_2_8_205_2 e_1_2_8_7_2 e_1_2_8_20_2 e_1_2_8_66_2 e_1_2_8_43_2 e_1_2_8_172_2 e_1_2_8_111_2 e_1_2_8_157_2 e_1_2_8_195_2 e_1_2_8_81_2 e_1_2_8_134_2 Croft M (e_1_2_8_47_2) 1994; 152 e_1_2_8_17_2 e_1_2_8_270_2 e_1_2_8_78_2 e_1_2_8_217_2 e_1_2_8_232_2 e_1_2_8_255_2 e_1_2_8_160_2 e_1_2_8_55_2 e_1_2_8_32_2 e_1_2_8_107_2 e_1_2_8_183_2 e_1_2_8_122_2 e_1_2_8_168_2 e_1_2_8_93_2 Jenkins MK (e_1_2_8_31_2) 1991; 147 e_1_2_8_70_2 e_1_2_8_145_2 e_1_2_8_27_2 Dai Z (e_1_2_8_52_2) 1998; 161 Marengere LE (e_1_2_8_76_2) 1997; 159 e_1_2_8_221_2 e_1_2_8_206_2 e_1_2_8_244_2 e_1_2_8_267_2 e_1_2_8_80_2 e_1_2_8_150_2 e_1_2_8_229_2 e_1_2_8_8_2 e_1_2_8_42_2 e_1_2_8_65_2 e_1_2_8_88_2 e_1_2_8_112_2 e_1_2_8_135_2 e_1_2_8_158_2 e_1_2_8_173_2 e_1_2_8_196_2 e_1_2_8_16_2 e_1_2_8_39_2 e_1_2_8_108_2 e_1_2_8_271_2 e_1_2_8_210_2 e_1_2_8_233_2 e_1_2_8_256_2 e_1_2_8_218_2 e_1_2_8_161_2 e_1_2_8_54_2 e_1_2_8_77_2 e_1_2_8_100_2 e_1_2_8_123_2 e_1_2_8_146_2 e_1_2_8_169_2 e_1_2_8_184_2 e_1_2_8_92_2 e_1_2_8_45_2 e_1_2_8_260_2 e_1_2_8_68_2 e_1_2_8_222_2 e_1_2_8_245_2 e_1_2_8_268_2 e_1_2_8_207_2 e_1_2_8_5_2 Thornton AM (e_1_2_8_181_2) 1998; 188 e_1_2_8_22_2 e_1_2_8_159_2 e_1_2_8_83_2 e_1_2_8_136_2 e_1_2_8_174_2 e_1_2_8_197_2 Perkins D (e_1_2_8_152_2) 1996; 156 e_1_2_8_272_2 e_1_2_8_19_2 e_1_2_8_109_2 e_1_2_8_34_2 e_1_2_8_57_2 e_1_2_8_211_2 e_1_2_8_257_2 e_1_2_8_219_2 e_1_2_8_95_2 e_1_2_8_162_2 e_1_2_8_11_2 e_1_2_8_72_2 e_1_2_8_101_2 e_1_2_8_147_2 e_1_2_8_185_2 e_1_2_8_124_2 e_1_2_8_261_2 e_1_2_8_29_2 Balzano C (e_1_2_8_115_2) 1992; 7 e_1_2_8_67_2 e_1_2_8_223_2 e_1_2_8_269_2 e_1_2_8_200_2 e_1_2_8_246_2 e_1_2_8_208_2 e_1_2_8_6_2 e_1_2_8_21_2 e_1_2_8_137_2 King PD (e_1_2_8_75_2) 1997; 158 e_1_2_8_82_2 e_1_2_8_114_2 e_1_2_8_175_2 e_1_2_8_198_2 e_1_2_8_250_2 e_1_2_8_18_2 e_1_2_8_273_2 e_1_2_8_56_2 e_1_2_8_79_2 e_1_2_8_212_2 e_1_2_8_258_2 e_1_2_8_235_2 Aaltonen J (e_1_2_8_14_2) 1999; 31 e_1_2_8_94_2 e_1_2_8_140_2 e_1_2_8_163_2 e_1_2_8_10_2 e_1_2_8_33_2 e_1_2_8_148_2 e_1_2_8_71_2 e_1_2_8_102_2 e_1_2_8_125_2 e_1_2_8_186_2 e_1_2_8_262_2 e_1_2_8_24_2 e_1_2_8_201_2 e_1_2_8_224_2 e_1_2_8_247_2 e_1_2_8_153_2 e_1_2_8_199_2 e_1_2_8_209_2 e_1_2_8_3_2 e_1_2_8_130_2 e_1_2_8_191_2 e_1_2_8_85_2 e_1_2_8_138_2 e_1_2_8_62_2 e_1_2_8_176_2 e_1_2_8_251_2 e_1_2_8_13_2 e_1_2_8_59_2 e_1_2_8_36_2 e_1_2_8_190_2 e_1_2_8_213_2 e_1_2_8_236_2 e_1_2_8_259_2 e_1_2_8_164_2 e_1_2_8_141_2 e_1_2_8_97_2 e_1_2_8_126_2 e_1_2_8_74_2 e_1_2_8_149_2 e_1_2_8_51_2 e_1_2_8_103_2 e_1_2_8_187_2 e_1_2_8_240_2 e_1_2_8_263_2 e_1_2_8_23_2 e_1_2_8_46_2 e_1_2_8_69_2 e_1_2_8_202_2 e_1_2_8_248_2 e_1_2_8_225_2 e_1_2_8_131_2 e_1_2_8_154_2 e_1_2_8_177_2 e_1_2_8_4_2 e_1_2_8_116_2 e_1_2_8_139_2 e_1_2_8_192_2 e_1_2_8_61_2 e_1_2_8_84_2 e_1_2_8_252_2 e_1_2_8_12_2 e_1_2_8_35_2 e_1_2_8_58_2 e_1_2_8_237_2 Sperling AI (e_1_2_8_44_2) 1996; 157 e_1_2_8_214_2 e_1_2_8_142_2 e_1_2_8_165_2 e_1_2_8_188_2 e_1_2_8_96_2 e_1_2_8_104_2 e_1_2_8_127_2 e_1_2_8_180_2 Morton PA (e_1_2_8_119_2) 1996; 156 e_1_2_8_50_2 e_1_2_8_73_2 Khattri R (e_1_2_8_60_2) 1999; 162 |
References_xml | – reference: Arreaza GA, et al. Neonatal activation of CD28 signaling overcomes T cell anergy and prevents autoimmune diabetes by an IL-4-dependent mechanism. J Clin Invest 1997;100:2243-2253. – reference: Grinberg-Bleyer Y, et al. IL-2 reverses established type 1 diabetes in NOD mice by a local effect on pancreatic regulatory T cells. J Exp Med 2010;207:1871. – reference: Sadlack B, Merz H, Schorle H, Schimpl A, Feller AC, Horak I. Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell 1993;75:253-261. – reference: Fife BT, Griffin MD, Abbas AK, Locksley RM, Bluestone JA. Inhibition of T cell activation and autoimmune diabetes using a B cell surface-linked CTLA-4 agonist. J Clin Invest 2006;116:2252-2261. – reference: Shiratori T, et al. Tyrosine phosphorylation controls internalization of CTLA-4 by regulating its interaction with clathrin-associated adaptor complex AP-2. Immunity 1997;6:583-589. – reference: Lazarski CA, Hughson A, Sojka DK, Fowell DJ. Regulating Treg cells at sites of inflammation. Immunity 2008;29:511. – reference: Lohr J, Knoechel B, Jiang S, Sharpe AH, Abbas AK. The inhibitory function of B7 costimulators in T cell responses to foreign and self-antigens. Nat Immunol 2003;4:664-669. – reference: Vincenti F, et al. Costimulation blockade with belatacept in renal transplantation. N Engl J Med 2005;353:770. – reference: Bromley SK, et al. The immunological synapse and CD28-CD80 interactions. Nat Immunol 2001;2:1159-1166. – reference: Perez VL, Van Parijs L, Biuckians A, Zheng XX, Strom TB, Abbas AK. Induction of peripheral T cell tolerance in vivo requires CTLA-4 engagement. Immunity 1997;6:411-417. – reference: Thornton AM, Shevach EM. CD4+ CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med 1998;188:287-296. – reference: Ishida M, et al. Differential expression of PD-L1 and PD-L2, ligands for an inhibitory receptor PD-1, in the cells of lymphohematopoietic tissues. Immunol Lett 2002;84:57-62. – reference: Tavano R, et al. CD28 interaction with filamin-A controls lipid raft accumulation at the T-cell immunological synapse. Nat Cell Biol 2006;8:1270-1276. – reference: Steinman RM, Hawiger D, Nussenzweig MC. Tolerogenic dendritic cells. Annu Rev Immunol 2003;21:685-711. – reference: Schmidt EM, et al. Ctla-4 controls regulatory T cell peripheral homeostasis and is required for suppression of pancreatic islet autoimmunity. J Immunol 2009;182:274-282. – reference: Shapiro VS, Truitt KE, Imboden JB, Weiss A. CD28 mediates transcriptional upregulation of the interleukin-2 (IL-2) promoter through a composite element containing the CD28RE and NF-IL-2B AP-1 sites. Mol Cell Biol 1997;17:4051-4058. – reference: Aaltonen J, Bjorses P. Cloning of the APECED gene provides new insight into human autoimmunity. Ann Med 1999;31:111-116. – reference: Stamper CC, et al. Crystal structure of the B7-1/CTLA-4 complex that inhibits human immune responses. Nature 2001;410:608-611. – reference: Kroner A, et al. A PD-1 polymorphism is associated with disease progression in multiple sclerosis. Ann Neurol 2005;58:50-57. – reference: Hodi FS, et al. Immunologic and clinical effects of antibody blockade of cytotoxic T lymphocyte-associated antigen 4 in previously vaccinated cancer patients. Proc Natl Acad Sci USA 2008;105:3005. – reference: Tang Q, et al. Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice. Nat Immunol 2006;7:83-92. – reference: Peggs KS, Quezada SA, Chambers CA, Korman AJ, Allison JP. Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti-CTLA-4 antibodies. J Exp Med 2009;206:1717-1725. – reference: Luhder F, Chambers C, Allison JP, Benoist C, Mathis D. Pinpointing when T cell costimulatory receptor CTLA-4 must be engaged to dampen diabetogenic T cells. Proc Natl Acad Sci USA 2000;97:12204-12209. – reference: D'Cruz LM, Klein L. Development and function of agonist-induced CD25+ Foxp3+ regulatory T cells in the absence of interleukin 2 signaling. Nat Immunol 2005;6:1152-1159. – reference: Gardner JM, Fletcher AL, Anderson MS, Turley SJ. AIRE in the thymus and beyond. Curr Opin Immunol 2009;21:582-589. – reference: Marengere LE, et al. The SH3 domain of Itk/Emt binds to proline-rich sequences in the cytoplasmic domain of the T cell costimulatory receptor CD28. J Immunol 1997;159:3220-3229. – reference: Peach RJ, et al. Complementarity determining region 1 (CDR1)- and CDR3-analogous regions in CTLA-4 and CD28 determine the binding to B7-1. J Exp Med 1994;180:2049-2058. – reference: Brusko TM, Putnam AL, Bluestone JA. Human regulatory T cells: role in autoimmune disease and therapeutic opportunities. Immunol Rev 2008;223:371-390. – reference: Greenwald RJ, Freeman GJ, Sharpe AH. The B7 family revisited. Annu Rev Immunol 2005;23:515-548. – reference: Anderson MS, et al. Projection of an immunological self shadow within the thymus by the aire protein. Science 2002;298:1395-1401. – reference: Malek TR, Yu A, Vincek V, Scibelli P, Kong L. CD4 regulatory T cells prevent lethal autoimmunity in IL-2Rbeta-deficient mice. Implications for the nonredundant function of IL-2. Immunity 2002;17:167-178. – reference: Salama AD, et al. Critical role of the programmed death-1 (PD-1) pathway in regulation of experimental autoimmune encephalomyelitis. J Exp Med 2003;198:71-78. – reference: Birebent B, et al. Suppressive properties of human CD4+ CD25+ regulatory T cells are dependent on CTLA-4 expression. Eur J Immunol 2004;34:3485-3496. – reference: Bianchi T, et al. Maintenance of peripheral tolerance through controlled tissue homing of antigen-specific T cells in K14-mOVA mice. J Immunol 2009;182:4665-4674. – reference: Viola A, Lanzavecchia A. T cell activation determined by T cell receptor number and tunable thresholds. Science 1996;273:104-106. – reference: Rulifson IC, Sperling AI, Fields PE, Fitch FW, Bluestone JA. CD28 costimulation promotes the production of Th2 cytokines. J Immunol 1997;158:658-665. – reference: Keir ME, et al. Tissue expression of PD-L1 mediates peripheral T cell tolerance. J Exp Med 2006;203:883-895. – reference: Fisson S, et al. Continuous activation of autoreactive CD4+ CD25+ regulatory T cells in the steady state. J Exp Med 2003;198:737-746. – reference: Wu LX, et al. CD28 regulates the translation of Bcl-xL via the phosphatidylinositol 3-kinase/mammalian target of rapamycin pathway. J Immunol 2005;174:180-194. – reference: Genovese MC, et al. Abatacept for rheumatoid arthritis refractory to tumor necrosis factor alpha inhibition. N Engl J Med 2005;353:1114. – reference: Wells AD, et al. Requirement for T-cell apoptosis in the induction of peripheral transplantation tolerance. Nat Med 1999;5:1303-1307. – reference: Hao Z, Hampel B, Yagita H, Rajewsky K. T cell-specific ablation of Fas leads to Fas ligand-mediated lymphocyte depletion and inflammatory pulmonary fibrosis. J Exp Med 2004;199:1355-1365. – reference: Agarwal A, Newell KA. The role of positive costimulatory molecules in transplantation and tolerance. Curr Opin Organ Transplant 2008;13:366-372. – reference: Ying H, et al. Cutting edge: CTLA-4-B7 interaction suppresses Th17 cell differentiation. J Immunol 2010;185:1375-1378. – reference: Hwang KW, et al. Cutting edge: targeted ligation of CTLA-4 in vivo by membrane-bound anti-CTLA-4 antibody prevents rejection of allogeneic cells. J Immunol 2002;169:633-637. – reference: Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+ CD25+ regulatory T cells. Nat Immunol 2003;4:330-336. – reference: Frauwirth KA, et al. The CD28 signaling pathway regulates glucose metabolism. Immunity 2002;16:769-777. – reference: Su B, Jacinto E, Hibi M, Kallunki T, Karin M, Ben-Neriah Y. JNK is involved in signal integration during costimulation of T lymphocytes. Cell 1994;77:727-736. – reference: Sharfe N, Dadi HK, Shahar M, Roifman CM. Human immune disorder arising from mutation of the alpha chain of the interleukin-2 receptor. Proc Natl Acad Sci USA 1997;94:3168-3171. – reference: Griffin MD, et al. Development and applications of surface-linked single chain antibodies against T-cell antigens. J Immunol Methods 2001;248:77-90. – reference: Abrams JR, et al. CTLA4Ig-mediated blockade of T-cell costimulation in patients with psoriasis vulgaris. J Clin Invest 1999;103:1243. – reference: Tivol EA, et al. CTLA4Ig prevents lymphoproliferation and fatal multiorgan tissue destruction in CTLA-4-deficient mice. J Immunol 1997;158:5091-5094. – reference: Guntermann C, Alexander DR. CTLA-4 suppresses proximal TCR signaling in resting human CD4(+) T cells by inhibiting ZAP-70 Tyr(319) phosphorylation: a potential role for tyrosine phosphatases. J Immunol 2002;168:4420-4429. – reference: Morton PA, et al. Differential effects of CTLA-4 substitutions on the binding of human CD80 (B7-1) and CD86 (B7-2). J Immunol 1996;156:1047-1054. – reference: Bluestone JA, St Clair EW, Turka LA. CTLA4Ig: bridging the basic immunology with clinical application. Immunity 2006;24:233-238. – reference: St Clair EW, et al. New reagents on the horizon for immune tolerance. Annu Rev Med 2007;58:329-346. – reference: Sansom DM, Walker LS. The role of CD28 and cytotoxic T-lymphocyte antigen-4 (CTLA-4) in regulatory T-cell biology. Immunol Rev 2006;212:131-148. – reference: Takahashi T, et al. Immunologic self-tolerance maintained by CD25+ CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int Immunol 1998;10:1969-1980. – reference: Schwartz RH. T cell anergy. Annu Rev Immunol 2003;21:305-334. – reference: Schneider H, Valk E, Leung R, Rudd CE. CTLA-4 activation of phosphatidylinositol 3-kinase (PI 3-K) and protein kinase B (PKB/AKT) sustains T-cell anergy without cell death. PLoS ONE 2008;3:e3842. – reference: Zhou X, et al. Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat Immunol 2009;10:1000-1007. – reference: Oderup C, Cederbom L, Makowska A, Cilio CM, Ivars F. Cytotoxic T lymphocyte antigen-4-dependent down-modulation of costimulatory molecules on dendritic cells in CD4+ CD25+ regulatory T-cell-mediated suppression. Immunology 2006;118:240-249. – reference: Bour-Jordan H, Blueston JA. CD28 function: a balance of costimulatory and regulatory signals. J Clin Immunol 2002;22:1-7. – reference: Dodson LF, et al. Targeted knock-in mice expressing mutations of CD28 reveal an essential pathway for costimulation. Mol Cell Biol 2009;29:3710-3721. – reference: Wang J, Yoshida T, Nakaki F, Hiai H, Okazaki T, Honjo T. Establishment of NOD-Pdcd1-/- mice as an efficient animal model of type I diabetes. Proc Natl Acad Sci USA 2005;102:11823-11828. – reference: Fife BT, et al. Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR-induced stop signal. Nat Immunol 2009;10:1185-1192. – reference: Borowski AB, et al. Memory CD8+ T cells require CD28 costimulation. J Immunol 2007;179:6494-6503. – reference: Walunas TL, et al. CTLA-4 can function as a negative regulator of T cell activation. Immunity 1994;1:405-413. – reference: Deng G, Podack ER. Suppression of apoptosis in a cytotoxic T-cell line by interleukin 2-mediated gene transcription and deregulated expression of the protooncogene bcl-2. Proc Natl Acad Sci USA 1993;90:2189-2193. – reference: Salomon B, Bluestone JA. Complexities of CD28/B7: CTLA-4 costimulatory pathways in autoimmunity and transplantation. Annu Rev Immunol 2001;19:225-252. – reference: Wells AD, Walsh MC, Bluestone JA, Turka LA. Signaling through CD28 and CTLA-4 controls two distinct forms of T cell anergy. J Clin Invest 2001;108:895-903. – reference: Chen CY, et al. Nucleolin and YB-1 are required for JNK-mediated interleukin-2 mRNA stabilization during T-cell activation. Genes Dev 2000;14:1236-1248. – reference: Kramer S, Schimpl A, Hunig T. Immunopathology of interleukin (IL) 2-deficient mice: thymus dependence and suppression by thymus-dependent cells with an intact IL-2 gene. J Exp Med 1995;182:1769-1776. – reference: Francisco LM, Sage PT, Sharpe AH. The PD-1 pathway in tolerance and autoimmunity. Immunol Rev 2010;236:219-242. – reference: Onishi Y, Fehervari Z, Yamaguchi T, Sakaguchi S. Foxp3+ natural regulatory T cells preferentially form aggregates on dendritic cells in vitro and actively inhibit their maturation. Proc Natl Acad Sci USA 2008;105:10113-10118. – reference: Schneider H, Rudd CE. Tyrosine phosphatase SHP-2 binding to CTLA-4: absence of direct YVKM/YFIP motif recognition. Biochem Biophys Res Commun 2000;269:279-283. – reference: Kataoka H, et al. CD25(+)CD4(+) regulatory T cells exert in vitro suppressive activity independent of CTLA-4. Int Immunol 2005;17:421-427. – reference: Luhder F, et al. Topological requirements and signaling properties of T cell-activating, anti-CD28 antibody superagonists. J Exp Med 2003;197:955-966. – reference: Suzuki H, et al. Deregulated T cell activation and autoimmunity in mice lacking interleukin-2 receptor beta. Science 1995;268:1472-1476. – reference: Lenschow DJ, Walunas TL, Bluestone JA. CD28/B7 system of T cell costimulation. Annu Rev Immunol 1996;14:233-258. – reference: Holmberg D, Cilio CM, Lundholm M, Motta V. CTLA-4 (CD152) and its involvement in autoimmune disease. Autoimmunity 2005;38:225-233. – reference: Jonuleit H, Schmitt E, Stassen M, Tuettenberg A, Knop J, Enk AH. Identification and functional characterization of human CD4(+)CD25(+) T cells with regulatory properties isolated from peripheral blood. J Exp Med 2001;193:1285-1294. – reference: Dejean AS, et al. Transcription factor Foxo3 controls the magnitude of T cell immune responses by modulating the function of dendritic cells. Nat Immunol 2009;10:504-513. – reference: Perkins D, et al. Regulation of CTLA-4 expression during T cell activation. J Immunol 1996;156:4154-4159. – reference: Merrill JT, et al. The efficacy and safety of abatacept in patients with non-life-threatening manifestations of systemic lupus erythematosus: results of a twelve-month, multicenter, exploratory, phase IIb, randomized, double-blind, placebo-controlled trial. Arthritis Rheum 2010;62:3077. – reference: Rudd CE, Schneider H. Unifying concepts in CD28, ICOS and CTLA4 co-receptor signalling. Nat Rev Immunol 2003;3:544-556. – reference: Yokosuka T, et al. Spatiotemporal basis of CTLA-4 costimulatory molecule-mediated negative regulation of T cell activation. Immunity 2010;33:326-339. – reference: Ise W, et al. CTLA-4 suppresses the pathogenicity of self antigen-specific T cells by cell-intrinsic and cell-extrinsic mechanisms. Nat Immunol 2010;11:129-135. – reference: Yi LA, Hajialiasgar S, Chuang E. Tyrosine-mediated inhibitory signals contribute to CTLA-4 function in vivo. Int Immunol 2004;16:539-547. – reference: Hodi FS, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010;363:711. – reference: Calvo CR, Amsen D, Kruisbeek AM. Cytotoxic T lymphocyte antigen 4 (CTLA-4) interferes with extracellular signal-regulated kinase (ERK) and Jun NH2-terminal kinase (JNK) activation, but does not affect phosphorylation of T cell receptor zeta and ZAP70. J Exp Med 1997;186:1645-1653. – reference: Boyman O, Kovar M, Rubinstein MP, Surh CD, Sprent J. Selective stimulation of T cell subsets with antibody-cytokine immune complexes. Science 2006;311:1924-1927. – reference: Zhang Y, Allison JP. Interaction of CTLA-4 with AP50, a clathrin-coated pit adaptor protein. Proc Natl Acad Sci USA 1997;94:9273-9278. – reference: Dai Z, Konieczny BT, Baddoura FK, Lakkis FG. Impaired alloantigen-mediated T cell apoptosis and failure to induce long-term allograft survival in IL-2-deficient mice. J Immunol 1998;161:1659-1663. – reference: Mandelbrot DA, McAdam AJ, Sharpe AH. B7-1 or B7-2 is required to produce the lymphoproliferative phenotype in mice lacking cytotoxic T lymphocyte-associated antigen 4 (CTLA-4). J Exp Med 1999;189:435-440. – reference: Wicker LS, Todd JA, Prins JB, Podolin PL, Renjilian RJ, Peterson LB. Resistance alleles at two non-major histocompatibility complex-linked insulin-dependent diabetes loci on chromosome 3, Idd3 and Idd10, protect nonobese diabetic mice from diabetes. J Exp Med 1994;180:1705-1713. – reference: Finck BK, Linsley PS, Wofsy D. Treatment of murine lupus with CTLA4Ig. Science 1994;265:1225-1227. – reference: Nashan B, Moore R, Amlot P, Schmidt AG, Abeywickrama K, Soulillou JP. Randomised trial of basiliximab versus placebo for control of acute cellular rejection in renal allograft recipients. CHIB 201 International Study Group. Lancet 1997;350:1193. – reference: Dooms H, Kahn E, Knoechel B, Abbas AK. IL-2 induces a competitive survival advantage in T lymphocytes. J Immunol 2004;172:5973-5979. – reference: Croft M, Bradley LM, Swain SL. Naive versus memory CD4 T cell response to antigen. Memory cells are less dependent on accessory cell costimulation and can respond to many antigen-presenting cell types including resting B cells. J Immunol 1994;152:2675-2685. – reference: Chikuma S, Bluestone JA. CTLA-4 and tolerance: the biochemical point of view. Immunol Res 2003;28:241-253. – reference: Marinari B, et al. Vav cooperates with CD28 to induce NF-kappaB activation via a pathway involving Rac-1 and mitogen-activated kinase kinase 1. Eur J Immunol 2002;32:447-456. – reference: Hildeman D, Jorgensen T, Kappler J, Marrack P. Apoptosis and the homeostatic control of immune responses. Curr Opin Immunol 2007;19:516-521. – reference: Lenschow DJ, et al. Long-term survival of xenogeneic pancreatic islet grafts induced by CTLA4lg. Science 1992;257:789. – reference: Pages F, et al. Binding of phosphatidylinositol-3-OH kinase to CD28 is required for T-cell signalling. Nature 1994;369:327-329. – reference: Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 1995;3:541-547. – reference: Kundig TM, et al. Duration of TCR stimulation determines costimulatory requirement of T cells. Immunity 1996;5:41-52. – reference: O'Gorman WE, et al. The initial phase of an immune response functions to activate regulatory T cells. J Immunol 2009;183:332-339. – reference: Tivol EA, Gorski J. Re-establishing peripheral tolerance in the absence of CTLA-4: complementation by wild-type T cells points to an indirect role for CTLA-4. J Immunol 2002;169:1852-1858. – reference: Yokosuka T, et al. Spatiotemporal regulation of T cell costimulation by TCR-CD28 microclusters and protein kinase C theta translocation. Immunity 2008;29:589-601. – reference: Lee KM, et al. Molecular basis of T cell inactivation by CTLA-4. Science 1998;282:2263-2266. – reference: Diehn M, et al. Genomic expression programs and the integration of the CD28 costimulatory signal in T cell activation. Proc Natl Acad Sci USA 2002;99:11796-11801. – reference: Fehervari Z, Sakaguchi S. Control of Foxp3+ CD25+ CD4+ regulatory cell activation and function by dendritic cells. Int Immunol 2004;16:1769-1780. – reference: Turka LA, et al. T-cell activation by the CD28 ligand B7 is required for cardiac allograft rejection in vivo. Proc Natl Acad Sci USA 1992;89:11102. – reference: Pentcheva-Hoang T, Egen JG, Wojnoonski K, Allison JP. B7-1 and B7-2 selectively recruit CTLA-4 and CD28 to the immunological synapse. Immunity 2004;21:401-413. – reference: Takahashi T, et al. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 2000;192:303-310. – reference: Bachmann MF, Kohler G, Ecabert B, Mak TW, Kopf M. Cutting edge: lymphoproliferative disease in the absence of CTLA-4 is not T cell autonomous. J Immunol 1999;163:1128-1131. – reference: Larsen CP, et al. Rational development of LEA29Y (belatacept), a high-affinity variant of CTLA4-Ig with potent immunosuppressive properties. Am J Transplant 2005;5:443. – reference: Crellin NK, Garcia RV, Levings MK. Altered activation of AKT is required for the suppressive function of human CD4+ CD25+ T regulatory cells. Blood 2007;109:2014-2022. – reference: Gozalo-Sanmillan S, McNally JM, Lin MY, Chambers CA, Berg LJ. Cutting edge: two distinct mechanisms lead to impaired T cell homeostasis in Janus kinase 3- and CTLA-4-deficient mice. J Immunol 2001;166:727-730. – reference: Lohr J, Knoechel B, Kahn EC, Abbas AK. Role of B7 in T cell tolerance. J Immunol 2004;173:5028-5035. – reference: Hsieh CS, Zheng Y, Liang Y, Fontenot JD, Rudensky AY. An intersection between the self-reactive regulatory and nonregulatory T cell receptor repertoires. Nat Immunol 2006;7:401-410. – reference: Okkenhaug K, et al. A point mutation in CD28 distinguishes proliferative signals from survival signals. Nat Immunol 2001;2:325-332. – reference: Balzano C, Buonavista N, Rouvier E, Golstein P. CTLA-4 and CD28: similar proteins, neighbouring genes. Int J Cancer 1992;7(Suppl.):28-32. – reference: Gardner JM, et al. Deletional tolerance mediated by extrathymic Aire-expressing cells. Science 2008;321:843-847. – reference: Teft WA, Kirchhof MG, Madrenas J. A molecular perspective of CTLA-4 function. Annu Rev Immunol 2006;24:65-97. – reference: Yamanouchi J, et al. Interleukin-2 gene variation impairs regulatory T cell function and causes autoimmunity. Nat Genet 2007;39:329-337. – reference: Willerford DM, Chen J, Ferry JA, Davidson L, Ma A, Alt FW. Interleukin-2 receptor alpha chain regulates the size and content of the peripheral lymphoid compartment. Immunity 1995;3:521-530. – reference: Li L, Iwamoto Y, Berezovskaya A, Boussiotis VA. A pathway regulated by cell cycle inhibitor p27Kip1 and checkpoint inhibitor Smad3 is involved in the induction of T cell tolerance. Nat Immunol 2006;7:1157-1165. – reference: Krinzman SJ, et al. Inhibition of T cell costimulation abrogates airway hyperresponsiveness in a murine model. J Clin Invest 1996;98:2693-2699. – reference: Bouguermouh S, Fortin G, Baba N, Rubio M, Sarfati M. CD28 co-stimulation down regulates Th17 development. PLoS ONE 2009;4:e5087. – reference: Misra N, Bayry J, Lacroix-Desmazes S, Kazatchkine MD, Kaveri SV. Cutting edge: human CD4+ CD25+ T cells restrain the maturation and antigen-presenting function of dendritic cells. J Immunol 2004;172:4676-4680. – reference: Rowell EA, Walsh MC, Wells AD. Opposing roles for the cyclin-dependent kinase inhibitor p27kip1 in the control of CD4+ T cell proliferation and effector function. J Immunol 2005;174:3359-3368. – reference: Prokunina L, et al. A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans. Nat Genet 2002;32:666-669. – reference: Tang Q, et al. Cutting edge: CD28 controls peripheral homeostasis of CD4+ CD25+ regulatory T cells. J Immunol 2003;171:3348. – reference: Linsley PS, Bradshaw J, Greene J, Peach R, Bennett KL, Mittler RS. Intracellular trafficking of CTLA-4 and focal localization towards sites of TCR engagement. Immunity 1996;4:535-543. – reference: Habicht A, et al. Striking dichotomy of PD-L1 and PD-L2 pathways in regulating alloreactive CD4(+) and CD8(+) T cells in vivo. Am J Transplant 2007;7:2683-2692. – reference: Lindsten T, et al. Characterization of CTLA-4 structure and expression on human T cells. J Immunol 1993;151:3489-3499. – reference: Ndejembi MP, et al. Control of memory CD4 T cell recall by the CD28/B7 costimulatory pathway. J Immunol 2006;177:7698-7706. – reference: de Jong YP, et al. Blocking inducible co-stimulator in the absence of CD28 impairs Th1 and CD25+ regulatory T cells in murine colitis. Int Immunol 2004;16:205-213. – reference: Friedline RH, et al. CD4+ regulatory T cells require CTLA-4 for the maintenance of systemic tolerance. J Exp Med 2009;206:421-434. – reference: Nazarov-Stoica C, Surls J, Bona C, Casares S, Brumeanu TD. CD28 signaling in T regulatory precursors requires p56lck and rafts integrity to stabilize the Foxp3 message. J Immunol 2009;182:102-110. – reference: Zhang X, Schwartz JC, Almo SC, Nathenson SG. Crystal structure of the receptor-binding domain of human B7-2: insights into organization and signaling. Proc Natl Acad Sci USA 2003;100:2586-2591. – reference: Ruperto N, et al. Abatacept in children with juvenile idiopathic arthritis: a randomised, double-blind, placebo-controlled withdrawal trial. Lancet 2008;372:383. – reference: Fallarino F, et al. Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol 2003;4:1206-1212. – reference: Hombach AA, Kofler D, Hombach A, Rappl G, Abken H. Effective proliferation of human regulatory T cells requires a strong costimulatory CD28 signal that cannot be substituted by IL-2. J Immunol 2007;179:7924-7931. – reference: Tang Q, Boden EK, Henriksen KJ, Bour-Jordan H, Bi M, Bluestone JA. Distinct roles of CTLA-4 and TGF-beta in CD4+ CD25+ regulatory T cell function. Eur J Immunol 2004;34:2996-3005. – reference: Linsley PS, Nadler SG. The clinical utility of inhibiting CD28-mediated costimulation. Immunol Rev 2009;229:307. – reference: Davidson TS, DiPaolo RJ, Andersson J, Shevach EM. Cutting edge: IL-2 is essential for TGF-beta-mediated induction of Foxp3+ T regulatory cells. J Immunol 2007;178:4022-4026. – reference: Samy ET, Parker LA, Sharp CP, Tung KS. Continuous control of autoimmune disease by antigen-dependent polyclonal CD4+ CD25+ regulatory T cells in the regional lymph node. J Exp Med 2005;202:771-781. – reference: Anderson MS, Bluestone JA. The NOD mouse: a model of immune dysregulation. Annu Rev Immunol 2005;23:447-485. – reference: Bluestone JA, et al. The effect of costimulatory and interleukin 2 receptor blockade on regulatory T cells in renal transplantation. Am J Transplant 2008;8:2086. – reference: Tai X, Cowan M, Feigenbaum L, Singer A. CD28 costimulation of developing thymocytes induces Foxp3 expression and regulatory T cell differentiation independently of interleukin 2. Nat Immunol 2005;6:152-162. – reference: Tang Q, et al. Central role of defective interleukin-2 production in the triggering of islet autoimmune destruction. Immunity 2008;28:687. – reference: Mueller DL. Mechanisms maintaining peripheral tolerance. Nat Immunol 2010;11:21-27. – reference: Rudd CE, Taylor A, Schneider H. CD28 and CTLA-4 coreceptor expression and signal transduction. Immunol Rev 2009;229:12-26. – reference: Songyang Z, et al. SH2 domains recognize specific phosphopeptide sequences. Cell 1993;72:767-778. – reference: Fife BT, et al. Insulin-induced remission in new-onset NOD mice is maintained by the PD-1-PD-L1 pathway. J Exp Med 2006;203:2737-2747. – reference: Chikuma S, Abbas AK, Bluestone JA. B7-independent inhibition of T cells by CTLA-4. J Immunol 2005;175:177-181. – reference: Bjorgo E, Tasken K. Novel mechanism of signaling by CD28. Immunol Lett 2010;129:1-6. – reference: Liu MF, Wang CR, Chen PC, Fung LL. Increased expression of soluble cytotoxic T-lymphocyte-associated antigen-4 molecule in patients with systemic lupus erythematosus. Scand J Immunol 2003;57:568-572. – reference: King PD, et al. Analysis of CD28 cytoplasmic tail tyrosine residues as regulators and substrates for the protein tyrosine kinases, EMT and LCK. J Immunol 1997;158:580-590. – reference: Suzuki H, Zhou YW, Kato M, Mak TW, Nakashima I. Normal regulatory alpha/beta T cells effectively eliminate abnormally activated T cells lacking the interleukin 2 receptor beta in vivo. J Exp Med 1999;190:1561-1572. – reference: Bottini N, et al. A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet 2004;36:337-338. – reference: Sanchez-Valdepenas C, Martin AG, Ramakrishnan P, Wallach D, Fresno M. NF-kappaB-inducing kinase is involved in the activation of the CD28 responsive element through phosphorylation of c-Rel and regulation of its transactivating activity. J Immunol 2006;176:4666-4674. – reference: Boise LH, et al. CD28 costimulation can promote T cell survival by enhancing the expression of Bcl-XL. Immunity 1995;3:87-98. – reference: Franceschini D, et al. PD-L1 negatively regulates CD4+ CD25+ Foxp3+ Tregs by limiting STAT-5 phosphorylation in patients chronically infected with HCV. J Clin Invest 2009;119:551-564. – reference: Pan M, Winslow MM, Chen L, Kuo A, Felsher D, Crabtree GR. Enhanced NFATc1 nuclear occupancy causes T cell activation independent of CD28 costimulation. J Immunol 2007;178:4315-4321. – reference: Fallarino F, et al. CTLA-4-Ig activates forkhead transcription factors and protects dendritic cells from oxidative stress in nonobese diabetic mice. J Exp Med 2004;200:1051-1062. – reference: Sakaguchi S. Naturally arising Foxp3-expressing CD25+ CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 2005;6:345-352. – reference: Jenkins MK, Taylor PS, Norton SD, Urdahl KB. CD28 delivers a costimulatory signal involved in antigen-specific IL-2 production by human T cells. J Immunol 1991;147:2461-2466. – reference: Hsieh CS, Rudensky AY. The role of TCR specificity in naturally arising CD25+ CD4+ regulatory T cell biology. Curr Top Microbiol Immunol 2005;293:25-42. – reference: Bennett CL, et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 2001;27:20-21. – reference: Ellis JH, Ashman C, Burden MN, Kilpatrick KE, Morse MA, Hamblin PA. GRID: a novel Grb-2-related adapter protein that interacts with the activated T cell costimulatory receptor CD28. J Immunol 2000;164:5805-5814. – reference: Baroja ML, et al. Inhibition of CTLA-4 function by the regulatory subunit of serine/threonine phosphatase 2A. J Immunol 2002;168:5070-5078. – reference: Walker LS, Chodos A, Eggena M, Dooms H, Abbas AK. Antigen-dependent proliferation of CD4+ CD25+ regulatory T cells in vivo. J Exp Med 2003;198:249-258. – reference: Chikuma S, Bluestone JA. Expression of CTLA-4 and FOXP3 in cis protects from lethal lymphoproliferative disease. Eur J Immunol 2007;37:1285-1289. – reference: Fontenot JD, Rasmussen JP, Gavin MA, Rudensky AY. A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat Immunol 2005;6:1142-1151. – reference: Chikuma S, Imboden JB, Bluestone JA. Negative regulation of T cell receptor-lipid raft interaction by cytotoxic T lymphocyte-associated antigen 4. J Exp Med 2003;197:129-135. – reference: Chai JG, Tsang JY, Lechler R, Simpson E, Dyson J, Scott D. CD4+ CD25+ T cells as immunoregulatory T cells in vitro. Eur J Immunol 2002;32:2365-2375. – reference: Hughes PD, Belz GT, Fortner KA, Budd RC, Strasser A, Bouillet P. Apoptosis regulators Fas and Bim cooperate in shutdown of chronic immune responses and prevention of autoimmunity. Immunity 2008;28:197-205. – reference: Salomon B, et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+ CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 2000;12:431-440. – reference: Lyons PA, et al. Congenic mapping of the type 1 diabetes locus, Idd3, to a 780-kb region of mouse chromosome 3: identification of a candidate segment of ancestral DNA by haplotype mapping. Genome Res 2000;10:446-453. – reference: Bluestone JA, Abbas AK. Natural versus adaptive regulatory T cells. Nat Rev Immunol 2003;3:253-257. – reference: Webster KE, et al. In vivo expansion of T reg cells with IL-2-mAb complexes: induction of resistance to EAE and long-term acceptance of islet allografts without immunosuppression. J Exp Med 2009;206:751-760. – reference: Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell 2008;133:775-787. – reference: Setoguchi R, Hori S, Takahashi T, Sakaguchi S. Homeostatic maintenance of natural Foxp3(+) CD25(+) CD4(+) regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization. J Exp Med 2005;201:723-735. – reference: Holdorf AD, et al. Proline residues in CD28 and the Src homology (SH)3 domain of Lck are required for T cell costimulation. J Exp Med 1999;190:375-384. – reference: Marinari B, Costanzo A, Marzano V, Piccolella E, Tuosto L. CD28 delivers a unique signal leading to the selective recruitment of RelA and p52 NF-kappaB subunits on IL-8 and Bcl-xL gene promoters. Proc Natl Acad Sci USA 2004;101:6098-6103. – reference: Barron L, et al. Cutting edge: mechanisms of IL-2-dependent maintenance of functional regulatory T cells. J Immunol 2010;185:6426-6430. – reference: Read S, et al. Blockade of CTLA-4 on CD4+ CD25+ regulatory T cells abrogates their function in vivo. J Immunol 2006;177:4376-4383. – reference: Wing K, et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science 2008;322:271-275. – reference: Schneider H, Prasad KV, Shoelson SE, Rudd CE. CTLA-4 binding to the lipid kinase phosphatidylinositol 3-kinase in T cells. J Exp Med 1995;181:351-355. – reference: Mellor AL, Munn DH. IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol 2004;4:762-774. – reference: Goverman J. Autoimmune T cell responses in the central nervous system. Nat Rev Immunol 2009;9:393-407. – reference: Purvis HA, et al. Low-strength T-cell activation promotes Th17 responses. Blood 2010;116:4829-4837. – reference: Refaeli Y, Van Parijs L, London CA, Tschopp J, Abbas AK. Biochemical mechanisms of IL-2-regulated Fas-mediated T cell apoptosis. Immunity 1998;8:615-623. – reference: Scalapino KJ, Daikh DI. CTLA-4: a key regulatory point in the control of autoimmune disease. Immunol Rev 2008;223:143-155. – reference: Fife BT, Bluestone JA. Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways. Immunol Rev 2008;224:166-182. – reference: Mueller DL, Jenkins MK, Schwartz RH. Clonal expansion versus functional clonal inactivation: a costimulatory signaling pathway determines the outcome of T cell antigen receptor occupancy. Annu Rev Immunol 1989;7:445-480. – reference: Gough SC, Walker LS, Sansom DM. CTLA4 gene polymorphism and autoimmunity. Immunol Rev 2005;204:102-115. – reference: Bour-Jordan H, Bluestone JA. Regulating the regulators: costimulatory signals control the homeostasis and function of regulatory T cells. Immunol Rev 2009;229:41-66. – reference: Wing K, Sakaguchi S. Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nat Immunol 2010;11:7-13. – reference: Yokosuka T, Saito T. Dynamic regulation of T-cell costimulation through TCR-CD28 microclusters. Immunol Rev 2009;229:27-40. – reference: Zheng SG, Wang J, Wang P, Gray JD, Horwitz DA. IL-2 is essential for TGF-beta to convert naive CD4+ CD25− cells to CD25+ Foxp3+ regulatory T cells and for expansion of these cells. J Immunol 2007;178:2018-2027. – reference: Schwartz JC, Zhang X, Fedorov AA, Nathenson SG, Almo SC. Structural basis for co-stimulation by the human CTLA-4/B7-2 complex. Nature 2001;410:604-608. – reference: Freiberg BA, et al. Staging and resetting T cell activation in SMACs. Nat Immunol 2002;3:911-917. – reference: Jordan MS, et al. Thymic selection of CD4+ CD25+ regulatory T cells induced by an agonist self-peptide. Nat Immunol 2001;2:301-306. – reference: Griffin MD, et al. Blockade of T cell activation using a surface-linked single-chain antibody to CTLA-4 (CD152). J Immunol 2000;164:4433-4442. – reference: Lenschow DJ, et al. CD28/B7 regulation of Th1 and Th2 subsets in the development of autoimmune diabetes. Immunity 1996;5:285-293. – reference: Viola A, Schroeder S, Sakakibara Y, Lanzavecchia A. T lymphocyte costimulation mediated by reorganization of membrane microdomains. Science 1999;283:680-682. – reference: Valk E, Rudd CE, Schneider H. CTLA-4 trafficking and surface expression. Trends Immunol 2008;29:272-279. – reference: Nishimura H, et al. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science 2001;291:319-322. – reference: Khattri R, Auger JA, Griffin MD, Sharpe AH, Bluestone JA. Lymphoproliferative disorder in CTLA-4 knockout mice is characterized by CD28-regulated activation of Th2 responses. J Immunol 1999;162:5784-5791. – reference: Kane LP, Andres PG, Howland KC, Abbas AK, Weiss A. Akt provides the CD28 costimulatory signal for up-regulation of IL-2 and IFN-gamma but not TH2 cytokines. Nat Immunol 2001;2:37-44. – reference: Francisco LM, et al. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med 2009;206:3015-3029. – reference: Araki M, et al. Genetic evidence that the differential expression of the ligand-independent isoform of CTLA-4 is the molecular basis of the Idd5.1 type 1 diabetes region in nonobese diabetic mice. J Immunol 2009;183:5146-5157. – reference: Bour-Jordan H, Salomon BL, Thompson HL, Szot GL, Bernhard MR, Bluestone JA. Costimulation controls diabetes by altering the balance of pathogenic and regulatory T cells. J Clin Invest 2004;114:979-987. – reference: Burr JS, et al. Cutting edge: distinct motifs within CD28 regulate T cell proliferation and induction of Bcl-XL. J Immunol 2001;166:5331-5335. – reference: DiPaolo RJ, Brinster C, Davidson TS, Andersson J, Glass D, Shevach EM. Autoantigen-specific TGFbeta-induced Foxp3+ regulatory T cells prevent autoimmunity by inhibiting dendritic cells from activating autoreactive T cells. J Immunol 2007;179:4685-4693. – reference: Salomon B, et al. Development of spontaneous autoimmune peripheral polyneuropathy in B7-2- deficient NOD mice. J Exp Med 2001;194:677-684. – reference: Beyersdorf N, et al. Selective targeting of regulatory T cells with CD28 superagonists allows effective therapy of experimental autoimmune encephalomyelitis. J Exp Med 2005;202:445. – reference: Appleman LJ, Berezovskaya A, Grass I, Boussiotis VA. CD28 costimulation mediates T cell expansion via IL-2-independent and IL-2-dependent regulation of cell cycle progression. J Immunol 2000;164:144-151. – reference: Eagar TN, Karandikar NJ, Bluestone JA, Miller SD. The role of CTLA-4 in induction and maintenance of peripheral T cell tolerance. Eur J Immunol 2002;32:972-981. – reference: Howland KC, Ausubel LJ, London CA, Abbas AK. The roles of CD28 and CD40 ligand in T cell activation and tolerance. J Immunol 2000;164:4465-4470. – reference: Yang J, et al. Paradoxical functions of B7: CD28 costimulation in a MHC class II-mismatched cardiac transplant model. Am J Transplant 2009;9:2837-2844. – reference: Deane JA, Fruman DA. Phosphoinositide 3-kinase: diverse roles in immune cell activation. Annu Rev Immunol 2004;22:563-598. – reference: Harper K, Balzano C, Rouvier E, Mattei MG, Luciani MF, Golstein P. CTLA-4 and CD28 activated lymphocyte molecules are closely related in both mouse and human as to sequence, message expression, gene structure, and chromosomal location. J Immunol 1991;147:1037-1044. – reference: Bustelo XR. Regulatory and signaling properties of the Vav family. Mol Cell Biol 2000;20:1461-1477. – reference: Vincenti F, Luggen M. T cell costimulation: a rational target in the therapeutic armamentarium for autoimmune diseases and transplantation. Annu Rev Med 2007;58:347-358. – reference: Latchman Y, et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol 2001;2:261-268. – reference: Grohmann U, et al. CTLA-4-Ig regulates tryptophan catabolism in vivo. Nat Immunol 2002;3:1097-1101. – reference: Todd JA, et al. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat Genet 2007;39:857-864. – reference: Wells AD, Walsh MC, Sankaran D, Turka LA. T cell effector function and anergy avoidance are quantitatively linked to cell division. J Immunol 2000;165:2432-2443. – reference: Ueda H, et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 2003;423:506-511. – reference: Walunas TL, Bakker CY, Bluestone JA. CTLA-4 ligation blocks CD28-dependent T cell activation. J Exp Med 1996;183:2541-2550. – reference: Jain N, Nguyen H, Chambers C, Kang J. Dual function of CTLA-4 in regulatory T cells and conventional T cells to prevent multiorgan autoimmunity. Proc Natl Acad Sci USA 2010;107:1524-1528. – reference: Cederbom L, Hall H, Ivars F. CD4+ CD25+ regulatory T cells down-regulate co-stimulatory molecules on antigen-presenting cells. Eur J Immunol 2000;30:1538-1543. – reference: Wells AD, Liu QH, Hondowicz B, Zhang J, Turka LA, Freedman BD. Regulation of T cell activation and tolerance by phospholipase C gamma-1-dependent integrin avidity modulation. J Immunol 2003;170:4127-4133. – reference: Masteller EL, Chuang E, Mullen AC, Reiner SL, Thompson CB. Structural analysis of CTLA-4 function in vivo. J Immunol 2000;164:5319-5327. – reference: Kim HP, Kelly J, Leonard WJ. The basis for IL-2-induced IL-2 receptor alpha chain gene regulation: importance of two widely separated IL-2 response elements. Immunity 2001;15:159-172. – reference: Sperling AI, Auger JA, Ehst BD, Rulifson IC, Thompson CB, Bluestone JA. CD28/B7 interactions deliver a unique signal to naive T cells that regulates cell survival but not early proliferation. J Immunol 1996;157:3909-3917. – reference: Nielsen C, Hansen D, Husby S, Jacobsen BB, Lillevang ST. Association of a putative regulatory polymorphism in the PD-1 gene with susceptibility to type 1 diabetes. Tissue Antigens 2003;62:492-497. – reference: Thornton AM, et al. Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. J Immunol 2010;184:3433-3441. – reference: Bour-Jordan H, Grogan JL, Tang Q, Auger JA, Locksley RM, Bluestone JA. CTLA-4 regulates the requirement for cytokine-induced signals in T(H)2 lineage commitment. Nat Immunol 2003;4:182-188. – reference: Tang Q, Bluestone JA. The Foxp3+ regulatory T cell: a jack of all trades, master of regulation. Nat Immunol 2008;9:239-244. – reference: Hoyer KK, Dooms H, Barron L, Abbas AK. Interleukin-2 in the development and control of inflammatory disease. Immunol Rev 2008;226:19. – reference: Collins AV, et al. The interaction properties of costimulatory molecules revisited. Immunity 2002;17:201-210. – reference: Miller J, et al. Two pathways of costimulation through CD28. Immunol Res 2009;45:159-172. – reference: Vella A, et al. Localization of a type 1 diabetes locus in the IL2RA/CD25 region by use of tag single-nucleotide polymorphisms. Am J Hum Genet 2005;76:773-779. – reference: Rowell EA, Wang L, Hancock WW, Wells AD. The cyclin-dependent kinase inhibitor p27kip1 is required for transplantation tolerance induced by costimulatory blockade. J Immunol 2006;177:5169-5176. – reference: Ono M, et al. Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature 2007;446:685-689. – reference: Suntharalingam G, et al. Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med 2006;355:1018. – reference: Teague TK, et al. Activation-induced inhibition of interleukin 6-mediated T cell survival and signal transducer and activator of transcription 1 signaling. J Exp Med 2000;191:915-926. – reference: Nishimura H, Nose M, Hiai H, Minato N, Honjo T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 1999;11:141-151. – reference: Boonen GJ, van Dijk AM, Verdonck LF, van Lier RA, Rijksen G, Medema RH. CD28 induces cell cycle progression by IL-2-independent down-regulation of p27kip1 expression in human peripheral T lymphocytes. Eur J Immunol 1999;29:789-798. – reference: Sasaki T, et al. Function of PI3Kgamma in thymocyte development, T cell activation, and neutrophil migration. Science 2000;287:1040-1046. – reference: Nishimura H, et al. Developmentally regulated expression of the PD-1 protein on the surface of double-negative (CD4-CD8-) thymocytes. Int Immunol 1996;8:773-780. – reference: Riley JL, et al. Modulation of TCR-induced transcriptional profiles by ligation of CD28, ICOS, and CTLA-4 receptors. Proc Natl Acad Sci USA 2002;99:11790-11795. – reference: Chuang E, Alegre ML, Duckett CS, Noel PJ, Vander Heiden MG, Thompson CB. Interaction of CTLA-4 with the clathrin-associated protein AP50 results in ligand-independent endocytosis that limits cell surface expression. J Immunol 1997;159:144-151. – reference: Takeda K, et al. CD28 stimulation triggers NF-kappaB activation through the CARMA1-PKCtheta-Grb2/Gads axis. Int Immunol 2008;20:1507-1515. – reference: London CA, Lodge MP, Abbas AK. Functional responses and costimulator dependence of memory CD4+ T cells. J Immunol 2000;164:265-272. – reference: Tang Q, et al. In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J Exp Med 2004;199:1455-1465. – reference: Tuosto L, Acuto O. CD28 affects the earliest signaling events generated by TCR engagement. Eur J Immunol 1998;28:2131-2142. – reference: Egen JG, Allison JP. Cytotoxic T lymphocyte antigen-4 accumulation in the immunological synapse is regulated by TCR signal strength. Immunity 2002;16:23-35. – reference: Vijayakrishnan L, et al. An autoimmune disease-associated CTLA-4 splice variant lacking the B7 binding domain signals negatively in T cells. Immunity 2004;20:563-575. – reference: Zheng Y, Manzotti CN, Liu M, Burke F, Mead KI, Sansom DM. CD86 and CD80 differentially modulate the suppressive function of human regulatory T cells. J Immunol 2004;172:2778-2784. – reference: Oaks MK, Hallett KM. Cutting edge: a soluble form of CTLA-4 in patients with autoimmune thyroid disease. J Immunol 2000;164:5015-5018. – reference: Hickman SP, Yang J, Thomas RM, Wells AD, Turka LA. Defective activation of protein kinase C and Ras-ERK pathways limits IL-2 production and proliferation by CD4+ CD25+ regulatory T cells. J Immunol 2006;177:2186-2194. – reference: Liang SC, et al. Regulation of PD-1, PD-L1, and PD-L2 expression during normal and autoimmune responses. Eur J Immunol 2003;33:2706-2716. – reference: Peggs KS, Quezada SA, Allison JP. Cell intrinsic mechanisms of T-cell inhibition and application to cancer therapy. Immunol Rev 2008;224:141-165. – reference: Chuang E, et al. The CD28 and CTLA-4 receptors associate with the serine/threonine phosphatase PP2A. Immunity 2000;13:313-322. – volume: 157 start-page: 3909 year: 1996 end-page: 3917 article-title: CD28/B7 interactions deliver a unique signal to naive T cells that regulates cell survival but not early proliferation publication-title: J Immunol – volume: 161 start-page: 1659 year: 1998 end-page: 1663 article-title: Impaired alloantigen‐mediated T cell apoptosis and failure to induce long‐term allograft survival in IL‐2‐deficient mice publication-title: J Immunol – volume: 311 start-page: 1924 year: 2006 end-page: 1927 article-title: Selective stimulation of T cell subsets with antibody‐cytokine immune complexes publication-title: Science – volume: 28 start-page: 241 year: 2003 end-page: 253 article-title: CTLA‐4 and tolerance: the biochemical point of view publication-title: Immunol Res – volume: 16 start-page: 539 year: 2004 end-page: 547 article-title: Tyrosine‐mediated inhibitory signals contribute to CTLA‐4 function publication-title: Int Immunol – volume: 3 start-page: e3842 year: 2008 article-title: CTLA‐4 activation of phosphatidylinositol 3‐kinase (PI 3‐K) and protein kinase B (PKB/AKT) sustains T‐cell anergy without cell death publication-title: PLoS ONE – volume: 10 start-page: 1185 year: 2009 end-page: 1192 article-title: Interactions between PD‐1 and PD‐L1 promote tolerance by blocking the TCR‐induced stop signal publication-title: Nat Immunol – volume: 109 start-page: 2014 year: 2007 end-page: 2022 article-title: Altered activation of AKT is required for the suppressive function of human CD4+ CD25+ T regulatory cells publication-title: Blood – volume: 29 start-page: 511 year: 2008 article-title: Regulating Treg cells at sites of inflammation publication-title: Immunity – volume: 32 start-page: 666 year: 2002 end-page: 669 article-title: A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans publication-title: Nat Genet – volume: 21 start-page: 305 year: 2003 end-page: 334 article-title: T cell anergy publication-title: Annu Rev Immunol – volume: 176 start-page: 4666 year: 2006 end-page: 4674 article-title: NF‐kappaB‐inducing kinase is involved in the activation of the CD28 responsive element through phosphorylation of c‐Rel and regulation of its transactivating activity publication-title: J Immunol – volume: 224 start-page: 166 year: 2008 end-page: 182 article-title: Control of peripheral T‐cell tolerance and autoimmunity via the CTLA‐4 and PD‐1 pathways publication-title: Immunol Rev – volume: 4 start-page: 1206 year: 2003 end-page: 1212 article-title: Modulation of tryptophan catabolism by regulatory T cells publication-title: Nat Immunol – volume: 287 start-page: 1040 year: 2000 end-page: 1046 article-title: Function of PI3Kgamma in thymocyte development, T cell activation, and neutrophil migration publication-title: Science – volume: 372 start-page: 383 year: 2008 article-title: Abatacept in children with juvenile idiopathic arthritis: a randomised, double‐blind, placebo‐controlled withdrawal trial publication-title: Lancet – volume: 199 start-page: 1455 year: 2004 end-page: 1465 article-title: ‐expanded antigen‐specific regulatory T cells suppress autoimmune diabetes publication-title: J Exp Med – volume: 199 start-page: 1355 year: 2004 end-page: 1365 article-title: T cell‐specific ablation of Fas leads to Fas ligand‐mediated lymphocyte depletion and inflammatory pulmonary fibrosis publication-title: J Exp Med – volume: 28 start-page: 687 year: 2008 article-title: Central role of defective interleukin‐2 production in the triggering of islet autoimmune destruction publication-title: Immunity – volume: 158 start-page: 580 year: 1997 end-page: 590 article-title: Analysis of CD28 cytoplasmic tail tyrosine residues as regulators and substrates for the protein tyrosine kinases, EMT and LCK publication-title: J Immunol – volume: 207 start-page: 1871 year: 2010 article-title: IL‐2 reverses established type 1 diabetes in NOD mice by a local effect on pancreatic regulatory T cells publication-title: J Exp Med – volume: 17 start-page: 167 year: 2002 end-page: 178 article-title: CD4 regulatory T cells prevent lethal autoimmunity in IL‐2Rbeta‐deficient mice. Implications for the nonredundant function of IL‐2 publication-title: Immunity – volume: 99 start-page: 11796 year: 2002 end-page: 11801 article-title: Genomic expression programs and the integration of the CD28 costimulatory signal in T cell activation publication-title: Proc Natl Acad Sci USA – volume: 3 start-page: 253 year: 2003 end-page: 257 article-title: Natural versus adaptive regulatory T cells publication-title: Nat Rev Immunol – volume: 298 start-page: 1395 year: 2002 end-page: 1401 article-title: Projection of an immunological self shadow within the thymus by the aire protein publication-title: Science – volume: 175 start-page: 177 year: 2005 end-page: 181 article-title: B7‐independent inhibition of T cells by CTLA‐4 publication-title: J Immunol – volume: 4 start-page: 762 year: 2004 end-page: 774 article-title: IDO expression by dendritic cells: tolerance and tryptophan catabolism publication-title: Nat Rev Immunol – volume: 363 start-page: 711 year: 2010 article-title: Improved survival with ipilimumab in patients with metastatic melanoma publication-title: N Engl J Med – volume: 182 start-page: 4665 year: 2009 end-page: 4674 article-title: Maintenance of peripheral tolerance through controlled tissue homing of antigen‐specific T cells in K14‐mOVA mice publication-title: J Immunol – volume: 223 start-page: 143 year: 2008 end-page: 155 article-title: CTLA‐4: a key regulatory point in the control of autoimmune disease publication-title: Immunol Rev – volume: 180 start-page: 2049 year: 1994 end-page: 2058 article-title: Complementarity determining region 1 (CDR1)‐ and CDR3‐analogous regions in CTLA‐4 and CD28 determine the binding to B7‐1 publication-title: J Exp Med – volume: 58 start-page: 50 year: 2005 end-page: 57 article-title: A PD‐1 polymorphism is associated with disease progression in multiple sclerosis publication-title: Ann Neurol – volume: 8 start-page: 615 year: 1998 end-page: 623 article-title: Biochemical mechanisms of IL‐2‐regulated Fas‐mediated T cell apoptosis publication-title: Immunity – volume: 181 start-page: 351 year: 1995 end-page: 355 article-title: CTLA‐4 binding to the lipid kinase phosphatidylinositol 3‐kinase in T cells publication-title: J Exp Med – volume: 11 start-page: 129 year: 2010 end-page: 135 article-title: CTLA‐4 suppresses the pathogenicity of self antigen‐specific T cells by cell‐intrinsic and cell‐extrinsic mechanisms publication-title: Nat Immunol – volume: 200 start-page: 1051 year: 2004 end-page: 1062 article-title: CTLA‐4‐Ig activates forkhead transcription factors and protects dendritic cells from oxidative stress in nonobese diabetic mice publication-title: J Exp Med – volume: 185 start-page: 1375 year: 2010 end-page: 1378 article-title: Cutting edge: CTLA‐4–B7 interaction suppresses Th17 cell differentiation publication-title: J Immunol – volume: 2 start-page: 37 year: 2001 end-page: 44 article-title: Akt provides the CD28 costimulatory signal for up‐regulation of IL‐2 and IFN‐gamma but not TH2 cytokines publication-title: Nat Immunol – volume: 147 start-page: 1037 year: 1991 end-page: 1044 article-title: CTLA‐4 and CD28 activated lymphocyte molecules are closely related in both mouse and human as to sequence, message expression, gene structure, and chromosomal location publication-title: J Immunol – volume: 173 start-page: 5028 year: 2004 end-page: 5035 article-title: Role of B7 in T cell tolerance publication-title: J Immunol – volume: 203 start-page: 883 year: 2006 end-page: 895 article-title: Tissue expression of PD‐L1 mediates peripheral T cell tolerance publication-title: J Exp Med – volume: 353 start-page: 1114 year: 2005 article-title: Abatacept for rheumatoid arthritis refractory to tumor necrosis factor alpha inhibition publication-title: N Engl J Med – volume: 172 start-page: 4676 year: 2004 end-page: 4680 article-title: Cutting edge: human CD4+ CD25+ T cells restrain the maturation and antigen‐presenting function of dendritic cells publication-title: J Immunol – volume: 34 start-page: 3485 year: 2004 end-page: 3496 article-title: Suppressive properties of human CD4+ CD25+ regulatory T cells are dependent on CTLA‐4 expression publication-title: Eur J Immunol – volume: 177 start-page: 2186 year: 2006 end-page: 2194 article-title: Defective activation of protein kinase C and Ras‐ERK pathways limits IL‐2 production and proliferation by CD4+ CD25+ regulatory T cells publication-title: J Immunol – volume: 198 start-page: 737 year: 2003 end-page: 746 article-title: Continuous activation of autoreactive CD4+ CD25+ regulatory T cells in the steady state publication-title: J Exp Med – volume: 24 start-page: 233 year: 2006 end-page: 238 article-title: CTLA4Ig: bridging the basic immunology with clinical application publication-title: Immunity – volume: 169 start-page: 1852 year: 2002 end-page: 1858 article-title: Re‐establishing peripheral tolerance in the absence of CTLA‐4: complementation by wild‐type T cells points to an indirect role for CTLA‐4 publication-title: J Immunol – volume: 105 start-page: 10113 year: 2008 end-page: 10118 article-title: Foxp3+ natural regulatory T cells preferentially form aggregates on dendritic cells and actively inhibit their maturation publication-title: Proc Natl Acad Sci USA – volume: 3 start-page: 521 year: 1995 end-page: 530 article-title: Interleukin‐2 receptor alpha chain regulates the size and content of the peripheral lymphoid compartment publication-title: Immunity – volume: 99 start-page: 11790 year: 2002 end-page: 11795 article-title: Modulation of TCR‐induced transcriptional profiles by ligation of CD28, ICOS, and CTLA‐4 receptors publication-title: Proc Natl Acad Sci USA – volume: 97 start-page: 12204 year: 2000 end-page: 12209 article-title: Pinpointing when T cell costimulatory receptor CTLA‐4 must be engaged to dampen diabetogenic T cells publication-title: Proc Natl Acad Sci USA – volume: 268 start-page: 1472 year: 1995 end-page: 1476 article-title: Deregulated T cell activation and autoimmunity in mice lacking interleukin‐2 receptor beta publication-title: Science – volume: 206 start-page: 751 year: 2009 end-page: 760 article-title: expansion of T reg cells with IL‐2‐mAb complexes: induction of resistance to EAE and long‐term acceptance of islet allografts without immunosuppression publication-title: J Exp Med – volume: 158 start-page: 658 year: 1997 end-page: 665 article-title: CD28 costimulation promotes the production of Th2 cytokines publication-title: J Immunol – volume: 20 start-page: 563 year: 2004 end-page: 575 article-title: An autoimmune disease‐associated CTLA‐4 splice variant lacking the B7 binding domain signals negatively in T cells publication-title: Immunity – volume: 177 start-page: 7698 year: 2006 end-page: 7706 article-title: Control of memory CD4 T cell recall by the CD28/B7 costimulatory pathway publication-title: J Immunol – volume: 186 start-page: 1645 year: 1997 end-page: 1653 article-title: Cytotoxic T lymphocyte antigen 4 (CTLA‐4) interferes with extracellular signal‐regulated kinase (ERK) and Jun NH2‐terminal kinase (JNK) activation, but does not affect phosphorylation of T cell receptor zeta and ZAP70 publication-title: J Exp Med – volume: 107 start-page: 1524 year: 2010 end-page: 1528 article-title: Dual function of CTLA‐4 in regulatory T cells and conventional T cells to prevent multiorgan autoimmunity publication-title: Proc Natl Acad Sci USA – volume: 206 start-page: 421 year: 2009 end-page: 434 article-title: CD4+ regulatory T cells require CTLA‐4 for the maintenance of systemic tolerance publication-title: J Exp Med – volume: 410 start-page: 604 year: 2001 end-page: 608 article-title: Structural basis for co‐stimulation by the human CTLA‐4/B7‐2 complex publication-title: Nature – volume: 147 start-page: 2461 year: 1991 end-page: 2466 article-title: CD28 delivers a costimulatory signal involved in antigen‐specific IL‐2 production by human T cells publication-title: J Immunol – volume: 10 start-page: 1969 year: 1998 end-page: 1980 article-title: Immunologic self‐tolerance maintained by CD25+ CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state publication-title: Int Immunol – volume: 369 start-page: 327 year: 1994 end-page: 329 article-title: Binding of phosphatidylinositol‐3‐OH kinase to CD28 is required for T‐cell signalling publication-title: Nature – volume: 13 start-page: 366 year: 2008 end-page: 372 article-title: The role of positive costimulatory molecules in transplantation and tolerance publication-title: Curr Opin Organ Transplant – volume: 16 start-page: 769 year: 2002 end-page: 777 article-title: The CD28 signaling pathway regulates glucose metabolism publication-title: Immunity – volume: 17 start-page: 421 year: 2005 end-page: 427 article-title: CD25(+)CD4(+) regulatory T cells exert suppressive activity independent of CTLA‐4 publication-title: Int Immunol – volume: 183 start-page: 2541 year: 1996 end-page: 2550 article-title: CTLA‐4 ligation blocks CD28‐dependent T cell activation publication-title: J Exp Med – volume: 84 start-page: 57 year: 2002 end-page: 62 article-title: Differential expression of PD‐L1 and PD‐L2, ligands for an inhibitory receptor PD‐1, in the cells of lymphohematopoietic tissues publication-title: Immunol Lett – volume: 6 start-page: 1152 year: 2005 end-page: 1159 article-title: Development and function of agonist‐induced CD25+ Foxp3+ regulatory T cells in the absence of interleukin 2 signaling publication-title: Nat Immunol – volume: 32 start-page: 447 year: 2002 end-page: 456 article-title: Vav cooperates with CD28 to induce NF‐kappaB activation via a pathway involving Rac‐1 and mitogen‐activated kinase kinase 1 publication-title: Eur J Immunol – volume: 198 start-page: 71 year: 2003 end-page: 78 article-title: Critical role of the programmed death‐1 (PD‐1) pathway in regulation of experimental autoimmune encephalomyelitis publication-title: J Exp Med – volume: 7 start-page: 445 year: 1989 end-page: 480 article-title: Clonal expansion versus functional clonal inactivation: a costimulatory signaling pathway determines the outcome of T cell antigen receptor occupancy publication-title: Annu Rev Immunol – volume: 22 start-page: 563 year: 2004 end-page: 598 article-title: Phosphoinositide 3‐kinase: diverse roles in immune cell activation publication-title: Annu Rev Immunol – volume: 156 start-page: 1047 year: 1996 end-page: 1054 article-title: Differential effects of CTLA‐4 substitutions on the binding of human CD80 (B7‐1) and CD86 (B7‐2) publication-title: J Immunol – volume: 34 start-page: 2996 year: 2004 end-page: 3005 article-title: Distinct roles of CTLA‐4 and TGF‐beta in CD4+ CD25+ regulatory T cell function publication-title: Eur J Immunol – volume: 4 start-page: 182 year: 2003 end-page: 188 article-title: CTLA‐4 regulates the requirement for cytokine‐induced signals in T(H)2 lineage commitment publication-title: Nat Immunol – volume: 21 start-page: 582 year: 2009 end-page: 589 article-title: AIRE in the thymus and beyond publication-title: Curr Opin Immunol – volume: 168 start-page: 4420 year: 2002 end-page: 4429 article-title: CTLA‐4 suppresses proximal TCR signaling in resting human CD4(+) T cells by inhibiting ZAP‐70 Tyr(319) phosphorylation: a potential role for tyrosine phosphatases publication-title: J Immunol – volume: 33 start-page: 2706 year: 2003 end-page: 2716 article-title: Regulation of PD‐1, PD‐L1, and PD‐L2 expression during normal and autoimmune responses publication-title: Eur J Immunol – volume: 179 start-page: 7924 year: 2007 end-page: 7931 article-title: Effective proliferation of human regulatory T cells requires a strong costimulatory CD28 signal that cannot be substituted by IL‐2 publication-title: J Immunol – volume: 15 start-page: 159 year: 2001 end-page: 172 article-title: The basis for IL‐2‐induced IL‐2 receptor alpha chain gene regulation: importance of two widely separated IL‐2 response elements publication-title: Immunity – volume: 16 start-page: 1769 year: 2004 end-page: 1780 article-title: Control of Foxp3+ CD25+ CD4+ regulatory cell activation and function by dendritic cells publication-title: Int Immunol – volume: 174 start-page: 3359 year: 2005 end-page: 3368 article-title: Opposing roles for the cyclin‐dependent kinase inhibitor p27kip1 in the control of CD4+ T cell proliferation and effector function publication-title: J Immunol – volume: 36 start-page: 337 year: 2004 end-page: 338 article-title: A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes publication-title: Nat Genet – volume: 166 start-page: 5331 year: 2001 end-page: 5335 article-title: Cutting edge: distinct motifs within CD28 regulate T cell proliferation and induction of Bcl‐XL publication-title: J Immunol – volume: 33 start-page: 326 year: 2010 end-page: 339 article-title: Spatiotemporal basis of CTLA‐4 costimulatory molecule‐mediated negative regulation of T cell activation publication-title: Immunity – volume: 178 start-page: 4315 year: 2007 end-page: 4321 article-title: Enhanced NFATc1 nuclear occupancy causes T cell activation independent of CD28 costimulation publication-title: J Immunol – volume: 224 start-page: 141 year: 2008 end-page: 165 article-title: Cell intrinsic mechanisms of T‐cell inhibition and application to cancer therapy publication-title: Immunol Rev – volume: 58 start-page: 347 year: 2007 end-page: 358 article-title: T cell costimulation: a rational target in the therapeutic armamentarium for autoimmune diseases and transplantation publication-title: Annu Rev Med – volume: 355 start-page: 1018 year: 2006 article-title: Cytokine storm in a phase 1 trial of the anti‐CD28 monoclonal antibody TGN1412 publication-title: N Engl J Med – volume: 11 start-page: 141 year: 1999 end-page: 151 article-title: Development of lupus‐like autoimmune diseases by disruption of the PD‐1 gene encoding an ITIM motif‐carrying immunoreceptor publication-title: Immunity – volume: 22 start-page: 1 year: 2002 end-page: 7 article-title: CD28 function: a balance of costimulatory and regulatory signals publication-title: J Clin Immunol – volume: 3 start-page: 541 year: 1995 end-page: 547 article-title: Loss of CTLA‐4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA‐4 publication-title: Immunity – volume: 4 start-page: 330 year: 2003 end-page: 336 article-title: Foxp3 programs the development and function of CD4+ CD25+ regulatory T cells publication-title: Nat Immunol – volume: 423 start-page: 506 year: 2003 end-page: 511 article-title: Association of the T‐cell regulatory gene CTLA4 with susceptibility to autoimmune disease publication-title: Nature – volume: 169 start-page: 633 year: 2002 end-page: 637 article-title: Cutting edge: targeted ligation of CTLA‐4 by membrane‐bound anti‐CTLA‐4 antibody prevents rejection of allogeneic cells publication-title: J Immunol – volume: 6 start-page: 411 year: 1997 end-page: 417 article-title: Induction of peripheral T cell tolerance requires CTLA‐4 engagement publication-title: Immunity – volume: 293 start-page: 25 year: 2005 end-page: 42 article-title: The role of TCR specificity in naturally arising CD25+ CD4+ regulatory T cell biology publication-title: Curr Top Microbiol Immunol – volume: 103 start-page: 1243 year: 1999 article-title: CTLA4Ig‐mediated blockade of T‐cell costimulation in patients with psoriasis vulgaris publication-title: J Clin Invest – volume: 21 start-page: 401 year: 2004 end-page: 413 article-title: B7‐1 and B7‐2 selectively recruit CTLA‐4 and CD28 to the immunological synapse publication-title: Immunity – volume: 29 start-page: 3710 year: 2009 end-page: 3721 article-title: Targeted knock‐in mice expressing mutations of CD28 reveal an essential pathway for costimulation publication-title: Mol Cell Biol – volume: 12 start-page: 431 year: 2000 end-page: 440 article-title: B7/CD28 costimulation is essential for the homeostasis of the CD4+ CD25+ immunoregulatory T cells that control autoimmune diabetes publication-title: Immunity – volume: 206 start-page: 1717 year: 2009 end-page: 1725 article-title: Blockade of CTLA‐4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti‐CTLA‐4 antibodies publication-title: J Exp Med – volume: 21 start-page: 685 year: 2003 end-page: 711 article-title: Tolerogenic dendritic cells publication-title: Annu Rev Immunol – volume: 6 start-page: 345 year: 2005 end-page: 352 article-title: Naturally arising Foxp3‐expressing CD25+ CD4+ regulatory T cells in immunological tolerance to self and non‐self publication-title: Nat Immunol – volume: 1 start-page: 405 year: 1994 end-page: 413 article-title: CTLA‐4 can function as a negative regulator of T cell activation publication-title: Immunity – volume: 159 start-page: 3220 year: 1997 end-page: 3229 article-title: The SH3 domain of Itk/Emt binds to proline‐rich sequences in the cytoplasmic domain of the T cell costimulatory receptor CD28 publication-title: J Immunol – volume: 206 start-page: 3015 year: 2009 end-page: 3029 article-title: PD‐L1 regulates the development, maintenance, and function of induced regulatory T cells publication-title: J Exp Med – volume: 7 start-page: 28 issue: Suppl. year: 1992 end-page: 32 article-title: CTLA‐4 and CD28: similar proteins, neighbouring genes publication-title: Int J Cancer – volume: 158 start-page: 5091 year: 1997 end-page: 5094 article-title: CTLA4Ig prevents lymphoproliferation and fatal multiorgan tissue destruction in CTLA‐4‐deficient mice publication-title: J Immunol – volume: 283 start-page: 680 year: 1999 end-page: 682 article-title: T lymphocyte costimulation mediated by reorganization of membrane microdomains publication-title: Science – volume: 16 start-page: 23 year: 2002 end-page: 35 article-title: Cytotoxic T lymphocyte antigen‐4 accumulation in the immunological synapse is regulated by TCR signal strength publication-title: Immunity – volume: 198 start-page: 249 year: 2003 end-page: 258 article-title: Antigen‐dependent proliferation of CD4+ CD25+ regulatory T cells publication-title: J Exp Med – volume: 16 start-page: 205 year: 2004 end-page: 213 article-title: Blocking inducible co‐stimulator in the absence of CD28 impairs Th1 and CD25+ regulatory T cells in murine colitis publication-title: Int Immunol – volume: 203 start-page: 2737 year: 2006 end-page: 2747 article-title: Insulin‐induced remission in new‐onset NOD mice is maintained by the PD‐1‐PD‐L1 pathway publication-title: J Exp Med – volume: 162 start-page: 5784 year: 1999 end-page: 5791 article-title: Lymphoproliferative disorder in CTLA‐4 knockout mice is characterized by CD28‐regulated activation of Th2 responses publication-title: J Immunol – volume: 9 start-page: 239 year: 2008 end-page: 244 article-title: The Foxp3+ regulatory T cell: a jack of all trades, master of regulation publication-title: Nat Immunol – volume: 2 start-page: 1159 year: 2001 end-page: 1166 article-title: The immunological synapse and CD28‐CD80 interactions publication-title: Nat Immunol – volume: 152 start-page: 2675 year: 1994 end-page: 2685 article-title: Naive versus memory CD4 T cell response to antigen. Memory cells are less dependent on accessory cell costimulation and can respond to many antigen‐presenting cell types including resting B cells publication-title: J Immunol – volume: 102 start-page: 11823 year: 2005 end-page: 11828 article-title: Establishment of NOD‐Pdcd1‐/‐ mice as an efficient animal model of type I diabetes publication-title: Proc Natl Acad Sci USA – volume: 193 start-page: 1285 year: 2001 end-page: 1294 article-title: Identification and functional characterization of human CD4(+)CD25(+) T cells with regulatory properties isolated from peripheral blood publication-title: J Exp Med – volume: 72 start-page: 767 year: 1993 end-page: 778 article-title: SH2 domains recognize specific phosphopeptide sequences publication-title: Cell – volume: 101 start-page: 6098 year: 2004 end-page: 6103 article-title: CD28 delivers a unique signal leading to the selective recruitment of RelA and p52 NF‐kappaB subunits on IL‐8 and Bcl‐xL gene promoters publication-title: Proc Natl Acad Sci USA – volume: 38 start-page: 225 year: 2005 end-page: 233 article-title: CTLA‐4 (CD152) and its involvement in autoimmune disease publication-title: Autoimmunity – volume: 62 start-page: 3077 year: 2010 article-title: The efficacy and safety of abatacept in patients with non‐life‐threatening manifestations of systemic lupus erythematosus: results of a twelve‐month, multicenter, exploratory, phase IIb, randomized, double‐blind, placebo‐controlled trial publication-title: Arthritis Rheum – volume: 39 start-page: 857 year: 2007 end-page: 864 article-title: Robust associations of four new chromosome regions from genome‐wide analyses of type 1 diabetes publication-title: Nat Genet – volume: 118 start-page: 240 year: 2006 end-page: 249 article-title: Cytotoxic T lymphocyte antigen‐4‐dependent down‐modulation of costimulatory molecules on dendritic cells in CD4+ CD25+ regulatory T‐cell‐mediated suppression publication-title: Immunology – volume: 174 start-page: 180 year: 2005 end-page: 194 article-title: CD28 regulates the translation of Bcl‐xL via the phosphatidylinositol 3‐kinase/mammalian target of rapamycin pathway publication-title: J Immunol – volume: 248 start-page: 77 year: 2001 end-page: 90 article-title: Development and applications of surface‐linked single chain antibodies against T‐cell antigens publication-title: J Immunol Methods – volume: 58 start-page: 329 year: 2007 end-page: 346 article-title: New reagents on the horizon for immune tolerance publication-title: Annu Rev Med – volume: 94 start-page: 9273 year: 1997 end-page: 9278 article-title: Interaction of CTLA‐4 with AP50, a clathrin‐coated pit adaptor protein publication-title: Proc Natl Acad Sci USA – volume: 29 start-page: 789 year: 1999 end-page: 798 article-title: CD28 induces cell cycle progression by IL‐2‐independent down‐regulation of p27kip1 expression in human peripheral T lymphocytes publication-title: Eur J Immunol – volume: 185 start-page: 6426 year: 2010 end-page: 6430 article-title: Cutting edge: mechanisms of IL‐2‐dependent maintenance of functional regulatory T cells publication-title: J Immunol – volume: 151 start-page: 3489 year: 1993 end-page: 3499 article-title: Characterization of CTLA‐4 structure and expression on human T cells publication-title: J Immunol – volume: 17 start-page: 4051 year: 1997 end-page: 4058 article-title: CD28 mediates transcriptional upregulation of the interleukin‐2 (IL‐2) promoter through a composite element containing the CD28RE and NF‐IL‐2B AP‐1 sites publication-title: Mol Cell Biol – volume: 4 start-page: 664 year: 2003 end-page: 669 article-title: The inhibitory function of B7 costimulators in T cell responses to foreign and self‐antigens publication-title: Nat Immunol – volume: 19 start-page: 225 year: 2001 end-page: 252 article-title: Complexities of CD28/B7: CTLA‐4 costimulatory pathways in autoimmunity and transplantation publication-title: Annu Rev Immunol – volume: 7 start-page: 1157 year: 2006 end-page: 1165 article-title: A pathway regulated by cell cycle inhibitor p27Kip1 and checkpoint inhibitor Smad3 is involved in the induction of T cell tolerance publication-title: Nat Immunol – volume: 202 start-page: 771 year: 2005 end-page: 781 article-title: Continuous control of autoimmune disease by antigen‐dependent polyclonal CD4+ CD25+ regulatory T cells in the regional lymph node publication-title: J Exp Med – volume: 178 start-page: 4022 year: 2007 end-page: 4026 article-title: Cutting edge: IL‐2 is essential for TGF‐beta‐mediated induction of Foxp3+ T regulatory cells publication-title: J Immunol – volume: 29 start-page: 272 year: 2008 end-page: 279 article-title: CTLA‐4 trafficking and surface expression publication-title: Trends Immunol – volume: 204 start-page: 102 year: 2005 end-page: 115 article-title: CTLA4 gene polymorphism and autoimmunity publication-title: Immunol Rev – volume: 166 start-page: 727 year: 2001 end-page: 730 article-title: Cutting edge: two distinct mechanisms lead to impaired T cell homeostasis in Janus kinase 3‐ and CTLA‐4‐deficient mice publication-title: J Immunol – volume: 410 start-page: 608 year: 2001 end-page: 611 article-title: Crystal structure of the B7‐1/CTLA‐4 complex that inhibits human immune responses publication-title: Nature – volume: 156 start-page: 4154 year: 1996 end-page: 4159 article-title: Regulation of CTLA‐4 expression during T cell activation publication-title: J Immunol – volume: 163 start-page: 1128 year: 1999 end-page: 1131 article-title: Cutting edge: lymphoproliferative disease in the absence of CTLA‐4 is not T cell autonomous publication-title: J Immunol – volume: 321 start-page: 843 year: 2008 end-page: 847 article-title: Deletional tolerance mediated by extrathymic Aire‐expressing cells publication-title: Science – volume: 2 start-page: 301 year: 2001 end-page: 306 article-title: Thymic selection of CD4+ CD25+ regulatory T cells induced by an agonist self‐peptide publication-title: Nat Immunol – volume: 3 start-page: 544 year: 2003 end-page: 556 article-title: Unifying concepts in CD28, ICOS and CTLA4 co‐receptor signalling publication-title: Nat Rev Immunol – volume: 77 start-page: 727 year: 1994 end-page: 736 article-title: JNK is involved in signal integration during costimulation of T lymphocytes publication-title: Cell – volume: 164 start-page: 265 year: 2000 end-page: 272 article-title: Functional responses and costimulator dependence of memory CD4+ T cells publication-title: J Immunol – volume: 89 start-page: 11102 year: 1992 article-title: T‐cell activation by the CD28 ligand B7 is required for cardiac allograft rejection publication-title: Proc Natl Acad Sci USA – volume: 133 start-page: 775 year: 2008 end-page: 787 article-title: Regulatory T cells and immune tolerance publication-title: Cell – volume: 190 start-page: 375 year: 1999 end-page: 384 article-title: Proline residues in CD28 and the Src homology (SH)3 domain of Lck are required for T cell costimulation publication-title: J Exp Med – volume: 2 start-page: 325 year: 2001 end-page: 332 article-title: A point mutation in CD28 distinguishes proliferative signals from survival signals publication-title: Nat Immunol – volume: 269 start-page: 279 year: 2000 end-page: 283 article-title: Tyrosine phosphatase SHP‐2 binding to CTLA‐4: absence of direct YVKM/YFIP motif recognition publication-title: Biochem Biophys Res Commun – volume: 229 start-page: 307 year: 2009 article-title: The clinical utility of inhibiting CD28‐mediated costimulation publication-title: Immunol Rev – volume: 265 start-page: 1225 year: 1994 end-page: 1227 article-title: Treatment of murine lupus with CTLA4Ig publication-title: Science – volume: 3 start-page: 1097 year: 2002 end-page: 1101 article-title: CTLA‐4‐Ig regulates tryptophan catabolism publication-title: Nat Immunol – volume: 223 start-page: 371 year: 2008 end-page: 390 article-title: Human regulatory T cells: role in autoimmune disease and therapeutic opportunities publication-title: Immunol Rev – volume: 27 start-page: 20 year: 2001 end-page: 21 article-title: The immune dysregulation, polyendocrinopathy, enteropathy, X‐linked syndrome (IPEX) is caused by mutations of FOXP3 publication-title: Nat Genet – volume: 105 start-page: 3005 year: 2008 article-title: Immunologic and clinical effects of antibody blockade of cytotoxic T lymphocyte‐associated antigen 4 in previously vaccinated cancer patients publication-title: Proc Natl Acad Sci USA – volume: 168 start-page: 5070 year: 2002 end-page: 5078 article-title: Inhibition of CTLA‐4 function by the regulatory subunit of serine/threonine phosphatase 2A publication-title: J Immunol – volume: 202 start-page: 445 year: 2005 article-title: Selective targeting of regulatory T cells with CD28 superagonists allows effective therapy of experimental autoimmune encephalomyelitis publication-title: J Exp Med – volume: 20 start-page: 1507 year: 2008 end-page: 1515 article-title: CD28 stimulation triggers NF‐kappaB activation through the CARMA1‐PKCtheta‐Grb2/Gads axis publication-title: Int Immunol – volume: 57 start-page: 568 year: 2003 end-page: 572 article-title: Increased expression of soluble cytotoxic T‐lymphocyte‐associated antigen‐4 molecule in patients with systemic lupus erythematosus publication-title: Scand J Immunol – volume: 10 start-page: 446 year: 2000 end-page: 453 article-title: Congenic mapping of the type 1 diabetes locus, Idd3, to a 780‐kb region of mouse chromosome 3: identification of a candidate segment of ancestral DNA by haplotype mapping publication-title: Genome Res – volume: 75 start-page: 253 year: 1993 end-page: 261 article-title: Ulcerative colitis‐like disease in mice with a disrupted interleukin‐2 gene publication-title: Cell – volume: 14 start-page: 233 year: 1996 end-page: 258 article-title: CD28/B7 system of T cell costimulation publication-title: Annu Rev Immunol – volume: 62 start-page: 492 year: 2003 end-page: 497 article-title: Association of a putative regulatory polymorphism in the PD‐1 gene with susceptibility to type 1 diabetes publication-title: Tissue Antigens – volume: 4 start-page: e5087 year: 2009 article-title: CD28 co‐stimulation down regulates Th17 development publication-title: PLoS ONE – volume: 116 start-page: 4829 year: 2010 end-page: 4837 article-title: Low‐strength T‐cell activation promotes Th17 responses publication-title: Blood – volume: 13 start-page: 313 year: 2000 end-page: 322 article-title: The CD28 and CTLA‐4 receptors associate with the serine/threonine phosphatase PP2A publication-title: Immunity – volume: 446 start-page: 685 year: 2007 end-page: 689 article-title: Foxp3 controls regulatory T‐cell function by interacting with AML1/Runx1 publication-title: Nature – volume: 29 start-page: 589 year: 2008 end-page: 601 article-title: Spatiotemporal regulation of T cell costimulation by TCR‐CD28 microclusters and protein kinase C theta translocation publication-title: Immunity – volume: 90 start-page: 2189 year: 1993 end-page: 2193 article-title: Suppression of apoptosis in a cytotoxic T‐cell line by interleukin 2‐mediated gene transcription and deregulated expression of the protooncogene bcl‐2 publication-title: Proc Natl Acad Sci USA – volume: 17 start-page: 201 year: 2002 end-page: 210 article-title: The interaction properties of costimulatory molecules revisited publication-title: Immunity – volume: 165 start-page: 2432 year: 2000 end-page: 2443 article-title: T cell effector function and anergy avoidance are quantitatively linked to cell division publication-title: J Immunol – volume: 30 start-page: 1538 year: 2000 end-page: 1543 article-title: CD4+ CD25+ regulatory T cells down‐regulate co‐stimulatory molecules on antigen‐presenting cells publication-title: Eur J Immunol – volume: 2 start-page: 261 year: 2001 end-page: 268 article-title: PD‐L2 is a second ligand for PD‐1 and inhibits T cell activation publication-title: Nat Immunol – volume: 236 start-page: 219 year: 2010 end-page: 242 article-title: The PD‐1 pathway in tolerance and autoimmunity publication-title: Immunol Rev – volume: 6 start-page: 152 year: 2005 end-page: 162 article-title: CD28 costimulation of developing thymocytes induces Foxp3 expression and regulatory T cell differentiation independently of interleukin 2 publication-title: Nat Immunol – volume: 94 start-page: 3168 year: 1997 end-page: 3171 article-title: Human immune disorder arising from mutation of the alpha chain of the interleukin‐2 receptor publication-title: Proc Natl Acad Sci USA – volume: 172 start-page: 2778 year: 2004 end-page: 2784 article-title: CD86 and CD80 differentially modulate the suppressive function of human regulatory T cells publication-title: J Immunol – volume: 177 start-page: 5169 year: 2006 end-page: 5176 article-title: The cyclin‐dependent kinase inhibitor p27kip1 is required for transplantation tolerance induced by costimulatory blockade publication-title: J Immunol – volume: 229 start-page: 41 year: 2009 end-page: 66 article-title: Regulating the regulators: costimulatory signals control the homeostasis and function of regulatory T cells publication-title: Immunol Rev – volume: 10 start-page: 504 year: 2009 end-page: 513 article-title: Transcription factor Foxo3 controls the magnitude of T cell immune responses by modulating the function of dendritic cells publication-title: Nat Immunol – volume: 182 start-page: 1769 year: 1995 end-page: 1776 article-title: Immunopathology of interleukin (IL) 2‐deficient mice: thymus dependence and suppression by thymus‐dependent cells with an intact IL‐2 gene publication-title: J Exp Med – volume: 226 start-page: 19 year: 2008 article-title: Interleukin‐2 in the development and control of inflammatory disease publication-title: Immunol Rev – volume: 192 start-page: 303 year: 2000 end-page: 310 article-title: Immunologic self‐tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte‐associated antigen 4 publication-title: J Exp Med – volume: 182 start-page: 102 year: 2009 end-page: 110 article-title: CD28 signaling in T regulatory precursors requires p56lck and rafts integrity to stabilize the Foxp3 message publication-title: J Immunol – volume: 183 start-page: 332 year: 2009 end-page: 339 article-title: The initial phase of an immune response functions to activate regulatory T cells publication-title: J Immunol – volume: 98 start-page: 2693 year: 1996 end-page: 2699 article-title: Inhibition of T cell costimulation abrogates airway hyperresponsiveness in a murine model publication-title: J Clin Invest – volume: 20 start-page: 1461 year: 2000 end-page: 1477 article-title: Regulatory and signaling properties of the Vav family publication-title: Mol Cell Biol – volume: 164 start-page: 5319 year: 2000 end-page: 5327 article-title: Structural analysis of CTLA‐4 function publication-title: J Immunol – volume: 108 start-page: 895 year: 2001 end-page: 903 article-title: Signaling through CD28 and CTLA‐4 controls two distinct forms of T cell anergy publication-title: J Clin Invest – volume: 23 start-page: 515 year: 2005 end-page: 548 article-title: The B7 family revisited publication-title: Annu Rev Immunol – volume: 19 start-page: 516 year: 2007 end-page: 521 article-title: Apoptosis and the homeostatic control of immune responses publication-title: Curr Opin Immunol – volume: 14 start-page: 1236 year: 2000 end-page: 1248 article-title: Nucleolin and YB‐1 are required for JNK‐mediated interleukin‐2 mRNA stabilization during T‐cell activation publication-title: Genes Dev – volume: 32 start-page: 972 year: 2002 end-page: 981 article-title: The role of CTLA‐4 in induction and maintenance of peripheral T cell tolerance publication-title: Eur J Immunol – volume: 7 start-page: 2683 year: 2007 end-page: 2692 article-title: Striking dichotomy of PD‐L1 and PD‐L2 pathways in regulating alloreactive CD4(+) and CD8(+) T cells publication-title: Am J Transplant – volume: 8 start-page: 773 year: 1996 end-page: 780 article-title: Developmentally regulated expression of the PD‐1 protein on the surface of double‐negative (CD4‐CD8‐) thymocytes publication-title: Int Immunol – volume: 179 start-page: 4685 year: 2007 end-page: 4693 article-title: Autoantigen‐specific TGFbeta‐induced Foxp3+ regulatory T cells prevent autoimmunity by inhibiting dendritic cells from activating autoreactive T cells publication-title: J Immunol – volume: 273 start-page: 104 year: 1996 end-page: 106 article-title: T cell activation determined by T cell receptor number and tunable thresholds publication-title: Science – volume: 10 start-page: 1000 year: 2009 end-page: 1007 article-title: Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells publication-title: Nat Immunol – volume: 182 start-page: 274 year: 2009 end-page: 282 article-title: Ctla‐4 controls regulatory T cell peripheral homeostasis and is required for suppression of pancreatic islet autoimmunity publication-title: J Immunol – volume: 5 start-page: 285 year: 1996 end-page: 293 article-title: CD28/B7 regulation of Th1 and Th2 subsets in the development of autoimmune diabetes publication-title: Immunity – volume: 197 start-page: 955 year: 2003 end-page: 966 article-title: Topological requirements and signaling properties of T cell‐activating, anti‐CD28 antibody superagonists publication-title: J Exp Med – volume: 24 start-page: 65 year: 2006 end-page: 97 article-title: A molecular perspective of CTLA‐4 function publication-title: Annu Rev Immunol – volume: 164 start-page: 5805 year: 2000 end-page: 5814 article-title: GRID: a novel Grb‐2‐related adapter protein that interacts with the activated T cell costimulatory receptor CD28 publication-title: J Immunol – volume: 31 start-page: 111 year: 1999 end-page: 116 article-title: Cloning of the APECED gene provides new insight into human autoimmunity publication-title: Ann Med – volume: 164 start-page: 4465 year: 2000 end-page: 4470 article-title: The roles of CD28 and CD40 ligand in T cell activation and tolerance publication-title: J Immunol – volume: 164 start-page: 144 year: 2000 end-page: 151 article-title: CD28 costimulation mediates T cell expansion via IL‐2‐independent and IL‐2‐dependent regulation of cell cycle progression publication-title: J Immunol – volume: 197 start-page: 129 year: 2003 end-page: 135 article-title: Negative regulation of T cell receptor‐lipid raft interaction by cytotoxic T lymphocyte‐associated antigen 4 publication-title: J Exp Med – volume: 194 start-page: 677 year: 2001 end-page: 684 article-title: Development of spontaneous autoimmune peripheral polyneuropathy in B7‐2‐ deficient NOD mice publication-title: J Exp Med – volume: 191 start-page: 915 year: 2000 end-page: 926 article-title: Activation‐induced inhibition of interleukin 6‐mediated T cell survival and signal transducer and activator of transcription 1 signaling publication-title: J Exp Med – volume: 8 start-page: 2086 year: 2008 article-title: The effect of costimulatory and interleukin 2 receptor blockade on regulatory T cells in renal transplantation publication-title: Am J Transplant – volume: 76 start-page: 773 year: 2005 end-page: 779 article-title: Localization of a type 1 diabetes locus in the IL2RA/CD25 region by use of tag single‐nucleotide polymorphisms publication-title: Am J Hum Genet – volume: 257 start-page: 789 year: 1992 article-title: Long‐term survival of xenogeneic pancreatic islet grafts induced by CTLA4lg publication-title: Science – volume: 5 start-page: 41 year: 1996 end-page: 52 article-title: Duration of TCR stimulation determines costimulatory requirement of T cells publication-title: Immunity – volume: 353 start-page: 770 year: 2005 article-title: Costimulation blockade with belatacept in renal transplantation publication-title: N Engl J Med – volume: 11 start-page: 21 year: 2010 end-page: 27 article-title: Mechanisms maintaining peripheral tolerance publication-title: Nat Immunol – volume: 5 start-page: 443 year: 2005 article-title: Rational development of LEA29Y (belatacept), a high‐affinity variant of CTLA4‐Ig with potent immunosuppressive properties publication-title: Am J Transplant – volume: 3 start-page: 911 year: 2002 end-page: 917 article-title: Staging and resetting T cell activation in SMACs publication-title: Nat Immunol – volume: 4 start-page: 535 year: 1996 end-page: 543 article-title: Intracellular trafficking of CTLA‐4 and focal localization towards sites of TCR engagement publication-title: Immunity – volume: 350 start-page: 1193 year: 1997 article-title: Randomised trial of basiliximab versus placebo for control of acute cellular rejection in renal allograft recipients. CHIB 201 International Study Group publication-title: Lancet – volume: 229 start-page: 12 year: 2009 end-page: 26 article-title: CD28 and CTLA‐4 coreceptor expression and signal transduction publication-title: Immunol Rev – volume: 291 start-page: 319 year: 2001 end-page: 322 article-title: Autoimmune dilated cardiomyopathy in PD‐1 receptor‐deficient mice publication-title: Science – volume: 178 start-page: 2018 year: 2007 end-page: 2027 article-title: IL‐2 is essential for TGF‐beta to convert naive CD4+ CD25− cells to CD25+ Foxp3+ regulatory T cells and for expansion of these cells publication-title: J Immunol – volume: 179 start-page: 6494 year: 2007 end-page: 6503 article-title: Memory CD8+ T cells require CD28 costimulation publication-title: J Immunol – volume: 282 start-page: 2263 year: 1998 end-page: 2266 article-title: Molecular basis of T cell inactivation by CTLA‐4 publication-title: Science – volume: 9 start-page: 393 year: 2009 end-page: 407 article-title: Autoimmune T cell responses in the central nervous system publication-title: Nat Rev Immunol – volume: 8 start-page: 1270 year: 2006 end-page: 1276 article-title: CD28 interaction with filamin‐A controls lipid raft accumulation at the T‐cell immunological synapse publication-title: Nat Cell Biol – volume: 171 start-page: 3348 year: 2003 article-title: Cutting edge: CD28 controls peripheral homeostasis of CD4+ CD25+ regulatory T cells publication-title: J Immunol – volume: 188 start-page: 287 year: 1998 end-page: 296 article-title: CD4+ CD25+ immunoregulatory T cells suppress polyclonal T cell activation by inhibiting interleukin 2 production publication-title: J Exp Med – volume: 37 start-page: 1285 year: 2007 end-page: 1289 article-title: Expression of CTLA‐4 and FOXP3 in cis protects from lethal lymphoproliferative disease publication-title: Eur J Immunol – volume: 28 start-page: 2131 year: 1998 end-page: 2142 article-title: CD28 affects the earliest signaling events generated by TCR engagement publication-title: Eur J Immunol – volume: 229 start-page: 27 year: 2009 end-page: 40 article-title: Dynamic regulation of T‐cell costimulation through TCR‐CD28 microclusters publication-title: Immunol Rev – volume: 164 start-page: 5015 year: 2000 end-page: 5018 article-title: Cutting edge: a soluble form of CTLA‐4 in patients with autoimmune thyroid disease publication-title: J Immunol – volume: 7 start-page: 401 year: 2006 end-page: 410 article-title: An intersection between the self‐reactive regulatory and nonregulatory T cell receptor repertoires publication-title: Nat Immunol – volume: 5 start-page: 1303 year: 1999 end-page: 1307 article-title: Requirement for T‐cell apoptosis in the induction of peripheral transplantation tolerance publication-title: Nat Med – volume: 129 start-page: 1 year: 2010 end-page: 6 article-title: Novel mechanism of signaling by CD28 publication-title: Immunol Lett – volume: 23 start-page: 447 year: 2005 end-page: 485 article-title: The NOD mouse: a model of immune dysregulation publication-title: Annu Rev Immunol – volume: 45 start-page: 159 year: 2009 end-page: 172 article-title: Two pathways of costimulation through CD28 publication-title: Immunol Res – volume: 183 start-page: 5146 year: 2009 end-page: 5157 article-title: Genetic evidence that the differential expression of the ligand‐independent isoform of CTLA‐4 is the molecular basis of the Idd5.1 type 1 diabetes region in nonobese diabetic mice publication-title: J Immunol – volume: 28 start-page: 197 year: 2008 end-page: 205 article-title: Apoptosis regulators Fas and Bim cooperate in shutdown of chronic immune responses and prevention of autoimmunity publication-title: Immunity – volume: 6 start-page: 1142 year: 2005 end-page: 1151 article-title: A function for interleukin 2 in Foxp3‐expressing regulatory T cells publication-title: Nat Immunol – volume: 159 start-page: 144 year: 1997 end-page: 151 article-title: Interaction of CTLA‐4 with the clathrin‐associated protein AP50 results in ligand‐independent endocytosis that limits cell surface expression publication-title: J Immunol – volume: 201 start-page: 723 year: 2005 end-page: 735 article-title: Homeostatic maintenance of natural Foxp3(+) CD25(+) CD4(+) regulatory T cells by interleukin (IL)‐2 and induction of autoimmune disease by IL‐2 neutralization publication-title: J Exp Med – volume: 190 start-page: 1561 year: 1999 end-page: 1572 article-title: Normal regulatory alpha/beta T cells effectively eliminate abnormally activated T cells lacking the interleukin 2 receptor beta publication-title: J Exp Med – volume: 32 start-page: 2365 year: 2002 end-page: 2375 article-title: CD4+ CD25+ T cells as immunoregulatory T cells publication-title: Eur J Immunol – volume: 180 start-page: 1705 year: 1994 end-page: 1713 article-title: Resistance alleles at two non‐major histocompatibility complex‐linked insulin‐dependent diabetes loci on chromosome 3, Idd3 and Idd10, protect nonobese diabetic mice from diabetes publication-title: J Exp Med – volume: 116 start-page: 2252 year: 2006 end-page: 2261 article-title: Inhibition of T cell activation and autoimmune diabetes using a B cell surface‐linked CTLA‐4 agonist publication-title: J Clin Invest – volume: 189 start-page: 435 year: 1999 end-page: 440 article-title: B7‐1 or B7‐2 is required to produce the lymphoproliferative phenotype in mice lacking cytotoxic T lymphocyte‐associated antigen 4 (CTLA‐4) publication-title: J Exp Med – volume: 114 start-page: 979 year: 2004 end-page: 987 article-title: Costimulation controls diabetes by altering the balance of pathogenic and regulatory T cells publication-title: J Clin Invest – volume: 184 start-page: 3433 year: 2010 end-page: 3441 article-title: Expression of Helios, an Ikaros transcription factor family member, differentiates thymic‐derived from peripherally induced Foxp3+ T regulatory cells publication-title: J Immunol – volume: 322 start-page: 271 year: 2008 end-page: 275 article-title: CTLA‐4 control over Foxp3+ regulatory T cell function publication-title: Science – volume: 119 start-page: 551 year: 2009 end-page: 564 article-title: PD‐L1 negatively regulates CD4+ CD25+ Foxp3+ Tregs by limiting STAT‐5 phosphorylation in patients chronically infected with HCV publication-title: J Clin Invest – volume: 7 start-page: 83 year: 2006 end-page: 92 article-title: Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice publication-title: Nat Immunol – volume: 100 start-page: 2243 year: 1997 end-page: 2253 article-title: Neonatal activation of CD28 signaling overcomes T cell anergy and prevents autoimmune diabetes by an IL‐4‐dependent mechanism publication-title: J Clin Invest – volume: 170 start-page: 4127 year: 2003 end-page: 4133 article-title: Regulation of T cell activation and tolerance by phospholipase C gamma‐1‐dependent integrin avidity modulation publication-title: J Immunol – volume: 164 start-page: 4433 year: 2000 end-page: 4442 article-title: Blockade of T cell activation using a surface‐linked single‐chain antibody to CTLA‐4 (CD152) publication-title: J Immunol – volume: 6 start-page: 583 year: 1997 end-page: 589 article-title: Tyrosine phosphorylation controls internalization of CTLA‐4 by regulating its interaction with clathrin‐associated adaptor complex AP‐2 publication-title: Immunity – volume: 39 start-page: 329 year: 2007 end-page: 337 article-title: Interleukin‐2 gene variation impairs regulatory T cell function and causes autoimmunity publication-title: Nat Genet – volume: 3 start-page: 87 year: 1995 end-page: 98 article-title: CD28 costimulation can promote T cell survival by enhancing the expression of Bcl‐XL publication-title: Immunity – volume: 172 start-page: 5973 year: 2004 end-page: 5979 article-title: IL‐2 induces a competitive survival advantage in T lymphocytes publication-title: J Immunol – volume: 212 start-page: 131 year: 2006 end-page: 148 article-title: The role of CD28 and cytotoxic T‐lymphocyte antigen‐4 (CTLA‐4) in regulatory T‐cell biology publication-title: Immunol Rev – volume: 9 start-page: 2837 year: 2009 end-page: 2844 article-title: Paradoxical functions of B7: CD28 costimulation in a MHC class II‐mismatched cardiac transplant model publication-title: Am J Transplant – volume: 177 start-page: 4376 year: 2006 end-page: 4383 article-title: Blockade of CTLA‐4 on CD4+ CD25+ regulatory T cells abrogates their function publication-title: J Immunol – volume: 11 start-page: 7 year: 2010 end-page: 13 article-title: Regulatory T cells exert checks and balances on self tolerance and autoimmunity publication-title: Nat Immunol – volume: 100 start-page: 2586 year: 2003 end-page: 2591 article-title: Crystal structure of the receptor‐binding domain of human B7‐2: insights into organization and signaling publication-title: Proc Natl Acad Sci USA – ident: e_1_2_8_41_2 doi: 10.4049/jimmunol.174.1.180 – ident: e_1_2_8_223_2 doi: 10.1038/ng1958 – ident: e_1_2_8_129_2 doi: 10.1073/pnas.94.17.9273 – ident: e_1_2_8_22_2 doi: 10.1084/jem.20032196 – ident: e_1_2_8_79_2 doi: 10.1016/j.immuni.2008.08.011 – ident: e_1_2_8_176_2 doi: 10.1111/j.0105-2896.2006.00419.x – ident: e_1_2_8_220_2 doi: 10.1038/ng1323 – ident: e_1_2_8_221_2 doi: 10.1084/jem.180.5.1705 – ident: e_1_2_8_36_2 doi: 10.1111/j.1600-065X.2009.00779.x – ident: e_1_2_8_209_2 doi: 10.1084/jem.190.11.1561 – ident: e_1_2_8_233_2 doi: 10.1002/eji.200425143 – volume: 158 start-page: 580 year: 1997 ident: e_1_2_8_75_2 article-title: Analysis of CD28 cytoplasmic tail tyrosine residues as regulators and substrates for the protein tyrosine kinases, EMT and LCK publication-title: J Immunol doi: 10.4049/jimmunol.158.2.580 – ident: e_1_2_8_157_2 doi: 10.1016/S0165-2478(02)00142-6 – ident: e_1_2_8_219_2 doi: 10.1086/429843 – ident: e_1_2_8_28_2 doi: 10.1038/83713 – ident: e_1_2_8_159_2 doi: 10.1016/S1074-7613(00)80089-8 – ident: e_1_2_8_25_2 doi: 10.1038/ni1318 – volume: 188 start-page: 287 year: 1998 ident: e_1_2_8_181_2 article-title: CD4+ CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production publication-title: J Exp Med doi: 10.1084/jem.188.2.287 – ident: e_1_2_8_172_2 doi: 10.1084/jem.20090847 – ident: e_1_2_8_227_2 doi: 10.1016/j.immuni.2008.09.012 – ident: e_1_2_8_117_2 doi: 10.1016/j.immuni.2004.06.017 – ident: e_1_2_8_190_2 doi: 10.1084/jem.20041982 – ident: e_1_2_8_132_2 doi: 10.1084/jem.181.1.351 – ident: e_1_2_8_39_2 doi: 10.4049/jimmunol.164.1.144 – ident: e_1_2_8_19_2 doi: 10.4049/jimmunol.0803628 – ident: e_1_2_8_171_2 doi: 10.1111/j.1600-6143.2007.01999.x – ident: e_1_2_8_201_2 doi: 10.4049/jimmunol.172.10.5973 – ident: e_1_2_8_54_2 doi: 10.4049/jimmunol.170.8.4127 – ident: e_1_2_8_189_2 doi: 10.1016/S1074-7613(02)00367-9 – ident: e_1_2_8_204_2 doi: 10.1126/science.7770771 – ident: e_1_2_8_48_2 doi: 10.4049/jimmunol.164.1.265 – ident: e_1_2_8_136_2 doi: 10.1146/annurev.immunol.24.021605.090535 – ident: e_1_2_8_82_2 doi: 10.1038/nri1131 – ident: e_1_2_8_210_2 doi: 10.1038/nature05673 – ident: e_1_2_8_84_2 doi: 10.1002/1521-4141(200202)32:2<447::AID-IMMU447>3.0.CO;2-5 – ident: e_1_2_8_16_2 doi: 10.1126/science.1159407 – ident: e_1_2_8_7_2 doi: 10.1146/annurev.immunol.23.021704.115611 – ident: e_1_2_8_147_2 doi: 10.1046/j.1365-3083.2003.01232.x – ident: e_1_2_8_160_2 doi: 10.1126/science.291.5502.319 – ident: e_1_2_8_85_2 doi: 10.1016/0092-8674(94)90056-6 – ident: e_1_2_8_162_2 doi: 10.1002/ana.20514 – ident: e_1_2_8_196_2 doi: 10.4049/jimmunol.173.8.5028 – ident: e_1_2_8_213_2 doi: 10.4049/jimmunol.0903940 – ident: e_1_2_8_222_2 doi: 10.1101/gr.10.4.446 – ident: e_1_2_8_218_2 doi: 10.1038/ng2068 – ident: e_1_2_8_95_2 doi: 10.1101/gad.14.10.1236 – ident: e_1_2_8_86_2 doi: 10.1038/ncb1492 – ident: e_1_2_8_256_2 doi: 10.1084/jem.191.6.915 – ident: e_1_2_8_74_2 doi: 10.1084/jem.190.3.375 – ident: e_1_2_8_104_2 doi: 10.1016/S0022-1759(00)00344-6 – ident: e_1_2_8_266_2 doi: 10.1056/NEJMoa050085 – ident: e_1_2_8_94_2 doi: 10.1128/MCB.17.7.4051 – ident: e_1_2_8_137_2 doi: 10.4049/jimmunol.168.9.4420 – ident: e_1_2_8_83_2 doi: 10.1093/intimm/dxn108 – ident: e_1_2_8_177_2 doi: 10.4049/jimmunol.171.7.3348 – ident: e_1_2_8_59_2 doi: 10.1038/ni884 – ident: e_1_2_8_114_2 doi: 10.4049/jimmunol.168.10.5070 – ident: e_1_2_8_78_2 doi: 10.1038/83144 – volume: 156 start-page: 4154 year: 1996 ident: e_1_2_8_152_2 article-title: Regulation of CTLA‐4 expression during T cell activation publication-title: J Immunol doi: 10.4049/jimmunol.156.11.4154 – ident: e_1_2_8_239_2 doi: 10.1126/science.1160062 – ident: e_1_2_8_264_2 doi: 10.1016/S0140-6736(08)60998-8 – ident: e_1_2_8_235_2 doi: 10.4049/jimmunol.177.7.4376 – ident: e_1_2_8_4_2 doi: 10.1146/annurev.immunol.19.1.225 – ident: e_1_2_8_127_2 doi: 10.1016/j.it.2008.02.011 – ident: e_1_2_8_166_2 doi: 10.1093/intimm/8.5.773 – ident: e_1_2_8_258_2 doi: 10.1146/annurev.med.58.061705.145449 – ident: e_1_2_8_91_2 doi: 10.1073/pnas.0308688101 – ident: e_1_2_8_153_2 doi: 10.1016/S1074-7613(00)80195-8 – ident: e_1_2_8_243_2 doi: 10.1093/intimm/dxh178 – ident: e_1_2_8_149_2 doi: 10.1080/08916930500050210 – ident: e_1_2_8_247_2 doi: 10.1002/1521-4141(200006)30:6<1538::AID-IMMU1538>3.0.CO;2-X – ident: e_1_2_8_141_2 doi: 10.1093/intimm/dxh055 – ident: e_1_2_8_120_2 doi: 10.1016/j.immuni.2010.09.006 – volume: 163 start-page: 1128 year: 1999 ident: e_1_2_8_228_2 article-title: Cutting edge: lymphoproliferative disease in the absence of CTLA‐4 is not T cell autonomous publication-title: J Immunol doi: 10.4049/jimmunol.163.3.1128 – ident: e_1_2_8_169_2 doi: 10.1172/JCI200420483 – ident: e_1_2_8_133_2 doi: 10.1006/bbrc.2000.2234 – ident: e_1_2_8_80_2 doi: 10.1016/j.imlet.2010.01.007 – ident: e_1_2_8_260_2 doi: 10.1073/pnas.89.22.11102 – ident: e_1_2_8_102_2 doi: 10.4049/jimmunol.164.9.4433 – ident: e_1_2_8_105_2 doi: 10.4049/jimmunol.169.2.633 – ident: e_1_2_8_232_2 doi: 10.1002/eji.200324632 – ident: e_1_2_8_89_2 doi: 10.1038/ni1160 – ident: e_1_2_8_265_2 doi: 10.1002/art.27601 – ident: e_1_2_8_2_2 doi: 10.1146/annurev.iy.07.040189.002305 – ident: e_1_2_8_259_2 doi: 10.1146/annurev.med.58.080205.154004 – ident: e_1_2_8_126_2 doi: 10.4049/jimmunol.175.1.177 – ident: e_1_2_8_163_2 doi: 10.1046/j.1399-0039.2003.00136.x – ident: e_1_2_8_173_2 doi: 10.1172/JCI36604 – ident: e_1_2_8_225_2 doi: 10.1084/jem.20100209 – ident: e_1_2_8_217_2 doi: 10.4049/jimmunol.0904028 – ident: e_1_2_8_144_2 doi: 10.4049/jimmunol.164.10.5015 – volume: 157 start-page: 3909 year: 1996 ident: e_1_2_8_44_2 article-title: CD28/B7 interactions deliver a unique signal to naive T cells that regulates cell survival but not early proliferation publication-title: J Immunol doi: 10.4049/jimmunol.157.9.3909 – ident: e_1_2_8_263_2 doi: 10.1056/NEJMoa050524 – ident: e_1_2_8_212_2 doi: 10.1084/jem.20082824 – ident: e_1_2_8_240_2 doi: 10.1093/intimm/dxh221 – ident: e_1_2_8_140_2 doi: 10.4049/jimmunol.164.10.5319 – ident: e_1_2_8_90_2 doi: 10.1007/s12026-009-8097-6 – ident: e_1_2_8_145_2 doi: 10.1038/nature01621 – ident: e_1_2_8_55_2 doi: 10.4049/jimmunol.177.8.5169 – ident: e_1_2_8_161_2 doi: 10.1073/pnas.0505497102 – ident: e_1_2_8_251_2 doi: 10.1038/ni846 – ident: e_1_2_8_124_2 doi: 10.1385/IR:28:3:241 – ident: e_1_2_8_254_2 doi: 10.1084/jem.20040942 – ident: e_1_2_8_184_2 doi: 10.1007/3-540-27702-1_2 – ident: e_1_2_8_216_2 doi: 10.4049/jimmunol.178.4.2018 – ident: e_1_2_8_81_2 doi: 10.1128/MCB.20.5.1461-1477.2000 – ident: e_1_2_8_156_2 doi: 10.1111/j.1600-065X.2010.00923.x – ident: e_1_2_8_18_2 doi: 10.1038/nri2550 – ident: e_1_2_8_146_2 doi: 10.1016/S1074-7613(04)00110-4 – ident: e_1_2_8_15_2 doi: 10.1126/science.1075958 – ident: e_1_2_8_30_2 doi: 10.1146/annurev.immunol.21.120601.141040 – ident: e_1_2_8_29_2 doi: 10.1038/ni904 – ident: e_1_2_8_69_2 doi: 10.1182/blood-2010-03-272153 – ident: e_1_2_8_109_2 doi: 10.1016/S1074-7613(01)00259-X – ident: e_1_2_8_168_2 doi: 10.1084/jem.20022119 – ident: e_1_2_8_42_2 doi: 10.1016/1074-7613(95)90161-2 – ident: e_1_2_8_11_2 doi: 10.1038/ni1572 – volume: 31 start-page: 111 year: 1999 ident: e_1_2_8_14_2 article-title: Cloning of the APECED gene provides new insight into human autoimmunity publication-title: Ann Med doi: 10.3109/07853899708998786 – volume: 162 start-page: 5784 year: 1999 ident: e_1_2_8_60_2 article-title: Lymphoproliferative disorder in CTLA‐4 knockout mice is characterized by CD28‐regulated activation of Th2 responses publication-title: J Immunol doi: 10.4049/jimmunol.162.10.5784 – ident: e_1_2_8_252_2 doi: 10.1038/nri1457 – ident: e_1_2_8_107_2 doi: 10.1016/S1074-7613(00)80284-8 – ident: e_1_2_8_13_2 doi: 10.1016/j.coi.2009.08.007 – ident: e_1_2_8_93_2 doi: 10.4049/jimmunol.178.7.4315 – ident: e_1_2_8_38_2 doi: 10.4049/jimmunol.174.6.3359 – ident: e_1_2_8_164_2 doi: 10.1038/ng1020 – ident: e_1_2_8_112_2 doi: 10.1038/ni.1835 – ident: e_1_2_8_10_2 doi: 10.1016/j.cell.2008.05.009 – ident: e_1_2_8_5_2 doi: 10.1016/j.immuni.2006.03.001 – ident: e_1_2_8_66_2 doi: 10.1023/A:1014256417651 – ident: e_1_2_8_242_2 doi: 10.4049/jimmunol.177.4.2186 – ident: e_1_2_8_23_2 doi: 10.1016/j.coi.2007.05.005 – ident: e_1_2_8_100_2 doi: 10.1084/jem.183.6.2541 – ident: e_1_2_8_195_2 doi: 10.1038/ni939 – ident: e_1_2_8_67_2 doi: 10.4049/jimmunol.0903369 – ident: e_1_2_8_64_2 doi: 10.1172/JCI119762 – ident: e_1_2_8_35_2 doi: 10.1126/science.273.5271.104 – ident: e_1_2_8_101_2 doi: 10.1016/1074-7613(94)90071-X – volume: 7 start-page: 28 year: 1992 ident: e_1_2_8_115_2 article-title: CTLA‐4 and CD28: similar proteins, neighbouring genes publication-title: Int J Cancer – volume: 158 start-page: 5091 year: 1997 ident: e_1_2_8_234_2 article-title: CTLA4Ig prevents lymphoproliferation and fatal multiorgan tissue destruction in CTLA‐4‐deficient mice publication-title: J Immunol doi: 10.4049/jimmunol.158.11.5091 – ident: e_1_2_8_191_2 doi: 10.1038/ni1263 – ident: e_1_2_8_139_2 doi: 10.1084/jem.186.10.1645 – ident: e_1_2_8_111_2 doi: 10.4049/jimmunol.169.4.1852 – ident: e_1_2_8_202_2 doi: 10.1016/S1074-7613(01)00167-4 – ident: e_1_2_8_32_2 doi: 10.1038/ni737 – ident: e_1_2_8_262_2 doi: 10.1172/JCI5857 – ident: e_1_2_8_155_2 doi: 10.1073/pnas.200348397 – ident: e_1_2_8_121_2 doi: 10.1038/35069112 – ident: e_1_2_8_244_2 doi: 10.4049/jimmunol.172.5.2778 – ident: e_1_2_8_26_2 doi: 10.1038/86302 – ident: e_1_2_8_99_2 doi: 10.1016/1074-7613(95)90125-6 – ident: e_1_2_8_257_2 doi: 10.1111/j.1600-065X.2008.00649.x – ident: e_1_2_8_103_2 doi: 10.1172/JCI27856 – ident: e_1_2_8_45_2 doi: 10.4049/jimmunol.166.9.5331 – ident: e_1_2_8_3_2 doi: 10.1146/annurev.immunol.14.1.233 – ident: e_1_2_8_63_2 doi: 10.1126/science.7520604 – ident: e_1_2_8_231_2 doi: 10.1084/jem.193.11.1285 – ident: e_1_2_8_65_2 doi: 10.1016/S1074-7613(00)80323-4 – ident: e_1_2_8_261_2 doi: 10.1111/j.1600-6143.2005.00749.x – volume: 151 start-page: 3489 year: 1993 ident: e_1_2_8_151_2 article-title: Characterization of CTLA‐4 structure and expression on human T cells publication-title: J Immunol doi: 10.4049/jimmunol.151.7.3489 – ident: e_1_2_8_37_2 doi: 10.1016/S1074-7613(02)00323-0 – ident: e_1_2_8_255_2 doi: 10.1038/ni.1729 – ident: e_1_2_8_56_2 doi: 10.1038/ni1398 – ident: e_1_2_8_24_2 doi: 10.1038/ni.1818 – ident: e_1_2_8_97_2 doi: 10.1073/pnas.162359999 – ident: e_1_2_8_207_2 doi: 10.1016/S1074-7613(00)80566-X – ident: e_1_2_8_33_2 doi: 10.1002/(SICI)1521-4141(199807)28:07<2131::AID-IMMU2131>3.0.CO;2-Q – ident: e_1_2_8_87_2 doi: 10.1038/ni836 – ident: e_1_2_8_68_2 doi: 10.1371/journal.pone.0005087 – ident: e_1_2_8_70_2 doi: 10.1111/j.1600-065X.2009.00770.x – ident: e_1_2_8_123_2 doi: 10.1073/pnas.252771499 – ident: e_1_2_8_238_2 doi: 10.1073/pnas.0910341107 – ident: e_1_2_8_96_2 doi: 10.1073/pnas.092284399 – ident: e_1_2_8_108_2 doi: 10.1084/jem.20061577 – ident: e_1_2_8_269_2 doi: 10.1111/j.1600-065X.2008.00697.x – ident: e_1_2_8_50_2 doi: 10.4049/jimmunol.179.10.6494 – ident: e_1_2_8_57_2 doi: 10.1172/JCI13220 – ident: e_1_2_8_46_2 doi: 10.1038/86327 – ident: e_1_2_8_248_2 doi: 10.1111/j.1365-2567.2006.02362.x – ident: e_1_2_8_148_2 doi: 10.1111/j.0105-2896.2005.00249.x – ident: e_1_2_8_194_2 doi: 10.1016/S1074-7613(00)80308-8 – ident: e_1_2_8_98_2 doi: 10.1084/jem.20021024 – ident: e_1_2_8_192_2 doi: 10.4049/jimmunol.179.11.7924 – ident: e_1_2_8_237_2 doi: 10.4049/jimmunol.182.1.274 – ident: e_1_2_8_51_2 doi: 10.1038/15260 – ident: e_1_2_8_27_2 doi: 10.1038/nri1032 – ident: e_1_2_8_154_2 doi: 10.1084/jem.189.2.435 – ident: e_1_2_8_186_2 doi: 10.1084/jem.20041033 – ident: e_1_2_8_211_2 doi: 10.1126/science.1122927 – ident: e_1_2_8_215_2 doi: 10.4049/jimmunol.178.7.4022 – ident: e_1_2_8_197_2 doi: 10.1093/intimm/dxh019 – volume: 159 start-page: 144 year: 1997 ident: e_1_2_8_128_2 article-title: Interaction of CTLA‐4 with the clathrin‐associated protein AP50 results in ligand‐independent endocytosis that limits cell surface expression publication-title: J Immunol doi: 10.4049/jimmunol.159.1.144 – volume: 161 start-page: 1659 year: 1998 ident: e_1_2_8_52_2 article-title: Impaired alloantigen‐mediated T cell apoptosis and failure to induce long‐term allograft survival in IL‐2‐deficient mice publication-title: J Immunol doi: 10.4049/jimmunol.161.4.1659 – ident: e_1_2_8_273_2 doi: 10.1056/NEJMoa063842 – ident: e_1_2_8_125_2 doi: 10.1084/jem.20021646 – ident: e_1_2_8_188_2 doi: 10.1038/ni1264 – ident: e_1_2_8_73_2 doi: 10.4049/jimmunol.164.11.5805 – ident: e_1_2_8_167_2 doi: 10.1084/jem.20051776 – volume: 159 start-page: 3220 year: 1997 ident: e_1_2_8_76_2 article-title: The SH3 domain of Itk/Emt binds to proline‐rich sequences in the cytoplasmic domain of the T cell costimulatory receptor CD28 publication-title: J Immunol doi: 10.4049/jimmunol.159.7.3220 – volume: 147 start-page: 2461 year: 1991 ident: e_1_2_8_31_2 article-title: CD28 delivers a costimulatory signal involved in antigen‐specific IL‐2 production by human T cells publication-title: J Immunol doi: 10.4049/jimmunol.147.8.2461 – ident: e_1_2_8_214_2 doi: 10.4049/jimmunol.0900691 – ident: e_1_2_8_165_2 doi: 10.1002/eji.200324228 – ident: e_1_2_8_226_2 doi: 10.1038/ni.1774 – ident: e_1_2_8_150_2 doi: 10.4049/jimmunol.0802610 – ident: e_1_2_8_236_2 doi: 10.1084/jem.20082492 – ident: e_1_2_8_205_2 doi: 10.1016/1074-7613(95)90180-9 – ident: e_1_2_8_193_2 doi: 10.1146/annurev.immunol.23.021704.115643 – ident: e_1_2_8_178_2 doi: 10.1084/jem.20040139 – ident: e_1_2_8_174_2 doi: 10.1038/ni.1790 – ident: e_1_2_8_6_2 doi: 10.1111/j.1600-065X.2009.00780.x – ident: e_1_2_8_8_2 doi: 10.1097/MOT.0b013e328306115b – ident: e_1_2_8_116_2 doi: 10.1084/jem.180.6.2049 – ident: e_1_2_8_12_2 doi: 10.1111/j.1600-065X.2009.00775.x – ident: e_1_2_8_198_2 doi: 10.1111/j.1600-6143.2009.02839.x – ident: e_1_2_8_21_2 doi: 10.1016/j.immuni.2007.12.017 – ident: e_1_2_8_246_2 doi: 10.1073/pnas.0711106105 – ident: e_1_2_8_179_2 doi: 10.4049/jimmunol.182.1.102 – ident: e_1_2_8_183_2 doi: 10.1084/jem.20030315 – ident: e_1_2_8_249_2 doi: 10.4049/jimmunol.179.7.4685 – ident: e_1_2_8_34_2 doi: 10.1126/science.283.5402.680 – ident: e_1_2_8_122_2 doi: 10.1038/35069118 – ident: e_1_2_8_185_2 doi: 10.1038/ni1178 – ident: e_1_2_8_180_2 doi: 10.1093/intimm/10.12.1969 – ident: e_1_2_8_72_2 doi: 10.1016/0092-8674(93)90404-E – ident: e_1_2_8_158_2 doi: 10.1038/85330 – ident: e_1_2_8_135_2 doi: 10.1146/annurev.immunol.22.012703.104721 – ident: e_1_2_8_203_2 doi: 10.1016/0092-8674(93)80067-O – ident: e_1_2_8_134_2 doi: 10.1371/journal.pone.0003842 – ident: e_1_2_8_143_2 doi: 10.1111/j.1600-065X.2008.00639.x – ident: e_1_2_8_62_2 doi: 10.1172/JCI119093 – ident: e_1_2_8_170_2 doi: 10.1084/jem.194.5.677 – ident: e_1_2_8_224_2 doi: 10.1016/j.immuni.2008.03.016 – ident: e_1_2_8_199_2 doi: 10.1084/jem.192.2.303 – ident: e_1_2_8_40_2 doi: 10.1002/(SICI)1521-4141(199903)29:03<789::AID-IMMU789>3.0.CO;2-5 – ident: e_1_2_8_130_2 doi: 10.1016/S1074-7613(00)00031-5 – volume: 156 start-page: 1047 year: 1996 ident: e_1_2_8_119_2 article-title: Differential effects of CTLA‐4 substitutions on the binding of human CD80 (B7‐1) and CD86 (B7‐2) publication-title: J Immunol doi: 10.4049/jimmunol.156.3.1047 – ident: e_1_2_8_182_2 doi: 10.1084/jem.20030686 – ident: e_1_2_8_270_2 doi: 10.1056/NEJMoa1003466 – ident: e_1_2_8_142_2 doi: 10.1016/S1074-7613(00)80346-5 – ident: e_1_2_8_229_2 doi: 10.1084/jem.20081811 – ident: e_1_2_8_53_2 doi: 10.1126/science.1323143 – ident: e_1_2_8_88_2 doi: 10.1128/MCB.01869-08 – volume: 147 start-page: 1037 year: 1991 ident: e_1_2_8_113_2 article-title: CTLA‐4 and CD28 activated lymphocyte molecules are closely related in both mouse and human as to sequence, message expression, gene structure, and chromosomal location publication-title: J Immunol doi: 10.4049/jimmunol.147.3.1037 – ident: e_1_2_8_268_2 doi: 10.1016/S0140-6736(97)09278-7 – ident: e_1_2_8_43_2 doi: 10.4049/jimmunol.164.9.4465 – ident: e_1_2_8_106_2 doi: 10.1002/1521-4141(200204)32:4<972::AID-IMMU972>3.0.CO;2-M – ident: e_1_2_8_49_2 doi: 10.4049/jimmunol.177.11.7698 – ident: e_1_2_8_17_2 doi: 10.1038/ni.1817 – ident: e_1_2_8_230_2 doi: 10.1002/1521-4141(200208)32:8<2365::AID-IMMU2365>3.0.CO;2-2 – ident: e_1_2_8_92_2 doi: 10.4049/jimmunol.176.8.4666 – ident: e_1_2_8_118_2 doi: 10.1016/S1074-7613(02)00362-X – ident: e_1_2_8_175_2 doi: 10.1038/ni1289 – ident: e_1_2_8_208_2 doi: 10.1084/jem.182.6.1769 – ident: e_1_2_8_272_2 doi: 10.1084/jem.20051060 – ident: e_1_2_8_253_2 doi: 10.1038/ni1003 – ident: e_1_2_8_61_2 doi: 10.4049/jimmunol.158.2.658 – ident: e_1_2_8_271_2 doi: 10.1073/pnas.0712237105 – ident: e_1_2_8_206_2 doi: 10.1073/pnas.94.7.3168 – ident: e_1_2_8_250_2 doi: 10.4049/jimmunol.172.8.4676 – ident: e_1_2_8_138_2 doi: 10.1126/science.282.5397.2263 – ident: e_1_2_8_77_2 doi: 10.1126/science.287.5455.1040 – ident: e_1_2_8_131_2 doi: 10.1016/S1074-7613(00)80480-X – ident: e_1_2_8_187_2 doi: 10.1111/j.1600-065X.2008.00637.x – ident: e_1_2_8_71_2 doi: 10.1038/369327a0 – ident: e_1_2_8_110_2 doi: 10.4049/jimmunol.166.2.727 – ident: e_1_2_8_58_2 doi: 10.4049/jimmunol.165.5.2432 – ident: e_1_2_8_245_2 doi: 10.1002/eji.200737159 – ident: e_1_2_8_20_2 doi: 10.1146/annurev.immunol.21.120601.141110 – volume: 152 start-page: 2675 year: 1994 ident: e_1_2_8_47_2 article-title: Naive versus memory CD4 T cell response to antigen. Memory cells are less dependent on accessory cell costimulation and can respond to many antigen‐presenting cell types including resting B cells publication-title: J Immunol doi: 10.4049/jimmunol.152.6.2675 – ident: e_1_2_8_9_2 doi: 10.1111/j.1600-065X.2008.00662.x – ident: e_1_2_8_200_2 doi: 10.1073/pnas.90.6.2189 – ident: e_1_2_8_241_2 doi: 10.1182/blood-2006-07-035279 – ident: e_1_2_8_267_2 doi: 10.1111/j.1600-6143.2008.02377.x |
SSID | ssj0017324 |
Score | 2.513306 |
SecondaryResourceType | review_article |
Snippet | Positive and negative costimulation by members of the CD28 family is critical for the development of productive immune responses against foreign pathogens and... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 180 |
SubjectTerms | Analytical, structural and metabolic biochemistry Animals Antigen-Presenting Cells - immunology Antigens, CD - immunology Apoptosis Regulatory Proteins - immunology Autoimmune Diseases - immunology Autoimmune Diseases - therapy B7-1 Antigen - immunology Biological and medical sciences CD28 CD28 Antigens - immunology costimulation CTLA-4 CTLA-4 Antigen Fundamental and applied biological sciences. Psychology Graft Rejection - immunology Graft Rejection - therapy Humans Immune Tolerance Immunotherapy - trends Neoplasms - immunology Neoplasms - therapy PD-1 Programmed Cell Death 1 Receptor Receptor Cross-Talk T-Lymphocyte Subsets - immunology T-Lymphocytes, Regulatory - immunology tolerance Tregs |
Title | Intrinsic and extrinsic control of peripheral T-cell tolerance by costimulatory molecules of the CD28/ B7 family |
URI | https://api.istex.fr/ark:/67375/WNG-0NM3JQM4-6/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1600-065X.2011.01011.x https://www.ncbi.nlm.nih.gov/pubmed/21488898 https://www.proquest.com/docview/862268835 https://pubmed.ncbi.nlm.nih.gov/PMC3077803 |
Volume | 241 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1600-065X dateEnd: 20241004 omitProxy: true ssIdentifier: ssj0017324 issn: 0105-2896 databaseCode: ABDBF dateStart: 19980201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0105-2896 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1600-065X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017324 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlpdBL3w_3EXQovTn1W_IxTZsmgV1oSOjehGSNSdiNXXa9kM0p5576G_NLOmN53bjNIZReFi_2GGs8M_pGHn3D2DshiiLRYeHnxsZ-IjLt5zZIfRnFxhj0viShDc6jcbZ3nBxM0klX_0R7YRw_RL_gRp7RxmtycG0WQyfPaFd0lk46Js6QfglPhnHafrE97JmkQhFHjuYbnwNzjGxY1HPjjQYz1V1S-jlVTuoFKq90XS9ugqV_V1deR73ttLX7kE3XA3bVKtOtZWO2ios_uCD_j0YesQcduuXbzhwfsztQPWH3XL_L1VPW7OOznlZoGFxXluO80P3rCuZ5XXJiXm6pDmb86OryJ31Y4E09A1IFcLPCazEqnVHXsXq-4meuvS8sSBbBLN_5FMkPV5c_PgruFm-esePdz0c7e37X9sEvEgy9PgK0SIJFaJmAjoWFtAxLA8LmOoqhDLTNZRFiWC5lVKQCBEgTlGkEJi2Juih-zjaquoKXjEcWHUXqXIIERCqJhsCCCGyhjbQITjwm1q9YFR0nOrXmmKlruRHqVJFOFelUtTpV5x4Le8nvjhfkFjLvWyvqBfR8SnV1IlXfxl9UMB7FB19Hico8tjkws16A0m-iZPMYX9udwnBAr0JXUC8XChPUKJMIqz32wpnhb2HMfKXMJQ56YKD9BcQ0PjxTnZ60jOM4EQgZxB7LWvu79YjV_uiQjl79q-Brdt8t4lOF6Ru20cyX8BZRYGM2W__-BYbfUWs |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQKwSX8qbhUXxA3FLytnOElna3NCtRbcXeLDt2RNVtgnazUpdTz5z4jf0lzMTZtIEeKsRllVUyUTyZGX_jjL8h5C1jeR5JP3dTpUM3Yol0U-3FLg9CpRR4XxThBudslAyOo4NJPGnbAeFeGMsP0S24oWc08RodHBek-16e4LboJJ60VJw-_gKgXMfPdeilu0cdl5TPwsASfcOTQJaR9Mt6brxTb65aR7WfY-2knIP6Ctv34iZg-nd95XXc20xcew_IdDVkW69yur2o1Xb-4w82yP-kk4dkowW49IO1yEfkjikfk7u25eXyCamH8LAnJdgGlaWmMDW0_9qaeVoVFMmXG7aDKR1fXvzCbwu0rqYGdWGoWsK1EJjOsPFYNVvSM9vh18xRFvAs3dkN-PvLi58fGbXrN0_J8d6n8c7AbTs_uHkE0dcFjBZwowFdRkaGTJu48AtlmE5lEJrCkzrluQ-RueBBHjPDDFdeEQdGxQWyF4XPyFpZlWaT0ECDr3CZcsMNgJVIGk8b5ulcKq4BnziErd6xyFtadOzOMRXX0iPQqUCdCtSpaHQqzh3id5LfLTXILWTeNWbUCcjZKZbWsVh8He0Lb5SFB1-ySCQO2erZWSeAGTiysjmErgxPQETAVyFLUy3mAnLUIOGArB3y3NrhlTAkv5ynHAbds9DuAiQb758pT741pOMwFzDuhQ5JGgO89YjFMDvCoxf_KviG3BuMs0NxOBx9fknu2zV9LDh9Rdbq2cK8BlBYq63G2X8DfGpVhw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQKxAXKK8SHsUHxC0lDyd2jtCydAu7gqoVe7Ps2BHVbpNqH1KXU8-c-I39JZ2Js6GBHirEZZVVMlE8mRl_44y_IeQ153nOVJj7mTaxz3iq_MwEiS-iWGsN3scYbnAeDNO9I7Y_SkZN_RPuhXH8EO2CG3pGHa_RwU9N0XXyFHdFp8moYeIM8Rfw5DpLIdlCgHTQUkmFPI4czzc8CCQZabeq59o7daaqddT6GZZOqhlor3BtL67DpX-XV16FvfW81btPxqsRu3KV8fZirrfzH3-QQf4flWyQew28pe-cPT4gt2z5kNx2DS-Xj8i8D896XIJlUFUaChND86-pmKdVQZF6ueY6mNDDi_Nf-GWBzquJRVVYqpdwLYSlE2w7Vk2X9MT197UzlAU0S3d2I_H24vzne07d6s1jctT7cLiz5zd9H_ycQez1AaFFwhrAlsyqmBubFGGhLTeZimJbBMpkIg8hLhciyhNuuRU6KJLI6qRA7qL4CVkrq9I-JTQy4ClCZcIKC1CFKRsYywOTKy0MoBOP8NUrlnlDio69OSbySnIEOpWoU4k6lbVO5ZlHwlby1BGD3EDmTW1FrYCajrGwjify2_CjDIaDeP_rgMnUI1sdM2sFMP9GTjaP0JXdSYgH-CpUaavFTEKGGqUCcLVHNp0Z_haG1FeITMCgOwbaXoBU490z5fH3mnIcZgIugtgjaW1_Nx6x7A8O8OjZvwq-Ine-7Pbk5_7w03Ny1y3oY7XpC7I2ny7sS0CEc71Vu_olMhtUNg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intrinsic+and+extrinsic+control+of+peripheral+T-cell+tolerance+by+costimulatory+molecules+of+the+CD28%2F%E2%80%8AB7+family&rft.jtitle=Immunological+reviews&rft.au=Bour-Jordan%2C+H%C3%A9l%C3%A8ne&rft.au=Esensten%2C+Jonathan+H&rft.au=Martinez-Llordella%2C+Marc&rft.au=Penaranda%2C+Cristina&rft.date=2011-05-01&rft.eissn=1600-065X&rft.volume=241&rft.issue=1&rft.spage=180&rft_id=info:doi/10.1111%2Fj.1600-065X.2011.01011.x&rft_id=info%3Apmid%2F21488898&rft.externalDocID=21488898 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0105-2896&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0105-2896&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0105-2896&client=summon |