Multiplex Networks for Early Diagnosis of Alzheimer's Disease

Analysis and quantification of brain structural changes, using Magnetic Resonance Imaging (MRI), are increasingly used to define novel biomarkers of brain pathologies, such as Alzheimer's disease (AD). Several studies have suggested that brain topological organization can reveal early signs of...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in aging neuroscience Vol. 10; p. 365
Main Authors Amoroso, Nicola, La Rocca, Marianna, Bruno, Stefania, Maggipinto, Tommaso, Monaco, Alfonso, Bellotti, Roberto, Tangaro, Sabina
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 14.11.2018
Frontiers Media S.A
Subjects
Online AccessGet full text
ISSN1663-4365
1663-4365
DOI10.3389/fnagi.2018.00365

Cover

Abstract Analysis and quantification of brain structural changes, using Magnetic Resonance Imaging (MRI), are increasingly used to define novel biomarkers of brain pathologies, such as Alzheimer's disease (AD). Several studies have suggested that brain topological organization can reveal early signs of AD. Here, we propose a novel brain model which captures both intra- and inter-subject information within a multiplex network approach. This model localizes brain atrophy effects and summarizes them with a diagnostic score. On an independent test set, our multiplex-based score segregates (i) normal controls (NC) from AD patients with a 0.86±0.01 accuracy and (ii) NC from mild cognitive impairment (MCI) subjects that will convert to AD (cMCI) with an accuracy of 0.84±0.01. The model shows that illness effects are maximally detected by parceling the brain in equal volumes of 3, 000 mm ("patches"), without any segmentation based on anatomical features. The multiplex approach shows great sensitivity in detecting anomalous changes in the brain; the robustness of the obtained results is assessed using both voxel-based morphometry and FreeSurfer morphological features. Because of its generality this method can provide a reliable tool for clinical trials and a disease signature of many neurodegenerative pathologies.
AbstractList Analysis and quantification of brain structural changes, using Magnetic Resonance Imaging (MRI), are increasingly used to define novel biomarkers of brain pathologies, such as Alzheimer's disease (AD). Several studies have suggested that brain topological organization can reveal early signs of AD. Here, we propose a novel brain model which captures both intra- and inter-subject information within a multiplex network approach. This model localizes brain atrophy effects and summarizes them with a diagnostic score. On an independent test set, our multiplex-based score segregates (i) normal controls (NC) from AD patients with a 0.86±0.01 accuracy and (ii) NC from mild cognitive impairment (MCI) subjects that will convert to AD (cMCI) with an accuracy of 0.84±0.01. The model shows that illness effects are maximally detected by parceling the brain in equal volumes of 3, 000 mm ("patches"), without any segmentation based on anatomical features. The multiplex approach shows great sensitivity in detecting anomalous changes in the brain; the robustness of the obtained results is assessed using both voxel-based morphometry and FreeSurfer morphological features. Because of its generality this method can provide a reliable tool for clinical trials and a disease signature of many neurodegenerative pathologies.
Analysis and quantification of brain structural changes, using Magnetic Resonance Imaging (MRI), are increasingly used to define novel biomarkers of brain pathologies, such as Alzheimer's disease (AD). Several studies have suggested that brain topological organization can reveal early signs of AD. Here, we propose a novel brain model which captures both intra- and inter-subject information within a multiplex network approach. This model localizes brain atrophy effects and summarizes them with a diagnostic score. On an independent test set, our multiplex-based score segregates (i) normal controls (NC) from AD patients with a 0.86±0.01 accuracy and (ii) NC from mild cognitive impairment (MCI) subjects that will convert to AD (cMCI) with an accuracy of 0.84±0.01. The model shows that illness effects are maximally detected by parceling the brain in equal volumes of 3, 000 mm3 (“patches”), without any a priori segmentation based on anatomical features. The multiplex approach shows great sensitivity in detecting anomalous changes in the brain; the robustness of the obtained results is assessed using both voxel-based morphometry and FreeSurfer morphological features. Because of its generality this method can provide a reliable tool for clinical trials and a disease signature of many neurodegenerative pathologies.
Analysis and quantification of brain structural changes, using Magnetic Resonance Imaging (MRI), are increasingly used to define novel biomarkers of brain pathologies, such as Alzheimer's disease (AD). Several studies have suggested that brain topological organization can reveal early signs of AD. Here, we propose a novel brain model which captures both intra- and inter-subject information within a multiplex network approach. This model localizes brain atrophy effects and summarizes them with a diagnostic score. On an independent test set, our multiplex-based score segregates (i) normal controls (NC) from AD patients with a 0.86±0.01 accuracy and (ii) NC from mild cognitive impairment (MCI) subjects that will convert to AD (cMCI) with an accuracy of 0.84±0.01. The model shows that illness effects are maximally detected by parceling the brain in equal volumes of 3, 000 mm3 ("patches"), without any a priori segmentation based on anatomical features. The multiplex approach shows great sensitivity in detecting anomalous changes in the brain; the robustness of the obtained results is assessed using both voxel-based morphometry and FreeSurfer morphological features. Because of its generality this method can provide a reliable tool for clinical trials and a disease signature of many neurodegenerative pathologies.Analysis and quantification of brain structural changes, using Magnetic Resonance Imaging (MRI), are increasingly used to define novel biomarkers of brain pathologies, such as Alzheimer's disease (AD). Several studies have suggested that brain topological organization can reveal early signs of AD. Here, we propose a novel brain model which captures both intra- and inter-subject information within a multiplex network approach. This model localizes brain atrophy effects and summarizes them with a diagnostic score. On an independent test set, our multiplex-based score segregates (i) normal controls (NC) from AD patients with a 0.86±0.01 accuracy and (ii) NC from mild cognitive impairment (MCI) subjects that will convert to AD (cMCI) with an accuracy of 0.84±0.01. The model shows that illness effects are maximally detected by parceling the brain in equal volumes of 3, 000 mm3 ("patches"), without any a priori segmentation based on anatomical features. The multiplex approach shows great sensitivity in detecting anomalous changes in the brain; the robustness of the obtained results is assessed using both voxel-based morphometry and FreeSurfer morphological features. Because of its generality this method can provide a reliable tool for clinical trials and a disease signature of many neurodegenerative pathologies.
Analysis and quantification of brain structural changes, using Magnetic Resonance Imaging (MRI), are increasingly used to define novel biomarkers of brain pathologies, such as Alzheimer's disease (AD). Several studies have suggested that brain topological organization can reveal early signs of AD. Here, we propose a novel brain model which captures both intra- and inter-subject information within a multiplex network approach. This model localizes brain atrophy effects and summarizes them with a diagnostic score. On an independent test set, our multiplex-based score segregates (i) normal controls (NC) from AD patients with a $0.86 \pm 0.01$ accuracy and (ii) NC from mild cognitive impairment (MCI) subjects that will convert to AD (cMCI) with an accuracy of $0.84 \pm 0.01$. The model shows that illness effects are maximally detected by parceling the brain in equal volumes of $3000$ mm\textsuperscript{3} ("patches''), without any \textit{a priori} segmentation based on anatomical features. The multiplex approach shows great sensitivity in detecting anomalous changes in the brain; the robustness of the obtained results is assessed using both voxel-based morphometry and FreeSurfer morphological features. Because of its generality this method can provide a reliable tool for clinical trials and a disease signature of many neurodegenerative pathologies.
Author Maggipinto, Tommaso
Amoroso, Nicola
Bellotti, Roberto
Monaco, Alfonso
La Rocca, Marianna
Bruno, Stefania
Tangaro, Sabina
AuthorAffiliation 3 Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California , Los Angeles, CA , United States
2 Dipartimento Interateneo di Fisica “M. Merlin”, Istituto Nazionale di Fisica Nucleare, Sezione di Bari , Bari , Italy
4 Blackheath Brain Injury Rehabilitation Centre , London , United Kingdom
1 Dipartimento Interateneo di Fisica “M. Merlin”, Università degli studi di Bari “A. Moro” , Bari , Italy
AuthorAffiliation_xml – name: 3 Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California , Los Angeles, CA , United States
– name: 2 Dipartimento Interateneo di Fisica “M. Merlin”, Istituto Nazionale di Fisica Nucleare, Sezione di Bari , Bari , Italy
– name: 4 Blackheath Brain Injury Rehabilitation Centre , London , United Kingdom
– name: 1 Dipartimento Interateneo di Fisica “M. Merlin”, Università degli studi di Bari “A. Moro” , Bari , Italy
Author_xml – sequence: 1
  givenname: Nicola
  surname: Amoroso
  fullname: Amoroso, Nicola
– sequence: 2
  givenname: Marianna
  surname: La Rocca
  fullname: La Rocca, Marianna
– sequence: 3
  givenname: Stefania
  surname: Bruno
  fullname: Bruno, Stefania
– sequence: 4
  givenname: Tommaso
  surname: Maggipinto
  fullname: Maggipinto, Tommaso
– sequence: 5
  givenname: Alfonso
  surname: Monaco
  fullname: Monaco, Alfonso
– sequence: 6
  givenname: Roberto
  surname: Bellotti
  fullname: Bellotti, Roberto
– sequence: 7
  givenname: Sabina
  surname: Tangaro
  fullname: Tangaro, Sabina
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30487745$$D View this record in MEDLINE/PubMed
BookMark eNqFUU1vEzEUtFAR_aB3TmglDvSS4PX3HqhUlQKVClx6txz7OXVw1sHepYRfj5OUqu0BfPGT38x43rxDtNenHhB61eIppap753szD1OCWzXFmAr-DB20QtAJq_Xeg3ofHZeywPVQijFXL9A-xUxJyfgBev9ljENYRfjVfIXhNuXvpfEpNxcmx3XzIZh5n0ooTfLNWfx9A2EJ-W2pjQKmwEv03JtY4PjuPkLXHy-uzz9Prr59ujw_u5pY1uFh4phlmLTMO04wcKlAEt85a8RMcGWkBM-8N6IjHTDF7YxaKjzmUnZKGE6P0OVO1iWz0KscliavdTJBbx9SnmuTh2Aj6NYZS21HiHOOuRqTtVQ5CY7WHxyQqtXutMZ-Zda3JsZ7wRbrTbB6G6zeBKu3wVbO6Y6zGmdLcBb6IZv4yMjjTh9u9Dz91IIwKeRG4OROIKcfI5RBL0OxEKPpIY1Fk5Z2XPI6cYW-eQJdpDH3NV1N6voEJUqKinr90NG9lb-LrQCxA9icSsngtQ2DGULaGAzxX7PiJ8T_xvMHspfJDw
CitedBy_id crossref_primary_10_1038_s41598_020_75147_w
crossref_primary_10_1038_s41598_022_08859_w
crossref_primary_10_3390_app10093275
crossref_primary_10_1007_s41109_022_00455_1
