Lazy Multi-label Learning Algorithms Based on Mutuality Strategies
Lazy multi-label learning algorithms have become an important research topic within the multi-label community. These algorithms usually consider the set of standard k -Nearest Neighbors of a new instance to predict its labels (multi-label). The prediction is made by following a voting criteria withi...
Saved in:
| Published in | Journal of intelligent & robotic systems Vol. 80; no. Suppl 1; pp. 261 - 276 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Dordrecht
Springer Netherlands
01.12.2015
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0921-0296 1573-0409 1573-0409 |
| DOI | 10.1007/s10846-014-0144-4 |
Cover
| Abstract | Lazy multi-label learning algorithms have become an important research topic within the multi-label community. These algorithms usually consider the set of standard
k
-Nearest Neighbors of a new instance to predict its labels (multi-label). The prediction is made by following a voting criteria within the multi-labels of the set of
k
-Nearest Neighbors of the new instance. This work proposes the use of two alternative strategies to identify the set of these examples: the Mutual and Not Mutual Nearest Neighbors rules, which have already been used by lazy single-learning algorithms. In this work, we use these strategies to extend the lazy multi-label algorithm
BRkNN
. An experimental evaluation carried out to compare both mutuality strategies with the original
BRkNN
algorithm and the well-known
MLkNN
lazy algorithm on 15 benchmark datasets showed that
MLkNN
presented the best predictive performance for the
Hamming-Loss
evaluation measure, although it was significantly outperformed by the mutuality strategies when
F-Measure
is considered. The best results of the lazy algorithms were also compared with the results obtained by the Binary Relevance approach using three different base learning algorithms. |
|---|---|
| AbstractList | Issue Title: Special Issue on Cognitive Robotics Systems: Concepts and Applications & Selected Papers from the National Meeting of Artificial and Computational Intelligence 2013 Lazy multi-label learning algorithms have become an important research topic within the multi-label community. These algorithms usually consider the set of standard k-Nearest Neighbors of a new instance to predict its labels (multi-label). The prediction is made by following a voting criteria within the multi-labels of the set of k-Nearest Neighbors of the new instance. This work proposes the use of two alternative strategies to identify the set of these examples: the Mutual and Not Mutual Nearest Neighbors rules, which have already been used by lazy single-learning algorithms. In this work, we use these strategies to extend the lazy multi-label algorithm BRkNN. An experimental evaluation carried out to compare both mutuality strategies with the original BRkNN algorithm and the well-known MLkNN lazy algorithm on 15 benchmark datasets showed that MLkNN presented the best predictive performance for the Hamming-Loss evaluation measure, although it was significantly outperformed by the mutuality strategies when F-Measure is considered. The best results of the lazy algorithms were also compared with the results obtained by