Physiological Signal-Based Method for Measurement of Pain Intensity
The standard method for prediction of the absence and presence of pain has long been self-report. However, for patients with major cognitive or communicative impairments, it would be better if clinicians could quantify pain without having to rely on the patient's self-description. Here, we pres...
Saved in:
| Published in | Frontiers in neuroscience Vol. 11; p. 279 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
Frontiers Research Foundation
26.05.2017
Frontiers Media S.A |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1662-453X 1662-4548 1662-453X |
| DOI | 10.3389/fnins.2017.00279 |
Cover
| Abstract | The standard method for prediction of the absence and presence of pain has long been self-report. However, for patients with major cognitive or communicative impairments, it would be better if clinicians could quantify pain without having to rely on the patient's self-description. Here, we present a newly pain intensity measurement method based on multiple physiological signals, including blood volume pulse (BVP), electrocardiogram (ECG), and skin conductance level (SCL), all of which are induced by external electrical stimulation. The proposed pain prediction system consists of signal acquisition and preprocessing, feature extraction, feature selection and feature reduction, and three types of pattern classifiers. Feature extraction phase is devised to extract pain-related characteristics from short-segment signals. A hybrid procedure of genetic algorithm-based feature selection and principal component analysis-based feature reduction was established to obtain high-quality features combination with significant discriminatory information. Three types of classification algorithms-linear discriminant analysis,
-nearest neighbor algorithm, and support vector machine-are adopted during various scenarios, including multi-signal scenario, multi-subject and between-subject scenario, and multi-day scenario. The classifiers gave correct classification ratios much higher than chance probability, with the overall average accuracy of 75% above for four pain intensity. Our experimental results demonstrate that the proposed method can provide an objective and quantitative evaluation of pain intensity. The method might be used to develop a wearable device that is suitable for daily use in clinical settings. |
|---|---|
| AbstractList | The standard method for prediction of the absence and presence of pain has long been self-report. However, for patients with major cognitive or communicative impairments, it would be better if clinicians could quantify pain without having to rely on the patient's self-description. Here, we present a newly pain intensity measurement method based on multiple physiological signals, including blood volume pulse (BVP), electrocardiogram (ECG), and skin conductance level (SCL), all of which are induced by external electrical stimulation. The proposed pain prediction system consists of signal acquisition and preprocessing, feature extraction, feature selection and feature reduction, and three types of pattern classifiers. Feature extraction phase is devised to extract pain-related characteristics from short-segment signals. A hybrid procedure of genetic algorithm-based feature selection and principal component analysis-based feature reduction was established to obtain high-quality features combination with significant discriminatory information. Three types of classification algorithms-linear discriminant analysis, k-nearest neighbor algorithm, and support vector machine-are adopted during various scenarios, including multi-signal scenario, multi-subject and between-subject scenario, and multi-day scenario. The classifiers gave correct classification ratios much higher than chance probability, with the overall average accuracy of 75% above for four pain intensity. Our experimental results demonstrate that the proposed method can provide an objective and quantitative evaluation of pain intensity. The method might be used to develop a wearable device that is suitable for daily use in clinical settings.The standard method for prediction of the absence and presence of pain has long been self-report. However, for patients with major cognitive or communicative impairments, it would be better if clinicians could quantify pain without having to rely on the patient's self-description. Here, we present a newly pain intensity measurement method based on multiple physiological signals, including blood volume pulse (BVP), electrocardiogram (ECG), and skin conductance level (SCL), all of which are induced by external electrical stimulation. The proposed pain prediction system consists of signal acquisition and preprocessing, feature extraction, feature selection and feature reduction, and three types of pattern classifiers. Feature extraction phase is devised to extract pain-related characteristics from short-segment signals. A hybrid procedure of genetic algorithm-based feature selection and principal component analysis-based feature reduction was established to obtain high-quality features combination with significant discriminatory information. Three types of classification algorithms-linear discriminant analysis, k-nearest neighbor algorithm, and support vector machine-are adopted during various scenarios, including multi-signal scenario, multi-subject and between-subject scenario, and multi-day scenario. The classifiers gave correct classification ratios much higher than chance probability, with the overall average accuracy of 75% above for four pain intensity. Our experimental results demonstrate that the proposed method can provide an objective and quantitative evaluation of pain intensity. The method might be used to develop a wearable device that is suitable for daily use in clinical settings. The standard method for prediction of the absence and presence of pain has long been self-report. However, for patients with major cognitive or communicative impairments, it would be better if clinicians could quantify pain without having to rely on the patient's self-description. Here, we present a newly pain intensity measurement method based on multiple physiological signals, including blood volume pulse (BVP), electrocardiogram (ECG), and skin conductance level (SCL), all of which are induced by external electrical stimulation. The proposed pain prediction system consists of signal acquisition and preprocessing, feature extraction, feature selection and feature reduction, and three types of pattern classifiers. Feature extraction phase is devised to extract pain-related characteristics from short-segment signals. A hybrid procedure of genetic algorithm-based feature selection and principal component analysis-based feature reduction was established to obtain high-quality features combination with significant discriminatory information. Three types of classification algorithms-linear discriminant analysis, -nearest neighbor algorithm, and support vector machine-are adopted during various scenarios, including multi-signal scenario, multi-subject and between-subject scenario, and multi-day scenario. The classifiers gave correct classification ratios much higher than chance probability, with the overall average accuracy of 75% above for four pain intensity. Our experimental results demonstrate that the proposed method can provide an objective and quantitative evaluation of pain intensity. The method might be used to develop a wearable device that is suitable for daily use in clinical settings. The standard method for prediction of the absence and presence of pain has long been self-report. However, for patients with major cognitive or communicative impairments, it would be better if clinicians could quantify pain without having to rely on the patient's self-description. Here, we present a newly pain intensity measurement method based on multiple physiological signals, including blood volume pulse (BVP), electrocardiogram (ECG), and skin conductance level (SCL), all of which are induced by external electrical stimulation. The proposed pain prediction system consists of signal acquisition and preprocessing, feature extraction, feature selection and feature reduction, and three types of pattern classifiers. Feature extraction phase is devised to extract pain-related characteristics from short-segment signals. A hybrid procedure of genetic algorithm-based feature selection and principal component analysis-based feature reduction was established to obtain high-quality features combination with significant discriminatory information. Three types of classification algorithms—linear discriminant analysis, k-nearest neighbor algorithm, and support vector machine—are adopted during various scenarios, including multi-signal scenario, multi-subject and between-subject scenario, and multi-day scenario. The classifiers gave correct classification ratios much higher than chance probability, with the overall average accuracy of 75% above for four pain intensity. Our experimental results demonstrate that the proposed method can provide an objective and quantitative evaluation of pain intensity. The method might be used to develop a wearable device that is suitable for daily use in clinical settings. The standard method for prediction of the absence and presence of pain has long been self-report. However, for patients with major cognitive or communicative impairments, it would be better if clinicians could quantify pain without having to rely on the patient’s self-description. Here, we present a newly pain intensity measurement method based on multiple physiological signals, including blood volume pulse (BVP), electrocardiogram (ECG) and skin conductance (SC), all of which are induced by external electrical stimulation. The proposed pain prediction system consists of signal acquisition and preprocessing, feature extraction, feature selection and feature reduction, and three types of pattern classifiers. Feature extraction phase is devised to extract pain-related characteristics from short-segment signals. A hybrid procedure of genetic algorithm-based feature selection and principal component analysis-based feature reduction was established to obtain high-quality features combination with significant discriminatory information. Three types of classification algorithms—linear discriminant analysis, k-nearest neighbor algorithm, and support vector machine—are adopted during various scenarios, including multi-signal scenario, multi-subject and between-subject scenario, and multi-day scenario. The classifiers gave correct classification ratios much higher than chance probability, with the overall average accuracy of 75% above for four pain intensity. Our experimental results demonstrate that the proposed method can provide an objective and quantitative evaluation of pain intensity. The method might be used to develop a wearable device that is suitable for daily use in clinical settings. |
| Author | Chu, Yaqi Zhao, Xingang Su, Yang Han, Jianda |
| AuthorAffiliation | 1 State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences Shenyang, China 2 Shengjing Hospital of China Medical University Shenyang, China |
| AuthorAffiliation_xml | – name: 1 State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences Shenyang, China – name: 2 Shengjing Hospital of China Medical University Shenyang, China |
| Author_xml | – sequence: 1 givenname: Yaqi surname: Chu fullname: Chu, Yaqi – sequence: 2 givenname: Xingang surname: Zhao fullname: Zhao, Xingang – sequence: 3 givenname: Jianda surname: Han fullname: Han, Jianda – sequence: 4 givenname: Yang surname: Su fullname: Su, Yang |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28603478$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUU2LFDEUDLLifujdkzR48dLjy2enL4IOqw6suKCCt5BOp2cyZJIx6Vbm329mZl12FwRPeSRVlap65-gkxGAReolhRqls3w7BhTwjgJsZAGnaJ-gMC0FqxunPk3vzKTrPeQ0giGTkGTolUgBljTxD8-vVLrvo49IZ7atvbhm0rz_obPvqix1Xsa-GmMqo85TsxoaxikN1rV2oFmG0Ibtx9xw9HbTP9sXteYF-fLz8Pv9cX339tJi_v6oNa2GsjexaQ6GDzna8p7rtoemBGS0aYjrGWgzScowbLBgZBuhwYxgjRtq-E1JKeoEWR90-6rXaJrfRaaeidupwEdNS6TQ6462yQFsBhFDOOcPA2n4QgjfQ7z8WhhUtfNSawlbv_mjv7wQxqH256lCu2perDuUWzrsjZzt1G9ubUkbS_oGRhy_BrdQy_lacMY6pKAJvbgVS_DXZPKqNy8Z6r4ONU1a4BdkU37DP-voRdB2nVHZTHFHgEkTT4oJ6dd_RnZW_-y0AOAJMijknO_xPSvGIYtyoRxf3mZz_N_EGn6bJwg |
| CitedBy_id | crossref_primary_10_1097_PR9_0000000000001039 crossref_primary_10_3390_life13091828 crossref_primary_10_1109_TAFFC_2019_2892090 crossref_primary_10_3389_fpain_2023_1150264 crossref_primary_10_3390_brainsci12020153 crossref_primary_10_1016_j_jenvp_2022_101879 crossref_primary_10_3390_e23020244 crossref_primary_10_2196_53026 crossref_primary_10_3390_s23198231 crossref_primary_10_3390_s21010052 crossref_primary_10_1109_TMM_2021_3096080 crossref_primary_10_3390_s22134992 crossref_primary_10_1371_journal_pone_0254108 crossref_primary_10_2196_14599 crossref_primary_10_1109_ACCESS_2019_2962515 crossref_primary_10_1038_s41746_023_00810_1 crossref_primary_10_3389_fcomp_2024_1424935 crossref_primary_10_3390_s23031443 crossref_primary_10_1016_j_bspc_2020_102391 crossref_primary_10_1080_28324765_2023_2240375 crossref_primary_10_1371_journal_pcbi_1008542 crossref_primary_10_1016_j_neubiorev_2022_104744 crossref_primary_10_1109_ACCESS_2023_3248654 crossref_primary_10_1109_ACCESS_2019_2942764 crossref_primary_10_1111_ner_13400 crossref_primary_10_3389_fphys_2021_720464 crossref_primary_10_1007_s12028_022_01586_0 crossref_primary_10_1016_j_bspc_2024_107178 crossref_primary_10_1109_JSEN_2020_3023656 crossref_primary_10_3389_fnins_2022_831627 crossref_primary_10_1109_TAFFC_2022_3158234 crossref_primary_10_3390_s20051491 crossref_primary_10_1109_JBHI_2023_3336157 crossref_primary_10_1177_09544119241309424 crossref_primary_10_3390_s24196298 crossref_primary_10_1016_j_envres_2020_109769 crossref_primary_10_3389_fpubh_2024_1387056 crossref_primary_10_1097_WNP_0000000000000758 crossref_primary_10_3389_fnins_2019_00437 crossref_primary_10_3390_s23083980 crossref_primary_10_1109_TMM_2022_3165715 crossref_primary_10_3390_s20030839 crossref_primary_10_1088_1361_6579_aadf0c crossref_primary_10_1007_s13369_024_09732_w crossref_primary_10_1109_TAFFC_2019_2946774 crossref_primary_10_1111_papr_13047 crossref_primary_10_3390_asi7060124 crossref_primary_10_1016_j_apnr_2021_151504 |
| Cites_doi | 10.1109/CVPRW.2015.7301340 10.1016/j.pain.2012.04.008 10.1109/IEMBS.2010.5627661 10.1016/j.earlhumdev.2005.12.008 10.1016/j.neuroimage.2009.10.072 10.1145/1647314.1647378 10.1016/j.brainres.2010.05.004 10.1097/AJP.0b013e3181ed1058 10.1097/01.CCM.0000108875.35298.D2 10.1109/IEMBS.2010.5625971 10.1016/j.iccn.2005.04.004 10.1097/ACO.0b013e3283183fe4 10.1109/ACII.2015.7344578 10.1109/TSMC.2014.2336842 10.1039/c3ay41907j 10.1109/TIP.2014.2365699 10.1016/j.aucc.2011.10.002 10.1088/0967-3334/22/2/310 10.1007/978-3-319-20248-8_19 10.1109/ICPR.2014.784 10.1109/TPAMI.2004.105 10.4236/jsip.2013.43B031 10.1109/TSMC.2015.2406855 10.1109/JSTSP.2016.2535962 10.1016/j.clon.2011.04.008 10.1016/j.neuroimage.2013.05.017 10.1109/TSMC.2015.2429637 10.1109/EMBC.2012.6346703 10.1109/TSMCB.2010.2082525 10.1097/WCO.0b013e3282f169d9 10.1016/j.pain.2010.07.031 10.1016/j.pain.2008.04.025 10.1371/journal.pone.0024124 10.1016/j.biopsycho.2007.10.004 10.1007/s11517-007-0293-8 10.1109/EMBC.2012.6346245 10.1007/978-3-642-33191-6_36 10.1016/j.pain.2006.10.011 10.1007/978-3-540-92841-6_166 10.1109/AIM.2005.1511058 10.1142/S0129065716500064 10.1016/j.jpain.2007.08.009 10.1016/B978-0-323-03707-5.50029-2 10.1111/j.1468-1331.2010.02969.x 10.1016/j.jpainsymman.2005.07.001 10.1016/S0885-3924(01)00409-2 |
| ContentType | Journal Article |
| Copyright | 2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2017 Chu, Zhao, Han and Su. 2017 Chu, Zhao, Han and Su |
| Copyright_xml | – notice: 2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2017 Chu, Zhao, Han and Su. 2017 Chu, Zhao, Han and Su |
| DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3389/fnins.2017.00279 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Local Electronic Collection Information Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Biological Sciences Science Database Biological Science Database (Proquest) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1662-453X |
| ExternalDocumentID | oai_doaj_org_article_e0396022355541049df66570d5d3a6c4 10.3389/fnins.2017.00279 PMC5445136 28603478 10_3389_fnins_2017_00279 |
| Genre | Journal Article |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABUWG ACGFO ACGFS ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EBS EJD EMOBN F5P FRP GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PUEGO RNS RPM W2D ACXDI C1A IAO IEA IHR ISR M~E NPM 3V. 7XB 8FK PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c490t-c8b9c30b0beb5d3a9d07d04ca672cb449108e51171642ff0b17c442c8edb68883 |
| IEDL.DBID | M48 |
| ISSN | 1662-453X 1662-4548 |
| IngestDate | Fri Oct 03 12:45:54 EDT 2025 Sun Oct 26 04:15:08 EDT 2025 Tue Sep 30 15:25:33 EDT 2025 Thu Sep 04 17:40:37 EDT 2025 Fri Jul 25 11:49:51 EDT 2025 Thu Jan 02 22:21:17 EST 2025 Thu Apr 24 22:59:05 EDT 2025 Wed Oct 01 01:43:07 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | feature selection and reduction pattern classification pain intensity quantification physiological signals feature extraction |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c490t-c8b9c30b0beb5d3a9d07d04ca672cb449108e51171642ff0b17c442c8edb68883 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 This article was submitted to Neural Technology, a section of the journal Frontiers in Neuroscience Edited by: Dingguo Zhang, Shanghai Jiao Tong University, China Reviewed by: Jun Xie, Xi'an Jiaotong University, China; Long Cheng, Institute of Automation (CAS), China |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnins.2017.00279 |
| PMID | 28603478 |
| PQID | 2305806791 |
| PQPubID | 4424402 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_e0396022355541049df66570d5d3a6c4 unpaywall_primary_10_3389_fnins_2017_00279 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5445136 proquest_miscellaneous_1908796008 proquest_journals_2305806791 pubmed_primary_28603478 crossref_primary_10_3389_fnins_2017_00279 crossref_citationtrail_10_3389_fnins_2017_00279 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2017-05-26 |
| PublicationDateYYYYMMDD | 2017-05-26 |
| PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-26 day: 26 |
| PublicationDecade | 2010 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Lausanne |
| PublicationTitle | Frontiers in neuroscience |
| PublicationTitleAlternate | Front Neurosci |
| PublicationYear | 2017 |
| Publisher | Frontiers Research Foundation Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
| References | Treister (B42) 2012; 153 Xiao (B46) 2016; 46 Faye (B10) 2010; 26 Schnakers (B36) 2007; 20 Caraceni (B6) 2002; 23 Young (B48) 2006; 22 Matsunaga (B28) 2005 De Jonckheere (B8) 2010 Irani (B17) 2015 Vapnik (B43) 2005; 2 Kächele (B19) 2015; 9132 Brown (B5) 2011; 6 Roulin (B35) 2012; 25 Olugbade (B33) 2015 Babchenko (B3) 2001; 22 De Jonckheere (B9) 2012 Shankar (B37) 2009 Kaltwang (B20) 2012; 7432 Oh (B31) 2004; 26 Huang (B15) 2013; 81 Marquand (B27) 2010; 49 Sidek (B38) 2014; 44 Li (B22) 2008; 9 Harrison (B13) 2006; 82 Kachele (B18) 2016; 10 Karamizadeh (B21) 2013; 4 Werner (B45) 2014 Hudspith (B16) 2006; 2 Frampton (B11) 2011; 23 Bro (B4) 2014; 6 Herr (B14) 2006; 31 Lin (B23) 2015; 45 Sun (B41) 2010 Cruccu (B7) 2010; 17 Yan (B47) 2014; 23 Nir (B30) 2010; 1344 Aslaksen (B2) 2007; 129 Logier (B25) 2010 Loeser (B24) 2008; 137 Sriram (B39) 2009 Oliveira (B32) 2012 Zhang (B49) 2016; 26 Weinberger (B44) 2005 Milanesi (B29) 2008; 46 Puntillo (B34) 2004; 32 Lucey (B26) 2011; 3 Appelhans (B1) 2008; 77 Haanpää (B12) 2011; 152 Storm (B40) 2008; 21 17981512 - J Pain. 2008 Jan;9(1):2-10 21097068 - Conf Proc IEEE Eng Med Biol Soc. 2010;2010:3852-5 16507342 - Early Hum Dev. 2006 Sep;82(9):603-8 19879364 - Neuroimage. 2010 Feb 1;49(3):2178-89 23684861 - Neuroimage. 2013 Nov 1;81:283-93 21095676 - Conf Proc IEEE Eng Med Biol Soc. 2010;2010:1194-7 20851519 - Pain. 2011 Jan;152(1):14-27 22104632 - Aust Crit Care. 2012 May;25(2):110-8 22647429 - Pain. 2012 Sep;153(9):1807-14 14758158 - Crit Care Med. 2004 Feb;32(2):421-7 11888722 - J Pain Symptom Manage. 2002 Mar;23(3):239-55 21097382 - IEEE Trans Syst Man Cybern B Cybern. 2011 Jun;41(3):664-74 17134832 - Pain. 2007 Jun;129(3):260-8 21571514 - Clin Oncol (R Coll Radiol). 2011 Aug;23(6):381-6 23366664 - Conf Proc IEEE Eng Med Biol Soc. 2012;2012:3432-5 21931652 - PLoS One. 2011;6(9):e24124 17992079 - Curr Opin Neurol. 2007 Dec;20(6):620-6 20973153 - Clin J Pain. 2010 Nov-Dec;26(9):777-82 15521491 - IEEE Trans Pattern Anal Mach Intell. 2004 Nov;26(11):1424-37 16488350 - J Pain Symptom Manage. 2006 Feb;31(2):170-92 25361507 - IEEE Trans Image Process. 2014 Dec;23(12):5599-611 18583048 - Pain. 2008 Jul 31;137(3):473-7 20460116 - Brain Res. 2010 Jul 16;1344:77-86 16198570 - Intensive Crit Care Nurs. 2006 Feb;22(1):32-9 20298428 - Eur J Neurol. 2010 Aug;17(8):1010-8 26762865 - Int J Neural Syst. 2016 Mar;26(2):1650006 11411248 - Physiol Meas. 2001 May;22(2):389-96 18064502 - Med Biol Eng Comput. 2008 Mar;46(3):251-61 18023960 - Biol Psychol. 2008 Feb;77(2):174-82 18997532 - Curr Opin Anaesthesiol. 2008 Dec;21(6):796-804 |
| References_xml | – volume-title: Proceedings of the 2015 IEEE Confernece on Computer Vision and Pattern Recognition (CVPR) Workshops year: 2015 ident: B17 article-title: Pain recognition using spatiotemporal oriented energy of facial muscles doi: 10.1109/CVPRW.2015.7301340 – volume: 153 start-page: 1807 year: 2012 ident: B42 article-title: Differentiating between heat pain intensities: the combined effect of multiple autonomic parameters publication-title: Pain doi: 10.1016/j.pain.2012.04.008 – volume-title: Proceedings of th 2010 IEEE International Conference on Engineering in Medicine and Biology Society year: 2010 ident: B8 article-title: From pain to stress evaluation using heart rate variability analysis: development of an evaluation platform doi: 10.1109/IEMBS.2010.5627661 – volume: 82 start-page: 603 year: 2006 ident: B13 article-title: Skin conductance as a measure of pain and stress in hospitalised infants publication-title: Earl. Hum. Dev. doi: 10.1016/j.earlhumdev.2005.12.008 – volume: 49 start-page: 2178 year: 2010 ident: B27 article-title: Quantitative prediction of subjective pain intensity from whole-brain fMRI data using Gaussian processes publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.10.072 – volume-title: Proceedings of the 2009 International Conference on Multimodal Interfaces year: 2009 ident: B39 article-title: Activity-aware ECG-based patient authentication for remote health monitoring doi: 10.1145/1647314.1647378 – volume: 1344 start-page: 77 year: 2010 ident: B30 article-title: Pain assessment by continuous EEG: association between subjective perception of tonic pain and peak frequency of alpha oscillations during stimulation and at rest publication-title: Brain Res. doi: 10.1016/j.brainres.2010.05.004 – volume: 26 start-page: 777 year: 2010 ident: B10 article-title: Newborn infant pain assessment using heart rate variability analysis publication-title: Clin. J. Pain doi: 10.1097/AJP.0b013e3181ed1058 – volume: 32 start-page: 421 year: 2004 ident: B34 article-title: Pain behaviors observed during six common procedures: results from Thunder Project II publication-title: Crit. Care Med. doi: 10.1097/01.CCM.0000108875.35298.D2 – volume-title: Proceedings of the 2010 IEEE International Conference on Engineering in Medicine and Biology Society year: 2010 ident: B25 article-title: PhysioDoloris: a monitoring device for analgesia/nociception balance evaluation using heart rate variability analysis doi: 10.1109/IEMBS.2010.5625971 – volume-title: International Conference on Mobile Computing, Application, and Services year: 2010 ident: B41 article-title: Activity-aware mental stress detection using physiological sensors – volume: 22 start-page: 32 year: 2006 ident: B48 article-title: Use of a Behavioural Pain Scale to assess pain in ventilated, unconscious and/or sedated patients publication-title: Intensive Crit. Care Nurs. doi: 10.1016/j.iccn.2005.04.004 – volume: 21 start-page: 796 year: 2008 ident: B40 article-title: Changes in skin conductance as a tool to monitor nociceptive stimulation and pain publication-title: Curr. Opin. Anesthesiol. doi: 10.1097/ACO.0b013e3283183fe4 – volume-title: Proceedings of the 2015 IEEE International Conference on Affective Computing and Intelligent Interaction (ACII) year: 2015 ident: B33 article-title: Pain level recognition using kinematics and muscle activity for physical rehabilitation in chronic pain doi: 10.1109/ACII.2015.7344578 – volume: 44 start-page: 1498 year: 2014 ident: B38 article-title: ECG biometric with abnormal cardiac conditions in remote monitoring system publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2014.2336842 – volume: 6 start-page: 2812 year: 2014 ident: B4 article-title: Principal component analysis publication-title: Anal. Methods doi: 10.1039/c3ay41907j – volume: 23 start-page: 5599 year: 2014 ident: B47 article-title: Multitask linear discriminant analysis for view invariant action recognition publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2014.2365699 – volume: 25 start-page: 110 year: 2012 ident: B35 article-title: Pain indicators in brain-injured critical care adults: an integrative review publication-title: Aust. Crit. Care doi: 10.1016/j.aucc.2011.10.002 – volume: 22 start-page: 389 year: 2001 ident: B3 article-title: Photoplethysmographic measurement of changes in total and pulsatile tissue blood volume, following sympathetic blockade publication-title: J. Physiol. Meas. doi: 10.1088/0967-3334/22/2/310 – volume: 9132 start-page: 220 year: 2015 ident: B19 article-title: Bio-visual fusion for person-independent recognition of pain intensity publication-title: Mult. Classif. Syst. doi: 10.1007/978-3-319-20248-8_19 – volume-title: Proceedings of the 2014 IEEE International Conference on Pattern Recognition year: 2014 ident: B45 article-title: Automatic pain recognition from video and biomedical signals doi: 10.1109/ICPR.2014.784 – volume: 26 start-page: 1424 year: 2004 ident: B31 article-title: Hybrid genetic algorithms for feature selection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2004.105 – volume: 4 start-page: 173 year: 2013 ident: B21 article-title: An overview of principal component analysis publication-title: J. Signal Inform. Process. doi: 10.4236/jsip.2013.43B031 – volume: 45 start-page: 1389 year: 2015 ident: B23 article-title: An improved polynomial neural network classifier using real-coded genetic algorithm publication-title: IEEE Trans. Syst. Man, Cybern. Syst. doi: 10.1109/TSMC.2015.2406855 – volume: 10 start-page: 854 year: 2016 ident: B18 article-title: Methods for person-centered continuous pain intensity assessment from bio-physiological channels publication-title: IEEE J. Sel. Topics Signal Process. doi: 10.1109/JSTSP.2016.2535962 – volume: 23 start-page: 381 year: 2011 ident: B11 article-title: The measurement of pain publication-title: J. Clin. Oncol. doi: 10.1016/j.clon.2011.04.008 – volume: 81 start-page: 283 year: 2013 ident: B15 article-title: A novel approach to predict subjective pain perception from single-trial laser-evoked potentials publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.017 – volume: 46 start-page: 177 year: 2016 ident: B46 article-title: Optimization models for feature selection of decomposed nearest neighbor publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2015.2429637 – volume-title: Proceedings of the 2012 IEEE International Conference on Engineering in Medicine and Biology Society year: 2012 ident: B9 article-title: Heart rate variability analysis as an index of emotion regulation processes: interest of the Analgesia Nociception Index (ANI) doi: 10.1109/EMBC.2012.6346703 – volume: 3 start-page: 664 year: 2011 ident: B26 article-title: Automatically detecting pain in video through facial action units publication-title: IEEE Trans. Syst. Man Cybern. B Cybern. doi: 10.1109/TSMCB.2010.2082525 – volume: 20 start-page: 620 year: 2007 ident: B36 article-title: Pain assessment and management in disorders of consciousness publication-title: Curr. Opin. Neurol. doi: 10.1097/WCO.0b013e3282f169d9 – volume: 152 start-page: 14 year: 2011 ident: B12 article-title: NeuPSIG guidelines on neuropathic pain assessment publication-title: Pain doi: 10.1016/j.pain.2010.07.031 – volume: 137 start-page: 473 year: 2008 ident: B24 article-title: The Kyoto protocol of IASP Basic Pain Terminology publication-title: Pain doi: 10.1016/j.pain.2008.04.025 – volume: 6 start-page: e24124 year: 2011 ident: B5 article-title: Towards a physiology-based measure of pain: patterns of human brain activity distinguish painful from non-painful thermal stimulation publication-title: PLoS ONE doi: 10.1371/journal.pone.0024124 – volume: 77 start-page: 174 year: 2008 ident: B1 article-title: Heart rate variability and pain: associations of two interrelated homeostatic processes publication-title: Biol. Psychol. doi: 10.1016/j.biopsycho.2007.10.004 – volume: 46 start-page: 251 year: 2008 ident: B29 article-title: Independent component analysis applied to the removal of motion artifacts from electrocardiographic signals publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-007-0293-8 – volume-title: Proceedings of the 2012 IEEE International Conference on Engineering in Medicine and Biology Society year: 2012 ident: B32 article-title: On the use of evoked potentials for quantification of pain doi: 10.1109/EMBC.2012.6346245 – volume: 7432 start-page: 368 year: 2012 ident: B20 article-title: Continuous pain intensity estimation from facial expressions publication-title: In Int. Sym. Vis. Comput. doi: 10.1007/978-3-642-33191-6_36 – volume: 2 start-page: 137 year: 2005 ident: B43 article-title: Universal learning technology: support vector machines publication-title: NEC J. Adv. Technol. – volume: 129 start-page: 260 year: 2007 ident: B2 article-title: The effect of experimenter gender on autonomic and subjective responses to pain stimuli publication-title: Pain doi: 10.1016/j.pain.2006.10.011 – volume-title: Proceedings of the 18th International Conference on Neural Information Processing System year: 2005 ident: B44 article-title: Distance metric learning for large margin nearest neighbor classification – volume-title: Proceedings of the 2009 IEEE International Conference on Biomedical Engineering year: 2009 ident: B37 article-title: An empirical approach for objective pain measurement using dermal and cardiac parameters doi: 10.1007/978-3-540-92841-6_166 – volume-title: Proceedings of the 2005 IEEE International Conference on Advanced Intelligent Mechatronics year: 2005 ident: B28 article-title: Superficial pain model using ANNs and its application to robot control doi: 10.1109/AIM.2005.1511058 – volume: 26 start-page: 1650006 year: 2016 ident: B49 article-title: Quantifying different tactile sensations evoked by cutaneous electrical stimulation using electroencephalography features publication-title: Int. J. Neur. Syst doi: 10.1142/S0129065716500064 – volume: 9 start-page: 2 year: 2008 ident: B22 article-title: A review of objective pain measurement for use with critical care adult patients unable to self-report publication-title: Pain doi: 10.1016/j.jpain.2007.08.009 – volume: 2 start-page: 267 year: 2006 ident: B16 article-title: Physiology of pain publication-title: Found. Anesthesia doi: 10.1016/B978-0-323-03707-5.50029-2 – volume: 17 start-page: 1010 year: 2010 ident: B7 article-title: EFNS guidelines on neuropathic pain assessment: revised 2009 publication-title: Eur. J. Neurol. doi: 10.1111/j.1468-1331.2010.02969.x – volume: 31 start-page: 170 year: 2006 ident: B14 article-title: Tools for assessment of pain in nonverbal older adults with dementia: a state-of-the-science review publication-title: J. Pain Sym. Man. doi: 10.1016/j.jpainsymman.2005.07.001 – volume: 23 start-page: 239 year: 2002 ident: B6 article-title: Pain measurement tools and methods in clinical research in palliative care: recommendations of an Expert Working Group of the European Association of Palliative Care publication-title: J. Pain Symptom. Manag. doi: 10.1016/S0885-3924(01)00409-2 – reference: 23366664 - Conf Proc IEEE Eng Med Biol Soc. 2012;2012:3432-5 – reference: 21097068 - Conf Proc IEEE Eng Med Biol Soc. 2010;2010:3852-5 – reference: 25361507 - IEEE Trans Image Process. 2014 Dec;23(12):5599-611 – reference: 15521491 - IEEE Trans Pattern Anal Mach Intell. 2004 Nov;26(11):1424-37 – reference: 22647429 - Pain. 2012 Sep;153(9):1807-14 – reference: 19879364 - Neuroimage. 2010 Feb 1;49(3):2178-89 – reference: 20851519 - Pain. 2011 Jan;152(1):14-27 – reference: 26762865 - Int J Neural Syst. 2016 Mar;26(2):1650006 – reference: 23684861 - Neuroimage. 2013 Nov 1;81:283-93 – reference: 20460116 - Brain Res. 2010 Jul 16;1344:77-86 – reference: 14758158 - Crit Care Med. 2004 Feb;32(2):421-7 – reference: 20973153 - Clin J Pain. 2010 Nov-Dec;26(9):777-82 – reference: 17992079 - Curr Opin Neurol. 2007 Dec;20(6):620-6 – reference: 18997532 - Curr Opin Anaesthesiol. 2008 Dec;21(6):796-804 – reference: 18023960 - Biol Psychol. 2008 Feb;77(2):174-82 – reference: 21931652 - PLoS One. 2011;6(9):e24124 – reference: 21571514 - Clin Oncol (R Coll Radiol). 2011 Aug;23(6):381-6 – reference: 16507342 - Early Hum Dev. 2006 Sep;82(9):603-8 – reference: 16488350 - J Pain Symptom Manage. 2006 Feb;31(2):170-92 – reference: 17134832 - Pain. 2007 Jun;129(3):260-8 – reference: 18583048 - Pain. 2008 Jul 31;137(3):473-7 – reference: 11888722 - J Pain Symptom Manage. 2002 Mar;23(3):239-55 – reference: 21097382 - IEEE Trans Syst Man Cybern B Cybern. 2011 Jun;41(3):664-74 – reference: 22104632 - Aust Crit Care. 2012 May;25(2):110-8 – reference: 18064502 - Med Biol Eng Comput. 2008 Mar;46(3):251-61 – reference: 20298428 - Eur J Neurol. 2010 Aug;17(8):1010-8 – reference: 21095676 - Conf Proc IEEE Eng Med Biol Soc. 2010;2010:1194-7 – reference: 17981512 - J Pain. 2008 Jan;9(1):2-10 – reference: 11411248 - Physiol Meas. 2001 May;22(2):389-96 – reference: 16198570 - Intensive Crit Care Nurs. 2006 Feb;22(1):32-9 |
| SSID | ssj0062842 |
| Score | 2.4002492 |
| Snippet | The standard method for prediction of the absence and presence of pain has long been self-report. However, for patients with major cognitive or communicative... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 279 |
| SubjectTerms | Algorithms Classification Cognitive ability Conductance Consciousness EKG Electrical stimuli Electrocardiography Electroencephalography Electromyography feature extraction feature selection and reduction International conferences Neuroscience Pain pain intensity quantification Patients pattern classification physiological signals Physiology Principal components analysis Researchers Sensors Skin |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEB-kL_VFtPVja5UIIigsl93NJZvHtliKUBG00Lew-dKDa67UO-T-e2eye8sdin3xbe9mP8Ivk8xvkuEXgLddDBhHLC8rUblSRO9KLZUoO4djCV0g-rzgdvlZXlyJT9fT662jvqgmrJcH7oGbBN4gycYgNsXAh7mD9pE2C7if-qaTLiuB8lZvkql-DpY46db9piSmYHoS0yyRNndFeoU1lW1tBaGs1f83gvlnneT-Kt1261_dfL4VhM4fw6OBPbKTvtVP4EFIB3B4kjBzvlmzdyzXc-aF8kM4G39QP7Cvs-_4aHmKUcuzy3xuNEPCipfjIiFbRPalmyU21LUv10_h6vzjt7OLcjgyoXRC82XpWqtdwy23wRJA2nPluXCdVLWzQiA5aANyLMqS6hi5rZQTonZt8FZiMtw8g720SOEFMLS6phIxyKiEcGjXeKWcRoYhdR0KmGwwNG7QE6djLeYG8wpC3WTUDaFuMuoFvB-fuO21NP5x7yl1y3gfqWDnP9A3zOAb5j7fKOB406lmGJr4DZzhWlo-qwp4M5pxUNFOSZfCYvXTIEtqFb6atwU8731gbEndSt4IhRa14x07Td21pNmPLNyd1eAaWcCH0Y_uBeLofwDxEh7SG6nqoZbHsLe8W4VXSKaW9nUeN78Bwq8bMg priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9swED-69GF7Gdu6D7fd0GAMNjCRbUW2H0ppSksZNJRthb4JWx9tIJOzNqHkv9-dYpuGje7N8cmOfbqTfvfhO4BPlbO4j9Q8TkSiY-GMjkuZi7jSqEsoAs4Eh9v5RJ5dim9Xo6stmHTfwlBaZbcmhoXaNJp85EOEyqOCvB7J4fx3TF2jKLratdCo2tYK5iCUGHsC2ylVxhrA9vhkcvG9W5slLsYh_inpWyEE6-vAJZpp5dD5qaf63QnVNEwptevBRhXq-f8LhP6dS_l06efV6r6azR5sVKcv4HmLMNnRWiRewpb1r2DnyKN1_WvFPrOQ8xmc6Ttw3P-guWI_ptd4aTzGnc2w89BbmiGoxcPekcgaxy6qqWdt7vti9RouT09-Hp_FbVuFWIuSL2Jd1KXOeM1rW49MVpWG54YLXck81bUQCCAKiziMLKnUOV4nuRYi1YU1tUSDOXsDA994-w4YUnWWCGely4XQSC_xKNclohBZpjaCYcdDpdua49T6YqbQ9iCuq8B1RVxXgesRfOmvmK_rbTwydkzT0o-jStnhRHN7rVrFU5ZnaKQhCBohcELbszSOgk3c0KtLLSLY7yZVteqL_9ELWwQfezIqHkVTKm-b5Z1CJFXkeGteRPB2LQP9k6SF5JnIkZJvSMfGo25S_PQmFPcOFeMyGcHXXo7-y4jdx99hD57RWMp5SOU-DBa3S_seodSi_tDqxx_fQBzf priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9B9wAvfI2PwEBGQkggZXUSx44fu4lpQto0CSqNpyj-GhHFrVgrVP56zk4aKEwgxJuTs5P4fI5_Z59_BnjROIvjiKJpxjKdMmd0KrlgaaOxL6EJOBMn3E5O-fGUvT0vN9GEl31YpQtb98NB0K3vmIL7ELHQw9GjkmPnWx-otrNAP5gLOV4Ydx12eIlwfAQ709OzyYfgaPGwI6gszn-kWdUtVV75mK2hKTL4XwU7f4-evLHyi2b9tZnNfhqajm6D2lSqi0j5tL9aqn397Re-x_-q9R241QNXMuny34Vr1t-D3YlHp_3zmrwkMZQ0ztHvwuFwEUyAvGsvsGh6gAOmISfxyGqCWBmTw_wkmTty1rSe9CH1y_V9mB69eX94nPanNaSaSbpMdaWkLqiiyqrSFI00VBjKdMNFrhVjiEsqi_AuOGi5c1RlQjOW68oaxdEPLx7AyM-9fQQEpbrImLPcCcY0yiWmhJYIbrjMbQLjTUPVuqcyDydqzGp0aYKu6qirOuiqjrpK4NVQYtHRePwh70Fo-yFfIOCON7BV6r5VaksLNDbEViXiMXRppXFhDYuaUHWuWQJ7G8up-78CvgN_rlWYucsSeD6IsT-HRZrG2_nqskaAVgl8NK0SeNgZ2vAlecVpwQRKxJYJbn3qtsS3HyNneCSiK3gCrwdj_asiHv9L5idwM1yEwIqc78Fo-WVlnyJeW6pnfY_8DlmxPTw priority: 102 providerName: Unpaywall |
| Title | Physiological Signal-Based Method for Measurement of Pain Intensity |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/28603478 https://www.proquest.com/docview/2305806791 https://www.proquest.com/docview/1908796008 https://pubmed.ncbi.nlm.nih.gov/PMC5445136 https://www.frontiersin.org/articles/10.3389/fnins.2017.00279/pdf https://doaj.org/article/e0396022355541049df66570d5d3a6c4 |
| UnpaywallVersion | publishedVersion |
| Volume | 11 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1662-453X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: KQ8 dateStart: 20070101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1662-453X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBFR databaseName: Free Medical Journals - Free Access to All customDbUrl: eissn: 1662-453X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: DIK dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1662-453X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: GX1 dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1662-453X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: RPM dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1662-453X dateEnd: 20211231 omitProxy: true ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: BENPR dateStart: 20071015 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1662-453X dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: M48 dateStart: 20071001 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Rb9MwELbG9gAvaDBgYaMyEpoEUpiTuHb8gFA7bUxIrSqgUnmyEscelYrbda2g_547N42oqICXKs3FkXO-y31359wR8qpwFuxIyeKEJybmrjKxEpLHhQFdAhFwVQi49friesg_jtqjPbL5uqRm4N1O1w77SQ3nk7c_b1fvQeHfoccJ9vbc-bHHytsJViNMpTqb3cbYVgrTr3WPjXvkAEyXwt4OPd6kGQS8m0M6VOCnQ4Dd13nMnTfdsluhvP8uTPrn1sr7Sz8rVj-KyeQ3u3V1SB7WgJN21hLyiOxZ_5gcdTw4299X9IyGLaAhtn5ELpo_uHT08_gGhsZdMHQV7YVW0xQwLhw2cUU6dXRQjD2tt8IvVk_I8Oryy8V1XHdZiA1XbBGbvFQmYyUrbdmuskJVTFaMm0LI1JScA57ILcAydKxS51iZSMN5anJblQL85-wp2fdTb48JBarJEu6scJJzA3QFR9IoACVCpTYi5xsealOXIMdOGBMNrghyXQeua-S6DlyPyOtmxGxdfuMv13ZxWZrrsHB2ODGd3-haD7VlGfhsgInagKPAFVWVw9wTq_DRheEROd0sqt4IowY3rZ1jxC2JyMuGDHqIyZXC2-nyTgOwyiXcmuURebaWgWYmaS5YxiVQ5JZ0bE11m-LH30Kt71BALhMRedPI0T8Z8fw_JnlCHuAA3AeRilOyv5gv7QuAV4uyRQ66l_3Bp1YIT8Dvh1HSCmoDlGF_0Pn6C7FWKNE |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1dT9RAcILwgC9GxY8K6pqoiSbNbdu9bfeBGA4hh3AXopDwVtrdLV5ytCfchdyf87c5s9c2XDT4xFvb6fZjdmbnc2cA3meFRTmScz8QgfZFYbSvZCz8TCMvIQkUxjncBkPZPxXfzrpnK_C72QtDaZXNmugWalNp8pF3UFXuJuT1CL5MfvnUNYqiq00LjaxurWC2XYmxemPHoZ3foAl3vX3wFef7Qxju753s9v26y4CvheJTXye50hHPeW7zrokyZXhsuNCZjEOdC4HyNLGolpBhERYFz4NYCxHqxJpcov0Y4XMfwJqIhELjb623Nzz-3sgCiYu_i7dK2puExsEiUIpmoeoU5aikeuEB1VAMKZXslmB0_QP-pfT-nbu5Pisn2fwmG49vCcb9x_Co1mjZzoIEn8CKLZ_Cxk6J1vzlnH1kLsfUOe83YLc9IdpgP0YXONTvoSQ1bOB6WTNUovGwdVyyqmDH2ahkda79dP4MTu8Fwc9htaxK-xIYQnUUiMLKIhZCI1zhUawVaj1ShdaDToPDVNc1zqnVxjhFW4ewnjqsp4T11GHdg0_tiMmivscd9_ZoWtr7qDK3u1BdXaQ1o6eWR2gUotLVRUUNbV1lCgpucUO_LrXwYKuZ1LReLvAdLXF78K4FI6NT9CYrbTW7TlFzS2J8NE88eLGggfZLwkTySMQIiZeoY-lTlyHl6KcrJu4q1EXSg88tHf0XEa_u_oe3sN4_GRylRwfDw014SOMo3yKUW7A6vZrZ16jGTfM3Na8wOL9v9vwD5vlZhw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNAcFRaCbggoDwMBRYJkECysrY3a_tQoaZt1FIaRUCl3oy9jxIpbEKbqMov8lXMbGyrEaicerM9Xj9mZ3aeOwPwprQG5UjFw0hEKhRWqzCXqQhLhbyEJGC1d7gdD-TBifh02j1dg9_NXhhKq2zWRL9Q64kiH3kHVeVuRl6PqGPrtIjhXv_j9FdIHaQo0tq00yjrNgt625cbqzd5HJnFJZpzF9uHezj3b-O4v_9t9yCsOw6ESuR8FqqsylXCK16ZqquTMtc81VyoUqaxqoRA2ZoZVFHIyIit5VWUKiFilRldSbQlE3zuLdig4BcuEhu9_cHwSyMXJAoCH3uVtE8JDYVl0BRNxLxj3chR7fCI6inGlFZ2RUj6XgL_UoD_zuO8M3fTcnFZjsdXhGT_PtyrtVu2syTHB7Bm3EPY3HFo2f9csHfM55t6R_4m7LYnRCfs6-gMh4Y9lKqaHfu-1gwVajxsnZhsYtmwHDlW593PFo_g5EYQ_BjW3cSZp8AQqpJIWCNtKoRCeI5HqcpRA5J5bALoNDgsVF3vnNpujAu0ewjrhcd6QVgvPNYDeN-OmC5rfVxzb4-mpb2PqnT7C5Pzs6Jm-sLwBA1EVMC6qLSh3ZtrS4EurunXpRIBbDWTWtRLB76jJfQAXrdgZHqK5JTOTOYXBWpxWYqP5lkAT5Y00H5JnEmeiBQh6Qp1rHzqKsSNfvjC4r5aXSID-NDS0X8R8ez6f3gFt5FNi8-Hg6PncJeGUepFLLdgfXY-Ny9Qo5tVL2tWYfD9prnzD__gXbY |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9B9wAvfI2PwEBGQkggZXUSx44fu4lpQto0CSqNpyj-GhHFrVgrVP56zk4aKEwgxJuTs5P4fI5_Z59_BnjROIvjiKJpxjKdMmd0KrlgaaOxL6EJOBMn3E5O-fGUvT0vN9GEl31YpQtb98NB0K3vmIL7ELHQw9GjkmPnWx-otrNAP5gLOV4Ydx12eIlwfAQ709OzyYfgaPGwI6gszn-kWdUtVV75mK2hKTL4XwU7f4-evLHyi2b9tZnNfhqajm6D2lSqi0j5tL9aqn397Re-x_-q9R241QNXMuny34Vr1t-D3YlHp_3zmrwkMZQ0ztHvwuFwEUyAvGsvsGh6gAOmISfxyGqCWBmTw_wkmTty1rSe9CH1y_V9mB69eX94nPanNaSaSbpMdaWkLqiiyqrSFI00VBjKdMNFrhVjiEsqi_AuOGi5c1RlQjOW68oaxdEPLx7AyM-9fQQEpbrImLPcCcY0yiWmhJYIbrjMbQLjTUPVuqcyDydqzGp0aYKu6qirOuiqjrpK4NVQYtHRePwh70Fo-yFfIOCON7BV6r5VaksLNDbEViXiMXRppXFhDYuaUHWuWQJ7G8up-78CvgN_rlWYucsSeD6IsT-HRZrG2_nqskaAVgl8NK0SeNgZ2vAlecVpwQRKxJYJbn3qtsS3HyNneCSiK3gCrwdj_asiHv9L5idwM1yEwIqc78Fo-WVlnyJeW6pnfY_8DlmxPTw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Physiological+Signal-Based+Method+for+Measurement+of+Pain+Intensity&rft.jtitle=Frontiers+in+neuroscience&rft.au=Chu%2C+Yaqi&rft.au=Zhao%2C+Xingang&rft.au=Han%2C+Jianda&rft.au=Su%2C+Yang&rft.date=2017-05-26&rft.issn=1662-4548&rft.volume=11&rft.spage=279&rft_id=info:doi/10.3389%2Ffnins.2017.00279&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon |