Differential diagnosis of common etiologies of left ventricular hypertrophy using a hybrid CNN-LSTM model

Differential diagnosis of left ventricular hypertrophy (LVH) is often obscure on echocardiography and requires numerous additional tests. We aimed to develop a deep learning algorithm to aid in the differentiation of common etiologies of LVH (i.e. hypertensive heart disease [HHD], hypertrophic cardi...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 12; no. 1; pp. 20998 - 12
Main Authors Hwang, In-Chang, Choi, Dongjun, Choi, You-Jung, Ju, Lia, Kim, Myeongju, Hong, Ji-Eun, Lee, Hyun-Jung, Yoon, Yeonyee E., Park, Jun-Bean, Lee, Seung-Pyo, Kim, Hyung-Kwan, Kim, Yong-Jin, Cho, Goo-Yeong
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 05.12.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-022-25467-w

Cover

Abstract Differential diagnosis of left ventricular hypertrophy (LVH) is often obscure on echocardiography and requires numerous additional tests. We aimed to develop a deep learning algorithm to aid in the differentiation of common etiologies of LVH (i.e. hypertensive heart disease [HHD], hypertrophic cardiomyopathy [HCM], and light-chain cardiac amyloidosis [ALCA]) on echocardiographic images. Echocardiograms in 5 standard views (parasternal long-axis, parasternal short-axis, apical 4-chamber, apical 2-chamber, and apical 3-chamber) were obtained from 930 subjects: 112 with HHD, 191 with HCM, 81 with ALCA and 546 normal subjects. The study population was divided into training (n = 620), validation (n = 155), and test sets (n = 155). A convolutional neural network-long short-term memory (CNN-LSTM) algorithm was constructed to independently classify the 3 diagnoses on each view, and the final diagnosis was made by an aggregate network based on the simultaneously predicted probabilities of HCM, HCM, and ALCA. Diagnostic performance of the algorithm was evaluated by the area under the receiver operating characteristic curve (AUC), and accuracy was evaluated by the confusion matrix. The deep learning algorithm was trained and verified using the training and validation sets, respectively. In the test set, the average AUC across the five standard views was 0.962, 0.982 and 0.996 for HHD, HCM and CA, respectively. The overall diagnostic accuracy was significantly higher for the deep learning algorithm (92.3%) than for echocardiography specialists (80.0% and 80.6%). In the present study, we developed a deep learning algorithm for the differential diagnosis of 3 common LVH etiologies (HHD, HCM and ALCA) by applying a hybrid CNN-LSTM model and aggregate network to standard echocardiographic images. The high diagnostic performance of our deep learning algorithm suggests that the use of deep learning can improve the diagnostic process in patients with LVH.
AbstractList Differential diagnosis of left ventricular hypertrophy (LVH) is often obscure on echocardiography and requires numerous additional tests. We aimed to develop a deep learning algorithm to aid in the differentiation of common etiologies of LVH (i.e. hypertensive heart disease [HHD], hypertrophic cardiomyopathy [HCM], and light-chain cardiac amyloidosis [ALCA]) on echocardiographic images. Echocardiograms in 5 standard views (parasternal long-axis, parasternal short-axis, apical 4-chamber, apical 2-chamber, and apical 3-chamber) were obtained from 930 subjects: 112 with HHD, 191 with HCM, 81 with ALCA and 546 normal subjects. The study population was divided into training (n = 620), validation (n = 155), and test sets (n = 155). A convolutional neural network-long short-term memory (CNN-LSTM) algorithm was constructed to independently classify the 3 diagnoses on each view, and the final diagnosis was made by an aggregate network based on the simultaneously predicted probabilities of HCM, HCM, and ALCA. Diagnostic performance of the algorithm was evaluated by the area under the receiver operating characteristic curve (AUC), and accuracy was evaluated by the confusion matrix. The deep learning algorithm was trained and verified using the training and validation sets, respectively. In the test set, the average AUC across the five standard views was 0.962, 0.982 and 0.996 for HHD, HCM and CA, respectively. The overall diagnostic accuracy was significantly higher for the deep learning algorithm (92.3%) than for echocardiography specialists (80.0% and 80.6%). In the present study, we developed a deep learning algorithm for the differential diagnosis of 3 common LVH etiologies (HHD, HCM and ALCA) by applying a hybrid CNN-LSTM model and aggregate network to standard echocardiographic images. The high diagnostic performance of our deep learning algorithm suggests that the use of deep learning can improve the diagnostic process in patients with LVH.
Differential diagnosis of left ventricular hypertrophy (LVH) is often obscure on echocardiography and requires numerous additional tests. We aimed to develop a deep learning algorithm to aid in the differentiation of common etiologies of LVH (i.e. hypertensive heart disease [HHD], hypertrophic cardiomyopathy [HCM], and light-chain cardiac amyloidosis [ALCA]) on echocardiographic images. Echocardiograms in 5 standard views (parasternal long-axis, parasternal short-axis, apical 4-chamber, apical 2-chamber, and apical 3-chamber) were obtained from 930 subjects: 112 with HHD, 191 with HCM, 81 with ALCA and 546 normal subjects. The study population was divided into training (n = 620), validation (n = 155), and test sets (n = 155). A convolutional neural network-long short-term memory (CNN-LSTM) algorithm was constructed to independently classify the 3 diagnoses on each view, and the final diagnosis was made by an aggregate network based on the simultaneously predicted probabilities of HCM, HCM, and ALCA. Diagnostic performance of the algorithm was evaluated by the area under the receiver operating characteristic curve (AUC), and accuracy was evaluated by the confusion matrix. The deep learning algorithm was trained and verified using the training and validation sets, respectively. In the test set, the average AUC across the five standard views was 0.962, 0.982 and 0.996 for HHD, HCM and CA, respectively. The overall diagnostic accuracy was significantly higher for the deep learning algorithm (92.3%) than for echocardiography specialists (80.0% and 80.6%). In the present study, we developed a deep learning algorithm for the differential diagnosis of 3 common LVH etiologies (HHD, HCM and ALCA) by applying a hybrid CNN-LSTM model and aggregate network to standard echocardiographic images. The high diagnostic performance of our deep learning algorithm suggests that the use of deep learning can improve the diagnostic process in patients with LVH.Differential diagnosis of left ventricular hypertrophy (LVH) is often obscure on echocardiography and requires numerous additional tests. We aimed to develop a deep learning algorithm to aid in the differentiation of common etiologies of LVH (i.e. hypertensive heart disease [HHD], hypertrophic cardiomyopathy [HCM], and light-chain cardiac amyloidosis [ALCA]) on echocardiographic images. Echocardiograms in 5 standard views (parasternal long-axis, parasternal short-axis, apical 4-chamber, apical 2-chamber, and apical 3-chamber) were obtained from 930 subjects: 112 with HHD, 191 with HCM, 81 with ALCA and 546 normal subjects. The study population was divided into training (n = 620), validation (n = 155), and test sets (n = 155). A convolutional neural network-long short-term memory (CNN-LSTM) algorithm was constructed to independently classify the 3 diagnoses on each view, and the final diagnosis was made by an aggregate network based on the simultaneously predicted probabilities of HCM, HCM, and ALCA. Diagnostic performance of the algorithm was evaluated by the area under the receiver operating characteristic curve (AUC), and accuracy was evaluated by the confusion matrix. The deep learning algorithm was trained and verified using the training and validation sets, respectively. In the test set, the average AUC across the five standard views was 0.962, 0.982 and 0.996 for HHD, HCM and CA, respectively. The overall diagnostic accuracy was significantly higher for the deep learning algorithm (92.3%) than for echocardiography specialists (80.0% and 80.6%). In the present study, we developed a deep learning algorithm for the differential diagnosis of 3 common LVH etiologies (HHD, HCM and ALCA) by applying a hybrid CNN-LSTM model and aggregate network to standard echocardiographic images. The high diagnostic performance of our deep learning algorithm suggests that the use of deep learning can improve the diagnostic process in patients with LVH.
