Enhancing Performance and Bit Rates in a Brain–Computer Interface System With Phase-to-Amplitude Cross-Frequency Coupling: Evidences From Traditional c-VEP, Fast c-VEP, and SSVEP Designs
A brain-computer interface (BCI) is a channel of communication that transforms brain activity into specific commands for manipulating a personal computer or other home or electrical devices. In other words, a BCI is an alternative way of interacting with the environment by using brain activity inste...
Saved in:
Published in | Frontiers in neuroinformatics Vol. 12; p. 19 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Research Foundation
08.05.2018
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
ISSN | 1662-5196 1662-5196 |
DOI | 10.3389/fninf.2018.00019 |
Cover
Abstract | A brain-computer interface (BCI) is a channel of communication that transforms brain activity into specific commands for manipulating a personal computer or other home or electrical devices. In other words, a BCI is an alternative way of interacting with the environment by using brain activity instead of muscles and nerves. For that reason, BCI systems are of high clinical value for targeted populations suffering from neurological disorders. In this paper, we present a new processing approach in three publicly available BCI data sets: (a) a well-known multi-class (
= 6) coded-modulated Visual Evoked potential (c-VEP)-based BCI system for able-bodied and disabled subjects; (b) a multi-class (
= 32) c-VEP with slow and fast stimulus representation; and (c) a steady-state Visual Evoked potential (SSVEP) multi-class (
= 5) flickering BCI system. Estimating cross-frequency coupling (CFC) and namely δ-θ [δ: (0.5-4 Hz), θ: (4-8 Hz)] phase-to-amplitude coupling (PAC) within sensor and across experimental time, we succeeded in achieving high classification accuracy and Information Transfer Rates (ITR) in the three data sets. Our approach outperformed the originally presented ITR on the three data sets. The bit rates obtained for both the disabled and able-bodied subjects reached the fastest reported level of
with the PAC estimator. Additionally, our approach outperformed alternative signal features such as the relative power (29.73 bits/min) and raw time series analysis (24.93 bits/min) and also the original reported bit rates of
. In the second data set, we succeeded in achieving an average ITR of 124.40 ± 11.68 for the slow 60 Hz and an average ITR of 233.99 ± 15.75 for the fast 120 Hz. In the third data set, we succeeded in achieving an average ITR of 106.44 ± 8.94. Current methodology outperforms any previous methodologies applied to each of the three free available BCI datasets. |
---|---|
AbstractList | A brain-computer interface (BCI) is a channel of communication that transforms brain activity into specific commands for manipulating a personal computer or other home or electrical devices. In other words, a BCI is an alternative way of interacting with the environment by using brain activity instead of muscles and nerves. For that reason, BCI systems are of high clinical value for targeted populations suffering from neurological disorders. In this paper, we present a new processing approach in three publicly available BCI data sets: (a) a well-known multi-class (N = 6) coded-modulated Visual Evoked potential (c-VEP)-based BCI system for able-bodied and disabled subjects; (b) a multi-class (N = 32) c-VEP with slow and fast stimulus representation; and (c) a steady-state Visual Evoked potential (SSVEP) multi-class (N = 5) flickering BCI system. Estimating cross-frequency coupling (CFC) and namely δ-θ [δ: (0.5-4 Hz), θ: (4-8 Hz)] phase-to-amplitude coupling (PAC) within sensor and across experimental time, we succeeded in achieving high classification accuracy and Information Transfer Rates (ITR) in the three data sets. Our approach outperformed the originally presented ITR on the three data sets. The bit rates obtained for both the disabled and able-bodied subjects reached the fastest reported level of 324 bits/min with the PAC estimator. Additionally, our approach outperformed alternative signal features such as the relative power (29.73 bits/min) and raw time series analysis (24.93 bits/min) and also the original reported bit rates of 10-25 bits/min. In the second data set, we succeeded in achieving an average ITR of 124.40 ± 11.68 for the slow 60 Hz and an average ITR of 233.99 ± 15.75 for the fast 120 Hz. In the third data set, we succeeded in achieving an average ITR of 106.44 ± 8.94. Current methodology outperforms any previous methodologies applied to each of the three free available BCI datasets.A brain-computer interface (BCI) is a channel of communication that transforms brain activity into specific commands for manipulating a personal computer or other home or electrical devices. In other words, a BCI is an alternative way of interacting with the environment by using brain activity instead of muscles and nerves. For that reason, BCI systems are of high clinical value for targeted populations suffering from neurological disorders. In this paper, we present a new processing approach in three publicly available BCI data sets: (a) a well-known multi-class (N = 6) coded-modulated Visual Evoked potential (c-VEP)-based BCI system for able-bodied and disabled subjects; (b) a multi-class (N = 32) c-VEP with slow and fast stimulus representation; and (c) a steady-state Visual Evoked potential (SSVEP) multi-class (N = 5) flickering BCI system. Estimating cross-frequency coupling (CFC) and namely δ-θ [δ: (0.5-4 Hz), θ: (4-8 Hz)] phase-to-amplitude coupling (PAC) within sensor and across experimental time, we succeeded in achieving high classification accuracy and Information Transfer Rates (ITR) in the three data sets. Our approach outperformed the originally presented ITR on the three data sets. The bit rates obtained for both the disabled and able-bodied subjects reached the fastest reported level of 324 bits/min with the PAC estimator. Additionally, our approach outperformed alternative signal features such as the relative power (29.73 bits/min) and raw time series analysis (24.93 bits/min) and also the original reported bit rates of 10-25 bits/min. In the second data set, we succeeded in achieving an average ITR of 124.40 ± 11.68 for the slow 60 Hz and an average ITR of 233.99 ± 15.75 for the fast 120 Hz. In the third data set, we succeeded in achieving an average ITR of 106.44 ± 8.94. Current methodology outperforms any previous methodologies applied to each of the three free available BCI datasets. A brain-computer interface (BCI) is a channel of communication that transforms brain activity into specific commands for manipulating a personal computer or other home or electrical devices. In other words, a BCI is an alternative way of interacting with the environment by using brain activity instead of muscles and nerves. For that reason, BCI systems are of high clinical value for targeted populations suffering from neurological disorders. In this paper, we present a new processing approach in three publicly available BCI data sets: (a) a well-known multi-class ( = 6) coded-modulated Visual Evoked potential (c-VEP)-based BCI system for able-bodied and disabled subjects; (b) a multi-class ( = 32) c-VEP with slow and fast stimulus representation; and (c) a steady-state Visual Evoked potential (SSVEP) multi-class ( = 5) flickering BCI system. Estimating cross-frequency coupling (CFC) and namely δ-θ [δ: (0.5-4 Hz), θ: (4-8 Hz)] phase-to-amplitude coupling (PAC) within sensor and across experimental time, we succeeded in achieving high classification accuracy and Information Transfer Rates (ITR) in the three data sets. Our approach outperformed the originally presented ITR on the three data sets. The bit rates obtained for both the disabled and able-bodied subjects reached the fastest reported level of with the PAC estimator. Additionally, our approach outperformed alternative signal features such as the relative power (29.73 bits/min) and raw time series analysis (24.93 bits/min) and also the original reported bit rates of . In the second data set, we succeeded in achieving an average ITR of 124.40 ± 11.68 for the slow 60 Hz and an average ITR of 233.99 ± 15.75 for the fast 120 Hz. In the third data set, we succeeded in achieving an average ITR of 106.44 ± 8.94. Current methodology outperforms any previous methodologies applied to each of the three free available BCI datasets. A brain–computer interface (BCI) is a channel of communication that transforms brain activity into specific commands for manipulating a personal computer or other home or electrical devices. In other words, a BCI is an alternative way of interacting with the environment by using brain activity instead of muscles and nerves. For that reason, BCI systems are of high clinical value for targeted populations suffering from neurological disorders. In this paper, we present a new processing approach in three publicly available BCI data sets: (a) a well-known multi-class (N = 6) coded-modulated Visual Evoked potential (c-VEP)-based BCI system for able-bodied and disabled subjects; (b) a multi-class (N = 32) c-VEP with slow and fast stimulus representation; and (c) a steady-state Visual Evoked potential (SSVEP) multi-class (N = 5) flickering BCI system. Estimating cross-frequency coupling (CFC) and namely δ-θ [δ: (0.5–4 Hz), θ: (4–8 Hz)] phase-to-amplitude coupling (PAC) within sensor and across experimental time, we succeeded in achieving high classification accuracy and Information Transfer Rates (ITR) in the three data sets. Our approach outperformed the originally presented ITR on the three data sets. The bit rates obtained for both the disabled and able-bodied subjects reached the fastest reported level of 324 bits/min with the PAC estimator. Additionally, our approach outperformed alternative signal features such as the relative power (29.73 bits/min) and raw time series analysis (24.93 bits/min) and also the original reported bit rates of 10–25 bits/min. In the second data set, we succeeded in achieving an average ITR of 124.40 ± 11.68 for the slow 60 Hz and an average ITR of 233.99 ± 15.75 for the fast 120 Hz. In the third data set, we succeeded in achieving an average ITR of 106.44 ± 8.94. Current methodology outperforms any previous methodologies applied to each of the three free available BCI datasets. |
Author | Dimitriadis, Stavros I. Marimpis, Avraam D. |
AuthorAffiliation | 2 Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University , Cardiff , United Kingdom 6 Brain Innovation B. V. , Maastricht , Netherlands 3 School of Psychology, Cardiff University , Cardiff , United Kingdom 1 Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University , Cardiff , United Kingdom 5 Neuroscience and Mental Health Research Institute, Cardiff University , Cardiff , United Kingdom 4 Neuroinformatics Group, Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University , Cardiff , United Kingdom |
AuthorAffiliation_xml | – name: 2 Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University , Cardiff , United Kingdom – name: 5 Neuroscience and Mental Health Research Institute, Cardiff University , Cardiff , United Kingdom – name: 3 School of Psychology, Cardiff University , Cardiff , United Kingdom – name: 6 Brain Innovation B. V. , Maastricht , Netherlands – name: 1 Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University , Cardiff , United Kingdom – name: 4 Neuroinformatics Group, Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University , Cardiff , United Kingdom |
Author_xml | – sequence: 1 givenname: Stavros I. surname: Dimitriadis fullname: Dimitriadis, Stavros I. – sequence: 2 givenname: Avraam D. surname: Marimpis fullname: Marimpis, Avraam D. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29867425$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUstuEzEUHaEi-oA9K2SJDQum-DEPmwVSGxKoVImIFFhaNx5P4mrGDranKDv-gd_ha_gSnKSt2i5gY19fn3vuuT4-zPasszrLnhN8zBgXb1prbHtMMeHHGGMiHmUHpKpoXhJR7d2J97PDEC4xrmhV1k-yfSp4VRe0PMh-j-0SrDJ2gabat8736aQR2Aadmog-Q9QBGYsAnXow9s_PXyPXr4aoPTqzaW0hoWfrEHWPvpm4RNMlBJ1Hl5_0q87EodFo5F0I-cTr74O2ao1GbkhXdvEWja9Mk1KpxcS7Hl14aEw0zkKHVP51PH2NJhDiTbwRNZulEL3XwSxseJo9bqEL-tn1fpR9mYwvRh_z808fzkYn57kqBI65quq6ahjXQIC1Atoa6JyLmtW8BdHwimpcN_OGl5gSjlmhWUuxIIJQ0jTA2FF2tuNtHFzKlTc9-LV0YOQ24fxCgo9GdVoWlLFWc1xhkXi04sW8SImqUnMmWKkSF9lxDXYF6x_QdbeEBMuNq3Lrqty4Kreuppp3u5rVMO91o7SNHrp7Qu7fWLOUC3clS1FSjOtE8OqawLtkQoiyN0HprgOr3RBSrxIXvBS0TNCXD6CXbvDJkYSiokhjlZwk1Iu7im6l3HysBKh2ALUx3-tWKhNh420SaLp_zYofFP73ef4C5IL0tA |
CitedBy_id | crossref_primary_10_1088_2057_1976_ab0cee crossref_primary_10_3389_fnhum_2022_915815 crossref_primary_10_1088_1741_2552_ac38cf crossref_primary_10_3390_s21196343 crossref_primary_10_3389_fninf_2020_00001 crossref_primary_10_1111_isj_12337 |
Cites_doi | 10.3389/fnhum.2010.00191 10.1016/j.neulet.2009.06.045 10.1109/TNSRE.2003.814445 10.1109/TBME.2015.2468588 10.1016/j.brainres.2008.07.030 10.1016/j.tins.2008.09.012 10.1007/s11571-012-9230-0 10.1109/TBME.2004.826699 10.1523/JNEUROSCI.15-01-00047.1995 10.1109/ICIT.2016.7474995 10.1016/j.clinph.2005.07.024 10.1016/j.ijpsycho.2016.02.002 10.1016/j.clinph.2005.06.027 10.1016/j.cub.2012.03.054 10.1016/j.eswa.2015.01.036 10.1109/TNSRE.2015.2490621 10.1167/14.2.11 10.1007/s10439-006-9175-8 10.1016/j.neuron.2013.10.002 10.1152/jn.00263.2005 10.1126/science.1154735 10.1016/j.tics.2008.01.002 10.3389/fnins.2015.00350 10.1016/S1388-2457(02)00057-3 10.1016/j.neuroscience.2005.10.029 10.1142/S0129065716500143 10.3389/fnsys.2014.00139 10.3389/fnhum.2016.00163 10.1088/1741-2560/2/4/008 10.1016/S1388-2457(00)00418-1 10.1038/s41598-017-15373-x 10.1109/TNSRE.2005.862695 10.1093/cercor/bhj044 10.1016/j.jneumeth.2007.10.012 10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C 10.1371/journal.pone.0051077 10.1109/MEMB.2008.923958 10.1073/pnas.1508080112 10.1109/TNSRE.2017.2666479 10.1016/j.tics.2010.09.001 10.1109/EMBC.2015.7318434 10.3389/fpsyg.2011.00118 10.1007/s10439-014-1066-9 10.1109/TNSRE.2003.814438 10.1038/nn1821 10.1371/journal.pone.0159988 10.1088/1741-2552/aa904c 10.1016/j.clinph.2004.04.029 10.1016/j.clinph.2015.01.013 10.1126/science.1128115 10.1016/j.jneumeth.2007.03.005 10.1007/11550822_8 10.1023/A:1011102628306 10.3389/fncom.2013.00078 10.1016/j.neuron.2010.09.023 10.1073/pnas.93.10.4770 10.1371/journal.pone.0146282 10.1007/s10548-013-0276-z 10.1016/j.neuron.2013.09.038 10.1109/TBME.2004.826698 10.1145/1835804.1835848 10.1016/0013-4694(88)90149-6 10.3389/fneng.2012.00014 10.1109/72.238311 |
ContentType | Journal Article |
Copyright | 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2018 Dimitriadis and Marimpis. 2018 Dimitriadis and Marimpis |
Copyright_xml | – notice: 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2018 Dimitriadis and Marimpis. 2018 Dimitriadis and Marimpis |
DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY DOA |
DOI | 10.3389/fninf.2018.00019 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ (Directory of Open Access Journals) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ (Directory of Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Psychology |
EISSN | 1662-5196 |
ExternalDocumentID | oai_doaj_org_article_4233fe8060934eec84b43fe66cb3935c 10.3389/fninf.2018.00019 PMC5952007 29867425 10_3389_fninf_2018_00019 |
Genre | Journal Article |
GeographicLocations | United Kingdom--UK |
GeographicLocations_xml | – name: United Kingdom--UK |
GrantInformation_xml | – fundername: Medical Research Council grantid: MR/K004360/1 |
GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAKPC AAYXX ABUWG ACGFO ACGFS ADBBV ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS ARCSS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DWQXO E3Z F5P GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P M~E O5R O5S OK1 OVT PGMZT PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PUEGO RNS RPM TR2 ACXDI C1A IPNFZ NPM RIG 3V. 7XB 8FK PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY |
ID | FETCH-LOGICAL-c490t-c6776d38ea1a3f9af7a2b897378fa9d862e07dbd850218034e3f20919121dda33 |
IEDL.DBID | M48 |
ISSN | 1662-5196 |
IngestDate | Wed Aug 27 00:58:30 EDT 2025 Wed Oct 01 16:37:57 EDT 2025 Tue Sep 30 16:53:08 EDT 2025 Fri Sep 05 09:34:34 EDT 2025 Fri Jul 25 11:48:10 EDT 2025 Mon Jul 21 06:03:15 EDT 2025 Wed Oct 01 01:58:04 EDT 2025 Thu Apr 24 23:04:27 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | performance phase-to-amplitude coupling cross-frequency coupling disabled subjects SSVEP accuracy brain–computer interface c-VEP |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. cc-by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c490t-c6776d38ea1a3f9af7a2b897378fa9d862e07dbd850218034e3f20919121dda33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Reviewed by: Sung Chan Jun, Gwangju Institute of Science and Technology, South Korea; Rifai Chai, University of Technology Sydney, Australia Edited by: Arjen van Ooyen, VU University Amsterdam, Netherlands |
OpenAccessLink | https://doaj.org/article/4233fe8060934eec84b43fe66cb3935c |
PMID | 29867425 |
PQID | 2294093581 |
PQPubID | 4424404 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4233fe8060934eec84b43fe66cb3935c unpaywall_primary_10_3389_fninf_2018_00019 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5952007 proquest_miscellaneous_2050485925 proquest_journals_2294093581 pubmed_primary_29867425 crossref_citationtrail_10_3389_fninf_2018_00019 crossref_primary_10_3389_fninf_2018_00019 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-05-08 |
PublicationDateYYYYMMDD | 2018-05-08 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-08 day: 08 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Lausanne |
PublicationTitle | Frontiers in neuroinformatics |
PublicationTitleAlternate | Front Neuroinform |
PublicationYear | 2018 |
Publisher | Frontiers Research Foundation Frontiers Media S.A |
Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
References | Lakatos (B36) 2008; 320 Thulasidas (B63) 2006; 14 Wittevrongel (B67); 11 Buzsáki (B5) 2010; 68 Polikoff (B52) 1995 Bayliss (B2) 2003; 11 Bragin (B4) 1994; 15 Wittevrongel (B69) 2017; 7 Morgan (B45) 1996; 93 Schroeder (B58) 2008; 12 Maye (B42) 2017; 25 Canolty (B8) 2010; 14 Steriade (B62) 2006; 137 Ding (B16) 2006; 16 Piccione (B50) 2006; 117 Jirsa (B25) 2013; 7 Landau (B38) 2012; 22 Martinetz (B41) 1993; 4 Georgiadis (B21) 2018; 15 Wittevrongel (B68); 26 Buzsáki (B6) 2013; 80 Kabbara (B27) 2016; 11 Chen (B10) 2015; 112 Mohebbi (B44) 2015 Dugué (B17) 2014; 14 Resalat (B54) 2016; 7 van Vliet (B64) 2016; 63 Kaper (B30) 2004; 51 King (B33) 2014; 42 Lachaux (B35) 1999; 8 Dimitriadis (B14) 2015; 9 Dimitriadis (B15) 2016; 10 Kim (B32) 2007; 10 Voytek (B65) 2010; 4 Cai (B7) 2010 Sellers (B59) 2006; 117 Canolty (B9) 2006; 313 Isler (B24) 2008; 1232 Lakatos (B37) 2005; 94 Lin (B40) 2016 Spuller (B61); 7 Reza (B55) 2012; 5 Rakotomamonjy (B53) 2005 Cohen (B11) 2008; 168 Riechmann (B56) 2016; 24 Farwell (B19) 1988; 70 Nolte (B48) 2004; 115 Hoffmann (B23) 2008; 167 Oikonomou (B49) 2016 Wolpaw (B70) 2002; 113 Wang (B66) 2008; 27 Antonakakis (B1) 2016; 102 Farwell (B20) 2013; 7 Schroeder (B57) 2009; 32 Kapeller (B29); 8 Pineda (B51) 2003; 11 Spuller (B60) Joachims (B26) 1999 Engel (B18) 2013; 80 Müller-Putz (B46) 2005 Dimitriadis (B13) 2013; 26 McCane (B43) 2015; 126 Demiralp (B12) 2001; 13 Karakas (B31) 2000; 111 Lee (B39) 2006; 34 Xu (B71) 2003; 51 Kapeller (B28) Nguyen (B47) 2015; 42 Bin (B3) 2009 Guger (B22) 2009; 462 Klimesch (B34) 2011; 2 |
References_xml | – volume: 4 start-page: 191 year: 2010 ident: B65 article-title: Shifts in Gamma phase–amplitude coupling frequency from Theta to alpha over posterior cortex during visual tasks publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2010.00191 – volume: 462 start-page: 94 year: 2009 ident: B22 article-title: How many people are able to control a P300-based brain–computer interface (BCI)? publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2009.06.045 – volume: 11 start-page: 181 year: 2003 ident: B51 article-title: Learning to control brain rhythms: making a brain-computer interface possible publication-title: IEEE Trans. Neural Syst. Rehabil. Eng doi: 10.1109/TNSRE.2003.814445 – volume: 63 start-page: 55 year: 2016 ident: B64 article-title: Single-trial erp component analysis using a spatiotemporal lcmv beamformer publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2015.2468588 – volume: 1232 start-page: 163 year: 2008 ident: B24 article-title: Cross-frequency phase coupling of brain rhythms during the orienting response publication-title: Brain Res doi: 10.1016/j.brainres.2008.07.030 – start-page: 22 volume-title: IEEE Computational Intelligence Magazine year: 2009 ident: B3 article-title: VEP-based brain-computer interfaces: time, frequency, and code modulations [Research Frontier] – volume: 32 start-page: 9 year: 2009 ident: B57 article-title: Low-frequency neuronal oscillations as instruments of sensory selection publication-title: Trends Neurosci doi: 10.1016/j.tins.2008.09.012 – volume: 7 start-page: 263 year: 2013 ident: B20 article-title: Brain fingerprinting field studies comparing P300-MERMER and P300 brainwave responses in the detection of concealed information publication-title: Cogn. Neurodyn. doi: 10.1007/s11571-012-9230-0 – volume: 51 start-page: 1067 year: 2003 ident: B71 article-title: BCI competition 2003 Data Set IIb: enhancing P300 wave detection using ICA-based subspace projections for BCI applications publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2004.826699 – volume: 15 start-page: 47 year: 1994 ident: B4 article-title: Gamma (40-100 Hz) oscillation in the hippocampus of the behaving rat. 1 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.15-01-00047.1995 – start-page: 1572 volume-title: Proc. 2016 IEEE International Conference on Industrial Technology year: 2016 ident: B40 article-title: Development of SSVEP-based intelligent wheelchair brain computer interface assisted by reactive obstacle avoidance doi: 10.1109/ICIT.2016.7474995 – volume: 117 start-page: 531 year: 2006 ident: B50 article-title: P300-based brain–computer interface: reliability and performance in healthy and paralysed participants publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2005.07.024 – volume: 102 start-page: 1 year: 2016 ident: B1 article-title: Altered cross-frequency coupling in resting-state MEG after mild traumatic brain injury publication-title: Int. J. Psychophysiol. doi: 10.1016/j.ijpsycho.2016.02.002 – volume: 117 start-page: 538 year: 2006 ident: B59 article-title: P300-based brain–computer interface: initial tests by ALS patients publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2005.06.027 – volume: 22 start-page: 1000 year: 2012 ident: B38 article-title: Attention samples stimuli rhythmically publication-title: Curr Biol. doi: 10.1016/j.cub.2012.03.054 – volume: 42 start-page: 4370 year: 2015 ident: B47 article-title: EEG signal classification for BCI applications by wavelets and interval type-2 fuzzy logic systems. Expert Syst publication-title: Appl doi: 10.1016/j.eswa.2015.01.036 – volume-title: Proceedings of the RESNA'95 Annual Conference year: 1995 ident: B52 article-title: Toward a P300-based computer interface – volume-title: Comparative Evaluation of State-of-the-Art Algorithms for SSVEP-Based BCIs. year: 2016 ident: B49 – volume: 24 start-page: 692 year: 2016 ident: B56 article-title: Using a cVEP-based brain-computer interface to control a virtual agent publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2015.2490621 – volume: 14 start-page: 11 year: 2014 ident: B17 article-title: The dynamics of attentional sampling during visual search revealed by Fourier analysis of periodic noise interference publication-title: J. Vis. doi: 10.1167/14.2.11 – volume: 34 start-page: 1641 year: 2006 ident: B39 article-title: The brain computer interface using flash visual evoked potential and independent component analysis publication-title: Ann. Biomed. Eng doi: 10.1007/s10439-006-9175-8 – volume: 80 start-page: 751 year: 2013 ident: B6 article-title: Scaling brain size, keeping timing: evolutionary preservation of brain rhythms publication-title: Neuron doi: 10.1016/j.neuron.2013.10.002 – volume: 94 start-page: 1904 year: 2005 ident: B37 article-title: An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex publication-title: J. Neurophysiol doi: 10.1152/jn.00263.2005 – volume: 320 start-page: 110 year: 2008 ident: B36 article-title: Oscillatory entrainment as a mechanism of attentional selection publication-title: Science doi: 10.1126/science.1154735 – volume: 12 start-page: 106 year: 2008 ident: B58 article-title: Neuronal oscillations and visual amplification of speech publication-title: Trends Cogn. Sci doi: 10.1016/j.tics.2008.01.002 – volume: 9 start-page: 350 year: 2015 ident: B14 article-title: A novel biomarker of amnestic MCI based on dynamic cross-frequency coupling patterns during cognitive brain responses publication-title: Front. Neurosci doi: 10.3389/fnins.2015.00350 – volume: 113 start-page: 767 year: 2002 ident: B70 article-title: Brain-computer interfaces for communication and control publication-title: Clin. Neurophysiol doi: 10.1016/S1388-2457(02)00057-3 – volume: 137 start-page: 1087 year: 2006 ident: B62 article-title: Grouping of brain rhythms in corticothalamic systems publication-title: Neuroscience doi: 10.1016/j.neuroscience.2005.10.029 – volume: 26 start-page: 1650014 ident: B68 article-title: Faster p300 classifier training using spatiotemporal beamforming publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065716500143 – volume: 8 start-page: 139 ident: B29 article-title: An electrocorticographic BCI using code-based VEP for control in video applications: a single-subject study publication-title: Front. Syst. Neurosci. doi: 10.3389/fnsys.2014.00139 – volume: 10 start-page: 163 year: 2016 ident: B15 article-title: Greater repertoire and temporal variability of Cross-Frequency Coupling (CFC) modes in resting-state neuromagnetic recordings among children with reading difficulties publication-title: Front. Hum. Neurosci doi: 10.3389/fnhum.2016.00163 – start-page: 123 year: 2005 ident: B46 article-title: Steady-state visual evoked potential (SSVEP)-based communication: impact of harmonic frequency components publication-title: J. Neural Eng. doi: 10.1088/1741-2560/2/4/008 – volume: 7 start-page: 13 year: 2016 ident: B54 article-title: Study of various feature extraction methods on a motor imagery based brain computer interface system publication-title: Basic Clin. Neurosci – volume: 111 start-page: 1719 year: 2000 ident: B31 article-title: A new strategy involving multiple cognitive paradigms demonstrates that ERP components are determined by the superposition of oscillatory responses publication-title: Clin. Neurophysiol doi: 10.1016/S1388-2457(00)00418-1 – volume: 7 start-page: 15037 year: 2017 ident: B69 article-title: Code-modulated visual evoked potentials using fast stimulus presentation and spatiotemporal beamformer decoding publication-title: Sci. Rep. doi: 10.1038/s41598-017-15373-x – volume: 14 start-page: 24 year: 2006 ident: B63 article-title: Robust classification of EEG signal for brain–computer interface publication-title: IEEE Trans. Neural Syst. Rehab. Eng. doi: 10.1109/TNSRE.2005.862695 – volume: 16 start-page: 1016 year: 2006 ident: B16 article-title: Attentional modulation of SSVEP power depends on the network tagged by the flicker frequency publication-title: Cereb. Cortex doi: 10.1093/cercor/bhj044 – volume: 168 start-page: 494 year: 2008 ident: B11 article-title: Assessing transient cross-frequency coupling in EEG data publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2007.10.012 – volume: 8 start-page: 194 year: 1999 ident: B35 article-title: Measuring phase synchrony in brain signals publication-title: Hum. Brain Mapp. doi: 10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C – volume-title: Advances in Kernel Methods–Support Vector Learning year: 1999 ident: B26 article-title: Making large-scale SVM learning practical – volume: 7 start-page: e51077 ident: B61 article-title: Online adaptation of a c-VEP brain-computer interface (BCI) based on error-related potentials and unsupervised learning publication-title: PLoS ONE doi: 10.1371/journal.pone.0051077 – volume: 27 start-page: 64 year: 2008 ident: B66 article-title: Brain-computer interfaces based on visual evoked potentials publication-title: IEEE Eng. Med. Biol. Mag doi: 10.1109/MEMB.2008.923958 – volume: 112 start-page: E6058 year: 2015 ident: B10 article-title: High-speed spelling with a noninvasive brain–computer interface publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1508080112 – start-page: 5254 volume-title: Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE ident: B28 article-title: A BCI using VEP for continuous control of a mobile robot – volume: 25 start-page: 1026 year: 2017 ident: B42 article-title: Utilizing retinotopic mapping for a multi-target SSVEP BCI with a single flicker frequency publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2017.2666479 – volume: 14 start-page: 506 year: 2010 ident: B8 article-title: The functional role of cross-frequency coupling publication-title: Trends Cogn. Sci doi: 10.1016/j.tics.2010.09.001 – start-page: 602 volume-title: Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE year: 2015 ident: B44 article-title: A brain computer interface for robust wheelchair control application based on pseudorandom code modulated visual evoked potential doi: 10.1109/EMBC.2015.7318434 – volume: 2 start-page: 118 year: 2011 ident: B34 article-title: Alpha oscillations and early stages of visual encoding publication-title: Front Psychol doi: 10.3389/fpsyg.2011.00118 – volume: 42 start-page: 2095 year: 2014 ident: B33 article-title: Performance assessment of a brain–computer interface driven hand orthosis publication-title: Ann. Biomed. Eng doi: 10.1007/s10439-014-1066-9 – volume: 11 start-page: 113 year: 2003 ident: B2 article-title: Use of the evoked P3 component for control in a virtual apartment publication-title: IEEE Trans. Neural Syst. Rehab. Eng. doi: 10.1109/TNSRE.2003.814438 – volume: 10 start-page: 117 year: 2007 ident: B32 article-title: Attention induces synchronization-based response gain in steady state visual evoked potentials publication-title: Nat. Neurosci doi: 10.1038/nn1821 – volume: 11 start-page: e0159988 ident: B67 article-title: Frequency- and phase encoded ssvep using spatiotemporal beamforming publication-title: PLoS ONE doi: 10.1371/journal.pone.0159988 – volume: 15 start-page: 026008 year: 2018 ident: B21 article-title: Discriminative codewaves: a symbolic dynamics approach to SSVEP recognition for asynchronous BCI publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aa904c – volume: 115 start-page: 2292 year: 2004 ident: B48 article-title: Identifying true brain interaction from EEG data using the imaginary part of coherency publication-title: Clin. Neurophysiol doi: 10.1016/j.clinph.2004.04.029 – volume: 126 start-page: 2124 year: 2015 ident: B43 article-title: P300-based Brain-Computer Interface (BCI) Event-Related Potentials (ERPs): people with Amyotrophic Lateral Sclerosis (ALS) vs. age-matched controls publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2015.01.013 – volume: 313 start-page: 1626 year: 2006 ident: B9 article-title: High gamma power is phase-locked to theta oscillations in human neocortex publication-title: Science doi: 10.1126/science.1128115 – volume: 167 start-page: 115 year: 2008 ident: B23 article-title: An efficient P300-based brain–computer interface for disabled subjects publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2007.03.005 – volume-title: Proceedings of International Conference on Neural Networks (ICANN) year: 2005 ident: B53 article-title: Ensemble of SVMs for improving brain–computer interface P300 speller performances doi: 10.1007/11550822_8 – volume: 13 start-page: 251 year: 2001 ident: B12 article-title: Wavelet analysis of P3a and P3b publication-title: Brain Topogr. doi: 10.1023/A:1011102628306 – volume: 7 start-page: 78 year: 2013 ident: B25 article-title: Cross-frequency coupling in real and virtual brain networks publication-title: Front. Comput. Neurosci doi: 10.3389/fncom.2013.00078 – volume: 68 start-page: 362 year: 2010 ident: B5 article-title: Neural syntax: cell assemblies, synapsembles, and readers publication-title: Neuron doi: 10.1016/j.neuron.2010.09.023 – volume: 93 start-page: 4770 year: 1996 ident: B45 article-title: Selective attention to stimulus location modulates the steady-state visual evoked potential publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.93.10.4770 – volume: 11 start-page: e0146282 year: 2016 ident: B27 article-title: Functional brain connectivity as a new feature for P300 speller publication-title: PLoS ONE doi: 10.1371/journal.pone.0146282 – volume: 26 start-page: 397 year: 2013 ident: B13 article-title: On the quantization of time-varying phase synchrony patterns into distinct functional connectivity microstates (fcmustates) in a multi-trial visual Erp paradigm publication-title: Brain Topogr. doi: 10.1007/s10548-013-0276-z – volume: 80 start-page: 867 year: 2013 ident: B18 article-title: Intrinsic coupling modes: multiscale Interactions in ongoing brain activity publication-title: Neuron doi: 10.1016/j.neuron.2013.09.038 – volume: 51 start-page: 1073 year: 2004 ident: B30 article-title: Support vector machines for the P300 speller paradigm publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2004.826698 – start-page: 103 volume-title: Proceedings of 20th European Symposium on Artificial Neural Networks (ESANN 2012) ident: B60 article-title: One class svm andcanonical correlation analysis increase performance in a c-vep based brain-computer interface (bci) – volume-title: 16th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD'10) year: 2010 ident: B7 article-title: Unsupervised feature selection for multi-cluster data doi: 10.1145/1835804.1835848 – volume: 70 start-page: 510 year: 1988 ident: B19 article-title: Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(88)90149-6 – volume: 5 start-page: 14 year: 2012 ident: B55 article-title: P300 brain computer interface: current challenges and emerging trends publication-title: Front. Neuroeng doi: 10.3389/fneng.2012.00014 – volume: 4 start-page: 558 year: 1993 ident: B41 article-title: ‘Neural-gas’ network for vector quantization and its application to time-series IEEE Trans publication-title: Neural Netw doi: 10.1109/72.238311 |
SSID | ssj0062657 |
Score | 2.1784155 |
Snippet | A brain-computer interface (BCI) is a channel of communication that transforms brain activity into specific commands for manipulating a personal computer or... A brain–computer interface (BCI) is a channel of communication that transforms brain activity into specific commands for manipulating a personal computer or... |
SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 19 |
SubjectTerms | Accuracy Brain research brain–computer interface c-VEP Classification cross-frequency coupling disabled subjects Muscles Nerves Neurological diseases Neuroscience Neurosciences Psychology SSVEP Trends Visual evoked potentials Wheelchairs |
SummonAdditionalLinks | – databaseName: DOAJ (Directory of Open Access Journals) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtNAEF6hXsoFQcuPS0GDhJBAWHH8t15uSUhUIYEqSqE3a70_TaR0UyWOUG68A6_D0_AkzKzjkAhEL9ws79pa74x3vtmd-Yax57lJbGQiG2YJbd2ksQ6FMt2Q26LStsL10OdXvP-Qn5yn7y6yi61SXxQT1tADNxPXQXOfWFNEObreqTGqSKsUb-S5qiirVNHqi2asdaaaNRhResabQ0l0wUTHOhQXxXFR4KRn1dkyQp6r_28A8884yf2lu5arr3I63TJCo7vszho9Qq8Z9T12y7gDdthz6DlfreAF-HhOv1F-yH4M3ZjINNwlnP7ODgDpNPQnNXwkkAkTBxL6VCbi57fvbYUH8NuEVmLvhtAcvkzqMb4cLV5Yz8IeRaETJyYM6PPC0byJx17BYLakDN_LN9BWK13AaD67AjSJetJsO4IKPw9PX8NILur2mgZ1doaX8NZHlCzus_PR8NPgJFzXaghVKqI6VDnnuU4KI7sysUJaLuOqEDzhhZVCo99kIq4rXWQEKiIUZWJjxCqiG3e1lknygO25mTOPGCDoQUyhhK-fk6mCUlg4IqlUcsRCSges0wqvVGsic6qnMS3RoSFxl17cJYnbn62LgL3cPHHdkHj8o2-f9GHTj-i3_Q1UynKtlOVNShmw41abyvWasCjjWKT-2LkbsGebZvyb6YhGOjNbYp8owyU1E3EWsIeN8m1GEosi5ym18B213BnqboubjD1jeCaIXYsH7NVGgW-ciKP_MRGP2W16o48QLY7ZXj1fmieI4urqqf9hfwEasUYL priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1fb9MwELdG98BeEGz8CQxkJIQEImqaf46REGpLqwmJqtoY7C1ybKet1DmlTYX6xnfg6_Bp-CTcOUm3CjTeothRnNz5_LPv7neEvIh1kHvay90owKOb0Fcul7rjsjzJVJ6BPbT5FZ9G8cl5-PEiutgjoyYXBsMqG5toDbUqJJ6Rt32fh9Zp13m_-OZi1Sj0rjYlNERdWkG9sxRjt8i-j1WVW2S_NxiNTxvbDOg9YpWzErZmvJ0bECPGd2FApWXbubY4WQ7_fwHPv-Mnb6_NQmy-i_n82uI0vEvu1KiSdis1uEf2tDkkR10DO-rLDX1JbZynPUA_JAdbm7c5Ir8GZoqMG2ZCx1cpBFQYRXuzkp4iEqUzQwXtYS2J3z9-NmUgqD1LzAX0rljP6ddZOYU3wbLoloXbxVB1JM6kffxWd7isgrY3tF-sMQ148pY2JU1XdLgsLimsm2pWnU1S6X4ZjN_QoViVzTUO6uwMLukHG3ayuk_Oh4PP_RO3LujgypB7pStjxmIVJFp0RJBzkTPhZwlnAUtywRVsrrTHVKaSCJGHF4SgSD4AGt7xO0qJIHhAWqYw-hGhgIwAeEhui-xEMsE8FwZwKxQMAJNUDmk3kkxlzXaORTfmKex6UPaplX2KsrcOeO6QV9snFhXTxw19e6gc237I0W1vFMtJWk_5FIBqkOvEi0FtQ61lEmYh3IhjmWE-tHTIcaNaaW04VumVmjvk-bYZpjz6cYTRxRr6eBHY3Yj7kUMeVpq4HYnPk5iF2MJ2dHRnqLstZja1tOIRRwou5pDXW23-7494fPM3PCEH2NcGiCbHpFUu1_opgLgye1bPzD__6Uin priority: 102 providerName: ProQuest |
Title | Enhancing Performance and Bit Rates in a Brain–Computer Interface System With Phase-to-Amplitude Cross-Frequency Coupling: Evidences From Traditional c-VEP, Fast c-VEP, and SSVEP Designs |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29867425 https://www.proquest.com/docview/2294093581 https://www.proquest.com/docview/2050485925 https://pubmed.ncbi.nlm.nih.gov/PMC5952007 https://doi.org/10.3389/fninf.2018.00019 https://doaj.org/article/4233fe8060934eec84b43fe66cb3935c |
UnpaywallVersion | publishedVersion |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1662-5196 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062657 issn: 1662-5196 databaseCode: KQ8 dateStart: 20070101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ (Directory of Open Access Journals) customDbUrl: eissn: 1662-5196 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062657 issn: 1662-5196 databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1662-5196 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062657 issn: 1662-5196 databaseCode: DIK dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1662-5196 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062657 issn: 1662-5196 databaseCode: GX1 dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1662-5196 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062657 issn: 1662-5196 databaseCode: M~E dateStart: 20070101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1662-5196 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062657 issn: 1662-5196 databaseCode: RPM dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1662-5196 dateEnd: 20211231 omitProxy: true ssIdentifier: ssj0062657 issn: 1662-5196 databaseCode: BENPR dateStart: 20071102 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1662-5196 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0062657 issn: 1662-5196 databaseCode: M48 dateStart: 20110801 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLbG9gAvCBiwwKiMhCaBMMvdMRJCbWmZkDZVG4W-Rc6trdQ5XZoK-tf4dZzjXKCiAl6iKHYiJz4n5zt3Ql74qZOZqZkxz0HTjWsnTMSpxXgWREkWwf9Q51ecX_hnY_fTxJvskSa7pP6Aq52qHfaTGheLN99vNu-B4d-hxgny9jRTMIxRWhgWCZDlZHnDsK0Uul_rHhu3yAGIKhvJ_txt3QwA5nUpUMv3QSMDWqz8mDsfuiW3dHn_XZj0z9DK22u1lJtvcrH4TW4N75G7NeCk3YpC7pO9VD0gh10Fyvb1hp5QHQKqbeuH5MdAzbD-hprS0a-EAipVQnvzkl4iLqVzRSXtYWcJ1rSEoNqumEmYW1VAp1_n5QweDSKSlTnrYtg6FtGkfXw5NiyqAO4N7edrTAmevqVNe9MVHRb5NQUZmswrOyWN2ZfB6DUdylXZnOOSrq7glH7QISirh2Q8HHzun7G6uQOLXWGWLPY59xMnSKUlnUzIjEs7CgR3eJBJkYCilZo8iZLAQxRiOi4QlQ3gRli2lSTScR6RfZWr9IhQQEkAQmKhG-54cYA5Lxyglys5gKc4Mchps3VhXFc-xwYcixA0INzsUG92iJutnfHCIC_bO5ZV1Y-_zO0hNbTzsF63vpAX07Bm_xBAq5OlgembAt4kjQM3cuGC78cR5kbHBjluaClseCC0beFqP7VlkOftMLA_-nSkSvM1zDE9-Ad7wvYM8rgivXYltgh87uII3yLKraVuj6j5TJcY9wSW4-IGedWS7z8_xJP_WORTcgdv0BGjwTHZL4t1-gxQXRl1yEFvcDG67GirCBw_TqyO5tafJGdOiA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V7aG9IGh5GAosEiCBsOL4tV6kCjVpopS2UdQXvZm1d51ESu2QOKpy4z_wdxA_hl_CzNpOG4HKqTfLu1Z2M7Mz38zOg5DXvnISS1mJ6TnounFtafJY1U2WBJFMIpCHOr_iqOt3ztzPF97FCvlV5cJgWGUlE7WgllmMPvKabXNXX9rVP42_mdg1Cm9XqxYaomytIHd0ibEyseNAza_AhJvu7O8Bvd_Ydrt12uyYZZcBM3a5lZuxz5gvnUCJunASLhIm7CjgzGFBIrgExK8sJiMZeKgOLceF3dmgZXndrksp0CEKKmANYIcDp2qt0er2jitdANaCx4rLUTAFeS1JgW0wngwDOHV1nxvKUPcM-BfQ_Ttec32WjsX8SoxGN5Rh-z65V6JYuluw3QOyotJNsrWbggV_OadvqY4r1Q77TbKxkLHzLfKzlQ6wwkfap73rlAUqUkkbw5weI_Klw5QK2sDeFb-__6jaTlDtu0wEzC6qrNMvw3wAvwRq2MwzcxdD47FQJ23iXs32pAgSn9NmNsO04_5HWrVQndL2JLukoKflsPCF0tg8b_U-0LaY5tUzLurkBB7png5zmT4kZ3dC2kdkNc1S9YRQQGIAdGKum_p4cYB5NQzgnSsYALRYGqRWUTKMy-rq2ORjFIKVhbQPNe1DpL2-8OcGebf4YlxUFrllbgOZYzEPa4LrF9mkH5YiJgRg7CQqsHw4Jq5SceBGLrzw_TjC_OvYINsVa4WloJqG18fKIK8WwyBi8N5IpCqbwRzLAznvcdszyOOCExcrsXngMxdH2BKPLi11eSQdDnQZc49jyS9mkPcLbv7vH_H09j28JOud06PD8HC_e_CMbOB3Ojg12Car-WSmngOAzKMX5Sml5OtdC4Y_ja6ErA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFLamToLdINj4CQwwEiCBiJrmzzHShPqrjUFVbQx2F5zYaSt1SWlTTb3jHXgdnoDH4Ek4x0m6VaBxtbsodlS75_j8-ZzvEPLcV05iKSsxPQdDN64tTR6rhsmSIJJJBPJQ11d87Pv7J-77U-90g_yqamEwrbKSiVpQyyzGGHndtrmrL-0a9aRMixh0eu-m30zsIIU3rVU7DVG2WZB7Gm6sLPI4VMtzcOfmewcdoP0L2-51P7X3zbLjgBm73MrN2GfMl06gREM4CRcJE3YUcOawIBFcgvWvLCYjGXioGi3HhZ3aoHF5w25IKTA4Cupgk2G9aI1strr9wVGlF8Bz8FhxUQpuIa8nKbAQ5pZhMqdG-rmkGHX_gH8ZvX_nbt5cpFOxPBeTySXF2LtNbpUWLW0WLHiHbKh0m-w0U_Dmz5b0JdU5pjp4v022VvJ2uUN-dtMRon2kQzq4KF-gIpW0Nc7pEVrBdJxSQVvYx-L39x9VCwqq45iJgNkF4jr9Ms5H8Eugks08M5uYJo-gnbSNezV7syJhfEnb2QJLkIdvadVOdU57s-yMgs6W4yIuSmPzc3fwhvbEPK-ecVHHx_BIOzrlZX6XnFwLae-RWpql6gGhYJWB0RNz3eDHiwOssWFg6rmCgbEWS4PUK0qGcYm0jg0_JiF4XEj7UNM-RNrry39ukFerL6YFysgVc1vIHKt5iA-uX2SzYViKmxCMZCdRgeXDkXGVigM3cuGF78cR1mLHBtmtWCsshdY8vDhiBnm2GgZxg3dIIlXZAuZYHsh8j9ueQe4XnLhaic0Dn7k4wtZ4dG2p6yPpeKQhzT2O8F_MIK9X3PzfP-Lh1Xt4Sm6AgAg_HPQPH5Et_EznqQa7pJbPFuox2JJ59KQ8pJR8vW658AfMyojm |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Performance+and+Bit+Rates+in+a+Brain-Computer+Interface+System+With+Phase-to-Amplitude+Cross-Frequency+Coupling%3A+Evidences+From+Traditional+c-VEP%2C+Fast+c-VEP%2C+and+SSVEP+Designs&rft.jtitle=Frontiers+in+neuroinformatics&rft.au=Dimitriadis%2C+Stavros+I&rft.au=Marimpis%2C+Avraam+D&rft.date=2018-05-08&rft.issn=1662-5196&rft.eissn=1662-5196&rft.volume=12&rft.spage=19&rft_id=info:doi/10.3389%2Ffninf.2018.00019&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5196&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5196&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5196&client=summon |