Lazy Multi-label Learning Algorithms Based on Mutuality Strategies

Lazy multi-label learning algorithms have become an important research topic within the multi-label community. These algorithms usually consider the set of standard k -Nearest Neighbors of a new instance to predict its labels (multi-label). The prediction is made by following a voting criteria withi...

Full description

Saved in:
Bibliographic Details
Published inJournal of intelligent & robotic systems Vol. 80; no. Suppl 1; pp. 261 - 276
Main Authors Cherman, Everton Alvares, Spolaôr, Newton, Valverde-Rebaza, Jorge, Monard, Maria Carolina
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.12.2015
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0921-0296
1573-0409
1573-0409
DOI10.1007/s10846-014-0144-4

Cover

Abstract Lazy multi-label learning algorithms have become an important research topic within the multi-label community. These algorithms usually consider the set of standard k -Nearest Neighbors of a new instance to predict its labels (multi-label). The prediction is made by following a voting criteria within the multi-labels of the set of k -Nearest Neighbors of the new instance. This work proposes the use of two alternative strategies to identify the set of these examples: the Mutual and Not Mutual Nearest Neighbors rules, which have already been used by lazy single-learning algorithms. In this work, we use these strategies to extend the lazy multi-label algorithm BRkNN . An experimental evaluation carried out to compare both mutuality strategies with the original BRkNN algorithm and the well-known MLkNN lazy algorithm on 15 benchmark datasets showed that MLkNN presented the best predictive performance for the Hamming-Loss evaluation measure, although it was significantly outperformed by the mutuality strategies when F-Measure is considered. The best results of the lazy algorithms were also compared with the results obtained by the Binary Relevance approach using three different base learning algorithms.
AbstractList Issue Title: Special Issue on Cognitive Robotics Systems: Concepts and Applications & Selected Papers from the National Meeting of Artificial and Computational Intelligence 2013 Lazy multi-label learning algorithms have become an important research topic within the multi-label community. These algorithms usually consider the set of standard k-Nearest Neighbors of a new instance to predict its labels (multi-label). The prediction is made by following a voting criteria within the multi-labels of the set of k-Nearest Neighbors of the new instance. This work proposes the use of two alternative strategies to identify the set of these examples: the Mutual and Not Mutual Nearest Neighbors rules, which have already been used by lazy single-learning algorithms. In this work, we use these strategies to extend the lazy multi-label algorithm BRkNN. An experimental evaluation carried out to compare both mutuality strategies with the original BRkNN algorithm and the well-known MLkNN lazy algorithm on 15 benchmark datasets showed that MLkNN presented the best predictive performance for the Hamming-Loss evaluation measure, although it was significantly outperformed by the mutuality strategies when F-Measure is considered. The best results of the lazy algorithms were also compared with the results obtained by the Binary Relevance approach using three different base learning algorithms.
Lazy multi-label learning algorithms have become an important research topic within the multi-label community. These algorithms usually consider the set of standard k -Nearest Neighbors of a new instance to predict its labels (multi-label). The prediction is made by following a voting criteria within the multi-labels of the set of k -Nearest Neighbors of the new instance. This work proposes the use of two alternative strategies to identify the set of these examples: the Mutual and Not Mutual Nearest Neighbors rules, which have already been used by lazy single-learning algorithms. In this work, we use these strategies to extend the lazy multi-label algorithm BRkNN . An experimental evaluation carried out to compare both mutuality strategies with the original BRkNN algorithm and the well-known MLkNN lazy algorithm on 15 benchmark datasets showed that MLkNN presented the best predictive performance for the Hamming-Loss evaluation measure, although it was significantly outperformed by the mutuality strategies when F-Measure is considered. The best results of the lazy algorithms were also compared with the results obtained by the Binary Relevance approach using three different base learning algorithms.