Differential diagnosis of left ventricular hypertrophy (LVH) is often obscure on echocardiography and requires numerous additional tests. We aimed to develop a deep learning algorithm to aid in the differentiation of common etiologies of LVH (i.e. hypertensive heart disease [HHD], hypertrophic cardiomyopathy [HCM], and light-chain cardiac amyloidosis [ALCA]) on echocardiographic images. Echocardiograms in 5 standard views (parasternal long-axis, parasternal short-axis, apical 4-chamber, apical 2-chamber, and apical 3-chamber) were obtained from 930 subjects: 112 with HHD, 191 with HCM, 81 with ALCA and 546 normal subjects. The study population was divided into training (n = 620), validation (n = 155), and test sets (n = 155). A convolutional neural network-long short-term memory (CNN-LSTM) algorithm was constructed to independently classify the 3 diagnoses on each view, and the final diagnosis was made by an aggregate network based on the simultaneously predicted probabilities of HCM, HCM, and ALCA. Diagnostic performance of the algorithm was evaluated by the area under the receiver operating characteristic curve (AUC), and accuracy was evaluated by the confusion matrix. The deep learning algorithm was trained and verified using the training and validation sets, respectively. In the test set, the average AUC across the five standard views was 0.962, 0.982 and 0.996 for HHD, HCM and CA, respectively. The overall diagnostic accuracy was significantly higher for the deep learning algorithm (92.3%) than for echocardiography specialists (80.0% and 80.6%). In the present study, we developed a deep learning algorithm for the differential diagnosis of 3 common LVH etiologies (HHD, HCM and ALCA) by applying a hybrid CNN-LSTM model and aggregate network to standard echocardiographic images. The high diagnostic performance of our deep learning algorithm suggests that the use of deep learning can improve the diagnostic process in patients with LVH.
Abstract Differential diagnosis of left ventricular hypertrophy (LVH) is often obscure on echocardiography and requires numerous additional tests. We aimed to develop a deep learning algorithm to aid in the differentiation of common etiologies of LVH (i.e. hypertensive heart disease [HHD], hypertrophic cardiomyopathy [HCM], and light-chain cardiac amyloidosis [ALCA]) on echocardiographic images. Echocardiograms in 5 standard views (parasternal long-axis, parasternal short-axis, apical 4-chamber, apical 2-chamber, and apical 3-chamber) were obtained from 930 subjects: 112 with HHD, 191 with HCM, 81 with ALCA and 546 normal subjects. The study population was divided into training (n = 620), validation (n = 155), and test sets (n = 155). A convolutional neural network-long short-term memory (CNN-LSTM) algorithm was constructed to independently classify the 3 diagnoses on each view, and the final diagnosis was made by an aggregate network based on the simultaneously predicted probabilities of HCM, HCM, and ALCA. Diagnostic performance of the algorithm was evaluated by the area under the receiver operating characteristic curve (AUC), and accuracy was evaluated by the confusion matrix. The deep learning algorithm was trained and verified using the training and validation sets, respectively. In the test set, the average AUC across the five standard views was 0.962, 0.982 and 0.996 for HHD, HCM and CA, respectively. The overall diagnostic accuracy was significantly higher for the deep learning algorithm (92.3%) than for echocardiography specialists (80.0% and 80.6%). In the present study, we developed a deep learning algorithm for the differential diagnosis of 3 common LVH etiologies (HHD, HCM and ALCA) by applying a hybrid CNN-LSTM model and aggregate network to standard echocardiographic images. The high diagnostic performance of our deep learning algorithm suggests that the use of deep learning can improve the diagnostic process in patients with LVH.
ArticleNumber 20998
Author Cho, Goo-Yeong
Hwang, In-Chang
Lee, Seung-Pyo
Ju, Lia
Park, Jun-Bean
Kim, Yong-Jin
Kim, Hyung-Kwan
Choi, You-Jung
Hong, Ji-Eun
Lee, Hyun-Jung
Choi, Dongjun
Yoon, Yeonyee E.
Kim, Myeongju
Author_xml – sequence: 1
  givenname: In-Chang
  surname: Hwang
  fullname: Hwang, In-Chang
  email: inchang.hwang@gmail.com
  organization: Cardiovascular Center, Seoul National University Bundang Hospital, Department of Internal Medicine, Seoul National University College of Medicine
– sequence: 2
  givenname: Dongjun
  surname: Choi
  fullname: Choi, Dongjun
  organization: Center for Artificial Intelligence in Healthcare, Seoul National University Bundang Hospital
– sequence: 3
  givenname: You-Jung
  surname: Choi
  fullname: Choi, You-Jung
  organization: Division of Cardiology, Cardiovascular Center, Korea University Guro Hospital
– sequence: 4
  givenname: Lia
  surname: Ju
  fullname: Ju, Lia
  organization: Cardiovascular Center, Seoul National University Bundang Hospital
– sequence: 5
  givenname: Myeongju
  surname: Kim
  fullname: Kim, Myeongju
  organization: Center for Artificial Intelligence in Healthcare, Seoul National University Bundang Hospital
– sequence: 6
  givenname: Ji-Eun
  surname: Hong
  fullname: Hong, Ji-Eun
  organization: Center for Artificial Intelligence in Healthcare, Seoul National University Bundang Hospital
– sequence: 7
  givenname: Hyun-Jung
  surname: Lee
  fullname: Lee, Hyun-Jung
  organization: Department of Internal Medicine, Seoul National University College of Medicine, Cardiovascular Center and Department of Internal Medicine, Seoul National University Hospital
– sequence: 8
  givenname: Yeonyee E.
  surname: Yoon
  fullname: Yoon, Yeonyee E.
  organization: Cardiovascular Center, Seoul National University Bundang Hospital, Department of Internal Medicine, Seoul National University College of Medicine
– sequence: 9
  givenname: Jun-Bean
  surname: Park
  fullname: Park, Jun-Bean
  organization: Department of Internal Medicine, Seoul National University College of Medicine, Cardiovascular Center and Department of Internal Medicine, Seoul National University Hospital
– sequence: 10
  givenname: Seung-Pyo
  surname: Lee
  fullname: Lee, Seung-Pyo
  organization: Department of Internal Medicine, Seoul National University College of Medicine, Cardiovascular Center and Department of Internal Medicine, Seoul National University Hospital
– sequence: 11
  givenname: Hyung-Kwan
  surname: Kim
  fullname: Kim, Hyung-Kwan
  organization: Department of Internal Medicine, Seoul National University College of Medicine, Cardiovascular Center and Department of Internal Medicine, Seoul National University Hospital
– sequence: 12
  givenname: Yong-Jin
  surname: Kim
  fullname: Kim, Yong-Jin
  organization: Department of Internal Medicine, Seoul National University College of Medicine, Cardiovascular Center and Department of Internal Medicine, Seoul National University Hospital
– sequence: 13
  givenname: Goo-Yeong
  surname: Cho
  fullname: Cho, Goo-Yeong
  organization: Cardiovascular Center, Seoul National University Bundang Hospital, Department of Internal Medicine, Seoul National University College of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36470931$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhSNURB_0D7BAltiwCfgZJxskNFCoNJQFZW05znXGIyce7KTV_Hs8My20XdQbW9ffOTr2vafF0RhGKIo3BH8gmNUfEyeiqUtMaUkFr2R5-6I4oZiLkjJKjx6cj4vzlNY4L0EbTppXxTGruMQNIyeF--KshQjj5LRHndP9GJJLKFhkwjCEEcHkgg-9g33Rg53QTcajM7PXEa22G4hTDJvVFs3JjT3SudZG16HF1VW5_HX9Aw2hA_-6eGm1T3B-t58Vvy--Xi--l8uf3y4Xn5el4Q3BJVSMiRY3tOs41YQabmtbtdhi2QCuDZUV7ygWbSewbbkgLRO1wFXLtMCCEHZWXB58u6DXahPdoONWBe3UvhBir3ScnPGgWg00e3KZZdzk36lAy7qBzhrZYsyy16eD12ZuB-jM7t3aPzJ9fDO6lerDjWokpRKLbPD-ziCGPzOkSQ0uGfBejxDmpKjkkkqZO5jRd0_QdZjjmL9qR1U1bZioMvX2YaJ_Ue47moH6AJgYUopglXGTzj3cBXReEax286MO86Py_Kj9_KjbLKVPpPfuz4rYQZQyPPYQ_8d-RvUX-KrX7Q
CitedBy_id crossref_primary_10_1016_j_ijcard_2025_132979
crossref_primary_10_3390_solar3040036
crossref_primary_10_3389_frai_2023_1227091
crossref_primary_10_3390_jimaging10090230
crossref_primary_10_1016_j_artmed_2024_102866
crossref_primary_10_3892_etm_2023_12204
crossref_primary_10_1186_s44156_024_00059_8
crossref_primary_10_3390_jimaging9020050
crossref_primary_10_1016_j_biosystemseng_2023_12_014
crossref_primary_10_3390_diagnostics14020156
crossref_primary_10_1093_eurjpc_zwae008
crossref_primary_10_3389_fped_2023_1293320
crossref_primary_10_1016_j_imavis_2025_105427
crossref_primary_10_1016_j_echo_2024_05_013
crossref_primary_10_3390_diagnostics14111103
crossref_primary_10_1007_s11042_024_20232_9
crossref_primary_10_7759_cureus_55869
crossref_primary_10_1038_s41598_023_38177_8
crossref_primary_10_1371_journal_pone_0317741
crossref_primary_10_3390_jcm14020625
crossref_primary_10_1007_s10554_025_03362_5
crossref_primary_10_1088_1361_6560_ad548a
crossref_primary_10_2478_inmed_2024_0288
Cites_doi 10.1016/j.jacc.2016.08.062
10.1161/CIRCULATIONAHA.13.001414
10.1093/eurheartj/ehu284
10.1016/j.echo.2015.05.002
10.1161/CIRCULATIONAHA.108.845792
10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3
10.1109/TNSRE.2019.2896659
10.1007/s10554-021-02461-3
10.1093/ehjci/jeaa146
10.1016/0735-1097(95)00390-8
10.1016/j.jacc.2007.08.028
10.1136/hrt.44.4.395
10.1001/jamacardio.2021.6059
10.1016/j.jcmg.2019.10.011
10.1136/heartjnl-2011-301528
10.1145/3065386
10.1016/j.carpath.2020.107256
10.1016/j.jcmg.2019.02.024
10.1016/j.echo.2014.10.003
10.1161/CIRCIMAGING.113.000683
10.1016/j.amjcard.2008.09.102
10.1067/j.cpradiol.2019.09.005
10.1111/j.1540-8175.2012.01680.x
10.1016/j.compbiomed.2020.104200
10.21037/atm-20-4891
10.1053/euhj.1998.1314
10.1161/CIRCULATIONAHA.117.033200
10.11613/BM.2012.031
10.2147/CLEP.S139300
10.1002/ajh.20381
10.1093/eurheartj/ehab072
10.1007/s10554-018-1320-6
10.1161/CIRCULATIONAHA.118.034338
10.1038/s41746-019-0216-8
10.1016/j.echo.2010.05.020
10.1016/j.jcmg.2020.07.015
10.1038/s41746-018-0065-x
10.1038/s41746-017-0013-1
10.1093/ehjci/jev329
10.1038/s41586-020-2145-8
10.1109/CVPR.2016.319
10.1109/ICCV.2015.123
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-022-25467-w
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Science Database
Biological Science Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

CrossRef
MEDLINE - Academic
Publicly Available Content Database
MEDLINE

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 12
ExternalDocumentID oai_doaj_org_article_bae2e08471134c5296ea789edfc7b003
PMC9722705
36470931
10_1038_s41598_022_25467_w
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Seoul National University Bundang Hospital
  grantid: No. 18-2020-0013
  funderid: http://dx.doi.org/10.13039/100016275
– fundername: ;
  grantid: No. 18-2020-0013
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c4910-e6335b092dd42a12c4f8f6b0f079e08c2764d205bd50fb451b358506b3a505113
IEDL.DBID AAJSJ
ISSN 2045-2322
IngestDate Wed Aug 27 01:20:17 EDT 2025
Thu Aug 21 18:38:35 EDT 2025
Thu Sep 04 15:50:53 EDT 2025
Wed Aug 13 02:51:07 EDT 2025
Thu Jan 02 22:53:28 EST 2025
Tue Jul 01 00:55:32 EDT 2025
Thu Apr 24 23:12:55 EDT 2025
Fri Feb 21 02:39:19 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2022. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4910-e6335b092dd42a12c4f8f6b0f079e08c2764d205bd50fb451b358506b3a505113
