Differential diagnosis of common etiologies of left ventricular hypertrophy using a hybrid CNN-LSTM model
Differential diagnosis of left ventricular hypertrophy (LVH) is often obscure on echocardiography and requires numerous additional tests. We aimed to develop a deep learning algorithm to aid in the differentiation of common etiologies of LVH (i.e. hypertensive heart disease [HHD], hypertrophic cardi...
Saved in:
Published in | Scientific reports Vol. 12; no. 1; pp. 20998 - 12 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
05.12.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/s41598-022-25467-w |
Cover
Abstract | Differential diagnosis of left ventricular hypertrophy (LVH) is often obscure on echocardiography and requires numerous additional tests. We aimed to develop a deep learning algorithm to aid in the differentiation of common etiologies of LVH (i.e. hypertensive heart disease [HHD], hypertrophic cardiomyopathy [HCM], and light-chain cardiac amyloidosis [ALCA]) on echocardiographic images. Echocardiograms in 5 standard views (parasternal long-axis, parasternal short-axis, apical 4-chamber, apical 2-chamber, and apical 3-chamber) were obtained from 930 subjects: 112 with HHD, 191 with HCM, 81 with ALCA and 546 normal subjects. The study population was divided into training (n = 620), validation (n = 155), and test sets (n = 155). A convolutional neural network-long short-term memory (CNN-LSTM) algorithm was constructed to independently classify the 3 diagnoses on each view, and the final diagnosis was made by an aggregate network based on the simultaneously predicted probabilities of HCM, HCM, and ALCA. Diagnostic performance of the algorithm was evaluated by the area under the receiver operating characteristic curve (AUC), and accuracy was evaluated by the confusion matrix. The deep learning algorithm was trained and verified using the training and validation sets, respectively. In the test set, the average AUC across the five standard views was 0.962, 0.982 and 0.996 for HHD, HCM and CA, respectively. The overall diagnostic accuracy was significantly higher for the deep learning algorithm (92.3%) than for echocardiography specialists (80.0% and 80.6%). In the present study, we developed a deep learning algorithm for the differential diagnosis of 3 common LVH etiologies (HHD, HCM and ALCA) by applying a hybrid CNN-LSTM model and aggregate network to standard echocardiographic images. The high diagnostic performance of our deep learning algorithm suggests that the use of deep learning can improve the diagnostic process in patients with LVH. |
---|---|
AbstractList | Differential diagnosis of left ventricular hypertrophy (LVH) is often obscure on echocardiography and requires numerous additional tests. We aimed to develop a deep learning algorithm to aid in the differentiation of common etiologies of LVH (i.e. hypertensive heart disease [HHD], hypertrophic cardiomyopathy [HCM], and light-chain cardiac amyloidosis [ALCA]) on echocardiographic images. Echocardiograms in 5 standard views (parasternal long-axis, parasternal short-axis, apical 4-chamber, apical 2-chamber, and apical 3-chamber) were obtained from 930 subjects: 112 with HHD, 191 with HCM, 81 with ALCA and 546 normal subjects. The study population was divided into training (n = 620), validation (n = 155), and test sets (n = 155). A convolutional neural network-long short-term memory (CNN-LSTM) algorithm was constructed to independently classify the 3 diagnoses on each view, and the final diagnosis was made by an aggregate network based on the simultaneously predicted probabilities of HCM, HCM, and ALCA. Diagnostic performance of the algorithm was evaluated by the area under the receiver operating characteristic curve (AUC), and accuracy was evaluated by the confusion matrix. The deep learning algorithm was trained and verified using the training and validation sets, respectively. In the test set, the average AUC across the five standard views was 0.962, 0.982 and 0.996 for HHD, HCM and CA, respectively. The overall diagnostic accuracy was significantly higher for the deep learning algorithm (92.3%) than for echocardiography specialists (80.0% and 80.6%). In the present study, we developed a deep learning algorithm for the differential diagnosis of 3 common LVH etiologies (HHD, HCM and ALCA) by applying a hybrid CNN-LSTM model and aggregate network to standard echocardiographic images. The high diagnostic performance of our deep learning algorithm suggests that the use of deep learning can improve the diagnostic process in patients with LVH. Differential diagnosis of left ventricular hypertrophy (LVH) is often obscure on echocardiography and requires numerous additional tests. We aimed to develop a deep learning algorithm to aid in the differentiation of common etiologies of LVH (i.e. hypertensive heart disease [HHD], hypertrophic cardiomyopathy [HCM], and light-chain cardiac amyloidosis [ALCA]) on echocardiographic images. Echocardiograms in 5 standard views (parasternal long-axis, parasternal short-axis, apical 4-chamber, apical 2-chamber, and apical 3-chamber) were obtained from 930 subjects: 112 with HHD, 191 with HCM, 81 with ALCA and 546 normal subjects. The study population was divided into training (n = 620), validation (n = 155), and test sets (n = 155). A convolutional neural network-long short-term memory (CNN-LSTM) algorithm was constructed to independently classify the 3 diagnoses on each view, and the final diagnosis was made by an aggregate network based on the simultaneously predicted probabilities of HCM, HCM, and ALCA. Diagnostic performance of the algorithm was evaluated by the area under the receiver operating characteristic curve (AUC), and accuracy was evaluated by the confusion matrix. The deep learning algorithm was trained and verified using the training and validation sets, respectively. In the test set, the average AUC across the five standard views was 