the Binary Relevance approach using three different base learning algorithms. Lazy multi-label learning algorithms have become an important research topic within the multi-label community. These algorithms usually consider the set of standard k -Nearest Neighbors of a new instance to predict its labels (multi-label). The prediction is made by following a voting criteria within the multi-labels of the set of k -Nearest Neighbors of the new instance. This work proposes the use of two alternative strategies to identify the set of these examples: the Mutual and Not Mutual Nearest Neighbors rules, which have already been used by lazy single-learning algorithms. In this work, we use these strategies to extend the lazy multi-label algorithm BRkNN . An experimental evaluation carried out to compare both mutuality strategies with the original BRkNN algorithm and the well-known MLkNN lazy algorithm on 15 benchmark datasets showed that MLkNN presented the best predictive performance for the Hamming-Loss evaluation measure, although it was significantly outperformed by the mutuality strategies when F-Measure is considered. The best results of the lazy algorithms were also compared with the results obtained by the Binary Relevance approach using three different base learning algorithms. Lazy multi-label learning algorithms have become an important research topic within the multi-label community. These algorithms usually consider the set of standard k-Nearest Neighbors of a new instance to predict its labels (multi-label). The prediction is made by following a voting criteria within the multi-labels of the set of k-Nearest Neighbors of the new instance. This work proposes the use of two alternative strategies to identify the set of these examples: the Mutual and Not Mutual Nearest Neighbors rules, which have already been used by lazy single-learning algorithms. In this work, we use these strategies to extend the lazy multi-label algorithm BRkNN. An experimental evaluation carried out to compare both mutuality strategies with the original BRkNN algorithm and the well-known MLkNN lazy algorithm on 15 benchmark datasets showed that MLkNN presented the best predictive performance for the Hamming-Loss evaluation measure, although it was significantly outperformed by the mutuality strategies when F-Measure is considered. The best results of the lazy algorithms were also compared with the results obtained by the Binary Relevance approach using three different base learning algorithms. |
| Author | Cherman, Everton Alvares Valverde-Rebaza, Jorge Monard, Maria Carolina Spolaôr, Newton |
| Author_xml | – sequence: 1 givenname: Everton Alvares surname: Cherman fullname: Cherman, Everton Alvares email: evertoncherman@gmail.com organization: Laboratory of Computational Intelligence, Institute of Mathematics and Computer Science, University of São Paulo – sequence: 2 givenname: Newton surname: Spolaôr fullname: Spolaôr, Newton organization: Laboratory of Computational Intelligence, Institute of Mathematics and Computer Science, University of São Paulo – sequence: 3 givenname: Jorge surname: Valverde-Rebaza fullname: Valverde-Rebaza, Jorge organization: Laboratory of Computational Intelligence, Institute of Mathematics and Computer Science, University of São Paulo – sequence: 4 givenname: Maria Carolina surname: Monard fullname: Monard, Maria Carolina organization: Laboratory of Computational Intelligence, Institute of Mathematics and Computer Science, University of São Paulo |