Lazy multi-label learning algorithms have become an important research topic within the multi-label community. These algorithms usually consider the set of standard k-Nearest Neighbors of a new instance to predict its labels (multi-label). The prediction is made by following a voting criteria within the multi-labels of the set of k-Nearest Neighbors of the new instance. This work proposes the use of two alternative strategies to identify the set of these examples: the Mutual and Not Mutual Nearest Neighbors rules, which have already been used by lazy single-learning algorithms. In this work, we use these strategies to extend the lazy multi-label algorithm BRkNN. An experimental evaluation carried out to compare both mutuality strategies with the original BRkNN algorithm and the well-known MLkNN lazy algorithm on 15 benchmark datasets showed that MLkNN presented the best predictive performance for the Hamming-Loss evaluation measure, although it was significantly outperformed by the mutuality strategies when F-Measure is considered. The best results of the lazy algorithms were also compared with the results obtained by the Binary Relevance approach using three different base learning algorithms.
Author Cherman, Everton Alvares
Valverde-Rebaza, Jorge
Monard, Maria Carolina
Spolaôr, Newton
Author_xml – sequence: 1
  givenname: Everton Alvares
  surname: Cherman
  fullname: Cherman, Everton Alvares
  email: evertoncherman@gmail.com
  organization: Laboratory of Computational Intelligence, Institute of Mathematics and Computer Science, University of São Paulo
– sequence: 2
  givenname: Newton
  surname: Spolaôr
  fullname: Spolaôr, Newton
  organization: Laboratory of Computational Intelligence, Institute of Mathematics and Computer Science, University of São Paulo
– sequence: 3
  givenname: Jorge
  surname: Valverde-Rebaza
  fullname: Valverde-Rebaza, Jorge
  organization: Laboratory of Computational Intelligence, Institute of Mathematics and Computer Science, University of São Paulo
– sequence: 4
  givenname: Maria Carolina
  surname: Monard
  fullname: Monard, Maria Carolina
  organization: Laboratory of Computational Intelligence, Institute of Mathematics and Computer Science, University of São Paulo
BookMark eNqNkE1LAzEQhoMoWD9-gLcFL15WJ5uk2xxV_IKKB72H2Wy2pqTZmmSR-utNaQ9SUAwMuTzv8M5zRPZ97w0hZxQuKUB9FSlM-LgEytfDS75HRlTUrAQOcp-MQFa0hEqOD8lRjHMAkBMhR-Rmil-r4nlwyZYOG-OKqcHgrZ8V127WB5veF7G4wWjaovcZTAM6m1bFawqYzMyaeEIOOnTRnG7_Y_J2f_d2-1hOXx6ebq-npeYSUtlqxEq3QjKNgjLTtchEp2VdYSuxya_GRnYNiFxbiDFrZGvaSjfQIRctOybVZu3gl7j6ROfUMtgFhpWioNYS1EaCygLWwxXPoYtNaBn6j8HEpBY2auMcetMPUdFasixlQmlGz3fQeT8Eny9SjMoxCM4m8BdFa8FYnck1VW8oHfoYg-mUtgmT7X22Zt2fhelO8j9Hbs3EzPqZCT86_Rr6BuqpqQ8
CitedBy_id crossref_primary_10_1002_widm_1240
crossref_primary_10_1080_18756891_2015_1129587
crossref_primary_10_1109_ACCESS_2022_3185765
crossref_primary_10_1007_s10994_020_05879_3
crossref_primary_10_1007_s13042_020_01180_w
crossref_primary_10_1051_matecconf_201823204041
crossref_primary_10_1016_j_patcog_2018_12_020
crossref_primary_10_1109_ACCESS_2020_3041763
crossref_primary_10_1016_j_inffus_2023_101948
crossref_primary_10_1016_j_ins_2021_09_052
Cites_doi 10.1007/s10994-009-5127-5
10.1023/A:1007626913721
10.1155/2011/645964
10.1007/s10994-012-5285-8
10.1109/TKDE.2006.162
10.1007/978-3-642-34654-5_20
10.1109/GCC.2010.23
10.1007/3-540-44794-6_4
10.1007/978-3-540-87881-0_40
10.1007/978-0-387-09823-4_34
10.1145/2034691.2034733
ContentType Journal Article
Copyright Springer Science+Business Media Dordrecht 2014
Springer Science+Business Media Dordrecht 2015
Copyright Springer Nature B.V. Dec 2015
Copyright_xml – notice: Springer Science+Business Media Dordrecht 2014
– notice: Springer Science+Business Media Dordrecht 2015
– notice: Copyright Springer Nature B.V. Dec 2015
DBID AAYXX
CITATION
3V.
7SC
7SP
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
F28
ADTOC
UNPAY
DOI 10.1007/s10846-014-0144-4
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
ANTE: Abstracts in New Technology & Engineering
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Computer Science Database

Technology Research Database
Computer Science Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-0409
EndPage 276
ExternalDocumentID 002663482
3912261411
10_1007_s10846_014_0144_4
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29K
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAHNG
AAIAL
AAJKR
AAJSJ
AAKKN
AANZL
AARHV
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABEEZ
ABFTD
ABFTV
ABHLI
ABHQN
ABIVO
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMOR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACACY
ACBXY
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACULB
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFGXO
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
C24
C6C
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0N
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P62
P9P
PF0
PQQKQ
PROAC
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8S
Z8T
Z8W
Z92
ZMTXR
_50
~A9
~EX
AAFWJ
AASML
AAYXX
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFHIU
AGQPQ
AHPBZ
AHWEU
AIXLP
AYFIA
CITATION
ICD
PHGZM
PHGZT
PQGLB
PUEGO
7SC
7SP
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
F28
ADTOC
UNPAY
ID FETCH-LOGICAL-c490t-dcaa2cd593ca513efda35fc972ad9abbbb7ab9fb055735563b9ded2cb0fa45d3
IEDL.DBID U2A
ISSN 0921-0296
1573-0409
IngestDate Sun Oct 26 03:46:22 EDT 2025
Thu Oct 02 09:38:31 EDT 2025
Sat Oct 18 23:16:33 EDT 2025
Sat Oct 18 23:13:32 EDT 2025
Wed Oct 01 02:39:02 EDT 2025
Thu Apr 24 23:02:06 EDT 2025
Fri Feb 21 02:35:15 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Suppl 1
Keywords Multi-label learning
Lazy algorithms
Nearest Neighbors
Machine learning
Language English
License other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c490t-dcaa2cd593ca513efda35fc972ad9abbbb7ab9fb055735563b9ded2cb0fa45d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=http://dx.doi.org/10.1007/s10846-014-0144-4
PQID 1753379600
PQPubID 326251
PageCount 16
ParticipantIDs unpaywall_primary_10_1007_s10846_014_0144_4
proquest_miscellaneous_1793296811
proquest_journals_3196054380
proquest_journals_1753379600
crossref_citationtrail_10_1007_s10846_014_0144_4
crossref_primary_10_1007_s10846_014_0144_4
springer_journals_10_1007_s10846_014_0144_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-12-01
PublicationDateYYYYMMDD 2015-12-01
PublicationDate_xml – month: 12
  year: 2015
  text: 2015-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle with a special section on Unmanned Systems
PublicationTitle Journal of intelligent & robotic systems
PublicationTitleAbbrev J Intell Robot Syst
PublicationYear 2015
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Dembczynski, Waegeman, Cheng, Hüllermeier (CR4) 2012; 88
CR2
CR3
Younes, Abdallah, Denoeux, Snoussi (CR15) 2011; 2011
CR6
CR8
CR7
Demsar (CR5) 2006; 7
Cheng, Hüllermeier (CR1) 2009; 76
CR9
Zhang, Zhou (CR17) 2005; 2
Tsoumakas, Spyromitros, Vilcek, Vlahavas (CR13) 2011; 12
Zhang, Zhou (CR18) 2013; 99
CR12
CR11
CR10
Zhang (CR16) 2006; 18
Wilson, Martinez (CR14) 2000; 38
W Cheng (144_CR1) 2009; 76
144_CR3
144_CR2
ML Zhang (144_CR17) 2005; 2
G Tsoumakas (144_CR13) 2011; 12
K Dembczynski (144_CR4) 2012; 88
144_CR10
144_CR11
Z Younes (144_CR15) 2011; 2011
144_CR9
144_CR12
144_CR7
144_CR8
144_CR6
ML Zhang (144_CR18) 2013; 99
ML Zhang (144_CR16) 2006; 18
J Demsar (144_CR5) 2006; 7
DR Wilson (144_CR14) 2000; 38
References_xml – volume: 99
  start-page: 1
  year: 2013
  ident: CR18
  article-title: A review on multi-label learning algorithms
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 76
  start-page: 211
  issue: 2-3
  year: 2009
  end-page: 225
  ident: CR1
  article-title: Combining instance-based learning and logistic regression for multilabel classification
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-009-5127-5
– volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: CR5
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– volume: 38
  start-page: 257
  issue: 3
  year: 2000
  end-page: 286
  ident: CR14
  article-title: Reduction techniques for exemplar-based learning algorithms
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007626913721
– ident: CR3
– ident: CR2
– volume: 2011
  start-page: 1
  year: 2011
  end-page: 14
  ident: CR15
  article-title: A dependent multilabel classification method derived from the k-nearest neighbor rule
  publication-title: EURASIP J. Adv. Signal Process.
  doi: 10.1155/2011/645964
– ident: CR12
– volume: 12
  start-page: 2411
  year: 2011
  end-page: 2414
  ident: CR13
  article-title: Mulan: A java library for multi-label learning
  publication-title: J. Mach. Learn. Res.
– ident: CR10
– ident: CR11
– ident: CR9
– volume: 88
  start-page: 5
  issue: 1-2
  year: 2012
  end-page: 45
  ident: CR4
  article-title: On label dependence and loss minimization in multi-label classification
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-012-5285-8
– ident: CR6
– volume: 18
  start-page: 1338
  issue: 10
  year: 2006
  end-page: 1351
  ident: CR16
  article-title: Multilabel neural networks with applications to functional genomics and text categorization
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2006.162
– ident: CR7
– ident: CR8
– volume: 2
  start-page: 718
  year: 2005
  end-page: 721
  ident: CR17
  article-title: A k-nearest neighbor based algorithm for multi-label classification
  publication-title: IEEE International Conference on Granular Computing
– volume: 18
  start-page: 1338
  issue: 10
  year: 2006
  ident: 144_CR16
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2006.162
– ident: 144_CR7
– ident: 144_CR9
– volume: 99
  start-page: 1
  year: 2013
  ident: 144_CR18
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 2
  start-page: 718
  year: 2005
  ident: 144_CR17
  publication-title: IEEE International Conference on Granular Computing
– volume: 88
  start-page: 5
  issue: 1-2
  year: 2012
  ident: 144_CR4
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-012-5285-8
– ident: 144_CR8
  doi: 10.1007/978-3-642-34654-5_20
– volume: 7
  start-page: 1
  year: 2006
  ident: 144_CR5
  publication-title: J. Mach. Learn. Res.
– volume: 38
  start-page: 257
  issue: 3
  year: 2000
  ident: 144_CR14
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007626913721
– ident: 144_CR6
  doi: 10.1109/GCC.2010.23
– volume: 2011
  start-page: 1
  year: 2011
  ident: 144_CR15
  publication-title: EURASIP J. Adv. Signal Process.
  doi: 10.1155/2011/645964
– ident: 144_CR3
  doi: 10.1007/3-540-44794-6_4
– ident: 144_CR2
– ident: 144_CR11
  doi: 10.1007/978-3-540-87881-0_40
– ident: 144_CR12
  doi: 10.1007/978-0-387-09823-4_34
– volume: 76
  start-page: 211
  issue: 2-3
  year: 2009
  ident: 144_CR1
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-009-5127-5
– volume: 12
  start-page: 2411
  year: 2011
  ident: 144_CR13
  publication-title: J. Mach. Learn. Res.
– ident: 144_CR10
  doi: 10.1145/2034691.2034733
SSID ssj0009859
Score 2.1812475
Snippet Lazy multi-label learning algorithms have become an important research topic within the multi-label community. These algorithms usually consider the set of...
Issue Title: Special Issue on Cognitive Robotics Systems: Concepts and Applications & Selected Papers from the National Meeting of Artificial and Computational...
SourceID unpaywall
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 261
SubjectTerms Algorithms
Artificial Intelligence
Benchmarking
Communities
Control
Criteria
Electrical Engineering
Engineering
Labels
Learning
Machine learning
Mechanical Engineering
Mechatronics
Performance evaluation
Robotics
Strategy
Voting
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwED-N7gH2wMcAURjISDwxWTSJ3cYPCK1o04SgQmhIe4su_tgeQlpoKlT-eu6SuC0SjEh5suM4vjv755zvdwCvnEGmaQsSnc6lwhJl7vNE2jTlHYbLx22E3KfZ-Pyr-nCpL_dgFmNh-FhlnBPbidrNLf8jf8OMktmE8Pbo3eK75KxR7F2NKTSwT63g3rYUY7dgP2VmrAHsT09nn79saXhz3bHvpbSJTs04-jm7YDpai2lrzacylJLqz5VqCz83HtMDuL2qF7j-iVW1syid3Ye7PZoUJ534H8Cerw_hXszUIHrDPYSDHdrBhzD9iL_Wog29laQEvhI9y-qVOKmu6KOb629LMaX1zYl5TRWbNvJyLSKVrV8-gouz04v357LPpSCtMqNGOouYWqdNZlEnmQ8OMx2smaRI4irpmmBpQsmUXBmThpXGeZfachRQaZc9hkE9r_0TEGTQzjrjCOgGFajZ0ieBWfEnmCsdcAijOGyF7XnGOd1FVWwZknmkCxplvlWhhvB688iiI9m4qfJRlEXR29uy2GrHX4t5niFsmuVU_HJTTIbE3hGs_XzFTRCUNeM8SYZwHEW884Z_9-d4owX_7_3Tm3v_DO4QItPdeZkjGDQ_Vv45oZ6mfNGr8m8X_fzM
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED5t5WHjYTA2RBkgT9rTkFGT2E38WKYhhDa0B5DYU3T-BYiQIpoKlb-ec5q0nWCMRcqTHcex73KfdXffAXyxCgNNm-doZcYFauSZyyJu4jicMGzWrzPkfh73D0_F0Zk8m_NsP_bghyQ3spF05A3REkJw8RqW-pKAdweWTo9_DX7XbHoxHYrjuhpXJNOEk2iq1of51Bh_WqE5tJx5Q5fhzbi8wckdFsWCwTlYmWZyj2qewhBncrU3rvSeuX_M4viSb1mFdw3wZIOppLyHV65cg5W2qANrdHwNlhcYCj_A_g-8n7A6S5eTvLiCNYSs52xQnA9vL6uL6xHbJ1No2bCkjlWdpDlhLeutG32Ek4PvJ98OeVN2gRuhehW3BjE2VqrEoIwS5y0m0huVxkg7q-lKUSuvA3tXEvjFtLLOxkb3PAppk3XolMPSbQAj3bfGKkuY2AtPw2oX-UCgn2ImpMcu9NpdyE1DSR4qYxT5nEw5LFhOixVukYsufJ09cjPl43iu81a7tXmjmqM8UJMmKclP78nm8EsiGJtk1Px51kw6FxwpWLrhOAxBqFf1syjqwm4rMQtv-Pt8dmdC9e_Zb_5X70_wlrCcnEbabEGnuh27bcJLld5p9OQBoSYH_A
  priority: 102
  providerName: Unpaywall
Title Lazy Multi-label Learning Algorithms Based on Mutuality Strategies
URI https://link.springer.com/article/10.1007/s10846-014-0144-4
https://www.proquest.com/docview/1753379600
https://www.proquest.com/docview/3196054380
https://www.proquest.com/docview/1793296811
http://dx.doi.org/10.1007/s10846-014-0144-4
UnpaywallVersion submittedVersion
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-0409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009859
  issn: 0921-0296
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-0409
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0009859
  issn: 0921-0296
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-0409
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0009859
  issn: 0921-0296
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1573-0409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009859
  issn: 0921-0296
  databaseCode: AAJSJ
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-0409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009859
  issn: 0921-0296
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-0409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009859
  issn: 0921-0296
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_W9mHrQ7d1G8vWBg32tCKIbSmRHp2RtOwjlNFA-2TO-ugGnlMah5H99T05dpJB1zGDMebks9DpdHec7ieA91ZjgGnzHK1UXGCOXDkVcRPHIcKwql9XyH2d9M-m4tOlvGzquOftbvc2JVmv1FvFbmQrKfQNuyaE4GIH9mRA86JJPI3TDdKukiuAvZji5Fj321TmfSz-NEYbD3OdFN2Hx4vyBpe_sCi27M74GRw0DiNLVxJ-Do9ceQhP28MYWKObh7C_hSz4AoZf8PeS1dW1nOTsCtYAqV6ztLie3f6ovv-csyGZMMtmJTWs6uLKJWvRat38JVyMRxcfz3hzXAI3Qvcqbg1ibKzUiUEZJc5bTKQ3ehAjSSSna4C59nlA3UoCLliurbOxyXsehbTJK9gtZ6V7DYx01hqrLfmyXnhim7vIB-D7ASohPXag1w5bZhoo8XCiRZFtQJDDSGc0yuEWmejAh_UnNyscjYcaH7WyyBqVmmcBUjQZUMDVu5cclhJyPxNF5HdrMulKSIBg6WaLwIK8Vd1XUdSBk1bEW3_4e39O1rPg371_81-838IT8sHkaofMEexWtwt3TH5OlXdhR41Pu7CXnl59HtFzOJqcf-vWs53eppPz9OoOD8T4hA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH8a22HswMcAUdjASHBhsmgSu40P07TCpo51FUJF2i1y_DEOWdrRVFP3v-1_4zmx2yLBOC1STnYc5_n5feT5_R7Aey2kg2mzVGqeUiZzSVOTRlTFsfMwdNqpM-TOhp3-D_b1nJ-vwW3IhXHHKoNMrAW1Hiv3j_yTQ5RMumhvtw8mV9RVjXLR1VBCQ_rSCnq_hhjziR2nZn6NLtx0_-QLrveHOD4-Gn3uU19lgCom2hXVSspYaS4SJXmUGKtlwq0S3Vjih-R4dWUubO7AqhIHp5ULbXSs8raVjOsEh30AGyxhAn2_jd7R8Nv3Jepvyhuwvxh99lh0Qli1yd1D1Y-evDsEwhhlfyrGpbW7CNBuweasnMj5tSyKFR14_AQeeeOVHDbc9hTWTLkNj0NhCOLlxDZsraAcPoPeQN7MSZ3pS5HnTEE8qOsFOSwukMbVz8sp6aE61WRcYseqTvSck4Cca6bPYXQfRH0B6-W4NC-BoPzQSguNdrVlFofNTWQdCH9Xpoxb2YJ2IFumPKy5q65RZEtAZkfpDKnsbpaxFnxcPDJpMD3u6rwT1iLz23uaLZnxr81OrKEpnKTY_G7RjPvWBWNkacYzNwRazqKTRlEL9sISr7zh3_PZW3DB_2f_6u7Zv4XN_uhskA1Ohqev4SEag7w5qrMD69WvmdlFg6vK33i2JpDd80b6DbMMPM0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgE9FCgglhYwElyorG4cexMfqqqlLC0tFYci9RY5fpRDyC5sVtXyz_h3zOSxu0hQTo2Ukx3HGc8z9nwD8NppQzBtgRunUi5Nbnjq04hbISjCcOmgzpD7dDY4-iI_XqiLFfjV5cLQscpOJ9aK2o0s_SPfIUTJOEF_u78T2mMRnw-He-PvnCpI0U5rV06jYZETP7vC8G2ye3yIa_1GiOH783dHvK0wwK3U_Yo7a4ywTunYGhXFPjgTq2B1Igx-RI5XYnIdcgKqiglKK9fOO2HzfjBSuRiHvQW3EwJxpyT14YcF3m-qGpg_gdG60INuQ7XJ2kOjjzE8Hf-Qkss_TeLCz51vza7B3Wk5NrMrUxRL1m_4ANZbt5XtN3z2EFZ8uQH3u5IQrNUQG7C2hG_4CA5Ozc8Zq3N8OXKbL1gL53rJ9otLpGj19duEHaAhdWxUYseqTvGcsQ4z108ew_lNkPQJrJaj0j8FhprDWacdetRBBhw291Eg-P3EpFIF04N-R7bMtoDmVFejyBZQzETpDKlMt8xkD97OHxk3aB7Xdd7q1iJrBXuSLdjwr82k0NAJjlNsfjVvRomlbRhT-tGUhkCfWQ_SKOrBdrfES2_493y251zw_9k_u372L-EOik92enx2sgn30AtUzRmdLVitfkz9c_S0qvxFzdMMshuWod8K2zpn
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED5t5WHjYTA2RBkgT9rTkFGT2E38WKYhhDa0B5DYU3T-BYiQIpoKlb-ec5q0nWCMRcqTHcex73KfdXffAXyxCgNNm-doZcYFauSZyyJu4jicMGzWrzPkfh73D0_F0Zk8m_NsP_bghyQ3spF05A3REkJw8RqW-pKAdweWTo9_DX7XbHoxHYrjuhpXJNOEk2iq1of51Bh_WqE5tJx5Q5fhzbi8wckdFsWCwTlYmWZyj2qewhBncrU3rvSeuX_M4viSb1mFdw3wZIOppLyHV65cg5W2qANrdHwNlhcYCj_A_g-8n7A6S5eTvLiCNYSs52xQnA9vL6uL6xHbJ1No2bCkjlWdpDlhLeutG32Ek4PvJ98OeVN2gRuhehW3BjE2VqrEoIwS5y0m0huVxkg7q-lKUSuvA3tXEvjFtLLOxkb3PAppk3XolMPSbQAj3bfGKkuY2AtPw2oX-UCgn2ImpMcu9NpdyE1DSR4qYxT5nEw5LFhOixVukYsufJ09cjPl43iu81a7tXmjmqM8UJMmKclP78nm8EsiGJtk1Px51kw6FxwpWLrhOAxBqFf1syjqwm4rMQtv-Pt8dmdC9e_Zb_5X70_wlrCcnEbabEGnuh27bcJLld5p9OQBoSYH_A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lazy+Multi-label+Learning+Algorithms+Based+on+Mutuality+Strategies&rft.jtitle=Journal+of+intelligent+%26+robotic+systems&rft.au=Cherman%2C+Everton+Alvares&rft.au=Spola%C3%B4r%2C+Newton&rft.au=Valverde-Rebaza%2C+Jorge&rft.au=Monard%2C+Maria+Carolina&rft.date=2015-12-01&rft.pub=Springer+Netherlands&rft.issn=0921-0296&rft.eissn=1573-0409&rft.volume=80&rft.issue=Suppl+1&rft.spage=261&rft.epage=276&rft_id=info:doi/10.1007%2Fs10846-014-0144-4&rft.externalDocID=10_1007_s10846_014_0144_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-0296&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-0296&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-0296&client=summon