crossref_primary_10_3389_fnagi_2023_1238065
crossref_primary_10_3390_brainsci10110879
crossref_primary_10_3389_fneur_2020_01016
crossref_primary_10_3390_app11136175
crossref_primary_10_1016_j_ifacol_2020_12_009
crossref_primary_10_3389_fnagi_2019_00115
crossref_primary_10_3389_fneur_2019_00851
crossref_primary_10_1007_s11011_019_00487_0
crossref_primary_10_3389_fneur_2018_01178
crossref_primary_10_3390_app12189069
crossref_primary_10_1016_j_neuroimage_2024_120961
crossref_primary_10_3390_brainsci10030181
crossref_primary_10_1038_s41598_020_74964_3
crossref_primary_10_3389_fncel_2020_00006
crossref_primary_10_1371_journal_pone_0226190
crossref_primary_10_1016_j_neuroimage_2020_117458
crossref_primary_10_18632_aging_102901
crossref_primary_10_3389_fnins_2020_591662
crossref_primary_10_3389_fdata_2022_1027783
crossref_primary_10_1371_journal_pone_0254384
crossref_primary_10_1016_j_omega_2021_102520
crossref_primary_10_1038_s41598_023_28020_5
Cites_doi 10.3389/fnagi.2018.00266
10.3389/fnagi.2018.00304
10.1016/j.neuroimage.2011.11.055
10.3389/fnagi.2017.00013
10.1196/annals.1440.011
10.1089/106652703321825928
10.1155/2018/3954101
10.1016/j.neuroimage.2015.10.065
10.1002/hbm.20744
10.1016/j.physrep.2014.07.001
10.1523/JNEUROSCI.0141-08.2008
10.1016/j.neuroimage.2011.09.015
10.1016/j.jalz.2011.03.003
10.1016/j.neuroimage.2014.10.002
10.1093/brain/awn262
10.1016/j.neuroimage.2006.01.021
10.1088/0031-9155/60/22/8851
10.1016/j.neurobiolaging.2013.02.020
10.1109/ISBI.2018.8363868
10.1016/S0140-6736(94)92338-8
10.1371/journal.pone.0097857
10.1155/2015/583931
10.1016/j.aca.2012.11.007
10.1016/j.jalz.2018.02.001
10.1371/journal.pone.0058921
10.1016/S1053-8119(03)00041-7
10.1016/j.neuroimage.2004.05.010
10.1016/j.neuroimage.2014.06.077
10.3233/JAD-2011-110041
10.1002/ana.410420114
10.3389/fnagi.2016.00076
10.1371/journal.pcbi.1005305
10.1016/j.neuroimage.2012.01.021
10.1016/j.jalz.2014.12.002
10.1002/hbm.20882
10.1006/nimg.2001.0848
10.1016/j.jalz.2011.03.005
10.1146/annurev-clinpsy-040510-143934
10.1016/j.jalz.2011.03.008
10.1371/journal.pcbi.1001006
10.1088/1367-2630/14/3/033027
10.3389/fnins.2015.00307
10.1126/science.1184819
10.1016/j.neuroimage.2015.01.048
10.1002/hbm.22830
10.1093/brain/awn278
10.1111/j.1365-2990.2009.01038.x
10.1093/cercor/bhr388
10.1016/j.media.2018.05.004
10.1006/nimg.2000.0582
10.1093/brain/awu132
10.1007/s10439-011-0258-9
10.1016/j.neuroimage.2016.03.032
10.1136/jnnp-2014-309105
10.1002/msj.20157
ContentType Journal Article
Copyright 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © Amoroso, La Rocca, Bruno, Maggipinto, Monaco, Bellotti, and Tangaro. 2018 Amoroso, La Rocca, Bruno, Maggipinto, Monaco, Bellotti, and Tangaro
Copyright_xml – notice: 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © Amoroso, La Rocca, Bruno, Maggipinto, Monaco, Bellotti, and Tangaro. 2018 Amoroso, La Rocca, Bruno, Maggipinto, Monaco, Bellotti, and Tangaro
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3389/fnagi.2018.00365
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest : Biological Science Collection journals [unlimited simultaneous users]
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed


MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: AUTh Library subscriptions: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1663-4365
ExternalDocumentID oai_doaj_org_article_1dac3c922ddd4d389cc38d7ed34ffde2
10.3389/fnagi.2018.00365
PMC6247675
30487745
10_3389_fnagi_2018_00365
Genre Journal Article
GeographicLocations Italy
GeographicLocations_xml – name: Italy
GroupedDBID ---
53G
5VS
7X7
88I
8FE
8FH
8FI
8FJ
9T4
AAFWJ
AAYXX
ABIVO
ABUWG
ACGFO
ACGFS
ADBBV
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DIK
DWQXO
E3Z
EIHBH
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PUEGO
RNS
RPM
TR2
UKHRP
ACXDI
ALIPV
IAO
IEA
IHR
IHW
IPNFZ
IPY
NPM
RIG
3V.
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c490t-d4c40214fd520e578e72f9dca6b658a77ef4ffa6929e485cb3c36f0577986a53
IEDL.DBID UNPAY
ISSN 1663-4365
IngestDate Wed Aug 27 01:13:30 EDT 2025
Wed Oct 01 16:39:48 EDT 2025
Tue Sep 30 16:51:44 EDT 2025
Thu Sep 04 18:37:09 EDT 2025
Fri Jul 25 11:35:30 EDT 2025
Thu Jan 02 23:10:25 EST 2025
Wed Oct 01 04:40:42 EDT 2025
Thu Apr 24 23:02:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords magnetic resonance imaging (MRI)
diagnosis support system
mild cognitive impairment
brain Connectivity
machine learning
multiplex networks
Alzheimer's disease
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c490t-d4c40214fd520e578e72f9dca6b658a77ef4ffa6929e485cb3c36f0577986a53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Reviewed by: Patrizia Giannoni, University of Nîmes, France; Ghulam Md Ashraf, King Abdulaziz University, Saudi Arabia
Data used in preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. More details are given in the Acknowledgments
Edited by: Fernanda Laezza, The University of Texas Medical Branch at Galveston, United States
These authors have contributed equally to this work and last authorship
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.frontiersin.org/articles/10.3389/fnagi.2018.00365/pdf
PMID 30487745
PQID 2300632876
PQPubID 4424411
ParticipantIDs doaj_primary_oai_doaj_org_article_1dac3c922ddd4d389cc38d7ed34ffde2
unpaywall_primary_10_3389_fnagi_2018_00365
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6247675
proquest_miscellaneous_2139575057
proquest_journals_2300632876
pubmed_primary_30487745
crossref_citationtrail_10_3389_fnagi_2018_00365
crossref_primary_10_3389_fnagi_2018_00365
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-14
PublicationDateYYYYMMDD 2018-11-14
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-14
  day: 14
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in aging neuroscience
PublicationTitleAlternate Front Aging Neurosci
PublicationYear 2018
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References de Haan (B22) 2012; 59
Mucha (B43) 2010; 328
Bailly (B8) 2015; 2015
Long (B38) 2018; 2018
Boccardi (B12) 2015; 11
Braun (B13) 2018; 10
Daianu (B20) 2015; 36
Alexander-Bloch (B2) 2012; 23
Tijms (B51)
Albert (B1) 2011; 7
Ashburner (B7) 2000; 11
Jenkinson (B33) 2012; 62
Crossley (B19) 2014; 137
Menichetti (B40) 2014
(B3) 2018; 14
Lebedeva (B36) 2017; 9
Sperling (B48) 2011; 7
Simic (B47) 2009; 35
Yokoi (B57) 2018; 10
De Vico Fallani (B24) 2017; 13
West (B54) 1994; 344
Minoshima (B41) 1997; 42
Yi (B56) 2015; 87
Moradi (B42) 2015; 104
Salvatore (B46) 2015; 9
Amoroso (B4) 2014
Ciftçi (B18) 2011; 39
Suk (B50) 2014; 101
Boccaletti (B11) 2014; 544
Bron (B14) 2015; 111
Yao (B55) 2010; 6
Fennema-Notestine (B28) 2009; 30
Landin-Romero (B35) 2017; 151
Amoroso (B6) 2018; 48
Bullmore (B16) 2011; 7
Stam (B49) 2009; 132
Davatzikos (B21) 2004; 23
Feng (B27) 2018
Karas (B34) 2003; 18
de Jong (B23) 2008; 131
Desikan (B26) 2006; 31
Lee (B37) 2012; 14
Chincarini (B17) 2016; 125
Derflinger (B25) 2011; 25
He (B31) 2008; 28
Ho (B32) 2010; 31
McKhann (B39) 2011; 7
Tijms (B52); 34
Buckner (B15) 2008; 1124
Mukherjee (B44) 2003; 10
Amoroso (B5) 2015; 60
Good (B30) 2002
Baron (B9) 2001; 14
Wei (B53) 2016; 8
Beleites (B10) 2013; 760
Fischl (B29) 2012; 62
Perl (B45) 2010; 77
References_xml – volume: 10
  start-page: 266
  year: 2018
  ident: B13
  article-title: In vivo brainstem imaging in Alzheimer's disease: potential for biomarker development
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2018.00266
– volume: 10
  start-page: 304
  year: 2018
  ident: B57
  article-title: Involvement of the precuneus/posterior cingulate cortex is significant for the development of Alzheimer's disease: a PET (THK5351, PiB) and resting fMRI study
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2018.00304
– start-page: 16
  year: 2002
  ident: B30
  article-title: A voxel-based morphometric study of ageing in 465 normal adult human brains
  publication-title: Biomedical Imaging, 2002. 5th IEEE EMBS International Summer School on (IEEE)
– volume: 59
  start-page: 3085
  year: 2012
  ident: B22
  article-title: Disrupted modular brain dynamics reflect cognitive dysfunction in Alzheimer's disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.11.055
– volume: 9
  start-page: 13
  year: 2017
  ident: B36
  article-title: Mri-based classification models in prediction of mild cognitive impairment and dementia in late-life depression
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2017.00013
– volume: 1124
  start-page: 1
  year: 2008
  ident: B15
  article-title: The brain's default network
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1196/annals.1440.011
– volume: 10
  start-page: 119
  year: 2003
  ident: B44
  article-title: Estimating dataset size requirements for classifying DNA microarray data
  publication-title: J. Comput. Biol.
  doi: 10.1089/106652703321825928
– volume: 2018
  start-page: 3954101
  year: 2018
  ident: B38
  article-title: Morphological Biomarker Differentiating MCI Converters from Nonconverters: longitudinal Evidence Based on Hemispheric Asymmetry
  publication-title: Behav. Neurol.
  doi: 10.1155/2018/3954101
– volume: 125
  start-page: 834
  year: 2016
  ident: B17
  article-title: Integrating longitudinal information in hippocampal volume measurements for the early detection of Alzheimer's disease
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.10.065
– volume: 30
  start-page: 3238
  year: 2009
  ident: B28
  article-title: Structural MRI biomarkers for preclinical and mild Alzheimer's disease
  publication-title: Human Brain Mapp.
  doi: 10.1002/hbm.20744
– volume: 544
  start-page: 1
  year: 2014
  ident: B11
  article-title: The structure and dynamics of multilayer networks
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2014.07.001
– volume: 28
  start-page: 4756
  year: 2008
  ident: B31
  article-title: Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer's disease
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0141-08.2008
– volume: 62
  start-page: 782
  year: 2012
  ident: B33
  article-title: Fsl
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.09.015
– volume: 7
  start-page: 280
  year: 2011
  ident: B48
  article-title: Toward defining the preclinical stages of Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease
  publication-title: Alzheimers Dement.
  doi: 10.1016/j.jalz.2011.03.003
– volume: 104
  start-page: 398
  year: 2015
  ident: B42
  article-title: Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects.
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.10.002
– volume: 132
  start-page: 213
  year: 2009
  ident: B49
  article-title: Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer's disease
  publication-title: Brain
  doi: 10.1093/brain/awn262
– volume: 31
  start-page: 968
  year: 2006
  ident: B26
  article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.01.021
– volume: 60
  start-page: 8851
  year: 2015
  ident: B5
  article-title: Hippocampal unified multi-atlas network (HUMAN): protocol and scale validation of a novel segmentation tool
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/60/22/8851
– volume: 34
  start-page: 2023
  ident: B52
  article-title: Alzheimer's disease: connecting findings from graph theoretical studies of brain networks
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2013.02.020
– start-page: 1546
  year: 2018
  ident: B27
  article-title: Alzheimer's disease diagnosis based on anatomically stratified texture analysis of the hippocampus in structural MRI
  publication-title: 15th International Symposium on Biomedical Imaging (ISBI 2018), 2018 IEEE
  doi: 10.1109/ISBI.2018.8363868
– volume: 344
  start-page: 769
  year: 1994
  ident: B54
  article-title: Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer's disease.
  publication-title: Lancet
  doi: 10.1016/S0140-6736(94)92338-8
– year: 2014
  ident: B40
  article-title: Weighted multiplex networks
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0097857
– volume: 2015
  start-page: 583931
  year: 2015
  ident: B8
  article-title: Precuneus and cingulate cortex atrophy and hypometabolism in patients with Alzheimer's disease and mild cognitive impairment: MRI and 18F-FDG PET quantitative analysis using freesurfer
  publication-title: BioMed Res. Int.
  doi: 10.1155/2015/583931
– volume: 760
  start-page: 25
  year: 2013
  ident: B10
  article-title: Sample size planning for classification models
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2012.11.007
– volume: 14
  start-page: 367
  year: 2018
  ident: B3
  article-title: 2018 Alzheimer's disease facts and figures
  publication-title: Alzheimers Dement.
  doi: 10.1016/j.jalz.2018.02.001
– ident: B51
  article-title: Single-subject grey matter graphs in Alzheimer's disease
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0058921
– volume: 18
  start-page: 895
  year: 2003
  ident: B34
  article-title: A comprehensive study of gray matter loss in patients with Alzheimer's disease using optimized voxel-based morphometry
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(03)00041-7
– volume: 23
  start-page: 17
  year: 2004
  ident: B21
  article-title: Why voxel-based morphometric analysis should be used with great caution when characterizing group differences
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.05.010
– volume: 101
  start-page: 569
  year: 2014
  ident: B50
  article-title: Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.06.077
– volume: 25
  start-page: 347
  year: 2011
  ident: B25
  article-title: Grey-matter atrophy in Alzheimer's disease is asymmetric but not lateralized
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-2011-110041
– volume: 42
  start-page: 85
  year: 1997
  ident: B41
  article-title: Metabolic reduction in the posterior cingulate cortex in very early Alzheimer's disease
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.410420114
– volume: 8
  start-page: 76
  year: 2016
  ident: B53
  article-title: Prediction of conversion from mild cognitive impairment to alzheimer's disease using mri and structural network features.
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2016.00076
– volume: 13
  start-page: e1005305
  year: 2017
  ident: B24
  article-title: A topological criterion for filtering information in complex brain networks
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1005305
– volume: 62
  start-page: 774
  year: 2012
  ident: B29
  article-title: FreeSurfer
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.01.021
– volume: 11
  start-page: 175
  year: 2015
  ident: B12
  article-title: Training labels for hippocampal segmentation based on the EADC-ADNI harmonized hippocampal protocol
  publication-title: Alzheimers Dement.
  doi: 10.1016/j.jalz.2014.12.002
– volume: 31
  start-page: 499
  year: 2010
  ident: B32
  article-title: Comparing 3 t and 1.5 t mri for tracking alzheimer's disease progression with tensor-based morphometry
  publication-title: Human Brain Mapp.
  doi: 10.1002/hbm.20882
– start-page: 16
  volume-title: Proceedings of the Computer-Aided Diagnosis of Dementia Based on Structural MRI Data, MICCAI 2014
  year: 2014
  ident: B4
  article-title: PRISMA-CAD : fully automated method for Computer-Aided Diagnosis of Dementia based on structural MRI data
– volume: 14
  start-page: 298
  year: 2001
  ident: B9
  article-title: In vivo mapping of gray matter loss with voxel-based morphometry in mild Alzheimer's disease
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0848
– volume: 7
  start-page: 263
  year: 2011
  ident: B39
  article-title: The diagnosis of dementia due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2011.03.005
– volume: 7
  start-page: 113
  year: 2011
  ident: B16
  article-title: Brain graphs: graphical models of the human brain connectome
  publication-title: Ann. Rev. Clin. Psychol.
  doi: 10.1146/annurev-clinpsy-040510-143934
– volume: 7
  start-page: 270
  year: 2011
  ident: B1
  article-title: The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease
  publication-title: Alzheimers Dement.
  doi: 10.1016/j.jalz.2011.03.008
– volume: 6
  start-page: e1001006
  year: 2010
  ident: B55
  article-title: Abnormal cortical networks in mild cognitive impairment and Alzheimer's disease
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1001006
– volume: 14
  start-page: 033027
  year: 2012
  ident: B37
  article-title: Correlated multiplexity and connectivity of multiplex random networks
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/14/3/033027
– volume: 9
  start-page: 307
  year: 2015
  ident: B46
  article-title: Magnetic resonance imaging biomarkers for the early diagnosis of Alzheimer's disease: a machine learning approach
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2015.00307
– volume: 328
  start-page: 876
  year: 2010
  ident: B43
  article-title: Community structure in time-dependent, multiscale, and multiplex networks
  publication-title: Science
  doi: 10.1126/science.1184819
– volume: 111
  start-page: 562
  year: 2015
  ident: B14
  article-title: Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: the CADDementia challenge
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.01.048
– volume: 36
  start-page: 3087
  year: 2015
  ident: B20
  article-title: Rich club analysis in the Alzheimer's disease connectome reveals a relatively undisturbed structural core network
  publication-title: Human Brain Mapp.
  doi: 10.1002/hbm.22830
– volume: 131
  start-page: 3277
  year: 2008
  ident: B23
  article-title: Strongly reduced volumes of putamen and thalamus in Alzheimer's disease: an MRI study
  publication-title: Brain
  doi: 10.1093/brain/awn278
– volume: 35
  start-page: 532
  year: 2009
  ident: B47
  article-title: Does Alzheimer's disease begin in the brainstem?
  publication-title: Neuropathol. Appl. Neurobiol
  doi: 10.1111/j.1365-2990.2009.01038.x
– volume: 23
  start-page: 127
  year: 2012
  ident: B2
  article-title: The anatomical distance of functional connections predicts brain network topology in health and schizophrenia.
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhr388
– volume: 48
  start-page: 12
  year: 2018
  ident: B6
  article-title: Complex networks reveal early MRI markers of Parkinson's disease
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2018.05.004
– volume: 11
  start-page: 805
  year: 2000
  ident: B7
  article-title: Voxel-based morphometry—the methods
  publication-title: Neuroimage
  doi: 10.1006/nimg.2000.0582
– volume: 137
  start-page: 2382
  year: 2014
  ident: B19
  article-title: The hubs of the human connectome are generally implicated in the anatomy of brain disorders
  publication-title: Brain
  doi: 10.1093/brain/awu132
– volume: 39
  start-page: 1493
  year: 2011
  ident: B18
  article-title: Minimum spanning tree reflects the alterations of the default mode network during Alzheimer's disease
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-011-0258-9
– volume: 151
  start-page: 72
  year: 2017
  ident: B35
  article-title: Disease-specific patterns of cortical and subcortical degeneration in a longitudinal study of Alzheimer's disease and behavioural-variant frontotemporal dementia
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.03.032
– volume: 87
  start-page: 425
  year: 2015
  ident: B56
  article-title: Relation between subcortical grey matter atrophy and conversion from mild cognitive impairment to Alzheimer's disease
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp-2014-309105
– volume: 77
  start-page: 32
  year: 2010
  ident: B45
  article-title: Neuropathology of Alzheimer's disease
  publication-title: Mount Sinai J.
  doi: 10.1002/msj.20157
SSID ssj0000330058
Score 2.3299763
Snippet Analysis and quantification of brain structural changes, using Magnetic Resonance Imaging (MRI), are increasingly used to define novel biomarkers of brain...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 365
SubjectTerms Aging
Alzheimer's disease
Atrophy
Brain architecture
Clinical trials
Cognitive ability
Dementia
diagnosis support system
Image processing
machine learning
Magnetic resonance imaging
magnetic resonance imaging (MRI)
Medical imaging
mild cognitive impairment
Morphometry
multiplex networks
Neurodegeneration
Neurodegenerative diseases
Neuroimaging
Neuroscience
NMR
Nuclear magnetic resonance
Segmentation
SummonAdditionalLinks – databaseName: DOAJ - Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT-MwEB4hDsBlxWNhw0tBWmnFSlHb2LGTAweeQkjlxErcLMcPUamkiLbi8euZcULUihVcuFWxk1qfx55vMpPPAL-9ZQV61TzBHybhuqeTotQiEWXXO0YesqRXA_1rcfmPX91mtzNHfVFNWC0PXAPX6VltmCnS1FrLLd5sDMutdJZx760Luy-6sZlgKuzBjGTY8zovSX_Z8XTqD5VyUe0kI18y44eCXP__OObHUsnlafWgX570cDjjhy5W4UdDIOPjeuBrsOCqdVjqNynyDTjqNyWCz_F1XeI9jpGYxkHJOD6rK-sG43jk4-Ph650b3LvHP2NsCIman3BzcX5zepk0ZyQkhhfdSWK54SR75m2Wdh0uPydTX1ijRYncQkvpPOKkBbIgx_PMlMww4ZGkySIXOmObsFiNKvcLYgw0TKqlyZnlnElXlhlLCyOFzT2JvEXQeQdMmUY_nI6xGCqMIwhiFSBWBLEKEEdw2N7xUGtnfNL3hOag7Ueq1-EC2oJqbEF9ZQsR7L7PoGqW4lhhjIU0DANDEcFB24yLiDIjunKjKfbpUbqSYrUItuoJb0fCcI9DjowjlHOmMDfU-ZZqcBeEukXKSSsngr-t0XwJxPZ3ALEDK_RE-mayx3dhcfI4dXtIniblflgnbwfZGWg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3di9QwEB_0BPVF_LZ6SgVBFMpumzRpH0TOj-MQ9p5O2LeQ5sNbWNt1u4sff70zabbeopxvpUlLOpnJ_JKZ_gbghbesRq9aZXhhMq5zndWNFplopt4x8pANHQ3MTsXJZ_5pXs7jgVsf0yp3a2JYqG1n6Ix8glAZvSnie_F29S2jqlEUXY0lNK7CtRyhCmm1nMvxjGXKiIw9_A2HjjXjTJRDpJIGMfFUB4iSuyibkpF3ueCZAoH_v1Dn38mTN7btSv_8rpfLC57p-DbcipAyPRp04A5cce1duD6LQfN78GYWkwZ_pKdD0nefIlRNA7dx-mHItVv0aefTo-Wvc7f46tYve2wIoZv7cHb88ez9SRarJmSG19NNZrnhRITmbVlMHRqkk4WvrdGiQbShpXSee68FisvxqjQNM0x4hG2yroQu2QM4aLvWPYIUtx6m0NJUzHLOpGuakhW1kcJWnmjfEpjsBKZMZBSnwhZLhTsLErEKIlYkYhVEnMCr8YnVwKZxSd93NAdjP-LBDje69RcVzUrlVhtm6qKw1nKLrzGGVVY6y_AbrSsSONzNoIrG2as_qpTA87EZzYpiJbp13Rb75BTApN1bAg-HCR9HwnDVQ9SMI5R7qrA31P2WdnEeqLtFwYk9J4HXo9L8VxCPL_-GJ3CT-tL_kTk_hIPNeuueIlDaNM-CNfwGb2gQuw
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3ra9RAEB9qBe0X8W20SgRRFNLe7W52kw9F6qMU4fqphX4Lm33Yg5i73oO2_vXObPaCh4f6LWQf7M3OZn5zM_sbgDfe8hKtapHhg8mEHuqsrLXMZD3wjpOFrOmvgdGJPD4T387z8y1Y3S6JApxvdO2ontTZrNm7vrz5iAf-gDxOnG3fU0EfytKitEgu87fTy4zKSlH4NdbYuAW30VQxUvtRxP_hU82JrT1cl0PLmwkc3IUyN867ZroCw_8mWPpnduXdZTvVN1e6aX4zXUf34V7EnOlhpyQPYMu1D-HOKEbVH8HBKGYVXqcnXVb4PEUsmwby4_RLl4w3nqcTnx42Py_c-IebvZtjQ4jtPIbTo6-nn4-zWFYhM6IcLDIrjCCmNG9zNnB4Yp1ivrRGyxrhiFbKeeG9lgicnChyU3PDpUdcp8pC6pw_ge120rpnkKJvYphWpuBWCK5cXeeclUZJW3jihUtgfyWwykTKcap80VToepCIqyDiikRcBREn8L4fMe3oNv7S9xPtQd-PiLLDi8nsexXPXTW02nBTMmatFRanMYYXVjnL8TdaxxLYXe1gtVK-Ct0yRG7oS8oEXvfNeO4omKJbN1linyFFOMm9S-Bpt-H9Sjh-FhFW4wrVmiqsLXW9pR1fBG5vyQTR6yTwoVeafwri-X8s8gXs0AC6RTkUu7C9mC3dS4RTi_pVOBK_AGLvHe8
  priority: 102
  providerName: Scholars Portal
Title Multiplex Networks for Early Diagnosis of Alzheimer's Disease
URI https://www.ncbi.nlm.nih.gov/pubmed/30487745
https://www.proquest.com/docview/2300632876
https://www.proquest.com/docview/2139575057
https://pubmed.ncbi.nlm.nih.gov/PMC6247675
https://www.frontiersin.org/articles/10.3389/fnagi.2018.00365/pdf
https://doaj.org/article/1dac3c922ddd4d389cc38d7ed34ffde2
UnpaywallVersion publishedVersion
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1663-4365
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000330058
  issn: 1663-4365
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1663-4365
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000330058
  issn: 1663-4365
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1663-4365
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000330058
  issn: 1663-4365
  databaseCode: DIK
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1663-4365
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000330058
  issn: 1663-4365
  databaseCode: GX1
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1663-4365
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000330058
  issn: 1663-4365
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1663-4365
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000330058
  issn: 1663-4365
  databaseCode: RPM
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: AUTh Library subscriptions: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1663-4365
  dateEnd: 20211231
  omitProxy: true
  ssIdentifier: ssj0000330058
  issn: 1663-4365
  databaseCode: BENPR
  dateStart: 20090730
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (ProQuest)
  customDbUrl:
  eissn: 1663-4365
  dateEnd: 20211231
  omitProxy: true
  ssIdentifier: ssj0000330058
  issn: 1663-4365
  databaseCode: 7X7
  dateStart: 20090730
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1663-4365
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0000330058
  issn: 1663-4365
  databaseCode: M48
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9NAEB-8FtQXv_WiZ4kgiEKubXazmzz40NM7D6HlkDuoT2E_uWIvLZcW9f56Z5I0WD0U8SW03dmwO7vTmcn88luAl96yDL1qGuEHE3E1VFGmlYiEHnjHyENqejQwnojjM_5xmmzQhGUDq_T06j4dBD0raqbgBiJGFk7d-55O8CFYFuEgmUj6S-t3oCuoxtSB7tnkZPSZEi30phHH9ro8eW3XLXdUsfZfF2r-jpi8tS6W6vtXNZ__5I6O7oLeTKRGoXzZX6_0vrn6hePxv2Z6D-40wWo4quXvww1XPICb46Yc_xDejhs44rdwUsPJyxCD4LBiTQ7f1yi-WRkufDiaX5272YW7fFViQ1UUegSnR4en746j5jyGyPBssIosN5wo1rxN4oFDU3cy9pk1SmiMY5SUznPvlcCIy_E0MZoZJjwGhDJLhUrYY-gUi8LtQohJjYmVNCmznDPptE5YnBkpbOqJUC6A_mZVctNwldORGfMccxZSTF4pJifF5JViAnjd9ljWPB1_kD2ghW7liGG7-gGXIG-WIB9aZZjJ4thayy3exhiWWukswzlaFwewt9kmeWP2ZY75HIZ8mISKAF60zWiwVIVRhVusUWZIpVHKCwN4Uu-qdiQM_08xHscRyq39tjXU7ZZidl6RgouYEy9PAG_anflXRTz9F-FncJu-0HuYQ74HndXl2j3HgGyle7Ajp7IH3YPDycmnXvVYA68fpkO8jnnaa0zyB4ylOfk
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIlEuiDcpBYIEQiBFm7UdOzlUqFCqLe3uaZH2Zjl-0JWWZLsPlfKf-I_M5EVXoHLqLYqdyB6PPZ89428Iee0ty8CqphE8mIjrvo6yXItI5LF3DC1kjkcDw5EYfOVfJslki_xq78JgWGW7JlYLtS0NnpH3ACqDNQV8Lz7MzyPMGoXe1TaFRq0WJ-7yArZsy_3jQxjfN5QefR5_GkRNVoHI8CxeRZYbjkRh3iY0dqCwTlKfWaNFDtZYS-k8914LwA2Op4nJmWHCA6yRWSo0JomAFf8WZzFHqn45kd2RTsyQ-726fAd2POJMJLVjFPvc85h2CGPJMHiToTG7YgirfAH_Arl_x2rurIu5vrzQs9kVQ3h0j9xtEGx4UKvcfbLligfk9rDx0T8k-8MmRvFHOKpjzJchIOOwolIOD-vQvukyLH14MPt55qbf3eLtEgoqT9EjMr4JcT4m20VZuKckhJ2OoVqalFnOmXR5njCaGSls6pFlLiC9VmDKNATmmEdjpmAjgyJWlYgVilhVIg7Iu-6LeU3ecU3djzgGXT2k3a5elItvqpnFqm-1YSaj1FrLLfzGGJZa6SyDPlpHA7LXjqBq1oKl-qO5AXnVFcMsRteMLly5hjp99JfiZjEgT-oB71oCmpYCSIcWyg1V2GjqZkkxPauYwgXlSNYTkPed0vxXELvX9-El2RmMh6fq9Hh08ozcwe_wamaf75Ht1WLtngNGW-UvqpkREnXDM_E3h81M3Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamIQ1eEHcyBgQJhECK2saOnTxMaFCqjdGKhyH1zXJ8YZVK0jWtxvhn_DvOcS6sAo2nvUWxE9nH52af4-8Q8tIZmoFVTSN40BFTAxVlueIRz_vOUrSQOR4NjCf88Cv7NE2mW-RXexcG0ypbnegVtSk1npH3wFUGawr-Pe-5Ji3iy3D0bnEWYQUpjLS25TRqFjm2F-ewfav2j4aw1q_iePTx5MNh1FQYiDTL-qvIMM0QNMyZJO5bYF4rYpcZrXgOllkJYR1zTnHwISxLE51TTbkDF0dkKVdYMAK0_w1BGcVsMjEV3fFOnyIOvL-IBzY9YpQndZAU599zWIII88owkZOiYbtkFH3tgH85vH_nbd5cFwt1ca7m80tGcXSH3G682fCgZr-7ZMsW98jOuInX3yf74yZf8Uc4qfPNqxC85NDDKofDOs1vVoWlCw_mP0_t7Ltdvq6gwUeNHpCT6yDnQ7JdlIV9TELY9ehYCZ1SwxgVNs8TGmdacJM6RJwLSK8lmNQNmDnW1JhL2NQgiaUnsUQSS0_igLzpvljUQB5X9H2Pa9D1Qwhu_6JcfpONRMuBUZrqLI6NMczAb7SmqRHWUJijsXFA9toVlI1eqOQfLg7Ii64ZJBrDNKqw5Rr6DDB2ihvHgDyqF7wbCQWFCw47jFBssMLGUDdbitmpRw3nMUPgnoC87Zjmv4TYvXoOz8kOyKD8fDQ5fkJu4Wd4S3PA9sj2arm2T8FdW-XPvGCERF6zIP4GJjZRGA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dixMxEB-0B-qL3x-rp6wgiMJe20022X3woX4ch9Diwx3oU8gnV6zbctui3l_vzG66WD0U8W27mZRkkunMdH75BeBZcKxCr1pm-GAzrsc6q4wWmTCj4Bl5SEN_DUxn4uiEv_9YbNGETYRVBjq6TxdBz-uOKThCxMjCqfsw0A0-BMsiHCQTxXDlwmXYE1RjGsDeyezD5BMlWuhNM47tXXnywq477qhl7b8o1PwdMXl1U6_09696sfjJHR3eALOdSIdC-XywWZsDe_4Lx-N_zfQmXI_Bajrp5G_BJV_fhivTWI6_A6-mEY74LZ11cPImxSA4bVmT07cdim_epMuQThbnp37-xZ89b7ChLQrdhePDd8dvjrJ4H0NmeTVaZ45bThRrwRX5yKOpe5mHylktDMYxWkofeAhaYMTleVlYwywTAQNCWZVCF-weDOpl7R9AikmNzbW0JXOcM-mNKVheWSlcGYhQLoHhdlWUjVzldGXGQmHOQopRrWIUKUa1ikngRd9j1fF0_EH2NS10L0cM2-0LXAIVl0CNnbbMVnnunOMOv8ZaVjrpHcM5Op8nsL_dJiqafaMwn8OQD5NQkcDTvhkNlqowuvbLDcqMqTRKeWEC97td1Y-E4e8pxuM4Qrmz33aGuttSz09bUnCRc-LlSeBlvzP_qoiH_yL8CK7RBzqHOeb7MFifbfxjDMjW5kk0uR-tDDS4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiplex+Networks+for+Early+Diagnosis+of+Alzheimer%27s+Disease&rft.jtitle=Frontiers+in+aging+neuroscience&rft.au=Amoroso%2C+Nicola&rft.au=La+Rocca%2C+Marianna&rft.au=Bruno%2C+Stefania&rft.au=Maggipinto%2C+Tommaso&rft.date=2018-11-14&rft.issn=1663-4365&rft.eissn=1663-4365&rft.volume=10&rft.spage=365&rft_id=info:doi/10.3389%2Ffnagi.2018.00365&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1663-4365&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1663-4365&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1663-4365&client=summon