Using a finite element model of the thumb to study Trapeziometacarpal joint contact during lateral pinch
Finite element (FE) analysis is widely used in different fields of orthopaedic surgery, however, its application to the trapeziometacarpal joint has been limited due to the small size, complex biconcave-convex joint geometry, and complex musculature. The goal of this study was to improve upon existi...
Saved in:
| Published in | Clinical biomechanics (Bristol) Vol. 101; p. 105852 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
England
Elsevier Ltd
01.01.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0268-0033 1879-1271 1879-1271 |
| DOI | 10.1016/j.clinbiomech.2022.105852 |
Cover
| Abstract | Finite element (FE) analysis is widely used in different fields of orthopaedic surgery, however, its application to the trapeziometacarpal joint has been limited due to the small size, complex biconcave-convex joint geometry, and complex musculature. The goal of this study was to improve upon existing models by creating a muscle-driven FE thumb model and use the model to simulate the biomechanical effect of hand therapy exercises and ligament reconstructive surgeries.
Bone and cartilage geometry were based on a CT dataset of a subject performing a static lateral pinch task. A previously validated musculoskeletal model was utilized to extract electromyography (EMG)-driven muscle forces. Five ligaments with biomechanical significance were modeled as springs using literature values and attached according to their anatomical landmarks.
The biomechanical consequence of various interventions was proxied as a change in the maximum cartilage stress. The result shows tightening the dorsal ligament complex (dorsal radial ligament, dorsal central ligament, posterior oblique ligament) is the most effective, achieving a stress reduction of 4.8%. Five exercises used in hand therapies were modeled, among which thenar eminence strengthening showed the most prominent stress reduction of 4.0%. Four ligament reconstructive surgeries were modeled, with Eaton-Littler reconstruction showed the most significant stress reduction of 25.0%.
Among the routinely utilized treatment options for early thumb osteoarthritis, we found that three methods: dorsal ligament imbrication, thenar eminence exercise, and the Eaton-Littler method may confer biomechanical advantages cartilage loading. These advantages align with the clinically observed favorable outcomes.
•We successfully built a muscle-driven finite element model of the trapeziometacarpal joint.•Finite element analysis is useful for assessing clinical interventions for thumb osteoarthritis.•The extent of simulated cartilage stress reduction correlates with clinical outcome. |
|---|---|
| AbstractList | Finite element (FE) analysis is widely used in different fields of orthopaedic surgery, however, its application to the trapeziometacarpal joint has been limited due to the small size, complex biconcave-convex joint geometry, and complex musculature. The goal of this study was to improve upon existing models by creating a muscle-driven FE thumb model and use the model to simulate the biomechanical effect of hand therapy exercises and ligament reconstructive surgeries.
Bone and cartilage geometry were based on a CT dataset of a subject performing a static lateral pinch task. A previously validated musculoskeletal model was utilized to extract electromyography (EMG)-driven muscle forces. Five ligaments with biomechanical significance were modeled as springs using literature values and attached according to their anatomical landmarks.
The biomechanical consequence of various interventions was proxied as a change in the maximum cartilage stress. The result shows tightening the dorsal ligament complex (dorsal radial ligament, dorsal central ligament, posterior oblique ligament) is the most effective, achieving a stress reduction of 4.8%. Five exercises used in hand therapies were modeled, among which thenar eminence strengthening showed the most prominent stress reduction of 4.0%. Four ligament reconstructive surgeries were modeled, with Eaton-Littler reconstruction showed the most significant stress reduction of 25.0%.
Among the routinely utilized treatment options for early thumb osteoarthritis, we found that three methods: dorsal ligament imbrication, thenar eminence exercise, and the Eaton-Littler method may confer biomechanical advantages cartilage loading. These advantages align with the clinically observed favorable outcomes.
•We successfully built a muscle-driven finite element model of the trapeziometacarpal joint.•Finite element analysis is useful for assessing clinical interventions for thumb osteoarthritis.•The extent of simulated cartilage stress reduction correlates with clinical outcome. Finite element (FE) analysis is widely used in different fields of orthopaedic surgery, however, its application to the trapeziometacarpal joint has been limited due to the small size, complex biconcave-convex joint geometry, and complex musculature. The goal of this study was to improve upon existing models by creating a muscle-driven FE thumb model and use the model to simulate the biomechanical effect of hand therapy exercises and ligament reconstructive surgeries. Bone and cartilage geometry were based on a CT dataset of a subject performing a static lateral pinch task. A previously validated musculoskeletal model was utilized to extract electromyography (EMG)-driven muscle forces. Five ligaments with biomechanical significance were modeled as springs using literature values and attached according to their anatomical landmarks. The biomechanical consequence of various interventions was proxied as a change in the maximum cartilage stress. The result shows tightening the dorsal ligament complex (dorsal radial ligament, dorsal central ligament, posterior oblique ligament) is the most effective, achieving a stress reduction of 4.8%. Five exercises used in hand therapies were modeled, among which thenar eminence strengthening showed the most prominent stress reduction of 4.0%. Four ligament reconstructive surgeries were modeled, with Eaton-Littler reconstruction showed the most significant stress reduction of 25.0%. Among the routinely utilized treatment options for early thumb osteoarthritis, we found that three methods: dorsal ligament imbrication, thenar eminence exercise, and the Eaton-Littler method may confer biomechanical advantages cartilage loading. These advantages align with the clinically observed favorable outcomes. AbstractBackgroundFinite element (FE) analysis is widely used in different fields of orthopaedic surgery, however, its application to the trapeziometacarpal joint has been limited due to the small size, complex biconcave-convex joint geometry, and complex musculature. The goal of this study was to improve upon existing models by creating a muscle-driven FE thumb model and use the model to simulate the biomechanical effect of hand therapy exercises and ligament reconstructive surgeries. MethodsBone and cartilage geometry were based on a CT dataset of a subject performing a static lateral pinch task. A previously validated musculoskeletal model was utilized to extract electromyography (EMG)-driven muscle forces. Five ligaments with biomechanical significance were modeled as springs using literature values and attached according to their anatomical landmarks. FindingsThe biomechanical consequence of various interventions was proxied as a change in the maximum cartilage stress. The result shows tightening the dorsal ligament complex (dorsal radial ligament, dorsal central ligament, posterior oblique ligament) is the most effective, achieving a stress reduction of 4.8%. Five exercises used in hand therapies were modeled, among which thenar eminence strengthening showed the most prominent stress reduction of 4.0%. Four ligament reconstructive surgeries were modeled, with Eaton-Littler reconstruction showed the most significant stress reduction of 25.0%. InterpretationAmong the routinely utilized treatment options for early thumb osteoarthritis, we found that three methods: dorsal ligament imbrication, thenar eminence exercise, and the Eaton-Littler method may confer biomechanical advantages cartilage loading. These advantages align with the clinically observed favorable outcomes. Finite element (FE) analysis is widely used in different fields of orthopaedic surgery, however, its application to the trapeziometacarpal joint has been limited due to the small size, complex biconcave-convex joint geometry, and complex musculature. The goal of this study was to improve upon existing models by creating a muscle-driven FE thumb model and use the model to simulate the biomechanical effect of hand therapy exercises and ligament reconstructive surgeries.BACKGROUNDFinite element (FE) analysis is widely used in different fields of orthopaedic surgery, however, its application to the trapeziometacarpal joint has been limited due to the small size, complex biconcave-convex joint geometry, and complex musculature. The goal of this study was to improve upon existing models by creating a muscle-driven FE thumb model and use the model to simulate the biomechanical effect of hand therapy exercises and ligament reconstructive surgeries.Bone and cartilage geometry were based on a CT dataset of a subject performing a static lateral pinch task. A previously validated musculoskeletal model was utilized to extract electromyography (EMG)-driven muscle forces. Five ligaments with biomechanical significance were modeled as springs using literature values and attached according to their anatomical landmarks.METHODSBone and cartilage geometry were based on a CT dataset of a subject performing a static lateral pinch task. A previously validated musculoskeletal model was utilized to extract electromyography (EMG)-driven muscle forces. Five ligaments with biomechanical significance were modeled as springs using literature values and attached according to their anatomical landmarks.The biomechanical consequence of various interventions was proxied as a change in the maximum cartilage stress. The result shows tightening the dorsal ligament complex (dorsal radial ligament, dorsal central ligament, posterior oblique ligament) is the most effective, achieving a stress reduction of 4.8%. Five exercises used in hand therapies were modeled, among which thenar eminence strengthening showed the most prominent stress reduction of 4.0%. Four ligament reconstructive surgeries were modeled, with Eaton-Littler reconstruction showed the most significant stress reduction of 25.0%.FINDINGSThe biomechanical consequence of various interventions was proxied as a change in the maximum cartilage stress. The result shows tightening the dorsal ligament complex (dorsal radial ligament, dorsal central ligament, posterior oblique ligament) is the most effective, achieving a stress reduction of 4.8%. Five exercises used in hand therapies were modeled, among which thenar eminence strengthening showed the most prominent stress reduction of 4.0%. Four ligament reconstructive surgeries were modeled, with Eaton-Littler reconstruction showed the most significant stress reduction of 25.0%.Among the routinely utilized treatment options for early thumb osteoarthritis, we found that three methods: dorsal ligament imbrication, thenar eminence exercise, and the Eaton-Littler method may confer biomechanical advantages cartilage loading. These advantages align with the clinically observed favorable outcomes.INTERPRETATIONAmong the routinely utilized treatment options for early thumb osteoarthritis, we found that three methods: dorsal ligament imbrication, thenar eminence exercise, and the Eaton-Littler method may confer biomechanical advantages cartilage loading. These advantages align with the clinically observed favorable outcomes. |
| ArticleNumber | 105852 |
| Author | Dong, Meilin Deleu, GertJan Vereecke, Evie Ladd, Amy Kerkhof, Faes |