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.nature.com/articles/s41598-022-25467-w
PMID 36470931
PQID 2746829356
PQPubID 2041939
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_bae2e08471134c5296ea789edfc7b003
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9722705
proquest_miscellaneous_2747277254
proquest_journals_2746829356
pubmed_primary_36470931
crossref_citationtrail_10_1038_s41598_022_25467_w
crossref_primary_10_1038_s41598_022_25467_w
springer_journals_10_1038_s41598_022_25467_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-05
PublicationDateYYYYMMDD 2022-12-05
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-05
  day: 05
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Duffy, Cheng, Yuan, He, Kwan, Shun-Shin (CR30) 2022; 7
Madani, Arnaout, Mofrad, Arnaout (CR42) 2018; 1
Shi, Chen, Wang, Yeung, Wong, Woo (CR24) 2015; 1
Gertz, Comenzo, Falk, Fermand, Hazenberg, Hawkins (CR21) 2005; 79
Ghorbani, Ouyang, Abid, He, Chen, Harrington (CR41) 2020; 3
Drazner (CR5) 2011; 123
Weidemann, Niemann, Ertl, Stork (CR9) 2010; 23
Garcia-Pavia, Rapezzi, Adler, Arad, Basso, Brucato (CR32) 2021; 42
Sun, Stewart, Yang, Donnell, Leon, Felner (CR7) 2009; 103
Yu, Yao, Wu, Zhou, Xia, Su (CR44) 2021; 38
Phan, Andreotti, Cooray, Chen, De Vos (CR25) 2019; 27
Yoshizawa, Uto, Nishikawa, Hagiwara, Oda (CR12) 2020; 49
Magnusson, Palm, Branden, Morner (CR15) 2017; 9
Chimenti, Frustaci (CR13) 2013; 128
Boldrini, Cappelli, Chacko, Restrepo-Cordoba, Lopez-Sainz, Giannoni (CR33) 2020; 13
Selvanayagam, Hawkins, Paul, Myerson, Neubauer (CR37) 2007; 50
Elliott, Anastasakis, Borger, Borggrefe, Cecchi (CR20) 2014; 35
Lang, Badano, Mor-Avi, Afilalo, Armstrong, Ernande (CR17) 2015; 28
Liu, Hu, Niemann, Herrmann, Cikes, Stork (CR8) 2013; 6
Schirmer, Lunde, Rasmussen (CR31) 1999; 20
Kusunose, Abe, Haga, Fukuda, Yamada, Harada (CR43) 2020; 13
Grajewski, Stojanovska, Ibrahim, Sayyouh, Attili (CR10) 2020; 49
Nordin, Dancy, Moon, Sado (CR11) 2018; 34
Yu, Huang, Yu, Ma, Zhang, Zhang (CR38) 2021; 9
Ommen, Mital, Burke, Day, Deswal, Elliott (CR19) 2020; 142
Hwang, Koh, Park, Yoon, Kim, Kim (CR22) 2021; 22
Klues, Schiffers, Maron (CR36) 1995; 26
CR27
Doi, Deanfield, McKenna, Dargie, Oakley, Goodwin (CR6) 1980; 44
CR26
Baccouche, Maunz, Beck, Gaa, Banzhaf, Knayer (CR34) 2012; 29
Yilmaz, Sechtem (CR4) 2014; 100
McHugh (CR29) 2012; 22
Sengupta, Shrestha, Berthon, Messas, Donal, Tison (CR16) 2020; 13
Rodrigues, Amadu, Dastidar, Hassan, Lyen, Lawton (CR35) 2016; 17
Youden (CR28) 1950; 3
Ouyang, He, Ghorbani, Yuan, Ebinger, Langlotz (CR40) 2020; 580
Madani, Ong, Tibrewal, Mofrad (CR39) 2018; 1
Narula, Shameer, Salem Omar, Dudley, Sengupta (CR1) 2016; 68
Krizhevsky, Sutskever, Hinton (CR23) 2017; 60
Ho, Day, Ashley, Michels, Pereira, Jacoby (CR14) 2018; 138
Marwick, Gillebert, Aurigemma, Chirinos, Derumeaux, Galderisi (CR18) 2015; 28
Zhang, Gajjala, Agrawal, Tison, Hallock, Beussink-Nelson (CR2) 2018; 138
Lara Hernandez, Rienmuller, Baumgartner, Baumgartner (CR3) 2021; 130
A Yilmaz (25467_CR4) 2014; 100
SR Ommen (25467_CR19) 2020; 142
RM Lang (25467_CR17) 2015; 28
25467_CR27
25467_CR26
X Shi (25467_CR24) 2015; 1
D Ouyang (25467_CR40) 2020; 580
S Yoshizawa (25467_CR12) 2020; 49
J Zhang (25467_CR2) 2018; 138
PM Elliott (25467_CR20) 2014; 35
A Krizhevsky (25467_CR23) 2017; 60
H Phan (25467_CR25) 2019; 27
X Yu (25467_CR44) 2021; 38
JP Sun (25467_CR7) 2009; 103
IC Hwang (25467_CR22) 2021; 22
P Magnusson (25467_CR15) 2017; 9
G Duffy (25467_CR30) 2022; 7
M Boldrini (25467_CR33) 2020; 13
A Madani (25467_CR39) 2018; 1
S Nordin (25467_CR11) 2018; 34
W. J. Youden (25467_CR28) 1950; 3
P Garcia-Pavia (25467_CR32) 2021; 42
F Yu (25467_CR38) 2021; 9
F Weidemann (25467_CR9) 2010; 23
A Madani (25467_CR42) 2018; 1
D Liu (25467_CR8) 2013; 6
S Narula (25467_CR1) 2016; 68
KG Grajewski (25467_CR10) 2020; 49
ML McHugh (25467_CR29) 2012; 22
KA Lara Hernandez (25467_CR3) 2021; 130
H Baccouche (25467_CR34) 2012; 29
A Ghorbani (25467_CR41) 2020; 3
H Schirmer (25467_CR31) 1999; 20
JC Rodrigues (25467_CR35) 2016; 17
HG Klues (25467_CR36) 1995; 26
MH Drazner (25467_CR5) 2011; 123
YL Doi (25467_CR6) 1980; 44
PP Sengupta (25467_CR16) 2020; 13
TH Marwick (25467_CR18) 2015; 28
MA Gertz (25467_CR21) 2005; 79
K Kusunose (25467_CR43) 2020; 13
CY Ho (25467_CR14) 2018; 138
C Chimenti (25467_CR13) 2013; 128
JB Selvanayagam (25467_CR37) 2007; 50
References_xml – volume: 68
  start-page: 2287
  issue: 21
  year: 2016
  end-page: 95
  ident: CR1
  article-title: Machine-Learning Algorithms to Automate Morphological and Functional Assessments in 2D Echocardiography
  publication-title: J Am Coll Cardiol.
  doi: 10.1016/j.jacc.2016.08.062
– volume: 128
  start-page: 1531
  issue: 14
  year: 2013
  end-page: 1541
  ident: CR13
  article-title: Contribution and risks of left ventricular endomyocardial biopsy in patients with cardiomyopathies: A retrospective study over a 28-year period
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.13.001414
– volume: 35
  start-page: 2733
  issue: 39
  year: 2014
  end-page: 79
  ident: CR20
  article-title: 2014 ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy: The task force for the diagnosis and management of hypertrophic cardiomyopathy of the European Society of Cardiology (ESC)
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehu284
– volume: 28
  start-page: 727
  issue: 7
  year: 2015
  end-page: 754
  ident: CR18
  article-title: Recommendations on the use of echocardiography in adult hypertension: A report from the European Association of Cardiovascular Imaging (EACVI) and the American Society of Echocardiography (ASE)
  publication-title: J. Am. Soc. Echocardiogr.
  doi: 10.1016/j.echo.2015.05.002
– volume: 123
  start-page: 327
  issue: 3
  year: 2011
  end-page: 334
  ident: CR5
  article-title: The progression of hypertensive heart disease
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.108.845792
– volume: 3
  start-page: 32
  issue: 1
  year: 1950
  end-page: 35
  ident: CR28
  article-title: Index for rating diagnostic tests
  publication-title: Cancer
  doi: 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3
– volume: 27
  start-page: 400
  issue: 3
  year: 2019
  end-page: 410
  ident: CR25
  article-title: SeqSleepNet: End-to-end hierarchical recurrent neural network for sequence-to-sequence automatic sleep staging
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2019.2896659
– volume: 38
  start-page: 759
  year: 2021
  end-page: 769
  ident: CR44
  article-title: Using deep learning method to identify left ventricular hypertrophy on echocardiography
  publication-title: Int. J. Cardiovasc. Imaging
  doi: 10.1007/s10554-021-02461-3
– volume: 22
  start-page: 459
  issue: 4
  year: 2021
  end-page: 469
  ident: CR22
  article-title: Time trajectory of cardiac function and its relation with survival in patients with light-chain cardiac amyloidosis
  publication-title: Eur. Heart J. Cardiovasc. Imaging
  doi: 10.1093/ehjci/jeaa146
– volume: 26
  start-page: 1699
  issue: 7
  year: 1995
  end-page: 1708
  ident: CR36
  article-title: Phenotypic spectrum and patterns of left ventricular hypertrophy in hypertrophic cardiomyopathy: Morphologic observations and significance as assessed by two-dimensional echocardiography in 600 patients
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/0735-1097(95)00390-8
– volume: 142
  start-page: e558
  issue: 25
  year: 2020
  end-page: e631
  ident: CR19
  article-title: 2020 AHA/ACC guideline for the diagnosis and treatment of patients with hypertrophic cardiomyopathy: A report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines
  publication-title: Circulation
– volume: 50
  start-page: 2101
  issue: 22
  year: 2007
  end-page: 2110
  ident: CR37
  article-title: Evaluation and management of the cardiac amyloidosis
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2007.08.028
– volume: 44
  start-page: 395
  issue: 4
  year: 1980
  end-page: 400
  ident: CR6
  article-title: Echocardiographic differentiation of hypertensive heart disease and hypertrophic cardiomyopathy
  publication-title: Br. Heart J.
  doi: 10.1136/hrt.44.4.395
– volume: 7
  start-page: 386
  issue: 4
  year: 2022
  end-page: 395
  ident: CR30
  article-title: High-throughput precision phenotyping of left ventricular hypertrophy with cardiovascular deep learning
  publication-title: JAMA Cardiol.
  doi: 10.1001/jamacardio.2021.6059
– volume: 13
  start-page: 909
  issue: 4
  year: 2020
  end-page: 920
  ident: CR33
  article-title: Multiparametric echocardiography scores for the diagnosis of cardiac amyloidosis
  publication-title: JACC Cardiovasc. Imaging
  doi: 10.1016/j.jcmg.2019.10.011
– volume: 100
  start-page: 662
  issue: 8
  year: 2014
  end-page: 671
  ident: CR4
  article-title: Diagnostic approach and differential diagnosis in patients with hypertrophied left ventricles
  publication-title: Heart
  doi: 10.1136/heartjnl-2011-301528
– volume: 60
  start-page: 84
  issue: 6
  year: 2017
  end-page: 90
  ident: CR23
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– ident: CR27
– volume: 49
  start-page: 107256
  year: 2020
  ident: CR12
  article-title: Histological features of endomyocardial biopsies in patients undergoing hemodialysis: Comparison with dilated cardiomyopathy and hypertensive heart disease
  publication-title: Cardiovasc. Pathol.
  doi: 10.1016/j.carpath.2020.107256
– volume: 13
  start-page: 374
  issue: 2 Pt 1
  year: 2020
  end-page: 381
  ident: CR43
  article-title: A deep learning approach for assessment of regional wall motion abnormality from echocardiographic images
  publication-title: JACC Cardiovasc. Imaging
  doi: 10.1016/j.jcmg.2019.02.024
– volume: 28
  start-page: 1
  issue: 1
  year: 2015
  end-page: 39 e14
  ident: CR17
  article-title: Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging
  publication-title: J. Am. Soc. Echocardiogr.
  doi: 10.1016/j.echo.2014.10.003
– volume: 6
  start-page: 1066
  issue: 6
  year: 2013
  end-page: 1072
  ident: CR8
  article-title: Effect of combined systolic and diastolic functional parameter assessment for differentiation of cardiac amyloidosis from other causes of concentric left ventricular hypertrophy
  publication-title: Circ. Cardiovasc. Imaging
  doi: 10.1161/CIRCIMAGING.113.000683
– volume: 103
  start-page: 411
  issue: 3
  year: 2009
  end-page: 415
  ident: CR7
  article-title: Differentiation of hypertrophic cardiomyopathy and cardiac amyloidosis from other causes of ventricular wall thickening by two-dimensional strain imaging echocardiography
  publication-title: Am. J. Cardiol.
  doi: 10.1016/j.amjcard.2008.09.102
– volume: 49
  start-page: 460
  issue: 6
  year: 2020
  end-page: 475
  ident: CR10
  article-title: Left ventricular hypertrophy: Evaluation With cardiac MRI
  publication-title: Curr. Probl. Diagn. Radiol.
  doi: 10.1067/j.cpradiol.2019.09.005
– volume: 29
  start-page: 668
  issue: 6
  year: 2012
  end-page: 677
  ident: CR34
  article-title: Differentiating cardiac amyloidosis and hypertrophic cardiomyopathy by use of three-dimensional speckle tracking echocardiography
  publication-title: Echocardiography
  doi: 10.1111/j.1540-8175.2012.01680.x
– volume: 130
  start-page: 104200
  year: 2021
  ident: CR3
  article-title: Deep learning in spatiotemporal cardiac imaging: A review of methodologies and clinical usability
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.104200
– volume: 1
  start-page: 802
  year: 2015
  end-page: 810
  ident: CR24
  article-title: Convolutional LSTM network: A machine learning approach for precipitation nowcasting
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 9
  start-page: 108
  issue: 2
  year: 2021
  ident: CR38
  article-title: Artificial intelligence-based myocardial texture analysis in etiological differentiation of left ventricular hypertrophy
  publication-title: Ann. Transl. Med.
  doi: 10.21037/atm-20-4891
– volume: 20
  start-page: 429
  issue: 6
  year: 1999
  end-page: 438
  ident: CR31
  article-title: Prevalence of left ventricular hypertrophy in a general population; The Tromso Study
  publication-title: Eur. Heart J.
  doi: 10.1053/euhj.1998.1314
– volume: 138
  start-page: 1387
  issue: 14
  year: 2018
  end-page: 1398
  ident: CR14
  article-title: Genotype and lifetime burden of disease in hypertrophic cardiomyopathy: Insights from the Sarcomeric Human Cardiomyopathy Registry (SHaRe)
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.117.033200
– volume: 22
  start-page: 276
  issue: 3
  year: 2012
  end-page: 82
  ident: CR29
  article-title: Interrater reliability: The kappa statistic
  publication-title: Biochem. Med.
  doi: 10.11613/BM.2012.031
– volume: 9
  start-page: 403
  year: 2017
  end-page: 410
  ident: CR15
  article-title: Misclassification of hypertrophic cardiomyopathy: Validation of diagnostic codes
  publication-title: Clin. Epidemiol.
  doi: 10.2147/CLEP.S139300
– volume: 79
  start-page: 319
  issue: 4
  year: 2005
  end-page: 328
  ident: CR21
  article-title: Definition of organ involvement and treatment response in immunoglobulin light chain amyloidosis (AL): A consensus opinion from the 10th International Symposium on Amyloid and Amyloidosis, Tours, France, 18–22 April 2004
  publication-title: Am. J. Hematol.
  doi: 10.1002/ajh.20381
– volume: 42
  start-page: 1554
  issue: 16
  year: 2021
  end-page: 1568
  ident: CR32
  article-title: Diagnosis and treatment of cardiac amyloidosis: A position statement of the ESC Working Group on Myocardial and Pericardial Diseases
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehab072
– volume: 34
  start-page: 577
  issue: 4
  year: 2018
  end-page: 585
  ident: CR11
  article-title: Clinical applications of multiparametric CMR in left ventricular hypertrophy
  publication-title: Int. J. Cardiovasc. Imaging
  doi: 10.1007/s10554-018-1320-6
– volume: 138
  start-page: 1623
  issue: 16
  year: 2018
  end-page: 1635
  ident: CR2
  article-title: Fully automated echocardiogram interpretation in clinical practice
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.118.034338
– volume: 3
  start-page: 10
  year: 2020
  ident: CR41
  article-title: Deep learning interpretation of echocardiograms
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-019-0216-8
– volume: 23
  start-page: 793
  issue: 8
  year: 2010
  end-page: 801
  ident: CR9
  article-title: The different faces of echocardiographic left ventricular hypertrophy: Clues to the etiology
  publication-title: J. Am. Soc. Echocardiogr.
  doi: 10.1016/j.echo.2010.05.020
– volume: 13
  start-page: 2017
  issue: 9
  year: 2020
  end-page: 2035
  ident: CR16
  article-title: Proposed requirements for cardiovascular imaging-related machine learning evaluation (PRIME): A checklist: Reviewed by the American College of Cardiology Healthcare Innovation Council
  publication-title: JACC Cardiovasc. Imaging
  doi: 10.1016/j.jcmg.2020.07.015
– volume: 1
  start-page: 59
  year: 2018
  ident: CR39
  article-title: Deep echocardiography: Data-efficient supervised and semi-supervised deep learning towards automated diagnosis of cardiac disease
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-018-0065-x
– ident: CR26
– volume: 1
  start-page: 1
  year: 2018
  end-page: 8
  ident: CR42
  article-title: Fast and accurate view classification of echocardiograms using deep learning
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-017-0013-1
– volume: 17
  start-page: 1405
  issue: 12
  year: 2016
  end-page: 1413
  ident: CR35
  article-title: Prevalence and predictors of asymmetric hypertensive heart disease: Insights from cardiac and aortic function with cardiovascular magnetic resonance
  publication-title: Eur. Heart J. Cardiovasc. Imaging
  doi: 10.1093/ehjci/jev329
– volume: 580
  start-page: 252
  issue: 7802
  year: 2020
  end-page: 256
  ident: CR40
  article-title: Video-based AI for beat-to-beat assessment of cardiac function
  publication-title: Nature
  doi: 10.1038/s41586-020-2145-8
– volume: 1
  start-page: 802
  year: 2015
  ident: 25467_CR24
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 79
  start-page: 319
  issue: 4
  year: 2005
  ident: 25467_CR21
  publication-title: Am. J. Hematol.
  doi: 10.1002/ajh.20381
– volume: 22
  start-page: 276
  issue: 3
  year: 2012
  ident: 25467_CR29
  publication-title: Biochem. Med.
  doi: 10.11613/BM.2012.031
– volume: 9
  start-page: 108
  issue: 2
  year: 2021
  ident: 25467_CR38
  publication-title: Ann. Transl. Med.
  doi: 10.21037/atm-20-4891
– volume: 29
  start-page: 668
  issue: 6
  year: 2012
  ident: 25467_CR34
  publication-title: Echocardiography
  doi: 10.1111/j.1540-8175.2012.01680.x
– volume: 142
  start-page: e558
  issue: 25
  year: 2020
  ident: 25467_CR19
  publication-title: Circulation
– volume: 130
  start-page: 104200
  year: 2021
  ident: 25467_CR3
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.104200
– volume: 13
  start-page: 374
  issue: 2 Pt 1
  year: 2020
  ident: 25467_CR43
  publication-title: JACC Cardiovasc. Imaging
  doi: 10.1016/j.jcmg.2019.02.024
– volume: 49
  start-page: 107256
  year: 2020
  ident: 25467_CR12
  publication-title: Cardiovasc. Pathol.
  doi: 10.1016/j.carpath.2020.107256
– volume: 13
  start-page: 909
  issue: 4
  year: 2020
  ident: 25467_CR33
  publication-title: JACC Cardiovasc. Imaging
  doi: 10.1016/j.jcmg.2019.10.011
– volume: 100
  start-page: 662
  issue: 8
  year: 2014
  ident: 25467_CR4
  publication-title: Heart
  doi: 10.1136/heartjnl-2011-301528
– volume: 17
  start-page: 1405
  issue: 12
  year: 2016
  ident: 25467_CR35
  publication-title: Eur. Heart J. Cardiovasc. Imaging
  doi: 10.1093/ehjci/jev329
– volume: 23
  start-page: 793
  issue: 8
  year: 2010
  ident: 25467_CR9
  publication-title: J. Am. Soc. Echocardiogr.
  doi: 10.1016/j.echo.2010.05.020
– volume: 27
  start-page: 400
  issue: 3
  year: 2019
  ident: 25467_CR25
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2019.2896659
– volume: 128
  start-page: 1531
  issue: 14
  year: 2013
  ident: 25467_CR13
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.13.001414
– volume: 9
  start-page: 403
  year: 2017
  ident: 25467_CR15
  publication-title: Clin. Epidemiol.
  doi: 10.2147/CLEP.S139300
– volume: 1
  start-page: 1
  year: 2018
  ident: 25467_CR42
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-017-0013-1
– volume: 26
  start-page: 1699
  issue: 7
  year: 1995
  ident: 25467_CR36
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/0735-1097(95)00390-8
– volume: 28
  start-page: 1
  issue: 1
  year: 2015
  ident: 25467_CR17
  publication-title: J. Am. Soc. Echocardiogr.
  doi: 10.1016/j.echo.2014.10.003
– volume: 60
  start-page: 84
  issue: 6
  year: 2017
  ident: 25467_CR23
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– volume: 138
  start-page: 1387
  issue: 14
  year: 2018
  ident: 25467_CR14
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.117.033200
– ident: 25467_CR27
  doi: 10.1109/CVPR.2016.319
– volume: 20
  start-page: 429
  issue: 6
  year: 1999
  ident: 25467_CR31
  publication-title: Eur. Heart J.
  doi: 10.1053/euhj.1998.1314
– volume: 6
  start-page: 1066
  issue: 6
  year: 2013
  ident: 25467_CR8
  publication-title: Circ. Cardiovasc. Imaging
  doi: 10.1161/CIRCIMAGING.113.000683
– volume: 35
  start-page: 2733
  issue: 39
  year: 2014
  ident: 25467_CR20
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehu284
– volume: 3
  start-page: 10
  year: 2020
  ident: 25467_CR41
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-019-0216-8
– volume: 123
  start-page: 327
  issue: 3
  year: 2011
  ident: 25467_CR5
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.108.845792
– volume: 28
  start-page: 727
  issue: 7
  year: 2015
  ident: 25467_CR18
  publication-title: J. Am. Soc. Echocardiogr.
  doi: 10.1016/j.echo.2015.05.002
– volume: 68
  start-page: 2287
  issue: 21
  year: 2016
  ident: 25467_CR1
  publication-title: J Am Coll Cardiol.
  doi: 10.1016/j.jacc.2016.08.062
– volume: 49
  start-page: 460
  issue: 6
  year: 2020
  ident: 25467_CR10
  publication-title: Curr. Probl. Diagn. Radiol.
  doi: 10.1067/j.cpradiol.2019.09.005
– volume: 3
  start-page: 32
  issue: 1
  year: 1950
  ident: 25467_CR28
  publication-title: Cancer
  doi: 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3
– volume: 22
  start-page: 459
  issue: 4
  year: 2021
  ident: 25467_CR22
  publication-title: Eur. Heart J. Cardiovasc. Imaging
  doi: 10.1093/ehjci/jeaa146
– volume: 34
  start-page: 577
  issue: 4
  year: 2018
  ident: 25467_CR11
  publication-title: Int. J. Cardiovasc. Imaging
  doi: 10.1007/s10554-018-1320-6
– volume: 1
  start-page: 59
  year: 2018
  ident: 25467_CR39
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-018-0065-x
– volume: 38
  start-page: 759
  year: 2021
  ident: 25467_CR44
  publication-title: Int. J. Cardiovasc. Imaging
  doi: 10.1007/s10554-021-02461-3
– volume: 580
  start-page: 252
  issue: 7802
  year: 2020
  ident: 25467_CR40
  publication-title: Nature
  doi: 10.1038/s41586-020-2145-8
– volume: 103
  start-page: 411
  issue: 3
  year: 2009
  ident: 25467_CR7
  publication-title: Am. J. Cardiol.
  doi: 10.1016/j.amjcard.2008.09.102
– volume: 7
  start-page: 386
  issue: 4
  year: 2022
  ident: 25467_CR30
  publication-title: JAMA Cardiol.
  doi: 10.1001/jamacardio.2021.6059
– volume: 50
  start-page: 2101
  issue: 22
  year: 2007
  ident: 25467_CR37
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2007.08.028
– volume: 42
  start-page: 1554
  issue: 16
  year: 2021
  ident: 25467_CR32
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehab072
– volume: 138
  start-page: 1623
  issue: 16
  year: 2018
  ident: 25467_CR2
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.118.034338
– volume: 13
  start-page: 2017
  issue: 9
  year: 2020
  ident: 25467_CR16
  publication-title: JACC Cardiovasc. Imaging
  doi: 10.1016/j.jcmg.2020.07.015
– volume: 44
  start-page: 395
  issue: 4
  year: 1980
  ident: 25467_CR6
  publication-title: Br. Heart J.
  doi: 10.1136/hrt.44.4.395
– ident: 25467_CR26
  doi: 10.1109/ICCV.2015.123
SSID ssj0000529419
Score 2.472848
Snippet Differential diagnosis of left ventricular hypertrophy (LVH) is often obscure on echocardiography and requires numerous additional tests. We aimed to develop a...
Abstract Differential diagnosis of left ventricular hypertrophy (LVH) is often obscure on echocardiography and requires numerous additional tests. We aimed to...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 20998
SubjectTerms 692/308
692/4019
Algorithms
Amyloidosis
Cardiomyopathy
Cardiomyopathy, Hypertrophic - complications
Cardiomyopathy, Hypertrophic - diagnostic imaging
Cardiovascular diseases
Deep learning
Diagnosis, Differential
Differential diagnosis
Echocardiography
Echocardiography - adverse effects
Etiology
Heart diseases
Heart Diseases - diagnosis
Humanities and Social Sciences
Humans
Hypertension
Hypertrophy
Hypertrophy, Left Ventricular - diagnostic imaging
Hypertrophy, Left Ventricular - etiology
Long short-term memory
multidisciplinary
Neural networks
Neural Networks, Computer
Population studies
Science
Science (multidisciplinary)
Training
Ventricle
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA9SEHwRv12tEsE3XZrN5-ZRq6WI3ost9C3k0x4ce3K3pfS_7yTZO3t-vviazMIwH8nMzuQ3CL2GiNjr3KrTUSdbbi1pnSd921sV-ug817Y0yM7k8Sn_dCbOboz6yj1hFR64Cu7A2UgjyWdox7jPVcJoVa9jSF65CeeTaHIjmaqo3lTzTk-vZAjrD9ZwU-XXZJB7ZQh41V7u3EQFsP93UeavzZI_VUzLRXR0D92dIkj8rnJ-H92KwwN0u86UvHqI5h-mkSfgugscaifdfI2XCYNxgdHhOBZaSJHz4iKmEeemx_In0K7wOWSmq3G1BPnj3BX_DVtYyw-78OFs1n7-evIFl_k5j9Dp0ceTw-N2mqfQgsjhuI2SMeGIpiFwajvqeeqTdCQRpUHEnirJAyXCBUGS46JzTGRAO8csxEkg_8dob1gO8SnCnVYhSdUF4RnXymufJHMQG1oaBOOhQd1GtsZPYON55sXClKI3603VhwF9mKIPc9mgN9tvvleojb9Sv88q21JmmOyyAMZjJuMx_zKeBu1vFG4m310byNNlD1GQkA16td0Gr8ulFDvE5UWhgcBPAS8NelLtY8tJRuQnmnUNUjuWs8Pq7s4wPy_I3lpRqoho0NuNjf1g68-iePY_RPEc3aHZOXKnjthHe-PqIr6AeGt0L4trXQN6oCWw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k2gICNxg6h-xvEJQaGqEOyFVtpb5FfalVZJ2d2q4t8z42RTLY9eHUcae16fPeMZQt4CIg4WU3W48FWpnGOlD6wua2dinXxQ1uUE2Vl1fKq-zvV8vHBbj2mVW5uYDXXsA96RH8DpqarBN-nqw8XPErtGYXR1bKFxm9zhgESwdYOZm-mOBaNYitvxrQyT9cEa_BW-KYMTGBaCN-XVjj_KZfv_hTX_Tpn8I26a3dHRA3J_xJH048D4h-RW6h6Ru0NnyV-PyeLz2PgEFHhJ45BPt1jTvqWwXFgLTZs8Fw7KOLhM7YZi6mO-D3Qreg7n09Vm1QMXKObGn1EHY_i8ix7OZuW3Hyffae6i84ScHn05OTwux64KJWw8GN1USak9syJGJRwXQbV1W3nWMmMTq4MwlYqCaR81a73S3EuNZe28dICWOJdPyV7Xd-k5odya2FaGRx2ksibY0FbSA0J0ImqpYkH4dm-bMJYcx84XyyaHvmXdDPxogB9N5kdzVZB30z8XQ8GNG2d_QpZNM7FYdh7oV2fNqHuAB5KAlYEb5lIFDDQnZ2qbYhsMWrWC7G8Z3owavG6u5a0gb6bPoHsYUHFd6i_zHIB_BmgpyLNBPiZKsC4_s5IXxOxIzg6pu1-6xXmu722NEIbpgrzfytg1Wf_fihc3r-IluSdQ7DETR--Tvc3qMr0CPLXxr7PS_AatNR0q
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKERIXxLspBRmJGwT8jOMDQlCoKgR7oSv1FvmVdqVVQrOpSv89YydZtLAgcXXGkuOZib_JjL9B6AUgYqdjqQ5ltsiFMSS3jpR5aZQvg3VCm1QgOyuO5-LzqTzdQVO7o3EDV1tDu9hPat4tX_-4uH4HDv92uDJevlnBIRQvikFYFdndVX51A91M-aJYyjfC_YHrm2lB9Xh3ZvvUjfMp0fhvw55_llD-lkdNx9PRXXRnxJX4_WAI99BOaO6jW0OnyesHaPFxbIQCDr3EfqivW6xwW2MwOTBFHPokC4FzHFyGusexFDL9HzQdPod4teu7FrSCY638GTYwFq974cPZLP_y7eQrTl11HqL50aeTw-N87LKQgyLgIxwKzqUlmnkvmKHMibqsC0tqonQgpWOqEJ4Rab0ktRWSWi4jzZ3lBtATpfwR2m3aJuwhTLXydaGol44LrZx2dcEtIEbDvOTCZ4hOe1u5kYI8dsJYVikVzstq0EcF-qiSPqqrDL1cz_k-EHD8U_pDVNlaMpJnp4G2O6tGXwR8EBi8GRzLlAsXE8_BqFIHXzsVv3IZOpgUXk0GWUH0XpSAjWSRoefrx-CLMcFimtBeJhmAgwrWkqHHg32sVxJ5-onmNENqw3I2lrr5pFmcJ75vrRhTRGbo1WRjv5b1963Y_z_xJ-g2i24QK3XkAdrtu8vwFPBWb58lJ_oJ49QlFQ
  priority: 102
  providerName: Scholars Portal
Title Differential diagnosis of common etiologies of left ventricular hypertrophy using a hybrid CNN-LSTM model
URI https://link.springer.com/article/10.1038/s41598-022-25467-w
https://www.ncbi.nlm.nih.gov/pubmed/36470931
https://www.proquest.com/docview/2746829356
https://www.proquest.com/docview/2747277254
https://pubmed.ncbi.nlm.nih.gov/PMC9722705
https://doaj.org/article/bae2e08471134c5296ea789edfc7b003
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swEBdtymAvY9_z1gUN9raZ6dOSHtOspYQ1jLWFvBl9uQ2EZCQppf99T7KTka0b7MUG-Qwn3Z100p1-h9BH8Ii9Sak6lLmqFNaS0nmiS21V0NF5YWxOkB1Xp5diNJGTPcQ2d2Fy0n6GtMzT9CY77MsKFpp0GQy2TgnBXZW3--hAK5h-e-hgMBidj7YnKyl2JajpbsgQrh_4eWcVymD9D3mYfyZK_hYtzYvQyVP0pPMe8aDl9xnai_Pn6FFbT_LuBZp-7cqdgNnOcGiz6KYrvGgwdBMUDsd1poXtcWqcxWaNU8JjPgW0S3wNu9LlermAsccpI_4KW2hLl7rwcDwuv51fnOFcO-clujw5vhiell0thRKGG6baWHEuHTEsBMEsZV40uqkcaYgykWjPVCUCI9IFSRonJHVcJjA7xy34SJTyV6g3X8zjG4SpUaGpFA3Sc2GUN76puAO_0LIguQgFopuxrX0HNJ7qXczqHPDmum7lUYM86iyP-rZAn7b__GxhNv5JfZREtqVMENm5YbG8qjuVAS8gMugZLL6UC5_Cy9EqbWJovEpzWYEONwKvO7td1bBHrzR4QLIq0IftZ7C4FEax87i4yTTg9CngpUCvW_3YcpLQ-InhtEBqR3N2WN39Mp9eZ1RvoxhTRBbo80bHfrH196F4-3_k79Bjlswg5ePIQ9RbL2_ie_Cq1q6P9tVE9TtjgvfR8fj7D2gdVsN-PqmA55nQ93ioIgQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw8DQ6IXhBfBMYYCR4gmiJ7cTJw4TYlzrWVQg6aW-ZYztbpaoZbadqf47fxp2Tdiofe9ur40SX-_Kd7wvgPVrEJqdUnZiXaSi1jsLSRFmYaWUzVxqZa58g20-7x_LrSXKyBr8WtTCUVrnQiV5R29rQHfkmek9phmdTkn6--BnS1CiKri5GaOh2tILd8i3G2sKOQ3c1RxduunWwi_T-wPn-3mCnG7ZTBkIEBJWQS4VIyijn1kquY25klVVpGVWRyl2UGa5SaXmUlDaJqlImcSkSavNWCo3WQxwL_O4dWJd0gdKB9e29_rfvy1seiqPJOG-rdSKRbU7xxKSqNvQBqRW9CucrJ6IfHPAva_fvpM0_Irf-QNx_CA9aS5Z9aVjvEay58WO428y2vHoCw9129AqqkBGzTUbfcMrqiiHCEZvMzfxedNVpceSqGaPkS38jqSfsHD3kyWxSIx8wys4_YxrXqMCM7fT7Ye_H4Ij5OT5P4fhWMP4MOuN67F4Ai3Nlq1TFNjFC5srkpkpFiTaq5jYR0gYQL3BbmLbpOc3eGBU--C6yoqFHgfQoPD2KeQAfl-9cNC0_bty9TSRb7qR23X6hnpwVrfSjReI4_hkaArGQhkLdTqssd7YyivRqABsLghetDpkW1xwfwLvlY5R-Cunosasv_R40QBXCEsDzhj-WkNBkgCgXcQBqhXNWQF19Mh6e-w7jueJcRUkAnxY8dg3W_1Hx8ua_eAv3uoOjXtE76B--gvucRIDygpIN6Mwml-41Wnez8k0rQgxOb1tqfwPf6l4u
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CqtQFwQbwIFjAQniNaxnTg-VIh2u2ppWVXQSr2lfqVdabUpu1tV_UW-irHjbLU8euvVcaLJzHgenhdC78EiNtKn6mRUFylXiqTakDItlbCl04ZLFRJkh8XOEf96nB-voF9dLYxPq-xkYhDUtjH-jrwH3lNRgm7Ki14d0yIO-oPP5z9TP0HKR1q7cRoqjlmwG6HdWCzy2HNXl-DOzTZ2-0D7D5QOtg-3dtI4cSAFoEAguYKxXBNJreVUZdTwuqwLTWoipCOloaLglpJc25zUmueZZrlv-aaZAksiyxh89w5aE6D1wRFc29weHnxf3Pj4mBrPZKzcIazszUB7-go38Ad9W3qRXi5pxzBE4F-W798JnH9EcYNyHDxED6JVi7-0bPgIrbjJY3S3nXN59QSN-nEMC4iTMbZtdt9ohpsaA_IBm9jNw15w2_3i2NVz7BMxw-2kmuIz8Jan82kDPIF9pv4pVrDmi83w1nCY7v84_IbDTJ-n6OhWMP4MrU6aiXuBcCaFrQuR2dwwLoWRpi6YBntVUZszbhOUdbitTGyA7udwjKsQiGdl1dKjAnpUgR7VZYI-Lt45b9t_3Lh705NssdO37g4LzfS0ipIArBNH4c_AKMgYNz7s7ZQopbO1EV7GJmi9I3gV5cmsuub-BL1bPAZJ4MM7auKai7AHjFEBsCToecsfC0j8lAAiWZYgscQ5S6AuP5mMzkK3cSkoFSRP0KeOx67B-j8qXt78F2_RPTi91f7ucO8Vuk_9CfApQvk6Wp1PL9xrMPTm-k08QRid3Pah_Q2jCmJy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differential+diagnosis+of+common+etiologies+of+left+ventricular+hypertrophy+using+a+hybrid+CNN-LSTM+model&rft.jtitle=Scientific+reports&rft.au=Hwang%2C+In-Chang&rft.au=Choi%2C+Dongjun&rft.au=Choi%2C+You-Jung&rft.au=Ju%2C+Lia&rft.date=2022-12-05&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-022-25467-w&rft.externalDocID=10_1038_s41598_022_25467_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon