Intrinsic and extrinsic control of peripheral T-cell tolerance by costimulatory molecules of the CD28/ B7 family

Positive and negative costimulation by members of the CD28 family is critical for the development of productive immune responses against foreign pathogens and their proper termination to prevent inflammation‐induced tissue damage. In addition, costimulatory signals are critical for the establishment...

Full description

Saved in:
Bibliographic Details
Published inImmunological reviews Vol. 241; no. 1; pp. 180 - 205
Main Authors Bour-Jordan, Hélène, Esensten, Jonathan H., Martinez-Llordella, Marc, Penaranda, Cristina, Stumpf, Melanie, Bluestone, Jeffrey A.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.05.2011
Blackwell
Subjects
Online AccessGet full text
ISSN0105-2896
1600-065X
1600-065X
DOI10.1111/j.1600-065X.2011.01011.x

Cover

Abstract Positive and negative costimulation by members of the CD28 family is critical for the development of productive immune responses against foreign pathogens and their proper termination to prevent inflammation‐induced tissue damage. In addition, costimulatory signals are critical for the establishment and maintenance of peripheral tolerance. This paradigm has been established in many animal models and has led to the development of immunotherapies targeting costimulation pathways for the treatment of cancer, autoimmune disease, and allograft rejection. During the last decade, the complexity of the biology of costimulatory pathways has greatly increased due to the realization that costimulation does not affect only effector T cells but also influences regulatory T cells and antigen‐presenting cells. Thus, costimulation controls T‐cell tolerance through both intrinsic and extrinsic pathways. In this review, we discuss the influence of costimulation on intrinsic and extrinsic pathways of peripheral tolerance, with emphasis on members of the CD28 family, CD28, cytotoxic T‐lymphocyte antigen‐4 (CTLA‐4), and programmed death‐1 (PD‐1), as well as the downstream cytokine interleukin‐1 (IL‐2).
AbstractList Positive and negative costimulation by members of the CD28 family is critical for the development of productive immune responses against foreign pathogens and their proper termination to prevent inflammation-induced tissue damage. In addition, costimulatory signals are critical for the establishment and maintenance of peripheral tolerance. This paradigm has been established in many animal models and has led to the development of immunotherapies targeting costimulation pathways for the treatment of cancer, autoimmune disease, and allograft rejection. During the last decade, the complexity of the biology of costimulatory pathways has greatly increased due to the realization that costimulation does not affect only effector T cells but also influences regulatory T cells and antigen-presenting cells. Thus, costimulation controls T-cell tolerance through both intrinsic and extrinsic pathways. In this review, we discuss the influence of costimulation on intrinsic and extrinsic pathways of peripheral tolerance, with emphasis on members of the CD28 family, CD28, cytotoxic T-lymphocyte antigen-4 (CTLA-4), and programmed death-1 (PD-1), as well as the downstream cytokine interleukin-1 (IL-2).
Positive and negative costimulation by members of the CD28 family is critical for the development of productive immune responses against foreign pathogens and their proper termination to prevent inflammation-induced tissue damage. In addition, costimulatory signals are critical for the establishment and maintenance of peripheral tolerance. This paradigm has been established in many animal models and has led to the development of immunotherapies targeting costimulation pathways for the treatment of cancer, autoimmune disease, and allograft rejection. During the last decade, the complexity of the biology of costimulatory pathways has greatly increased due to the realization that costimulation does not affect only effector T cells but also influences regulatory T cells and antigen-presenting cells. Thus, costimulation controls T-cell tolerance through both intrinsic and extrinsic pathways. In this review, we discuss the influence of costimulation on intrinsic and extrinsic pathways of peripheral tolerance, with emphasis on members of the CD28 family, CD28, cytotoxic T-lymphocyte antigen-4 (CTLA-4), and programmed death-1 (PD-1), as well as the downstream cytokine interleukin-1 (IL-2).Positive and negative costimulation by members of the CD28 family is critical for the development of productive immune responses against foreign pathogens and their proper termination to prevent inflammation-induced tissue damage. In addition, costimulatory signals are critical for the establishment and maintenance of peripheral tolerance. This paradigm has been established in many animal models and has led to the development of immunotherapies targeting costimulation pathways for the treatment of cancer, autoimmune disease, and allograft rejection. During the last decade, the complexity of the biology of costimulatory pathways has greatly increased due to the realization that costimulation does not affect only effector T cells but also influences regulatory T cells and antigen-presenting cells. Thus, costimulation controls T-cell tolerance through both intrinsic and extrinsic pathways. In this review, we discuss the influence of costimulation on intrinsic and extrinsic pathways of peripheral tolerance, with emphasis on members of the CD28 family, CD28, cytotoxic T-lymphocyte antigen-4 (CTLA-4), and programmed death-1 (PD-1), as well as the downstream cytokine interleukin-1 (IL-2).
Author Penaranda, Cristina
Stumpf, Melanie
Martinez-Llordella, Marc
Esensten, Jonathan H.
Bluestone, Jeffrey A.
Bour-Jordan, Hélène
Author_xml – sequence: 1
  givenname: Hélène
  surname: Bour-Jordan
  fullname: Bour-Jordan, Hélène
  organization: UCSF Diabetes Center, University of California at San Francisco, San Francisco, CA, USA
– sequence: 2
  givenname: Jonathan H.
  surname: Esensten
  fullname: Esensten, Jonathan H.
  organization: UCSF Diabetes Center, University of California at San Francisco, San Francisco, CA, USA
– sequence: 3
  givenname: Marc
  surname: Martinez-Llordella
  fullname: Martinez-Llordella, Marc
  organization: UCSF Diabetes Center, University of California at San Francisco, San Francisco, CA, USA
– sequence: 4
  givenname: Cristina
  surname: Penaranda
  fullname: Penaranda, Cristina
  organization: UCSF Diabetes Center, University of California at San Francisco, San Francisco, CA, USA
– sequence: 5
  givenname: Melanie
  surname: Stumpf
  fullname: Stumpf, Melanie
  organization: UCSF Diabetes Center, University of California at San Francisco, San Francisco, CA, USA
– sequence: 6
  givenname: Jeffrey A.
  surname: Bluestone
  fullname: Bluestone, Jeffrey A.
  organization: UCSF Diabetes Center, University of California at San Francisco, San Francisco, CA, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24073810$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21488898$$D View this record in MEDLINE/PubMed
BookMark eNqNUU9v0zAUt9AQ6wZfAfmCOKWz4yR2DiCxAqNoHQINwc1ynWfq4sTFTqG9ceZj8klwaNfBbT7Yfv79eXr-naCjzneAEKZkTNM6W45pRUhGqvLzOCeUjgkd9s09NDoAR2iUXsssF3V1jE5iXBJCOcuLB-g4p4UQohYjFKZdH2wXrcaqazBsbirtE-Ad9gavINjVAoJy-DrT4BzuvUtlpwHPt4kZe9uunep92OI2QXrtIA7KfgF48jIXZ79__jrn2KjWuu1DdN8oF-HR_jxFH1-_up68yS7fXUwnLy4zXdSUZkVBcwFNSesCFOMNlIaaOfCmVjkDQ1RTC02bBozIdcmBg5gTU-YwLw3hgrJT9Hznu1rPW2g0pIGUk6tgWxW20isr_0c6u5Bf_HfJCOeCsGTwdG8Q_Lc1xF62Ng7zqw78OkpR5XklBCsT8_G_rQ49bv45EZ7sCSpq5czweTbe8grCmaAk8cSOp4OPMYA5UCiRQ_RyKYeE5ZCwHKKXf6OXm9txD1Jte9XbIUdl3V0Mnu0MflgH2zs3ltPZh-GW9NlOb2MPm4Neha-y4oyX8tPVhSRXM_b2_ayQFfsDxVTaEg
CODEN IMRED2
CitedBy_id crossref_primary_10_1084_jem_20182232
crossref_primary_10_1172_JCI78089
crossref_primary_10_3389_fimmu_2021_758267
crossref_primary_10_4049_jimmunol_1200972
crossref_primary_10_1155_2013_245928
crossref_primary_10_4049_jimmunol_1203567
crossref_primary_10_5551_jat_10934
crossref_primary_10_1111_imm_12725
crossref_primary_10_1111_imr_12185
crossref_primary_10_1111_imr_12061
crossref_primary_10_1016_j_arr_2015_07_005
crossref_primary_10_1016_j_intimp_2014_05_033
crossref_primary_10_1177_11795549241227421
crossref_primary_10_1186_s13046_024_02973_5
crossref_primary_10_7759_cureus_20604
crossref_primary_10_3389_fimmu_2021_645699
crossref_primary_10_4049_jimmunol_1700003
crossref_primary_10_1074_jbc_M115_684795
crossref_primary_10_1016_j_jaut_2017_09_005
crossref_primary_10_1007_s00011_016_0970_x
crossref_primary_10_4049_jimmunol_1302091
crossref_primary_10_1016_j_compbiomed_2014_11_019
crossref_primary_10_1016_j_ccr_2012_06_009
crossref_primary_10_3109_0284186X_2015_1071918
crossref_primary_10_1172_JCI70355
crossref_primary_10_3389_fgene_2022_1038222
crossref_primary_10_4049_jimmunol_1402591
crossref_primary_10_3389_fimmu_2016_00215
crossref_primary_10_3389_fonc_2014_00077
crossref_primary_10_3390_pathogens10111458
crossref_primary_10_3390_toxics12110802
crossref_primary_10_1146_annurev_immunol_032414_112049
crossref_primary_10_1074_jbc_M112_425371
crossref_primary_10_1038_ncomms10182
crossref_primary_10_1371_journal_pone_0155676
crossref_primary_10_3390_ijms18102129
crossref_primary_10_1586_17474086_2016_1135047
crossref_primary_10_1002_eji_201343891
crossref_primary_10_1136_postgradmedj_2018_136081
crossref_primary_10_1002_hep_32417
crossref_primary_10_4049_jimmunol_1201362
crossref_primary_10_1111_imr_12165
crossref_primary_10_2217_imt_16_7
crossref_primary_10_1007_s12016_021_08871_4
crossref_primary_10_1186_s13075_017_1261_9
crossref_primary_10_1016_j_gendis_2021_08_009
crossref_primary_10_1038_srep03345
crossref_primary_10_1152_physiol_00028_2017
crossref_primary_10_1016_j_celrep_2017_07_027
crossref_primary_10_1038_ni_2404
crossref_primary_10_1002_ijc_28449
crossref_primary_10_1186_s12967_014_0362_3
crossref_primary_10_3389_fimmu_2015_00292
crossref_primary_10_1038_ni_2762
crossref_primary_10_1002_eji_201444688
crossref_primary_10_1155_2012_269756
crossref_primary_10_1128_mBio_02824_21
crossref_primary_10_1007_s12020_015_0567_0
crossref_primary_10_1158_1078_0432_CCR_11_1595
crossref_primary_10_1172_jci_insight_143385
crossref_primary_10_2337_dbi18_0002
crossref_primary_10_1007_s12035_021_02447_1
crossref_primary_10_12688_f1000research_17119_1
crossref_primary_10_2147_CMAR_S321402
crossref_primary_10_1002_art_37910
crossref_primary_10_1016_j_jaci_2012_08_049
crossref_primary_10_1016_j_immuni_2016_04_020
crossref_primary_10_3389_fonc_2015_00058
crossref_primary_10_1182_blood_2015_02_567453
crossref_primary_10_1007_s10549_014_2988_5
crossref_primary_10_1002_iub_2898
crossref_primary_10_4049_jimmunol_1300945
crossref_primary_10_1016_j_it_2013_07_006
crossref_primary_10_1161_ATVBAHA_115_306848
crossref_primary_10_1038_nm_3393
crossref_primary_10_1016_j_molimm_2021_02_014
crossref_primary_10_1038_s41577_024_01010_y
crossref_primary_10_1038_srep39247
crossref_primary_10_1111_ejh_12697
crossref_primary_10_3389_fmicb_2024_1493561
crossref_primary_10_1016_j_bbrc_2011_08_099
crossref_primary_10_1111_jdi_13091
crossref_primary_10_1126_science_aac7888
crossref_primary_10_1111_j_1600_6143_2012_04180_x
crossref_primary_10_1002_eji_201142209
crossref_primary_10_1016_j_micinf_2018_10_003
crossref_primary_10_2337_db15_1175
crossref_primary_10_1172_JCI65013
crossref_primary_10_1084_jem_20122387
crossref_primary_10_1016_j_atherosclerosis_2013_03_014
crossref_primary_10_1007_s00011_024_01900_w
crossref_primary_10_1038_s41598_019_44523_6
crossref_primary_10_1002_eji_201646390
crossref_primary_10_1530_ERC_18_0320
crossref_primary_10_1093_protein_gzw002
crossref_primary_10_1002_adma_202109661
crossref_primary_10_3389_fimmu_2020_01519
crossref_primary_10_1016_j_bbmt_2013_09_003
crossref_primary_10_3390_cancers12102828
crossref_primary_10_1016_j_pnpbp_2013_06_019
crossref_primary_10_1016_j_ccell_2018_03_012
crossref_primary_10_1002_eji_201646500
crossref_primary_10_4049_jimmunol_1200077
crossref_primary_10_1021_nn3037573
crossref_primary_10_6061_clinics_2015_02_13
crossref_primary_10_1155_2012_485781
crossref_primary_10_1007_s40259_025_00712_6
crossref_primary_10_4049_jimmunol_1301253
crossref_primary_10_1007_s00432_017_2450_2
crossref_primary_10_1073_pnas_1219985110
crossref_primary_10_1517_14728214_2016_1150999
crossref_primary_10_1016_j_exppara_2014_03_017
crossref_primary_10_1016_j_imlet_2018_09_007
crossref_primary_10_1586_17474086_2016_1122513
crossref_primary_10_1177_0300060518799567
crossref_primary_10_1002_ijc_28362
crossref_primary_10_3389_fimmu_2022_1095140
crossref_primary_10_1016_j_clml_2016_06_011
crossref_primary_10_1016_j_jaci_2016_04_025
crossref_primary_10_1080_08830185_2021_1884247
crossref_primary_10_2217_fca_15_72
crossref_primary_10_1111_imm_12579
crossref_primary_10_1016_j_imlet_2013_01_014
crossref_primary_10_1097_PPO_0000000000000164
crossref_primary_10_3760_cma_j_issn_0366_6999_20122326
crossref_primary_10_1073_pnas_1216353110
crossref_primary_10_1172_JCI174647
crossref_primary_10_1038_mt_2014_160
crossref_primary_10_1055_s_0042_1757232
crossref_primary_10_1016_j_ando_2018_07_001
crossref_primary_10_1042_CS20210042
crossref_primary_10_1097_MOT_0000000000000151
crossref_primary_10_1016_j_it_2011_06_002
crossref_primary_10_1073_pnas_1208573110
crossref_primary_10_1007_s00467_013_2438_3
crossref_primary_10_1161_CIRCULATIONAHA_119_040563
crossref_primary_10_1016_j_coi_2011_08_004
crossref_primary_10_1038_cr_2015_3
crossref_primary_10_18632_genesandcancer_78
crossref_primary_10_4049_jimmunol_1200695
crossref_primary_10_1016_j_humimm_2013_04_002
crossref_primary_10_1016_j_blre_2016_03_001
crossref_primary_10_4161_21624011_2014_956579
crossref_primary_10_1038_s41416_023_02363_2
crossref_primary_10_5966_sctm_2012_0125
crossref_primary_10_1161_CIRCRESAHA_112_276501
crossref_primary_10_1038_s41598_023_42238_3
crossref_primary_10_1080_2162402X_2020_1758011
crossref_primary_10_4103_jfmpc_jfmpc_493_20
crossref_primary_10_1371_journal_pone_0030713
crossref_primary_10_4103_jcrt_jcrt_2013_21
crossref_primary_10_1146_annurev_immunol_042617_053344
crossref_primary_10_1158_1078_0432_CCR_14_1495
crossref_primary_10_1161_CIRCULATIONAHA_112_123653
crossref_primary_10_5500_wjt_v6_i3_532
crossref_primary_10_1016_j_it_2017_10_001
crossref_primary_10_4251_wjgo_v14_i1_163
crossref_primary_10_3390_cancers15092624
crossref_primary_10_1002_bmm2_12134
crossref_primary_10_1590_S0074_02762012000900024
crossref_primary_10_1097_ACI_0000000000000431
crossref_primary_10_1186_1741_7015_10_3
crossref_primary_10_1051_e3sconf_202018503007
crossref_primary_10_1242_dmm_015099
crossref_primary_10_1136_jitc_2022_006007
crossref_primary_10_4049_jimmunol_1103581
crossref_primary_10_1097_TP_0000000000000421
crossref_primary_10_1155_2019_5421985
crossref_primary_10_1111_j_1600_0463_2012_02914_x
crossref_primary_10_1200_JCO_2013_49_2314
crossref_primary_10_1590_S1516_89132013005000003
crossref_primary_10_1038_icb_2013_54
crossref_primary_10_3390_jpm14030322
crossref_primary_10_1517_14728222_2014_863875
crossref_primary_10_1093_beheco_arab004
crossref_primary_10_3389_fimmu_2021_647385
crossref_primary_10_1038_s41598_019_50479_4
crossref_primary_10_1186_s12964_016_0160_z
crossref_primary_10_1007_s40265_014_0305_6
crossref_primary_10_4236_oji_2012_21002
crossref_primary_10_1016_j_humimm_2019_08_005
crossref_primary_10_3389_fimmu_2017_01356
crossref_primary_10_1189_jlb_3MR1115_500R
crossref_primary_10_1038_nbt_2960
crossref_primary_10_1007_s10147_016_0958_0
crossref_primary_10_1007_s10528_024_10794_6
crossref_primary_10_3389_fgene_2022_982162
crossref_primary_10_2174_1568026620666200616143247
crossref_primary_10_1016_j_coph_2015_05_003
crossref_primary_10_1371_journal_pone_0131539
crossref_primary_10_3389_fimmu_2021_651634
crossref_primary_10_1111_j_1365_2249_2012_04565_x
crossref_primary_10_1111_apm_12364
crossref_primary_10_1016_j_trre_2022_100712
crossref_primary_10_3389_fimmu_2015_00456
crossref_primary_10_1517_14728222_2014_955794
crossref_primary_10_1016_j_jaad_2012_12_963
crossref_primary_10_14450_2318_9312_v31_e1_a2019_pp13_19
crossref_primary_10_3390_ijms20112810
crossref_primary_10_4049_jimmunol_1600133
crossref_primary_10_1016_j_neurol_2022_10_006
crossref_primary_10_3389_fphar_2022_809454
crossref_primary_10_1016_j_jaut_2013_06_006
crossref_primary_10_1016_j_pep_2012_01_012
crossref_primary_10_1146_annurev_immunol_032414_112103
crossref_primary_10_3390_ijms19051283
crossref_primary_10_1093_annonc_mdz129
crossref_primary_10_1016_j_jaut_2013_06_005
crossref_primary_10_1016_j_micres_2023_127393
crossref_primary_10_1093_dote_doaa035
crossref_primary_10_3389_fimmu_2020_00167
crossref_primary_10_4239_wjd_v12_i7_1010
crossref_primary_10_1111_ajd_13210
crossref_primary_10_1111_ajt_12834
crossref_primary_10_3390_cancers12030586
crossref_primary_10_1002_jcp_24852
crossref_primary_10_1038_nrneph_2013_183
crossref_primary_10_1210_endrev_bnae005
crossref_primary_10_1371_journal_pone_0089263
crossref_primary_10_3389_fimmu_2023_1081999
crossref_primary_10_3389_fimmu_2015_00229
crossref_primary_10_1016_j_autrev_2011_08_007
crossref_primary_10_1053_j_seminoncol_2015_05_014
crossref_primary_10_4049_jimmunol_1203085
crossref_primary_10_1111_j_1600_065X_2011_01019_x
crossref_primary_10_17343_sdutfd_1391007
crossref_primary_10_1016_j_urolonc_2016_10_006
crossref_primary_10_4048_jbc_2016_19_3_242
crossref_primary_10_1182_blood_2017_06_741033
crossref_primary_10_4049_jimmunol_1102422
crossref_primary_10_1002_glia_23581
crossref_primary_10_1111_ajt_12938
crossref_primary_10_3389_fimmu_2019_02843
crossref_primary_10_1155_2012_836485
crossref_primary_10_1155_2017_5295164
crossref_primary_10_3390_cancers13184573
crossref_primary_10_1111_imr_12014
crossref_primary_10_1007_s11904_011_0106_4
crossref_primary_10_1080_13543784_2020_1826436
crossref_primary_10_1007_s40265_015_0376_z
crossref_primary_10_1016_j_phymed_2024_155608
crossref_primary_10_1016_j_cellimm_2016_12_002
crossref_primary_10_2147_OTT_S258332
crossref_primary_10_1182_asheducation_2015_1_69
crossref_primary_10_1371_journal_pone_0083139
crossref_primary_10_3389_fimmu_2015_00488
crossref_primary_10_1155_2019_8505021
crossref_primary_10_1371_journal_pone_0233578
crossref_primary_10_1189_jlb_3A0213_079RRR
crossref_primary_10_3389_fphys_2014_00196
crossref_primary_10_1007_s12094_017_1656_8
crossref_primary_10_1016_j_stem_2013_12_003
crossref_primary_10_1053_j_ajkd_2019_03_433
crossref_primary_10_1073_pnas_1406218111
crossref_primary_10_12677_ACM_2018_81009
crossref_primary_10_18632_oncotarget_15621
crossref_primary_10_3389_fphar_2019_00562
crossref_primary_10_2337_db13_1915
crossref_primary_10_1111_cei_12997
crossref_primary_10_1007_s11255_016_1249_4
crossref_primary_10_1007_s12307_012_0125_8
crossref_primary_10_1080_2162402X_2019_1644109
crossref_primary_10_1586_1744666X_2013_828875
crossref_primary_10_1182_bloodadvances_2022008545
crossref_primary_10_1016_j_breast_2017_05_013
crossref_primary_10_1016_j_jns_2015_09_346
crossref_primary_10_1371_journal_pone_0029320
crossref_primary_10_3390_cancers10070211
crossref_primary_10_1002_jcp_25016
crossref_primary_10_1007_s00281_020_00835_8
crossref_primary_10_1016_j_bios_2020_112389
crossref_primary_10_1210_clinem_dgaa553
crossref_primary_10_1016_j_smim_2013_10_010
crossref_primary_10_1186_1746_1596_8_42
crossref_primary_10_1053_j_seminoncol_2012_10_001
Cites_doi 10.4049/jimmunol.174.1.180
10.1038/ng1958
10.1073/pnas.94.17.9273
10.1084/jem.20032196
10.1016/j.immuni.2008.08.011
10.1111/j.0105-2896.2006.00419.x
10.1038/ng1323
10.1084/jem.180.5.1705
10.1111/j.1600-065X.2009.00779.x
10.1084/jem.190.11.1561
10.1002/eji.200425143
10.4049/jimmunol.158.2.580
10.1016/S0165-2478(02)00142-6
10.1086/429843
10.1038/83713
10.1016/S1074-7613(00)80089-8
10.1038/ni1318
10.1084/jem.188.2.287
10.1084/jem.20090847
10.1016/j.immuni.2008.09.012
10.1016/j.immuni.2004.06.017
10.1084/jem.20041982
10.1084/jem.181.1.351
10.4049/jimmunol.164.1.144
10.4049/jimmunol.0803628
10.1111/j.1600-6143.2007.01999.x
10.4049/jimmunol.172.10.5973
10.4049/jimmunol.170.8.4127
10.1016/S1074-7613(02)00367-9
10.1126/science.7770771
10.4049/jimmunol.164.1.265
10.1146/annurev.immunol.24.021605.090535
10.1038/nri1131
10.1038/nature05673
10.1002/1521-4141(200202)32:2<447::AID-IMMU447>3.0.CO;2-5
10.1126/science.1159407
10.1146/annurev.immunol.23.021704.115611
10.1046/j.1365-3083.2003.01232.x
10.1126/science.291.5502.319
10.1016/0092-8674(94)90056-6
10.1002/ana.20514
10.4049/jimmunol.173.8.5028
10.4049/jimmunol.0903940
10.1101/gr.10.4.446
10.1038/ng2068
10.1101/gad.14.10.1236
10.1038/ncb1492
10.1084/jem.191.6.915
10.1084/jem.190.3.375
10.1016/S0022-1759(00)00344-6
10.1056/NEJMoa050085
10.1128/MCB.17.7.4051
10.4049/jimmunol.168.9.4420
10.1093/intimm/dxn108
10.4049/jimmunol.171.7.3348
10.1038/ni884
10.4049/jimmunol.168.10.5070
10.1038/83144
10.4049/jimmunol.156.11.4154
10.1126/science.1160062
10.1016/S0140-6736(08)60998-8
10.4049/jimmunol.177.7.4376
10.1146/annurev.immunol.19.1.225
10.1016/j.it.2008.02.011
10.1093/intimm/8.5.773
10.1146/annurev.med.58.061705.145449
10.1073/pnas.0308688101
10.1016/S1074-7613(00)80195-8
10.1093/intimm/dxh178
10.1080/08916930500050210
10.1002/1521-4141(200006)30:6<1538::AID-IMMU1538>3.0.CO;2-X
10.1093/intimm/dxh055
10.1016/j.immuni.2010.09.006
10.4049/jimmunol.163.3.1128
10.1172/JCI200420483
10.1006/bbrc.2000.2234
10.1016/j.imlet.2010.01.007
10.1073/pnas.89.22.11102
10.4049/jimmunol.164.9.4433
10.4049/jimmunol.169.2.633
10.1002/eji.200324632
10.1038/ni1160
10.1002/art.27601
10.1146/annurev.iy.07.040189.002305
10.1146/annurev.med.58.080205.154004
10.4049/jimmunol.175.1.177
10.1046/j.1399-0039.2003.00136.x
10.1172/JCI36604
10.1084/jem.20100209
10.4049/jimmunol.0904028
10.4049/jimmunol.164.10.5015
10.4049/jimmunol.157.9.3909
10.1056/NEJMoa050524
10.1084/jem.20082824
10.1093/intimm/dxh221
10.4049/jimmunol.164.10.5319
10.1007/s12026-009-8097-6
10.1038/nature01621
10.4049/jimmunol.177.8.5169
10.1073/pnas.0505497102
10.1038/ni846
10.1385/IR:28:3:241
10.1084/jem.20040942
10.1007/3-540-27702-1_2
10.4049/jimmunol.178.4.2018
10.1128/MCB.20.5.1461-1477.2000
10.1111/j.1600-065X.2010.00923.x
10.1038/nri2550
10.1016/S1074-7613(04)00110-4
10.1126/science.1075958
10.1146/annurev.immunol.21.120601.141040
10.1038/ni904
10.1182/blood-2010-03-272153
10.1016/S1074-7613(01)00259-X
10.1084/jem.20022119
10.1016/1074-7613(95)90161-2
10.1038/ni1572
10.3109/07853899708998786
10.4049/jimmunol.162.10.5784
10.1038/nri1457
10.1016/S1074-7613(00)80284-8
10.1016/j.coi.2009.08.007
10.4049/jimmunol.178.7.4315
10.4049/jimmunol.174.6.3359
10.1038/ng1020
10.1038/ni.1835
10.1016/j.cell.2008.05.009
10.1016/j.immuni.2006.03.001
10.1023/A:1014256417651
10.4049/jimmunol.177.4.2186
10.1016/j.coi.2007.05.005
10.1084/jem.183.6.2541
10.1038/ni939
10.4049/jimmunol.0903369
10.1172/JCI119762
10.1126/science.273.5271.104
10.1016/1074-7613(94)90071-X
10.4049/jimmunol.158.11.5091
10.1038/ni1263
10.1084/jem.186.10.1645
10.4049/jimmunol.169.4.1852
10.1016/S1074-7613(01)00167-4
10.1038/ni737
10.1172/JCI5857
10.1073/pnas.200348397
10.1038/35069112
10.4049/jimmunol.172.5.2778
10.1038/86302
10.1016/1074-7613(95)90125-6
10.1111/j.1600-065X.2008.00649.x
10.1172/JCI27856
10.4049/jimmunol.166.9.5331
10.1146/annurev.immunol.14.1.233
10.1126/science.7520604
10.1084/jem.193.11.1285
10.1016/S1074-7613(00)80323-4
10.1111/j.1600-6143.2005.00749.x
10.4049/jimmunol.151.7.3489
10.1016/S1074-7613(02)00323-0
10.1038/ni.1729
10.1038/ni1398
10.1038/ni.1818
10.1073/pnas.162359999
10.1016/S1074-7613(00)80566-X
10.1002/(SICI)1521-4141(199807)28:07<2131::AID-IMMU2131>3.0.CO;2-Q
10.1038/ni836
10.1371/journal.pone.0005087
10.1111/j.1600-065X.2009.00770.x
10.1073/pnas.252771499
10.1073/pnas.0910341107
10.1073/pnas.092284399
10.1084/jem.20061577
10.1111/j.1600-065X.2008.00697.x
10.4049/jimmunol.179.10.6494
10.1172/JCI13220
10.1038/86327
10.1111/j.1365-2567.2006.02362.x
10.1111/j.0105-2896.2005.00249.x
10.1016/S1074-7613(00)80308-8
10.1084/jem.20021024
10.4049/jimmunol.179.11.7924
10.4049/jimmunol.182.1.274
10.1038/15260
10.1038/nri1032
10.1084/jem.189.2.435
10.1084/jem.20041033
10.1126/science.1122927
10.4049/jimmunol.178.7.4022
10.1093/intimm/dxh019
10.4049/jimmunol.159.1.144
10.4049/jimmunol.161.4.1659
10.1056/NEJMoa063842
10.1084/jem.20021646
10.1038/ni1264
10.4049/jimmunol.164.11.5805
10.1084/jem.20051776
10.4049/jimmunol.159.7.3220
10.4049/jimmunol.147.8.2461
10.4049/jimmunol.0900691
10.1002/eji.200324228
10.1038/ni.1774
10.4049/jimmunol.0802610
10.1084/jem.20082492
10.1016/1074-7613(95)90180-9
10.1146/annurev.immunol.23.021704.115643
10.1084/jem.20040139
10.1038/ni.1790
10.1111/j.1600-065X.2009.00780.x
10.1097/MOT.0b013e328306115b
10.1084/jem.180.6.2049
10.1111/j.1600-065X.2009.00775.x
10.1111/j.1600-6143.2009.02839.x
10.1016/j.immuni.2007.12.017
10.1073/pnas.0711106105
10.4049/jimmunol.182.1.102
10.1084/jem.20030315
10.4049/jimmunol.179.7.4685
10.1126/science.283.5402.680
10.1038/35069118
10.1038/ni1178
10.1093/intimm/10.12.1969
10.1016/0092-8674(93)90404-E
10.1038/85330
10.1146/annurev.immunol.22.012703.104721
10.1016/0092-8674(93)80067-O
10.1371/journal.pone.0003842
10.1111/j.1600-065X.2008.00639.x
10.1172/JCI119093
10.1084/jem.194.5.677
10.1016/j.immuni.2008.03.016
10.1084/jem.192.2.303
10.1002/(SICI)1521-4141(199903)29:03<789::AID-IMMU789>3.0.CO;2-5
10.1016/S1074-7613(00)00031-5
10.4049/jimmunol.156.3.1047
10.1084/jem.20030686
10.1056/NEJMoa1003466
10.1016/S1074-7613(00)80346-5
10.1084/jem.20081811
10.1126/science.1323143
10.1128/MCB.01869-08
10.4049/jimmunol.147.3.1037
10.1016/S0140-6736(97)09278-7
10.4049/jimmunol.164.9.4465
10.1002/1521-4141(200204)32:4<972::AID-IMMU972>3.0.CO;2-M
10.4049/jimmunol.177.11.7698
10.1038/ni.1817
10.1002/1521-4141(200208)32:8<2365::AID-IMMU2365>3.0.CO;2-2
10.4049/jimmunol.176.8.4666
10.1016/S1074-7613(02)00362-X
10.1038/ni1289
10.1084/jem.182.6.1769
10.1084/jem.20051060
10.1038/ni1003
10.4049/jimmunol.158.2.658
10.1073/pnas.0712237105
10.1073/pnas.94.7.3168
10.4049/jimmunol.172.8.4676
10.1126/science.282.5397.2263
10.1126/science.287.5455.1040
10.1016/S1074-7613(00)80480-X
10.1111/j.1600-065X.2008.00637.x
10.1038/369327a0
10.4049/jimmunol.166.2.727
10.4049/jimmunol.165.5.2432
10.1002/eji.200737159
10.1146/annurev.immunol.21.120601.141110
10.4049/jimmunol.152.6.2675
10.1111/j.1600-065X.2008.00662.x
10.1073/pnas.90.6.2189
10.1182/blood-2006-07-035279
10.1111/j.1600-6143.2008.02377.x
ContentType Journal Article
Copyright 2011 John Wiley & Sons A/S
2015 INIST-CNRS
2011 John Wiley & Sons A/S.
Copyright_xml – notice: 2011 John Wiley & Sons A/S
– notice: 2015 INIST-CNRS
– notice: 2011 John Wiley & Sons A/S.
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1111/j.1600-065X.2011.01011.x
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1600-065X
EndPage 205
ExternalDocumentID PMC3077803
21488898
24073810
10_1111_j_1600_065X_2011_01011_x
IMR1011
ark_67375_WNG_0NM3JQM4_6
Genre reviewArticle
Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R01 AI050834
– fundername: NIAID NIH HHS
  grantid: P01 AI035294
– fundername: NIDDK NIH HHS
  grantid: P30 DK063720
– fundername: NIAID NIH HHS
  grantid: R37 AI046643
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
29I
31~
33P
36B
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8F7
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAKAS
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZCM
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AETEA
AEUYR
AEYWJ
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AI.
AIACR
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AOETA
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
E3Z
EAD
EAP
EAS
EBB
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IH2
IHE
IX1
J0M
K48
KBYEO
L7B
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBC
OBS
OEB
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
V8K
VH1
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WVDHM
WXI
WXSBR
X7N
XG1
XV2
YFH
YOC
YUY
YYP
ZGI
ZXP
ZZTAW
~IA
~KM
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RWI
WRC
WUP
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c4911-44128ed5194ea37de5f1fbe7d9a23ef0ad98c1ddef82c57e7e8b0f52eb5f07813
IEDL.DBID DR2
ISSN 0105-2896
1600-065X
IngestDate Thu Aug 21 17:44:23 EDT 2025
Fri Jul 11 02:53:56 EDT 2025
Mon Jul 21 06:04:06 EDT 2025
Mon Jul 21 09:18:21 EDT 2025
Thu Apr 24 23:10:17 EDT 2025
Wed Oct 01 00:31:24 EDT 2025
Wed Jan 22 16:21:55 EST 2025
Sun Sep 21 06:18:08 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Family study
Tregs
Biochemistry
Programmed cell death protein 1
Costimulatory molecule
Cytotoxic T lymphocyte antigen 4
Costimulation
Immune tolerance
Family environment
CD28
B7 molecule
CTLA-4
PD-1
tolerance
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
2011 John Wiley & Sons A/S.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4911-44128ed5194ea37de5f1fbe7d9a23ef0ad98c1ddef82c57e7e8b0f52eb5f07813
Notes ark:/67375/WNG-0NM3JQM4-6
istex:50A098714702438531C3DFA3CF931FF73B9AF8E0
ArticleID:IMR1011
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 21488898
PQID 862268835
PQPubID 23479
PageCount 26
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3077803
proquest_miscellaneous_862268835
pubmed_primary_21488898
pascalfrancis_primary_24073810
crossref_primary_10_1111_j_1600_065X_2011_01011_x
crossref_citationtrail_10_1111_j_1600_065X_2011_01011_x
wiley_primary_10_1111_j_1600_065X_2011_01011_x_IMR1011
istex_primary_ark_67375_WNG_0NM3JQM4_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2011
PublicationDateYYYYMMDD 2011-05-01
PublicationDate_xml – month: 05
  year: 2011
  text: May 2011
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
– name: England
PublicationTitle Immunological reviews
PublicationTitleAlternate Immunol Rev
PublicationYear 2011
Publisher Blackwell Publishing Ltd
Blackwell
Publisher_xml – name: Blackwell Publishing Ltd
– name: Blackwell
References Setoguchi R, Hori S, Takahashi T, Sakaguchi S. Homeostatic maintenance of natural Foxp3(+) CD25(+) CD4(+) regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization. J Exp Med 2005;201:723-735.
Francisco LM, et al. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med 2009;206:3015-3029.
Holdorf AD, et al. Proline residues in CD28 and the Src homology (SH)3 domain of Lck are required for T cell costimulation. J Exp Med 1999;190:375-384.
Takeda K, et al. CD28 stimulation triggers NF-kappaB activation through the CARMA1-PKCtheta-Grb2/Gads axis. Int Immunol 2008;20:1507-1515.
Holmberg D, Cilio CM, Lundholm M, Motta V. CTLA-4 (CD152) and its involvement in autoimmune disease. Autoimmunity 2005;38:225-233.
Anderson MS, et al. Projection of an immunological self shadow within the thymus by the aire protein. Science 2002;298:1395-1401.
Tivol EA, Gorski J. Re-establishing peripheral tolerance in the absence of CTLA-4: complementation by wild-type T cells points to an indirect role for CTLA-4. J Immunol 2002;169:1852-1858.
Pages F, et al. Binding of phosphatidylinositol-3-OH kinase to CD28 is required for T-cell signalling. Nature 1994;369:327-329.
Scalapino KJ, Daikh DI. CTLA-4: a key regulatory point in the control of autoimmune disease. Immunol Rev 2008;223:143-155.
Ruperto N, et al. Abatacept in children with juvenile idiopathic arthritis: a randomised, double-blind, placebo-controlled withdrawal trial. Lancet 2008;372:383.
Francisco LM, Sage PT, Sharpe AH. The PD-1 pathway in tolerance and autoimmunity. Immunol Rev 2010;236:219-242.
Zheng Y, Manzotti CN, Liu M, Burke F, Mead KI, Sansom DM. CD86 and CD80 differentially modulate the suppressive function of human regulatory T cells. J Immunol 2004;172:2778-2784.
Yi LA, Hajialiasgar S, Chuang E. Tyrosine-mediated inhibitory signals contribute to CTLA-4 function in vivo. Int Immunol 2004;16:539-547.
Liu MF, Wang CR, Chen PC, Fung LL. Increased expression of soluble cytotoxic T-lymphocyte-associated antigen-4 molecule in patients with systemic lupus erythematosus. Scand J Immunol 2003;57:568-572.
Onishi Y, Fehervari Z, Yamaguchi T, Sakaguchi S. Foxp3+ natural regulatory T cells preferentially form aggregates on dendritic cells in vitro and actively inhibit their maturation. Proc Natl Acad Sci USA 2008;105:10113-10118.
Wing K, Sakaguchi S. Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nat Immunol 2010;11:7-13.
Croft M, Bradley LM, Swain SL. Naive versus memory CD4 T cell response to antigen. Memory cells are less dependent on accessory cell costimulation and can respond to many antigen-presenting cell types including resting B cells. J Immunol 1994;152:2675-2685.
Riley JL, et al. Modulation of TCR-induced transcriptional profiles by ligation of CD28, ICOS, and CTLA-4 receptors. Proc Natl Acad Sci USA 2002;99:11790-11795.
Sasaki T, et al. Function of PI3Kgamma in thymocyte development, T cell activation, and neutrophil migration. Science 2000;287:1040-1046.
Valk E, Rudd CE, Schneider H. CTLA-4 trafficking and surface expression. Trends Immunol 2008;29:272-279.
Birebent B, et al. Suppressive properties of human CD4+ CD25+ regulatory T cells are dependent on CTLA-4 expression. Eur J Immunol 2004;34:3485-3496.
Pan M, Winslow MM, Chen L, Kuo A, Felsher D, Crabtree GR. Enhanced NFATc1 nuclear occupancy causes T cell activation independent of CD28 costimulation. J Immunol 2007;178:4315-4321.
Gozalo-Sanmillan S, McNally JM, Lin MY, Chambers CA, Berg LJ. Cutting edge: two distinct mechanisms lead to impaired T cell homeostasis in Janus kinase 3- and CTLA-4-deficient mice. J Immunol 2001;166:727-730.
Boonen GJ, van Dijk AM, Verdonck LF, van Lier RA, Rijksen G, Medema RH. CD28 induces cell cycle progression by IL-2-independent down-regulation of p27kip1 expression in human peripheral T lymphocytes. Eur J Immunol 1999;29:789-798.
Ise W, et al. CTLA-4 suppresses the pathogenicity of self antigen-specific T cells by cell-intrinsic and cell-extrinsic mechanisms. Nat Immunol 2010;11:129-135.
Read S, et al. Blockade of CTLA-4 on CD4+ CD25+ regulatory T cells abrogates their function in vivo. J Immunol 2006;177:4376-4383.
Fallarino F, et al. CTLA-4-Ig activates forkhead transcription factors and protects dendritic cells from oxidative stress in nonobese diabetic mice. J Exp Med 2004;200:1051-1062.
Lenschow DJ, et al. CD28/B7 regulation of Th1 and Th2 subsets in the development of autoimmune diabetes. Immunity 1996;5:285-293.
Rowell EA, Wang L, Hancock WW, Wells AD. The cyclin-dependent kinase inhibitor p27kip1 is required for transplantation tolerance induced by costimulatory blockade. J Immunol 2006;177:5169-5176.
London CA, Lodge MP, Abbas AK. Functional responses and costimulator dependence of memory CD4+ T cells. J Immunol 2000;164:265-272.
Yokosuka T, et al. Spatiotemporal basis of CTLA-4 costimulatory molecule-mediated negative regulation of T cell activation. Immunity 2010;33:326-339.
Marengere LE, et al. The SH3 domain of Itk/Emt binds to proline-rich sequences in the cytoplasmic domain of the T cell costimulatory receptor CD28. J Immunol 1997;159:3220-3229.
Luhder F, et al. Topological requirements and signaling properties of T cell-activating, anti-CD28 antibody superagonists. J Exp Med 2003;197:955-966.
Nielsen C, Hansen D, Husby S, Jacobsen BB, Lillevang ST. Association of a putative regulatory polymorphism in the PD-1 gene with susceptibility to type 1 diabetes. Tissue Antigens 2003;62:492-497.
Chikuma S, Abbas AK, Bluestone JA. B7-independent inhibition of T cells by CTLA-4. J Immunol 2005;175:177-181.
Wicker LS, Todd JA, Prins JB, Podolin PL, Renjilian RJ, Peterson LB. Resistance alleles at two non-major histocompatibility complex-linked insulin-dependent diabetes loci on chromosome 3, Idd3 and Idd10, protect nonobese diabetic mice from diabetes. J Exp Med 1994;180:1705-1713.
Gardner JM, et al. Deletional tolerance mediated by extrathymic Aire-expressing cells. Science 2008;321:843-847.
Krinzman SJ, et al. Inhibition of T cell costimulation abrogates airway hyperresponsiveness in a murine model. J Clin Invest 1996;98:2693-2699.
Ellis JH, Ashman C, Burden MN, Kilpatrick KE, Morse MA, Hamblin PA. GRID: a novel Grb-2-related adapter protein that interacts with the activated T cell costimulatory receptor CD28. J Immunol 2000;164:5805-5814.
Suzuki H, Zhou YW, Kato M, Mak TW, Nakashima I. Normal regulatory alpha/beta T cells effectively eliminate abnormally activated T cells lacking the interleukin 2 receptor beta in vivo. J Exp Med 1999;190:1561-1572.
Boyman O, Kovar M, Rubinstein MP, Surh CD, Sprent J. Selective stimulation of T cell subsets with antibody-cytokine immune complexes. Science 2006;311:1924-1927.
Fife BT, Bluestone JA. Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways. Immunol Rev 2008;224:166-182.
Lee KM, et al. Molecular basis of T cell inactivation by CTLA-4. Science 1998;282:2263-2266.
Hughes PD, Belz GT, Fortner KA, Budd RC, Strasser A, Bouillet P. Apoptosis regulators Fas and Bim cooperate in shutdown of chronic immune responses and prevention of autoimmunity. Immunity 2008;28:197-205.
Tavano R, et al. CD28 interaction with filamin-A controls lipid raft accumulation at the T-cell immunological synapse. Nat Cell Biol 2006;8:1270-1276.
Tang Q, et al. Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice. Nat Immunol 2006;7:83-92.
Mueller DL. Mechanisms maintaining peripheral tolerance. Nat Immunol 2010;11:21-27.
Yokosuka T, Saito T. Dynamic regulation of T-cell costimulation through TCR-CD28 microclusters. Immunol Rev 2009;229:27-40.
Chikuma S, Imboden JB, Bluestone JA. Negative regulation of T cell receptor-lipid raft interaction by cytotoxic T lymphocyte-associated antigen 4. J Exp Med 2003;197:129-135.
Mueller DL, Jenkins MK, Schwartz RH. Clonal expansion versus functional clonal inactivation: a costimulatory signaling pathway determines the outcome of T cell antigen receptor occupancy. Annu Rev Immunol 1989;7:445-480.
Nishimura H, Nose M, Hiai H, Minato N, Honjo T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 1999;11:141-151.
Schwartz JC, Zhang X, Fedorov AA, Nathenson SG, Almo SC. Structural basis for co-stimulation by the human CTLA-4/B7-2 complex. Nature 2001;410:604-608.
Gough SC, Walker LS, Sansom DM. CTLA4 gene polymorphism and autoimmunity. Immunol Rev 2005;204:102-115.
Peggs KS, Quezada SA, Chambers CA, Korman AJ, Allison JP. Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti-CTLA-4 antibodies. J Exp Med 2009;206:1717-1725.
Schmidt EM, et al. Ctla-4 controls regulatory T cell peripheral homeostasis and is required for suppression of pancreatic islet autoimmunity. J Immunol 2009;182:274-282.
Yokosuka T, et al. Spatiotemporal regulation of T cell costimulation by TCR-CD28 microclusters and protein kinase C theta translocation. Immunity 2008;29:589-601.
Araki M, et al. Genetic evidence that the differential expression of the ligand-independent isoform of CTLA-4 is the molecular basis of the Idd5.1 type 1 diabetes region in nonobese diabetic mice. J Immunol 2009;183:5146-5157.
Turka LA, et al. T-cell activation by the CD28 ligand B7 is required for cardiac allograft rejection in vivo. Proc Natl Acad Sci USA 1992;89:11102.
Greenwald RJ, Freeman GJ, Sharpe AH. The B7 family revisited. Annu Rev Immunol 2005;23:515-548.
Perez VL, Van Parijs L, Biuckians A, Zheng XX, Strom TB, Abbas AK. Induction of peripheral T cell tolerance in vivo requires CTLA-4 engagement. Immunity 1997;6:411-417.
Guntermann C, Alexander DR. CTLA-4 suppresses proximal TCR signaling in resting human CD4(+) T cells by inhibiting ZAP-70 Tyr(319) phosphorylation: a potential role for tyrosine phosphatases. J Immunol 2002;168:4420-4429.
Agarwal A, Newell KA. The role of positive costimulatory molecules in
2002; 16
2004; 21
2004; 200
2010; 11
1997; 158
2002; 17
2004; 22
1997; 159
2004; 20
2005; 293
2005; 174
2005; 175
2010; 107
2002; 99
2003; 57
2004; 4
1999; 283
1999; 162
2010; 185
2006; 176
1999; 163
2008; 105
2008; 226
2010; 184
2008; 224
2008; 223
1997; 6
2009; 119
2007; 109
2006; 177
2006; 212
1992; 7
2007; 178
2001; 410
2007; 179
1994; 265
2009; 10
2000; 14
2006; 24
2010; 116
2000; 12
2000; 13
2002; 84
2005; 102
2008; 29
2004; 36
2000; 10
2010; 236
2004; 173
2004; 172
2004; 34
2008; 28
2000; 97
1994; 77
2007; 7
2005; 76
2008; 20
2006; 203
1998; 10
1998; 161
1998; 282
2001; 166
2010; 33
2007; 19
2007; 446
1999; 190
2010; 207
2005; 353
2009; 182
1999; 29
1989; 7
1994; 152
2002; 3
2003; 171
2003; 170
2001; 27
1999; 103
1999; 189
1996; 14
2006; 116
2006; 118
1995; 3
1996; 98
2003; 33
2000; 191
2000; 192
2006; 355
1992; 257
2005; 5
2005; 6
1999; 31
2003; 28
2009; 183
1995; 268
2009; 229
2008; 133
2005; 17
2003; 100
2008; 372
2003; 21
1998; 8
2009; 45
2007; 39
1997; 350
2008; 9
1996; 183
2008; 8
2008; 3
2001; 108
2005; 23
2003; 198
2010; 62
2003; 197
2007; 37
1991; 147
1997; 94
1993; 72
1994; 180
2001; 291
1997; 186
1997; 100
1993; 75
2001; 19
2003; 3
2003; 4
1997; 17
1999; 11
2000; 164
2001; 15
2000; 165
2000; 287
1996; 4
2009; 206
1996; 5
2005; 38
1992; 89
1996; 8
2004; 101
1998; 28
2009; 21
2010; 129
2002; 298
2002; 32
2000; 20
2006; 7
2010; 363
2006; 8
2008; 13
1993; 90
2008; 322
2008; 321
1999; 5
2007; 58
2009; 29
2001; 248
2006; 311
2004; 199
1994; 369
2001; 194
2004; 114
2000; 269
2004; 16
2001; 193
2005; 201
2002; 168
2005; 202
2002; 169
2005; 204
2000; 30
2002; 22
2009; 9
1993; 151
2001; 2
1996; 273
2009; 4
1994; 1
2003; 423
1998; 188
1996; 157
2003; 62
1996; 156
1995; 182
1995; 181
2005; 58
e_1_2_8_49_2
e_1_2_8_241_2
e_1_2_8_264_2
e_1_2_8_26_2
e_1_2_8_9_2
e_1_2_8_249_2
e_1_2_8_226_2
Tivol EA (e_1_2_8_234_2) 1997; 158
e_1_2_8_203_2
e_1_2_8_132_2
e_1_2_8_178_2
e_1_2_8_41_2
e_1_2_8_87_2
Harper K (e_1_2_8_113_2) 1991; 147
e_1_2_8_170_2
e_1_2_8_64_2
e_1_2_8_117_2
e_1_2_8_193_2
e_1_2_8_155_2
e_1_2_8_38_2
e_1_2_8_230_2
e_1_2_8_253_2
e_1_2_8_15_2
e_1_2_8_238_2
e_1_2_8_215_2
e_1_2_8_91_2
e_1_2_8_143_2
e_1_2_8_189_2
e_1_2_8_120_2
e_1_2_8_99_2
e_1_2_8_30_2
e_1_2_8_105_2
e_1_2_8_53_2
e_1_2_8_166_2
e_1_2_8_242_2
e_1_2_8_25_2
e_1_2_8_48_2
Lindsten T (e_1_2_8_151_2) 1993; 151
e_1_2_8_227_2
e_1_2_8_265_2
e_1_2_8_204_2
e_1_2_8_2_2
e_1_2_8_110_2
e_1_2_8_179_2
e_1_2_8_63_2
e_1_2_8_86_2
e_1_2_8_118_2
e_1_2_8_171_2
e_1_2_8_194_2
e_1_2_8_40_2
e_1_2_8_133_2
e_1_2_8_156_2
e_1_2_8_231_2
e_1_2_8_37_2
Bachmann MF (e_1_2_8_228_2) 1999; 163
e_1_2_8_239_2
e_1_2_8_216_2
e_1_2_8_254_2
e_1_2_8_90_2
e_1_2_8_121_2
e_1_2_8_98_2
e_1_2_8_106_2
e_1_2_8_129_2
e_1_2_8_182_2
e_1_2_8_144_2
e_1_2_8_167_2
e_1_2_8_28_2
e_1_2_8_220_2
Chuang E (e_1_2_8_128_2) 1997; 159
e_1_2_8_89_2
e_1_2_8_243_2
e_1_2_8_266_2
e_1_2_8_205_2
e_1_2_8_7_2
e_1_2_8_20_2
e_1_2_8_66_2
e_1_2_8_43_2
e_1_2_8_172_2
e_1_2_8_111_2
e_1_2_8_157_2
e_1_2_8_195_2
e_1_2_8_81_2
e_1_2_8_134_2
Croft M (e_1_2_8_47_2) 1994; 152
e_1_2_8_17_2
e_1_2_8_270_2
e_1_2_8_78_2
e_1_2_8_217_2
e_1_2_8_232_2
e_1_2_8_255_2
e_1_2_8_160_2
e_1_2_8_55_2
e_1_2_8_32_2
e_1_2_8_107_2
e_1_2_8_183_2
e_1_2_8_122_2
e_1_2_8_168_2
e_1_2_8_93_2
Jenkins MK (e_1_2_8_31_2) 1991; 147
e_1_2_8_70_2
e_1_2_8_145_2
e_1_2_8_27_2
Dai Z (e_1_2_8_52_2) 1998; 161
Marengere LE (e_1_2_8_76_2) 1997; 159
e_1_2_8_221_2
e_1_2_8_206_2
e_1_2_8_244_2
e_1_2_8_267_2
e_1_2_8_80_2
e_1_2_8_150_2
e_1_2_8_229_2
e_1_2_8_8_2
e_1_2_8_42_2
e_1_2_8_65_2
e_1_2_8_88_2
e_1_2_8_112_2
e_1_2_8_135_2
e_1_2_8_158_2
e_1_2_8_173_2
e_1_2_8_196_2
e_1_2_8_16_2
e_1_2_8_39_2
e_1_2_8_108_2
e_1_2_8_271_2
e_1_2_8_210_2
e_1_2_8_233_2
e_1_2_8_256_2
e_1_2_8_218_2
e_1_2_8_161_2
e_1_2_8_54_2
e_1_2_8_77_2
e_1_2_8_100_2
e_1_2_8_123_2
e_1_2_8_146_2
e_1_2_8_169_2
e_1_2_8_184_2
e_1_2_8_92_2
e_1_2_8_45_2
e_1_2_8_260_2
e_1_2_8_68_2
e_1_2_8_222_2
e_1_2_8_245_2
e_1_2_8_268_2
e_1_2_8_207_2
e_1_2_8_5_2
Thornton AM (e_1_2_8_181_2) 1998; 188
e_1_2_8_22_2
e_1_2_8_159_2
e_1_2_8_83_2
e_1_2_8_136_2
e_1_2_8_174_2
e_1_2_8_197_2
Perkins D (e_1_2_8_152_2) 1996; 156
e_1_2_8_272_2
e_1_2_8_19_2
e_1_2_8_109_2
e_1_2_8_34_2
e_1_2_8_57_2
e_1_2_8_211_2
e_1_2_8_257_2
e_1_2_8_219_2
e_1_2_8_95_2
e_1_2_8_162_2
e_1_2_8_11_2
e_1_2_8_72_2
e_1_2_8_101_2
e_1_2_8_147_2
e_1_2_8_185_2
e_1_2_8_124_2
e_1_2_8_261_2
e_1_2_8_29_2
Balzano C (e_1_2_8_115_2) 1992; 7
e_1_2_8_67_2
e_1_2_8_223_2
e_1_2_8_269_2
e_1_2_8_200_2
e_1_2_8_246_2
e_1_2_8_208_2
e_1_2_8_6_2
e_1_2_8_21_2
e_1_2_8_137_2
King PD (e_1_2_8_75_2) 1997; 158
e_1_2_8_82_2
e_1_2_8_114_2
e_1_2_8_175_2
e_1_2_8_198_2
e_1_2_8_250_2
e_1_2_8_18_2
e_1_2_8_273_2
e_1_2_8_56_2
e_1_2_8_79_2
e_1_2_8_212_2
e_1_2_8_258_2
e_1_2_8_235_2
Aaltonen J (e_1_2_8_14_2) 1999; 31
e_1_2_8_94_2
e_1_2_8_140_2
e_1_2_8_163_2
e_1_2_8_10_2
e_1_2_8_33_2
e_1_2_8_148_2
e_1_2_8_71_2
e_1_2_8_102_2
e_1_2_8_125_2
e_1_2_8_186_2
e_1_2_8_262_2
e_1_2_8_24_2
e_1_2_8_201_2
e_1_2_8_224_2
e_1_2_8_247_2
e_1_2_8_153_2
e_1_2_8_199_2
e_1_2_8_209_2
e_1_2_8_3_2
e_1_2_8_130_2
e_1_2_8_191_2
e_1_2_8_85_2
e_1_2_8_138_2
e_1_2_8_62_2
e_1_2_8_176_2
e_1_2_8_251_2
e_1_2_8_13_2
e_1_2_8_59_2
e_1_2_8_36_2
e_1_2_8_190_2
e_1_2_8_213_2
e_1_2_8_236_2
e_1_2_8_259_2
e_1_2_8_164_2
e_1_2_8_141_2
e_1_2_8_97_2
e_1_2_8_126_2
e_1_2_8_74_2
e_1_2_8_149_2
e_1_2_8_51_2
e_1_2_8_103_2
e_1_2_8_187_2
e_1_2_8_240_2
e_1_2_8_263_2
e_1_2_8_23_2
e_1_2_8_46_2
e_1_2_8_69_2
e_1_2_8_202_2
e_1_2_8_248_2
e_1_2_8_225_2
e_1_2_8_131_2
e_1_2_8_154_2
e_1_2_8_177_2
e_1_2_8_4_2
e_1_2_8_116_2
e_1_2_8_139_2
e_1_2_8_192_2
e_1_2_8_61_2
e_1_2_8_84_2
e_1_2_8_252_2
e_1_2_8_12_2
e_1_2_8_35_2
e_1_2_8_58_2
e_1_2_8_237_2
Sperling AI (e_1_2_8_44_2) 1996; 157
e_1_2_8_214_2
e_1_2_8_142_2
e_1_2_8_165_2
e_1_2_8_188_2
e_1_2_8_96_2
e_1_2_8_104_2
e_1_2_8_127_2
e_1_2_8_180_2
Morton PA (e_1_2_8_119_2) 1996; 156
e_1_2_8_50_2
e_1_2_8_73_2
Khattri R (e_1_2_8_60_2) 1999; 162
References_xml – reference: Arreaza GA, et al. Neonatal activation of CD28 signaling overcomes T cell anergy and prevents autoimmune diabetes by an IL-4-dependent mechanism. J Clin Invest 1997;100:2243-2253.
– reference: Grinberg-Bleyer Y, et al. IL-2 reverses established type 1 diabetes in NOD mice by a local effect on pancreatic regulatory T cells. J Exp Med 2010;207:1871.
– reference: Sadlack B, Merz H, Schorle H, Schimpl A, Feller AC, Horak I. Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell 1993;75:253-261.
– reference: Fife BT, Griffin MD, Abbas AK, Locksley RM, Bluestone JA. Inhibition of T cell activation and autoimmune diabetes using a B cell surface-linked CTLA-4 agonist. J Clin Invest 2006;116:2252-2261.
– reference: Shiratori T, et al. Tyrosine phosphorylation controls internalization of CTLA-4 by regulating its interaction with clathrin-associated adaptor complex AP-2. Immunity 1997;6:583-589.
– reference: Lazarski CA, Hughson A, Sojka DK, Fowell DJ. Regulating Treg cells at sites of inflammation. Immunity 2008;29:511.
– reference: Lohr J, Knoechel B, Jiang S, Sharpe AH, Abbas AK. The inhibitory function of B7 costimulators in T cell responses to foreign and self-antigens. Nat Immunol 2003;4:664-669.
– reference: Vincenti F, et al. Costimulation blockade with belatacept in renal transplantation. N Engl J Med 2005;353:770.
– reference: Bromley SK, et al. The immunological synapse and CD28-CD80 interactions. Nat Immunol 2001;2:1159-1166.
– reference: Perez VL, Van Parijs L, Biuckians A, Zheng XX, Strom TB, Abbas AK. Induction of peripheral T cell tolerance in vivo requires CTLA-4 engagement. Immunity 1997;6:411-417.
– reference: Thornton AM, Shevach EM. CD4+ CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med 1998;188:287-296.
– reference: Ishida M, et al. Differential expression of PD-L1 and PD-L2, ligands for an inhibitory receptor PD-1, in the cells of lymphohematopoietic tissues. Immunol Lett 2002;84:57-62.
– reference: Tavano R, et al. CD28 interaction with filamin-A controls lipid raft accumulation at the T-cell immunological synapse. Nat Cell Biol 2006;8:1270-1276.
– reference: Steinman RM, Hawiger D, Nussenzweig MC. Tolerogenic dendritic cells. Annu Rev Immunol 2003;21:685-711.
– reference: Schmidt EM, et al. Ctla-4 controls regulatory T cell peripheral homeostasis and is required for suppression of pancreatic islet autoimmunity. J Immunol 2009;182:274-282.
– reference: Shapiro VS, Truitt KE, Imboden JB, Weiss A. CD28 mediates transcriptional upregulation of the interleukin-2 (IL-2) promoter through a composite element containing the CD28RE and NF-IL-2B AP-1 sites. Mol Cell Biol 1997;17:4051-4058.
– reference: Aaltonen J, Bjorses P. Cloning of the APECED gene provides new insight into human autoimmunity. Ann Med 1999;31:111-116.
– reference: Stamper CC, et al. Crystal structure of the B7-1/CTLA-4 complex that inhibits human immune responses. Nature 2001;410:608-611.
– reference: Kroner A, et al. A PD-1 polymorphism is associated with disease progression in multiple sclerosis. Ann Neurol 2005;58:50-57.
– reference: Hodi FS, et al. Immunologic and clinical effects of antibody blockade of cytotoxic T lymphocyte-associated antigen 4 in previously vaccinated cancer patients. Proc Natl Acad Sci USA 2008;105:3005.
– reference: Tang Q, et al. Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice. Nat Immunol 2006;7:83-92.
– reference: Peggs KS, Quezada SA, Chambers CA, Korman AJ, Allison JP. Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti-CTLA-4 antibodies. J Exp Med 2009;206:1717-1725.
– reference: Luhder F, Chambers C, Allison JP, Benoist C, Mathis D. Pinpointing when T cell costimulatory receptor CTLA-4 must be engaged to dampen diabetogenic T cells. Proc Natl Acad Sci USA 2000;97:12204-12209.
– reference: D'Cruz LM, Klein L. Development and function of agonist-induced CD25+ Foxp3+ regulatory T cells in the absence of interleukin 2 signaling. Nat Immunol 2005;6:1152-1159.
– reference: Gardner JM, Fletcher AL, Anderson MS, Turley SJ. AIRE in the thymus and beyond. Curr Opin Immunol 2009;21:582-589.
– reference: Marengere LE, et al. The SH3 domain of Itk/Emt binds to proline-rich sequences in the cytoplasmic domain of the T cell costimulatory receptor CD28. J Immunol 1997;159:3220-3229.
– reference: Peach RJ, et al. Complementarity determining region 1 (CDR1)- and CDR3-analogous regions in CTLA-4 and CD28 determine the binding to B7-1. J Exp Med 1994;180:2049-2058.
– reference: Brusko TM, Putnam AL, Bluestone JA. Human regulatory T cells: role in autoimmune disease and therapeutic opportunities. Immunol Rev 2008;223:371-390.
– reference: Greenwald RJ, Freeman GJ, Sharpe AH. The B7 family revisited. Annu Rev Immunol 2005;23:515-548.
– reference: Anderson MS, et al. Projection of an immunological self shadow within the thymus by the aire protein. Science 2002;298:1395-1401.
– reference: Malek TR, Yu A, Vincek V, Scibelli P, Kong L. CD4 regulatory T cells prevent lethal autoimmunity in IL-2Rbeta-deficient mice. Implications for the nonredundant function of IL-2. Immunity 2002;17:167-178.
– reference: Salama AD, et al. Critical role of the programmed death-1 (PD-1) pathway in regulation of experimental autoimmune encephalomyelitis. J Exp Med 2003;198:71-78.
– reference: Birebent B, et al. Suppressive properties of human CD4+ CD25+ regulatory T cells are dependent on CTLA-4 expression. Eur J Immunol 2004;34:3485-3496.
– reference: Bianchi T, et al. Maintenance of peripheral tolerance through controlled tissue homing of antigen-specific T cells in K14-mOVA mice. J Immunol 2009;182:4665-4674.
– reference: Viola A, Lanzavecchia A. T cell activation determined by T cell receptor number and tunable thresholds. Science 1996;273:104-106.
– reference: Rulifson IC, Sperling AI, Fields PE, Fitch FW, Bluestone JA. CD28 costimulation promotes the production of Th2 cytokines. J Immunol 1997;158:658-665.
– reference: Keir ME, et al. Tissue expression of PD-L1 mediates peripheral T cell tolerance. J Exp Med 2006;203:883-895.
– reference: Fisson S, et al. Continuous activation of autoreactive CD4+ CD25+ regulatory T cells in the steady state. J Exp Med 2003;198:737-746.
– reference: Wu LX, et al. CD28 regulates the translation of Bcl-xL via the phosphatidylinositol 3-kinase/mammalian target of rapamycin pathway. J Immunol 2005;174:180-194.
– reference: Genovese MC, et al. Abatacept for rheumatoid arthritis refractory to tumor necrosis factor alpha inhibition. N Engl J Med 2005;353:1114.
– reference: Wells AD, et al. Requirement for T-cell apoptosis in the induction of peripheral transplantation tolerance. Nat Med 1999;5:1303-1307.
– reference: Hao Z, Hampel B, Yagita H, Rajewsky K. T cell-specific ablation of Fas leads to Fas ligand-mediated lymphocyte depletion and inflammatory pulmonary fibrosis. J Exp Med 2004;199:1355-1365.
– reference: Agarwal A, Newell KA. The role of positive costimulatory molecules in transplantation and tolerance. Curr Opin Organ Transplant 2008;13:366-372.
– reference: Ying H, et al. Cutting edge: CTLA-4-B7 interaction suppresses Th17 cell differentiation. J Immunol 2010;185:1375-1378.
– reference: Hwang KW, et al. Cutting edge: targeted ligation of CTLA-4 in vivo by membrane-bound anti-CTLA-4 antibody prevents rejection of allogeneic cells. J Immunol 2002;169:633-637.
– reference: Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+ CD25+ regulatory T cells. Nat Immunol 2003;4:330-336.
– reference: Frauwirth KA, et al. The CD28 signaling pathway regulates glucose metabolism. Immunity 2002;16:769-777.
– reference: Su B, Jacinto E, Hibi M, Kallunki T, Karin M, Ben-Neriah Y. JNK is involved in signal integration during costimulation of T lymphocytes. Cell 1994;77:727-736.
– reference: Sharfe N, Dadi HK, Shahar M, Roifman CM. Human immune disorder arising from mutation of the alpha chain of the interleukin-2 receptor. Proc Natl Acad Sci USA 1997;94:3168-3171.
– reference: Griffin MD, et al. Development and applications of surface-linked single chain antibodies against T-cell antigens. J Immunol Methods 2001;248:77-90.
– reference: Abrams JR, et al. CTLA4Ig-mediated blockade of T-cell costimulation in patients with psoriasis vulgaris. J Clin Invest 1999;103:1243.
– reference: Tivol EA, et al. CTLA4Ig prevents lymphoproliferation and fatal multiorgan tissue destruction in CTLA-4-deficient mice. J Immunol 1997;158:5091-5094.
– reference: Guntermann C, Alexander DR. CTLA-4 suppresses proximal TCR signaling in resting human CD4(+) T cells by inhibiting ZAP-70 Tyr(319) phosphorylation: a potential role for tyrosine phosphatases. J Immunol 2002;168:4420-4429.
– reference: Morton PA, et al. Differential effects of CTLA-4 substitutions on the binding of human CD80 (B7-1) and CD86 (B7-2). J Immunol 1996;156:1047-1054.
– reference: Bluestone JA, St Clair EW, Turka LA. CTLA4Ig: bridging the basic immunology with clinical application. Immunity 2006;24:233-238.
– reference: St Clair EW, et al. New reagents on the horizon for immune tolerance. Annu Rev Med 2007;58:329-346.
– reference: Sansom DM, Walker LS. The role of CD28 and cytotoxic T-lymphocyte antigen-4 (CTLA-4) in regulatory T-cell biology. Immunol Rev 2006;212:131-148.
– reference: Takahashi T, et al. Immunologic self-tolerance maintained by CD25+ CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int Immunol 1998;10:1969-1980.
– reference: Schwartz RH. T cell anergy. Annu Rev Immunol 2003;21:305-334.
– reference: Schneider H, Valk E, Leung R, Rudd CE. CTLA-4 activation of phosphatidylinositol 3-kinase (PI 3-K) and protein kinase B (PKB/AKT) sustains T-cell anergy without cell death. PLoS ONE 2008;3:e3842.
– reference: Zhou X, et al. Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat Immunol 2009;10:1000-1007.
– reference: Oderup C, Cederbom L, Makowska A, Cilio CM, Ivars F. Cytotoxic T lymphocyte antigen-4-dependent down-modulation of costimulatory molecules on dendritic cells in CD4+ CD25+ regulatory T-cell-mediated suppression. Immunology 2006;118:240-249.
– reference: Bour-Jordan H, Blueston JA. CD28 function: a balance of costimulatory and regulatory signals. J Clin Immunol 2002;22:1-7.
– reference: Dodson LF, et al. Targeted knock-in mice expressing mutations of CD28 reveal an essential pathway for costimulation. Mol Cell Biol 2009;29:3710-3721.
– reference: Wang J, Yoshida T, Nakaki F, Hiai H, Okazaki T, Honjo T. Establishment of NOD-Pdcd1-/- mice as an efficient animal model of type I diabetes. Proc Natl Acad Sci USA 2005;102:11823-11828.
– reference: Fife BT, et al. Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR-induced stop signal. Nat Immunol 2009;10:1185-1192.
– reference: Borowski AB, et al. Memory CD8+ T cells require CD28 costimulation. J Immunol 2007;179:6494-6503.
– reference: Walunas TL, et al. CTLA-4 can function as a negative regulator of T cell activation. Immunity 1994;1:405-413.
– reference: Deng G, Podack ER. Suppression of apoptosis in a cytotoxic T-cell line by interleukin 2-mediated gene transcription and deregulated expression of the protooncogene bcl-2. Proc Natl Acad Sci USA 1993;90:2189-2193.
– reference: Salomon B, Bluestone JA. Complexities of CD28/B7: CTLA-4 costimulatory pathways in autoimmunity and transplantation. Annu Rev Immunol 2001;19:225-252.
– reference: Wells AD, Walsh MC, Bluestone JA, Turka LA. Signaling through CD28 and CTLA-4 controls two distinct forms of T cell anergy. J Clin Invest 2001;108:895-903.
– reference: Chen CY, et al. Nucleolin and YB-1 are required for JNK-mediated interleukin-2 mRNA stabilization during T-cell activation. Genes Dev 2000;14:1236-1248.
– reference: Kramer S, Schimpl A, Hunig T. Immunopathology of interleukin (IL) 2-deficient mice: thymus dependence and suppression by thymus-dependent cells with an intact IL-2 gene. J Exp Med 1995;182:1769-1776.
– reference: Francisco LM, Sage PT, Sharpe AH. The PD-1 pathway in tolerance and autoimmunity. Immunol Rev 2010;236:219-242.
– reference: Onishi Y, Fehervari Z, Yamaguchi T, Sakaguchi S. Foxp3+ natural regulatory T cells preferentially form aggregates on dendritic cells in vitro and actively inhibit their maturation. Proc Natl Acad Sci USA 2008;105:10113-10118.
– reference: Schneider H, Rudd CE. Tyrosine phosphatase SHP-2 binding to CTLA-4: absence of direct YVKM/YFIP motif recognition. Biochem Biophys Res Commun 2000;269:279-283.
– reference: Kataoka H, et al. CD25(+)CD4(+) regulatory T cells exert in vitro suppressive activity independent of CTLA-4. Int Immunol 2005;17:421-427.
– reference: Luhder F, et al. Topological requirements and signaling properties of T cell-activating, anti-CD28 antibody superagonists. J Exp Med 2003;197:955-966.
– reference: Suzuki H, et al. Deregulated T cell activation and autoimmunity in mice lacking interleukin-2 receptor beta. Science 1995;268:1472-1476.
– reference: Lenschow DJ, Walunas TL, Bluestone JA. CD28/B7 system of T cell costimulation. Annu Rev Immunol 1996;14:233-258.
– reference: Holmberg D, Cilio CM, Lundholm M, Motta V. CTLA-4 (CD152) and its involvement in autoimmune disease. Autoimmunity 2005;38:225-233.
– reference: Jonuleit H, Schmitt E, Stassen M, Tuettenberg A, Knop J, Enk AH. Identification and functional characterization of human CD4(+)CD25(+) T cells with regulatory properties isolated from peripheral blood. J Exp Med 2001;193:1285-1294.
– reference: Dejean AS, et al. Transcription factor Foxo3 controls the magnitude of T cell immune responses by modulating the function of dendritic cells. Nat Immunol 2009;10:504-513.
– reference: Perkins D, et al. Regulation of CTLA-4 expression during T cell activation. J Immunol 1996;156:4154-4159.
– reference: Merrill JT, et al. The efficacy and safety of abatacept in patients with non-life-threatening manifestations of systemic lupus erythematosus: results of a twelve-month, multicenter, exploratory, phase IIb, randomized, double-blind, placebo-controlled trial. Arthritis Rheum 2010;62:3077.
– reference: Rudd CE, Schneider H. Unifying concepts in CD28, ICOS and CTLA4 co-receptor signalling. Nat Rev Immunol 2003;3:544-556.
– reference: Yokosuka T, et al. Spatiotemporal basis of CTLA-4 costimulatory molecule-mediated negative regulation of T cell activation. Immunity 2010;33:326-339.
– reference: Ise W, et al. CTLA-4 suppresses the pathogenicity of self antigen-specific T cells by cell-intrinsic and cell-extrinsic mechanisms. Nat Immunol 2010;11:129-135.
– reference: Yi LA, Hajialiasgar S, Chuang E. Tyrosine-mediated inhibitory signals contribute to CTLA-4 function in vivo. Int Immunol 2004;16:539-547.
– reference: Hodi FS, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010;363:711.
– reference: Calvo CR, Amsen D, Kruisbeek AM. Cytotoxic T lymphocyte antigen 4 (CTLA-4) interferes with extracellular signal-regulated kinase (ERK) and Jun NH2-terminal kinase (JNK) activation, but does not affect phosphorylation of T cell receptor zeta and ZAP70. J Exp Med 1997;186:1645-1653.
– reference: Boyman O, Kovar M, Rubinstein MP, Surh CD, Sprent J. Selective stimulation of T cell subsets with antibody-cytokine immune complexes. Science 2006;311:1924-1927.
– reference: Zhang Y, Allison JP. Interaction of CTLA-4 with AP50, a clathrin-coated pit adaptor protein. Proc Natl Acad Sci USA 1997;94:9273-9278.
– reference: Dai Z, Konieczny BT, Baddoura FK, Lakkis FG. Impaired alloantigen-mediated T cell apoptosis and failure to induce long-term allograft survival in IL-2-deficient mice. J Immunol 1998;161:1659-1663.
– reference: Mandelbrot DA, McAdam AJ, Sharpe AH. B7-1 or B7-2 is required to produce the lymphoproliferative phenotype in mice lacking cytotoxic T lymphocyte-associated antigen 4 (CTLA-4). J Exp Med 1999;189:435-440.
– reference: Wicker LS, Todd JA, Prins JB, Podolin PL, Renjilian RJ, Peterson LB. Resistance alleles at two non-major histocompatibility complex-linked insulin-dependent diabetes loci on chromosome 3, Idd3 and Idd10, protect nonobese diabetic mice from diabetes. J Exp Med 1994;180:1705-1713.
– reference: Finck BK, Linsley PS, Wofsy D. Treatment of murine lupus with CTLA4Ig. Science 1994;265:1225-1227.
– reference: Nashan B, Moore R, Amlot P, Schmidt AG, Abeywickrama K, Soulillou JP. Randomised trial of basiliximab versus placebo for control of acute cellular rejection in renal allograft recipients. CHIB 201 International Study Group. Lancet 1997;350:1193.
– reference: Dooms H, Kahn E, Knoechel B, Abbas AK. IL-2 induces a competitive survival advantage in T lymphocytes. J Immunol 2004;172:5973-5979.
– reference: Croft M, Bradley LM, Swain SL. Naive versus memory CD4 T cell response to antigen. Memory cells are less dependent on accessory cell costimulation and can respond to many antigen-presenting cell types including resting B cells. J Immunol 1994;152:2675-2685.
– reference: Chikuma S, Bluestone JA. CTLA-4 and tolerance: the biochemical point of view. Immunol Res 2003;28:241-253.
– reference: Marinari B, et al. Vav cooperates with CD28 to induce NF-kappaB activation via a pathway involving Rac-1 and mitogen-activated kinase kinase 1. Eur J Immunol 2002;32:447-456.
– reference: Hildeman D, Jorgensen T, Kappler J, Marrack P. Apoptosis and the homeostatic control of immune responses. Curr Opin Immunol 2007;19:516-521.
– reference: Lenschow DJ, et al. Long-term survival of xenogeneic pancreatic islet grafts induced by CTLA4lg. Science 1992;257:789.
– reference: Pages F, et al. Binding of phosphatidylinositol-3-OH kinase to CD28 is required for T-cell signalling. Nature 1994;369:327-329.
– reference: Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 1995;3:541-547.
– reference: Kundig TM, et al. Duration of TCR stimulation determines costimulatory requirement of T cells. Immunity 1996;5:41-52.
– reference: O'Gorman WE, et al. The initial phase of an immune response functions to activate regulatory T cells. J Immunol 2009;183:332-339.
– reference: Tivol EA, Gorski J. Re-establishing peripheral tolerance in the absence of CTLA-4: complementation by wild-type T cells points to an indirect role for CTLA-4. J Immunol 2002;169:1852-1858.
– reference: Yokosuka T, et al. Spatiotemporal regulation of T cell costimulation by TCR-CD28 microclusters and protein kinase C theta translocation. Immunity 2008;29:589-601.
– reference: Lee KM, et al. Molecular basis of T cell inactivation by CTLA-4. Science 1998;282:2263-2266.
– reference: Diehn M, et al. Genomic expression programs and the integration of the CD28 costimulatory signal in T cell activation. Proc Natl Acad Sci USA 2002;99:11796-11801.
– reference: Fehervari Z, Sakaguchi S. Control of Foxp3+ CD25+ CD4+ regulatory cell activation and function by dendritic cells. Int Immunol 2004;16:1769-1780.
– reference: Turka LA, et al. T-cell activation by the CD28 ligand B7 is required for cardiac allograft rejection in vivo. Proc Natl Acad Sci USA 1992;89:11102.
– reference: Pentcheva-Hoang T, Egen JG, Wojnoonski K, Allison JP. B7-1 and B7-2 selectively recruit CTLA-4 and CD28 to the immunological synapse. Immunity 2004;21:401-413.
– reference: Takahashi T, et al. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 2000;192:303-310.
– reference: Bachmann MF, Kohler G, Ecabert B, Mak TW, Kopf M. Cutting edge: lymphoproliferative disease in the absence of CTLA-4 is not T cell autonomous. J Immunol 1999;163:1128-1131.
– reference: Larsen CP, et al. Rational development of LEA29Y (belatacept), a high-affinity variant of CTLA4-Ig with potent immunosuppressive properties. Am J Transplant 2005;5:443.
– reference: Crellin NK, Garcia RV, Levings MK. Altered activation of AKT is required for the suppressive function of human CD4+ CD25+ T regulatory cells. Blood 2007;109:2014-2022.
– reference: Gozalo-Sanmillan S, McNally JM, Lin MY, Chambers CA, Berg LJ. Cutting edge: two distinct mechanisms lead to impaired T cell homeostasis in Janus kinase 3- and CTLA-4-deficient mice. J Immunol 2001;166:727-730.
– reference: Lohr J, Knoechel B, Kahn EC, Abbas AK. Role of B7 in T cell tolerance. J Immunol 2004;173:5028-5035.
– reference: Hsieh CS, Zheng Y, Liang Y, Fontenot JD, Rudensky AY. An intersection between the self-reactive regulatory and nonregulatory T cell receptor repertoires. Nat Immunol 2006;7:401-410.
– reference: Okkenhaug K, et al. A point mutation in CD28 distinguishes proliferative signals from survival signals. Nat Immunol 2001;2:325-332.
– reference: Balzano C, Buonavista N, Rouvier E, Golstein P. CTLA-4 and CD28: similar proteins, neighbouring genes. Int J Cancer 1992;7(Suppl.):28-32.
– reference: Gardner JM, et al. Deletional tolerance mediated by extrathymic Aire-expressing cells. Science 2008;321:843-847.
– reference: Teft WA, Kirchhof MG, Madrenas J. A molecular perspective of CTLA-4 function. Annu Rev Immunol 2006;24:65-97.
– reference: Yamanouchi J, et al. Interleukin-2 gene variation impairs regulatory T cell function and causes autoimmunity. Nat Genet 2007;39:329-337.
– reference: Willerford DM, Chen J, Ferry JA, Davidson L, Ma A, Alt FW. Interleukin-2 receptor alpha chain regulates the size and content of the peripheral lymphoid compartment. Immunity 1995;3:521-530.
– reference: Li L, Iwamoto Y, Berezovskaya A, Boussiotis VA. A pathway regulated by cell cycle inhibitor p27Kip1 and checkpoint inhibitor Smad3 is involved in the induction of T cell tolerance. Nat Immunol 2006;7:1157-1165.
– reference: Krinzman SJ, et al. Inhibition of T cell costimulation abrogates airway hyperresponsiveness in a murine model. J Clin Invest 1996;98:2693-2699.
– reference: Bouguermouh S, Fortin G, Baba N, Rubio M, Sarfati M. CD28 co-stimulation down regulates Th17 development. PLoS ONE 2009;4:e5087.
– reference: Misra N, Bayry J, Lacroix-Desmazes S, Kazatchkine MD, Kaveri SV. Cutting edge: human CD4+ CD25+ T cells restrain the maturation and antigen-presenting function of dendritic cells. J Immunol 2004;172:4676-4680.
– reference: Rowell EA, Walsh MC, Wells AD. Opposing roles for the cyclin-dependent kinase inhibitor p27kip1 in the control of CD4+ T cell proliferation and effector function. J Immunol 2005;174:3359-3368.
– reference: Prokunina L, et al. A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans. Nat Genet 2002;32:666-669.
– reference: Tang Q, et al. Cutting edge: CD28 controls peripheral homeostasis of CD4+ CD25+ regulatory T cells. J Immunol 2003;171:3348.
– reference: Linsley PS, Bradshaw J, Greene J, Peach R, Bennett KL, Mittler RS. Intracellular trafficking of CTLA-4 and focal localization towards sites of TCR engagement. Immunity 1996;4:535-543.
– reference: Habicht A, et al. Striking dichotomy of PD-L1 and PD-L2 pathways in regulating alloreactive CD4(+) and CD8(+) T cells in vivo. Am J Transplant 2007;7:2683-2692.
– reference: Lindsten T, et al. Characterization of CTLA-4 structure and expression on human T cells. J Immunol 1993;151:3489-3499.
– reference: Ndejembi MP, et al. Control of memory CD4 T cell recall by the CD28/B7 costimulatory pathway. J Immunol 2006;177:7698-7706.
– reference: de Jong YP, et al. Blocking inducible co-stimulator in the absence of CD28 impairs Th1 and CD25+ regulatory T cells in murine colitis. Int Immunol 2004;16:205-213.
– reference: Friedline RH, et al. CD4+ regulatory T cells require CTLA-4 for the maintenance of systemic tolerance. J Exp Med 2009;206:421-434.
– reference: Nazarov-Stoica C, Surls J, Bona C, Casares S, Brumeanu TD. CD28 signaling in T regulatory precursors requires p56lck and rafts integrity to stabilize the Foxp3 message. J Immunol 2009;182:102-110.
– reference: Zhang X, Schwartz JC, Almo SC, Nathenson SG. Crystal structure of the receptor-binding domain of human B7-2: insights into organization and signaling. Proc Natl Acad Sci USA 2003;100:2586-2591.
– reference: Ruperto N, et al. Abatacept in children with juvenile idiopathic arthritis: a randomised, double-blind, placebo-controlled withdrawal trial. Lancet 2008;372:383.
– reference: Fallarino F, et al. Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol 2003;4:1206-1212.
– reference: Hombach AA, Kofler D, Hombach A, Rappl G, Abken H. Effective proliferation of human regulatory T cells requires a strong costimulatory CD28 signal that cannot be substituted by IL-2. J Immunol 2007;179:7924-7931.
– reference: Tang Q, Boden EK, Henriksen KJ, Bour-Jordan H, Bi M, Bluestone JA. Distinct roles of CTLA-4 and TGF-beta in CD4+ CD25+ regulatory T cell function. Eur J Immunol 2004;34:2996-3005.
– reference: Linsley PS, Nadler SG. The clinical utility of inhibiting CD28-mediated costimulation. Immunol Rev 2009;229:307.
– reference: Davidson TS, DiPaolo RJ, Andersson J, Shevach EM. Cutting edge: IL-2 is essential for TGF-beta-mediated induction of Foxp3+ T regulatory cells. J Immunol 2007;178:4022-4026.
– reference: Samy ET, Parker LA, Sharp CP, Tung KS. Continuous control of autoimmune disease by antigen-dependent polyclonal CD4+ CD25+ regulatory T cells in the regional lymph node. J Exp Med 2005;202:771-781.
– reference: Anderson MS, Bluestone JA. The NOD mouse: a model of immune dysregulation. Annu Rev Immunol 2005;23:447-485.
– reference: Bluestone JA, et al. The effect of costimulatory and interleukin 2 receptor blockade on regulatory T cells in renal transplantation. Am J Transplant 2008;8:2086.
– reference: Tai X, Cowan M, Feigenbaum L, Singer A. CD28 costimulation of developing thymocytes induces Foxp3 expression and regulatory T cell differentiation independently of interleukin 2. Nat Immunol 2005;6:152-162.
– reference: Tang Q, et al. Central role of defective interleukin-2 production in the triggering of islet autoimmune destruction. Immunity 2008;28:687.
– reference: Mueller DL. Mechanisms maintaining peripheral tolerance. Nat Immunol 2010;11:21-27.
– reference: Rudd CE, Taylor A, Schneider H. CD28 and CTLA-4 coreceptor expression and signal transduction. Immunol Rev 2009;229:12-26.
– reference: Songyang Z, et al. SH2 domains recognize specific phosphopeptide sequences. Cell 1993;72:767-778.
– reference: Fife BT, et al. Insulin-induced remission in new-onset NOD mice is maintained by the PD-1-PD-L1 pathway. J Exp Med 2006;203:2737-2747.
– reference: Chikuma S, Abbas AK, Bluestone JA. B7-independent inhibition of T cells by CTLA-4. J Immunol 2005;175:177-181.
– reference: Bjorgo E, Tasken K. Novel mechanism of signaling by CD28. Immunol Lett 2010;129:1-6.
– reference: Liu MF, Wang CR, Chen PC, Fung LL. Increased expression of soluble cytotoxic T-lymphocyte-associated antigen-4 molecule in patients with systemic lupus erythematosus. Scand J Immunol 2003;57:568-572.
– reference: King PD, et al. Analysis of CD28 cytoplasmic tail tyrosine residues as regulators and substrates for the protein tyrosine kinases, EMT and LCK. J Immunol 1997;158:580-590.
– reference: Suzuki H, Zhou YW, Kato M, Mak TW, Nakashima I. Normal regulatory alpha/beta T cells effectively eliminate abnormally activated T cells lacking the interleukin 2 receptor beta in vivo. J Exp Med 1999;190:1561-1572.
– reference: Bottini N, et al. A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet 2004;36:337-338.
– reference: Sanchez-Valdepenas C, Martin AG, Ramakrishnan P, Wallach D, Fresno M. NF-kappaB-inducing kinase is involved in the activation of the CD28 responsive element through phosphorylation of c-Rel and regulation of its transactivating activity. J Immunol 2006;176:4666-4674.
– reference: Boise LH, et al. CD28 costimulation can promote T cell survival by enhancing the expression of Bcl-XL. Immunity 1995;3:87-98.
– reference: Franceschini D, et al. PD-L1 negatively regulates CD4+ CD25+ Foxp3+ Tregs by limiting STAT-5 phosphorylation in patients chronically infected with HCV. J Clin Invest 2009;119:551-564.
– reference: Pan M, Winslow MM, Chen L, Kuo A, Felsher D, Crabtree GR. Enhanced NFATc1 nuclear occupancy causes T cell activation independent of CD28 costimulation. J Immunol 2007;178:4315-4321.
– reference: Fallarino F, et al. CTLA-4-Ig activates forkhead transcription factors and protects dendritic cells from oxidative stress in nonobese diabetic mice. J Exp Med 2004;200:1051-1062.
– reference: Sakaguchi S. Naturally arising Foxp3-expressing CD25+ CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 2005;6:345-352.
– reference: Jenkins MK, Taylor PS, Norton SD, Urdahl KB. CD28 delivers a costimulatory signal involved in antigen-specific IL-2 production by human T cells. J Immunol 1991;147:2461-2466.
– reference: Hsieh CS, Rudensky AY. The role of TCR specificity in naturally arising CD25+ CD4+ regulatory T cell biology. Curr Top Microbiol Immunol 2005;293:25-42.
– reference: Bennett CL, et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 2001;27:20-21.
– reference: Ellis JH, Ashman C, Burden MN, Kilpatrick KE, Morse MA, Hamblin PA. GRID: a novel Grb-2-related adapter protein that interacts with the activated T cell costimulatory receptor CD28. J Immunol 2000;164:5805-5814.
– reference: Baroja ML, et al. Inhibition of CTLA-4 function by the regulatory subunit of serine/threonine phosphatase 2A. J Immunol 2002;168:5070-5078.
– reference: Walker LS, Chodos A, Eggena M, Dooms H, Abbas AK. Antigen-dependent proliferation of CD4+ CD25+ regulatory T cells in vivo. J Exp Med 2003;198:249-258.
– reference: Chikuma S, Bluestone JA. Expression of CTLA-4 and FOXP3 in cis protects from lethal lymphoproliferative disease. Eur J Immunol 2007;37:1285-1289.
– reference: Fontenot JD, Rasmussen JP, Gavin MA, Rudensky AY. A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat Immunol 2005;6:1142-1151.
– reference: Chikuma S, Imboden JB, Bluestone JA. Negative regulation of T cell receptor-lipid raft interaction by cytotoxic T lymphocyte-associated antigen 4. J Exp Med 2003;197:129-135.
– reference: Chai JG, Tsang JY, Lechler R, Simpson E, Dyson J, Scott D. CD4+ CD25+ T cells as immunoregulatory T cells in vitro. Eur J Immunol 2002;32:2365-2375.
– reference: Hughes PD, Belz GT, Fortner KA, Budd RC, Strasser A, Bouillet P. Apoptosis regulators Fas and Bim cooperate in shutdown of chronic immune responses and prevention of autoimmunity. Immunity 2008;28:197-205.
– reference: Salomon B, et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+ CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 2000;12:431-440.
– reference: Lyons PA, et al. Congenic mapping of the type 1 diabetes locus, Idd3, to a 780-kb region of mouse chromosome 3: identification of a candidate segment of ancestral DNA by haplotype mapping. Genome Res 2000;10:446-453.
– reference: Bluestone JA, Abbas AK. Natural versus adaptive regulatory T cells. Nat Rev Immunol 2003;3:253-257.
– reference: Webster KE, et al. In vivo expansion of T reg cells with IL-2-mAb complexes: induction of resistance to EAE and long-term acceptance of islet allografts without immunosuppression. J Exp Med 2009;206:751-760.
– reference: Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell 2008;133:775-787.
– reference: Setoguchi R, Hori S, Takahashi T, Sakaguchi S. Homeostatic maintenance of natural Foxp3(+) CD25(+) CD4(+) regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization. J Exp Med 2005;201:723-735.
– reference: Holdorf AD, et al. Proline residues in CD28 and the Src homology (SH)3 domain of Lck are required for T cell costimulation. J Exp Med 1999;190:375-384.
– reference: Marinari B, Costanzo A, Marzano V, Piccolella E, Tuosto L. CD28 delivers a unique signal leading to the selective recruitment of RelA and p52 NF-kappaB subunits on IL-8 and Bcl-xL gene promoters. Proc Natl Acad Sci USA 2004;101:6098-6103.
– reference: Barron L, et al. Cutting edge: mechanisms of IL-2-dependent maintenance of functional regulatory T cells. J Immunol 2010;185:6426-6430.
– reference: Read S, et al. Blockade of CTLA-4 on CD4+ CD25+ regulatory T cells abrogates their function in vivo. J Immunol 2006;177:4376-4383.
– reference: Wing K, et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science 2008;322:271-275.
– reference: Schneider H, Prasad KV, Shoelson SE, Rudd CE. CTLA-4 binding to the lipid kinase phosphatidylinositol 3-kinase in T cells. J Exp Med 1995;181:351-355.
– reference: Mellor AL, Munn DH. IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol 2004;4:762-774.
– reference: Goverman J. Autoimmune T cell responses in the central nervous system. Nat Rev Immunol 2009;9:393-407.
– reference: Purvis HA, et al. Low-strength T-cell activation promotes Th17 responses. Blood 2010;116:4829-4837.
– reference: Refaeli Y, Van Parijs L, London CA, Tschopp J, Abbas AK. Biochemical mechanisms of IL-2-regulated Fas-mediated T cell apoptosis. Immunity 1998;8:615-623.
– reference: Scalapino KJ, Daikh DI. CTLA-4: a key regulatory point in the control of autoimmune disease. Immunol Rev 2008;223:143-155.
– reference: Fife BT, Bluestone JA. Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways. Immunol Rev 2008;224:166-182.
– reference: Mueller DL, Jenkins MK, Schwartz RH. Clonal expansion versus functional clonal inactivation: a costimulatory signaling pathway determines the outcome of T cell antigen receptor occupancy. Annu Rev Immunol 1989;7:445-480.
– reference: Gough SC, Walker LS, Sansom DM. CTLA4 gene polymorphism and autoimmunity. Immunol Rev 2005;204:102-115.
– reference: Bour-Jordan H, Bluestone JA. Regulating the regulators: costimulatory signals control the homeostasis and function of regulatory T cells. Immunol Rev 2009;229:41-66.
– reference: Wing K, Sakaguchi S. Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nat Immunol 2010;11:7-13.
– reference: Yokosuka T, Saito T. Dynamic regulation of T-cell costimulation through TCR-CD28 microclusters. Immunol Rev 2009;229:27-40.
– reference: Zheng SG, Wang J, Wang P, Gray JD, Horwitz DA. IL-2 is essential for TGF-beta to convert naive CD4+ CD25− cells to CD25+ Foxp3+ regulatory T cells and for expansion of these cells. J Immunol 2007;178:2018-2027.
– reference: Schwartz JC, Zhang X, Fedorov AA, Nathenson SG, Almo SC. Structural basis for co-stimulation by the human CTLA-4/B7-2 complex. Nature 2001;410:604-608.
– reference: Freiberg BA, et al. Staging and resetting T cell activation in SMACs. Nat Immunol 2002;3:911-917.
– reference: Jordan MS, et al. Thymic selection of CD4+ CD25+ regulatory T cells induced by an agonist self-peptide. Nat Immunol 2001;2:301-306.
– reference: Griffin MD, et al. Blockade of T cell activation using a surface-linked single-chain antibody to CTLA-4 (CD152). J Immunol 2000;164:4433-4442.
– reference: Lenschow DJ, et al. CD28/B7 regulation of Th1 and Th2 subsets in the development of autoimmune diabetes. Immunity 1996;5:285-293.
– reference: Viola A, Schroeder S, Sakakibara Y, Lanzavecchia A. T lymphocyte costimulation mediated by reorganization of membrane microdomains. Science 1999;283:680-682.
– reference: Valk E, Rudd CE, Schneider H. CTLA-4 trafficking and surface expression. Trends Immunol 2008;29:272-279.
– reference: Nishimura H, et al. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science 2001;291:319-322.
– reference: Khattri R, Auger JA, Griffin MD, Sharpe AH, Bluestone JA. Lymphoproliferative disorder in CTLA-4 knockout mice is characterized by CD28-regulated activation of Th2 responses. J Immunol 1999;162:5784-5791.
– reference: Kane LP, Andres PG, Howland KC, Abbas AK, Weiss A. Akt provides the CD28 costimulatory signal for up-regulation of IL-2 and IFN-gamma but not TH2 cytokines. Nat Immunol 2001;2:37-44.
– reference: Francisco LM, et al. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med 2009;206:3015-3029.
– reference: Araki M, et al. Genetic evidence that the differential expression of the ligand-independent isoform of CTLA-4 is the molecular basis of the Idd5.1 type 1 diabetes region in nonobese diabetic mice. J Immunol 2009;183:5146-5157.
– reference: Bour-Jordan H, Salomon BL, Thompson HL, Szot GL, Bernhard MR, Bluestone JA. Costimulation controls diabetes by altering the balance of pathogenic and regulatory T cells. J Clin Invest 2004;114:979-987.
– reference: Burr JS, et al. Cutting edge: distinct motifs within CD28 regulate T cell proliferation and induction of Bcl-XL. J Immunol 2001;166:5331-5335.
– reference: DiPaolo RJ, Brinster C, Davidson TS, Andersson J, Glass D, Shevach EM. Autoantigen-specific TGFbeta-induced Foxp3+ regulatory T cells prevent autoimmunity by inhibiting dendritic cells from activating autoreactive T cells. J Immunol 2007;179:4685-4693.
– reference: Salomon B, et al. Development of spontaneous autoimmune peripheral polyneuropathy in B7-2- deficient NOD mice. J Exp Med 2001;194:677-684.
– reference: Beyersdorf N, et al. Selective targeting of regulatory T cells with CD28 superagonists allows effective therapy of experimental autoimmune encephalomyelitis. J Exp Med 2005;202:445.
– reference: Appleman LJ, Berezovskaya A, Grass I, Boussiotis VA. CD28 costimulation mediates T cell expansion via IL-2-independent and IL-2-dependent regulation of cell cycle progression. J Immunol 2000;164:144-151.
– reference: Eagar TN, Karandikar NJ, Bluestone JA, Miller SD. The role of CTLA-4 in induction and maintenance of peripheral T cell tolerance. Eur J Immunol 2002;32:972-981.
– reference: Howland KC, Ausubel LJ, London CA, Abbas AK. The roles of CD28 and CD40 ligand in T cell activation and tolerance. J Immunol 2000;164:4465-4470.
– reference: Yang J, et al. Paradoxical functions of B7: CD28 costimulation in a MHC class II-mismatched cardiac transplant model. Am J Transplant 2009;9:2837-2844.
– reference: Deane JA, Fruman DA. Phosphoinositide 3-kinase: diverse roles in immune cell activation. Annu Rev Immunol 2004;22:563-598.
– reference: Harper K, Balzano C, Rouvier E, Mattei MG, Luciani MF, Golstein P. CTLA-4 and CD28 activated lymphocyte molecules are closely related in both mouse and human as to sequence, message expression, gene structure, and chromosomal location. J Immunol 1991;147:1037-1044.
– reference: Bustelo XR. Regulatory and signaling properties of the Vav family. Mol Cell Biol 2000;20:1461-1477.
– reference: Vincenti F, Luggen M. T cell costimulation: a rational target in the therapeutic armamentarium for autoimmune diseases and transplantation. Annu Rev Med 2007;58:347-358.
– reference: Latchman Y, et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol 2001;2:261-268.
– reference: Grohmann U, et al. CTLA-4-Ig regulates tryptophan catabolism in vivo. Nat Immunol 2002;3:1097-1101.
– reference: Todd JA, et al. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat Genet 2007;39:857-864.
– reference: Wells AD, Walsh MC, Sankaran D, Turka LA. T cell effector function and anergy avoidance are quantitatively linked to cell division. J Immunol 2000;165:2432-2443.
– reference: Ueda H, et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 2003;423:506-511.
– reference: Walunas TL, Bakker CY, Bluestone JA. CTLA-4 ligation blocks CD28-dependent T cell activation. J Exp Med 1996;183:2541-2550.
– reference: Jain N, Nguyen H, Chambers C, Kang J. Dual function of CTLA-4 in regulatory T cells and conventional T cells to prevent multiorgan autoimmunity. Proc Natl Acad Sci USA 2010;107:1524-1528.
– reference: Cederbom L, Hall H, Ivars F. CD4+ CD25+ regulatory T cells down-regulate co-stimulatory molecules on antigen-presenting cells. Eur J Immunol 2000;30:1538-1543.
– reference: Wells AD, Liu QH, Hondowicz B, Zhang J, Turka LA, Freedman BD. Regulation of T cell activation and tolerance by phospholipase C gamma-1-dependent integrin avidity modulation. J Immunol 2003;170:4127-4133.
– reference: Masteller EL, Chuang E, Mullen AC, Reiner SL, Thompson CB. Structural analysis of CTLA-4 function in vivo. J Immunol 2000;164:5319-5327.
– reference: Kim HP, Kelly J, Leonard WJ. The basis for IL-2-induced IL-2 receptor alpha chain gene regulation: importance of two widely separated IL-2 response elements. Immunity 2001;15:159-172.
– reference: Sperling AI, Auger JA, Ehst BD, Rulifson IC, Thompson CB, Bluestone JA. CD28/B7 interactions deliver a unique signal to naive T cells that regulates cell survival but not early proliferation. J Immunol 1996;157:3909-3917.
– reference: Nielsen C, Hansen D, Husby S, Jacobsen BB, Lillevang ST. Association of a putative regulatory polymorphism in the PD-1 gene with susceptibility to type 1 diabetes. Tissue Antigens 2003;62:492-497.
– reference: Thornton AM, et al. Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. J Immunol 2010;184:3433-3441.
– reference: Bour-Jordan H, Grogan JL, Tang Q, Auger JA, Locksley RM, Bluestone JA. CTLA-4 regulates the requirement for cytokine-induced signals in T(H)2 lineage commitment. Nat Immunol 2003;4:182-188.
– reference: Tang Q, Bluestone JA. The Foxp3+ regulatory T cell: a jack of all trades, master of regulation. Nat Immunol 2008;9:239-244.
– reference: Hoyer KK, Dooms H, Barron L, Abbas AK. Interleukin-2 in the development and control of inflammatory disease. Immunol Rev 2008;226:19.
– reference: Collins AV, et al. The interaction properties of costimulatory molecules revisited. Immunity 2002;17:201-210.
– reference: Miller J, et al. Two pathways of costimulation through CD28. Immunol Res 2009;45:159-172.
– reference: Vella A, et al. Localization of a type 1 diabetes locus in the IL2RA/CD25 region by use of tag single-nucleotide polymorphisms. Am J Hum Genet 2005;76:773-779.
– reference: Rowell EA, Wang L, Hancock WW, Wells AD. The cyclin-dependent kinase inhibitor p27kip1 is required for transplantation tolerance induced by costimulatory blockade. J Immunol 2006;177:5169-5176.
– reference: Ono M, et al. Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature 2007;446:685-689.
– reference: Suntharalingam G, et al. Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med 2006;355:1018.
– reference: Teague TK, et al. Activation-induced inhibition of interleukin 6-mediated T cell survival and signal transducer and activator of transcription 1 signaling. J Exp Med 2000;191:915-926.
– reference: Nishimura H, Nose M, Hiai H, Minato N, Honjo T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 1999;11:141-151.
– reference: Boonen GJ, van Dijk AM, Verdonck LF, van Lier RA, Rijksen G, Medema RH. CD28 induces cell cycle progression by IL-2-independent down-regulation of p27kip1 expression in human peripheral T lymphocytes. Eur J Immunol 1999;29:789-798.
– reference: Sasaki T, et al. Function of PI3Kgamma in thymocyte development, T cell activation, and neutrophil migration. Science 2000;287:1040-1046.
– reference: Nishimura H, et al. Developmentally regulated expression of the PD-1 protein on the surface of double-negative (CD4-CD8-) thymocytes. Int Immunol 1996;8:773-780.
– reference: Riley JL, et al. Modulation of TCR-induced transcriptional profiles by ligation of CD28, ICOS, and CTLA-4 receptors. Proc Natl Acad Sci USA 2002;99:11790-11795.
– reference: Chuang E, Alegre ML, Duckett CS, Noel PJ, Vander Heiden MG, Thompson CB. Interaction of CTLA-4 with the clathrin-associated protein AP50 results in ligand-independent endocytosis that limits cell surface expression. J Immunol 1997;159:144-151.
– reference: Takeda K, et al. CD28 stimulation triggers NF-kappaB activation through the CARMA1-PKCtheta-Grb2/Gads axis. Int Immunol 2008;20:1507-1515.
– reference: London CA, Lodge MP, Abbas AK. Functional responses and costimulator dependence of memory CD4+ T cells. J Immunol 2000;164:265-272.
– reference: Tang Q, et al. In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J Exp Med 2004;199:1455-1465.
– reference: Tuosto L, Acuto O. CD28 affects the earliest signaling events generated by TCR engagement. Eur J Immunol 1998;28:2131-2142.
– reference: Egen JG, Allison JP. Cytotoxic T lymphocyte antigen-4 accumulation in the immunological synapse is regulated by TCR signal strength. Immunity 2002;16:23-35.
– reference: Vijayakrishnan L, et al. An autoimmune disease-associated CTLA-4 splice variant lacking the B7 binding domain signals negatively in T cells. Immunity 2004;20:563-575.
– reference: Zheng Y, Manzotti CN, Liu M, Burke F, Mead KI, Sansom DM. CD86 and CD80 differentially modulate the suppressive function of human regulatory T cells. J Immunol 2004;172:2778-2784.
– reference: Oaks MK, Hallett KM. Cutting edge: a soluble form of CTLA-4 in patients with autoimmune thyroid disease. J Immunol 2000;164:5015-5018.
– reference: Hickman SP, Yang J, Thomas RM, Wells AD, Turka LA. Defective activation of protein kinase C and Ras-ERK pathways limits IL-2 production and proliferation by CD4+ CD25+ regulatory T cells. J Immunol 2006;177:2186-2194.
– reference: Liang SC, et al. Regulation of PD-1, PD-L1, and PD-L2 expression during normal and autoimmune responses. Eur J Immunol 2003;33:2706-2716.
– reference: Peggs KS, Quezada SA, Allison JP. Cell intrinsic mechanisms of T-cell inhibition and application to cancer therapy. Immunol Rev 2008;224:141-165.
– reference: Chuang E, et al. The CD28 and CTLA-4 receptors associate with the serine/threonine phosphatase PP2A. Immunity 2000;13:313-322.
– volume: 157
  start-page: 3909
  year: 1996
  end-page: 3917
  article-title: CD28/B7 interactions deliver a unique signal to naive T cells that regulates cell survival but not early proliferation
  publication-title: J Immunol
– volume: 161
  start-page: 1659
  year: 1998
  end-page: 1663
  article-title: Impaired alloantigen‐mediated T cell apoptosis and failure to induce long‐term allograft survival in IL‐2‐deficient mice
  publication-title: J Immunol
– volume: 311
  start-page: 1924
  year: 2006
  end-page: 1927
  article-title: Selective stimulation of T cell subsets with antibody‐cytokine immune complexes
  publication-title: Science
– volume: 28
  start-page: 241
  year: 2003
  end-page: 253
  article-title: CTLA‐4 and tolerance: the biochemical point of view
  publication-title: Immunol Res
– volume: 16
  start-page: 539
  year: 2004
  end-page: 547
  article-title: Tyrosine‐mediated inhibitory signals contribute to CTLA‐4 function
  publication-title: Int Immunol
– volume: 3
  start-page: e3842
  year: 2008
  article-title: CTLA‐4 activation of phosphatidylinositol 3‐kinase (PI 3‐K) and protein kinase B (PKB/AKT) sustains T‐cell anergy without cell death
  publication-title: PLoS ONE
– volume: 10
  start-page: 1185
  year: 2009
  end-page: 1192
  article-title: Interactions between PD‐1 and PD‐L1 promote tolerance by blocking the TCR‐induced stop signal
  publication-title: Nat Immunol
– volume: 109
  start-page: 2014
  year: 2007
  end-page: 2022
  article-title: Altered activation of AKT is required for the suppressive function of human CD4+ CD25+ T regulatory cells
  publication-title: Blood
– volume: 29
  start-page: 511
  year: 2008
  article-title: Regulating Treg cells at sites of inflammation
  publication-title: Immunity
– volume: 32
  start-page: 666
  year: 2002
  end-page: 669
  article-title: A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans
  publication-title: Nat Genet
– volume: 21
  start-page: 305
  year: 2003
  end-page: 334
  article-title: T cell anergy
  publication-title: Annu Rev Immunol
– volume: 176
  start-page: 4666
  year: 2006
  end-page: 4674
  article-title: NF‐kappaB‐inducing kinase is involved in the activation of the CD28 responsive element through phosphorylation of c‐Rel and regulation of its transactivating activity
  publication-title: J Immunol
– volume: 224
  start-page: 166
  year: 2008
  end-page: 182
  article-title: Control of peripheral T‐cell tolerance and autoimmunity via the CTLA‐4 and PD‐1 pathways
  publication-title: Immunol Rev
– volume: 4
  start-page: 1206
  year: 2003
  end-page: 1212
  article-title: Modulation of tryptophan catabolism by regulatory T cells
  publication-title: Nat Immunol
– volume: 287
  start-page: 1040
  year: 2000
  end-page: 1046
  article-title: Function of PI3Kgamma in thymocyte development, T cell activation, and neutrophil migration
  publication-title: Science
– volume: 372
  start-page: 383
  year: 2008
  article-title: Abatacept in children with juvenile idiopathic arthritis: a randomised, double‐blind, placebo‐controlled withdrawal trial
  publication-title: Lancet
– volume: 199
  start-page: 1455
  year: 2004
  end-page: 1465
  article-title: ‐expanded antigen‐specific regulatory T cells suppress autoimmune diabetes
  publication-title: J Exp Med
– volume: 199
  start-page: 1355
  year: 2004
  end-page: 1365
  article-title: T cell‐specific ablation of Fas leads to Fas ligand‐mediated lymphocyte depletion and inflammatory pulmonary fibrosis
  publication-title: J Exp Med
– volume: 28
  start-page: 687
  year: 2008
  article-title: Central role of defective interleukin‐2 production in the triggering of islet autoimmune destruction
  publication-title: Immunity
– volume: 158
  start-page: 580
  year: 1997
  end-page: 590
  article-title: Analysis of CD28 cytoplasmic tail tyrosine residues as regulators and substrates for the protein tyrosine kinases, EMT and LCK
  publication-title: J Immunol
– volume: 207
  start-page: 1871
  year: 2010
  article-title: IL‐2 reverses established type 1 diabetes in NOD mice by a local effect on pancreatic regulatory T cells
  publication-title: J Exp Med
– volume: 17
  start-page: 167
  year: 2002
  end-page: 178
  article-title: CD4 regulatory T cells prevent lethal autoimmunity in IL‐2Rbeta‐deficient mice. Implications for the nonredundant function of IL‐2
  publication-title: Immunity
– volume: 99
  start-page: 11796
  year: 2002
  end-page: 11801
  article-title: Genomic expression programs and the integration of the CD28 costimulatory signal in T cell activation
  publication-title: Proc Natl Acad Sci USA
– volume: 3
  start-page: 253
  year: 2003
  end-page: 257
  article-title: Natural versus adaptive regulatory T cells
  publication-title: Nat Rev Immunol
– volume: 298
  start-page: 1395
  year: 2002
  end-page: 1401
  article-title: Projection of an immunological self shadow within the thymus by the aire protein
  publication-title: Science
– volume: 175
  start-page: 177
  year: 2005
  end-page: 181
  article-title: B7‐independent inhibition of T cells by CTLA‐4
  publication-title: J Immunol
– volume: 4
  start-page: 762
  year: 2004
  end-page: 774
  article-title: IDO expression by dendritic cells: tolerance and tryptophan catabolism
  publication-title: Nat Rev Immunol
– volume: 363
  start-page: 711
  year: 2010
  article-title: Improved survival with ipilimumab in patients with metastatic melanoma
  publication-title: N Engl J Med
– volume: 182
  start-page: 4665
  year: 2009
  end-page: 4674
  article-title: Maintenance of peripheral tolerance through controlled tissue homing of antigen‐specific T cells in K14‐mOVA mice
  publication-title: J Immunol
– volume: 223
  start-page: 143
  year: 2008
  end-page: 155
  article-title: CTLA‐4: a key regulatory point in the control of autoimmune disease
  publication-title: Immunol Rev
– volume: 180
  start-page: 2049
  year: 1994
  end-page: 2058
  article-title: Complementarity determining region 1 (CDR1)‐ and CDR3‐analogous regions in CTLA‐4 and CD28 determine the binding to B7‐1
  publication-title: J Exp Med
– volume: 58
  start-page: 50
  year: 2005
  end-page: 57
  article-title: A PD‐1 polymorphism is associated with disease progression in multiple sclerosis
  publication-title: Ann Neurol
– volume: 8
  start-page: 615
  year: 1998
  end-page: 623
  article-title: Biochemical mechanisms of IL‐2‐regulated Fas‐mediated T cell apoptosis
  publication-title: Immunity
– volume: 181
  start-page: 351
  year: 1995
  end-page: 355
  article-title: CTLA‐4 binding to the lipid kinase phosphatidylinositol 3‐kinase in T cells
  publication-title: J Exp Med
– volume: 11
  start-page: 129
  year: 2010
  end-page: 135
  article-title: CTLA‐4 suppresses the pathogenicity of self antigen‐specific T cells by cell‐intrinsic and cell‐extrinsic mechanisms
  publication-title: Nat Immunol
– volume: 200
  start-page: 1051
  year: 2004
  end-page: 1062
  article-title: CTLA‐4‐Ig activates forkhead transcription factors and protects dendritic cells from oxidative stress in nonobese diabetic mice
  publication-title: J Exp Med
– volume: 185
  start-page: 1375
  year: 2010
  end-page: 1378
  article-title: Cutting edge: CTLA‐4–B7 interaction suppresses Th17 cell differentiation
  publication-title: J Immunol
– volume: 2
  start-page: 37
  year: 2001
  end-page: 44
  article-title: Akt provides the CD28 costimulatory signal for up‐regulation of IL‐2 and IFN‐gamma but not TH2 cytokines
  publication-title: Nat Immunol
– volume: 147
  start-page: 1037
  year: 1991
  end-page: 1044
  article-title: CTLA‐4 and CD28 activated lymphocyte molecules are closely related in both mouse and human as to sequence, message expression, gene structure, and chromosomal location
  publication-title: J Immunol
– volume: 173
  start-page: 5028
  year: 2004
  end-page: 5035
  article-title: Role of B7 in T cell tolerance
  publication-title: J Immunol
– volume: 203
  start-page: 883
  year: 2006
  end-page: 895
  article-title: Tissue expression of PD‐L1 mediates peripheral T cell tolerance
  publication-title: J Exp Med
– volume: 353
  start-page: 1114
  year: 2005
  article-title: Abatacept for rheumatoid arthritis refractory to tumor necrosis factor alpha inhibition
  publication-title: N Engl J Med
– volume: 172
  start-page: 4676
  year: 2004
  end-page: 4680
  article-title: Cutting edge: human CD4+ CD25+ T cells restrain the maturation and antigen‐presenting function of dendritic cells
  publication-title: J Immunol
– volume: 34
  start-page: 3485
  year: 2004
  end-page: 3496
  article-title: Suppressive properties of human CD4+ CD25+ regulatory T cells are dependent on CTLA‐4 expression
  publication-title: Eur J Immunol
– volume: 177
  start-page: 2186
  year: 2006
  end-page: 2194
  article-title: Defective activation of protein kinase C and Ras‐ERK pathways limits IL‐2 production and proliferation by CD4+ CD25+ regulatory T cells
  publication-title: J Immunol
– volume: 198
  start-page: 737
  year: 2003
  end-page: 746
  article-title: Continuous activation of autoreactive CD4+ CD25+ regulatory T cells in the steady state
  publication-title: J Exp Med
– volume: 24
  start-page: 233
  year: 2006
  end-page: 238
  article-title: CTLA4Ig: bridging the basic immunology with clinical application
  publication-title: Immunity
– volume: 169
  start-page: 1852
  year: 2002
  end-page: 1858
  article-title: Re‐establishing peripheral tolerance in the absence of CTLA‐4: complementation by wild‐type T cells points to an indirect role for CTLA‐4
  publication-title: J Immunol
– volume: 105
  start-page: 10113
  year: 2008
  end-page: 10118
  article-title: Foxp3+ natural regulatory T cells preferentially form aggregates on dendritic cells and actively inhibit their maturation
  publication-title: Proc Natl Acad Sci USA
– volume: 3
  start-page: 521
  year: 1995
  end-page: 530
  article-title: Interleukin‐2 receptor alpha chain regulates the size and content of the peripheral lymphoid compartment
  publication-title: Immunity
– volume: 99
  start-page: 11790
  year: 2002
  end-page: 11795
  article-title: Modulation of TCR‐induced transcriptional profiles by ligation of CD28, ICOS, and CTLA‐4 receptors
  publication-title: Proc Natl Acad Sci USA
– volume: 97
  start-page: 12204
  year: 2000
  end-page: 12209
  article-title: Pinpointing when T cell costimulatory receptor CTLA‐4 must be engaged to dampen diabetogenic T cells
  publication-title: Proc Natl Acad Sci USA
– volume: 268
  start-page: 1472
  year: 1995
  end-page: 1476
  article-title: Deregulated T cell activation and autoimmunity in mice lacking interleukin‐2 receptor beta
  publication-title: Science
– volume: 206
  start-page: 751
  year: 2009
  end-page: 760
  article-title: expansion of T reg cells with IL‐2‐mAb complexes: induction of resistance to EAE and long‐term acceptance of islet allografts without immunosuppression
  publication-title: J Exp Med
– volume: 158
  start-page: 658
  year: 1997
  end-page: 665
  article-title: CD28 costimulation promotes the production of Th2 cytokines
  publication-title: J Immunol
– volume: 20
  start-page: 563
  year: 2004
  end-page: 575
  article-title: An autoimmune disease‐associated CTLA‐4 splice variant lacking the B7 binding domain signals negatively in T cells
  publication-title: Immunity
– volume: 177
  start-page: 7698
  year: 2006
  end-page: 7706
  article-title: Control of memory CD4 T cell recall by the CD28/B7 costimulatory pathway
  publication-title: J Immunol
– volume: 186
  start-page: 1645
  year: 1997
  end-page: 1653
  article-title: Cytotoxic T lymphocyte antigen 4 (CTLA‐4) interferes with extracellular signal‐regulated kinase (ERK) and Jun NH2‐terminal kinase (JNK) activation, but does not affect phosphorylation of T cell receptor zeta and ZAP70
  publication-title: J Exp Med
– volume: 107
  start-page: 1524
  year: 2010
  end-page: 1528
  article-title: Dual function of CTLA‐4 in regulatory T cells and conventional T cells to prevent multiorgan autoimmunity
  publication-title: Proc Natl Acad Sci USA
– volume: 206
  start-page: 421
  year: 2009
  end-page: 434
  article-title: CD4+ regulatory T cells require CTLA‐4 for the maintenance of systemic tolerance
  publication-title: J Exp Med
– volume: 410
  start-page: 604
  year: 2001
  end-page: 608
  article-title: Structural basis for co‐stimulation by the human CTLA‐4/B7‐2 complex
  publication-title: Nature
– volume: 147
  start-page: 2461
  year: 1991
  end-page: 2466
  article-title: CD28 delivers a costimulatory signal involved in antigen‐specific IL‐2 production by human T cells
  publication-title: J Immunol
– volume: 10
  start-page: 1969
  year: 1998
  end-page: 1980
  article-title: Immunologic self‐tolerance maintained by CD25+ CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state
  publication-title: Int Immunol
– volume: 369
  start-page: 327
  year: 1994
  end-page: 329
  article-title: Binding of phosphatidylinositol‐3‐OH kinase to CD28 is required for T‐cell signalling
  publication-title: Nature
– volume: 13
  start-page: 366
  year: 2008
  end-page: 372
  article-title: The role of positive costimulatory molecules in transplantation and tolerance
  publication-title: Curr Opin Organ Transplant
– volume: 16
  start-page: 769
  year: 2002
  end-page: 777
  article-title: The CD28 signaling pathway regulates glucose metabolism
  publication-title: Immunity
– volume: 17
  start-page: 421
  year: 2005
  end-page: 427
  article-title: CD25(+)CD4(+) regulatory T cells exert suppressive activity independent of CTLA‐4
  publication-title: Int Immunol
– volume: 183
  start-page: 2541
  year: 1996
  end-page: 2550
  article-title: CTLA‐4 ligation blocks CD28‐dependent T cell activation
  publication-title: J Exp Med
– volume: 84
  start-page: 57
  year: 2002
  end-page: 62
  article-title: Differential expression of PD‐L1 and PD‐L2, ligands for an inhibitory receptor PD‐1, in the cells of lymphohematopoietic tissues
  publication-title: Immunol Lett
– volume: 6
  start-page: 1152
  year: 2005
  end-page: 1159
  article-title: Development and function of agonist‐induced CD25+ Foxp3+ regulatory T cells in the absence of interleukin 2 signaling
  publication-title: Nat Immunol
– volume: 32
  start-page: 447
  year: 2002
  end-page: 456
  article-title: Vav cooperates with CD28 to induce NF‐kappaB activation via a pathway involving Rac‐1 and mitogen‐activated kinase kinase 1
  publication-title: Eur J Immunol
– volume: 198
  start-page: 71
  year: 2003
  end-page: 78
  article-title: Critical role of the programmed death‐1 (PD‐1) pathway in regulation of experimental autoimmune encephalomyelitis
  publication-title: J Exp Med
– volume: 7
  start-page: 445
  year: 1989
  end-page: 480
  article-title: Clonal expansion versus functional clonal inactivation: a costimulatory signaling pathway determines the outcome of T cell antigen receptor occupancy
  publication-title: Annu Rev Immunol
– volume: 22
  start-page: 563
  year: 2004
  end-page: 598
  article-title: Phosphoinositide 3‐kinase: diverse roles in immune cell activation
  publication-title: Annu Rev Immunol
– volume: 156
  start-page: 1047
  year: 1996
  end-page: 1054
  article-title: Differential effects of CTLA‐4 substitutions on the binding of human CD80 (B7‐1) and CD86 (B7‐2)
  publication-title: J Immunol
– volume: 34
  start-page: 2996
  year: 2004
  end-page: 3005
  article-title: Distinct roles of CTLA‐4 and TGF‐beta in CD4+ CD25+ regulatory T cell function
  publication-title: Eur J Immunol
– volume: 4
  start-page: 182
  year: 2003
  end-page: 188
  article-title: CTLA‐4 regulates the requirement for cytokine‐induced signals in T(H)2 lineage commitment
  publication-title: Nat Immunol
– volume: 21
  start-page: 582
  year: 2009
  end-page: 589
  article-title: AIRE in the thymus and beyond
  publication-title: Curr Opin Immunol
– volume: 168
  start-page: 4420
  year: 2002
  end-page: 4429
  article-title: CTLA‐4 suppresses proximal TCR signaling in resting human CD4(+) T cells by inhibiting ZAP‐70 Tyr(319) phosphorylation: a potential role for tyrosine phosphatases
  publication-title: J Immunol
– volume: 33
  start-page: 2706
  year: 2003
  end-page: 2716
  article-title: Regulation of PD‐1, PD‐L1, and PD‐L2 expression during normal and autoimmune responses
  publication-title: Eur J Immunol
– volume: 179
  start-page: 7924
  year: 2007
  end-page: 7931
  article-title: Effective proliferation of human regulatory T cells requires a strong costimulatory CD28 signal that cannot be substituted by IL‐2
  publication-title: J Immunol
– volume: 15
  start-page: 159
  year: 2001
  end-page: 172
  article-title: The basis for IL‐2‐induced IL‐2 receptor alpha chain gene regulation: importance of two widely separated IL‐2 response elements
  publication-title: Immunity
– volume: 16
  start-page: 1769
  year: 2004
  end-page: 1780
  article-title: Control of Foxp3+ CD25+ CD4+ regulatory cell activation and function by dendritic cells
  publication-title: Int Immunol
– volume: 174
  start-page: 3359
  year: 2005
  end-page: 3368
  article-title: Opposing roles for the cyclin‐dependent kinase inhibitor p27kip1 in the control of CD4+ T cell proliferation and effector function
  publication-title: J Immunol
– volume: 36
  start-page: 337
  year: 2004
  end-page: 338
  article-title: A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes
  publication-title: Nat Genet
– volume: 166
  start-page: 5331
  year: 2001
  end-page: 5335
  article-title: Cutting edge: distinct motifs within CD28 regulate T cell proliferation and induction of Bcl‐XL
  publication-title: J Immunol
– volume: 33
  start-page: 326
  year: 2010
  end-page: 339
  article-title: Spatiotemporal basis of CTLA‐4 costimulatory molecule‐mediated negative regulation of T cell activation
  publication-title: Immunity
– volume: 178
  start-page: 4315
  year: 2007
  end-page: 4321
  article-title: Enhanced NFATc1 nuclear occupancy causes T cell activation independent of CD28 costimulation
  publication-title: J Immunol
– volume: 224
  start-page: 141
  year: 2008
  end-page: 165
  article-title: Cell intrinsic mechanisms of T‐cell inhibition and application to cancer therapy
  publication-title: Immunol Rev
– volume: 58
  start-page: 347
  year: 2007
  end-page: 358
  article-title: T cell costimulation: a rational target in the therapeutic armamentarium for autoimmune diseases and transplantation
  publication-title: Annu Rev Med
– volume: 355
  start-page: 1018
  year: 2006
  article-title: Cytokine storm in a phase 1 trial of the anti‐CD28 monoclonal antibody TGN1412
  publication-title: N Engl J Med
– volume: 11
  start-page: 141
  year: 1999
  end-page: 151
  article-title: Development of lupus‐like autoimmune diseases by disruption of the PD‐1 gene encoding an ITIM motif‐carrying immunoreceptor
  publication-title: Immunity
– volume: 22
  start-page: 1
  year: 2002
  end-page: 7
  article-title: CD28 function: a balance of costimulatory and regulatory signals
  publication-title: J Clin Immunol
– volume: 3
  start-page: 541
  year: 1995
  end-page: 547
  article-title: Loss of CTLA‐4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA‐4
  publication-title: Immunity
– volume: 4
  start-page: 330
  year: 2003
  end-page: 336
  article-title: Foxp3 programs the development and function of CD4+ CD25+ regulatory T cells
  publication-title: Nat Immunol
– volume: 423
  start-page: 506
  year: 2003
  end-page: 511
  article-title: Association of the T‐cell regulatory gene CTLA4 with susceptibility to autoimmune disease
  publication-title: Nature
– volume: 169
  start-page: 633
  year: 2002
  end-page: 637
  article-title: Cutting edge: targeted ligation of CTLA‐4 by membrane‐bound anti‐CTLA‐4 antibody prevents rejection of allogeneic cells
  publication-title: J Immunol
– volume: 6
  start-page: 411
  year: 1997
  end-page: 417
  article-title: Induction of peripheral T cell tolerance requires CTLA‐4 engagement
  publication-title: Immunity
– volume: 293
  start-page: 25
  year: 2005
  end-page: 42
  article-title: The role of TCR specificity in naturally arising CD25+ CD4+ regulatory T cell biology
  publication-title: Curr Top Microbiol Immunol
– volume: 103
  start-page: 1243
  year: 1999
  article-title: CTLA4Ig‐mediated blockade of T‐cell costimulation in patients with psoriasis vulgaris
  publication-title: J Clin Invest
– volume: 21
  start-page: 401
  year: 2004
  end-page: 413
  article-title: B7‐1 and B7‐2 selectively recruit CTLA‐4 and CD28 to the immunological synapse
  publication-title: Immunity
– volume: 29
  start-page: 3710
  year: 2009
  end-page: 3721
  article-title: Targeted knock‐in mice expressing mutations of CD28 reveal an essential pathway for costimulation
  publication-title: Mol Cell Biol
– volume: 12
  start-page: 431
  year: 2000
  end-page: 440
  article-title: B7/CD28 costimulation is essential for the homeostasis of the CD4+ CD25+ immunoregulatory T cells that control autoimmune diabetes
  publication-title: Immunity
– volume: 206
  start-page: 1717
  year: 2009
  end-page: 1725
  article-title: Blockade of CTLA‐4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti‐CTLA‐4 antibodies
  publication-title: J Exp Med
– volume: 21
  start-page: 685
  year: 2003
  end-page: 711
  article-title: Tolerogenic dendritic cells
  publication-title: Annu Rev Immunol
– volume: 6
  start-page: 345
  year: 2005
  end-page: 352
  article-title: Naturally arising Foxp3‐expressing CD25+ CD4+ regulatory T cells in immunological tolerance to self and non‐self
  publication-title: Nat Immunol
– volume: 1
  start-page: 405
  year: 1994
  end-page: 413
  article-title: CTLA‐4 can function as a negative regulator of T cell activation
  publication-title: Immunity
– volume: 159
  start-page: 3220
  year: 1997
  end-page: 3229
  article-title: The SH3 domain of Itk/Emt binds to proline‐rich sequences in the cytoplasmic domain of the T cell costimulatory receptor CD28
  publication-title: J Immunol
– volume: 206
  start-page: 3015
  year: 2009
  end-page: 3029
  article-title: PD‐L1 regulates the development, maintenance, and function of induced regulatory T cells
  publication-title: J Exp Med
– volume: 7
  start-page: 28
  issue: Suppl.
  year: 1992
  end-page: 32
  article-title: CTLA‐4 and CD28: similar proteins, neighbouring genes
  publication-title: Int J Cancer
– volume: 158
  start-page: 5091
  year: 1997
  end-page: 5094
  article-title: CTLA4Ig prevents lymphoproliferation and fatal multiorgan tissue destruction in CTLA‐4‐deficient mice
  publication-title: J Immunol
– volume: 283
  start-page: 680
  year: 1999
  end-page: 682
  article-title: T lymphocyte costimulation mediated by reorganization of membrane microdomains
  publication-title: Science
– volume: 16
  start-page: 23
  year: 2002
  end-page: 35
  article-title: Cytotoxic T lymphocyte antigen‐4 accumulation in the immunological synapse is regulated by TCR signal strength
  publication-title: Immunity
– volume: 198
  start-page: 249
  year: 2003
  end-page: 258
  article-title: Antigen‐dependent proliferation of CD4+ CD25+ regulatory T cells
  publication-title: J Exp Med
– volume: 16
  start-page: 205
  year: 2004
  end-page: 213
  article-title: Blocking inducible co‐stimulator in the absence of CD28 impairs Th1 and CD25+ regulatory T cells in murine colitis
  publication-title: Int Immunol
– volume: 203
  start-page: 2737
  year: 2006
  end-page: 2747
  article-title: Insulin‐induced remission in new‐onset NOD mice is maintained by the PD‐1‐PD‐L1 pathway
  publication-title: J Exp Med
– volume: 162
  start-page: 5784
  year: 1999
  end-page: 5791
  article-title: Lymphoproliferative disorder in CTLA‐4 knockout mice is characterized by CD28‐regulated activation of Th2 responses
  publication-title: J Immunol
– volume: 9
  start-page: 239
  year: 2008
  end-page: 244
  article-title: The Foxp3+ regulatory T cell: a jack of all trades, master of regulation
  publication-title: Nat Immunol
– volume: 2
  start-page: 1159
  year: 2001
  end-page: 1166
  article-title: The immunological synapse and CD28‐CD80 interactions
  publication-title: Nat Immunol
– volume: 152
  start-page: 2675
  year: 1994
  end-page: 2685
  article-title: Naive versus memory CD4 T cell response to antigen. Memory cells are less dependent on accessory cell costimulation and can respond to many antigen‐presenting cell types including resting B cells
  publication-title: J Immunol
– volume: 102
  start-page: 11823
  year: 2005
  end-page: 11828
  article-title: Establishment of NOD‐Pdcd1‐/‐ mice as an efficient animal model of type I diabetes
  publication-title: Proc Natl Acad Sci USA
– volume: 193
  start-page: 1285
  year: 2001
  end-page: 1294
  article-title: Identification and functional characterization of human CD4(+)CD25(+) T cells with regulatory properties isolated from peripheral blood
  publication-title: J Exp Med
– volume: 72
  start-page: 767
  year: 1993
  end-page: 778
  article-title: SH2 domains recognize specific phosphopeptide sequences
  publication-title: Cell
– volume: 101
  start-page: 6098
  year: 2004
  end-page: 6103
  article-title: CD28 delivers a unique signal leading to the selective recruitment of RelA and p52 NF‐kappaB subunits on IL‐8 and Bcl‐xL gene promoters
  publication-title: Proc Natl Acad Sci USA
– volume: 38
  start-page: 225
  year: 2005
  end-page: 233
  article-title: CTLA‐4 (CD152) and its involvement in autoimmune disease
  publication-title: Autoimmunity
– volume: 62
  start-page: 3077
  year: 2010
  article-title: The efficacy and safety of abatacept in patients with non‐life‐threatening manifestations of systemic lupus erythematosus: results of a twelve‐month, multicenter, exploratory, phase IIb, randomized, double‐blind, placebo‐controlled trial
  publication-title: Arthritis Rheum
– volume: 39
  start-page: 857
  year: 2007
  end-page: 864
  article-title: Robust associations of four new chromosome regions from genome‐wide analyses of type 1 diabetes
  publication-title: Nat Genet
– volume: 118
  start-page: 240
  year: 2006
  end-page: 249
  article-title: Cytotoxic T lymphocyte antigen‐4‐dependent down‐modulation of costimulatory molecules on dendritic cells in CD4+ CD25+ regulatory T‐cell‐mediated suppression
  publication-title: Immunology
– volume: 174
  start-page: 180
  year: 2005
  end-page: 194
  article-title: CD28 regulates the translation of Bcl‐xL via the phosphatidylinositol 3‐kinase/mammalian target of rapamycin pathway
  publication-title: J Immunol
– volume: 248
  start-page: 77
  year: 2001
  end-page: 90
  article-title: Development and applications of surface‐linked single chain antibodies against T‐cell antigens
  publication-title: J Immunol Methods
– volume: 58
  start-page: 329
  year: 2007
  end-page: 346
  article-title: New reagents on the horizon for immune tolerance
  publication-title: Annu Rev Med
– volume: 94
  start-page: 9273
  year: 1997
  end-page: 9278
  article-title: Interaction of CTLA‐4 with AP50, a clathrin‐coated pit adaptor protein
  publication-title: Proc Natl Acad Sci USA
– volume: 29
  start-page: 789
  year: 1999
  end-page: 798
  article-title: CD28 induces cell cycle progression by IL‐2‐independent down‐regulation of p27kip1 expression in human peripheral T lymphocytes
  publication-title: Eur J Immunol
– volume: 185
  start-page: 6426
  year: 2010
  end-page: 6430
  article-title: Cutting edge: mechanisms of IL‐2‐dependent maintenance of functional regulatory T cells
  publication-title: J Immunol
– volume: 151
  start-page: 3489
  year: 1993
  end-page: 3499
  article-title: Characterization of CTLA‐4 structure and expression on human T cells
  publication-title: J Immunol
– volume: 17
  start-page: 4051
  year: 1997
  end-page: 4058
  article-title: CD28 mediates transcriptional upregulation of the interleukin‐2 (IL‐2) promoter through a composite element containing the CD28RE and NF‐IL‐2B AP‐1 sites
  publication-title: Mol Cell Biol
– volume: 4
  start-page: 664
  year: 2003
  end-page: 669
  article-title: The inhibitory function of B7 costimulators in T cell responses to foreign and self‐antigens
  publication-title: Nat Immunol
– volume: 19
  start-page: 225
  year: 2001
  end-page: 252
  article-title: Complexities of CD28/B7: CTLA‐4 costimulatory pathways in autoimmunity and transplantation
  publication-title: Annu Rev Immunol
– volume: 7
  start-page: 1157
  year: 2006
  end-page: 1165
  article-title: A pathway regulated by cell cycle inhibitor p27Kip1 and checkpoint inhibitor Smad3 is involved in the induction of T cell tolerance
  publication-title: Nat Immunol
– volume: 202
  start-page: 771
  year: 2005
  end-page: 781
  article-title: Continuous control of autoimmune disease by antigen‐dependent polyclonal CD4+ CD25+ regulatory T cells in the regional lymph node
  publication-title: J Exp Med
– volume: 178
  start-page: 4022
  year: 2007
  end-page: 4026
  article-title: Cutting edge: IL‐2 is essential for TGF‐beta‐mediated induction of Foxp3+ T regulatory cells
  publication-title: J Immunol
– volume: 29
  start-page: 272
  year: 2008
  end-page: 279
  article-title: CTLA‐4 trafficking and surface expression
  publication-title: Trends Immunol
– volume: 204
  start-page: 102
  year: 2005
  end-page: 115
  article-title: CTLA4 gene polymorphism and autoimmunity
  publication-title: Immunol Rev
– volume: 166
  start-page: 727
  year: 2001
  end-page: 730
  article-title: Cutting edge: two distinct mechanisms lead to impaired T cell homeostasis in Janus kinase 3‐ and CTLA‐4‐deficient mice
  publication-title: J Immunol
– volume: 410
  start-page: 608
  year: 2001
  end-page: 611
  article-title: Crystal structure of the B7‐1/CTLA‐4 complex that inhibits human immune responses
  publication-title: Nature
– volume: 156
  start-page: 4154
  year: 1996
  end-page: 4159
  article-title: Regulation of CTLA‐4 expression during T cell activation
  publication-title: J Immunol
– volume: 163
  start-page: 1128
  year: 1999
  end-page: 1131
  article-title: Cutting edge: lymphoproliferative disease in the absence of CTLA‐4 is not T cell autonomous
  publication-title: J Immunol
– volume: 321
  start-page: 843
  year: 2008
  end-page: 847
  article-title: Deletional tolerance mediated by extrathymic Aire‐expressing cells
  publication-title: Science
– volume: 2
  start-page: 301
  year: 2001
  end-page: 306
  article-title: Thymic selection of CD4+ CD25+ regulatory T cells induced by an agonist self‐peptide
  publication-title: Nat Immunol
– volume: 3
  start-page: 544
  year: 2003
  end-page: 556
  article-title: Unifying concepts in CD28, ICOS and CTLA4 co‐receptor signalling
  publication-title: Nat Rev Immunol
– volume: 77
  start-page: 727
  year: 1994
  end-page: 736
  article-title: JNK is involved in signal integration during costimulation of T lymphocytes
  publication-title: Cell
– volume: 164
  start-page: 265
  year: 2000
  end-page: 272
  article-title: Functional responses and costimulator dependence of memory CD4+ T cells
  publication-title: J Immunol
– volume: 89
  start-page: 11102
  year: 1992
  article-title: T‐cell activation by the CD28 ligand B7 is required for cardiac allograft rejection
  publication-title: Proc Natl Acad Sci USA
– volume: 133
  start-page: 775
  year: 2008
  end-page: 787
  article-title: Regulatory T cells and immune tolerance
  publication-title: Cell
– volume: 190
  start-page: 375
  year: 1999
  end-page: 384
  article-title: Proline residues in CD28 and the Src homology (SH)3 domain of Lck are required for T cell costimulation
  publication-title: J Exp Med
– volume: 2
  start-page: 325
  year: 2001
  end-page: 332
  article-title: A point mutation in CD28 distinguishes proliferative signals from survival signals
  publication-title: Nat Immunol
– volume: 269
  start-page: 279
  year: 2000
  end-page: 283
  article-title: Tyrosine phosphatase SHP‐2 binding to CTLA‐4: absence of direct YVKM/YFIP motif recognition
  publication-title: Biochem Biophys Res Commun
– volume: 229
  start-page: 307
  year: 2009
  article-title: The clinical utility of inhibiting CD28‐mediated costimulation
  publication-title: Immunol Rev
– volume: 265
  start-page: 1225
  year: 1994
  end-page: 1227
  article-title: Treatment of murine lupus with CTLA4Ig
  publication-title: Science
– volume: 3
  start-page: 1097
  year: 2002
  end-page: 1101
  article-title: CTLA‐4‐Ig regulates tryptophan catabolism
  publication-title: Nat Immunol
– volume: 223
  start-page: 371
  year: 2008
  end-page: 390
  article-title: Human regulatory T cells: role in autoimmune disease and therapeutic opportunities
  publication-title: Immunol Rev
– volume: 27
  start-page: 20
  year: 2001
  end-page: 21
  article-title: The immune dysregulation, polyendocrinopathy, enteropathy, X‐linked syndrome (IPEX) is caused by mutations of FOXP3
  publication-title: Nat Genet
– volume: 105
  start-page: 3005
  year: 2008
  article-title: Immunologic and clinical effects of antibody blockade of cytotoxic T lymphocyte‐associated antigen 4 in previously vaccinated cancer patients
  publication-title: Proc Natl Acad Sci USA
– volume: 168
  start-page: 5070
  year: 2002
  end-page: 5078
  article-title: Inhibition of CTLA‐4 function by the regulatory subunit of serine/threonine phosphatase 2A
  publication-title: J Immunol
– volume: 202
  start-page: 445
  year: 2005
  article-title: Selective targeting of regulatory T cells with CD28 superagonists allows effective therapy of experimental autoimmune encephalomyelitis
  publication-title: J Exp Med
– volume: 20
  start-page: 1507
  year: 2008
  end-page: 1515
  article-title: CD28 stimulation triggers NF‐kappaB activation through the CARMA1‐PKCtheta‐Grb2/Gads axis
  publication-title: Int Immunol
– volume: 57
  start-page: 568
  year: 2003
  end-page: 572
  article-title: Increased expression of soluble cytotoxic T‐lymphocyte‐associated antigen‐4 molecule in patients with systemic lupus erythematosus
  publication-title: Scand J Immunol
– volume: 10
  start-page: 446
  year: 2000
  end-page: 453
  article-title: Congenic mapping of the type 1 diabetes locus, Idd3, to a 780‐kb region of mouse chromosome 3: identification of a candidate segment of ancestral DNA by haplotype mapping
  publication-title: Genome Res
– volume: 75
  start-page: 253
  year: 1993
  end-page: 261
  article-title: Ulcerative colitis‐like disease in mice with a disrupted interleukin‐2 gene
  publication-title: Cell
– volume: 14
  start-page: 233
  year: 1996
  end-page: 258
  article-title: CD28/B7 system of T cell costimulation
  publication-title: Annu Rev Immunol
– volume: 62
  start-page: 492
  year: 2003
  end-page: 497
  article-title: Association of a putative regulatory polymorphism in the PD‐1 gene with susceptibility to type 1 diabetes
  publication-title: Tissue Antigens
– volume: 4
  start-page: e5087
  year: 2009
  article-title: CD28 co‐stimulation down regulates Th17 development
  publication-title: PLoS ONE
– volume: 116
  start-page: 4829
  year: 2010
  end-page: 4837
  article-title: Low‐strength T‐cell activation promotes Th17 responses
  publication-title: Blood
– volume: 13
  start-page: 313
  year: 2000
  end-page: 322
  article-title: The CD28 and CTLA‐4 receptors associate with the serine/threonine phosphatase PP2A
  publication-title: Immunity
– volume: 446
  start-page: 685
  year: 2007
  end-page: 689
  article-title: Foxp3 controls regulatory T‐cell function by interacting with AML1/Runx1
  publication-title: Nature
– volume: 29
  start-page: 589
  year: 2008
  end-page: 601
  article-title: Spatiotemporal regulation of T cell costimulation by TCR‐CD28 microclusters and protein kinase C theta translocation
  publication-title: Immunity
– volume: 90
  start-page: 2189
  year: 1993
  end-page: 2193
  article-title: Suppression of apoptosis in a cytotoxic T‐cell line by interleukin 2‐mediated gene transcription and deregulated expression of the protooncogene bcl‐2
  publication-title: Proc Natl Acad Sci USA
– volume: 17
  start-page: 201
  year: 2002
  end-page: 210
  article-title: The interaction properties of costimulatory molecules revisited
  publication-title: Immunity
– volume: 165
  start-page: 2432
  year: 2000
  end-page: 2443
  article-title: T cell effector function and anergy avoidance are quantitatively linked to cell division
  publication-title: J Immunol
– volume: 30
  start-page: 1538
  year: 2000
  end-page: 1543
  article-title: CD4+ CD25+ regulatory T cells down‐regulate co‐stimulatory molecules on antigen‐presenting cells
  publication-title: Eur J Immunol
– volume: 2
  start-page: 261
  year: 2001
  end-page: 268
  article-title: PD‐L2 is a second ligand for PD‐1 and inhibits T cell activation
  publication-title: Nat Immunol
– volume: 236
  start-page: 219
  year: 2010
  end-page: 242
  article-title: The PD‐1 pathway in tolerance and autoimmunity
  publication-title: Immunol Rev
– volume: 6
  start-page: 152
  year: 2005
  end-page: 162
  article-title: CD28 costimulation of developing thymocytes induces Foxp3 expression and regulatory T cell differentiation independently of interleukin 2
  publication-title: Nat Immunol
– volume: 94
  start-page: 3168
  year: 1997
  end-page: 3171
  article-title: Human immune disorder arising from mutation of the alpha chain of the interleukin‐2 receptor
  publication-title: Proc Natl Acad Sci USA
– volume: 172
  start-page: 2778
  year: 2004
  end-page: 2784
  article-title: CD86 and CD80 differentially modulate the suppressive function of human regulatory T cells
  publication-title: J Immunol
– volume: 177
  start-page: 5169
  year: 2006
  end-page: 5176
  article-title: The cyclin‐dependent kinase inhibitor p27kip1 is required for transplantation tolerance induced by costimulatory blockade
  publication-title: J Immunol
– volume: 229
  start-page: 41
  year: 2009
  end-page: 66
  article-title: Regulating the regulators: costimulatory signals control the homeostasis and function of regulatory T cells
  publication-title: Immunol Rev
– volume: 10
  start-page: 504
  year: 2009
  end-page: 513
  article-title: Transcription factor Foxo3 controls the magnitude of T cell immune responses by modulating the function of dendritic cells
  publication-title: Nat Immunol
– volume: 182
  start-page: 1769
  year: 1995
  end-page: 1776
  article-title: Immunopathology of interleukin (IL) 2‐deficient mice: thymus dependence and suppression by thymus‐dependent cells with an intact IL‐2 gene
  publication-title: J Exp Med
– volume: 226
  start-page: 19
  year: 2008
  article-title: Interleukin‐2 in the development and control of inflammatory disease
  publication-title: Immunol Rev
– volume: 192
  start-page: 303
  year: 2000
  end-page: 310
  article-title: Immunologic self‐tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte‐associated antigen 4
  publication-title: J Exp Med
– volume: 182
  start-page: 102
  year: 2009
  end-page: 110
  article-title: CD28 signaling in T regulatory precursors requires p56lck and rafts integrity to stabilize the Foxp3 message
  publication-title: J Immunol
– volume: 183
  start-page: 332
  year: 2009
  end-page: 339
  article-title: The initial phase of an immune response functions to activate regulatory T cells
  publication-title: J Immunol
– volume: 98
  start-page: 2693
  year: 1996
  end-page: 2699
  article-title: Inhibition of T cell costimulation abrogates airway hyperresponsiveness in a murine model
  publication-title: J Clin Invest
– volume: 20
  start-page: 1461
  year: 2000
  end-page: 1477
  article-title: Regulatory and signaling properties of the Vav family
  publication-title: Mol Cell Biol
– volume: 164
  start-page: 5319
  year: 2000
  end-page: 5327
  article-title: Structural analysis of CTLA‐4 function
  publication-title: J Immunol
– volume: 108
  start-page: 895
  year: 2001
  end-page: 903
  article-title: Signaling through CD28 and CTLA‐4 controls two distinct forms of T cell anergy
  publication-title: J Clin Invest
– volume: 23
  start-page: 515
  year: 2005
  end-page: 548
  article-title: The B7 family revisited
  publication-title: Annu Rev Immunol
– volume: 19
  start-page: 516
  year: 2007
  end-page: 521
  article-title: Apoptosis and the homeostatic control of immune responses
  publication-title: Curr Opin Immunol
– volume: 14
  start-page: 1236
  year: 2000
  end-page: 1248
  article-title: Nucleolin and YB‐1 are required for JNK‐mediated interleukin‐2 mRNA stabilization during T‐cell activation
  publication-title: Genes Dev
– volume: 32
  start-page: 972
  year: 2002
  end-page: 981
  article-title: The role of CTLA‐4 in induction and maintenance of peripheral T cell tolerance
  publication-title: Eur J Immunol
– volume: 7
  start-page: 2683
  year: 2007
  end-page: 2692
  article-title: Striking dichotomy of PD‐L1 and PD‐L2 pathways in regulating alloreactive CD4(+) and CD8(+) T cells
  publication-title: Am J Transplant
– volume: 8
  start-page: 773
  year: 1996
  end-page: 780
  article-title: Developmentally regulated expression of the PD‐1 protein on the surface of double‐negative (CD4‐CD8‐) thymocytes
  publication-title: Int Immunol
– volume: 179
  start-page: 4685
  year: 2007
  end-page: 4693
  article-title: Autoantigen‐specific TGFbeta‐induced Foxp3+ regulatory T cells prevent autoimmunity by inhibiting dendritic cells from activating autoreactive T cells
  publication-title: J Immunol
– volume: 273
  start-page: 104
  year: 1996
  end-page: 106
  article-title: T cell activation determined by T cell receptor number and tunable thresholds
  publication-title: Science
– volume: 10
  start-page: 1000
  year: 2009
  end-page: 1007
  article-title: Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells
  publication-title: Nat Immunol
– volume: 182
  start-page: 274
  year: 2009
  end-page: 282
  article-title: Ctla‐4 controls regulatory T cell peripheral homeostasis and is required for suppression of pancreatic islet autoimmunity
  publication-title: J Immunol
– volume: 5
  start-page: 285
  year: 1996
  end-page: 293
  article-title: CD28/B7 regulation of Th1 and Th2 subsets in the development of autoimmune diabetes
  publication-title: Immunity
– volume: 197
  start-page: 955
  year: 2003
  end-page: 966
  article-title: Topological requirements and signaling properties of T cell‐activating, anti‐CD28 antibody superagonists
  publication-title: J Exp Med
– volume: 24
  start-page: 65
  year: 2006
  end-page: 97
  article-title: A molecular perspective of CTLA‐4 function
  publication-title: Annu Rev Immunol
– volume: 164
  start-page: 5805
  year: 2000
  end-page: 5814
  article-title: GRID: a novel Grb‐2‐related adapter protein that interacts with the activated T cell costimulatory receptor CD28
  publication-title: J Immunol
– volume: 31
  start-page: 111
  year: 1999
  end-page: 116
  article-title: Cloning of the APECED gene provides new insight into human autoimmunity
  publication-title: Ann Med
– volume: 164
  start-page: 4465
  year: 2000
  end-page: 4470
  article-title: The roles of CD28 and CD40 ligand in T cell activation and tolerance
  publication-title: J Immunol
– volume: 164
  start-page: 144
  year: 2000
  end-page: 151
  article-title: CD28 costimulation mediates T cell expansion via IL‐2‐independent and IL‐2‐dependent regulation of cell cycle progression
  publication-title: J Immunol
– volume: 197
  start-page: 129
  year: 2003
  end-page: 135
  article-title: Negative regulation of T cell receptor‐lipid raft interaction by cytotoxic T lymphocyte‐associated antigen 4
  publication-title: J Exp Med
– volume: 194
  start-page: 677
  year: 2001
  end-page: 684
  article-title: Development of spontaneous autoimmune peripheral polyneuropathy in B7‐2‐ deficient NOD mice
  publication-title: J Exp Med
– volume: 191
  start-page: 915
  year: 2000
  end-page: 926
  article-title: Activation‐induced inhibition of interleukin 6‐mediated T cell survival and signal transducer and activator of transcription 1 signaling
  publication-title: J Exp Med
– volume: 8
  start-page: 2086
  year: 2008
  article-title: The effect of costimulatory and interleukin 2 receptor blockade on regulatory T cells in renal transplantation
  publication-title: Am J Transplant
– volume: 76
  start-page: 773
  year: 2005
  end-page: 779
  article-title: Localization of a type 1 diabetes locus in the IL2RA/CD25 region by use of tag single‐nucleotide polymorphisms
  publication-title: Am J Hum Genet
– volume: 257
  start-page: 789
  year: 1992
  article-title: Long‐term survival of xenogeneic pancreatic islet grafts induced by CTLA4lg
  publication-title: Science
– volume: 5
  start-page: 41
  year: 1996
  end-page: 52
  article-title: Duration of TCR stimulation determines costimulatory requirement of T cells
  publication-title: Immunity
– volume: 353
  start-page: 770
  year: 2005
  article-title: Costimulation blockade with belatacept in renal transplantation
  publication-title: N Engl J Med
– volume: 11
  start-page: 21
  year: 2010
  end-page: 27
  article-title: Mechanisms maintaining peripheral tolerance
  publication-title: Nat Immunol
– volume: 5
  start-page: 443
  year: 2005
  article-title: Rational development of LEA29Y (belatacept), a high‐affinity variant of CTLA4‐Ig with potent immunosuppressive properties
  publication-title: Am J Transplant
– volume: 3
  start-page: 911
  year: 2002
  end-page: 917
  article-title: Staging and resetting T cell activation in SMACs
  publication-title: Nat Immunol
– volume: 4
  start-page: 535
  year: 1996
  end-page: 543
  article-title: Intracellular trafficking of CTLA‐4 and focal localization towards sites of TCR engagement
  publication-title: Immunity
– volume: 350
  start-page: 1193
  year: 1997
  article-title: Randomised trial of basiliximab versus placebo for control of acute cellular rejection in renal allograft recipients. CHIB 201 International Study Group
  publication-title: Lancet
– volume: 229
  start-page: 12
  year: 2009
  end-page: 26
  article-title: CD28 and CTLA‐4 coreceptor expression and signal transduction
  publication-title: Immunol Rev
– volume: 291
  start-page: 319
  year: 2001
  end-page: 322
  article-title: Autoimmune dilated cardiomyopathy in PD‐1 receptor‐deficient mice
  publication-title: Science
– volume: 178
  start-page: 2018
  year: 2007
  end-page: 2027
  article-title: IL‐2 is essential for TGF‐beta to convert naive CD4+ CD25− cells to CD25+ Foxp3+ regulatory T cells and for expansion of these cells
  publication-title: J Immunol
– volume: 179
  start-page: 6494
  year: 2007
  end-page: 6503
  article-title: Memory CD8+ T cells require CD28 costimulation
  publication-title: J Immunol
– volume: 282
  start-page: 2263
  year: 1998
  end-page: 2266
  article-title: Molecular basis of T cell inactivation by CTLA‐4
  publication-title: Science
– volume: 9
  start-page: 393
  year: 2009
  end-page: 407
  article-title: Autoimmune T cell responses in the central nervous system
  publication-title: Nat Rev Immunol
– volume: 8
  start-page: 1270
  year: 2006
  end-page: 1276
  article-title: CD28 interaction with filamin‐A controls lipid raft accumulation at the T‐cell immunological synapse
  publication-title: Nat Cell Biol
– volume: 171
  start-page: 3348
  year: 2003
  article-title: Cutting edge: CD28 controls peripheral homeostasis of CD4+ CD25+ regulatory T cells
  publication-title: J Immunol
– volume: 188
  start-page: 287
  year: 1998
  end-page: 296
  article-title: CD4+ CD25+ immunoregulatory T cells suppress polyclonal T cell activation by inhibiting interleukin 2 production
  publication-title: J Exp Med
– volume: 37
  start-page: 1285
  year: 2007
  end-page: 1289
  article-title: Expression of CTLA‐4 and FOXP3 in cis protects from lethal lymphoproliferative disease
  publication-title: Eur J Immunol
– volume: 28
  start-page: 2131
  year: 1998
  end-page: 2142
  article-title: CD28 affects the earliest signaling events generated by TCR engagement
  publication-title: Eur J Immunol
– volume: 229
  start-page: 27
  year: 2009
  end-page: 40
  article-title: Dynamic regulation of T‐cell costimulation through TCR‐CD28 microclusters
  publication-title: Immunol Rev
– volume: 164
  start-page: 5015
  year: 2000
  end-page: 5018
  article-title: Cutting edge: a soluble form of CTLA‐4 in patients with autoimmune thyroid disease
  publication-title: J Immunol
– volume: 7
  start-page: 401
  year: 2006
  end-page: 410
  article-title: An intersection between the self‐reactive regulatory and nonregulatory T cell receptor repertoires
  publication-title: Nat Immunol
– volume: 5
  start-page: 1303
  year: 1999
  end-page: 1307
  article-title: Requirement for T‐cell apoptosis in the induction of peripheral transplantation tolerance
  publication-title: Nat Med
– volume: 129
  start-page: 1
  year: 2010
  end-page: 6
  article-title: Novel mechanism of signaling by CD28
  publication-title: Immunol Lett
– volume: 23
  start-page: 447
  year: 2005
  end-page: 485
  article-title: The NOD mouse: a model of immune dysregulation
  publication-title: Annu Rev Immunol
– volume: 45
  start-page: 159
  year: 2009
  end-page: 172
  article-title: Two pathways of costimulation through CD28
  publication-title: Immunol Res
– volume: 183
  start-page: 5146
  year: 2009
  end-page: 5157
  article-title: Genetic evidence that the differential expression of the ligand‐independent isoform of CTLA‐4 is the molecular basis of the Idd5.1 type 1 diabetes region in nonobese diabetic mice
  publication-title: J Immunol
– volume: 28
  start-page: 197
  year: 2008
  end-page: 205
  article-title: Apoptosis regulators Fas and Bim cooperate in shutdown of chronic immune responses and prevention of autoimmunity
  publication-title: Immunity
– volume: 6
  start-page: 1142
  year: 2005
  end-page: 1151
  article-title: A function for interleukin 2 in Foxp3‐expressing regulatory T cells
  publication-title: Nat Immunol
– volume: 159
  start-page: 144
  year: 1997
  end-page: 151
  article-title: Interaction of CTLA‐4 with the clathrin‐associated protein AP50 results in ligand‐independent endocytosis that limits cell surface expression
  publication-title: J Immunol
– volume: 201
  start-page: 723
  year: 2005
  end-page: 735
  article-title: Homeostatic maintenance of natural Foxp3(+) CD25(+) CD4(+) regulatory T cells by interleukin (IL)‐2 and induction of autoimmune disease by IL‐2 neutralization
  publication-title: J Exp Med
– volume: 190
  start-page: 1561
  year: 1999
  end-page: 1572
  article-title: Normal regulatory alpha/beta T cells effectively eliminate abnormally activated T cells lacking the interleukin 2 receptor beta
  publication-title: J Exp Med
– volume: 32
  start-page: 2365
  year: 2002
  end-page: 2375
  article-title: CD4+ CD25+ T cells as immunoregulatory T cells
  publication-title: Eur J Immunol
– volume: 180
  start-page: 1705
  year: 1994
  end-page: 1713
  article-title: Resistance alleles at two non‐major histocompatibility complex‐linked insulin‐dependent diabetes loci on chromosome 3, Idd3 and Idd10, protect nonobese diabetic mice from diabetes
  publication-title: J Exp Med
– volume: 116
  start-page: 2252
  year: 2006
  end-page: 2261
  article-title: Inhibition of T cell activation and autoimmune diabetes using a B cell surface‐linked CTLA‐4 agonist
  publication-title: J Clin Invest
– volume: 189
  start-page: 435
  year: 1999
  end-page: 440
  article-title: B7‐1 or B7‐2 is required to produce the lymphoproliferative phenotype in mice lacking cytotoxic T lymphocyte‐associated antigen 4 (CTLA‐4)
  publication-title: J Exp Med
– volume: 114
  start-page: 979
  year: 2004
  end-page: 987
  article-title: Costimulation controls diabetes by altering the balance of pathogenic and regulatory T cells
  publication-title: J Clin Invest
– volume: 184
  start-page: 3433
  year: 2010
  end-page: 3441
  article-title: Expression of Helios, an Ikaros transcription factor family member, differentiates thymic‐derived from peripherally induced Foxp3+ T regulatory cells
  publication-title: J Immunol
– volume: 322
  start-page: 271
  year: 2008
  end-page: 275
  article-title: CTLA‐4 control over Foxp3+ regulatory T cell function
  publication-title: Science
– volume: 119
  start-page: 551
  year: 2009
  end-page: 564
  article-title: PD‐L1 negatively regulates CD4+ CD25+ Foxp3+ Tregs by limiting STAT‐5 phosphorylation in patients chronically infected with HCV
  publication-title: J Clin Invest
– volume: 7
  start-page: 83
  year: 2006
  end-page: 92
  article-title: Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice
  publication-title: Nat Immunol
– volume: 100
  start-page: 2243
  year: 1997
  end-page: 2253
  article-title: Neonatal activation of CD28 signaling overcomes T cell anergy and prevents autoimmune diabetes by an IL‐4‐dependent mechanism
  publication-title: J Clin Invest
– volume: 170
  start-page: 4127
  year: 2003
  end-page: 4133
  article-title: Regulation of T cell activation and tolerance by phospholipase C gamma‐1‐dependent integrin avidity modulation
  publication-title: J Immunol
– volume: 164
  start-page: 4433
  year: 2000
  end-page: 4442
  article-title: Blockade of T cell activation using a surface‐linked single‐chain antibody to CTLA‐4 (CD152)
  publication-title: J Immunol
– volume: 6
  start-page: 583
  year: 1997
  end-page: 589
  article-title: Tyrosine phosphorylation controls internalization of CTLA‐4 by regulating its interaction with clathrin‐associated adaptor complex AP‐2
  publication-title: Immunity
– volume: 39
  start-page: 329
  year: 2007
  end-page: 337
  article-title: Interleukin‐2 gene variation impairs regulatory T cell function and causes autoimmunity
  publication-title: Nat Genet
– volume: 3
  start-page: 87
  year: 1995
  end-page: 98
  article-title: CD28 costimulation can promote T cell survival by enhancing the expression of Bcl‐XL
  publication-title: Immunity
– volume: 172
  start-page: 5973
  year: 2004
  end-page: 5979
  article-title: IL‐2 induces a competitive survival advantage in T lymphocytes
  publication-title: J Immunol
– volume: 212
  start-page: 131
  year: 2006
  end-page: 148
  article-title: The role of CD28 and cytotoxic T‐lymphocyte antigen‐4 (CTLA‐4) in regulatory T‐cell biology
  publication-title: Immunol Rev
– volume: 9
  start-page: 2837
  year: 2009
  end-page: 2844
  article-title: Paradoxical functions of B7: CD28 costimulation in a MHC class II‐mismatched cardiac transplant model
  publication-title: Am J Transplant
– volume: 177
  start-page: 4376
  year: 2006
  end-page: 4383
  article-title: Blockade of CTLA‐4 on CD4+ CD25+ regulatory T cells abrogates their function
  publication-title: J Immunol
– volume: 11
  start-page: 7
  year: 2010
  end-page: 13
  article-title: Regulatory T cells exert checks and balances on self tolerance and autoimmunity
  publication-title: Nat Immunol
– volume: 100
  start-page: 2586
  year: 2003
  end-page: 2591
  article-title: Crystal structure of the receptor‐binding domain of human B7‐2: insights into organization and signaling
  publication-title: Proc Natl Acad Sci USA
– ident: e_1_2_8_41_2
  doi: 10.4049/jimmunol.174.1.180
– ident: e_1_2_8_223_2
  doi: 10.1038/ng1958
– ident: e_1_2_8_129_2
  doi: 10.1073/pnas.94.17.9273
– ident: e_1_2_8_22_2
  doi: 10.1084/jem.20032196
– ident: e_1_2_8_79_2
  doi: 10.1016/j.immuni.2008.08.011
– ident: e_1_2_8_176_2
  doi: 10.1111/j.0105-2896.2006.00419.x
– ident: e_1_2_8_220_2
  doi: 10.1038/ng1323
– ident: e_1_2_8_221_2
  doi: 10.1084/jem.180.5.1705
– ident: e_1_2_8_36_2
  doi: 10.1111/j.1600-065X.2009.00779.x
– ident: e_1_2_8_209_2
  doi: 10.1084/jem.190.11.1561
– ident: e_1_2_8_233_2
  doi: 10.1002/eji.200425143
– volume: 158
  start-page: 580
  year: 1997
  ident: e_1_2_8_75_2
  article-title: Analysis of CD28 cytoplasmic tail tyrosine residues as regulators and substrates for the protein tyrosine kinases, EMT and LCK
  publication-title: J Immunol
  doi: 10.4049/jimmunol.158.2.580
– ident: e_1_2_8_157_2
  doi: 10.1016/S0165-2478(02)00142-6
– ident: e_1_2_8_219_2
  doi: 10.1086/429843
– ident: e_1_2_8_28_2
  doi: 10.1038/83713
– ident: e_1_2_8_159_2
  doi: 10.1016/S1074-7613(00)80089-8
– ident: e_1_2_8_25_2
  doi: 10.1038/ni1318
– volume: 188
  start-page: 287
  year: 1998
  ident: e_1_2_8_181_2
  article-title: CD4+ CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production
  publication-title: J Exp Med
  doi: 10.1084/jem.188.2.287
– ident: e_1_2_8_172_2
  doi: 10.1084/jem.20090847
– ident: e_1_2_8_227_2
  doi: 10.1016/j.immuni.2008.09.012
– ident: e_1_2_8_117_2
  doi: 10.1016/j.immuni.2004.06.017
– ident: e_1_2_8_190_2
  doi: 10.1084/jem.20041982
– ident: e_1_2_8_132_2
  doi: 10.1084/jem.181.1.351
– ident: e_1_2_8_39_2
  doi: 10.4049/jimmunol.164.1.144
– ident: e_1_2_8_19_2
  doi: 10.4049/jimmunol.0803628
– ident: e_1_2_8_171_2
  doi: 10.1111/j.1600-6143.2007.01999.x
– ident: e_1_2_8_201_2
  doi: 10.4049/jimmunol.172.10.5973
– ident: e_1_2_8_54_2
  doi: 10.4049/jimmunol.170.8.4127
– ident: e_1_2_8_189_2
  doi: 10.1016/S1074-7613(02)00367-9
– ident: e_1_2_8_204_2
  doi: 10.1126/science.7770771
– ident: e_1_2_8_48_2
  doi: 10.4049/jimmunol.164.1.265
– ident: e_1_2_8_136_2
  doi: 10.1146/annurev.immunol.24.021605.090535
– ident: e_1_2_8_82_2
  doi: 10.1038/nri1131
– ident: e_1_2_8_210_2
  doi: 10.1038/nature05673
– ident: e_1_2_8_84_2
  doi: 10.1002/1521-4141(200202)32:2<447::AID-IMMU447>3.0.CO;2-5
– ident: e_1_2_8_16_2
  doi: 10.1126/science.1159407
– ident: e_1_2_8_7_2
  doi: 10.1146/annurev.immunol.23.021704.115611
– ident: e_1_2_8_147_2
  doi: 10.1046/j.1365-3083.2003.01232.x
– ident: e_1_2_8_160_2
  doi: 10.1126/science.291.5502.319
– ident: e_1_2_8_85_2
  doi: 10.1016/0092-8674(94)90056-6
– ident: e_1_2_8_162_2
  doi: 10.1002/ana.20514
– ident: e_1_2_8_196_2
  doi: 10.4049/jimmunol.173.8.5028
– ident: e_1_2_8_213_2
  doi: 10.4049/jimmunol.0903940
– ident: e_1_2_8_222_2
  doi: 10.1101/gr.10.4.446
– ident: e_1_2_8_218_2
  doi: 10.1038/ng2068
– ident: e_1_2_8_95_2
  doi: 10.1101/gad.14.10.1236
– ident: e_1_2_8_86_2
  doi: 10.1038/ncb1492
– ident: e_1_2_8_256_2
  doi: 10.1084/jem.191.6.915
– ident: e_1_2_8_74_2
  doi: 10.1084/jem.190.3.375
– ident: e_1_2_8_104_2
  doi: 10.1016/S0022-1759(00)00344-6
– ident: e_1_2_8_266_2
  doi: 10.1056/NEJMoa050085
– ident: e_1_2_8_94_2
  doi: 10.1128/MCB.17.7.4051
– ident: e_1_2_8_137_2
  doi: 10.4049/jimmunol.168.9.4420
– ident: e_1_2_8_83_2
  doi: 10.1093/intimm/dxn108
– ident: e_1_2_8_177_2
  doi: 10.4049/jimmunol.171.7.3348
– ident: e_1_2_8_59_2
  doi: 10.1038/ni884
– ident: e_1_2_8_114_2
  doi: 10.4049/jimmunol.168.10.5070
– ident: e_1_2_8_78_2
  doi: 10.1038/83144
– volume: 156
  start-page: 4154
  year: 1996
  ident: e_1_2_8_152_2
  article-title: Regulation of CTLA‐4 expression during T cell activation
  publication-title: J Immunol
  doi: 10.4049/jimmunol.156.11.4154
– ident: e_1_2_8_239_2
  doi: 10.1126/science.1160062
– ident: e_1_2_8_264_2
  doi: 10.1016/S0140-6736(08)60998-8
– ident: e_1_2_8_235_2
  doi: 10.4049/jimmunol.177.7.4376
– ident: e_1_2_8_4_2
  doi: 10.1146/annurev.immunol.19.1.225
– ident: e_1_2_8_127_2
  doi: 10.1016/j.it.2008.02.011
– ident: e_1_2_8_166_2
  doi: 10.1093/intimm/8.5.773
– ident: e_1_2_8_258_2
  doi: 10.1146/annurev.med.58.061705.145449
– ident: e_1_2_8_91_2
  doi: 10.1073/pnas.0308688101
– ident: e_1_2_8_153_2
  doi: 10.1016/S1074-7613(00)80195-8
– ident: e_1_2_8_243_2
  doi: 10.1093/intimm/dxh178
– ident: e_1_2_8_149_2
  doi: 10.1080/08916930500050210
– ident: e_1_2_8_247_2
  doi: 10.1002/1521-4141(200006)30:6<1538::AID-IMMU1538>3.0.CO;2-X
– ident: e_1_2_8_141_2
  doi: 10.1093/intimm/dxh055
– ident: e_1_2_8_120_2
  doi: 10.1016/j.immuni.2010.09.006
– volume: 163
  start-page: 1128
  year: 1999
  ident: e_1_2_8_228_2
  article-title: Cutting edge: lymphoproliferative disease in the absence of CTLA‐4 is not T cell autonomous
  publication-title: J Immunol
  doi: 10.4049/jimmunol.163.3.1128
– ident: e_1_2_8_169_2
  doi: 10.1172/JCI200420483
– ident: e_1_2_8_133_2
  doi: 10.1006/bbrc.2000.2234
– ident: e_1_2_8_80_2
  doi: 10.1016/j.imlet.2010.01.007
– ident: e_1_2_8_260_2
  doi: 10.1073/pnas.89.22.11102
– ident: e_1_2_8_102_2
  doi: 10.4049/jimmunol.164.9.4433
– ident: e_1_2_8_105_2
  doi: 10.4049/jimmunol.169.2.633
– ident: e_1_2_8_232_2
  doi: 10.1002/eji.200324632
– ident: e_1_2_8_89_2
  doi: 10.1038/ni1160
– ident: e_1_2_8_265_2
  doi: 10.1002/art.27601
– ident: e_1_2_8_2_2
  doi: 10.1146/annurev.iy.07.040189.002305
– ident: e_1_2_8_259_2
  doi: 10.1146/annurev.med.58.080205.154004
– ident: e_1_2_8_126_2
  doi: 10.4049/jimmunol.175.1.177
– ident: e_1_2_8_163_2
  doi: 10.1046/j.1399-0039.2003.00136.x
– ident: e_1_2_8_173_2
  doi: 10.1172/JCI36604
– ident: e_1_2_8_225_2
  doi: 10.1084/jem.20100209
– ident: e_1_2_8_217_2
  doi: 10.4049/jimmunol.0904028
– ident: e_1_2_8_144_2
  doi: 10.4049/jimmunol.164.10.5015
– volume: 157
  start-page: 3909
  year: 1996
  ident: e_1_2_8_44_2
  article-title: CD28/B7 interactions deliver a unique signal to naive T cells that regulates cell survival but not early proliferation
  publication-title: J Immunol
  doi: 10.4049/jimmunol.157.9.3909
– ident: e_1_2_8_263_2
  doi: 10.1056/NEJMoa050524
– ident: e_1_2_8_212_2
  doi: 10.1084/jem.20082824
– ident: e_1_2_8_240_2
  doi: 10.1093/intimm/dxh221
– ident: e_1_2_8_140_2
  doi: 10.4049/jimmunol.164.10.5319
– ident: e_1_2_8_90_2
  doi: 10.1007/s12026-009-8097-6
– ident: e_1_2_8_145_2
  doi: 10.1038/nature01621
– ident: e_1_2_8_55_2
  doi: 10.4049/jimmunol.177.8.5169
– ident: e_1_2_8_161_2
  doi: 10.1073/pnas.0505497102
– ident: e_1_2_8_251_2
  doi: 10.1038/ni846
– ident: e_1_2_8_124_2
  doi: 10.1385/IR:28:3:241
– ident: e_1_2_8_254_2
  doi: 10.1084/jem.20040942
– ident: e_1_2_8_184_2
  doi: 10.1007/3-540-27702-1_2
– ident: e_1_2_8_216_2
  doi: 10.4049/jimmunol.178.4.2018
– ident: e_1_2_8_81_2
  doi: 10.1128/MCB.20.5.1461-1477.2000
– ident: e_1_2_8_156_2
  doi: 10.1111/j.1600-065X.2010.00923.x
– ident: e_1_2_8_18_2
  doi: 10.1038/nri2550
– ident: e_1_2_8_146_2
  doi: 10.1016/S1074-7613(04)00110-4
– ident: e_1_2_8_15_2
  doi: 10.1126/science.1075958
– ident: e_1_2_8_30_2
  doi: 10.1146/annurev.immunol.21.120601.141040
– ident: e_1_2_8_29_2
  doi: 10.1038/ni904
– ident: e_1_2_8_69_2
  doi: 10.1182/blood-2010-03-272153
– ident: e_1_2_8_109_2
  doi: 10.1016/S1074-7613(01)00259-X
– ident: e_1_2_8_168_2
  doi: 10.1084/jem.20022119
– ident: e_1_2_8_42_2
  doi: 10.1016/1074-7613(95)90161-2
– ident: e_1_2_8_11_2
  doi: 10.1038/ni1572
– volume: 31
  start-page: 111
  year: 1999
  ident: e_1_2_8_14_2
  article-title: Cloning of the APECED gene provides new insight into human autoimmunity
  publication-title: Ann Med
  doi: 10.3109/07853899708998786
– volume: 162
  start-page: 5784
  year: 1999
  ident: e_1_2_8_60_2
  article-title: Lymphoproliferative disorder in CTLA‐4 knockout mice is characterized by CD28‐regulated activation of Th2 responses
  publication-title: J Immunol
  doi: 10.4049/jimmunol.162.10.5784
– ident: e_1_2_8_252_2
  doi: 10.1038/nri1457
– ident: e_1_2_8_107_2
  doi: 10.1016/S1074-7613(00)80284-8
– ident: e_1_2_8_13_2
  doi: 10.1016/j.coi.2009.08.007
– ident: e_1_2_8_93_2
  doi: 10.4049/jimmunol.178.7.4315
– ident: e_1_2_8_38_2
  doi: 10.4049/jimmunol.174.6.3359
– ident: e_1_2_8_164_2
  doi: 10.1038/ng1020
– ident: e_1_2_8_112_2
  doi: 10.1038/ni.1835
– ident: e_1_2_8_10_2
  doi: 10.1016/j.cell.2008.05.009
– ident: e_1_2_8_5_2
  doi: 10.1016/j.immuni.2006.03.001
– ident: e_1_2_8_66_2
  doi: 10.1023/A:1014256417651
– ident: e_1_2_8_242_2
  doi: 10.4049/jimmunol.177.4.2186
– ident: e_1_2_8_23_2
  doi: 10.1016/j.coi.2007.05.005
– ident: e_1_2_8_100_2
  doi: 10.1084/jem.183.6.2541
– ident: e_1_2_8_195_2
  doi: 10.1038/ni939
– ident: e_1_2_8_67_2
  doi: 10.4049/jimmunol.0903369
– ident: e_1_2_8_64_2
  doi: 10.1172/JCI119762
– ident: e_1_2_8_35_2
  doi: 10.1126/science.273.5271.104
– ident: e_1_2_8_101_2
  doi: 10.1016/1074-7613(94)90071-X
– volume: 7
  start-page: 28
  year: 1992
  ident: e_1_2_8_115_2
  article-title: CTLA‐4 and CD28: similar proteins, neighbouring genes
  publication-title: Int J Cancer
– volume: 158
  start-page: 5091
  year: 1997
  ident: e_1_2_8_234_2
  article-title: CTLA4Ig prevents lymphoproliferation and fatal multiorgan tissue destruction in CTLA‐4‐deficient mice
  publication-title: J Immunol
  doi: 10.4049/jimmunol.158.11.5091
– ident: e_1_2_8_191_2
  doi: 10.1038/ni1263
– ident: e_1_2_8_139_2
  doi: 10.1084/jem.186.10.1645
– ident: e_1_2_8_111_2
  doi: 10.4049/jimmunol.169.4.1852
– ident: e_1_2_8_202_2
  doi: 10.1016/S1074-7613(01)00167-4
– ident: e_1_2_8_32_2
  doi: 10.1038/ni737
– ident: e_1_2_8_262_2
  doi: 10.1172/JCI5857
– ident: e_1_2_8_155_2
  doi: 10.1073/pnas.200348397
– ident: e_1_2_8_121_2
  doi: 10.1038/35069112
– ident: e_1_2_8_244_2
  doi: 10.4049/jimmunol.172.5.2778
– ident: e_1_2_8_26_2
  doi: 10.1038/86302
– ident: e_1_2_8_99_2
  doi: 10.1016/1074-7613(95)90125-6
– ident: e_1_2_8_257_2
  doi: 10.1111/j.1600-065X.2008.00649.x
– ident: e_1_2_8_103_2
  doi: 10.1172/JCI27856
– ident: e_1_2_8_45_2
  doi: 10.4049/jimmunol.166.9.5331
– ident: e_1_2_8_3_2
  doi: 10.1146/annurev.immunol.14.1.233
– ident: e_1_2_8_63_2
  doi: 10.1126/science.7520604
– ident: e_1_2_8_231_2
  doi: 10.1084/jem.193.11.1285
– ident: e_1_2_8_65_2
  doi: 10.1016/S1074-7613(00)80323-4
– ident: e_1_2_8_261_2
  doi: 10.1111/j.1600-6143.2005.00749.x
– volume: 151
  start-page: 3489
  year: 1993
  ident: e_1_2_8_151_2
  article-title: Characterization of CTLA‐4 structure and expression on human T cells
  publication-title: J Immunol
  doi: 10.4049/jimmunol.151.7.3489
– ident: e_1_2_8_37_2
  doi: 10.1016/S1074-7613(02)00323-0
– ident: e_1_2_8_255_2
  doi: 10.1038/ni.1729
– ident: e_1_2_8_56_2
  doi: 10.1038/ni1398
– ident: e_1_2_8_24_2
  doi: 10.1038/ni.1818
– ident: e_1_2_8_97_2
  doi: 10.1073/pnas.162359999
– ident: e_1_2_8_207_2
  doi: 10.1016/S1074-7613(00)80566-X
– ident: e_1_2_8_33_2
  doi: 10.1002/(SICI)1521-4141(199807)28:07<2131::AID-IMMU2131>3.0.CO;2-Q
– ident: e_1_2_8_87_2
  doi: 10.1038/ni836
– ident: e_1_2_8_68_2
  doi: 10.1371/journal.pone.0005087
– ident: e_1_2_8_70_2
  doi: 10.1111/j.1600-065X.2009.00770.x
– ident: e_1_2_8_123_2
  doi: 10.1073/pnas.252771499
– ident: e_1_2_8_238_2
  doi: 10.1073/pnas.0910341107
– ident: e_1_2_8_96_2
  doi: 10.1073/pnas.092284399
– ident: e_1_2_8_108_2
  doi: 10.1084/jem.20061577
– ident: e_1_2_8_269_2
  doi: 10.1111/j.1600-065X.2008.00697.x
– ident: e_1_2_8_50_2
  doi: 10.4049/jimmunol.179.10.6494
– ident: e_1_2_8_57_2
  doi: 10.1172/JCI13220
– ident: e_1_2_8_46_2
  doi: 10.1038/86327
– ident: e_1_2_8_248_2
  doi: 10.1111/j.1365-2567.2006.02362.x
– ident: e_1_2_8_148_2
  doi: 10.1111/j.0105-2896.2005.00249.x
– ident: e_1_2_8_194_2
  doi: 10.1016/S1074-7613(00)80308-8
– ident: e_1_2_8_98_2
  doi: 10.1084/jem.20021024
– ident: e_1_2_8_192_2
  doi: 10.4049/jimmunol.179.11.7924
– ident: e_1_2_8_237_2
  doi: 10.4049/jimmunol.182.1.274
– ident: e_1_2_8_51_2
  doi: 10.1038/15260
– ident: e_1_2_8_27_2
  doi: 10.1038/nri1032
– ident: e_1_2_8_154_2
  doi: 10.1084/jem.189.2.435
– ident: e_1_2_8_186_2
  doi: 10.1084/jem.20041033
– ident: e_1_2_8_211_2
  doi: 10.1126/science.1122927
– ident: e_1_2_8_215_2
  doi: 10.4049/jimmunol.178.7.4022
– ident: e_1_2_8_197_2
  doi: 10.1093/intimm/dxh019
– volume: 159
  start-page: 144
  year: 1997
  ident: e_1_2_8_128_2
  article-title: Interaction of CTLA‐4 with the clathrin‐associated protein AP50 results in ligand‐independent endocytosis that limits cell surface expression
  publication-title: J Immunol
  doi: 10.4049/jimmunol.159.1.144
– volume: 161
  start-page: 1659
  year: 1998
  ident: e_1_2_8_52_2
  article-title: Impaired alloantigen‐mediated T cell apoptosis and failure to induce long‐term allograft survival in IL‐2‐deficient mice
  publication-title: J Immunol
  doi: 10.4049/jimmunol.161.4.1659
– ident: e_1_2_8_273_2
  doi: 10.1056/NEJMoa063842
– ident: e_1_2_8_125_2
  doi: 10.1084/jem.20021646
– ident: e_1_2_8_188_2
  doi: 10.1038/ni1264
– ident: e_1_2_8_73_2
  doi: 10.4049/jimmunol.164.11.5805
– ident: e_1_2_8_167_2
  doi: 10.1084/jem.20051776
– volume: 159
  start-page: 3220
  year: 1997
  ident: e_1_2_8_76_2
  article-title: The SH3 domain of Itk/Emt binds to proline‐rich sequences in the cytoplasmic domain of the T cell costimulatory receptor CD28
  publication-title: J Immunol
  doi: 10.4049/jimmunol.159.7.3220
– volume: 147
  start-page: 2461
  year: 1991
  ident: e_1_2_8_31_2
  article-title: CD28 delivers a costimulatory signal involved in antigen‐specific IL‐2 production by human T cells
  publication-title: J Immunol
  doi: 10.4049/jimmunol.147.8.2461
– ident: e_1_2_8_214_2
  doi: 10.4049/jimmunol.0900691
– ident: e_1_2_8_165_2
  doi: 10.1002/eji.200324228
– ident: e_1_2_8_226_2
  doi: 10.1038/ni.1774
– ident: e_1_2_8_150_2
  doi: 10.4049/jimmunol.0802610
– ident: e_1_2_8_236_2
  doi: 10.1084/jem.20082492
– ident: e_1_2_8_205_2
  doi: 10.1016/1074-7613(95)90180-9
– ident: e_1_2_8_193_2
  doi: 10.1146/annurev.immunol.23.021704.115643
– ident: e_1_2_8_178_2
  doi: 10.1084/jem.20040139
– ident: e_1_2_8_174_2
  doi: 10.1038/ni.1790
– ident: e_1_2_8_6_2
  doi: 10.1111/j.1600-065X.2009.00780.x
– ident: e_1_2_8_8_2
  doi: 10.1097/MOT.0b013e328306115b
– ident: e_1_2_8_116_2
  doi: 10.1084/jem.180.6.2049
– ident: e_1_2_8_12_2
  doi: 10.1111/j.1600-065X.2009.00775.x
– ident: e_1_2_8_198_2
  doi: 10.1111/j.1600-6143.2009.02839.x
– ident: e_1_2_8_21_2
  doi: 10.1016/j.immuni.2007.12.017
– ident: e_1_2_8_246_2
  doi: 10.1073/pnas.0711106105
– ident: e_1_2_8_179_2
  doi: 10.4049/jimmunol.182.1.102
– ident: e_1_2_8_183_2
  doi: 10.1084/jem.20030315
– ident: e_1_2_8_249_2
  doi: 10.4049/jimmunol.179.7.4685
– ident: e_1_2_8_34_2
  doi: 10.1126/science.283.5402.680
– ident: e_1_2_8_122_2
  doi: 10.1038/35069118
– ident: e_1_2_8_185_2
  doi: 10.1038/ni1178
– ident: e_1_2_8_180_2
  doi: 10.1093/intimm/10.12.1969
– ident: e_1_2_8_72_2
  doi: 10.1016/0092-8674(93)90404-E
– ident: e_1_2_8_158_2
  doi: 10.1038/85330
– ident: e_1_2_8_135_2
  doi: 10.1146/annurev.immunol.22.012703.104721
– ident: e_1_2_8_203_2
  doi: 10.1016/0092-8674(93)80067-O
– ident: e_1_2_8_134_2
  doi: 10.1371/journal.pone.0003842
– ident: e_1_2_8_143_2
  doi: 10.1111/j.1600-065X.2008.00639.x
– ident: e_1_2_8_62_2
  doi: 10.1172/JCI119093
– ident: e_1_2_8_170_2
  doi: 10.1084/jem.194.5.677
– ident: e_1_2_8_224_2
  doi: 10.1016/j.immuni.2008.03.016
– ident: e_1_2_8_199_2
  doi: 10.1084/jem.192.2.303
– ident: e_1_2_8_40_2
  doi: 10.1002/(SICI)1521-4141(199903)29:03<789::AID-IMMU789>3.0.CO;2-5
– ident: e_1_2_8_130_2
  doi: 10.1016/S1074-7613(00)00031-5
– volume: 156
  start-page: 1047
  year: 1996
  ident: e_1_2_8_119_2
  article-title: Differential effects of CTLA‐4 substitutions on the binding of human CD80 (B7‐1) and CD86 (B7‐2)
  publication-title: J Immunol
  doi: 10.4049/jimmunol.156.3.1047
– ident: e_1_2_8_182_2
  doi: 10.1084/jem.20030686
– ident: e_1_2_8_270_2
  doi: 10.1056/NEJMoa1003466
– ident: e_1_2_8_142_2
  doi: 10.1016/S1074-7613(00)80346-5
– ident: e_1_2_8_229_2
  doi: 10.1084/jem.20081811
– ident: e_1_2_8_53_2
  doi: 10.1126/science.1323143
– ident: e_1_2_8_88_2
  doi: 10.1128/MCB.01869-08
– volume: 147
  start-page: 1037
  year: 1991
  ident: e_1_2_8_113_2
  article-title: CTLA‐4 and CD28 activated lymphocyte molecules are closely related in both mouse and human as to sequence, message expression, gene structure, and chromosomal location
  publication-title: J Immunol
  doi: 10.4049/jimmunol.147.3.1037
– ident: e_1_2_8_268_2
  doi: 10.1016/S0140-6736(97)09278-7
– ident: e_1_2_8_43_2
  doi: 10.4049/jimmunol.164.9.4465
– ident: e_1_2_8_106_2
  doi: 10.1002/1521-4141(200204)32:4<972::AID-IMMU972>3.0.CO;2-M
– ident: e_1_2_8_49_2
  doi: 10.4049/jimmunol.177.11.7698
– ident: e_1_2_8_17_2
  doi: 10.1038/ni.1817
– ident: e_1_2_8_230_2
  doi: 10.1002/1521-4141(200208)32:8<2365::AID-IMMU2365>3.0.CO;2-2
– ident: e_1_2_8_92_2
  doi: 10.4049/jimmunol.176.8.4666
– ident: e_1_2_8_118_2
  doi: 10.1016/S1074-7613(02)00362-X
– ident: e_1_2_8_175_2
  doi: 10.1038/ni1289
– ident: e_1_2_8_208_2
  doi: 10.1084/jem.182.6.1769
– ident: e_1_2_8_272_2
  doi: 10.1084/jem.20051060
– ident: e_1_2_8_253_2
  doi: 10.1038/ni1003
– ident: e_1_2_8_61_2
  doi: 10.4049/jimmunol.158.2.658
– ident: e_1_2_8_271_2
  doi: 10.1073/pnas.0712237105
– ident: e_1_2_8_206_2
  doi: 10.1073/pnas.94.7.3168
– ident: e_1_2_8_250_2
  doi: 10.4049/jimmunol.172.8.4676
– ident: e_1_2_8_138_2
  doi: 10.1126/science.282.5397.2263
– ident: e_1_2_8_77_2
  doi: 10.1126/science.287.5455.1040
– ident: e_1_2_8_131_2
  doi: 10.1016/S1074-7613(00)80480-X
– ident: e_1_2_8_187_2
  doi: 10.1111/j.1600-065X.2008.00637.x
– ident: e_1_2_8_71_2
  doi: 10.1038/369327a0
– ident: e_1_2_8_110_2
  doi: 10.4049/jimmunol.166.2.727
– ident: e_1_2_8_58_2
  doi: 10.4049/jimmunol.165.5.2432
– ident: e_1_2_8_245_2
  doi: 10.1002/eji.200737159
– ident: e_1_2_8_20_2
  doi: 10.1146/annurev.immunol.21.120601.141110
– volume: 152
  start-page: 2675
  year: 1994
  ident: e_1_2_8_47_2
  article-title: Naive versus memory CD4 T cell response to antigen. Memory cells are less dependent on accessory cell costimulation and can respond to many antigen‐presenting cell types including resting B cells
  publication-title: J Immunol
  doi: 10.4049/jimmunol.152.6.2675
– ident: e_1_2_8_9_2
  doi: 10.1111/j.1600-065X.2008.00662.x
– ident: e_1_2_8_200_2
  doi: 10.1073/pnas.90.6.2189
– ident: e_1_2_8_241_2
  doi: 10.1182/blood-2006-07-035279
– ident: e_1_2_8_267_2
  doi: 10.1111/j.1600-6143.2008.02377.x
SSID ssj0017324
Score 2.513306
SecondaryResourceType review_article
Snippet Positive and negative costimulation by members of the CD28 family is critical for the development of productive immune responses against foreign pathogens and...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 180
SubjectTerms Analytical, structural and metabolic biochemistry
Animals
Antigen-Presenting Cells - immunology
Antigens, CD - immunology
Apoptosis Regulatory Proteins - immunology
Autoimmune Diseases - immunology
Autoimmune Diseases - therapy
B7-1 Antigen - immunology
Biological and medical sciences
CD28
CD28 Antigens - immunology
costimulation
CTLA-4
CTLA-4 Antigen
Fundamental and applied biological sciences. Psychology
Graft Rejection - immunology
Graft Rejection - therapy
Humans
Immune Tolerance
Immunotherapy - trends
Neoplasms - immunology
Neoplasms - therapy
PD-1
Programmed Cell Death 1 Receptor
Receptor Cross-Talk
T-Lymphocyte Subsets - immunology
T-Lymphocytes, Regulatory - immunology
tolerance
Tregs
Title Intrinsic and extrinsic control of peripheral T-cell tolerance by costimulatory molecules of the CD28/ B7 family
URI https://api.istex.fr/ark:/67375/WNG-0NM3JQM4-6/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1600-065X.2011.01011.x
https://www.ncbi.nlm.nih.gov/pubmed/21488898
https://www.proquest.com/docview/862268835
https://pubmed.ncbi.nlm.nih.gov/PMC3077803
Volume 241
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1600-065X
  dateEnd: 20241004
  omitProxy: true
  ssIdentifier: ssj0017324
  issn: 0105-2896
  databaseCode: ABDBF
  dateStart: 19980201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0105-2896
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1600-065X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017324
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlpdBL3w_3EXQovTn1W_IxTZsmgV1oSOjehGSNSdiNXXa9kM0p5576G_NLOmN53bjNIZReFi_2GGs8M_pGHn3D2DshiiLRYeHnxsZ-IjLt5zZIfRnFxhj0viShDc6jcbZ3nBxM0klX_0R7YRw_RL_gRp7RxmtycG0WQyfPaFd0lk46Js6QfglPhnHafrE97JmkQhFHjuYbnwNzjGxY1HPjjQYz1V1S-jlVTuoFKq90XS9ugqV_V1deR73ttLX7kE3XA3bVKtOtZWO2ios_uCD_j0YesQcduuXbzhwfsztQPWH3XL_L1VPW7OOznlZoGFxXluO80P3rCuZ5XXJiXm6pDmb86OryJ31Y4E09A1IFcLPCazEqnVHXsXq-4meuvS8sSBbBLN_5FMkPV5c_PgruFm-esePdz0c7e37X9sEvEgy9PgK0SIJFaJmAjoWFtAxLA8LmOoqhDLTNZRFiWC5lVKQCBEgTlGkEJi2Juih-zjaquoKXjEcWHUXqXIIERCqJhsCCCGyhjbQITjwm1q9YFR0nOrXmmKlruRHqVJFOFelUtTpV5x4Le8nvjhfkFjLvWyvqBfR8SnV1IlXfxl9UMB7FB19Hico8tjkws16A0m-iZPMYX9udwnBAr0JXUC8XChPUKJMIqz32wpnhb2HMfKXMJQ56YKD9BcQ0PjxTnZ60jOM4EQgZxB7LWvu79YjV_uiQjl79q-Brdt8t4lOF6Ru20cyX8BZRYGM2W__-BYbfUWs
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQKwSX8qbhUXxA3FLytnOElna3NCtRbcXeLDt2RNVtgnazUpdTz5z4jf0lzMTZtIEeKsRllVUyUTyZGX_jjL8h5C1jeR5JP3dTpUM3Yol0U-3FLg9CpRR4XxThBudslAyOo4NJPGnbAeFeGMsP0S24oWc08RodHBek-16e4LboJJ60VJw-_gKgXMfPdeilu0cdl5TPwsASfcOTQJaR9Mt6brxTb65aR7WfY-2knIP6Ctv34iZg-nd95XXc20xcew_IdDVkW69yur2o1Xb-4w82yP-kk4dkowW49IO1yEfkjikfk7u25eXyCamH8LAnJdgGlaWmMDW0_9qaeVoVFMmXG7aDKR1fXvzCbwu0rqYGdWGoWsK1EJjOsPFYNVvSM9vh18xRFvAs3dkN-PvLi58fGbXrN0_J8d6n8c7AbTs_uHkE0dcFjBZwowFdRkaGTJu48AtlmE5lEJrCkzrluQ-RueBBHjPDDFdeEQdGxQWyF4XPyFpZlWaT0ECDr3CZcsMNgJVIGk8b5ulcKq4BnziErd6xyFtadOzOMRXX0iPQqUCdCtSpaHQqzh3id5LfLTXILWTeNWbUCcjZKZbWsVh8He0Lb5SFB1-ySCQO2erZWSeAGTiysjmErgxPQETAVyFLUy3mAnLUIOGArB3y3NrhlTAkv5ynHAbds9DuAiQb758pT741pOMwFzDuhQ5JGgO89YjFMDvCoxf_KviG3BuMs0NxOBx9fknu2zV9LDh9Rdbq2cK8BlBYq63G2X8DfGpVhw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQKxAXKK8SHsUHxC0lDyd2jtCydAu7gqoVe7Ps2BHVbpNqH1KXU8-c-I39JZ2Js6GBHirEZZVVMlE8mRl_44y_IeQ153nOVJj7mTaxz3iq_MwEiS-iWGsN3scYbnAeDNO9I7Y_SkZN_RPuhXH8EO2CG3pGHa_RwU9N0XXyFHdFp8moYeIM8Rfw5DpLIdlCgHTQUkmFPI4czzc8CCQZabeq59o7daaqddT6GZZOqhlor3BtL67DpX-XV16FvfW81btPxqsRu3KV8fZirrfzH3-QQf4flWyQew28pe-cPT4gt2z5kNx2DS-Xj8i8D896XIJlUFUaChND86-pmKdVQZF6ueY6mNDDi_Nf-GWBzquJRVVYqpdwLYSlE2w7Vk2X9MT197UzlAU0S3d2I_H24vzne07d6s1jctT7cLiz5zd9H_ycQez1AaFFwhrAlsyqmBubFGGhLTeZimJbBMpkIg8hLhciyhNuuRU6KJLI6qRA7qL4CVkrq9I-JTQy4ClCZcIKC1CFKRsYywOTKy0MoBOP8NUrlnlDio69OSbySnIEOpWoU4k6lbVO5ZlHwlby1BGD3EDmTW1FrYCajrGwjify2_CjDIaDeP_rgMnUI1sdM2sFMP9GTjaP0JXdSYgH-CpUaavFTEKGGqUCcLVHNp0Z_haG1FeITMCgOwbaXoBU490z5fH3mnIcZgIugtgjaW1_Nx6x7A8O8OjZvwq-Ine-7Pbk5_7w03Ny1y3oY7XpC7I2ny7sS0CEc71Vu_olMhtUNg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intrinsic+and+extrinsic+control+of+peripheral+T-cell+tolerance+by+costimulatory+molecules+of+the+CD28%2F%E2%80%8AB7+family&rft.jtitle=Immunological+reviews&rft.au=Bour-Jordan%2C+H%C3%A9l%C3%A8ne&rft.au=Esensten%2C+Jonathan+H&rft.au=Martinez-Llordella%2C+Marc&rft.au=Penaranda%2C+Cristina&rft.date=2011-05-01&rft.eissn=1600-065X&rft.volume=241&rft.issue=1&rft.spage=180&rft_id=info:doi/10.1111%2Fj.1600-065X.2011.01011.x&rft_id=info%3Apmid%2F21488898&rft.externalDocID=21488898
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0105-2896&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0105-2896&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0105-2896&client=summon