Enhancing Performance and Bit Rates in a Brain–Computer Interface System With Phase-to-Amplitude Cross-Frequency Coupling: Evidences From Traditional c-VEP, Fast c-VEP, and SSVEP Designs

A brain-computer interface (BCI) is a channel of communication that transforms brain activity into specific commands for manipulating a personal computer or other home or electrical devices. In other words, a BCI is an alternative way of interacting with the environment by using brain activity inste...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in neuroinformatics Vol. 12; p. 19
Main Authors Dimitriadis, Stavros I., Marimpis, Avraam D.
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 08.05.2018
Frontiers Media S.A
Subjects
Online AccessGet full text
ISSN1662-5196
1662-5196
DOI10.3389/fninf.2018.00019

Cover

Abstract A brain-computer interface (BCI) is a channel of communication that transforms brain activity into specific commands for manipulating a personal computer or other home or electrical devices. In other words, a BCI is an alternative way of interacting with the environment by using brain activity instead of muscles and nerves. For that reason, BCI systems are of high clinical value for targeted populations suffering from neurological disorders. In this paper, we present a new processing approach in three publicly available BCI data sets: (a) a well-known multi-class ( = 6) coded-modulated Visual Evoked potential (c-VEP)-based BCI system for able-bodied and disabled subjects; (b) a multi-class ( = 32) c-VEP with slow and fast stimulus representation; and (c) a steady-state Visual Evoked potential (SSVEP) multi-class ( = 5) flickering BCI system. Estimating cross-frequency coupling (CFC) and namely δ-θ [δ: (0.5-4 Hz), θ: (4-8 Hz)] phase-to-amplitude coupling (PAC) within sensor and across experimental time, we succeeded in achieving high classification accuracy and Information Transfer Rates (ITR) in the three data sets. Our approach outperformed the originally presented ITR on the three data sets. The bit rates obtained for both the disabled and able-bodied subjects reached the fastest reported level of with the PAC estimator. Additionally, our approach outperformed alternative signal features such as the relative power (29.73 bits/min) and raw time series analysis (24.93 bits/min) and also the original reported bit rates of . In the second data set, we succeeded in achieving an average ITR of 124.40 ± 11.68 for the slow 60 Hz and an average ITR of 233.99 ± 15.75 for the fast 120 Hz. In the third data set, we succeeded in achieving an average ITR of 106.44 ± 8.94. Current methodology outperforms any previous methodologies applied to each of the three free available BCI datasets.
AbstractList A brain-computer interface (BCI) is a channel of communication that transforms brain activity into specific commands for manipulating a personal computer or other home or electrical devices. In other words, a BCI is an alternative way of interacting with the environment by using brain activity instead of muscles and nerves. For that reason, BCI systems are of high clinical value for targeted populations suffering from neurological disorders. In this paper, we present a new processing approach in three publicly available BCI data sets: (a) a well-known multi-class (N = 6) coded-modulated Visual Evoked potential (c-VEP)-based BCI system for able-bodied and disabled subjects; (b) a multi-class (N = 32) c-VEP with slow and fast stimulus representation; and (c) a steady-state Visual Evoked potential (SSVEP) multi-class (N = 5) flickering BCI system. Estimating cross-frequency coupling (CFC) and namely δ-θ [δ: (0.5-4 Hz), θ: (4-8 Hz)] phase-to-amplitude coupling (PAC) within sensor and across experimental time, we succeeded in achieving high classification accuracy and Information Transfer Rates (ITR) in the three data sets. Our approach outperformed the originally presented ITR on the three data sets. The bit rates obtained for both the disabled and able-bodied subjects reached the fastest reported level of 324 bits/min with the PAC estimator. Additionally, our approach outperformed alternative signal features such as the relative power (29.73 bits/min) and raw time series analysis (24.93 bits/min) and also the original reported bit rates of 10-25 bits/min. In the second data set, we succeeded in achieving an average ITR of 124.40 ± 11.68 for the slow 60 Hz and an average ITR of 233.99 ± 15.75 for the fast 120 Hz. In the third data set, we succeeded in achieving an average ITR of 106.44 ± 8.94. Current methodology outperforms any previous methodologies applied to each of the three free available BCI datasets.A brain-computer interface (BCI) is a channel of communication that transforms brain activity into specific commands for manipulating a personal computer or other home or electrical devices. In other words, a BCI is an alternative way of interacting with the environment by using brain activity instead of muscles and nerves. For that reason, BCI systems are of high clinical value for targeted populations suffering from neurological disorders. In this paper, we present a new processing approach in three publicly available BCI data sets: (a) a well-known multi-class (N = 6) coded-modulated Visual Evoked potential (c-VEP)-based BCI system for able-bodied and disabled subjects; (b) a multi-class (N = 32) c-VEP with slow and fast stimulus representation; and (c) a steady-state Visual Evoked potential (SSVEP) multi-class (N = 5) flickering BCI system. Estimating cross-frequency coupling (CFC) and namely δ-θ [δ: (0.5-4 Hz), θ: (4-8 Hz)] phase-to-amplitude coupling (PAC) within sensor and across experimental time, we succeeded in achieving high classification accuracy and Information Transfer Rates (ITR) in the three data sets. Our approach outperformed the originally presented ITR on the three data sets. The bit rates obtained for both the disabled and able-bodied subjects reached the fastest reported level of 324 bits/min with the PAC estimator. Additionally, our approach outperformed alternative signal features such as the relative power (29.73 bits/min) and raw time series analysis (24.93 bits/min) and also the original reported bit rates of 10-25 bits/min. In the second data set, we succeeded in achieving an average ITR of 124.40 ± 11.68 for the slow 60 Hz and an average ITR of 233.99 ± 15.75 for the fast 120 Hz. In the third data set, we succeeded in achieving an average ITR of 106.44 ± 8.94. Current methodology outperforms any previous methodologies applied to each of the three free available BCI datasets.
A brain-computer interface (BCI) is a channel of communication that transforms brain activity into specific commands for manipulating a personal computer or other home or electrical devices. In other words, a BCI is an alternative way of interacting with the environment by using brain activity instead of muscles and nerves. For that reason, BCI systems are of high clinical value for targeted populations suffering from neurological disorders. In this paper, we present a new processing approach in three publicly available BCI data sets: (a) a well-known multi-class ( = 6) coded-modulated Visual Evoked potential (c-VEP)-based BCI system for able-bodied and disabled subjects; (b) a multi-class ( = 32) c-VEP with slow and fast stimulus representation; and (c) a steady-state Visual Evoked potential (SSVEP) multi-class ( = 5) flickering BCI system. Estimating cross-frequency coupling (CFC) and namely δ-θ [δ: (0.5-4 Hz), θ: (4-8 Hz)] phase-to-amplitude coupling (PAC) within sensor and across experimental time, we succeeded in achieving high classification accuracy and Information Transfer Rates (ITR) in the three data sets. Our approach outperformed the originally presented ITR on the three data sets. The bit rates obtained for both the disabled and able-bodied subjects reached the fastest reported level of with the PAC estimator. Additionally, our approach outperformed alternative signal features such as the relative power (29.73 bits/min) and raw time series analysis (24.93 bits/min) and also the original reported bit rates of . In the second data set, we succeeded in achieving an average ITR of 124.40 ± 11.68 for the slow 60 Hz and an average ITR of 233.99 ± 15.75 for the fast 120 Hz. In the third data set, we succeeded in achieving an average ITR of 106.44 ± 8.94. Current methodology outperforms any previous methodologies applied to each of the three free available BCI datasets.
A brain–computer interface (BCI) is a channel of communication that transforms brain activity into specific commands for manipulating a personal computer or other home or electrical devices. In other words, a BCI is an alternative way of interacting with the environment by using brain activity instead of muscles and nerves. For that reason, BCI systems are of high clinical value for targeted populations suffering from neurological disorders. In this paper, we present a new processing approach in three publicly available BCI data sets: (a) a well-known multi-class (N = 6) coded-modulated Visual Evoked potential (c-VEP)-based BCI system for able-bodied and disabled subjects; (b) a multi-class (N = 32) c-VEP with slow and fast stimulus representation; and (c) a steady-state Visual Evoked potential (SSVEP) multi-class (N = 5) flickering BCI system. Estimating cross-frequency coupling (CFC) and namely δ-θ [δ: (0.5–4 Hz), θ: (4–8 Hz)] phase-to-amplitude coupling (PAC) within sensor and across experimental time, we succeeded in achieving high classification accuracy and Information Transfer Rates (ITR) in the three data sets. Our approach outperformed the originally presented ITR on the three data sets. The bit rates obtained for both the disabled and able-bodied subjects reached the fastest reported level of 324 bits/min with the PAC estimator. Additionally, our approach outperformed alternative signal features such as the relative power (29.73 bits/min) and raw time series analysis (24.93 bits/min) and also the original reported bit rates of 10–25 bits/min. In the second data set, we succeeded in achieving an average ITR of 124.40 ± 11.68 for the slow 60 Hz and an average ITR of 233.99 ± 15.75 for the fast 120 Hz. In the third data set, we succeeded in achieving an average ITR of 106.44 ± 8.94. Current methodology outperforms any previous methodologies applied to each of the three free available BCI datasets.
Author Dimitriadis, Stavros I.
Marimpis, Avraam D.
AuthorAffiliation 2 Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University , Cardiff , United Kingdom
6 Brain Innovation B. V. , Maastricht , Netherlands
3 School of Psychology, Cardiff University , Cardiff , United Kingdom
1 Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University , Cardiff , United Kingdom
5 Neuroscience and Mental Health Research Institute, Cardiff University , Cardiff , United Kingdom
4 Neuroinformatics Group, Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University , Cardiff , United Kingdom
AuthorAffiliation_xml – name: 2 Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University , Cardiff , United Kingdom
– name: 5 Neuroscience and Mental Health Research Institute, Cardiff University , Cardiff , United Kingdom
– name: 3 School of Psychology, Cardiff University , Cardiff , United Kingdom
– name: 6 Brain Innovation B. V. , Maastricht , Netherlands
– name: 1 Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University , Cardiff , United Kingdom
– name: 4 Neuroinformatics Group, Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University , Cardiff , United Kingdom
Author_xml – sequence: 1
  givenname: Stavros I.
  surname: Dimitriadis
  fullname: Dimitriadis, Stavros I.
– sequence: 2
  givenname: Avraam D.
  surname: Marimpis
  fullname: Marimpis, Avraam D.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29867425$$D View this record in MEDLINE/PubMed
BookMark eNqFUstuEzEUHaEi-oA9K2SJDQum-DEPmwVSGxKoVImIFFhaNx5P4mrGDranKDv-gd_ha_gSnKSt2i5gY19fn3vuuT4-zPasszrLnhN8zBgXb1prbHtMMeHHGGMiHmUHpKpoXhJR7d2J97PDEC4xrmhV1k-yfSp4VRe0PMh-j-0SrDJ2gabat8736aQR2Aadmog-Q9QBGYsAnXow9s_PXyPXr4aoPTqzaW0hoWfrEHWPvpm4RNMlBJ1Hl5_0q87EodFo5F0I-cTr74O2ao1GbkhXdvEWja9Mk1KpxcS7Hl14aEw0zkKHVP51PH2NJhDiTbwRNZulEL3XwSxseJo9bqEL-tn1fpR9mYwvRh_z808fzkYn57kqBI65quq6ahjXQIC1Atoa6JyLmtW8BdHwimpcN_OGl5gSjlmhWUuxIIJQ0jTA2FF2tuNtHFzKlTc9-LV0YOQ24fxCgo9GdVoWlLFWc1xhkXi04sW8SImqUnMmWKkSF9lxDXYF6x_QdbeEBMuNq3Lrqty4Kreuppp3u5rVMO91o7SNHrp7Qu7fWLOUC3clS1FSjOtE8OqawLtkQoiyN0HprgOr3RBSrxIXvBS0TNCXD6CXbvDJkYSiokhjlZwk1Iu7im6l3HysBKh2ALUx3-tWKhNh420SaLp_zYofFP73ef4C5IL0tA
CitedBy_id crossref_primary_10_1088_2057_1976_ab0cee
crossref_primary_10_3389_fnhum_2022_915815
crossref_primary_10_1088_1741_2552_ac38cf
crossref_primary_10_3390_s21196343
crossref_primary_10_3389_fninf_2020_00001
crossref_primary_10_1111_isj_12337
Cites_doi 10.3389/fnhum.2010.00191
10.1016/j.neulet.2009.06.045
10.1109/TNSRE.2003.814445
10.1109/TBME.2015.2468588
10.1016/j.brainres.2008.07.030
10.1016/j.tins.2008.09.012
10.1007/s11571-012-9230-0
10.1109/TBME.2004.826699
10.1523/JNEUROSCI.15-01-00047.1995
10.1109/ICIT.2016.7474995
10.1016/j.clinph.2005.07.024
10.1016/j.ijpsycho.2016.02.002
10.1016/j.clinph.2005.06.027
10.1016/j.cub.2012.03.054
10.1016/j.eswa.2015.01.036
10.1109/TNSRE.2015.2490621
10.1167/14.2.11
10.1007/s10439-006-9175-8
10.1016/j.neuron.2013.10.002
10.1152/jn.00263.2005
10.1126/science.1154735
10.1016/j.tics.2008.01.002
10.3389/fnins.2015.00350
10.1016/S1388-2457(02)00057-3
10.1016/j.neuroscience.2005.10.029
10.1142/S0129065716500143
10.3389/fnsys.2014.00139
10.3389/fnhum.2016.00163
10.1088/1741-2560/2/4/008
10.1016/S1388-2457(00)00418-1
10.1038/s41598-017-15373-x
10.1109/TNSRE.2005.862695
10.1093/cercor/bhj044
10.1016/j.jneumeth.2007.10.012
10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C
10.1371/journal.pone.0051077
10.1109/MEMB.2008.923958
10.1073/pnas.1508080112
10.1109/TNSRE.2017.2666479
10.1016/j.tics.2010.09.001
10.1109/EMBC.2015.7318434
10.3389/fpsyg.2011.00118
10.1007/s10439-014-1066-9
10.1109/TNSRE.2003.814438
10.1038/nn1821
10.1371/journal.pone.0159988
10.1088/1741-2552/aa904c
10.1016/j.clinph.2004.04.029
10.1016/j.clinph.2015.01.013
10.1126/science.1128115
10.1016/j.jneumeth.2007.03.005
10.1007/11550822_8
10.1023/A:1011102628306
10.3389/fncom.2013.00078
10.1016/j.neuron.2010.09.023
10.1073/pnas.93.10.4770
10.1371/journal.pone.0146282
10.1007/s10548-013-0276-z
10.1016/j.neuron.2013.09.038
10.1109/TBME.2004.826698
10.1145/1835804.1835848
10.1016/0013-4694(88)90149-6
10.3389/fneng.2012.00014
10.1109/72.238311
ContentType Journal Article
Copyright 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2018 Dimitriadis and Marimpis. 2018 Dimitriadis and Marimpis
Copyright_xml – notice: 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2018 Dimitriadis and Marimpis. 2018 Dimitriadis and Marimpis
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3389/fninf.2018.00019
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ (Directory of Open Access Journals)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Psychology
EISSN 1662-5196
ExternalDocumentID oai_doaj_org_article_4233fe8060934eec84b43fe66cb3935c
10.3389/fninf.2018.00019
PMC5952007
29867425
10_3389_fninf_2018_00019
Genre Journal Article
GeographicLocations United Kingdom--UK
GeographicLocations_xml – name: United Kingdom--UK
GrantInformation_xml – fundername: Medical Research Council
  grantid: MR/K004360/1
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAKPC
AAYXX
ABUWG
ACGFO
ACGFS
ADBBV
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARCSS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
F5P
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PUEGO
RNS
RPM
TR2
ACXDI
C1A
IPNFZ
NPM
RIG
3V.
7XB
8FK
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c490t-c6776d38ea1a3f9af7a2b897378fa9d862e07dbd850218034e3f20919121dda33
IEDL.DBID M48
ISSN 1662-5196
IngestDate Wed Aug 27 00:58:30 EDT 2025
Wed Oct 01 16:37:57 EDT 2025
Tue Sep 30 16:53:08 EDT 2025
Fri Sep 05 09:34:34 EDT 2025
Fri Jul 25 11:48:10 EDT 2025
Mon Jul 21 06:03:15 EDT 2025
Wed Oct 01 01:58:04 EDT 2025
Thu Apr 24 23:04:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords performance
phase-to-amplitude coupling
cross-frequency coupling
disabled subjects
SSVEP
accuracy
brain–computer interface
c-VEP
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c490t-c6776d38ea1a3f9af7a2b897378fa9d862e07dbd850218034e3f20919121dda33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Reviewed by: Sung Chan Jun, Gwangju Institute of Science and Technology, South Korea; Rifai Chai, University of Technology Sydney, Australia
Edited by: Arjen van Ooyen, VU University Amsterdam, Netherlands
OpenAccessLink https://doaj.org/article/4233fe8060934eec84b43fe66cb3935c
PMID 29867425
PQID 2294093581
PQPubID 4424404
ParticipantIDs doaj_primary_oai_doaj_org_article_4233fe8060934eec84b43fe66cb3935c
unpaywall_primary_10_3389_fninf_2018_00019
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5952007
proquest_miscellaneous_2050485925
proquest_journals_2294093581
pubmed_primary_29867425
crossref_citationtrail_10_3389_fninf_2018_00019
crossref_primary_10_3389_fninf_2018_00019
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-05-08
PublicationDateYYYYMMDD 2018-05-08
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-08
  day: 08
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in neuroinformatics
PublicationTitleAlternate Front Neuroinform
PublicationYear 2018
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Lakatos (B36) 2008; 320
Thulasidas (B63) 2006; 14
Wittevrongel (B67); 11
Buzsáki (B5) 2010; 68
Polikoff (B52) 1995
Bayliss (B2) 2003; 11
Bragin (B4) 1994; 15
Wittevrongel (B69) 2017; 7
Morgan (B45) 1996; 93
Schroeder (B58) 2008; 12
Maye (B42) 2017; 25
Canolty (B8) 2010; 14
Steriade (B62) 2006; 137
Ding (B16) 2006; 16
Piccione (B50) 2006; 117
Jirsa (B25) 2013; 7
Landau (B38) 2012; 22
Martinetz (B41) 1993; 4
Georgiadis (B21) 2018; 15
Wittevrongel (B68); 26
Buzsáki (B6) 2013; 80
Kabbara (B27) 2016; 11
Chen (B10) 2015; 112
Mohebbi (B44) 2015
Dugué (B17) 2014; 14
Resalat (B54) 2016; 7
van Vliet (B64) 2016; 63
Kaper (B30) 2004; 51
King (B33) 2014; 42
Lachaux (B35) 1999; 8
Dimitriadis (B14) 2015; 9
Dimitriadis (B15) 2016; 10
Kim (B32) 2007; 10
Voytek (B65) 2010; 4
Cai (B7) 2010
Sellers (B59) 2006; 117
Canolty (B9) 2006; 313
Isler (B24) 2008; 1232
Lakatos (B37) 2005; 94
Lin (B40) 2016
Spuller (B61); 7
Reza (B55) 2012; 5
Rakotomamonjy (B53) 2005
Cohen (B11) 2008; 168
Riechmann (B56) 2016; 24
Farwell (B19) 1988; 70
Nolte (B48) 2004; 115
Hoffmann (B23) 2008; 167
Oikonomou (B49) 2016
Wolpaw (B70) 2002; 113
Wang (B66) 2008; 27
Antonakakis (B1) 2016; 102
Farwell (B20) 2013; 7
Schroeder (B57) 2009; 32
Kapeller (B29); 8
Pineda (B51) 2003; 11
Spuller (B60)
Joachims (B26) 1999
Engel (B18) 2013; 80
Müller-Putz (B46) 2005
Dimitriadis (B13) 2013; 26
McCane (B43) 2015; 126
Demiralp (B12) 2001; 13
Karakas (B31) 2000; 111
Lee (B39) 2006; 34
Xu (B71) 2003; 51
Kapeller (B28)
Nguyen (B47) 2015; 42
Bin (B3) 2009
Guger (B22) 2009; 462
Klimesch (B34) 2011; 2
References_xml – volume: 4
  start-page: 191
  year: 2010
  ident: B65
  article-title: Shifts in Gamma phase–amplitude coupling frequency from Theta to alpha over posterior cortex during visual tasks
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2010.00191
– volume: 462
  start-page: 94
  year: 2009
  ident: B22
  article-title: How many people are able to control a P300-based brain–computer interface (BCI)?
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2009.06.045
– volume: 11
  start-page: 181
  year: 2003
  ident: B51
  article-title: Learning to control brain rhythms: making a brain-computer interface possible
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng
  doi: 10.1109/TNSRE.2003.814445
– volume: 63
  start-page: 55
  year: 2016
  ident: B64
  article-title: Single-trial erp component analysis using a spatiotemporal lcmv beamformer
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2468588
– volume: 1232
  start-page: 163
  year: 2008
  ident: B24
  article-title: Cross-frequency phase coupling of brain rhythms during the orienting response
  publication-title: Brain Res
  doi: 10.1016/j.brainres.2008.07.030
– start-page: 22
  volume-title: IEEE Computational Intelligence Magazine
  year: 2009
  ident: B3
  article-title: VEP-based brain-computer interfaces: time, frequency, and code modulations [Research Frontier]
– volume: 32
  start-page: 9
  year: 2009
  ident: B57
  article-title: Low-frequency neuronal oscillations as instruments of sensory selection
  publication-title: Trends Neurosci
  doi: 10.1016/j.tins.2008.09.012
– volume: 7
  start-page: 263
  year: 2013
  ident: B20
  article-title: Brain fingerprinting field studies comparing P300-MERMER and P300 brainwave responses in the detection of concealed information
  publication-title: Cogn. Neurodyn.
  doi: 10.1007/s11571-012-9230-0
– volume: 51
  start-page: 1067
  year: 2003
  ident: B71
  article-title: BCI competition 2003 Data Set IIb: enhancing P300 wave detection using ICA-based subspace projections for BCI applications
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.826699
– volume: 15
  start-page: 47
  year: 1994
  ident: B4
  article-title: Gamma (40-100 Hz) oscillation in the hippocampus of the behaving rat. 1
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.15-01-00047.1995
– start-page: 1572
  volume-title: Proc. 2016 IEEE International Conference on Industrial Technology
  year: 2016
  ident: B40
  article-title: Development of SSVEP-based intelligent wheelchair brain computer interface assisted by reactive obstacle avoidance
  doi: 10.1109/ICIT.2016.7474995
– volume: 117
  start-page: 531
  year: 2006
  ident: B50
  article-title: P300-based brain–computer interface: reliability and performance in healthy and paralysed participants
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2005.07.024
– volume: 102
  start-page: 1
  year: 2016
  ident: B1
  article-title: Altered cross-frequency coupling in resting-state MEG after mild traumatic brain injury
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/j.ijpsycho.2016.02.002
– volume: 117
  start-page: 538
  year: 2006
  ident: B59
  article-title: P300-based brain–computer interface: initial tests by ALS patients
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2005.06.027
– volume: 22
  start-page: 1000
  year: 2012
  ident: B38
  article-title: Attention samples stimuli rhythmically
  publication-title: Curr Biol.
  doi: 10.1016/j.cub.2012.03.054
– volume: 42
  start-page: 4370
  year: 2015
  ident: B47
  article-title: EEG signal classification for BCI applications by wavelets and interval type-2 fuzzy logic systems. Expert Syst
  publication-title: Appl
  doi: 10.1016/j.eswa.2015.01.036
– volume-title: Proceedings of the RESNA'95 Annual Conference
  year: 1995
  ident: B52
  article-title: Toward a P300-based computer interface
– volume-title: Comparative Evaluation of State-of-the-Art Algorithms for SSVEP-Based BCIs.
  year: 2016
  ident: B49
– volume: 24
  start-page: 692
  year: 2016
  ident: B56
  article-title: Using a cVEP-based brain-computer interface to control a virtual agent
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2015.2490621
– volume: 14
  start-page: 11
  year: 2014
  ident: B17
  article-title: The dynamics of attentional sampling during visual search revealed by Fourier analysis of periodic noise interference
  publication-title: J. Vis.
  doi: 10.1167/14.2.11
– volume: 34
  start-page: 1641
  year: 2006
  ident: B39
  article-title: The brain computer interface using flash visual evoked potential and independent component analysis
  publication-title: Ann. Biomed. Eng
  doi: 10.1007/s10439-006-9175-8
– volume: 80
  start-page: 751
  year: 2013
  ident: B6
  article-title: Scaling brain size, keeping timing: evolutionary preservation of brain rhythms
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.10.002
– volume: 94
  start-page: 1904
  year: 2005
  ident: B37
  article-title: An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex
  publication-title: J. Neurophysiol
  doi: 10.1152/jn.00263.2005
– volume: 320
  start-page: 110
  year: 2008
  ident: B36
  article-title: Oscillatory entrainment as a mechanism of attentional selection
  publication-title: Science
  doi: 10.1126/science.1154735
– volume: 12
  start-page: 106
  year: 2008
  ident: B58
  article-title: Neuronal oscillations and visual amplification of speech
  publication-title: Trends Cogn. Sci
  doi: 10.1016/j.tics.2008.01.002
– volume: 9
  start-page: 350
  year: 2015
  ident: B14
  article-title: A novel biomarker of amnestic MCI based on dynamic cross-frequency coupling patterns during cognitive brain responses
  publication-title: Front. Neurosci
  doi: 10.3389/fnins.2015.00350
– volume: 113
  start-page: 767
  year: 2002
  ident: B70
  article-title: Brain-computer interfaces for communication and control
  publication-title: Clin. Neurophysiol
  doi: 10.1016/S1388-2457(02)00057-3
– volume: 137
  start-page: 1087
  year: 2006
  ident: B62
  article-title: Grouping of brain rhythms in corticothalamic systems
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2005.10.029
– volume: 26
  start-page: 1650014
  ident: B68
  article-title: Faster p300 classifier training using spatiotemporal beamforming
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065716500143
– volume: 8
  start-page: 139
  ident: B29
  article-title: An electrocorticographic BCI using code-based VEP for control in video applications: a single-subject study
  publication-title: Front. Syst. Neurosci.
  doi: 10.3389/fnsys.2014.00139
– volume: 10
  start-page: 163
  year: 2016
  ident: B15
  article-title: Greater repertoire and temporal variability of Cross-Frequency Coupling (CFC) modes in resting-state neuromagnetic recordings among children with reading difficulties
  publication-title: Front. Hum. Neurosci
  doi: 10.3389/fnhum.2016.00163
– start-page: 123
  year: 2005
  ident: B46
  article-title: Steady-state visual evoked potential (SSVEP)-based communication: impact of harmonic frequency components
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/2/4/008
– volume: 7
  start-page: 13
  year: 2016
  ident: B54
  article-title: Study of various feature extraction methods on a motor imagery based brain computer interface system
  publication-title: Basic Clin. Neurosci
– volume: 111
  start-page: 1719
  year: 2000
  ident: B31
  article-title: A new strategy involving multiple cognitive paradigms demonstrates that ERP components are determined by the superposition of oscillatory responses
  publication-title: Clin. Neurophysiol
  doi: 10.1016/S1388-2457(00)00418-1
– volume: 7
  start-page: 15037
  year: 2017
  ident: B69
  article-title: Code-modulated visual evoked potentials using fast stimulus presentation and spatiotemporal beamformer decoding
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-15373-x
– volume: 14
  start-page: 24
  year: 2006
  ident: B63
  article-title: Robust classification of EEG signal for brain–computer interface
  publication-title: IEEE Trans. Neural Syst. Rehab. Eng.
  doi: 10.1109/TNSRE.2005.862695
– volume: 16
  start-page: 1016
  year: 2006
  ident: B16
  article-title: Attentional modulation of SSVEP power depends on the network tagged by the flicker frequency
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhj044
– volume: 168
  start-page: 494
  year: 2008
  ident: B11
  article-title: Assessing transient cross-frequency coupling in EEG data
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2007.10.012
– volume: 8
  start-page: 194
  year: 1999
  ident: B35
  article-title: Measuring phase synchrony in brain signals
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C
– volume-title: Advances in Kernel Methods–Support Vector Learning
  year: 1999
  ident: B26
  article-title: Making large-scale SVM learning practical
– volume: 7
  start-page: e51077
  ident: B61
  article-title: Online adaptation of a c-VEP brain-computer interface (BCI) based on error-related potentials and unsupervised learning
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0051077
– volume: 27
  start-page: 64
  year: 2008
  ident: B66
  article-title: Brain-computer interfaces based on visual evoked potentials
  publication-title: IEEE Eng. Med. Biol. Mag
  doi: 10.1109/MEMB.2008.923958
– volume: 112
  start-page: E6058
  year: 2015
  ident: B10
  article-title: High-speed spelling with a noninvasive brain–computer interface
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1508080112
– start-page: 5254
  volume-title: Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE
  ident: B28
  article-title: A BCI using VEP for continuous control of a mobile robot
– volume: 25
  start-page: 1026
  year: 2017
  ident: B42
  article-title: Utilizing retinotopic mapping for a multi-target SSVEP BCI with a single flicker frequency
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2017.2666479
– volume: 14
  start-page: 506
  year: 2010
  ident: B8
  article-title: The functional role of cross-frequency coupling
  publication-title: Trends Cogn. Sci
  doi: 10.1016/j.tics.2010.09.001
– start-page: 602
  volume-title: Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE
  year: 2015
  ident: B44
  article-title: A brain computer interface for robust wheelchair control application based on pseudorandom code modulated visual evoked potential
  doi: 10.1109/EMBC.2015.7318434
– volume: 2
  start-page: 118
  year: 2011
  ident: B34
  article-title: Alpha oscillations and early stages of visual encoding
  publication-title: Front Psychol
  doi: 10.3389/fpsyg.2011.00118
– volume: 42
  start-page: 2095
  year: 2014
  ident: B33
  article-title: Performance assessment of a brain–computer interface driven hand orthosis
  publication-title: Ann. Biomed. Eng
  doi: 10.1007/s10439-014-1066-9
– volume: 11
  start-page: 113
  year: 2003
  ident: B2
  article-title: Use of the evoked P3 component for control in a virtual apartment
  publication-title: IEEE Trans. Neural Syst. Rehab. Eng.
  doi: 10.1109/TNSRE.2003.814438
– volume: 10
  start-page: 117
  year: 2007
  ident: B32
  article-title: Attention induces synchronization-based response gain in steady state visual evoked potentials
  publication-title: Nat. Neurosci
  doi: 10.1038/nn1821
– volume: 11
  start-page: e0159988
  ident: B67
  article-title: Frequency- and phase encoded ssvep using spatiotemporal beamforming
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0159988
– volume: 15
  start-page: 026008
  year: 2018
  ident: B21
  article-title: Discriminative codewaves: a symbolic dynamics approach to SSVEP recognition for asynchronous BCI
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aa904c
– volume: 115
  start-page: 2292
  year: 2004
  ident: B48
  article-title: Identifying true brain interaction from EEG data using the imaginary part of coherency
  publication-title: Clin. Neurophysiol
  doi: 10.1016/j.clinph.2004.04.029
– volume: 126
  start-page: 2124
  year: 2015
  ident: B43
  article-title: P300-based Brain-Computer Interface (BCI) Event-Related Potentials (ERPs): people with Amyotrophic Lateral Sclerosis (ALS) vs. age-matched controls
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2015.01.013
– volume: 313
  start-page: 1626
  year: 2006
  ident: B9
  article-title: High gamma power is phase-locked to theta oscillations in human neocortex
  publication-title: Science
  doi: 10.1126/science.1128115
– volume: 167
  start-page: 115
  year: 2008
  ident: B23
  article-title: An efficient P300-based brain–computer interface for disabled subjects
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2007.03.005
– volume-title: Proceedings of International Conference on Neural Networks (ICANN)
  year: 2005
  ident: B53
  article-title: Ensemble of SVMs for improving brain–computer interface P300 speller performances
  doi: 10.1007/11550822_8
– volume: 13
  start-page: 251
  year: 2001
  ident: B12
  article-title: Wavelet analysis of P3a and P3b
  publication-title: Brain Topogr.
  doi: 10.1023/A:1011102628306
– volume: 7
  start-page: 78
  year: 2013
  ident: B25
  article-title: Cross-frequency coupling in real and virtual brain networks
  publication-title: Front. Comput. Neurosci
  doi: 10.3389/fncom.2013.00078
– volume: 68
  start-page: 362
  year: 2010
  ident: B5
  article-title: Neural syntax: cell assemblies, synapsembles, and readers
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.09.023
– volume: 93
  start-page: 4770
  year: 1996
  ident: B45
  article-title: Selective attention to stimulus location modulates the steady-state visual evoked potential
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.93.10.4770
– volume: 11
  start-page: e0146282
  year: 2016
  ident: B27
  article-title: Functional brain connectivity as a new feature for P300 speller
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0146282
– volume: 26
  start-page: 397
  year: 2013
  ident: B13
  article-title: On the quantization of time-varying phase synchrony patterns into distinct functional connectivity microstates (fcmustates) in a multi-trial visual Erp paradigm
  publication-title: Brain Topogr.
  doi: 10.1007/s10548-013-0276-z
– volume: 80
  start-page: 867
  year: 2013
  ident: B18
  article-title: Intrinsic coupling modes: multiscale Interactions in ongoing brain activity
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.09.038
– volume: 51
  start-page: 1073
  year: 2004
  ident: B30
  article-title: Support vector machines for the P300 speller paradigm
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.826698
– start-page: 103
  volume-title: Proceedings of 20th European Symposium on Artificial Neural Networks (ESANN 2012)
  ident: B60
  article-title: One class svm andcanonical correlation analysis increase performance in a c-vep based brain-computer interface (bci)
– volume-title: 16th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD'10)
  year: 2010
  ident: B7
  article-title: Unsupervised feature selection for multi-cluster data
  doi: 10.1145/1835804.1835848
– volume: 70
  start-page: 510
  year: 1988
  ident: B19
  article-title: Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(88)90149-6
– volume: 5
  start-page: 14
  year: 2012
  ident: B55
  article-title: P300 brain computer interface: current challenges and emerging trends
  publication-title: Front. Neuroeng
  doi: 10.3389/fneng.2012.00014
– volume: 4
  start-page: 558
  year: 1993
  ident: B41
  article-title: ‘Neural-gas’ network for vector quantization and its application to time-series IEEE Trans
  publication-title: Neural Netw
  doi: 10.1109/72.238311
SSID ssj0062657
Score 2.1784155
Snippet A brain-computer interface (BCI) is a channel of communication that transforms brain activity into specific commands for manipulating a personal computer or...
A brain–computer interface (BCI) is a channel of communication that transforms brain activity into specific commands for manipulating a personal computer or...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 19
SubjectTerms Accuracy
Brain research
brain–computer interface
c-VEP
Classification
cross-frequency coupling
disabled subjects
Muscles
Nerves
Neurological diseases
Neuroscience
Neurosciences
Psychology
SSVEP
Trends
Visual evoked potentials
Wheelchairs
SummonAdditionalLinks – databaseName: DOAJ (Directory of Open Access Journals)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtNAEF6hXsoFQcuPS0GDhJBAWHH8t15uSUhUIYEqSqE3a70_TaR0UyWOUG68A6_D0_AkzKzjkAhEL9ws79pa74x3vtmd-Yax57lJbGQiG2YJbd2ksQ6FMt2Q26LStsL10OdXvP-Qn5yn7y6yi61SXxQT1tADNxPXQXOfWFNEObreqTGqSKsUb-S5qiirVNHqi2asdaaaNRhResabQ0l0wUTHOhQXxXFR4KRn1dkyQp6r_28A8884yf2lu5arr3I63TJCo7vszho9Qq8Z9T12y7gDdthz6DlfreAF-HhOv1F-yH4M3ZjINNwlnP7ODgDpNPQnNXwkkAkTBxL6VCbi57fvbYUH8NuEVmLvhtAcvkzqMb4cLV5Yz8IeRaETJyYM6PPC0byJx17BYLakDN_LN9BWK13AaD67AjSJetJsO4IKPw9PX8NILur2mgZ1doaX8NZHlCzus_PR8NPgJFzXaghVKqI6VDnnuU4KI7sysUJaLuOqEDzhhZVCo99kIq4rXWQEKiIUZWJjxCqiG3e1lknygO25mTOPGCDoQUyhhK-fk6mCUlg4IqlUcsRCSges0wqvVGsic6qnMS3RoSFxl17cJYnbn62LgL3cPHHdkHj8o2-f9GHTj-i3_Q1UynKtlOVNShmw41abyvWasCjjWKT-2LkbsGebZvyb6YhGOjNbYp8owyU1E3EWsIeN8m1GEosi5ym18B213BnqboubjD1jeCaIXYsH7NVGgW-ciKP_MRGP2W16o48QLY7ZXj1fmieI4urqqf9hfwEasUYL
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1fb9MwELdG98BeEGz8CQxkJIQEImqaf46REGpLqwmJqtoY7C1ybKet1DmlTYX6xnfg6_Bp-CTcOUm3CjTeothRnNz5_LPv7neEvIh1kHvay90owKOb0Fcul7rjsjzJVJ6BPbT5FZ9G8cl5-PEiutgjoyYXBsMqG5toDbUqJJ6Rt32fh9Zp13m_-OZi1Sj0rjYlNERdWkG9sxRjt8i-j1WVW2S_NxiNTxvbDOg9YpWzErZmvJ0bECPGd2FApWXbubY4WQ7_fwHPv-Mnb6_NQmy-i_n82uI0vEvu1KiSdis1uEf2tDkkR10DO-rLDX1JbZynPUA_JAdbm7c5Ir8GZoqMG2ZCx1cpBFQYRXuzkp4iEqUzQwXtYS2J3z9-NmUgqD1LzAX0rljP6ddZOYU3wbLoloXbxVB1JM6kffxWd7isgrY3tF-sMQ148pY2JU1XdLgsLimsm2pWnU1S6X4ZjN_QoViVzTUO6uwMLukHG3ayuk_Oh4PP_RO3LujgypB7pStjxmIVJFp0RJBzkTPhZwlnAUtywRVsrrTHVKaSCJGHF4SgSD4AGt7xO0qJIHhAWqYw-hGhgIwAeEhui-xEMsE8FwZwKxQMAJNUDmk3kkxlzXaORTfmKex6UPaplX2KsrcOeO6QV9snFhXTxw19e6gc237I0W1vFMtJWk_5FIBqkOvEi0FtQ61lEmYh3IhjmWE-tHTIcaNaaW04VumVmjvk-bYZpjz6cYTRxRr6eBHY3Yj7kUMeVpq4HYnPk5iF2MJ2dHRnqLstZja1tOIRRwou5pDXW23-7494fPM3PCEH2NcGiCbHpFUu1_opgLgye1bPzD__6Uin
  priority: 102
  providerName: ProQuest
Title Enhancing Performance and Bit Rates in a Brain–Computer Interface System With Phase-to-Amplitude Cross-Frequency Coupling: Evidences From Traditional c-VEP, Fast c-VEP, and SSVEP Designs
URI https://www.ncbi.nlm.nih.gov/pubmed/29867425
https://www.proquest.com/docview/2294093581
https://www.proquest.com/docview/2050485925
https://pubmed.ncbi.nlm.nih.gov/PMC5952007
https://doi.org/10.3389/fninf.2018.00019
https://doaj.org/article/4233fe8060934eec84b43fe66cb3935c
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: KQ8
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ (Directory of Open Access Journals)
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: DIK
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: GX1
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: M~E
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: RPM
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1662-5196
  dateEnd: 20211231
  omitProxy: true
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: BENPR
  dateStart: 20071102
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: M48
  dateStart: 20110801
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLbG9gAvCBiwwKiMhCaBMMvdMRJCbWmZkDZVG4W-Rc6trdQ5XZoK-tf4dZzjXKCiAl6iKHYiJz4n5zt3Ql74qZOZqZkxz0HTjWsnTMSpxXgWREkWwf9Q51ecX_hnY_fTxJvskSa7pP6Aq52qHfaTGheLN99vNu-B4d-hxgny9jRTMIxRWhgWCZDlZHnDsK0Uul_rHhu3yAGIKhvJ_txt3QwA5nUpUMv3QSMDWqz8mDsfuiW3dHn_XZj0z9DK22u1lJtvcrH4TW4N75G7NeCk3YpC7pO9VD0gh10Fyvb1hp5QHQKqbeuH5MdAzbD-hprS0a-EAipVQnvzkl4iLqVzRSXtYWcJ1rSEoNqumEmYW1VAp1_n5QweDSKSlTnrYtg6FtGkfXw5NiyqAO4N7edrTAmevqVNe9MVHRb5NQUZmswrOyWN2ZfB6DUdylXZnOOSrq7glH7QISirh2Q8HHzun7G6uQOLXWGWLPY59xMnSKUlnUzIjEs7CgR3eJBJkYCilZo8iZLAQxRiOi4QlQ3gRli2lSTScR6RfZWr9IhQQEkAQmKhG-54cYA5Lxyglys5gKc4Mchps3VhXFc-xwYcixA0INzsUG92iJutnfHCIC_bO5ZV1Y-_zO0hNbTzsF63vpAX07Bm_xBAq5OlgembAt4kjQM3cuGC78cR5kbHBjluaClseCC0beFqP7VlkOftMLA_-nSkSvM1zDE9-Ad7wvYM8rgivXYltgh87uII3yLKraVuj6j5TJcY9wSW4-IGedWS7z8_xJP_WORTcgdv0BGjwTHZL4t1-gxQXRl1yEFvcDG67GirCBw_TqyO5tafJGdOiA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V7aG9IGh5GAosEiCBsOL4tV6kCjVpopS2UdQXvZm1d51ESu2QOKpy4z_wdxA_hl_CzNpOG4HKqTfLu1Z2M7Mz38zOg5DXvnISS1mJ6TnounFtafJY1U2WBJFMIpCHOr_iqOt3ztzPF97FCvlV5cJgWGUlE7WgllmMPvKabXNXX9rVP42_mdg1Cm9XqxYaomytIHd0ibEyseNAza_AhJvu7O8Bvd_Ydrt12uyYZZcBM3a5lZuxz5gvnUCJunASLhIm7CjgzGFBIrgExK8sJiMZeKgOLceF3dmgZXndrksp0CEKKmANYIcDp2qt0er2jitdANaCx4rLUTAFeS1JgW0wngwDOHV1nxvKUPcM-BfQ_Ttec32WjsX8SoxGN5Rh-z65V6JYuluw3QOyotJNsrWbggV_OadvqY4r1Q77TbKxkLHzLfKzlQ6wwkfap73rlAUqUkkbw5weI_Klw5QK2sDeFb-__6jaTlDtu0wEzC6qrNMvw3wAvwRq2MwzcxdD47FQJ23iXs32pAgSn9NmNsO04_5HWrVQndL2JLukoKflsPCF0tg8b_U-0LaY5tUzLurkBB7png5zmT4kZ3dC2kdkNc1S9YRQQGIAdGKum_p4cYB5NQzgnSsYALRYGqRWUTKMy-rq2ORjFIKVhbQPNe1DpL2-8OcGebf4YlxUFrllbgOZYzEPa4LrF9mkH5YiJgRg7CQqsHw4Jq5SceBGLrzw_TjC_OvYINsVa4WloJqG18fKIK8WwyBi8N5IpCqbwRzLAznvcdszyOOCExcrsXngMxdH2BKPLi11eSQdDnQZc49jyS9mkPcLbv7vH_H09j28JOud06PD8HC_e_CMbOB3Ojg12Car-WSmngOAzKMX5Sml5OtdC4Y_ja6ErA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFLamToLdINj4CQwwEiCBiJrmzzHShPqrjUFVbQx2F5zYaSt1SWlTTb3jHXgdnoDH4Ek4x0m6VaBxtbsodlS75_j8-ZzvEPLcV05iKSsxPQdDN64tTR6rhsmSIJJJBPJQ11d87Pv7J-77U-90g_yqamEwrbKSiVpQyyzGGHndtrmrL-0a9aRMixh0eu-m30zsIIU3rVU7DVG2WZB7Gm6sLPI4VMtzcOfmewcdoP0L2-51P7X3zbLjgBm73MrN2GfMl06gREM4CRcJE3YUcOawIBFcgvWvLCYjGXioGi3HhZ3aoHF5w25IKTA4Cupgk2G9aI1strr9wVGlF8Bz8FhxUQpuIa8nKbAQ5pZhMqdG-rmkGHX_gH8ZvX_nbt5cpFOxPBeTySXF2LtNbpUWLW0WLHiHbKh0m-w0U_Dmz5b0JdU5pjp4v022VvJ2uUN-dtMRon2kQzq4KF-gIpW0Nc7pEVrBdJxSQVvYx-L39x9VCwqq45iJgNkF4jr9Ms5H8Eugks08M5uYJo-gnbSNezV7syJhfEnb2QJLkIdvadVOdU57s-yMgs6W4yIuSmPzc3fwhvbEPK-ecVHHx_BIOzrlZX6XnFwLae-RWpql6gGhYJWB0RNz3eDHiwOssWFg6rmCgbEWS4PUK0qGcYm0jg0_JiF4XEj7UNM-RNrry39ukFerL6YFysgVc1vIHKt5iA-uX2SzYViKmxCMZCdRgeXDkXGVigM3cuGF78cR1mLHBtmtWCsshdY8vDhiBnm2GgZxg3dIIlXZAuZYHsh8j9ueQe4XnLhaic0Dn7k4wtZ4dG2p6yPpeKQhzT2O8F_MIK9X3PzfP-Lh1Xt4Sm6AgAg_HPQPH5Et_EznqQa7pJbPFuox2JJ59KQ8pJR8vW658AfMyojm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Performance+and+Bit+Rates+in+a+Brain-Computer+Interface+System+With+Phase-to-Amplitude+Cross-Frequency+Coupling%3A+Evidences+From+Traditional+c-VEP%2C+Fast+c-VEP%2C+and+SSVEP+Designs&rft.jtitle=Frontiers+in+neuroinformatics&rft.au=Dimitriadis%2C+Stavros+I&rft.au=Marimpis%2C+Avraam+D&rft.date=2018-05-08&rft.issn=1662-5196&rft.eissn=1662-5196&rft.volume=12&rft.spage=19&rft_id=info:doi/10.3389%2Ffninf.2018.00019&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5196&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5196&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5196&client=summon