| Author_xml | – sequence: 1 givenname: Meilin surname: Dong fullname: Dong, Meilin email: meilind@stanford.edu organization: Stanford University School of Medicine, Stanford, CA, USA – sequence: 2 givenname: Faes surname: Kerkhof fullname: Kerkhof, Faes organization: Department of Orthopaedic Surgery, Stanford University School of Medicine, Palo Alto, CA, USA – sequence: 3 givenname: GertJan surname: Deleu fullname: Deleu, GertJan organization: Muscles & Movement, Biomedical Sciences Group, University of Leuven Campus Kulak, Kortrijk, Belgium – sequence: 4 givenname: Evie surname: Vereecke fullname: Vereecke, Evie organization: Muscles & Movement, Biomedical Sciences Group, University of Leuven Campus Kulak, Kortrijk, Belgium – sequence: 5 givenname: Amy surname: Ladd fullname: Ladd, Amy organization: Department of Orthopaedic Surgery, Stanford University School of Medicine, Palo Alto, CA, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36521409$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkl-L1DAUxYOsuLOrX0Himy8dk7SZpi_KMvgPFnxw9zmkya2TmiY1SYXx05syq8iCMA8hcHPO74Z77hW68MEDQq8o2VJCd2_GrXbW9zZMoA9bRhgrdS44e4I2VLRdRVlLL9CGsJ2oCKnrS3SV0kgIaRhvn6HLescZbUi3QYf7ZP03rPBgvc2AwcEEPuMpGHA4DDgfoJxl6nEOOOXFHPFdVDP8WrtnpVWclcNjsMWkgy-VjM0SV6hTGWJ5nK3Xh-fo6aBcghcP9zW6__D-bv-puv3y8fP-5rbSTUdyZYjhRGsBtRGM8obXpKkbNlDagh4E0wZ6QXpuxNC3WvBadIYqLXpFB-g6VV-j1yfuHMOPBVKWk00anFMewpIkaznnbd3uRJG-fJAu_QRGztFOKh7ln-kUQXcS6BhSijD8lVAi1yTkKP9JQq5JyFMSxfvukVfbrLItI4rKurMI-xMByrh-WogyaQteg7ERdJYm2LMobx9RVqXVyn2HI6QxLNGXPCSViUkiv647s64MY4QwwUgB3PwfcOYnfgMiJNja |
| CitedBy_id | crossref_primary_10_1016_j_jbiomech_2024_112042 crossref_primary_10_1002_jor_25918 crossref_primary_10_1080_10255842_2024_2430446 |
| Cites_doi | 10.1016/j.jbiomech.2018.06.017 10.1177/1753193415584715 10.1007/s11999-014-3901-6 10.1007/s11999-013-2879-9 10.1136/ard.59.8.615 10.1016/j.jelekin.2016.06.009 10.1115/1.4040497 10.1371/journal.pone.0235966 10.21614/chirurgia.114.4.437 10.1007/s00238-016-1212-8 10.1007/s11999-013-3063-y 10.2106/JBJS.K.00329 10.1002/jor.24103 10.1002/acr.20427 10.2106/00004623-197355080-00010 10.1002/jor.23171 10.1016/j.joca.2021.03.004 10.1016/S0363-5023(84)80015-5 10.1055/s-0034-1398607 10.1002/art.37987 10.1016/j.jhsa.2014.02.025 10.1016/j.mri.2012.05.001 10.1016/B978-0-12-655102-0.50011-4 10.1097/BTH.0000000000000327 10.1016/j.joca.2018.06.008 10.1002/jor.22364 10.1016/j.medengphy.2017.09.002 10.1002/cnm.2530 10.1016/0266-7681_89_90128-9 10.1002/jor.25188 10.1115/1.4005694 10.2214/AJR.11.7387 10.1016/j.jht.2012.10.005 10.1016/j.jbiomech.2015.08.010 10.1097/BTH.0000000000000035 10.1016/j.medengphy.2015.11.003 10.1053/j.oto.2017.12.002 10.1016/j.jhsa.2007.08.017 10.1016/j.apmr.2018.11.010 10.1097/BOR.0b013e32833d20ae 10.1053/jhsu.2000.18487 10.1016/S0363-5023(03)00145-X 10.1016/j.medengphy.2005.05.006 10.1016/j.hansur.2016.06.002 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd Copyright © 2022 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright © 2022 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.clinbiomech.2022.105852 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Anatomy & Physiology |
| EISSN | 1879-1271 |
| EndPage | 105852 |
| ExternalDocumentID | 36521409 10_1016_j_clinbiomech_2022_105852 S0268003322002820 1_s2_0_S0268003322002820 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 6PF 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQQT AAQXK AATTM AAWTL AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACLOT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV C45 CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEE HMK HMO HVGLF HZ~ H~9 IHE J1W KOM M29 M31 M41 MO0 N9A O-L O9- OAUVE OH. OT. OVD OZT P-8 P-9 P2P PC. Q38 QZG R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SPCBC SSH SSZ T5K TEORI UAP UPT WH7 WUQ Z5R ~G- ~HD AACTN AFCTW AFKWA AJOXV AMFUW RIG YCJ AAIAV ABLVK ABYKQ AJBFU LCYCR ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c490t-d0d50cc8e3d821545304342f117ecf82cdeb80b5d8fb7c85389d1ac8ba1fe99a3 |
| IEDL.DBID | .~1 |
| ISSN | 0268-0033 1879-1271 |
| IngestDate | Sat Sep 27 21:07:26 EDT 2025 Wed Feb 19 02:25:06 EST 2025 Thu Oct 09 00:37:00 EDT 2025 Thu Apr 24 23:08:38 EDT 2025 Fri Feb 23 02:38:52 EST 2024 Tue Feb 25 19:54:33 EST 2025 Tue Oct 14 19:35:54 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Ligament imbrication Eaton-Littler reconstruction Trapeziometacarpal joint Hand therapy Thumb osteoarthritis Finite element |
| Language | English |
| License | Copyright © 2022 Elsevier Ltd. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c490t-d0d50cc8e3d821545304342f117ecf82cdeb80b5d8fb7c85389d1ac8ba1fe99a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 36521409 |
| PQID | 2755573768 |
| PQPubID | 23479 |
| PageCount | 1 |
| ParticipantIDs | proquest_miscellaneous_2755573768 pubmed_primary_36521409 crossref_primary_10_1016_j_clinbiomech_2022_105852 crossref_citationtrail_10_1016_j_clinbiomech_2022_105852 elsevier_sciencedirect_doi_10_1016_j_clinbiomech_2022_105852 elsevier_clinicalkeyesjournals_1_s2_0_S0268003322002820 elsevier_clinicalkey_doi_10_1016_j_clinbiomech_2022_105852 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Clinical biomechanics (Bristol) |
| PublicationTitleAlternate | Clin Biomech (Bristol, Avon) |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Koff, Ugwonali OF, Strauch, Rosenwasser, Ateshian, Mow (bb0140) 2003 Jul; 28 Brunelli, Monini, Brunelli (bb0030) 1989 May; 14 Cignoni, P, Callieri, M, Corsini, M, Dellepiane, M, Ganovelli, F, Ranzuglia, G. Meshlab: an open-source mesh processing tool. In Eurographics Italian Chapter Conference (Vol. 2008, pp. 129–136) n.d. Wouters, Tsehaie, Slijper, SER, Feitz, Hand-Wrist Study Group, Selles (bb0235) 2019 Jun; 100 Gray (bb0090) 1918 Hwang, Li, Kim (bb0105) 2022 Jul; 40 Schneider, Zhang, Walker, Crisco, Weiss, Ladd, Nielsen, Besier (bb0210) 2018 Oct; 26 Gay, Cerlier, Iniesta, Legré (bb0085) 2016 Sep; 35 Schneider, Zhang, Crisco, Weiss, Ladd, Mithraratne, Nielsen, Besier (bb0205) 2017 Dec; 50 Kempson (bb0115) 1980; 2 McVeigh, Kannas, Ivy, Garner, Barnes, Heckman, Brushaber, Murray (bb0175) 2021 Jul 23; S0894-1130 Kjeken, Smedslund, Moe, Slatkowsky-Christensen, Uhlig, Hagen (bb0135) 2011 Jun; 63 Neogi, Bowes, Niu, Souza, Vincent, Goggins (bb0185) 2013; 65 Bufalini, Perugia (bb0035) 2007 Nov; 32 D’Agostino, Kerkhof, Shahabpour, Moermans, Stockmans (bb0050) 2014; 39 van Arkel, Modenese, Phillips, Jeffers (bb0005) 2013 Aug; 31 Weber, Agur, Fattah, Gordon, Oliver (bb0225) 2015 Sep; 40 Barry, Murray, Kamper (bb0015) 2018 Aug 22 Spekreijse, Vermeulen, Moojen, Slijper, Hovius, Selles, Feitz (bb0215) 2016; 39 Eaton, Lane, Littler, Keyser (bb0065) 1984 Sep; 9 Kerkhof, Vereecke, Vanovermeire, Vanhaecke, Vanneste, Stockmans (bb0125) 2018 Nov; 36 Khorashadi, Ha, Chew (bb0130) 2012 May; 198 Fedorov, Beichel, Kalpathy-Cramer, Finet, Fillion-Robin, Pujol, Bauer, Jennings, Fennessy, Sonka, Buatti, Aylward, Miller, Pieper, Kikinis (bb0080) 2012 Nov; 30 van der Oest, Duraku, Andrinopoulou, Wouters, Bierma-Zeinstra, Selles, Zuidam (bb0195) 2021 Jun; 29 Halilaj, Moore, Patel, Laidlaw, Ladd, Weiss, Crisco (bb0100) 2015 Oct 15; 48 Popescu, Haritinian, Cristea (bb0200) 2019 Jul-Aug; 114 Halilaj, Rainbow, Got, Schwartz, Moore, Weiss, Ladd, Crisco (bb0095) 2014 Apr; 472 Ladd, Crisco, Hagert, Rose, Weiss (bb0160) 2014 Dec; 472 Fatzer, Soleman, Sanchez (bb0075) 2015 Feb; 47 Bettinger, Smutz, Linscheid, Cooney, An (bb0020) 2000 Nov; 25 Baker-LePain, Lane (bb0010) 2010; 22 Ladd, Weiss, Crisco, Hagert, Wolf, Glickel, Yao (bb0155) 2013; 62 Birman, Danoff, Yemul, Lin, Rosenwasser (bb0025) 2014; 18 Zeba, Horvath, Wallmon (bb0240) 2021; 25 Ladd, Lee, Hagert (bb0150) 2012 Aug 15; 94 Eaton, Littler (bb0060) 1973; 55 Komatsu, Lubahn (bb0145) 2017; 28 Navacchia, Rullkoetter, Schütz, List, Fitzpatrick, Shelburne (bb0180) 2016 Sep; 34 van den Ende, Breedveld, le Cessie, Dijkmans, de Mug, Hazes (bb0070) 2000 Aug; 59 O’Brien, Giveans (bb0190) 2013 Jan-Mar; 26 Zimmerman, Ateshian (bb0245) 2018 Aug 1; 140 Taylor, Bryan, Galloway (bb0220) 2013 Feb; 29 Lin, Karl, Strauch (bb0165) 2014 Apr; 472 Maas, Ellis, Ateshian, Weiss (bb0170) 2012 Jan; 134 Kainz, Killen, Wesseling, Perez-Boerema, Pitto, Garcia Aznar, Shefelbine, Jonkers (bb0110) 2020 Jul 23; 15 Dourthe, D’Agostino, Stockmans, Kerkhof, Vereecke (bb0055) 2016 Feb; 38 Kerkhof, Deleu, D’Agostino, Vereecke (bb0120) 2016 Oct; 30 Weiss, Gardiner, Ellis, Lujan, Phatak (bb0230) 2005 Dec; 27 Ladd (10.1016/j.clinbiomech.2022.105852_bb0160) 2014; 472 van Arkel (10.1016/j.clinbiomech.2022.105852_bb0005) 2013; 31 Bettinger (10.1016/j.clinbiomech.2022.105852_bb0020) 2000; 25 Fatzer (10.1016/j.clinbiomech.2022.105852_bb0075) 2015; 47 Halilaj (10.1016/j.clinbiomech.2022.105852_bb0095) 2014; 472 Komatsu (10.1016/j.clinbiomech.2022.105852_bb0145) 2017; 28 Koff (10.1016/j.clinbiomech.2022.105852_bb0140) 2003; 28 Lin (10.1016/j.clinbiomech.2022.105852_bb0165) 2014; 472 Kainz (10.1016/j.clinbiomech.2022.105852_bb0110) 2020; 15 Weiss (10.1016/j.clinbiomech.2022.105852_bb0230) 2005; 27 Zimmerman (10.1016/j.clinbiomech.2022.105852_bb0245) 2018; 140 van den Ende (10.1016/j.clinbiomech.2022.105852_bb0070) 2000; 59 Hwang (10.1016/j.clinbiomech.2022.105852_bb0105) 2022; 40 Schneider (10.1016/j.clinbiomech.2022.105852_bb0205) 2017; 50 Birman (10.1016/j.clinbiomech.2022.105852_bb0025) 2014; 18 Kerkhof (10.1016/j.clinbiomech.2022.105852_bb0125) 2018; 36 Ladd (10.1016/j.clinbiomech.2022.105852_bb0150) 2012; 94 Dourthe (10.1016/j.clinbiomech.2022.105852_bb0055) 2016; 38 D’Agostino (10.1016/j.clinbiomech.2022.105852_bb0050) 2014; 39 Gay (10.1016/j.clinbiomech.2022.105852_bb0085) 2016; 35 O’Brien (10.1016/j.clinbiomech.2022.105852_bb0190) 2013; 26 Halilaj (10.1016/j.clinbiomech.2022.105852_bb0100) 2015; 48 van der Oest (10.1016/j.clinbiomech.2022.105852_bb0195) 2021; 29 Eaton (10.1016/j.clinbiomech.2022.105852_bb0065) 1984; 9 Eaton (10.1016/j.clinbiomech.2022.105852_bb0060) 1973; 55 Schneider (10.1016/j.clinbiomech.2022.105852_bb0210) 2018; 26 Zeba (10.1016/j.clinbiomech.2022.105852_bb0240) 2021; 25 Khorashadi (10.1016/j.clinbiomech.2022.105852_bb0130) 2012; 198 Spekreijse (10.1016/j.clinbiomech.2022.105852_bb0215) 2016; 39 Bufalini (10.1016/j.clinbiomech.2022.105852_bb0035) 2007; 32 Gray (10.1016/j.clinbiomech.2022.105852_bb0090) 1918 Kjeken (10.1016/j.clinbiomech.2022.105852_bb0135) 2011; 63 Barry (10.1016/j.clinbiomech.2022.105852_bb0015) 2018 Kerkhof (10.1016/j.clinbiomech.2022.105852_bb0120) 2016; 30 Fedorov (10.1016/j.clinbiomech.2022.105852_bb0080) 2012; 30 Kempson (10.1016/j.clinbiomech.2022.105852_bb0115) 1980; 2 Maas (10.1016/j.clinbiomech.2022.105852_bb0170) 2012; 134 Navacchia (10.1016/j.clinbiomech.2022.105852_bb0180) 2016; 34 Baker-LePain (10.1016/j.clinbiomech.2022.105852_bb0010) 2010; 22 Popescu (10.1016/j.clinbiomech.2022.105852_bb0200) 2019; 114 Ladd (10.1016/j.clinbiomech.2022.105852_bb0155) 2013; 62 Brunelli (10.1016/j.clinbiomech.2022.105852_bb0030) 1989; 14 McVeigh (10.1016/j.clinbiomech.2022.105852_bb0175) 2021; S0894-1130 Neogi (10.1016/j.clinbiomech.2022.105852_bb0185) 2013; 65 Taylor (10.1016/j.clinbiomech.2022.105852_bb0220) 2013; 29 Weber (10.1016/j.clinbiomech.2022.105852_bb0225) 2015; 40 10.1016/j.clinbiomech.2022.105852_bb0045 Wouters (10.1016/j.clinbiomech.2022.105852_bb0235) 2019; 100 |
| References_xml | – volume: 38 start-page: 108 year: 2016 Feb end-page: 114 ident: bb0055 article-title: In vivo contact biomechanics in the trapeziometacarpal joint using finite deformation biphasic theory and mathematical modelling publication-title: Med. Eng. Phys. – volume: 30 start-page: 1323 year: 2012 Nov end-page: 1341 ident: bb0080 article-title: 3D slicer as an image computing platform for the quantitative imaging network publication-title: Magn. Reson. Imaging – volume: 94 start-page: 1468 year: 2012 Aug 15 end-page: 1477 ident: bb0150 article-title: Macroscopic and microscopic analysis of the thumb carpometacarpal ligaments: a cadaveric study of ligament anatomy and histology publication-title: J. Bone Joint Surg. Am. – volume: 15 year: 2020 Jul 23 ident: bb0110 article-title: A multi-scale modelling framework combining musculoskeletal rigid-body simulations with adaptive finite element analyses, to evaluate the impact of femoral geometry on hip joint contact forces and femoral bone growth publication-title: PLoS One – volume: 30 start-page: 131 year: 2016 Oct end-page: 136 ident: bb0120 article-title: Subject-specific thumb muscle activity during functional tasks of daily life publication-title: J. Electromyogr. Kinesiol. – volume: 65 start-page: 2048e58 year: 2013 ident: bb0185 article-title: Magnetic resonance imaginebased three-dimensional bone shape of the knee predicts onset of knee osteoarthritis: data from the osteoarthritis initiative publication-title: Arthritis Rheum. – volume: 59 start-page: 615 year: 2000 Aug end-page: 621 ident: bb0070 article-title: Effect of intensive exercise on patients with active rheumatoid arthritis: a randomised clinical trial publication-title: Ann. Rheum. Dis. – volume: 472 start-page: 1138 year: 2014 Apr end-page: 1145 ident: bb0165 article-title: Trapeziometacarpal joint stability: the evolving importance of the dorsal ligaments publication-title: Clin. Orthop. Relat. Res. – volume: 31 start-page: 1172 year: 2013 Aug end-page: 1179 ident: bb0005 article-title: Hip abduction can prevent posterior edge loading of hip replacements publication-title: J. Orthop. Res. – volume: 47 start-page: 1 year: 2015 Feb end-page: 6 ident: bb0075 article-title: Ergebnisse der Behandlung der Rhizarthrose im Frühstadium mittels der Distraktionsarthroplastik nach Bufalini und Perugia [Results after distraction arthroplasty according to Bufalini and Perugia in early stages of trapeziometacarpal osteoarthritis] publication-title: Handchir. Mikrochir. Plast. Chir. – volume: 22 start-page: 538 year: 2010 ident: bb0010 article-title: Relationship between joint shape and the development of osteoarthritis publication-title: Curr. Opin. Rheumatol. – volume: 18 start-page: 66 year: 2014 end-page: 71 ident: bb0025 article-title: Dorsoradial ligament imbrication for thumb carpometacarpal joint instability publication-title: Tech. Hand Upper Extrem. Surg. – volume: 50 start-page: 43 year: 2017 Dec end-page: 49 ident: bb0205 article-title: Trapeziometacarpal joint contact varies between men and women during three isometric functional tasks publication-title: Med. Eng. Phys. – volume: 140 year: 2018 Aug 1 ident: bb0245 article-title: A surface-to-surface finite element algorithm for large deformation frictional contact in febio publication-title: J. Biomech. Eng. – volume: 9 start-page: 692 year: 1984 Sep end-page: 699 ident: bb0065 article-title: Ligament reconstruction for the painful thumb carpometacarpal joint: a long-term assessment publication-title: J. Hand. Surg. [Am.] – volume: 198 start-page: 1152 year: 2012 May end-page: 1160 ident: bb0130 article-title: Radiologic guide to surgical treatment of first carpometacarpal joint osteoarthritis publication-title: AJR Am. J. Roentgenol. – volume: 26 start-page: 1338 year: 2018 Oct end-page: 1344 ident: bb0210 article-title: Early morphologic changes in trapeziometacarpal joint bones with osteoarthritis publication-title: Osteoarthr. Cartil. – volume: 55 start-page: 1655 year: 1973 end-page: 1666 ident: bb0060 article-title: Ligament reconstruction for the painful thumb carpometacarpal joint publication-title: J. Bone Joint Surg. Am. – volume: 2 start-page: 177 year: 1980 end-page: 238 ident: bb0115 article-title: The mechanical properties of articular cartilage publication-title: Joints Synovial Fluid. – volume: 40 start-page: 711 year: 2015 Sep end-page: 719 ident: bb0225 article-title: Tensile mechanical properties of human forearm tendons publication-title: J. Hand Surg. Eur. – volume: 39 start-page: 1098 year: 2014 end-page: 1107 ident: bb0050 article-title: Comparison of the anatomical dimensions and mechanical properties of the dorsoradial and anterior oblique ligaments of the trapeziometacarpal joint publication-title: J. Hand. Surg. [Am.] – volume: 40 start-page: 1523 year: 2022 Jul end-page: 1528 ident: bb0105 article-title: A quantitative measurement of trapeziometacarpal joint pressure using a cadaveric model of lateral pinch publication-title: J. Orthop. Res. – volume: 62 start-page: 165 year: 2013 end-page: 179 ident: bb0155 article-title: The thumb carpometacarpal joint: anatomy, hormones, and biomechanics publication-title: Instr. Course Lect. – volume: S0894-1130 year: 2021 Jul 23 ident: bb0175 article-title: Dynamic stabilization home exercise program for treatment of thumb carpometacarpal osteoarthritis: a prospective randomized control trial publication-title: J. Hand Ther. – volume: 28 start-page: 597 year: 2003 Jul end-page: 604 ident: bb0140 article-title: Sequential wear patterns of the articular cartilage of the thumb carpometacarpal joint in osteoarthritis publication-title: J. Hand. Surg. [Am.] – volume: 134 year: 2012 Jan ident: bb0170 article-title: FEBio: finite elements for biomechanics publication-title: J. Biomech. Eng. – volume: 25 start-page: 1085 year: 2000 Nov end-page: 1095 ident: bb0020 article-title: Material properties of the trapezial and trapeziometacarpal ligaments publication-title: J. Hand. Surg. [Am.] – volume: 32 start-page: 1443 year: 2007 Nov end-page: 1446 ident: bb0035 article-title: Distraction arthroplasty of the trapeziometacarpal joint publication-title: J. Hand. Surg. [Am.] – volume: 39 start-page: 345 year: 2016 end-page: 352 ident: bb0215 article-title: Surgical stabilization for symptomatic carpometacarpal hypermobility; a randomized comparison of a dorsal and a volar technique and a cohort of the volar technique publication-title: Eur. J. Plast. Surg. – volume: 114 start-page: 437 year: 2019 Jul-Aug end-page: 442 ident: bb0200 article-title: Relevance of finite element in Total knee arthroplasty - Literature review publication-title: Chirurgia (Bucur). – volume: 27 start-page: 845 year: 2005 Dec end-page: 861 ident: bb0230 article-title: Three-dimensional finite element modeling of ligaments: technical aspects publication-title: Med. Eng. Phys. – volume: 472 start-page: 1114 year: 2014 Apr end-page: 1122 ident: bb0095 article-title: In vivo kinematics of the thumb carpometacarpal joint during three isometric functional tasks publication-title: Clin. Orthop. Relat. Res. – volume: 26 start-page: 44 year: 2013 Jan-Mar end-page: 51 ident: bb0190 article-title: Effects of a dynamic stability approach in conservative intervention of the carpometacarpal joint of the thumb: a retrospective study publication-title: J. Hand Ther. – volume: 14 start-page: 209 year: 1989 May end-page: 212 ident: bb0030 article-title: Stabilisation of the trapezio-metacarpal joint publication-title: J. Hand Surg. (Br.) – volume: 29 start-page: 273 year: 2013 Feb end-page: 292 ident: bb0220 article-title: Accounting for patient variability in finite element analysis of the intact and implanted hip and knee: a review publication-title: Int. J. Num. Method Biomed. Eng. – volume: 472 start-page: 3605 year: 2014 Dec end-page: 3622 ident: bb0160 article-title: The 2014 ABJS Nicolas Andry award: the puzzle of the thumb: mobility, stability, and demands in opposition publication-title: Clin. Orthop. Relat. Res. – volume: 48 start-page: 3634 year: 2015 Oct 15 end-page: 3640 ident: bb0100 article-title: Older asymptomatic women exhibit patterns of thumb carpometacarpal joint space narrowing that precede changes associated with early osteoarthritis publication-title: J. Biomech. – volume: 25 start-page: 169 year: 2021 end-page: 174 ident: bb0240 article-title: First carpometacarpal joint instability: dorsal ligament reconstruction publication-title: Tech. Hand Upper Extrem. Surg. – volume: 63 start-page: 834 year: 2011 Jun end-page: 848 ident: bb0135 article-title: Systematic review of design and effects of splints and exercise programs in hand osteoarthritis publication-title: Arthritis Care Res. – year: 1918 ident: bb0090 article-title: Lewis WH (Ed). Anatomy of the Human Body – reference: Cignoni, P, Callieri, M, Corsini, M, Dellepiane, M, Ganovelli, F, Ranzuglia, G. Meshlab: an open-source mesh processing tool. In Eurographics Italian Chapter Conference (Vol. 2008, pp. 129–136) n.d. – volume: 28 start-page: 1 year: 2017 end-page: 5 ident: bb0145 article-title: Anatomy and biomechanics of the thumb carpometacarpal joint publication-title: Oper. Tech. Orthop. – volume: 35 start-page: 238 year: 2016 Sep end-page: 249 ident: bb0085 article-title: Surgery for trapeziometacarpal osteoarthritis publication-title: Hand Surg. Rehabil. – volume: 34 start-page: 1576 year: 2016 Sep end-page: 1587 ident: bb0180 article-title: Subject-specific modeling of muscle force and knee contact in total knee arthroplasty publication-title: J. Orthop. Res. – start-page: 206 year: 2018 Aug 22 end-page: 210 ident: bb0015 article-title: Development of a index finger and thumb model to study impairment publication-title: J. Biomech. – volume: 36 start-page: 2851 year: 2018 Nov end-page: 2864 ident: bb0125 article-title: Trapeziometacarpal stabilization through dorsoradial ligament reconstruction: An early post-surgery in vivo biomechanical analyses publication-title: J. Orthop. Res. – volume: 29 start-page: 785 year: 2021 Jun end-page: 792 ident: bb0195 article-title: The prevalence of radiographic thumb base osteoarthritis: a meta-analysis publication-title: Osteoarthr. Cartil. – volume: 100 start-page: 1050 year: 2019 Jun end-page: 1060 ident: bb0235 article-title: Exercise therapy in addition to an orthosis reduces pain more than an orthosis alone in patients with thumb base osteoarthritis: a propensity score matching study publication-title: Arch. Phys. Med. Rehabil. – start-page: 206 issue: 77 year: 2018 ident: 10.1016/j.clinbiomech.2022.105852_bb0015 article-title: Development of a index finger and thumb model to study impairment publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2018.06.017 – volume: 40 start-page: 711 issue: 7 year: 2015 ident: 10.1016/j.clinbiomech.2022.105852_bb0225 article-title: Tensile mechanical properties of human forearm tendons publication-title: J. Hand Surg. Eur. doi: 10.1177/1753193415584715 – volume: 472 start-page: 3605 issue: 12 year: 2014 ident: 10.1016/j.clinbiomech.2022.105852_bb0160 article-title: The 2014 ABJS Nicolas Andry award: the puzzle of the thumb: mobility, stability, and demands in opposition publication-title: Clin. Orthop. Relat. Res. doi: 10.1007/s11999-014-3901-6 – volume: 472 start-page: 1138 issue: 4 year: 2014 ident: 10.1016/j.clinbiomech.2022.105852_bb0165 article-title: Trapeziometacarpal joint stability: the evolving importance of the dorsal ligaments publication-title: Clin. Orthop. Relat. Res. doi: 10.1007/s11999-013-2879-9 – volume: 59 start-page: 615 issue: 8 year: 2000 ident: 10.1016/j.clinbiomech.2022.105852_bb0070 article-title: Effect of intensive exercise on patients with active rheumatoid arthritis: a randomised clinical trial publication-title: Ann. Rheum. Dis. doi: 10.1136/ard.59.8.615 – volume: 30 start-page: 131 year: 2016 ident: 10.1016/j.clinbiomech.2022.105852_bb0120 article-title: Subject-specific thumb muscle activity during functional tasks of daily life publication-title: J. Electromyogr. Kinesiol. doi: 10.1016/j.jelekin.2016.06.009 – volume: 140 issue: 8 year: 2018 ident: 10.1016/j.clinbiomech.2022.105852_bb0245 article-title: A surface-to-surface finite element algorithm for large deformation frictional contact in febio publication-title: J. Biomech. Eng. doi: 10.1115/1.4040497 – volume: 15 issue: 7 year: 2020 ident: 10.1016/j.clinbiomech.2022.105852_bb0110 article-title: A multi-scale modelling framework combining musculoskeletal rigid-body simulations with adaptive finite element analyses, to evaluate the impact of femoral geometry on hip joint contact forces and femoral bone growth publication-title: PLoS One doi: 10.1371/journal.pone.0235966 – year: 1918 ident: 10.1016/j.clinbiomech.2022.105852_bb0090 – volume: 114 start-page: 437 issue: 4 year: 2019 ident: 10.1016/j.clinbiomech.2022.105852_bb0200 article-title: Relevance of finite element in Total knee arthroplasty - Literature review publication-title: Chirurgia (Bucur). doi: 10.21614/chirurgia.114.4.437 – volume: 39 start-page: 345 issue: 5 year: 2016 ident: 10.1016/j.clinbiomech.2022.105852_bb0215 article-title: Surgical stabilization for symptomatic carpometacarpal hypermobility; a randomized comparison of a dorsal and a volar technique and a cohort of the volar technique publication-title: Eur. J. Plast. Surg. doi: 10.1007/s00238-016-1212-8 – volume: 472 start-page: 1114 issue: 4 year: 2014 ident: 10.1016/j.clinbiomech.2022.105852_bb0095 article-title: In vivo kinematics of the thumb carpometacarpal joint during three isometric functional tasks publication-title: Clin. Orthop. Relat. Res. doi: 10.1007/s11999-013-3063-y – volume: 94 start-page: 1468 issue: 16 year: 2012 ident: 10.1016/j.clinbiomech.2022.105852_bb0150 article-title: Macroscopic and microscopic analysis of the thumb carpometacarpal ligaments: a cadaveric study of ligament anatomy and histology publication-title: J. Bone Joint Surg. Am. doi: 10.2106/JBJS.K.00329 – volume: 36 start-page: 2851 issue: 11 year: 2018 ident: 10.1016/j.clinbiomech.2022.105852_bb0125 article-title: Trapeziometacarpal stabilization through dorsoradial ligament reconstruction: An early post-surgery in vivo biomechanical analyses publication-title: J. Orthop. Res. doi: 10.1002/jor.24103 – volume: 63 start-page: 834 issue: 6 year: 2011 ident: 10.1016/j.clinbiomech.2022.105852_bb0135 article-title: Systematic review of design and effects of splints and exercise programs in hand osteoarthritis publication-title: Arthritis Care Res. doi: 10.1002/acr.20427 – volume: 62 start-page: 165 year: 2013 ident: 10.1016/j.clinbiomech.2022.105852_bb0155 article-title: The thumb carpometacarpal joint: anatomy, hormones, and biomechanics publication-title: Instr. Course Lect. – volume: 55 start-page: 1655 issue: 8 year: 1973 ident: 10.1016/j.clinbiomech.2022.105852_bb0060 article-title: Ligament reconstruction for the painful thumb carpometacarpal joint publication-title: J. Bone Joint Surg. Am. doi: 10.2106/00004623-197355080-00010 – volume: 34 start-page: 1576 issue: 9 year: 2016 ident: 10.1016/j.clinbiomech.2022.105852_bb0180 article-title: Subject-specific modeling of muscle force and knee contact in total knee arthroplasty publication-title: J. Orthop. Res. doi: 10.1002/jor.23171 – ident: 10.1016/j.clinbiomech.2022.105852_bb0045 – volume: 29 start-page: 785 issue: 6 year: 2021 ident: 10.1016/j.clinbiomech.2022.105852_bb0195 article-title: The prevalence of radiographic thumb base osteoarthritis: a meta-analysis publication-title: Osteoarthr. Cartil. doi: 10.1016/j.joca.2021.03.004 – volume: 9 start-page: 692 issue: 5 year: 1984 ident: 10.1016/j.clinbiomech.2022.105852_bb0065 article-title: Ligament reconstruction for the painful thumb carpometacarpal joint: a long-term assessment publication-title: J. Hand. Surg. [Am.] doi: 10.1016/S0363-5023(84)80015-5 – volume: 47 start-page: 1 issue: 1 year: 2015 ident: 10.1016/j.clinbiomech.2022.105852_bb0075 article-title: Ergebnisse der Behandlung der Rhizarthrose im Frühstadium mittels der Distraktionsarthroplastik nach Bufalini und Perugia [Results after distraction arthroplasty according to Bufalini and Perugia in early stages of trapeziometacarpal osteoarthritis] publication-title: Handchir. Mikrochir. Plast. Chir. doi: 10.1055/s-0034-1398607 – volume: 65 start-page: 2048e58 year: 2013 ident: 10.1016/j.clinbiomech.2022.105852_bb0185 article-title: Magnetic resonance imaginebased three-dimensional bone shape of the knee predicts onset of knee osteoarthritis: data from the osteoarthritis initiative publication-title: Arthritis Rheum. doi: 10.1002/art.37987 – volume: 39 start-page: 1098 issue: 6 year: 2014 ident: 10.1016/j.clinbiomech.2022.105852_bb0050 article-title: Comparison of the anatomical dimensions and mechanical properties of the dorsoradial and anterior oblique ligaments of the trapeziometacarpal joint publication-title: J. Hand. Surg. [Am.] doi: 10.1016/j.jhsa.2014.02.025 – volume: 30 start-page: 1323 issue: 9 year: 2012 ident: 10.1016/j.clinbiomech.2022.105852_bb0080 article-title: 3D slicer as an image computing platform for the quantitative imaging network publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2012.05.001 – volume: 2 start-page: 177 year: 1980 ident: 10.1016/j.clinbiomech.2022.105852_bb0115 article-title: The mechanical properties of articular cartilage publication-title: Joints Synovial Fluid. doi: 10.1016/B978-0-12-655102-0.50011-4 – volume: 25 start-page: 169 issue: 3 year: 2021 ident: 10.1016/j.clinbiomech.2022.105852_bb0240 article-title: First carpometacarpal joint instability: dorsal ligament reconstruction publication-title: Tech. Hand Upper Extrem. Surg. doi: 10.1097/BTH.0000000000000327 – volume: 26 start-page: 1338 issue: 10 year: 2018 ident: 10.1016/j.clinbiomech.2022.105852_bb0210 article-title: Early morphologic changes in trapeziometacarpal joint bones with osteoarthritis publication-title: Osteoarthr. Cartil. doi: 10.1016/j.joca.2018.06.008 – volume: 31 start-page: 1172 issue: 8 year: 2013 ident: 10.1016/j.clinbiomech.2022.105852_bb0005 article-title: Hip abduction can prevent posterior edge loading of hip replacements publication-title: J. Orthop. Res. doi: 10.1002/jor.22364 – volume: 50 start-page: 43 year: 2017 ident: 10.1016/j.clinbiomech.2022.105852_bb0205 article-title: Trapeziometacarpal joint contact varies between men and women during three isometric functional tasks publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2017.09.002 – volume: 29 start-page: 273 issue: 2 year: 2013 ident: 10.1016/j.clinbiomech.2022.105852_bb0220 article-title: Accounting for patient variability in finite element analysis of the intact and implanted hip and knee: a review publication-title: Int. J. Num. Method Biomed. Eng. doi: 10.1002/cnm.2530 – volume: 14 start-page: 209 issue: 2 year: 1989 ident: 10.1016/j.clinbiomech.2022.105852_bb0030 article-title: Stabilisation of the trapezio-metacarpal joint publication-title: J. Hand Surg. (Br.) doi: 10.1016/0266-7681_89_90128-9 – volume: 40 start-page: 1523 issue: 7 year: 2022 ident: 10.1016/j.clinbiomech.2022.105852_bb0105 article-title: A quantitative measurement of trapeziometacarpal joint pressure using a cadaveric model of lateral pinch publication-title: J. Orthop. Res. doi: 10.1002/jor.25188 – volume: 134 issue: 1 year: 2012 ident: 10.1016/j.clinbiomech.2022.105852_bb0170 article-title: FEBio: finite elements for biomechanics publication-title: J. Biomech. Eng. doi: 10.1115/1.4005694 – volume: 198 start-page: 1152 issue: 5 year: 2012 ident: 10.1016/j.clinbiomech.2022.105852_bb0130 article-title: Radiologic guide to surgical treatment of first carpometacarpal joint osteoarthritis publication-title: AJR Am. J. Roentgenol. doi: 10.2214/AJR.11.7387 – volume: S0894-1130 issue: 21 year: 2021 ident: 10.1016/j.clinbiomech.2022.105852_bb0175 article-title: Dynamic stabilization home exercise program for treatment of thumb carpometacarpal osteoarthritis: a prospective randomized control trial publication-title: J. Hand Ther. – volume: 26 start-page: 44 issue: 1 year: 2013 ident: 10.1016/j.clinbiomech.2022.105852_bb0190 article-title: Effects of a dynamic stability approach in conservative intervention of the carpometacarpal joint of the thumb: a retrospective study publication-title: J. Hand Ther. doi: 10.1016/j.jht.2012.10.005 – volume: 48 start-page: 3634 issue: 13 year: 2015 ident: 10.1016/j.clinbiomech.2022.105852_bb0100 article-title: Older asymptomatic women exhibit patterns of thumb carpometacarpal joint space narrowing that precede changes associated with early osteoarthritis publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2015.08.010 – volume: 18 start-page: 66 issue: 2 year: 2014 ident: 10.1016/j.clinbiomech.2022.105852_bb0025 article-title: Dorsoradial ligament imbrication for thumb carpometacarpal joint instability publication-title: Tech. Hand Upper Extrem. Surg. doi: 10.1097/BTH.0000000000000035 – volume: 38 start-page: 108 issue: 2 year: 2016 ident: 10.1016/j.clinbiomech.2022.105852_bb0055 article-title: In vivo contact biomechanics in the trapeziometacarpal joint using finite deformation biphasic theory and mathematical modelling publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2015.11.003 – volume: 28 start-page: 1 year: 2017 ident: 10.1016/j.clinbiomech.2022.105852_bb0145 article-title: Anatomy and biomechanics of the thumb carpometacarpal joint publication-title: Oper. Tech. Orthop. doi: 10.1053/j.oto.2017.12.002 – volume: 32 start-page: 1443 issue: 9 year: 2007 ident: 10.1016/j.clinbiomech.2022.105852_bb0035 article-title: Distraction arthroplasty of the trapeziometacarpal joint publication-title: J. Hand. Surg. [Am.] doi: 10.1016/j.jhsa.2007.08.017 – volume: 100 start-page: 1050 issue: 6 year: 2019 ident: 10.1016/j.clinbiomech.2022.105852_bb0235 article-title: Exercise therapy in addition to an orthosis reduces pain more than an orthosis alone in patients with thumb base osteoarthritis: a propensity score matching study publication-title: Arch. Phys. Med. Rehabil. doi: 10.1016/j.apmr.2018.11.010 – volume: 22 start-page: 538 year: 2010 ident: 10.1016/j.clinbiomech.2022.105852_bb0010 article-title: Relationship between joint shape and the development of osteoarthritis publication-title: Curr. Opin. Rheumatol. doi: 10.1097/BOR.0b013e32833d20ae – volume: 25 start-page: 1085 issue: 6 year: 2000 ident: 10.1016/j.clinbiomech.2022.105852_bb0020 article-title: Material properties of the trapezial and trapeziometacarpal ligaments publication-title: J. Hand. Surg. [Am.] doi: 10.1053/jhsu.2000.18487 – volume: 28 start-page: 597 issue: 4 year: 2003 ident: 10.1016/j.clinbiomech.2022.105852_bb0140 article-title: Sequential wear patterns of the articular cartilage of the thumb carpometacarpal joint in osteoarthritis publication-title: J. Hand. Surg. [Am.] doi: 10.1016/S0363-5023(03)00145-X – volume: 27 start-page: 845 issue: 10 year: 2005 ident: 10.1016/j.clinbiomech.2022.105852_bb0230 article-title: Three-dimensional finite element modeling of ligaments: technical aspects publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2005.05.006 – volume: 35 start-page: 238 issue: 4 year: 2016 ident: 10.1016/j.clinbiomech.2022.105852_bb0085 article-title: Surgery for trapeziometacarpal osteoarthritis publication-title: Hand Surg. Rehabil. doi: 10.1016/j.hansur.2016.06.002 |
| SSID | ssj0004257 |
| Score | 2.4030554 |
| Snippet | Finite element (FE) analysis is widely used in different fields of orthopaedic surgery, however, its application to the trapeziometacarpal joint has been... AbstractBackgroundFinite element (FE) analysis is widely used in different fields of orthopaedic surgery, however, its application to the trapeziometacarpal... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 105852 |
| SubjectTerms | Eaton-Littler reconstruction Finite element Finite Element Analysis Hand therapy Humans Ligament imbrication Ligaments Osteoarthritis - surgery Osteotomy - methods Physical Medicine and Rehabilitation Thumb - physiology Thumb - surgery Thumb osteoarthritis Trapeziometacarpal joint |
| Title | Using a finite element model of the thumb to study Trapeziometacarpal joint contact during lateral pinch |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0268003322002820 https://www.clinicalkey.es/playcontent/1-s2.0-S0268003322002820 https://dx.doi.org/10.1016/j.clinbiomech.2022.105852 https://www.ncbi.nlm.nih.gov/pubmed/36521409 https://www.proquest.com/docview/2755573768 |
| Volume | 101 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-1271 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004257 issn: 0268-0033 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-1271 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004257 issn: 0268-0033 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-1271 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004257 issn: 0268-0033 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1879-1271 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004257 issn: 0268-0033 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-1271 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004257 issn: 0268-0033 databaseCode: AKRWK dateStart: 19860201 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB5CCqGX0iZ9bB9BgdKbu7YsW1LpZQkN25bm0gRyE5Iskw0bO3S9h_bQ394Z2d60tIGFHnyw0SCjGWlmNN_MALwWrq6l1lXiHZcJCkWaaJeViVYuWNRPIvcRIHtazs_Fp4viYgeOx1wYglUOZ39_psfTevgyHVZzerNYTL-i96CoFRnn0XEgv10ISV0M3v68hXmIodonDk5o9B4c3WK8KPswprnHuATn1PVWFfwuHXWXDRp10clDeDAYkWzW_-cj2AnNPhzMGnSgr7-zNyzCOuN9-T7sfRmi5wdwGfEBzLJ6QZYmCz10nMVuOKytGRqD-KyvHetaFgvPsjPKzvpBP99ZitXgtFftAokI4259x_o8R7a0lMq8ZFTt4fIxnJ98ODueJ0OnhcQLnXZJlVZF6r0KeaU4GVV5KnLB6yyTwdeK-yo4lbqiUrWTHjW80lVmvXI2q4PWNn8Cu03bhGfAVKzH44OVaIpVWdC8tFyUwVmpsjKECahxbY0fypBTN4ylGfFmV-Y3thhii-nZMgG-Ib3pa3FsQ_RuZKAZk03xeDSoMbYhlv8iDqtho69MZlbcpOYvYZzA-w3lH_K87cRHo6wZ3O8UxLFNaNcrw2VRFBLVgprA014IN4uRl2iMocP-_P8mfwH38S3vL5pewm73bR1eoenVucO4tw7h3uzj5_npL3r4LxM |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB5CAmkvJU362D4VKL25a8uyJYVeQmjYtkku3UBuQpJlsmFjh6730B762zOS5U1LG1jowRdbg4xmpJnRfDMD8I6ZuuZSVok1lCcoFGkiTVYmUhinUT-x3AaA7Fk5OWdfLoqLDTgacmE8rDKe_f2ZHk7r-GYcV3N8M5uNv6H3IHwrMkqD44B--xYrKPce2IdfdzgPFst94ujED9-G_TuQl08_DHnuITBBqW97Kwp6n5K6zwgNyuh4Bx5FK5Ic9j_6GDZcswt7hw160Nc_yHsScJ3hwnwXtk9j-HwPLgNAgGhSz7ypSVyPHSehHQ5pa4LWID7La0O6loTKs2Tq07N--p_vtA_W4LRX7QyJPMhd2470iY5krn0u85z4cg-XT-D8-NP0aJLEVguJZTLtkiqtitRa4fJKUG9V5SnLGa2zjDtbC2orZ0RqikrUhltU8UJWmbbC6Kx2Uur8KWw2beOeAxGhII91mqMtVmVO0lJTVjqjuchK50YghrVVNtYh9-0w5moAnF2p39iiPFtUz5YR0BXpTV-MYx2ig4GBasg2xfNRocpYh5j_i9gt4k5fqEwtqErVX9I4go8ryj8Eet2J9wdZU7jhfRRHN65dLhTlRVFw1AtiBM96IVwtRl6iNYYe-4v_m_wtPJhMT0_Uyeezry_hIX7J-1unV7DZfV-612iHdeZN2Ge3NI8wqA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+a+finite+element+model+of+the+thumb+to+study+Trapeziometacarpal+joint+contact+during+lateral+pinch&rft.jtitle=Clinical+biomechanics+%28Bristol%29&rft.au=Dong%2C+Meilin&rft.au=Kerkhof%2C+Faes&rft.au=Deleu%2C+GertJan&rft.au=Vereecke%2C+Evie&rft.date=2023-01-01&rft.issn=0268-0033&rft.spage=105852&rft.epage=105852&rft_id=info:doi/10.1016%2Fj.clinbiomech.2022.105852&rft.externalDBID=ECK1-s2.0-S0268003322002820&rft.externalDocID=1_s2_0_S0268003322002820 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-0033&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-0033&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-0033&client=summon |