| BookMark | eNqNkE1LAzEQhoMoWD9-gLcFL15WJ5uk2xxV_IKKB72H2Wy2pqTZmmSR-utNaQ9SUAwMuTzv8M5zRPZ97w0hZxQuKUB9FSlM-LgEytfDS75HRlTUrAQOcp-MQFa0hEqOD8lRjHMAkBMhR-Rmil-r4nlwyZYOG-OKqcHgrZ8V127WB5veF7G4wWjaovcZTAM6m1bFawqYzMyaeEIOOnTRnG7_Y_J2f_d2-1hOXx6ebq-npeYSUtlqxEq3QjKNgjLTtchEp2VdYSuxya_GRnYNiFxbiDFrZGvaSjfQIRctOybVZu3gl7j6ROfUMtgFhpWioNYS1EaCygLWwxXPoYtNaBn6j8HEpBY2auMcetMPUdFasixlQmlGz3fQeT8Eny9SjMoxCM4m8BdFa8FYnck1VW8oHfoYg-mUtgmT7X22Zt2fhelO8j9Hbs3EzPqZCT86_Rr6BuqpqQ8 |
| CitedBy_id | crossref_primary_10_1002_widm_1240 crossref_primary_10_1080_18756891_2015_1129587 crossref_primary_10_1109_ACCESS_2022_3185765 crossref_primary_10_1007_s10994_020_05879_3 crossref_primary_10_1007_s13042_020_01180_w crossref_primary_10_1051_matecconf_201823204041 crossref_primary_10_1016_j_patcog_2018_12_020 crossref_primary_10_1109_ACCESS_2020_3041763 crossref_primary_10_1016_j_inffus_2023_101948 crossref_primary_10_1016_j_ins_2021_09_052 |
| Cites_doi | 10.1007/s10994-009-5127-5 10.1023/A:1007626913721 10.1155/2011/645964 10.1007/s10994-012-5285-8 10.1109/TKDE.2006.162 10.1007/978-3-642-34654-5_20 10.1109/GCC.2010.23 10.1007/3-540-44794-6_4 10.1007/978-3-540-87881-0_40 10.1007/978-0-387-09823-4_34 10.1145/2034691.2034733 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media Dordrecht 2014 Springer Science+Business Media Dordrecht 2015 Copyright Springer Nature B.V. Dec 2015 |
| Copyright_xml | – notice: Springer Science+Business Media Dordrecht 2014 – notice: Springer Science+Business Media Dordrecht 2015 – notice: Copyright Springer Nature B.V. Dec 2015 |
| DBID | AAYXX CITATION 3V. 7SC 7SP 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- L6V L7M L~C L~D M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U F28 ADTOC UNPAY |
| DOI | 10.1007/s10846-014-0144-4 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (ProQuest) ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic ANTE: Abstracts in New Technology & Engineering Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Computer Science Database Technology Research Database Computer Science Database |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1573-0409 |
| EndPage | 276 |
| ExternalDocumentID | 002663482 3912261411 10_1007_s10846_014_0144_4 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29K 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAHNG AAIAL AAJKR AAJSJ AAKKN AANZL AARHV AARTL AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABEEZ ABFTD ABFTV ABHLI ABHQN ABIVO ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMOR ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACACY ACBXY ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACULB ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFGXO AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ C24 C6C CAG CCPQU COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IJ- IKXTQ ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW L6V LAK LLZTM M0N M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P62 P9P PF0 PQQKQ PROAC PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VXZ W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8S Z8T Z8W Z92 ZMTXR _50 ~A9 ~EX AAFWJ AASML AAYXX ABDBE ABFSG ACSTC ADHKG AEZWR AFHIU AGQPQ AHPBZ AHWEU AIXLP AYFIA CITATION ICD PHGZM PHGZT PQGLB PUEGO 7SC 7SP 7TB 7XB 8AL 8FD 8FK FR3 JQ2 L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U F28 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c490t-dcaa2cd593ca513efda35fc972ad9abbbb7ab9fb055735563b9ded2cb0fa45d3 |
| IEDL.DBID | U2A |
| ISSN | 0921-0296 1573-0409 |
| IngestDate | Sun Oct 26 03:46:22 EDT 2025 Thu Oct 02 09:38:31 EDT 2025 Sat Oct 18 23:16:33 EDT 2025 Sat Oct 18 23:13:32 EDT 2025 Wed Oct 01 02:39:02 EDT 2025 Thu Apr 24 23:02:06 EDT 2025 Fri Feb 21 02:35:15 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | Suppl 1 |
| Keywords | Multi-label learning Lazy algorithms Nearest Neighbors Machine learning |
| Language | English |
| License | other-oa |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c490t-dcaa2cd593ca513efda35fc972ad9abbbb7ab9fb055735563b9ded2cb0fa45d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://dx.doi.org/10.1007/s10846-014-0144-4 |
| PQID | 1753379600 |
| PQPubID | 326251 |
| PageCount | 16 |
| ParticipantIDs | unpaywall_primary_10_1007_s10846_014_0144_4 proquest_miscellaneous_1793296811 proquest_journals_3196054380 proquest_journals_1753379600 crossref_citationtrail_10_1007_s10846_014_0144_4 crossref_primary_10_1007_s10846_014_0144_4 springer_journals_10_1007_s10846_014_0144_4 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2015-12-01 |
| PublicationDateYYYYMMDD | 2015-12-01 |
| PublicationDate_xml | – month: 12 year: 2015 text: 2015-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | with a special section on Unmanned Systems |
| PublicationTitle | Journal of intelligent & robotic systems |
| PublicationTitleAbbrev | J Intell Robot Syst |
| PublicationYear | 2015 |
| Publisher | Springer Netherlands Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
| References | Dembczynski, Waegeman, Cheng, Hüllermeier (CR4) 2012; 88 CR2 CR3 Younes, Abdallah, Denoeux, Snoussi (CR15) 2011; 2011 CR6 CR8 CR7 Demsar (CR5) 2006; 7 Cheng, Hüllermeier (CR1) 2009; 76 CR9 Zhang, Zhou (CR17) 2005; 2 Tsoumakas, Spyromitros, Vilcek, Vlahavas (CR13) 2011; 12 Zhang, Zhou (CR18) 2013; 99 CR12 CR11 CR10 Zhang (CR16) 2006; 18 Wilson, Martinez (CR14) 2000; 38 W Cheng (144_CR1) 2009; 76 144_CR3 144_CR2 ML Zhang (144_CR17) 2005; 2 G Tsoumakas (144_CR13) 2011; 12 K Dembczynski (144_CR4) 2012; 88 144_CR10 144_CR11 Z Younes (144_CR15) 2011; 2011 144_CR9 144_CR12 144_CR7 144_CR8 144_CR6 ML Zhang (144_CR18) 2013; 99 ML Zhang (144_CR16) 2006; 18 J Demsar (144_CR5) 2006; 7 DR Wilson (144_CR14) 2000; 38 |
| References_xml | – volume: 99 start-page: 1 year: 2013 ident: CR18 article-title: A review on multi-label learning algorithms publication-title: IEEE Trans. Knowl. Data Eng. – volume: 76 start-page: 211 issue: 2-3 year: 2009 end-page: 225 ident: CR1 article-title: Combining instance-based learning and logistic regression for multilabel classification publication-title: Mach. Learn. doi: 10.1007/s10994-009-5127-5 – volume: 7 start-page: 1 year: 2006 end-page: 30 ident: CR5 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J. Mach. Learn. Res. – volume: 38 start-page: 257 issue: 3 year: 2000 end-page: 286 ident: CR14 article-title: Reduction techniques for exemplar-based learning algorithms publication-title: Mach. Learn. doi: 10.1023/A:1007626913721 – ident: CR3 – ident: CR2 – volume: 2011 start-page: 1 year: 2011 end-page: 14 ident: CR15 article-title: A dependent multilabel classification method derived from the k-nearest neighbor rule publication-title: EURASIP J. Adv. Signal Process. doi: 10.1155/2011/645964 – ident: CR12 – volume: 12 start-page: 2411 year: 2011 end-page: 2414 ident: CR13 article-title: Mulan: A java library for multi-label learning publication-title: J. Mach. Learn. Res. – ident: CR10 – ident: CR11 – ident: CR9 – volume: 88 start-page: 5 issue: 1-2 year: 2012 end-page: 45 ident: CR4 article-title: On label dependence and loss minimization in multi-label classification publication-title: Mach. Learn. doi: 10.1007/s10994-012-5285-8 – ident: CR6 – volume: 18 start-page: 1338 issue: 10 year: 2006 end-page: 1351 ident: CR16 article-title: Multilabel neural networks with applications to functional genomics and text categorization publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2006.162 – ident: CR7 – ident: CR8 – volume: 2 start-page: 718 year: 2005 end-page: 721 ident: CR17 article-title: A k-nearest neighbor based algorithm for multi-label classification publication-title: IEEE International Conference on Granular Computing – volume: 18 start-page: 1338 issue: 10 year: 2006 ident: 144_CR16 publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2006.162 – ident: 144_CR7 – ident: 144_CR9 – volume: 99 start-page: 1 year: 2013 ident: 144_CR18 publication-title: IEEE Trans. Knowl. Data Eng. – volume: 2 start-page: 718 year: 2005 ident: 144_CR17 publication-title: IEEE International Conference on Granular Computing – volume: 88 start-page: 5 issue: 1-2 year: 2012 ident: 144_CR4 publication-title: Mach. Learn. doi: 10.1007/s10994-012-5285-8 – ident: 144_CR8 doi: 10.1007/978-3-642-34654-5_20 – volume: 7 start-page: 1 year: 2006 ident: 144_CR5 publication-title: J. Mach. Learn. Res. – volume: 38 start-page: 257 issue: 3 year: 2000 ident: 144_CR14 publication-title: Mach. Learn. doi: 10.1023/A:1007626913721 – ident: 144_CR6 doi: 10.1109/GCC.2010.23 – volume: 2011 start-page: 1 year: 2011 ident: 144_CR15 publication-title: EURASIP J. Adv. Signal Process. doi: 10.1155/2011/645964 – ident: 144_CR3 doi: 10.1007/3-540-44794-6_4 – ident: 144_CR2 – ident: 144_CR11 doi: 10.1007/978-3-540-87881-0_40 – ident: 144_CR12 doi: 10.1007/978-0-387-09823-4_34 – volume: 76 start-page: 211 issue: 2-3 year: 2009 ident: 144_CR1 publication-title: Mach. Learn. doi: 10.1007/s10994-009-5127-5 – volume: 12 start-page: 2411 year: 2011 ident: 144_CR13 publication-title: J. Mach. Learn. Res. – ident: 144_CR10 doi: 10.1145/2034691.2034733 |
| SSID | ssj0009859 |
| Score | 2.1812475 |
| Snippet | Lazy multi-label learning algorithms have become an important research topic within the multi-label community. These algorithms usually consider the set of... Issue Title: Special Issue on Cognitive Robotics Systems: Concepts and Applications & Selected Papers from the National Meeting of Artificial and Computational... |
| SourceID | unpaywall proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 261 |
| SubjectTerms | Algorithms Artificial Intelligence Benchmarking Communities Control Criteria Electrical Engineering Engineering Labels Learning Machine learning Mechanical Engineering Mechatronics Performance evaluation Robotics Strategy Voting |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwED-N7gH2wMcAURjISDwxWTSJ3cYPCK1o04SgQmhIe4su_tgeQlpoKlT-eu6SuC0SjEh5suM4vjv755zvdwCvnEGmaQsSnc6lwhJl7vNE2jTlHYbLx22E3KfZ-Pyr-nCpL_dgFmNh-FhlnBPbidrNLf8jf8OMktmE8Pbo3eK75KxR7F2NKTSwT63g3rYUY7dgP2VmrAHsT09nn79saXhz3bHvpbSJTs04-jm7YDpai2lrzacylJLqz5VqCz83HtMDuL2qF7j-iVW1syid3Ye7PZoUJ534H8Cerw_hXszUIHrDPYSDHdrBhzD9iL_Wog29laQEvhI9y-qVOKmu6KOb629LMaX1zYl5TRWbNvJyLSKVrV8-gouz04v357LPpSCtMqNGOouYWqdNZlEnmQ8OMx2smaRI4irpmmBpQsmUXBmThpXGeZfachRQaZc9hkE9r_0TEGTQzjrjCOgGFajZ0ieBWfEnmCsdcAijOGyF7XnGOd1FVWwZknmkCxplvlWhhvB688iiI9m4qfJRlEXR29uy2GrHX4t5niFsmuVU_HJTTIbE3hGs_XzFTRCUNeM8SYZwHEW884Z_9-d4owX_7_3Tm3v_DO4QItPdeZkjGDQ_Vv45oZ6mfNGr8m8X_fzM priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED5t5WHjYTA2RBkgT9rTkFGT2E38WKYhhDa0B5DYU3T-BYiQIpoKlb-ec5q0nWCMRcqTHcex73KfdXffAXyxCgNNm-doZcYFauSZyyJu4jicMGzWrzPkfh73D0_F0Zk8m_NsP_bghyQ3spF05A3REkJw8RqW-pKAdweWTo9_DX7XbHoxHYrjuhpXJNOEk2iq1of51Bh_WqE5tJx5Q5fhzbi8wckdFsWCwTlYmWZyj2qewhBncrU3rvSeuX_M4viSb1mFdw3wZIOppLyHV65cg5W2qANrdHwNlhcYCj_A_g-8n7A6S5eTvLiCNYSs52xQnA9vL6uL6xHbJ1No2bCkjlWdpDlhLeutG32Ek4PvJ98OeVN2gRuhehW3BjE2VqrEoIwS5y0m0huVxkg7q-lKUSuvA3tXEvjFtLLOxkb3PAppk3XolMPSbQAj3bfGKkuY2AtPw2oX-UCgn2ImpMcu9NpdyE1DSR4qYxT5nEw5LFhOixVukYsufJ09cjPl43iu81a7tXmjmqM8UJMmKclP78nm8EsiGJtk1Px51kw6FxwpWLrhOAxBqFf1syjqwm4rMQtv-Pt8dmdC9e_Zb_5X70_wlrCcnEbabEGnuh27bcJLld5p9OQBoSYH_A priority: 102 providerName: Unpaywall |
| Title | Lazy Multi-label Learning Algorithms Based on Mutuality Strategies |
| URI | https://link.springer.com/article/10.1007/s10846-014-0144-4 https://www.proquest.com/docview/1753379600 https://www.proquest.com/docview/3196054380 https://www.proquest.com/docview/1793296811 http://dx.doi.org/10.1007/s10846-014-0144-4 |
| UnpaywallVersion | submittedVersion |
| Volume | 80 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-0409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009859 issn: 0921-0296 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-0409 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0009859 issn: 0921-0296 databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-0409 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0009859 issn: 0921-0296 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1573-0409 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009859 issn: 0921-0296 databaseCode: AAJSJ dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-0409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009859 issn: 0921-0296 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-0409 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009859 issn: 0921-0296 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_W9mHrQ7d1G8vWBg32tCKIbSmRHp2RtOwjlNFA-2TO-ugGnlMah5H99T05dpJB1zGDMebks9DpdHec7ieA91ZjgGnzHK1UXGCOXDkVcRPHIcKwql9XyH2d9M-m4tOlvGzquOftbvc2JVmv1FvFbmQrKfQNuyaE4GIH9mRA86JJPI3TDdKukiuAvZji5Fj321TmfSz-NEYbD3OdFN2Hx4vyBpe_sCi27M74GRw0DiNLVxJ-Do9ceQhP28MYWKObh7C_hSz4AoZf8PeS1dW1nOTsCtYAqV6ztLie3f6ovv-csyGZMMtmJTWs6uLKJWvRat38JVyMRxcfz3hzXAI3Qvcqbg1ibKzUiUEZJc5bTKQ3ehAjSSSna4C59nlA3UoCLliurbOxyXsehbTJK9gtZ6V7DYx01hqrLfmyXnhim7vIB-D7ASohPXag1w5bZhoo8XCiRZFtQJDDSGc0yuEWmejAh_UnNyscjYcaH7WyyBqVmmcBUjQZUMDVu5cclhJyPxNF5HdrMulKSIBg6WaLwIK8Vd1XUdSBk1bEW3_4e39O1rPg371_81-838IT8sHkaofMEexWtwt3TH5OlXdhR41Pu7CXnl59HtFzOJqcf-vWs53eppPz9OoOD8T4hA |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH8a22HswMcAUdjASHBhsmgSu40P07TCpo51FUJF2i1y_DEOWdrRVFP3v-1_4zmx2yLBOC1STnYc5_n5feT5_R7Aey2kg2mzVGqeUiZzSVOTRlTFsfMwdNqpM-TOhp3-D_b1nJ-vwW3IhXHHKoNMrAW1Hiv3j_yTQ5RMumhvtw8mV9RVjXLR1VBCQ_rSCnq_hhjziR2nZn6NLtx0_-QLrveHOD4-Gn3uU19lgCom2hXVSspYaS4SJXmUGKtlwq0S3Vjih-R4dWUubO7AqhIHp5ULbXSs8raVjOsEh30AGyxhAn2_jd7R8Nv3Jepvyhuwvxh99lh0Qli1yd1D1Y-evDsEwhhlfyrGpbW7CNBuweasnMj5tSyKFR14_AQeeeOVHDbc9hTWTLkNj0NhCOLlxDZsraAcPoPeQN7MSZ3pS5HnTEE8qOsFOSwukMbVz8sp6aE61WRcYseqTvSck4Cca6bPYXQfRH0B6-W4NC-BoPzQSguNdrVlFofNTWQdCH9Xpoxb2YJ2IFumPKy5q65RZEtAZkfpDKnsbpaxFnxcPDJpMD3u6rwT1iLz23uaLZnxr81OrKEpnKTY_G7RjPvWBWNkacYzNwRazqKTRlEL9sISr7zh3_PZW3DB_2f_6u7Zv4XN_uhskA1Ohqev4SEag7w5qrMD69WvmdlFg6vK33i2JpDd80b6DbMMPM0 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgE9FCgglhYwElyorG4cexMfqqqlLC0tFYci9RY5fpRDyC5sVtXyz_h3zOSxu0hQTo2Ukx3HGc8z9nwD8NppQzBtgRunUi5Nbnjq04hbISjCcOmgzpD7dDY4-iI_XqiLFfjV5cLQscpOJ9aK2o0s_SPfIUTJOEF_u78T2mMRnw-He-PvnCpI0U5rV06jYZETP7vC8G2ye3yIa_1GiOH783dHvK0wwK3U_Yo7a4ywTunYGhXFPjgTq2B1Igx-RI5XYnIdcgKqiglKK9fOO2HzfjBSuRiHvQW3EwJxpyT14YcF3m-qGpg_gdG60INuQ7XJ2kOjjzE8Hf-Qkss_TeLCz51vza7B3Wk5NrMrUxRL1m_4ANZbt5XtN3z2EFZ8uQH3u5IQrNUQG7C2hG_4CA5Ozc8Zq3N8OXKbL1gL53rJ9otLpGj19duEHaAhdWxUYseqTvGcsQ4z108ew_lNkPQJrJaj0j8FhprDWacdetRBBhw291Eg-P3EpFIF04N-R7bMtoDmVFejyBZQzETpDKlMt8xkD97OHxk3aB7Xdd7q1iJrBXuSLdjwr82k0NAJjlNsfjVvRomlbRhT-tGUhkCfWQ_SKOrBdrfES2_493y251zw_9k_u372L-EOik92enx2sgn30AtUzRmdLVitfkz9c_S0qvxFzdMMshuWod8K2zpn |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED5t5WHjYTA2RBkgT9rTkFGT2E38WKYhhDa0B5DYU3T-BYiQIpoKlb-ec5q0nWCMRcqTHcex73KfdXffAXyxCgNNm-doZcYFauSZyyJu4jicMGzWrzPkfh73D0_F0Zk8m_NsP_bghyQ3spF05A3REkJw8RqW-pKAdweWTo9_DX7XbHoxHYrjuhpXJNOEk2iq1of51Bh_WqE5tJx5Q5fhzbi8wckdFsWCwTlYmWZyj2qewhBncrU3rvSeuX_M4viSb1mFdw3wZIOppLyHV65cg5W2qANrdHwNlhcYCj_A_g-8n7A6S5eTvLiCNYSs52xQnA9vL6uL6xHbJ1No2bCkjlWdpDlhLeutG32Ek4PvJ98OeVN2gRuhehW3BjE2VqrEoIwS5y0m0huVxkg7q-lKUSuvA3tXEvjFtLLOxkb3PAppk3XolMPSbQAj3bfGKkuY2AtPw2oX-UCgn2ImpMcu9NpdyE1DSR4qYxT5nEw5LFhOixVukYsufJ09cjPl43iu81a7tXmjmqM8UJMmKclP78nm8EsiGJtk1Px51kw6FxwpWLrhOAxBqFf1syjqwm4rMQtv-Pt8dmdC9e_Zb_5X70_wlrCcnEbabEGnuh27bcJLld5p9OQBoSYH_A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lazy+Multi-label+Learning+Algorithms+Based+on+Mutuality+Strategies&rft.jtitle=Journal+of+intelligent+%26+robotic+systems&rft.au=Cherman%2C+Everton+Alvares&rft.au=Spola%C3%B4r%2C+Newton&rft.au=Valverde-Rebaza%2C+Jorge&rft.au=Monard%2C+Maria+Carolina&rft.date=2015-12-01&rft.pub=Springer+Netherlands&rft.issn=0921-0296&rft.eissn=1573-0409&rft.volume=80&rft.issue=Suppl+1&rft.spage=261&rft.epage=276&rft_id=info:doi/10.1007%2Fs10846-014-0144-4&rft.externalDocID=10_1007_s10846_014_0144_4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-0296&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-0296&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-0296&client=summon |