0.962, 0.982 and 0.996 for HHD, HCM and CA, respectively. The overall diagnostic accuracy was significantly higher for the deep learning algorithm (92.3%) than for echocardiography specialists (80.0% and 80.6%). In the present study, we developed a deep learning algorithm for the differential diagnosis of 3 common LVH etiologies (HHD, HCM and ALCA) by applying a hybrid CNN-LSTM model and aggregate network to standard echocardiographic images. The high diagnostic performance of our deep learning algorithm suggests that the use of deep learning can improve the diagnostic process in patients with LVH.Differential diagnosis of left ventricular hypertrophy (LVH) is often obscure on echocardiography and requires numerous additional tests. We aimed to develop a deep learning algorithm to aid in the differentiation of common etiologies of LVH (i.e. hypertensive heart disease [HHD], hypertrophic cardiomyopathy [HCM], and light-chain cardiac amyloidosis [ALCA]) on echocardiographic images. Echocardiograms in 5 standard views (parasternal long-axis, parasternal short-axis, apical 4-chamber, apical 2-chamber, and apical 3-chamber) were obtained from 930 subjects: 112 with HHD, 191 with HCM, 81 with ALCA and 546 normal subjects. The study population was divided into training (n = 620), validation (n = 155), and test sets (n = 155). A convolutional neural network-long short-term memory (CNN-LSTM) algorithm was constructed to independently classify the 3 diagnoses on each view, and the final diagnosis was made by an aggregate network based on the simultaneously predicted probabilities of HCM, HCM, and ALCA. Diagnostic performance of the algorithm was evaluated by the area under the receiver operating characteristic curve (AUC), and accuracy was evaluated by the confusion matrix. The deep learning algorithm was trained and verified using the training and validation sets, respectively. In the test set, the average AUC across the five standard views was 0.962, 0.982 and 0.996 for HHD, HCM and CA, respectively. The overall diagnostic accuracy was significantly higher for the deep learning algorithm (92.3%) than for echocardiography specialists (80.0% and 80.6%). In the present study, we developed a deep learning algorithm for the differential diagnosis of 3 common LVH etiologies (HHD, HCM and ALCA) by applying a hybrid CNN-LSTM model and aggregate network to standard echocardiographic images. The high diagnostic performance of our deep learning algorithm suggests that the use of deep learning can improve the diagnostic process in patients with LVH. Differential diagnosis of left ventricular hypertrophy (LVH) is often obscure on echocardiography and requires numerous additional tests. We aimed to develop a deep learning algorithm to aid in the differentiation of common etiologies of LVH (i.e. hypertensive heart disease [HHD], hypertrophic cardiomyopathy [HCM], and light-chain cardiac amyloidosis [ALCA]) on echocardiographic images. Echocardiograms in 5 standard views (parasternal long-axis, parasternal short-axis, apical 4-chamber, apical 2-chamber, and apical 3-chamber) were obtained from 930 subjects: 112 with HHD, 191 with HCM, 81 with ALCA and 546 normal subjects. The study population was divided into training (n = 620), validation (n = 155), and test sets (n = 155). A convolutional neural network-long short-term memory (CNN-LSTM) algorithm was constructed to independently classify the 3 diagnoses on each view, and the final diagnosis was made by an aggregate network based on the simultaneously predicted probabilities of HCM, HCM, and ALCA. Diagnostic performance of the algorithm was evaluated by the area under the receiver operating characteristic curve (AUC), and accuracy was evaluated by the confusion matrix. The deep learning algorithm was trained and verified using the training and validation sets, respectively. In the test set, the average AUC across the five standard views was 0.962, 0.982 and 0.996 for HHD, HCM and CA, respectively. The overall diagnostic accuracy was significantly higher for the deep learning algorithm (92.3%) than for echocardiography specialists (80.0% and 80.6%). In the present study, we developed a deep learning algorithm for the differential diagnosis of 3 common LVH etiologies (HHD, HCM and ALCA) by applying a hybrid CNN-LSTM model and aggregate network to standard echocardiographic images. The high diagnostic performance of our deep learning algorithm suggests that the use of deep learning can improve the diagnostic process in patients with LVH. Abstract Differential diagnosis of left ventricular hypertrophy (LVH) is often obscure on echocardiography and requires numerous additional tests. We aimed to develop a deep learning algorithm to aid in the differentiation of common etiologies of LVH (i.e. hypertensive heart disease [HHD], hypertrophic cardiomyopathy [HCM], and light-chain cardiac amyloidosis [ALCA]) on echocardiographic images. Echocardiograms in 5 standard views (parasternal long-axis, parasternal short-axis, apical 4-chamber, apical 2-chamber, and apical 3-chamber) were obtained from 930 subjects: 112 with HHD, 191 with HCM, 81 with ALCA and 546 normal subjects. The study population was divided into training (n = 620), validation (n = 155), and test sets (n = 155). A convolutional neural network-long short-term memory (CNN-LSTM) algorithm was constructed to independently classify the 3 diagnoses on each view, and the final diagnosis was made by an aggregate network based on the simultaneously predicted probabilities of HCM, HCM, and ALCA. Diagnostic performance of the algorithm was evaluated by the area under the receiver operating characteristic curve (AUC), and accuracy was evaluated by the confusion matrix. The deep learning algorithm was trained and verified using the training and validation sets, respectively. In the test set, the average AUC across the five standard views was 0.962, 0.982 and 0.996 for HHD, HCM and CA, respectively. The overall diagnostic accuracy was significantly higher for the deep learning algorithm (92.3%) than for echocardiography specialists (80.0% and 80.6%). In the present study, we developed a deep learning algorithm for the differential diagnosis of 3 common LVH etiologies (HHD, HCM and ALCA) by applying a hybrid CNN-LSTM model and aggregate network to standard echocardiographic images. The high diagnostic performance of our deep learning algorithm suggests that the use of deep learning can improve the diagnostic process in patients with LVH. |
ArticleNumber | 20998 |
Author | Cho, Goo-Yeong Hwang, In-Chang Lee, Seung-Pyo Ju, Lia Park, Jun-Bean Kim, Yong-Jin Kim, Hyung-Kwan Choi, You-Jung Hong, Ji-Eun Lee, Hyun-Jung Choi, Dongjun Yoon, Yeonyee E. Kim, Myeongju |
Author_xml | – sequence: 1 givenname: In-Chang surname: Hwang fullname: Hwang, In-Chang email: inchang.hwang@gmail.com organization: Cardiovascular Center, Seoul National University Bundang Hospital, Department of Internal Medicine, Seoul National University College of Medicine – sequence: 2 givenname: Dongjun surname: Choi fullname: Choi, Dongjun organization: Center for Artificial Intelligence in Healthcare, Seoul National University Bundang Hospital – sequence: 3 givenname: You-Jung surname: Choi fullname: Choi, You-Jung organization: Division of Cardiology, Cardiovascular Center, Korea University Guro Hospital – sequence: 4 givenname: Lia surname: Ju fullname: Ju, Lia organization: Cardiovascular Center, Seoul National University Bundang Hospital – sequence: 5 givenname: Myeongju surname: Kim fullname: Kim, Myeongju organization: Center for Artificial Intelligence in Healthcare, Seoul National University Bundang Hospital – sequence: 6 givenname: Ji-Eun surname: Hong fullname: Hong, Ji-Eun organization: Center for Artificial Intelligence in Healthcare, Seoul National University Bundang Hospital – sequence: 7 givenname: Hyun-Jung surname: Lee fullname: Lee, Hyun-Jung organization: Department of Internal Medicine, Seoul National University College of Medicine, Cardiovascular Center and Department of Internal Medicine, Seoul National University Hospital – sequence: 8 givenname: Yeonyee E. surname: Yoon fullname: Yoon, Yeonyee E. organization: Cardiovascular Center, Seoul National University Bundang Hospital, Department of Internal Medicine, Seoul National University College of Medicine – sequence: 9 givenname: Jun-Bean surname: Park fullname: Park, Jun-Bean organization: Department of Internal Medicine, Seoul National University College of Medicine, Cardiovascular Center and Department of Internal Medicine, Seoul National University Hospital – sequence: 10 givenname: Seung-Pyo surname: Lee fullname: Lee, Seung-Pyo organization: Department of Internal Medicine, Seoul National University College of Medicine, Cardiovascular Center and Department of Internal Medicine, Seoul National University Hospital – sequence: 11 givenname: Hyung-Kwan surname: Kim fullname: Kim, Hyung-Kwan organization: Department of Internal Medicine, Seoul National University College of Medicine, Cardiovascular Center and Department of Internal Medicine, Seoul National University Hospital – sequence: 12 givenname: Yong-Jin surname: Kim fullname: Kim, Yong-Jin organization: Department of Internal Medicine, Seoul National University College of Medicine, Cardiovascular Center and Department of Internal Medicine, Seoul National University Hospital – sequence: 13 givenname: Goo-Yeong surname: Cho fullname: Cho, Goo-Yeong organization: Cardiovascular Center, Seoul National University Bundang Hospital, Department of Internal Medicine, Seoul National University College of Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36470931$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1DAUhSNURB_0D7BAltiwCfgZJxskNFCoNJQFZW05znXGIyce7KTV_Hs8My20XdQbW9ffOTr2vafF0RhGKIo3BH8gmNUfEyeiqUtMaUkFr2R5-6I4oZiLkjJKjx6cj4vzlNY4L0EbTppXxTGruMQNIyeF--KshQjj5LRHndP9GJJLKFhkwjCEEcHkgg-9g33Rg53QTcajM7PXEa22G4hTDJvVFs3JjT3SudZG16HF1VW5_HX9Aw2hA_-6eGm1T3B-t58Vvy--Xi--l8uf3y4Xn5el4Q3BJVSMiRY3tOs41YQabmtbtdhi2QCuDZUV7ygWbSewbbkgLRO1wFXLtMCCEHZWXB58u6DXahPdoONWBe3UvhBir3ScnPGgWg00e3KZZdzk36lAy7qBzhrZYsyy16eD12ZuB-jM7t3aPzJ9fDO6lerDjWokpRKLbPD-ziCGPzOkSQ0uGfBejxDmpKjkkkqZO5jRd0_QdZjjmL9qR1U1bZioMvX2YaJ_Ue47moH6AJgYUopglXGTzj3cBXReEax286MO86Py_Kj9_KjbLKVPpPfuz4rYQZQyPPYQ_8d-RvUX-KrX7Q |
CitedBy_id | crossref_primary_10_1016_j_ijcard_2025_132979 crossref_primary_10_3390_solar3040036 crossref_primary_10_3389_frai_2023_1227091 crossref_primary_10_3390_jimaging10090230 crossref_primary_10_1016_j_artmed_2024_102866 crossref_primary_10_3892_etm_2023_12204 crossref_primary_10_1186_s44156_024_00059_8 crossref_primary_10_3390_jimaging9020050 crossref_primary_10_1016_j_biosystemseng_2023_12_014 crossref_primary_10_3390_diagnostics14020156 crossref_primary_10_1093_eurjpc_zwae008 crossref_primary_10_3389_fped_2023_1293320 crossref_primary_10_1016_j_imavis_2025_105427 crossref_primary_10_1016_j_echo_2024_05_013 crossref_primary_10_3390_diagnostics14111103 crossref_primary_10_1007_s11042_024_20232_9 crossref_primary_10_7759_cureus_55869 crossref_primary_10_1038_s41598_023_38177_8 crossref_primary_10_1371_journal_pone_0317741 crossref_primary_10_3390_jcm14020625 crossref_primary_10_1007_s10554_025_03362_5 crossref_primary_10_1088_1361_6560_ad548a crossref_primary_10_2478_inmed_2024_0288 |
Cites_doi | 10.1016/j.jacc.2016.08.062 10.1161/CIRCULATIONAHA.13.001414 10.1093/eurheartj/ehu284 10.1016/j.echo.2015.05.002 10.1161/CIRCULATIONAHA.108.845792 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3 10.1109/TNSRE.2019.2896659 10.1007/s10554-021-02461-3 10.1093/ehjci/jeaa146 10.1016/0735-1097(95)00390-8 10.1016/j.jacc.2007.08.028 10.1136/hrt.44.4.395 10.1001/jamacardio.2021.6059 10.1016/j.jcmg.2019.10.011 10.1136/heartjnl-2011-301528 10.1145/3065386 10.1016/j.carpath.2020.107256 10.1016/j.jcmg.2019.02.024 10.1016/j.echo.2014.10.003 10.1161/CIRCIMAGING.113.000683 10.1016/j.amjcard.2008.09.102 10.1067/j.cpradiol.2019.09.005 10.1111/j.1540-8175.2012.01680.x 10.1016/j.compbiomed.2020.104200 10.21037/atm-20-4891 10.1053/euhj.1998.1314 10.1161/CIRCULATIONAHA.117.033200 10.11613/BM.2012.031 10.2147/CLEP.S139300 10.1002/ajh.20381 10.1093/eurheartj/ehab072 10.1007/s10554-018-1320-6 10.1161/CIRCULATIONAHA.118.034338 10.1038/s41746-019-0216-8 10.1016/j.echo.2010.05.020 10.1016/j.jcmg.2020.07.015 10.1038/s41746-018-0065-x 10.1038/s41746-017-0013-1 10.1093/ehjci/jev329 10.1038/s41586-020-2145-8 10.1109/CVPR.2016.319 10.1109/ICCV.2015.123 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 2022. The Author(s). The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-022-25467-w |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Science Database Biological Science Database Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_bae2e08471134c5296ea789edfc7b003 PMC9722705 36470931 10_1038_s41598_022_25467_w |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Seoul National University Bundang Hospital grantid: No. 18-2020-0013 funderid: http://dx.doi.org/10.13039/100016275 – fundername: ; grantid: No. 18-2020-0013 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c4910-e6335b092dd42a12c4f8f6b0f079e08c2764d205bd50fb451b358506b3a505113 |
IEDL.DBID | AAJSJ |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:20:17 EDT 2025 Thu Aug 21 18:38:35 EDT 2025 Thu Sep 04 15:50:53 EDT 2025 Wed Aug 13 02:51:07 EDT 2025 Thu Jan 02 22:53:28 EST 2025 Tue Jul 01 00:55:32 EDT 2025 Thu Apr 24 23:12:55 EDT 2025 Fri Feb 21 02:39:19 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2022. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4910-e6335b092dd42a12c4f8f6b0f079e08c2764d205bd50fb451b358506b3a505113 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.nature.com/articles/s41598-022-25467-w |
PMID | 36470931 |
PQID | 2746829356 |
PQPubID | 2041939 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_bae2e08471134c5296ea789edfc7b003 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9722705 proquest_miscellaneous_2747277254 proquest_journals_2746829356 pubmed_primary_36470931 crossref_citationtrail_10_1038_s41598_022_25467_w crossref_primary_10_1038_s41598_022_25467_w springer_journals_10_1038_s41598_022_25467_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-05 |
PublicationDateYYYYMMDD | 2022-12-05 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Duffy, Cheng, Yuan, He, Kwan, Shun-Shin (CR30) 2022; 7 Madani, Arnaout, Mofrad, Arnaout (CR42) 2018; 1 Shi, Chen, Wang, Yeung, Wong, Woo (CR24) 2015; 1 Gertz, Comenzo, Falk, Fermand, Hazenberg, Hawkins (CR21) 2005; 79 Ghorbani, Ouyang, Abid, He, Chen, Harrington (CR41) 2020; 3 Drazner (CR5) 2011; 123 Weidemann, Niemann, Ertl, Stork (CR9) 2010; 23 Garcia-Pavia, Rapezzi, Adler, Arad, Basso, Brucato (CR32) 2021; 42 Sun, Stewart, Yang, Donnell, Leon, Felner (CR7) 2009; 103 Yu, Yao, Wu, Zhou, Xia, Su (CR44) 2021; 38 Phan, Andreotti, Cooray, Chen, De Vos (CR25) 2019; 27 Yoshizawa, Uto, Nishikawa, Hagiwara, Oda (CR12) 2020; 49 Magnusson, Palm, Branden, Morner (CR15) 2017; 9 Chimenti, Frustaci (CR13) 2013; 128 Boldrini, Cappelli, Chacko, Restrepo-Cordoba, Lopez-Sainz, Giannoni (CR33) 2020; 13 Selvanayagam, Hawkins, Paul, Myerson, Neubauer (CR37) 2007; 50 Elliott, Anastasakis, Borger, Borggrefe, Cecchi (CR20) 2014; 35 Lang, Badano, Mor-Avi, Afilalo, Armstrong, Ernande (CR17) 2015; 28 Liu, Hu, Niemann, Herrmann, Cikes, Stork (CR8) 2013; 6 Schirmer, Lunde, Rasmussen (CR31) 1999; 20 Kusunose, Abe, Haga, Fukuda, Yamada, Harada (CR43) 2020; 13 Grajewski, Stojanovska, Ibrahim, Sayyouh, Attili (CR10) 2020; 49 Nordin, Dancy, Moon, Sado (CR11) 2018; 34 Yu, Huang, Yu, Ma, Zhang, Zhang (CR38) 2021; 9 Ommen, Mital, Burke, Day, Deswal, Elliott (CR19) 2020; 142 Hwang, Koh, Park, Yoon, Kim, Kim (CR22) 2021; 22 Klues, Schiffers, Maron (CR36) 1995; 26 CR27 Doi, Deanfield, McKenna, Dargie, Oakley, Goodwin (CR6) 1980; 44 CR26 Baccouche, Maunz, Beck, Gaa, Banzhaf, Knayer (CR34) 2012; 29 Yilmaz, Sechtem (CR4) 2014; 100 McHugh (CR29) 2012; 22 Sengupta, Shrestha, Berthon, Messas, Donal, Tison (CR16) 2020; 13 Rodrigues, Amadu, Dastidar, Hassan, Lyen, Lawton (CR35) 2016; 17 Youden (CR28) 1950; 3 Ouyang, He, Ghorbani, Yuan, Ebinger, Langlotz (CR40) 2020; 580 Madani, Ong, Tibrewal, Mofrad (CR39) 2018; 1 Narula, Shameer, Salem Omar, Dudley, Sengupta (CR1) 2016; 68 Krizhevsky, Sutskever, Hinton (CR23) 2017; 60 Ho, Day, Ashley, Michels, Pereira, Jacoby (CR14) 2018; 138 Marwick, Gillebert, Aurigemma, Chirinos, Derumeaux, Galderisi (CR18) 2015; 28 Zhang, Gajjala, Agrawal, Tison, Hallock, Beussink-Nelson (CR2) 2018; 138 Lara Hernandez, Rienmuller, Baumgartner, Baumgartner (CR3) 2021; 130 A Yilmaz (25467_CR4) 2014; 100 SR Ommen (25467_CR19) 2020; 142 RM Lang (25467_CR17) 2015; 28 25467_CR27 25467_CR26 X Shi (25467_CR24) 2015; 1 D Ouyang (25467_CR40) 2020; 580 S Yoshizawa (25467_CR12) 2020; 49 J Zhang (25467_CR2) 2018; 138 PM Elliott (25467_CR20) 2014; 35 A Krizhevsky (25467_CR23) 2017; 60 H Phan (25467_CR25) 2019; 27 X Yu (25467_CR44) 2021; 38 JP Sun (25467_CR7) 2009; 103 IC Hwang (25467_CR22) 2021; 22 P Magnusson (25467_CR15) 2017; 9 G Duffy (25467_CR30) 2022; 7 M Boldrini (25467_CR33) 2020; 13 A Madani (25467_CR39) 2018; 1 S Nordin (25467_CR11) 2018; 34 W. J. Youden (25467_CR28) 1950; 3 P Garcia-Pavia (25467_CR32) 2021; 42 F Yu (25467_CR38) 2021; 9 F Weidemann (25467_CR9) 2010; 23 A Madani (25467_CR42) 2018; 1 D Liu (25467_CR8) 2013; 6 S Narula (25467_CR1) 2016; 68 KG Grajewski (25467_CR10) 2020; 49 ML McHugh (25467_CR29) 2012; 22 KA Lara Hernandez (25467_CR3) 2021; 130 H Baccouche (25467_CR34) 2012; 29 A Ghorbani (25467_CR41) 2020; 3 H Schirmer (25467_CR31) 1999; 20 JC Rodrigues (25467_CR35) 2016; 17 HG Klues (25467_CR36) 1995; 26 MH Drazner (25467_CR5) 2011; 123 YL Doi (25467_CR6) 1980; 44 PP Sengupta (25467_CR16) 2020; 13 TH Marwick (25467_CR18) 2015; 28 MA Gertz (25467_CR21) 2005; 79 K Kusunose (25467_CR43) 2020; 13 CY Ho (25467_CR14) 2018; 138 C Chimenti (25467_CR13) 2013; 128 JB Selvanayagam (25467_CR37) 2007; 50 |
References_xml | – volume: 68 start-page: 2287 issue: 21 year: 2016 end-page: 95 ident: CR1 article-title: Machine-Learning Algorithms to Automate Morphological and Functional Assessments in 2D Echocardiography publication-title: J Am Coll Cardiol. doi: 10.1016/j.jacc.2016.08.062 – volume: 128 start-page: 1531 issue: 14 year: 2013 end-page: 1541 ident: CR13 article-title: Contribution and risks of left ventricular endomyocardial biopsy in patients with cardiomyopathies: A retrospective study over a 28-year period publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.13.001414 – volume: 35 start-page: 2733 issue: 39 year: 2014 end-page: 79 ident: CR20 article-title: 2014 ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy: The task force for the diagnosis and management of hypertrophic cardiomyopathy of the European Society of Cardiology (ESC) publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehu284 – volume: 28 start-page: 727 issue: 7 year: 2015 end-page: 754 ident: CR18 article-title: Recommendations on the use of echocardiography in adult hypertension: A report from the European Association of Cardiovascular Imaging (EACVI) and the American Society of Echocardiography (ASE) publication-title: J. Am. Soc. Echocardiogr. doi: 10.1016/j.echo.2015.05.002 – volume: 123 start-page: 327 issue: 3 year: 2011 end-page: 334 ident: CR5 article-title: The progression of hypertensive heart disease publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.108.845792 – volume: 3 start-page: 32 issue: 1 year: 1950 end-page: 35 ident: CR28 article-title: Index for rating diagnostic tests publication-title: Cancer doi: 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3 – volume: 27 start-page: 400 issue: 3 year: 2019 end-page: 410 ident: CR25 article-title: SeqSleepNet: End-to-end hierarchical recurrent neural network for sequence-to-sequence automatic sleep staging publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2019.2896659 – volume: 38 start-page: 759 year: 2021 end-page: 769 ident: CR44 article-title: Using deep learning method to identify left ventricular hypertrophy on echocardiography publication-title: Int. J. Cardiovasc. Imaging doi: 10.1007/s10554-021-02461-3 – volume: 22 start-page: 459 issue: 4 year: 2021 end-page: 469 ident: CR22 article-title: Time trajectory of cardiac function and its relation with survival in patients with light-chain cardiac amyloidosis publication-title: Eur. Heart J. Cardiovasc. Imaging doi: 10.1093/ehjci/jeaa146 – volume: 26 start-page: 1699 issue: 7 year: 1995 end-page: 1708 ident: CR36 article-title: Phenotypic spectrum and patterns of left ventricular hypertrophy in hypertrophic cardiomyopathy: Morphologic observations and significance as assessed by two-dimensional echocardiography in 600 patients publication-title: J. Am. Coll. Cardiol. doi: 10.1016/0735-1097(95)00390-8 – volume: 142 start-page: e558 issue: 25 year: 2020 end-page: e631 ident: CR19 article-title: 2020 AHA/ACC guideline for the diagnosis and treatment of patients with hypertrophic cardiomyopathy: A report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines publication-title: Circulation – volume: 50 start-page: 2101 issue: 22 year: 2007 end-page: 2110 ident: CR37 article-title: Evaluation and management of the cardiac amyloidosis publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2007.08.028 – volume: 44 start-page: 395 issue: 4 year: 1980 end-page: 400 ident: CR6 article-title: Echocardiographic differentiation of hypertensive heart disease and hypertrophic cardiomyopathy publication-title: Br. Heart J. doi: 10.1136/hrt.44.4.395 – volume: 7 start-page: 386 issue: 4 year: 2022 end-page: 395 ident: CR30 article-title: High-throughput precision phenotyping of left ventricular hypertrophy with cardiovascular deep learning publication-title: JAMA Cardiol. doi: 10.1001/jamacardio.2021.6059 – volume: 13 start-page: 909 issue: 4 year: 2020 end-page: 920 ident: CR33 article-title: Multiparametric echocardiography scores for the diagnosis of cardiac amyloidosis publication-title: JACC Cardiovasc. Imaging doi: 10.1016/j.jcmg.2019.10.011 – volume: 100 start-page: 662 issue: 8 year: 2014 end-page: 671 ident: CR4 article-title: Diagnostic approach and differential diagnosis in patients with hypertrophied left ventricles publication-title: Heart doi: 10.1136/heartjnl-2011-301528 – volume: 60 start-page: 84 issue: 6 year: 2017 end-page: 90 ident: CR23 article-title: Imagenet classification with deep convolutional neural networks publication-title: Commun. ACM doi: 10.1145/3065386 – ident: CR27 – volume: 49 start-page: 107256 year: 2020 ident: CR12 article-title: Histological features of endomyocardial biopsies in patients undergoing hemodialysis: Comparison with dilated cardiomyopathy and hypertensive heart disease publication-title: Cardiovasc. Pathol. doi: 10.1016/j.carpath.2020.107256 – volume: 13 start-page: 374 issue: 2 Pt 1 year: 2020 end-page: 381 ident: CR43 article-title: A deep learning approach for assessment of regional wall motion abnormality from echocardiographic images publication-title: JACC Cardiovasc. Imaging doi: 10.1016/j.jcmg.2019.02.024 – volume: 28 start-page: 1 issue: 1 year: 2015 end-page: 39 e14 ident: CR17 article-title: Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging publication-title: J. Am. Soc. Echocardiogr. doi: 10.1016/j.echo.2014.10.003 – volume: 6 start-page: 1066 issue: 6 year: 2013 end-page: 1072 ident: CR8 article-title: Effect of combined systolic and diastolic functional parameter assessment for differentiation of cardiac amyloidosis from other causes of concentric left ventricular hypertrophy publication-title: Circ. Cardiovasc. Imaging doi: 10.1161/CIRCIMAGING.113.000683 – volume: 103 start-page: 411 issue: 3 year: 2009 end-page: 415 ident: CR7 article-title: Differentiation of hypertrophic cardiomyopathy and cardiac amyloidosis from other causes of ventricular wall thickening by two-dimensional strain imaging echocardiography publication-title: Am. J. Cardiol. doi: 10.1016/j.amjcard.2008.09.102 – volume: 49 start-page: 460 issue: 6 year: 2020 end-page: 475 ident: CR10 article-title: Left ventricular hypertrophy: Evaluation With cardiac MRI publication-title: Curr. Probl. Diagn. Radiol. doi: 10.1067/j.cpradiol.2019.09.005 – volume: 29 start-page: 668 issue: 6 year: 2012 end-page: 677 ident: CR34 article-title: Differentiating cardiac amyloidosis and hypertrophic cardiomyopathy by use of three-dimensional speckle tracking echocardiography publication-title: Echocardiography doi: 10.1111/j.1540-8175.2012.01680.x – volume: 130 start-page: 104200 year: 2021 ident: CR3 article-title: Deep learning in spatiotemporal cardiac imaging: A review of methodologies and clinical usability publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2020.104200 – volume: 1 start-page: 802 year: 2015 end-page: 810 ident: CR24 article-title: Convolutional LSTM network: A machine learning approach for precipitation nowcasting publication-title: Adv. Neural Inf. Process. Syst. – volume: 9 start-page: 108 issue: 2 year: 2021 ident: CR38 article-title: Artificial intelligence-based myocardial texture analysis in etiological differentiation of left ventricular hypertrophy publication-title: Ann. Transl. Med. doi: 10.21037/atm-20-4891 – volume: 20 start-page: 429 issue: 6 year: 1999 end-page: 438 ident: CR31 article-title: Prevalence of left ventricular hypertrophy in a general population; The Tromso Study publication-title: Eur. Heart J. doi: 10.1053/euhj.1998.1314 – volume: 138 start-page: 1387 issue: 14 year: 2018 end-page: 1398 ident: CR14 article-title: Genotype and lifetime burden of disease in hypertrophic cardiomyopathy: Insights from the Sarcomeric Human Cardiomyopathy Registry (SHaRe) publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.117.033200 – volume: 22 start-page: 276 issue: 3 year: 2012 end-page: 82 ident: CR29 article-title: Interrater reliability: The kappa statistic publication-title: Biochem. Med. doi: 10.11613/BM.2012.031 – volume: 9 start-page: 403 year: 2017 end-page: 410 ident: CR15 article-title: Misclassification of hypertrophic cardiomyopathy: Validation of diagnostic codes publication-title: Clin. Epidemiol. doi: 10.2147/CLEP.S139300 – volume: 79 start-page: 319 issue: 4 year: 2005 end-page: 328 ident: CR21 article-title: Definition of organ involvement and treatment response in immunoglobulin light chain amyloidosis (AL): A consensus opinion from the 10th International Symposium on Amyloid and Amyloidosis, Tours, France, 18–22 April 2004 publication-title: Am. J. Hematol. doi: 10.1002/ajh.20381 – volume: 42 start-page: 1554 issue: 16 year: 2021 end-page: 1568 ident: CR32 article-title: Diagnosis and treatment of cardiac amyloidosis: A position statement of the ESC Working Group on Myocardial and Pericardial Diseases publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehab072 – volume: 34 start-page: 577 issue: 4 year: 2018 end-page: 585 ident: CR11 article-title: Clinical applications of multiparametric CMR in left ventricular hypertrophy publication-title: Int. J. Cardiovasc. Imaging doi: 10.1007/s10554-018-1320-6 – volume: 138 start-page: 1623 issue: 16 year: 2018 end-page: 1635 ident: CR2 article-title: Fully automated echocardiogram interpretation in clinical practice publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.118.034338 – volume: 3 start-page: 10 year: 2020 ident: CR41 article-title: Deep learning interpretation of echocardiograms publication-title: NPJ Digit. Med. doi: 10.1038/s41746-019-0216-8 – volume: 23 start-page: 793 issue: 8 year: 2010 end-page: 801 ident: CR9 article-title: The different faces of echocardiographic left ventricular hypertrophy: Clues to the etiology publication-title: J. Am. Soc. Echocardiogr. doi: 10.1016/j.echo.2010.05.020 – volume: 13 start-page: 2017 issue: 9 year: 2020 end-page: 2035 ident: CR16 article-title: Proposed requirements for cardiovascular imaging-related machine learning evaluation (PRIME): A checklist: Reviewed by the American College of Cardiology Healthcare Innovation Council publication-title: JACC Cardiovasc. Imaging doi: 10.1016/j.jcmg.2020.07.015 – volume: 1 start-page: 59 year: 2018 ident: CR39 article-title: Deep echocardiography: Data-efficient supervised and semi-supervised deep learning towards automated diagnosis of cardiac disease publication-title: NPJ Digit. Med. doi: 10.1038/s41746-018-0065-x – ident: CR26 – volume: 1 start-page: 1 year: 2018 end-page: 8 ident: CR42 article-title: Fast and accurate view classification of echocardiograms using deep learning publication-title: NPJ Digit. Med. doi: 10.1038/s41746-017-0013-1 – volume: 17 start-page: 1405 issue: 12 year: 2016 end-page: 1413 ident: CR35 article-title: Prevalence and predictors of asymmetric hypertensive heart disease: Insights from cardiac and aortic function with cardiovascular magnetic resonance publication-title: Eur. Heart J. Cardiovasc. Imaging doi: 10.1093/ehjci/jev329 – volume: 580 start-page: 252 issue: 7802 year: 2020 end-page: 256 ident: CR40 article-title: Video-based AI for beat-to-beat assessment of cardiac function publication-title: Nature doi: 10.1038/s41586-020-2145-8 – volume: 1 start-page: 802 year: 2015 ident: 25467_CR24 publication-title: Adv. Neural Inf. Process. Syst. – volume: 79 start-page: 319 issue: 4 year: 2005 ident: 25467_CR21 publication-title: Am. J. Hematol. doi: 10.1002/ajh.20381 – volume: 22 start-page: 276 issue: 3 year: 2012 ident: 25467_CR29 publication-title: Biochem. Med. doi: 10.11613/BM.2012.031 – volume: 9 start-page: 108 issue: 2 year: 2021 ident: 25467_CR38 publication-title: Ann. Transl. Med. doi: 10.21037/atm-20-4891 – volume: 29 start-page: 668 issue: 6 year: 2012 ident: 25467_CR34 publication-title: Echocardiography doi: 10.1111/j.1540-8175.2012.01680.x – volume: 142 start-page: e558 issue: 25 year: 2020 ident: 25467_CR19 publication-title: Circulation – volume: 130 start-page: 104200 year: 2021 ident: 25467_CR3 publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2020.104200 – volume: 13 start-page: 374 issue: 2 Pt 1 year: 2020 ident: 25467_CR43 publication-title: JACC Cardiovasc. Imaging doi: 10.1016/j.jcmg.2019.02.024 – volume: 49 start-page: 107256 year: 2020 ident: 25467_CR12 publication-title: Cardiovasc. Pathol. doi: 10.1016/j.carpath.2020.107256 – volume: 13 start-page: 909 issue: 4 year: 2020 ident: 25467_CR33 publication-title: JACC Cardiovasc. Imaging doi: 10.1016/j.jcmg.2019.10.011 – volume: 100 start-page: 662 issue: 8 year: 2014 ident: 25467_CR4 publication-title: Heart doi: 10.1136/heartjnl-2011-301528 – volume: 17 start-page: 1405 issue: 12 year: 2016 ident: 25467_CR35 publication-title: Eur. Heart J. Cardiovasc. Imaging doi: 10.1093/ehjci/jev329 – volume: 23 start-page: 793 issue: 8 year: 2010 ident: 25467_CR9 publication-title: J. Am. Soc. Echocardiogr. doi: 10.1016/j.echo.2010.05.020 – volume: 27 start-page: 400 issue: 3 year: 2019 ident: 25467_CR25 publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2019.2896659 – volume: 128 start-page: 1531 issue: 14 year: 2013 ident: 25467_CR13 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.13.001414 – volume: 9 start-page: 403 year: 2017 ident: 25467_CR15 publication-title: Clin. Epidemiol. doi: 10.2147/CLEP.S139300 – volume: 1 start-page: 1 year: 2018 ident: 25467_CR42 publication-title: NPJ Digit. Med. doi: 10.1038/s41746-017-0013-1 – volume: 26 start-page: 1699 issue: 7 year: 1995 ident: 25467_CR36 publication-title: J. Am. Coll. Cardiol. doi: 10.1016/0735-1097(95)00390-8 – volume: 28 start-page: 1 issue: 1 year: 2015 ident: 25467_CR17 publication-title: J. Am. Soc. Echocardiogr. doi: 10.1016/j.echo.2014.10.003 – volume: 60 start-page: 84 issue: 6 year: 2017 ident: 25467_CR23 publication-title: Commun. ACM doi: 10.1145/3065386 – volume: 138 start-page: 1387 issue: 14 year: 2018 ident: 25467_CR14 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.117.033200 – ident: 25467_CR27 doi: 10.1109/CVPR.2016.319 – volume: 20 start-page: 429 issue: 6 year: 1999 ident: 25467_CR31 publication-title: Eur. Heart J. doi: 10.1053/euhj.1998.1314 – volume: 6 start-page: 1066 issue: 6 year: 2013 ident: 25467_CR8 publication-title: Circ. Cardiovasc. Imaging doi: 10.1161/CIRCIMAGING.113.000683 – volume: 35 start-page: 2733 issue: 39 year: 2014 ident: 25467_CR20 publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehu284 – volume: 3 start-page: 10 year: 2020 ident: 25467_CR41 publication-title: NPJ Digit. Med. doi: 10.1038/s41746-019-0216-8 – volume: 123 start-page: 327 issue: 3 year: 2011 ident: 25467_CR5 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.108.845792 – volume: 28 start-page: 727 issue: 7 year: 2015 ident: 25467_CR18 publication-title: J. Am. Soc. Echocardiogr. doi: 10.1016/j.echo.2015.05.002 – volume: 68 start-page: 2287 issue: 21 year: 2016 ident: 25467_CR1 publication-title: J Am Coll Cardiol. doi: 10.1016/j.jacc.2016.08.062 – volume: 49 start-page: 460 issue: 6 year: 2020 ident: 25467_CR10 publication-title: Curr. Probl. Diagn. Radiol. doi: 10.1067/j.cpradiol.2019.09.005 – volume: 3 start-page: 32 issue: 1 year: 1950 ident: 25467_CR28 publication-title: Cancer doi: 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3 – volume: 22 start-page: 459 issue: 4 year: 2021 ident: 25467_CR22 publication-title: Eur. Heart J. Cardiovasc. Imaging doi: 10.1093/ehjci/jeaa146 – volume: 34 start-page: 577 issue: 4 year: 2018 ident: 25467_CR11 publication-title: Int. J. Cardiovasc. Imaging doi: 10.1007/s10554-018-1320-6 – volume: 1 start-page: 59 year: 2018 ident: 25467_CR39 publication-title: NPJ Digit. Med. doi: 10.1038/s41746-018-0065-x – volume: 38 start-page: 759 year: 2021 ident: 25467_CR44 publication-title: Int. J. Cardiovasc. Imaging doi: 10.1007/s10554-021-02461-3 – volume: 580 start-page: 252 issue: 7802 year: 2020 ident: 25467_CR40 publication-title: Nature doi: 10.1038/s41586-020-2145-8 – volume: 103 start-page: 411 issue: 3 year: 2009 ident: 25467_CR7 publication-title: Am. J. Cardiol. doi: 10.1016/j.amjcard.2008.09.102 – volume: 7 start-page: 386 issue: 4 year: 2022 ident: 25467_CR30 publication-title: JAMA Cardiol. doi: 10.1001/jamacardio.2021.6059 – volume: 50 start-page: 2101 issue: 22 year: 2007 ident: 25467_CR37 publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2007.08.028 – volume: 42 start-page: 1554 issue: 16 year: 2021 ident: 25467_CR32 publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehab072 – volume: 138 start-page: 1623 issue: 16 year: 2018 ident: 25467_CR2 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.118.034338 – volume: 13 start-page: 2017 issue: 9 year: 2020 ident: 25467_CR16 publication-title: JACC Cardiovasc. Imaging doi: 10.1016/j.jcmg.2020.07.015 – volume: 44 start-page: 395 issue: 4 year: 1980 ident: 25467_CR6 publication-title: Br. Heart J. doi: 10.1136/hrt.44.4.395 – ident: 25467_CR26 doi: 10.1109/ICCV.2015.123 |
SSID | ssj0000529419 |
Score | 2.472848 |
Snippet | Differential diagnosis of left ventricular hypertrophy (LVH) is often obscure on echocardiography and requires numerous additional tests. We aimed to develop a... Abstract Differential diagnosis of left ventricular hypertrophy (LVH) is often obscure on echocardiography and requires numerous additional tests. We aimed to... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 20998 |
SubjectTerms | 692/308 692/4019 Algorithms Amyloidosis Cardiomyopathy Cardiomyopathy, Hypertrophic - complications Cardiomyopathy, Hypertrophic - diagnostic imaging Cardiovascular diseases Deep learning Diagnosis, Differential Differential diagnosis Echocardiography Echocardiography - adverse effects Etiology Heart diseases Heart Diseases - diagnosis Humanities and Social Sciences Humans Hypertension Hypertrophy Hypertrophy, Left Ventricular - diagnostic imaging Hypertrophy, Left Ventricular - etiology Long short-term memory multidisciplinary Neural networks Neural Networks, Computer Population studies Science Science (multidisciplinary) Training Ventricle |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA9SEHwRv12tEsE3XZrN5-ZRq6WI3ost9C3k0x4ce3K3pfS_7yTZO3t-vviazMIwH8nMzuQ3CL2GiNjr3KrTUSdbbi1pnSd921sV-ug817Y0yM7k8Sn_dCbOboz6yj1hFR64Cu7A2UgjyWdox7jPVcJoVa9jSF65CeeTaHIjmaqo3lTzTk-vZAjrD9ZwU-XXZJB7ZQh41V7u3EQFsP93UeavzZI_VUzLRXR0D92dIkj8rnJ-H92KwwN0u86UvHqI5h-mkSfgugscaifdfI2XCYNxgdHhOBZaSJHz4iKmEeemx_In0K7wOWSmq3G1BPnj3BX_DVtYyw-78OFs1n7-evIFl_k5j9Dp0ceTw-N2mqfQgsjhuI2SMeGIpiFwajvqeeqTdCQRpUHEnirJAyXCBUGS46JzTGRAO8csxEkg_8dob1gO8SnCnVYhSdUF4RnXymufJHMQG1oaBOOhQd1GtsZPYON55sXClKI3603VhwF9mKIPc9mgN9tvvleojb9Sv88q21JmmOyyAMZjJuMx_zKeBu1vFG4m310byNNlD1GQkA16td0Gr8ulFDvE5UWhgcBPAS8NelLtY8tJRuQnmnUNUjuWs8Pq7s4wPy_I3lpRqoho0NuNjf1g68-iePY_RPEc3aHZOXKnjthHe-PqIr6AeGt0L4trXQN6oCWw priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k2gICNxg6h-xvEJQaGqEOyFVtpb5FfalVZJ2d2q4t8z42RTLY9eHUcae16fPeMZQt4CIg4WU3W48FWpnGOlD6wua2dinXxQ1uUE2Vl1fKq-zvV8vHBbj2mVW5uYDXXsA96RH8DpqarBN-nqw8XPErtGYXR1bKFxm9zhgESwdYOZm-mOBaNYitvxrQyT9cEa_BW-KYMTGBaCN-XVjj_KZfv_hTX_Tpn8I26a3dHRA3J_xJH048D4h-RW6h6Ru0NnyV-PyeLz2PgEFHhJ45BPt1jTvqWwXFgLTZs8Fw7KOLhM7YZi6mO-D3Qreg7n09Vm1QMXKObGn1EHY_i8ix7OZuW3Hyffae6i84ScHn05OTwux64KJWw8GN1USak9syJGJRwXQbV1W3nWMmMTq4MwlYqCaR81a73S3EuNZe28dICWOJdPyV7Xd-k5odya2FaGRx2ksibY0FbSA0J0ImqpYkH4dm-bMJYcx84XyyaHvmXdDPxogB9N5kdzVZB30z8XQ8GNG2d_QpZNM7FYdh7oV2fNqHuAB5KAlYEb5lIFDDQnZ2qbYhsMWrWC7G8Z3owavG6u5a0gb6bPoHsYUHFd6i_zHIB_BmgpyLNBPiZKsC4_s5IXxOxIzg6pu1-6xXmu722NEIbpgrzfytg1Wf_fihc3r-IluSdQ7DETR--Tvc3qMr0CPLXxr7PS_AatNR0q priority: 102 providerName: ProQuest – databaseName: Scholars Portal Open Access Journals dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKERIXxLspBRmJGwT8jOMDQlCoKgR7oSv1FvmVdqVVQrOpSv89YydZtLAgcXXGkuOZib_JjL9B6AUgYqdjqQ5ltsiFMSS3jpR5aZQvg3VCm1QgOyuO5-LzqTzdQVO7o3EDV1tDu9hPat4tX_-4uH4HDv92uDJevlnBIRQvikFYFdndVX51A91M-aJYyjfC_YHrm2lB9Xh3ZvvUjfMp0fhvw55_llD-lkdNx9PRXXRnxJX4_WAI99BOaO6jW0OnyesHaPFxbIQCDr3EfqivW6xwW2MwOTBFHPokC4FzHFyGusexFDL9HzQdPod4teu7FrSCY638GTYwFq974cPZLP_y7eQrTl11HqL50aeTw-N87LKQgyLgIxwKzqUlmnkvmKHMibqsC0tqonQgpWOqEJ4Rab0ktRWSWi4jzZ3lBtATpfwR2m3aJuwhTLXydaGol44LrZx2dcEtIEbDvOTCZ4hOe1u5kYI8dsJYVikVzstq0EcF-qiSPqqrDL1cz_k-EHD8U_pDVNlaMpJnp4G2O6tGXwR8EBi8GRzLlAsXE8_BqFIHXzsVv3IZOpgUXk0GWUH0XpSAjWSRoefrx-CLMcFimtBeJhmAgwrWkqHHg32sVxJ5-onmNENqw3I2lrr5pFmcJ75vrRhTRGbo1WRjv5b1963Y_z_xJ-g2i24QK3XkAdrtu8vwFPBWb58lJ_oJ49QlFQ priority: 102 providerName: Scholars Portal |
Title | Differential diagnosis of common etiologies of left ventricular hypertrophy using a hybrid CNN-LSTM model |
URI | https://link.springer.com/article/10.1038/s41598-022-25467-w https://www.ncbi.nlm.nih.gov/pubmed/36470931 https://www.proquest.com/docview/2746829356 https://www.proquest.com/docview/2747277254 https://pubmed.ncbi.nlm.nih.gov/PMC9722705 https://doaj.org/article/bae2e08471134c5296ea789edfc7b003 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swEBdtymAvY9_z1gUN9raZ6dOSHtOspYQ1jLWFvBl9uQ2EZCQppf99T7KTka0b7MUG-Qwn3Z100p1-h9BH8Ii9Sak6lLmqFNaS0nmiS21V0NF5YWxOkB1Xp5diNJGTPcQ2d2Fy0n6GtMzT9CY77MsKFpp0GQy2TgnBXZW3--hAK5h-e-hgMBidj7YnKyl2JajpbsgQrh_4eWcVymD9D3mYfyZK_hYtzYvQyVP0pPMe8aDl9xnai_Pn6FFbT_LuBZp-7cqdgNnOcGiz6KYrvGgwdBMUDsd1poXtcWqcxWaNU8JjPgW0S3wNu9LlermAsccpI_4KW2hLl7rwcDwuv51fnOFcO-clujw5vhiell0thRKGG6baWHEuHTEsBMEsZV40uqkcaYgykWjPVCUCI9IFSRonJHVcJjA7xy34SJTyV6g3X8zjG4SpUaGpFA3Sc2GUN76puAO_0LIguQgFopuxrX0HNJ7qXczqHPDmum7lUYM86iyP-rZAn7b__GxhNv5JfZREtqVMENm5YbG8qjuVAS8gMugZLL6UC5_Cy9EqbWJovEpzWYEONwKvO7td1bBHrzR4QLIq0IftZ7C4FEax87i4yTTg9CngpUCvW_3YcpLQ-InhtEBqR3N2WN39Mp9eZ1RvoxhTRBbo80bHfrH196F4-3_k79Bjlswg5ePIQ9RbL2_ie_Cq1q6P9tVE9TtjgvfR8fj7D2gdVsN-PqmA55nQ93ioIgQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw8DQ6IXhBfBMYYCR4gmiJ7cTJw4TYlzrWVQg6aW-ZYztbpaoZbadqf47fxp2Tdiofe9ur40SX-_Kd7wvgPVrEJqdUnZiXaSi1jsLSRFmYaWUzVxqZa58g20-7x_LrSXKyBr8WtTCUVrnQiV5R29rQHfkmek9phmdTkn6--BnS1CiKri5GaOh2tILd8i3G2sKOQ3c1RxduunWwi_T-wPn-3mCnG7ZTBkIEBJWQS4VIyijn1kquY25klVVpGVWRyl2UGa5SaXmUlDaJqlImcSkSavNWCo3WQxwL_O4dWJd0gdKB9e29_rfvy1seiqPJOG-rdSKRbU7xxKSqNvQBqRW9CucrJ6IfHPAva_fvpM0_Irf-QNx_CA9aS5Z9aVjvEay58WO428y2vHoCw9129AqqkBGzTUbfcMrqiiHCEZvMzfxedNVpceSqGaPkS38jqSfsHD3kyWxSIx8wys4_YxrXqMCM7fT7Ye_H4Ij5OT5P4fhWMP4MOuN67F4Ai3Nlq1TFNjFC5srkpkpFiTaq5jYR0gYQL3BbmLbpOc3eGBU--C6yoqFHgfQoPD2KeQAfl-9cNC0_bty9TSRb7qR23X6hnpwVrfSjReI4_hkaArGQhkLdTqssd7YyivRqABsLghetDpkW1xwfwLvlY5R-Cunosasv_R40QBXCEsDzhj-WkNBkgCgXcQBqhXNWQF19Mh6e-w7jueJcRUkAnxY8dg3W_1Hx8ua_eAv3uoOjXtE76B--gvucRIDygpIN6Mwml-41Wnez8k0rQgxOb1tqfwPf6l4u |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CqtQFwQbwIFjAQniNaxnTg-VIh2u2ppWVXQSr2lfqVdabUpu1tV_UW-irHjbLU8euvVcaLJzHgenhdC78EiNtKn6mRUFylXiqTakDItlbCl04ZLFRJkh8XOEf96nB-voF9dLYxPq-xkYhDUtjH-jrwH3lNRgm7Ki14d0yIO-oPP5z9TP0HKR1q7cRoqjlmwG6HdWCzy2HNXl-DOzTZ2-0D7D5QOtg-3dtI4cSAFoEAguYKxXBNJreVUZdTwuqwLTWoipCOloaLglpJc25zUmueZZrlv-aaZAksiyxh89w5aE6D1wRFc29weHnxf3Pj4mBrPZKzcIazszUB7-go38Ad9W3qRXi5pxzBE4F-W798JnH9EcYNyHDxED6JVi7-0bPgIrbjJY3S3nXN59QSN-nEMC4iTMbZtdt9ohpsaA_IBm9jNw15w2_3i2NVz7BMxw-2kmuIz8Jan82kDPIF9pv4pVrDmi83w1nCY7v84_IbDTJ-n6OhWMP4MrU6aiXuBcCaFrQuR2dwwLoWRpi6YBntVUZszbhOUdbitTGyA7udwjKsQiGdl1dKjAnpUgR7VZYI-Lt45b9t_3Lh705NssdO37g4LzfS0ipIArBNH4c_AKMgYNz7s7ZQopbO1EV7GJmi9I3gV5cmsuub-BL1bPAZJ4MM7auKai7AHjFEBsCToecsfC0j8lAAiWZYgscQ5S6AuP5mMzkK3cSkoFSRP0KeOx67B-j8qXt78F2_RPTi91f7ucO8Vuk_9CfApQvk6Wp1PL9xrMPTm-k08QRid3Pah_Q2jCmJy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differential+diagnosis+of+common+etiologies+of+left+ventricular+hypertrophy+using+a+hybrid+CNN-LSTM+model&rft.jtitle=Scientific+reports&rft.au=Hwang%2C+In-Chang&rft.au=Choi%2C+Dongjun&rft.au=Choi%2C+You-Jung&rft.au=Ju%2C+Lia&rft.date=2022-12-05&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-022-25467-w&rft.externalDocID=10_1038_s41598_022_25467_w |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |