Physiological Signal-Based Method for Measurement of Pain Intensity

The standard method for prediction of the absence and presence of pain has long been self-report. However, for patients with major cognitive or communicative impairments, it would be better if clinicians could quantify pain without having to rely on the patient's self-description. Here, we pres...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in neuroscience Vol. 11; p. 279
Main Authors Chu, Yaqi, Zhao, Xingang, Han, Jianda, Su, Yang
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 26.05.2017
Frontiers Media S.A
Subjects
Online AccessGet full text
ISSN1662-453X
1662-4548
1662-453X
DOI10.3389/fnins.2017.00279

Cover

Abstract The standard method for prediction of the absence and presence of pain has long been self-report. However, for patients with major cognitive or communicative impairments, it would be better if clinicians could quantify pain without having to rely on the patient's self-description. Here, we present a newly pain intensity measurement method based on multiple physiological signals, including blood volume pulse (BVP), electrocardiogram (ECG), and skin conductance level (SCL), all of which are induced by external electrical stimulation. The proposed pain prediction system consists of signal acquisition and preprocessing, feature extraction, feature selection and feature reduction, and three types of pattern classifiers. Feature extraction phase is devised to extract pain-related characteristics from short-segment signals. A hybrid procedure of genetic algorithm-based feature selection and principal component analysis-based feature reduction was established to obtain high-quality features combination with significant discriminatory information. Three types of classification algorithms-linear discriminant analysis, -nearest neighbor algorithm, and support vector machine-are adopted during various scenarios, including multi-signal scenario, multi-subject and between-subject scenario, and multi-day scenario. The classifiers gave correct classification ratios much higher than chance probability, with the overall average accuracy of 75% above for four pain intensity. Our experimental results demonstrate that the proposed method can provide an objective and quantitative evaluation of pain intensity. The method might be used to develop a wearable device that is suitable for daily use in clinical settings.
AbstractList The standard method for prediction of the absence and presence of pain has long been self-report. However, for patients with major cognitive or communicative impairments, it would be better if clinicians could quantify pain without having to rely on the patient's self-description. Here, we present a newly pain intensity measurement method based on multiple physiological signals, including blood volume pulse (BVP), electrocardiogram (ECG), and skin conductance level (SCL), all of which are induced by external electrical stimulation. The proposed pain prediction system consists of signal acquisition and preprocessing, feature extraction, feature selection and feature reduction, and three types of pattern classifiers. Feature extraction phase is devised to extract pain-related characteristics from short-segment signals. A hybrid procedure of genetic algorithm-based feature selection and principal component analysis-based feature reduction was established to obtain high-quality features combination with significant discriminatory information. Three types of classification algorithms-linear discriminant analysis, k-nearest neighbor algorithm, and support vector machine-are adopted during various scenarios, including multi-signal scenario, multi-subject and between-subject scenario, and multi-day scenario. The classifiers gave correct classification ratios much higher than chance probability, with the overall average accuracy of 75% above for four pain intensity. Our experimental results demonstrate that the proposed method can provide an objective and quantitative evaluation of pain intensity. The method might be used to develop a wearable device that is suitable for daily use in clinical settings.The standard method for prediction of the absence and presence of pain has long been self-report. However, for patients with major cognitive or communicative impairments, it would be better if clinicians could quantify pain without having to rely on the patient's self-description. Here, we present a newly pain intensity measurement method based on multiple physiological signals, including blood volume pulse (BVP), electrocardiogram (ECG), and skin conductance level (SCL), all of which are induced by external electrical stimulation. The proposed pain prediction system consists of signal acquisition and preprocessing, feature extraction, feature selection and feature reduction, and three types of pattern classifiers. Feature extraction phase is devised to extract pain-related characteristics from short-segment signals. A hybrid procedure of genetic algorithm-based feature selection and principal component analysis-based feature reduction was established to obtain high-quality features combination with significant discriminatory information. Three types of classification algorithms-linear discriminant analysis, k-nearest neighbor algorithm, and support vector machine-are adopted during various scenarios, including multi-signal scenario, multi-subject and between-subject scenario, and multi-day scenario. The classifiers gave correct classification ratios much higher than chance probability, with the overall average accuracy of 75% above for four pain intensity. Our experimental results demonstrate that the proposed method can provide an objective and quantitative evaluation of pain intensity. The method might be used to develop a wearable device that is suitable for daily use in clinical settings.
The standard method for prediction of the absence and presence of pain has long been self-report. However, for patients with major cognitive or communicative impairments, it would be better if clinicians could quantify pain without having to rely on the patient's self-description. Here, we present a newly pain intensity measurement method based on multiple physiological signals, including blood volume pulse (BVP), electrocardiogram (ECG), and skin conductance level (SCL), all of which are induced by external electrical stimulation. The proposed pain prediction system consists of signal acquisition and preprocessing, feature extraction, feature selection and feature reduction, and three types of pattern classifiers. Feature extraction phase is devised to extract pain-related characteristics from short-segment signals. A hybrid procedure of genetic algorithm-based feature selection and principal component analysis-based feature reduction was established to obtain high-quality features combination with significant discriminatory information. Three types of classification algorithms-linear discriminant analysis, -nearest neighbor algorithm, and support vector machine-are adopted during various scenarios, including multi-signal scenario, multi-subject and between-subject scenario, and multi-day scenario. The classifiers gave correct classification ratios much higher than chance probability, with the overall average accuracy of 75% above for four pain intensity. Our experimental results demonstrate that the proposed method can provide an objective and quantitative evaluation of pain intensity. The method might be used to develop a wearable device that is suitable for daily use in clinical settings.
The standard method for prediction of the absence and presence of pain has long been self-report. However, for patients with major cognitive or communicative impairments, it would be better if clinicians could quantify pain without having to rely on the patient's self-description. Here, we present a newly pain intensity measurement method based on multiple physiological signals, including blood volume pulse (BVP), electrocardiogram (ECG), and skin conductance level (SCL), all of which are induced by external electrical stimulation. The proposed pain prediction system consists of signal acquisition and preprocessing, feature extraction, feature selection and feature reduction, and three types of pattern classifiers. Feature extraction phase is devised to extract pain-related characteristics from short-segment signals. A hybrid procedure of genetic algorithm-based feature selection and principal component analysis-based feature reduction was established to obtain high-quality features combination with significant discriminatory information. Three types of classification algorithms—linear discriminant analysis, k-nearest neighbor algorithm, and support vector machine—are adopted during various scenarios, including multi-signal scenario, multi-subject and between-subject scenario, and multi-day scenario. The classifiers gave correct classification ratios much higher than chance probability, with the overall average accuracy of 75% above for four pain intensity. Our experimental results demonstrate that the proposed method can provide an objective and quantitative evaluation of pain intensity. The method might be used to develop a wearable device that is suitable for daily use in clinical settings.
The standard method for prediction of the absence and presence of pain has long been self-report. However, for patients with major cognitive or communicative impairments, it would be better if clinicians could quantify pain without having to rely on the patient’s self-description. Here, we present a newly pain intensity measurement method based on multiple physiological signals, including blood volume pulse (BVP), electrocardiogram (ECG) and skin conductance (SC), all of which are induced by external electrical stimulation. The proposed pain prediction system consists of signal acquisition and preprocessing, feature extraction, feature selection and feature reduction, and three types of pattern classifiers. Feature extraction phase is devised to extract pain-related characteristics from short-segment signals. A hybrid procedure of genetic algorithm-based feature selection and principal component analysis-based feature reduction was established to obtain high-quality features combination with significant discriminatory information. Three types of classification algorithms—linear discriminant analysis, k-nearest neighbor algorithm, and support vector machine—are adopted during various scenarios, including multi-signal scenario, multi-subject and between-subject scenario, and multi-day scenario. The classifiers gave correct classification ratios much higher than chance probability, with the overall average accuracy of 75% above for four pain intensity. Our experimental results demonstrate that the proposed method can provide an objective and quantitative evaluation of pain intensity. The method might be used to develop a wearable device that is suitable for daily use in clinical settings.
Author Chu, Yaqi
Zhao, Xingang
Su, Yang
Han, Jianda
AuthorAffiliation 1 State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences Shenyang, China
2 Shengjing Hospital of China Medical University Shenyang, China
AuthorAffiliation_xml – name: 1 State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences Shenyang, China
– name: 2 Shengjing Hospital of China Medical University Shenyang, China
Author_xml – sequence: 1
  givenname: Yaqi
  surname: Chu
  fullname: Chu, Yaqi
– sequence: 2
  givenname: Xingang
  surname: Zhao
  fullname: Zhao, Xingang
– sequence: 3
  givenname: Jianda
  surname: Han
  fullname: Han, Jianda
– sequence: 4
  givenname: Yang
  surname: Su
  fullname: Su, Yang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28603478$$D View this record in MEDLINE/PubMed
BookMark eNqNUU2LFDEUDLLifujdkzR48dLjy2enL4IOqw6suKCCt5BOp2cyZJIx6Vbm329mZl12FwRPeSRVlap65-gkxGAReolhRqls3w7BhTwjgJsZAGnaJ-gMC0FqxunPk3vzKTrPeQ0giGTkGTolUgBljTxD8-vVLrvo49IZ7atvbhm0rz_obPvqix1Xsa-GmMqo85TsxoaxikN1rV2oFmG0Ibtx9xw9HbTP9sXteYF-fLz8Pv9cX339tJi_v6oNa2GsjexaQ6GDzna8p7rtoemBGS0aYjrGWgzScowbLBgZBuhwYxgjRtq-E1JKeoEWR90-6rXaJrfRaaeidupwEdNS6TQ6462yQFsBhFDOOcPA2n4QgjfQ7z8WhhUtfNSawlbv_mjv7wQxqH256lCu2perDuUWzrsjZzt1G9ubUkbS_oGRhy_BrdQy_lacMY6pKAJvbgVS_DXZPKqNy8Z6r4ONU1a4BdkU37DP-voRdB2nVHZTHFHgEkTT4oJ6dd_RnZW_-y0AOAJMijknO_xPSvGIYtyoRxf3mZz_N_EGn6bJwg
CitedBy_id crossref_primary_10_1097_PR9_0000000000001039
crossref_primary_10_3390_life13091828
crossref_primary_10_1109_TAFFC_2019_2892090
crossref_primary_10_3389_fpain_2023_1150264
crossref_primary_10_3390_brainsci12020153
crossref_primary_10_1016_j_jenvp_2022_101879
crossref_primary_10_3390_e23020244
crossref_primary_10_2196_53026
crossref_primary_10_3390_s23198231
crossref_primary_10_3390_s21010052
crossref_primary_10_1109_TMM_2021_3096080
crossref_primary_10_3390_s22134992
crossref_primary_10_1371_journal_pone_0254108
crossref_primary_10_2196_14599
crossref_primary_10_1109_ACCESS_2019_2962515
crossref_primary_10_1038_s41746_023_00810_1
crossref_primary_10_3389_fcomp_2024_1424935
crossref_primary_10_3390_s23031443
crossref_primary_10_1016_j_bspc_2020_102391
crossref_primary_10_1080_28324765_2023_2240375
crossref_primary_10_1371_journal_pcbi_1008542
crossref_primary_10_1016_j_neubiorev_2022_104744
crossref_primary_10_1109_ACCESS_2023_3248654
crossref_primary_10_1109_ACCESS_2019_2942764
crossref_primary_10_1111_ner_13400
crossref_primary_10_3389_fphys_2021_720464
crossref_primary_10_1007_s12028_022_01586_0
crossref_primary_10_1016_j_bspc_2024_107178
crossref_primary_10_1109_JSEN_2020_3023656
crossref_primary_10_3389_fnins_2022_831627
crossref_primary_10_1109_TAFFC_2022_3158234
crossref_primary_10_3390_s20051491
crossref_primary_10_1109_JBHI_2023_3336157
crossref_primary_10_1177_09544119241309424
crossref_primary_10_3390_s24196298
crossref_primary_10_1016_j_envres_2020_109769
crossref_primary_10_3389_fpubh_2024_1387056
crossref_primary_10_1097_WNP_0000000000000758
crossref_primary_10_3389_fnins_2019_00437
crossref_primary_10_3390_s23083980
crossref_primary_10_1109_TMM_2022_3165715
crossref_primary_10_3390_s20030839
crossref_primary_10_1088_1361_6579_aadf0c
crossref_primary_10_1007_s13369_024_09732_w
crossref_primary_10_1109_TAFFC_2019_2946774
crossref_primary_10_1111_papr_13047
crossref_primary_10_3390_asi7060124
crossref_primary_10_1016_j_apnr_2021_151504
Cites_doi 10.1109/CVPRW.2015.7301340
10.1016/j.pain.2012.04.008
10.1109/IEMBS.2010.5627661
10.1016/j.earlhumdev.2005.12.008
10.1016/j.neuroimage.2009.10.072
10.1145/1647314.1647378
10.1016/j.brainres.2010.05.004
10.1097/AJP.0b013e3181ed1058
10.1097/01.CCM.0000108875.35298.D2
10.1109/IEMBS.2010.5625971
10.1016/j.iccn.2005.04.004
10.1097/ACO.0b013e3283183fe4
10.1109/ACII.2015.7344578
10.1109/TSMC.2014.2336842
10.1039/c3ay41907j
10.1109/TIP.2014.2365699
10.1016/j.aucc.2011.10.002
10.1088/0967-3334/22/2/310
10.1007/978-3-319-20248-8_19
10.1109/ICPR.2014.784
10.1109/TPAMI.2004.105
10.4236/jsip.2013.43B031
10.1109/TSMC.2015.2406855
10.1109/JSTSP.2016.2535962
10.1016/j.clon.2011.04.008
10.1016/j.neuroimage.2013.05.017
10.1109/TSMC.2015.2429637
10.1109/EMBC.2012.6346703
10.1109/TSMCB.2010.2082525
10.1097/WCO.0b013e3282f169d9
10.1016/j.pain.2010.07.031
10.1016/j.pain.2008.04.025
10.1371/journal.pone.0024124
10.1016/j.biopsycho.2007.10.004
10.1007/s11517-007-0293-8
10.1109/EMBC.2012.6346245
10.1007/978-3-642-33191-6_36
10.1016/j.pain.2006.10.011
10.1007/978-3-540-92841-6_166
10.1109/AIM.2005.1511058
10.1142/S0129065716500064
10.1016/j.jpain.2007.08.009
10.1016/B978-0-323-03707-5.50029-2
10.1111/j.1468-1331.2010.02969.x
10.1016/j.jpainsymman.2005.07.001
10.1016/S0885-3924(01)00409-2
ContentType Journal Article
Copyright 2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2017 Chu, Zhao, Han and Su. 2017 Chu, Zhao, Han and Su
Copyright_xml – notice: 2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2017 Chu, Zhao, Han and Su. 2017 Chu, Zhao, Han and Su
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3389/fnins.2017.00279
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials Local Electronic Collection Information
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database (Proquest)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-453X
ExternalDocumentID oai_doaj_org_article_e0396022355541049df66570d5d3a6c4
10.3389/fnins.2017.00279
PMC5445136
28603478
10_3389_fnins_2017_00279
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFO
ACGFS
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EBS
EJD
EMOBN
F5P
FRP
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PUEGO
RNS
RPM
W2D
ACXDI
C1A
IAO
IEA
IHR
ISR
M~E
NPM
3V.
7XB
8FK
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c490t-c8b9c30b0beb5d3a9d07d04ca672cb449108e51171642ff0b17c442c8edb68883
IEDL.DBID M48
ISSN 1662-453X
1662-4548
IngestDate Fri Oct 03 12:45:54 EDT 2025
Sun Oct 26 04:15:08 EDT 2025
Tue Sep 30 15:25:33 EDT 2025
Thu Sep 04 17:40:37 EDT 2025
Fri Jul 25 11:49:51 EDT 2025
Thu Jan 02 22:21:17 EST 2025
Thu Apr 24 22:59:05 EDT 2025
Wed Oct 01 01:43:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords feature selection and reduction
pattern classification
pain intensity quantification
physiological signals
feature extraction
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c490t-c8b9c30b0beb5d3a9d07d04ca672cb449108e51171642ff0b17c442c8edb68883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
This article was submitted to Neural Technology, a section of the journal Frontiers in Neuroscience
Edited by: Dingguo Zhang, Shanghai Jiao Tong University, China
Reviewed by: Jun Xie, Xi'an Jiaotong University, China; Long Cheng, Institute of Automation (CAS), China
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnins.2017.00279
PMID 28603478
PQID 2305806791
PQPubID 4424402
ParticipantIDs doaj_primary_oai_doaj_org_article_e0396022355541049df66570d5d3a6c4
unpaywall_primary_10_3389_fnins_2017_00279
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5445136
proquest_miscellaneous_1908796008
proquest_journals_2305806791
pubmed_primary_28603478
crossref_primary_10_3389_fnins_2017_00279
crossref_citationtrail_10_3389_fnins_2017_00279
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-05-26
PublicationDateYYYYMMDD 2017-05-26
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-26
  day: 26
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in neuroscience
PublicationTitleAlternate Front Neurosci
PublicationYear 2017
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Treister (B42) 2012; 153
Xiao (B46) 2016; 46
Faye (B10) 2010; 26
Schnakers (B36) 2007; 20
Caraceni (B6) 2002; 23
Young (B48) 2006; 22
Matsunaga (B28) 2005
De Jonckheere (B8) 2010
Irani (B17) 2015
Vapnik (B43) 2005; 2
Kächele (B19) 2015; 9132
Brown (B5) 2011; 6
Roulin (B35) 2012; 25
Olugbade (B33) 2015
Babchenko (B3) 2001; 22
De Jonckheere (B9) 2012
Shankar (B37) 2009
Kaltwang (B20) 2012; 7432
Oh (B31) 2004; 26
Huang (B15) 2013; 81
Marquand (B27) 2010; 49
Sidek (B38) 2014; 44
Li (B22) 2008; 9
Harrison (B13) 2006; 82
Kachele (B18) 2016; 10
Karamizadeh (B21) 2013; 4
Werner (B45) 2014
Hudspith (B16) 2006; 2
Frampton (B11) 2011; 23
Bro (B4) 2014; 6
Herr (B14) 2006; 31
Lin (B23) 2015; 45
Sun (B41) 2010
Cruccu (B7) 2010; 17
Yan (B47) 2014; 23
Nir (B30) 2010; 1344
Aslaksen (B2) 2007; 129
Logier (B25) 2010
Loeser (B24) 2008; 137
Sriram (B39) 2009
Oliveira (B32) 2012
Zhang (B49) 2016; 26
Weinberger (B44) 2005
Milanesi (B29) 2008; 46
Puntillo (B34) 2004; 32
Lucey (B26) 2011; 3
Appelhans (B1) 2008; 77
Haanpää (B12) 2011; 152
Storm (B40) 2008; 21
17981512 - J Pain. 2008 Jan;9(1):2-10
21097068 - Conf Proc IEEE Eng Med Biol Soc. 2010;2010:3852-5
16507342 - Early Hum Dev. 2006 Sep;82(9):603-8
19879364 - Neuroimage. 2010 Feb 1;49(3):2178-89
23684861 - Neuroimage. 2013 Nov 1;81:283-93
21095676 - Conf Proc IEEE Eng Med Biol Soc. 2010;2010:1194-7
20851519 - Pain. 2011 Jan;152(1):14-27
22104632 - Aust Crit Care. 2012 May;25(2):110-8
22647429 - Pain. 2012 Sep;153(9):1807-14
14758158 - Crit Care Med. 2004 Feb;32(2):421-7
11888722 - J Pain Symptom Manage. 2002 Mar;23(3):239-55
21097382 - IEEE Trans Syst Man Cybern B Cybern. 2011 Jun;41(3):664-74
17134832 - Pain. 2007 Jun;129(3):260-8
21571514 - Clin Oncol (R Coll Radiol). 2011 Aug;23(6):381-6
23366664 - Conf Proc IEEE Eng Med Biol Soc. 2012;2012:3432-5
21931652 - PLoS One. 2011;6(9):e24124
17992079 - Curr Opin Neurol. 2007 Dec;20(6):620-6
20973153 - Clin J Pain. 2010 Nov-Dec;26(9):777-82
15521491 - IEEE Trans Pattern Anal Mach Intell. 2004 Nov;26(11):1424-37
16488350 - J Pain Symptom Manage. 2006 Feb;31(2):170-92
25361507 - IEEE Trans Image Process. 2014 Dec;23(12):5599-611
18583048 - Pain. 2008 Jul 31;137(3):473-7
20460116 - Brain Res. 2010 Jul 16;1344:77-86
16198570 - Intensive Crit Care Nurs. 2006 Feb;22(1):32-9
20298428 - Eur J Neurol. 2010 Aug;17(8):1010-8
26762865 - Int J Neural Syst. 2016 Mar;26(2):1650006
11411248 - Physiol Meas. 2001 May;22(2):389-96
18064502 - Med Biol Eng Comput. 2008 Mar;46(3):251-61
18023960 - Biol Psychol. 2008 Feb;77(2):174-82
18997532 - Curr Opin Anaesthesiol. 2008 Dec;21(6):796-804
References_xml – volume-title: Proceedings of the 2015 IEEE Confernece on Computer Vision and Pattern Recognition (CVPR) Workshops
  year: 2015
  ident: B17
  article-title: Pain recognition using spatiotemporal oriented energy of facial muscles
  doi: 10.1109/CVPRW.2015.7301340
– volume: 153
  start-page: 1807
  year: 2012
  ident: B42
  article-title: Differentiating between heat pain intensities: the combined effect of multiple autonomic parameters
  publication-title: Pain
  doi: 10.1016/j.pain.2012.04.008
– volume-title: Proceedings of th 2010 IEEE International Conference on Engineering in Medicine and Biology Society
  year: 2010
  ident: B8
  article-title: From pain to stress evaluation using heart rate variability analysis: development of an evaluation platform
  doi: 10.1109/IEMBS.2010.5627661
– volume: 82
  start-page: 603
  year: 2006
  ident: B13
  article-title: Skin conductance as a measure of pain and stress in hospitalised infants
  publication-title: Earl. Hum. Dev.
  doi: 10.1016/j.earlhumdev.2005.12.008
– volume: 49
  start-page: 2178
  year: 2010
  ident: B27
  article-title: Quantitative prediction of subjective pain intensity from whole-brain fMRI data using Gaussian processes
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.10.072
– volume-title: Proceedings of the 2009 International Conference on Multimodal Interfaces
  year: 2009
  ident: B39
  article-title: Activity-aware ECG-based patient authentication for remote health monitoring
  doi: 10.1145/1647314.1647378
– volume: 1344
  start-page: 77
  year: 2010
  ident: B30
  article-title: Pain assessment by continuous EEG: association between subjective perception of tonic pain and peak frequency of alpha oscillations during stimulation and at rest
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2010.05.004
– volume: 26
  start-page: 777
  year: 2010
  ident: B10
  article-title: Newborn infant pain assessment using heart rate variability analysis
  publication-title: Clin. J. Pain
  doi: 10.1097/AJP.0b013e3181ed1058
– volume: 32
  start-page: 421
  year: 2004
  ident: B34
  article-title: Pain behaviors observed during six common procedures: results from Thunder Project II
  publication-title: Crit. Care Med.
  doi: 10.1097/01.CCM.0000108875.35298.D2
– volume-title: Proceedings of the 2010 IEEE International Conference on Engineering in Medicine and Biology Society
  year: 2010
  ident: B25
  article-title: PhysioDoloris: a monitoring device for analgesia/nociception balance evaluation using heart rate variability analysis
  doi: 10.1109/IEMBS.2010.5625971
– volume-title: International Conference on Mobile Computing, Application, and Services
  year: 2010
  ident: B41
  article-title: Activity-aware mental stress detection using physiological sensors
– volume: 22
  start-page: 32
  year: 2006
  ident: B48
  article-title: Use of a Behavioural Pain Scale to assess pain in ventilated, unconscious and/or sedated patients
  publication-title: Intensive Crit. Care Nurs.
  doi: 10.1016/j.iccn.2005.04.004
– volume: 21
  start-page: 796
  year: 2008
  ident: B40
  article-title: Changes in skin conductance as a tool to monitor nociceptive stimulation and pain
  publication-title: Curr. Opin. Anesthesiol.
  doi: 10.1097/ACO.0b013e3283183fe4
– volume-title: Proceedings of the 2015 IEEE International Conference on Affective Computing and Intelligent Interaction (ACII)
  year: 2015
  ident: B33
  article-title: Pain level recognition using kinematics and muscle activity for physical rehabilitation in chronic pain
  doi: 10.1109/ACII.2015.7344578
– volume: 44
  start-page: 1498
  year: 2014
  ident: B38
  article-title: ECG biometric with abnormal cardiac conditions in remote monitoring system
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2014.2336842
– volume: 6
  start-page: 2812
  year: 2014
  ident: B4
  article-title: Principal component analysis
  publication-title: Anal. Methods
  doi: 10.1039/c3ay41907j
– volume: 23
  start-page: 5599
  year: 2014
  ident: B47
  article-title: Multitask linear discriminant analysis for view invariant action recognition
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2014.2365699
– volume: 25
  start-page: 110
  year: 2012
  ident: B35
  article-title: Pain indicators in brain-injured critical care adults: an integrative review
  publication-title: Aust. Crit. Care
  doi: 10.1016/j.aucc.2011.10.002
– volume: 22
  start-page: 389
  year: 2001
  ident: B3
  article-title: Photoplethysmographic measurement of changes in total and pulsatile tissue blood volume, following sympathetic blockade
  publication-title: J. Physiol. Meas.
  doi: 10.1088/0967-3334/22/2/310
– volume: 9132
  start-page: 220
  year: 2015
  ident: B19
  article-title: Bio-visual fusion for person-independent recognition of pain intensity
  publication-title: Mult. Classif. Syst.
  doi: 10.1007/978-3-319-20248-8_19
– volume-title: Proceedings of the 2014 IEEE International Conference on Pattern Recognition
  year: 2014
  ident: B45
  article-title: Automatic pain recognition from video and biomedical signals
  doi: 10.1109/ICPR.2014.784
– volume: 26
  start-page: 1424
  year: 2004
  ident: B31
  article-title: Hybrid genetic algorithms for feature selection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2004.105
– volume: 4
  start-page: 173
  year: 2013
  ident: B21
  article-title: An overview of principal component analysis
  publication-title: J. Signal Inform. Process.
  doi: 10.4236/jsip.2013.43B031
– volume: 45
  start-page: 1389
  year: 2015
  ident: B23
  article-title: An improved polynomial neural network classifier using real-coded genetic algorithm
  publication-title: IEEE Trans. Syst. Man, Cybern. Syst.
  doi: 10.1109/TSMC.2015.2406855
– volume: 10
  start-page: 854
  year: 2016
  ident: B18
  article-title: Methods for person-centered continuous pain intensity assessment from bio-physiological channels
  publication-title: IEEE J. Sel. Topics Signal Process.
  doi: 10.1109/JSTSP.2016.2535962
– volume: 23
  start-page: 381
  year: 2011
  ident: B11
  article-title: The measurement of pain
  publication-title: J. Clin. Oncol.
  doi: 10.1016/j.clon.2011.04.008
– volume: 81
  start-page: 283
  year: 2013
  ident: B15
  article-title: A novel approach to predict subjective pain perception from single-trial laser-evoked potentials
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.017
– volume: 46
  start-page: 177
  year: 2016
  ident: B46
  article-title: Optimization models for feature selection of decomposed nearest neighbor
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2015.2429637
– volume-title: Proceedings of the 2012 IEEE International Conference on Engineering in Medicine and Biology Society
  year: 2012
  ident: B9
  article-title: Heart rate variability analysis as an index of emotion regulation processes: interest of the Analgesia Nociception Index (ANI)
  doi: 10.1109/EMBC.2012.6346703
– volume: 3
  start-page: 664
  year: 2011
  ident: B26
  article-title: Automatically detecting pain in video through facial action units
  publication-title: IEEE Trans. Syst. Man Cybern. B Cybern.
  doi: 10.1109/TSMCB.2010.2082525
– volume: 20
  start-page: 620
  year: 2007
  ident: B36
  article-title: Pain assessment and management in disorders of consciousness
  publication-title: Curr. Opin. Neurol.
  doi: 10.1097/WCO.0b013e3282f169d9
– volume: 152
  start-page: 14
  year: 2011
  ident: B12
  article-title: NeuPSIG guidelines on neuropathic pain assessment
  publication-title: Pain
  doi: 10.1016/j.pain.2010.07.031
– volume: 137
  start-page: 473
  year: 2008
  ident: B24
  article-title: The Kyoto protocol of IASP Basic Pain Terminology
  publication-title: Pain
  doi: 10.1016/j.pain.2008.04.025
– volume: 6
  start-page: e24124
  year: 2011
  ident: B5
  article-title: Towards a physiology-based measure of pain: patterns of human brain activity distinguish painful from non-painful thermal stimulation
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0024124
– volume: 77
  start-page: 174
  year: 2008
  ident: B1
  article-title: Heart rate variability and pain: associations of two interrelated homeostatic processes
  publication-title: Biol. Psychol.
  doi: 10.1016/j.biopsycho.2007.10.004
– volume: 46
  start-page: 251
  year: 2008
  ident: B29
  article-title: Independent component analysis applied to the removal of motion artifacts from electrocardiographic signals
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-007-0293-8
– volume-title: Proceedings of the 2012 IEEE International Conference on Engineering in Medicine and Biology Society
  year: 2012
  ident: B32
  article-title: On the use of evoked potentials for quantification of pain
  doi: 10.1109/EMBC.2012.6346245
– volume: 7432
  start-page: 368
  year: 2012
  ident: B20
  article-title: Continuous pain intensity estimation from facial expressions
  publication-title: In Int. Sym. Vis. Comput.
  doi: 10.1007/978-3-642-33191-6_36
– volume: 2
  start-page: 137
  year: 2005
  ident: B43
  article-title: Universal learning technology: support vector machines
  publication-title: NEC J. Adv. Technol.
– volume: 129
  start-page: 260
  year: 2007
  ident: B2
  article-title: The effect of experimenter gender on autonomic and subjective responses to pain stimuli
  publication-title: Pain
  doi: 10.1016/j.pain.2006.10.011
– volume-title: Proceedings of the 18th International Conference on Neural Information Processing System
  year: 2005
  ident: B44
  article-title: Distance metric learning for large margin nearest neighbor classification
– volume-title: Proceedings of the 2009 IEEE International Conference on Biomedical Engineering
  year: 2009
  ident: B37
  article-title: An empirical approach for objective pain measurement using dermal and cardiac parameters
  doi: 10.1007/978-3-540-92841-6_166
– volume-title: Proceedings of the 2005 IEEE International Conference on Advanced Intelligent Mechatronics
  year: 2005
  ident: B28
  article-title: Superficial pain model using ANNs and its application to robot control
  doi: 10.1109/AIM.2005.1511058
– volume: 26
  start-page: 1650006
  year: 2016
  ident: B49
  article-title: Quantifying different tactile sensations evoked by cutaneous electrical stimulation using electroencephalography features
  publication-title: Int. J. Neur. Syst
  doi: 10.1142/S0129065716500064
– volume: 9
  start-page: 2
  year: 2008
  ident: B22
  article-title: A review of objective pain measurement for use with critical care adult patients unable to self-report
  publication-title: Pain
  doi: 10.1016/j.jpain.2007.08.009
– volume: 2
  start-page: 267
  year: 2006
  ident: B16
  article-title: Physiology of pain
  publication-title: Found. Anesthesia
  doi: 10.1016/B978-0-323-03707-5.50029-2
– volume: 17
  start-page: 1010
  year: 2010
  ident: B7
  article-title: EFNS guidelines on neuropathic pain assessment: revised 2009
  publication-title: Eur. J. Neurol.
  doi: 10.1111/j.1468-1331.2010.02969.x
– volume: 31
  start-page: 170
  year: 2006
  ident: B14
  article-title: Tools for assessment of pain in nonverbal older adults with dementia: a state-of-the-science review
  publication-title: J. Pain Sym. Man.
  doi: 10.1016/j.jpainsymman.2005.07.001
– volume: 23
  start-page: 239
  year: 2002
  ident: B6
  article-title: Pain measurement tools and methods in clinical research in palliative care: recommendations of an Expert Working Group of the European Association of Palliative Care
  publication-title: J. Pain Symptom. Manag.
  doi: 10.1016/S0885-3924(01)00409-2
– reference: 23366664 - Conf Proc IEEE Eng Med Biol Soc. 2012;2012:3432-5
– reference: 21097068 - Conf Proc IEEE Eng Med Biol Soc. 2010;2010:3852-5
– reference: 25361507 - IEEE Trans Image Process. 2014 Dec;23(12):5599-611
– reference: 15521491 - IEEE Trans Pattern Anal Mach Intell. 2004 Nov;26(11):1424-37
– reference: 22647429 - Pain. 2012 Sep;153(9):1807-14
– reference: 19879364 - Neuroimage. 2010 Feb 1;49(3):2178-89
– reference: 20851519 - Pain. 2011 Jan;152(1):14-27
– reference: 26762865 - Int J Neural Syst. 2016 Mar;26(2):1650006
– reference: 23684861 - Neuroimage. 2013 Nov 1;81:283-93
– reference: 20460116 - Brain Res. 2010 Jul 16;1344:77-86
– reference: 14758158 - Crit Care Med. 2004 Feb;32(2):421-7
– reference: 20973153 - Clin J Pain. 2010 Nov-Dec;26(9):777-82
– reference: 17992079 - Curr Opin Neurol. 2007 Dec;20(6):620-6
– reference: 18997532 - Curr Opin Anaesthesiol. 2008 Dec;21(6):796-804
– reference: 18023960 - Biol Psychol. 2008 Feb;77(2):174-82
– reference: 21931652 - PLoS One. 2011;6(9):e24124
– reference: 21571514 - Clin Oncol (R Coll Radiol). 2011 Aug;23(6):381-6
– reference: 16507342 - Early Hum Dev. 2006 Sep;82(9):603-8
– reference: 16488350 - J Pain Symptom Manage. 2006 Feb;31(2):170-92
– reference: 17134832 - Pain. 2007 Jun;129(3):260-8
– reference: 18583048 - Pain. 2008 Jul 31;137(3):473-7
– reference: 11888722 - J Pain Symptom Manage. 2002 Mar;23(3):239-55
– reference: 21097382 - IEEE Trans Syst Man Cybern B Cybern. 2011 Jun;41(3):664-74
– reference: 22104632 - Aust Crit Care. 2012 May;25(2):110-8
– reference: 18064502 - Med Biol Eng Comput. 2008 Mar;46(3):251-61
– reference: 20298428 - Eur J Neurol. 2010 Aug;17(8):1010-8
– reference: 21095676 - Conf Proc IEEE Eng Med Biol Soc. 2010;2010:1194-7
– reference: 17981512 - J Pain. 2008 Jan;9(1):2-10
– reference: 11411248 - Physiol Meas. 2001 May;22(2):389-96
– reference: 16198570 - Intensive Crit Care Nurs. 2006 Feb;22(1):32-9
SSID ssj0062842
Score 2.4002492
Snippet The standard method for prediction of the absence and presence of pain has long been self-report. However, for patients with major cognitive or communicative...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 279
SubjectTerms Algorithms
Classification
Cognitive ability
Conductance
Consciousness
EKG
Electrical stimuli
Electrocardiography
Electroencephalography
Electromyography
feature extraction
feature selection and reduction
International conferences
Neuroscience
Pain
pain intensity quantification
Patients
pattern classification
physiological signals
Physiology
Principal components analysis
Researchers
Sensors
Skin
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEB-kL_VFtPVja5UIIigsl93NJZvHtliKUBG00Lew-dKDa67UO-T-e2eye8sdin3xbe9mP8Ivk8xvkuEXgLddDBhHLC8rUblSRO9KLZUoO4djCV0g-rzgdvlZXlyJT9fT662jvqgmrJcH7oGbBN4gycYgNsXAh7mD9pE2C7if-qaTLiuB8lZvkql-DpY46db9piSmYHoS0yyRNndFeoU1lW1tBaGs1f83gvlnneT-Kt1261_dfL4VhM4fw6OBPbKTvtVP4EFIB3B4kjBzvlmzdyzXc-aF8kM4G39QP7Cvs-_4aHmKUcuzy3xuNEPCipfjIiFbRPalmyU21LUv10_h6vzjt7OLcjgyoXRC82XpWqtdwy23wRJA2nPluXCdVLWzQiA5aANyLMqS6hi5rZQTonZt8FZiMtw8g720SOEFMLS6phIxyKiEcGjXeKWcRoYhdR0KmGwwNG7QE6djLeYG8wpC3WTUDaFuMuoFvB-fuO21NP5x7yl1y3gfqWDnP9A3zOAb5j7fKOB406lmGJr4DZzhWlo-qwp4M5pxUNFOSZfCYvXTIEtqFb6atwU8731gbEndSt4IhRa14x07Td21pNmPLNyd1eAaWcCH0Y_uBeLofwDxEh7SG6nqoZbHsLe8W4VXSKaW9nUeN78Bwq8bMg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9swED-69GF7Gdu6D7fd0GAMNjCRbUW2H0ppSksZNJRthb4JWx9tIJOzNqHkv9-dYpuGje7N8cmOfbqTfvfhO4BPlbO4j9Q8TkSiY-GMjkuZi7jSqEsoAs4Eh9v5RJ5dim9Xo6stmHTfwlBaZbcmhoXaNJp85EOEyqOCvB7J4fx3TF2jKLratdCo2tYK5iCUGHsC2ylVxhrA9vhkcvG9W5slLsYh_inpWyEE6-vAJZpp5dD5qaf63QnVNEwptevBRhXq-f8LhP6dS_l06efV6r6azR5sVKcv4HmLMNnRWiRewpb1r2DnyKN1_WvFPrOQ8xmc6Ttw3P-guWI_ptd4aTzGnc2w89BbmiGoxcPekcgaxy6qqWdt7vti9RouT09-Hp_FbVuFWIuSL2Jd1KXOeM1rW49MVpWG54YLXck81bUQCCAKiziMLKnUOV4nuRYi1YU1tUSDOXsDA994-w4YUnWWCGely4XQSC_xKNclohBZpjaCYcdDpdua49T6YqbQ9iCuq8B1RVxXgesRfOmvmK_rbTwydkzT0o-jStnhRHN7rVrFU5ZnaKQhCBohcELbszSOgk3c0KtLLSLY7yZVteqL_9ELWwQfezIqHkVTKm-b5Z1CJFXkeGteRPB2LQP9k6SF5JnIkZJvSMfGo25S_PQmFPcOFeMyGcHXXo7-y4jdx99hD57RWMp5SOU-DBa3S_seodSi_tDqxx_fQBzf
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9B9wAvfI2PwEBGQkggZXUSx44fu4lpQto0CSqNpyj-GhHFrVgrVP56zk4aKEwgxJuTs5P4fI5_Z59_BnjROIvjiKJpxjKdMmd0KrlgaaOxL6EJOBMn3E5O-fGUvT0vN9GEl31YpQtb98NB0K3vmIL7ELHQw9GjkmPnWx-otrNAP5gLOV4Ydx12eIlwfAQ709OzyYfgaPGwI6gszn-kWdUtVV75mK2hKTL4XwU7f4-evLHyi2b9tZnNfhqajm6D2lSqi0j5tL9aqn397Re-x_-q9R241QNXMuny34Vr1t-D3YlHp_3zmrwkMZQ0ztHvwuFwEUyAvGsvsGh6gAOmISfxyGqCWBmTw_wkmTty1rSe9CH1y_V9mB69eX94nPanNaSaSbpMdaWkLqiiyqrSFI00VBjKdMNFrhVjiEsqi_AuOGi5c1RlQjOW68oaxdEPLx7AyM-9fQQEpbrImLPcCcY0yiWmhJYIbrjMbQLjTUPVuqcyDydqzGp0aYKu6qirOuiqjrpK4NVQYtHRePwh70Fo-yFfIOCON7BV6r5VaksLNDbEViXiMXRppXFhDYuaUHWuWQJ7G8up-78CvgN_rlWYucsSeD6IsT-HRZrG2_nqskaAVgl8NK0SeNgZ2vAlecVpwQRKxJYJbn3qtsS3HyNneCSiK3gCrwdj_asiHv9L5idwM1yEwIqc78Fo-WVlnyJeW6pnfY_8DlmxPTw
  priority: 102
  providerName: Unpaywall
Title Physiological Signal-Based Method for Measurement of Pain Intensity
URI https://www.ncbi.nlm.nih.gov/pubmed/28603478
https://www.proquest.com/docview/2305806791
https://www.proquest.com/docview/1908796008
https://pubmed.ncbi.nlm.nih.gov/PMC5445136
https://www.frontiersin.org/articles/10.3389/fnins.2017.00279/pdf
https://doaj.org/article/e0396022355541049df66570d5d3a6c4
UnpaywallVersion publishedVersion
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: KQ8
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals - Free Access to All
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: DIK
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: GX1
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: RPM
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1662-453X
  dateEnd: 20211231
  omitProxy: true
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: BENPR
  dateStart: 20071015
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: M48
  dateStart: 20071001
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Rb9MwELbG9gAvaDBgYaMyEpoEUpiTuHb8gFA7bUxIrSqgUnmyEscelYrbda2g_547N42oqICXKs3FkXO-y31359wR8qpwFuxIyeKEJybmrjKxEpLHhQFdAhFwVQi49friesg_jtqjPbL5uqRm4N1O1w77SQ3nk7c_b1fvQeHfoccJ9vbc-bHHytsJViNMpTqb3cbYVgrTr3WPjXvkAEyXwt4OPd6kGQS8m0M6VOCnQ4Dd13nMnTfdsluhvP8uTPrn1sr7Sz8rVj-KyeQ3u3V1SB7WgJN21hLyiOxZ_5gcdTw4299X9IyGLaAhtn5ELpo_uHT08_gGhsZdMHQV7YVW0xQwLhw2cUU6dXRQjD2tt8IvVk_I8Oryy8V1XHdZiA1XbBGbvFQmYyUrbdmuskJVTFaMm0LI1JScA57ILcAydKxS51iZSMN5anJblQL85-wp2fdTb48JBarJEu6scJJzA3QFR9IoACVCpTYi5xsealOXIMdOGBMNrghyXQeua-S6DlyPyOtmxGxdfuMv13ZxWZrrsHB2ODGd3-haD7VlGfhsgInagKPAFVWVw9wTq_DRheEROd0sqt4IowY3rZ1jxC2JyMuGDHqIyZXC2-nyTgOwyiXcmuURebaWgWYmaS5YxiVQ5JZ0bE11m-LH30Kt71BALhMRedPI0T8Z8fw_JnlCHuAA3AeRilOyv5gv7QuAV4uyRQ66l_3Bp1YIT8Dvh1HSCmoDlGF_0Pn6C7FWKNE
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1dT9RAcILwgC9GxY8K6pqoiSbNbdu9bfeBGA4hh3AXopDwVtrdLV5ytCfchdyf87c5s9c2XDT4xFvb6fZjdmbnc2cA3meFRTmScz8QgfZFYbSvZCz8TCMvIQkUxjncBkPZPxXfzrpnK_C72QtDaZXNmugWalNp8pF3UFXuJuT1CL5MfvnUNYqiq00LjaxurWC2XYmxemPHoZ3foAl3vX3wFef7Qxju753s9v26y4CvheJTXye50hHPeW7zrokyZXhsuNCZjEOdC4HyNLGolpBhERYFz4NYCxHqxJpcov0Y4XMfwJqIhELjb623Nzz-3sgCiYu_i7dK2puExsEiUIpmoeoU5aikeuEB1VAMKZXslmB0_QP-pfT-nbu5Pisn2fwmG49vCcb9x_Co1mjZzoIEn8CKLZ_Cxk6J1vzlnH1kLsfUOe83YLc9IdpgP0YXONTvoSQ1bOB6WTNUovGwdVyyqmDH2ahkda79dP4MTu8Fwc9htaxK-xIYQnUUiMLKIhZCI1zhUawVaj1ShdaDToPDVNc1zqnVxjhFW4ewnjqsp4T11GHdg0_tiMmivscd9_ZoWtr7qDK3u1BdXaQ1o6eWR2gUotLVRUUNbV1lCgpucUO_LrXwYKuZ1LReLvAdLXF78K4FI6NT9CYrbTW7TlFzS2J8NE88eLGggfZLwkTySMQIiZeoY-lTlyHl6KcrJu4q1EXSg88tHf0XEa_u_oe3sN4_GRylRwfDw014SOMo3yKUW7A6vZrZ16jGTfM3Na8wOL9v9vwD5vlZhw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNAcFRaCbggoDwMBRYJkECysrY3a_tQoaZt1FIaRUCl3oy9jxIpbEKbqMov8lXMbGyrEaicerM9Xj9mZ3aeOwPwprQG5UjFw0hEKhRWqzCXqQhLhbyEJGC1d7gdD-TBifh02j1dg9_NXhhKq2zWRL9Q64kiH3kHVeVuRl6PqGPrtIjhXv_j9FdIHaQo0tq00yjrNgt625cbqzd5HJnFJZpzF9uHezj3b-O4v_9t9yCsOw6ESuR8FqqsylXCK16ZqquTMtc81VyoUqaxqoRA2ZoZVFHIyIit5VWUKiFilRldSbQlE3zuLdig4BcuEhu9_cHwSyMXJAoCH3uVtE8JDYVl0BRNxLxj3chR7fCI6inGlFZ2RUj6XgL_UoD_zuO8M3fTcnFZjsdXhGT_PtyrtVu2syTHB7Bm3EPY3HFo2f9csHfM55t6R_4m7LYnRCfs6-gMh4Y9lKqaHfu-1gwVajxsnZhsYtmwHDlW593PFo_g5EYQ_BjW3cSZp8AQqpJIWCNtKoRCeI5HqcpRA5J5bALoNDgsVF3vnNpujAu0ewjrhcd6QVgvPNYDeN-OmC5rfVxzb4-mpb2PqnT7C5Pzs6Jm-sLwBA1EVMC6qLSh3ZtrS4EurunXpRIBbDWTWtRLB76jJfQAXrdgZHqK5JTOTOYXBWpxWYqP5lkAT5Y00H5JnEmeiBQh6Qp1rHzqKsSNfvjC4r5aXSID-NDS0X8R8ez6f3gFt5FNi8-Hg6PncJeGUepFLLdgfXY-Ny9Qo5tVL2tWYfD9prnzD__gXbY
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9B9wAvfI2PwEBGQkggZXUSx44fu4lpQto0CSqNpyj-GhHFrVgrVP56zk4aKEwgxJuTs5P4fI5_Z59_BnjROIvjiKJpxjKdMmd0KrlgaaOxL6EJOBMn3E5O-fGUvT0vN9GEl31YpQtb98NB0K3vmIL7ELHQw9GjkmPnWx-otrNAP5gLOV4Ydx12eIlwfAQ709OzyYfgaPGwI6gszn-kWdUtVV75mK2hKTL4XwU7f4-evLHyi2b9tZnNfhqajm6D2lSqi0j5tL9aqn397Re-x_-q9R241QNXMuny34Vr1t-D3YlHp_3zmrwkMZQ0ztHvwuFwEUyAvGsvsGh6gAOmISfxyGqCWBmTw_wkmTty1rSe9CH1y_V9mB69eX94nPanNaSaSbpMdaWkLqiiyqrSFI00VBjKdMNFrhVjiEsqi_AuOGi5c1RlQjOW68oaxdEPLx7AyM-9fQQEpbrImLPcCcY0yiWmhJYIbrjMbQLjTUPVuqcyDydqzGp0aYKu6qirOuiqjrpK4NVQYtHRePwh70Fo-yFfIOCON7BV6r5VaksLNDbEViXiMXRppXFhDYuaUHWuWQJ7G8up-78CvgN_rlWYucsSeD6IsT-HRZrG2_nqskaAVgl8NK0SeNgZ2vAlecVpwQRKxJYJbn3qtsS3HyNneCSiK3gCrwdj_asiHv9L5idwM1yEwIqc78Fo-WVlnyJeW6pnfY_8DlmxPTw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Physiological+Signal-Based+Method+for+Measurement+of+Pain+Intensity&rft.jtitle=Frontiers+in+neuroscience&rft.au=Chu%2C+Yaqi&rft.au=Zhao%2C+Xingang&rft.au=Han%2C+Jianda&rft.au=Su%2C+Yang&rft.date=2017-05-26&rft.issn=1662-4548&rft.volume=11&rft.spage=279&rft_id=info:doi/10.3389%2Ffnins.2017.00279&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon