Linear Discriminant Analysis Achieves High Classification Accuracy for the BOLD fMRI Response to Naturalistic Movie Stimuli
Naturalistic stimuli like movies evoke complex perceptual processes, which are of great interest in the study of human cognition by functional MRI (fMRI). However, conventional fMRI analysis based on statistical parametric mapping (SPM) and the general linear model (GLM) is hampered by a lack of acc...
Saved in:
| Published in | Frontiers in human neuroscience Vol. 10; p. 128 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
Frontiers Research Foundation
31.03.2016
Frontiers Media S.A |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1662-5161 1662-5161 |
| DOI | 10.3389/fnhum.2016.00128 |
Cover
| Abstract | Naturalistic stimuli like movies evoke complex perceptual processes, which are of great interest in the study of human cognition by functional MRI (fMRI). However, conventional fMRI analysis based on statistical parametric mapping (SPM) and the general linear model (GLM) is hampered by a lack of accurate parametric models of the BOLD response to complex stimuli. In this situation, statistical machine-learning methods, a.k.a. multivariate pattern analysis (MVPA), have received growing attention for their ability to generate stimulus response models in a data-driven fashion. However, machine-learning methods typically require large amounts of training data as well as computational resources. In the past, this has largely limited their application to fMRI experiments involving small sets of stimulus categories and small regions of interest in the brain. By contrast, the present study compares several classification algorithms known as Nearest Neighbor (NN), Gaussian Naïve Bayes (GNB), and (regularized) Linear Discriminant Analysis (LDA) in terms of their classification accuracy in discriminating the global fMRI response patterns evoked by a large number of naturalistic visual stimuli presented as a movie. Results show that LDA regularized by principal component analysis (PCA) achieved high classification accuracies, above 90% on average for single fMRI volumes acquired 2 s apart during a 300 s movie (chance level 0.7% = 2 s/300 s). The largest source of classification errors were autocorrelations in the BOLD signal compounded by the similarity of consecutive stimuli. All classifiers performed best when given input features from a large region of interest comprising around 25% of the voxels that responded significantly to the visual stimulus. Consistent with this, the most informative principal components represented widespread distributions of co-activated brain regions that were similar between subjects and may represent functional networks. In light of these results, the combination of naturalistic movie stimuli and classification analysis in fMRI experiments may prove to be a sensitive tool for the assessment of changes in natural cognitive processes under experimental manipulation. |
|---|---|
| AbstractList | Naturalistic stimuli like movies evoke complex perceptual processes, which are of great interest in the study of human cognition by functional MRI (fMRI). However, conventional fMRI analysis based on statistical parametric mapping (SPM) and the general linear model (GLM) is hampered by a lack of accurate parametric models of the BOLD response to complex stimuli. In this situation, statistical machine-learning methods, a.k.a. multivariate pattern analysis (MVPA), have received growing attention for their ability to generate stimulus response models in a data-driven fashion. However, machine-learning methods typically require large amounts of training data as well as computational resources. In the past this has largely limited their application to fMRI experiments involving small sets of stimulus categories and small regions of interest in the brain. By contrast, the present study compares several classification algorithms known as Nearest Neighbour (NN), Gaussian Naïve Bayes (GNB), and (regularised) Linear Discriminant Analysis (LDA) in terms of their classification accuracy in discriminating the global fMRI response patterns evoked by a large number of naturalistic visual stimuli presented as a movie.Results show that LDA regularised by principal component analysis (PCA) achieved high classification accuracies, above 90% on average for single fMRI volumes acquired 2s apart during a 300s movie (chance level 0.7% = 2s/300s). The largest source of classification errors were autocorrelations in the BOLD signal compounded by the similarity of consecutive stimuli. All classifiers performed best when given input features from a large region of interest comprising around 25% of the voxels that responded significantly to the visual stimulus. Consistent with this, the most informative principal components represented widespread distributions of co-activated brain regions that were similar between subjects and may represent functional networks. In light of these results, the combination of naturalistic movie stimuli and classification analysis in fMRI experiments may prove to be a sensitive tool for the assessment of changes in natural cognitive processes under experimental manipulation. Naturalistic stimuli like movies evoke complex perceptual processes, which are of great interest in the study of human cognition by functional MRI (fMRI). However, conventional fMRI analysis based on statistical parametric mapping (SPM) and the general linear model (GLM) is hampered by a lack of accurate parametric models of the BOLD response to complex stimuli. In this situation, statistical machine-learning methods, a.k.a. multivariate pattern analysis (MVPA), have received growing attention for their ability to generate stimulus response models in a data-driven fashion. However, machine-learning methods typically require large amounts of training data as well as computational resources. In the past, this has largely limited their application to fMRI experiments involving small sets of stimulus categories and small regions of interest in the brain. By contrast, the present study compares several classification algorithms known as Nearest Neighbor (NN), Gaussian Naïve Bayes (GNB), and (regularized) Linear Discriminant Analysis (LDA) in terms of their classification accuracy in discriminating the global fMRI response patterns evoked by a large number of naturalistic visual stimuli presented as a movie. Results show that LDA regularized by principal component analysis (PCA) achieved high classification accuracies, above 90% on average for single fMRI volumes acquired 2 s apart during a 300 s movie (chance level 0.7% = 2 s/300 s). The largest source of classification errors were autocorrelations in the BOLD signal compounded by the similarity of consecutive stimuli. All classifiers performed best when given input features from a large region of interest comprising around 25% of the voxels that responded significantly to the visual stimulus. Consistent with this, the most informative principal components represented widespread distributions of co-activated brain regions that were similar between subjects and may represent functional networks. In light of these results, the combination of naturalistic movie stimuli and classification analysis in fMRI experiments may prove to be a sensitive tool for the assessment of changes in natural cognitive processes under experimental manipulation. |
| Author | de Zwart, Jacco A. Duyn, Jeff H. Mandelkow, Hendrik |
| AuthorAffiliation | Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health Bethesda, MD, USA |
| AuthorAffiliation_xml | – name: Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health Bethesda, MD, USA |
| Author_xml | – sequence: 1 givenname: Hendrik surname: Mandelkow fullname: Mandelkow, Hendrik – sequence: 2 givenname: Jacco A. surname: de Zwart fullname: de Zwart, Jacco A. – sequence: 3 givenname: Jeff H. surname: Duyn fullname: Duyn, Jeff H. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27065832$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUk1vEzEQXaEi-gF3TsgSFy4Jtndt716QSgo0UkqlAmfL64wTR44dbG9QxJ_HTUrVVkLiZGvmvac38-a0OvLBQ1W9Jnhc12333vjlsB5TTPgYY0LbZ9UJ4ZyOGOHk6MH_uDpNaYUxp5yRF9UxFZiztqYn1e-Z9aAiurBJR7u2XvmMzr1yu2QTOtdLC1tI6NIulmjiVErWWK2yDb409RCV3iETIspLQB-vZxfIXN1M0Q2kTfAJUA7oq8oF5mzKVqOrsLWAvmW7Hpx9WT03yiV4dfeeVT8-f_o-uRzNrr9MJ-ezkW46nEeaip7WStWm4YYzZlSpiJ5xIKKHlinoOjCsJfW8bzjGpidtD6bjta5V3bf1WTU96M6DWslNGVPFnQzKyn0hxIVUsbhzINt5gwuXEiNEA5QrhllDtSBY8N5gXLTIQWvwG7X7pZy7FyRY3oYi96HI21DkPpTC-XDgbIZ-DXMNPpeFPDLyuOPtUi7CVjYtYYyJIvDuTiCGnwOkLNclLnBOeQhDkkS0uEAppwX69gl0FYZY8kyS0g53lFLRFdSbh47urfy9iwLAB4COIaUI5n-m5E8o2ub9pZSZrPs38Q-olt6h |
| CitedBy_id | crossref_primary_10_1016_j_copsyc_2018_12_006 crossref_primary_10_1016_j_neuroimage_2023_119941 crossref_primary_10_1007_s12032_022_01711_1 crossref_primary_10_1016_j_mehy_2019_109503 crossref_primary_10_1109_ACCESS_2024_3356602 crossref_primary_10_1007_s00180_019_00925_8 crossref_primary_10_1371_journal_pone_0214507 crossref_primary_10_1016_j_plrev_2018_12_004 crossref_primary_10_1038_s41598_024_62343_1 crossref_primary_10_3390_s18030794 crossref_primary_10_3389_fnhum_2024_1427532 crossref_primary_10_1016_j_neuroimage_2021_118510 crossref_primary_10_1016_j_neuroimage_2020_116790 crossref_primary_10_1016_j_neuroimage_2020_116571 crossref_primary_10_1002_hbm_70152 crossref_primary_10_1007_s11571_017_9428_2 crossref_primary_10_3389_fnins_2016_00515 crossref_primary_10_1038_s44220_023_00188_9 crossref_primary_10_1016_j_jenvp_2023_102033 crossref_primary_10_1016_j_neuroimage_2020_116617 crossref_primary_10_35414_akufemubid_1491469 crossref_primary_10_1016_j_bspc_2022_103623 crossref_primary_10_2174_2210299X01666230223104508 crossref_primary_10_3390_biomedicines10123002 crossref_primary_10_3389_fnhum_2017_00038 crossref_primary_10_1016_j_neuroimage_2017_08_053 crossref_primary_10_3390_ijerph18105331 crossref_primary_10_1016_j_sigpro_2019_02_006 crossref_primary_10_1002_hbm_25736 |
| Cites_doi | 10.1126/science.1089506 10.1002/hbm.10153 10.1016/j.cub.2011.08.031 10.1038/nn.3381 10.1523/JNEUROSCI.5487-07.2008 10.1016/j.neuroimage.2010.05.026 10.1163/156856897X00357 10.1002/hbm.22490 10.1073/pnas.0905267106 10.1126/science.1234330 10.1016/j.neuroimage.2014.03.074 10.1016/j.neuroimage.2014.10.027 10.1016/j.cub.2012.05.022 10.3389/fnsys.2011.00037 10.1016/j.tics.2006.07.005 10.1016/j.neuroimage.2004.07.051 10.1006/cbmr.1996.0014 10.1016/j.mri.2008.02.016 10.1002/ana.23656 10.1016/j.tics.2009.10.011 10.1073/pnas.0600244103 10.1016/j.neuron.2011.08.026 10.1016/j.neuroimage.2014.10.018 10.1016/j.neuroimage.2015.01.012 10.1093/cercor/bhm107 10.2174/1874440000802010014 10.1038/nrn3747 10.1016/j.neuroimage.2008.11.007 10.1016/j.neuron.2012.10.014 10.1109/MLSP.2014.6958912 10.1016/j.neuroimage.2010.05.051 10.3389/fnins.2013.00237 10.2478/s13380-012-0029-6 10.1093/cercor/bhk030 |
| ContentType | Journal Article |
| Copyright | 2016. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2016 Mandelkow, de Zwart and Duyn. 2016 Mandelkow, de Zwart and Duyn |
| Copyright_xml | – notice: 2016. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2016 Mandelkow, de Zwart and Duyn. 2016 Mandelkow, de Zwart and Duyn |
| DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3389/fnhum.2016.00128 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Science Database Biological science database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Statistics |
| EISSN | 1662-5161 |
| EndPage | 128 |
| ExternalDocumentID | oai_doaj_org_article_8d40bef21f774e26a50542c71076bf00 10.3389/fnhum.2016.00128 PMC4815557 27065832 10_3389_fnhum_2016_00128 |
| Genre | Journal Article |
| GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABIVO ABUWG ACGFO ACGFS ADBBV ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EMOBN F5P GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P M~E O5R O5S OK1 OVT PGMZT PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PUEGO RNS RPM TR2 ACXDI C1A IPNFZ NPM RIG 3V. 7XB 8FK PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c490t-c27b23aa3f46f655fac277b56e17be85ae99ef5813db4600fb18bef963c3a3b83 |
| IEDL.DBID | UNPAY |
| ISSN | 1662-5161 |
| IngestDate | Fri Oct 03 12:52:51 EDT 2025 Sun Oct 26 03:52:23 EDT 2025 Tue Sep 30 16:57:06 EDT 2025 Fri Sep 05 08:56:55 EDT 2025 Fri Jul 25 11:53:23 EDT 2025 Thu Apr 03 07:10:12 EDT 2025 Wed Oct 01 04:22:20 EDT 2025 Thu Apr 24 22:59:05 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | movies nearest-neighbor multivariate pattern analysis (MVPA) naturalistic stimuli linear discriminant analysis (LDA) classification BOLD fMRI Gaussian Naïve Bayes (GNB) |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c490t-c27b23aa3f46f655fac277b56e17be85ae99ef5813db4600fb18bef963c3a3b83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Edited by: Satrajit S. Ghosh, Massachusetts Institute of Technology, USA Reviewed by: Michael Hanke, Otto-von-Guericke-University, Germany; Yaroslav O. Halchenko, Dartmouth College, USA |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.frontiersin.org/articles/10.3389/fnhum.2016.00128/pdf |
| PMID | 27065832 |
| PQID | 2290922279 |
| PQPubID | 4424408 |
| PageCount | 1 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_8d40bef21f774e26a50542c71076bf00 unpaywall_primary_10_3389_fnhum_2016_00128 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4815557 proquest_miscellaneous_1780815262 proquest_journals_2290922279 pubmed_primary_27065832 crossref_primary_10_3389_fnhum_2016_00128 crossref_citationtrail_10_3389_fnhum_2016_00128 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2016-03-31 |
| PublicationDateYYYYMMDD | 2016-03-31 |
| PublicationDate_xml | – month: 03 year: 2016 text: 2016-03-31 day: 31 |
| PublicationDecade | 2010 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Lausanne |
| PublicationTitle | Frontiers in human neuroscience |
| PublicationTitleAlternate | Front Hum Neurosci |
| PublicationYear | 2016 |
| Publisher | Frontiers Research Foundation Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
| References | Hasson (B12) 2010; 14 Naselaris (B23) 2015; 105 Hasson (B13) 2004; 303 Norman (B25) 2006; 104 Smith (B31) 2004; 23 Russ (B29) 2015; 109 Chen (B5) 2015; 104 Cox (B8) 1996; 29 Nishimoto (B24) 2011; 21 Yourganov (B33) 2014; 96 Chen (B6) 2014 Pereira (B26) 2011; 56 Bartels (B3) 2008; 18 Horikawa (B16) 2013; 340 Misaki (B21) 2010; 53 Bartels (B2) 2004; 21 Haxby (B15) 2011; 72 Smith (B30) 2009; 106 Sorger (B32) 2012; 22 Golland (B10) 2007; 17 Kriegeskorte (B19) 2006; 103 Ray (B28) 2013; 7 Jääskeläinen (B18) 2008; 2 Abou Elseoud (B1) 2011; 5 Naci (B22) 2012; 72 Grill-Spector (B11) 2014; 15 Pereira (B27) 2009; 45 Yuen (B34) 2012; 3 Brainard (B4) 1997; 10 Hasson (B14) 2008; 28 Churchill (B7) 2014; 35 Ku (B20) 2008; 26 Huth (B17) 2012; 76 Çukur (B9) 2013; 16 8812068 - Comput Biomed Res. 1996 Jun;29(3):162-73 24962370 - Nat Rev Neurosci. 2014 Aug;15(8):536-48 14755595 - Hum Brain Mapp. 2004 Feb;21(2):75-85 19620724 - Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5 24639383 - Hum Brain Mapp. 2014 Sep;35(9):4499-517 23558170 - Science. 2013 May 3;340(6132):639-42 21945275 - Curr Biol. 2011 Oct 11;21(19):1641-6 23603707 - Nat Neurosci. 2013 Jun;16(6):763-70 23034907 - Ann Neurol. 2012 Sep;72(3):312-23 19018313 - Open Neuroimag J. 2008;2:14-9 16537458 - Proc Natl Acad Sci U S A. 2006 Mar 7;103(10):3863-8 15501092 - Neuroimage. 2004;23 Suppl 1:S208-19 25462696 - Neuroimage. 2015 Jan 1;104:452-9 16699080 - Cereb Cortex. 2007 Apr;17(4):766-77 16899397 - Trends Cogn Sci. 2006 Sep;10(9):424-30 18691999 - Magn Reson Imaging. 2008 Sep;26(7):1007-14 22017997 - Neuron. 2011 Oct 20;72(2):404-16 15016991 - Science. 2004 Mar 12;303(5664):1634-40 22748322 - Curr Biol. 2012 Jul 24;22(14):1333-8 20488249 - Neuroimage. 2011 May 15;56(2):476-96 18322098 - J Neurosci. 2008 Mar 5;28(10):2539-50 21687724 - Front Syst Neurosci. 2011 Jun 03;5:37 24339802 - Front Neurosci. 2013 Dec 10;7:237 9176952 - Spat Vis. 1997;10(4):433-6 20580933 - Neuroimage. 2010 Oct 15;53(1):103-18 19070668 - Neuroimage. 2009 Mar;45(1 Suppl):S199-209 20004608 - Trends Cogn Sci. 2010 Jan;14(1):40-8 25451480 - Neuroimage. 2015 Jan 15;105:215-28 23259955 - Neuron. 2012 Dec 20;76(6):1210-24 25579448 - Neuroimage. 2015 Apr 1;109:84-94 17615246 - Cereb Cortex. 2008 Mar;18(3):705-17 24705202 - Neuroimage. 2014 Aug 1;96:117-32 |
| References_xml | – volume: 303 start-page: 1634 year: 2004 ident: B13 article-title: Intersubject synchronization of cortical activity during natural vision publication-title: Science doi: 10.1126/science.1089506 – volume: 21 start-page: 75 year: 2004 ident: B2 article-title: Functional brain mapping during free viewing of natural scenes publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.10153 – volume: 21 start-page: 1641 year: 2011 ident: B24 article-title: Reconstructing visual experiences from brain activity evoked by natural movies publication-title: Curr. Biol. doi: 10.1016/j.cub.2011.08.031 – volume: 16 start-page: 763 year: 2013 ident: B9 article-title: Attention during natural vision warps semantic representation across the human brain publication-title: Nat. Neurosci. doi: 10.1038/nn.3381 – volume: 28 start-page: 2539 year: 2008 ident: B14 article-title: A hierarchy of temporal receptive windows in human cortex publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5487-07.2008 – volume: 56 start-page: 476 year: 2011 ident: B26 article-title: Information mapping with pattern classifiers: a comparative study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.05.026 – volume: 10 start-page: 433 year: 1997 ident: B4 article-title: The psychophysics toolbox publication-title: Spat. Vis. doi: 10.1163/156856897X00357 – volume: 35 start-page: 4499 year: 2014 ident: B7 article-title: Comparing within-subject classification and regularization methods in fMRI for large and small sample sizes publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22490 – volume: 106 start-page: 13040 year: 2009 ident: B30 article-title: Correspondence of the brain's functional architecture during activation and rest publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0905267106 – volume: 340 start-page: 639 year: 2013 ident: B16 article-title: Neural decoding of visual imagery during sleep publication-title: Science doi: 10.1126/science.1234330 – volume: 96 start-page: 117 year: 2014 ident: B33 article-title: Pattern classification of fMRI data: applications for analysis of spatially distributed cortical networks publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.03.074 – volume: 104 start-page: 452 year: 2015 ident: B5 article-title: Evaluation of highly accelerated simultaneous multi-slice EPI for fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.10.027 – volume: 22 start-page: 1333 year: 2012 ident: B32 article-title: A real-time fMRI-based spelling device immediately enabling robust motor-independent communication publication-title: Curr. Biol. doi: 10.1016/j.cub.2012.05.022 – volume: 5 issue: 37 year: 2011 ident: B1 article-title: Group-ICA model order highlights patterns of functional brain connectivity publication-title: Front. Syst. Neurosci. doi: 10.3389/fnsys.2011.00037 – volume: 104 start-page: 24 year: 2006 ident: B25 article-title: Beyond mind-reading: multi-voxel pattern analysis of fMRI data publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2006.07.005 – volume: 23 start-page: S208 year: 2004 ident: B31 article-title: Advances in functional and structural MR image analysis and implementation as FSL publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.07.051 – volume: 29 start-page: 162 year: 1996 ident: B8 article-title: AFNI: software for analysis and visualization of functional magnetic resonance neuroimages Comput publication-title: Biomed. Res. doi: 10.1006/cbmr.1996.0014 – volume: 26 start-page: 1007 year: 2008 ident: B20 article-title: Comparison of pattern recognition methods in classifying high-resolution BOLD signals obtained at high magnetic field in monkeys publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2008.02.016 – volume: 72 start-page: 312 year: 2012 ident: B22 article-title: Brain-computer interfaces for communication with nonresponsive patients publication-title: Ann. Neurol. doi: 10.1002/ana.23656 – volume: 14 start-page: 40 year: 2010 ident: B12 article-title: Reliability of cortical activity during natural stimulation publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2009.10.011 – volume: 103 start-page: 3863 year: 2006 ident: B19 article-title: Information-based functional brain mapping publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0600244103 – volume: 72 start-page: 404 year: 2011 ident: B15 article-title: A common, high-dimensional model of the representational space in human ventral temporal cortex publication-title: Neuron doi: 10.1016/j.neuron.2011.08.026 – volume: 105 start-page: 215 year: 2015 ident: B23 article-title: A voxel-wise encoding model for early visual areas decodes mental images of remembered scenes publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.10.018 – volume: 109 start-page: 84 year: 2015 ident: B29 article-title: Functional MRI mapping of dynamic visual features during natural viewing in the macaque publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.01.012 – volume: 18 start-page: 705 year: 2008 ident: B3 article-title: Natural vision reveals regional specialization to local motion and to contrast-invariant, global flow in the human brain publication-title: Cereb. Cortex doi: 10.1093/cercor/bhm107 – volume: 2 start-page: 14 year: 2008 ident: B18 article-title: Inter-subject synchronization of prefrontal cortex hemodynamic activity during natural viewing publication-title: Open Neuroimag. J. doi: 10.2174/1874440000802010014 – volume: 15 start-page: 536 year: 2014 ident: B11 article-title: The functional architecture of the ventral temporal cortex and its role in categorization publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn3747 – volume: 45 start-page: S199 year: 2009 ident: B27 article-title: Machine learning classifiers and fMRI: a tutorial overview publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.11.007 – volume: 76 start-page: 1210 year: 2012 ident: B17 article-title: A continuous semantic space describes the representation of thousands of object and action categories across the human brain publication-title: Neuron doi: 10.1016/j.neuron.2012.10.014 – volume-title: Machine Learning for Signal Processing (MLSP), 2014 IEEE International Workshop year: 2014 ident: B6 article-title: Joint SVD-Hyperalignment for multi-subject FMRI data alignment doi: 10.1109/MLSP.2014.6958912 – volume: 53 start-page: 103 year: 2010 ident: B21 article-title: Comparison of multivariate classifiers and response normalizations for pattern-information fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.05.051 – volume: 7 issue: 237 year: 2013 ident: B28 article-title: ICA model order selection of task co-activation networks publication-title: Front. Neurosci. doi: 10.3389/fnins.2013.00237 – volume: 3 start-page: 278 year: 2012 ident: B34 article-title: Pattern classification predicts individuals' responses to affective stimuli publication-title: Transl. Neurosci. doi: 10.2478/s13380-012-0029-6 – volume: 17 start-page: 766 year: 2007 ident: B10 article-title: Extrinsic and intrinsic systems in the posterior cortex of the human brain revealed during natural sensory stimulation publication-title: Cereb. Cortex doi: 10.1093/cercor/bhk030 – reference: 25579448 - Neuroimage. 2015 Apr 1;109:84-94 – reference: 19620724 - Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5 – reference: 16537458 - Proc Natl Acad Sci U S A. 2006 Mar 7;103(10):3863-8 – reference: 22748322 - Curr Biol. 2012 Jul 24;22(14):1333-8 – reference: 24339802 - Front Neurosci. 2013 Dec 10;7:237 – reference: 16699080 - Cereb Cortex. 2007 Apr;17(4):766-77 – reference: 24962370 - Nat Rev Neurosci. 2014 Aug;15(8):536-48 – reference: 15016991 - Science. 2004 Mar 12;303(5664):1634-40 – reference: 20488249 - Neuroimage. 2011 May 15;56(2):476-96 – reference: 23034907 - Ann Neurol. 2012 Sep;72(3):312-23 – reference: 21945275 - Curr Biol. 2011 Oct 11;21(19):1641-6 – reference: 23558170 - Science. 2013 May 3;340(6132):639-42 – reference: 9176952 - Spat Vis. 1997;10(4):433-6 – reference: 8812068 - Comput Biomed Res. 1996 Jun;29(3):162-73 – reference: 14755595 - Hum Brain Mapp. 2004 Feb;21(2):75-85 – reference: 23603707 - Nat Neurosci. 2013 Jun;16(6):763-70 – reference: 25451480 - Neuroimage. 2015 Jan 15;105:215-28 – reference: 23259955 - Neuron. 2012 Dec 20;76(6):1210-24 – reference: 19070668 - Neuroimage. 2009 Mar;45(1 Suppl):S199-209 – reference: 17615246 - Cereb Cortex. 2008 Mar;18(3):705-17 – reference: 24705202 - Neuroimage. 2014 Aug 1;96:117-32 – reference: 19018313 - Open Neuroimag J. 2008;2:14-9 – reference: 21687724 - Front Syst Neurosci. 2011 Jun 03;5:37 – reference: 16899397 - Trends Cogn Sci. 2006 Sep;10(9):424-30 – reference: 20580933 - Neuroimage. 2010 Oct 15;53(1):103-18 – reference: 20004608 - Trends Cogn Sci. 2010 Jan;14(1):40-8 – reference: 18691999 - Magn Reson Imaging. 2008 Sep;26(7):1007-14 – reference: 24639383 - Hum Brain Mapp. 2014 Sep;35(9):4499-517 – reference: 25462696 - Neuroimage. 2015 Jan 1;104:452-9 – reference: 15501092 - Neuroimage. 2004;23 Suppl 1:S208-19 – reference: 22017997 - Neuron. 2011 Oct 20;72(2):404-16 – reference: 18322098 - J Neurosci. 2008 Mar 5;28(10):2539-50 |
| SSID | ssj0062651 |
| Score | 2.2779977 |
| Snippet | Naturalistic stimuli like movies evoke complex perceptual processes, which are of great interest in the study of human cognition by functional MRI (fMRI).... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 128 |
| SubjectTerms | Algorithms Bayesian analysis BOLD fMRI Brain mapping Brain research Classification Cognitive ability Computational neuroscience Data analysis Experiments Functional magnetic resonance imaging Hypotheses LDA Learning algorithms movies multivariate pattern analysis MVPA Neuroscience NMR Nuclear magnetic resonance Statistical analysis Statistics Visual stimuli |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA_SF30RtX5srRJBBIXldvOx2X1sraWKVRALfQtJNqGF6165u1WO_vOdSfaWOxT74tuy2V2ymZnMb5LJbwh562pemLJwuatalwsWQm7rpsiVZEa1SoBF4Trk6bfq5Ex8OZfnG6W-MCcs0QOngZvUrSisD6wMAFQ8qwy4bMEcOEZV2VDEaL2om3UwleZgQOmyTJuSEII1k9Bd9HjsvIw7D1h5fcMJRa7-vwHMP_Mk7_fdtVn9NtPphhM6fkQeDuiRHqRePyb3fPeE7B50EDlfreg7GvM540L5LrmBMBPUmB5d4syQMl7omoOEYg6l_-UXFPmKqUMMjUlDUU7Q6Pq5cSsKiJYCQqSH378e0XD64zOdp5xaT5czGklBkUARekOvZuBhKVxivtVTcnb86efHk3wotZA70RTL3DFlGTeGB1GFSspg4I6ysvKlsr6WxjeND7IueWsFYKRgyxqkAtbruOG25s_ITjfr_AtCG6uKIJSqg7eigHc8YJySO8995VveZGSyHnvtBh5yLIcx1RCPoLR0lJZGaekorYy8H9-4Thwc_3j2EMU5Pofs2fEG6JQedErfpVMZ2V8rgx5MeqGRGL_Bk8PwB2_GZjBG3GExnZ_1C10qLGQiWcUy8jzpztgThhvKMH9mRG1p1VZXt1u6y4tI-I2EOlKqjHwY9e_Ogdj7HwPxkjzAL6YzmPtkZznv_SsAYUv7OtrbLXo2Mkc priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fb9MwELZG98BeEGzAAgMZCSGBFDVx4jh5QKhlmwaiBRUm7S2yHZtWKklpG1DFP8-dk5RVoPFqO4qT--HPvvN3hDzXaRTIMNC-Tgrtx8xaX6VZ4AvOpChEDBaF55CjcXJxGb-_4ld7ZNzdhcG0ys4nOkddVBrPyPvIS57hxc3szeK7j1WjMLraldCQbWmF4rWjGLtF9hkyY_XI_vBs_GnS-WZA7zxsgpWwNcv6tpzWeB09dBEJrMh-bXFyHP7_Ap5_50_ersuF3PyU8_m1xen8LrnToko6aNTgHtkz5SE5GpSwo_62oS-oy_N0B-iH5ADxZUPPfER-wV4UdJ2eztB9NGkxtCMqoQM9nZkfZkUxG4S6-pmYWeSECZ26Xkq9oQB7KcBIOvz44ZTa0eQdnTSJt4auKzqWjtnDvZCOKvjL9PN6hklZ98nl-dmXtxd-W4_B13EWrH3NhGKRlJGNE5twbiW0CMUTEwplUi5NlhnL0zAqVAxAyqowVcaCietIRiqNHpBeWZXmmNBMicDGQqTWqDiAZwwAoTDSJjKJKaLMI_1OELluycqxZsY8h00Lii53ostRdLkTnUdebp9YNEQdN4wdomy345Bi2zVUy695a7F5WsQBzJ6FFhCyYYkErBgzDYhMJMoGgUdOOs3IW7tf5X-01CPPtt1gsRiGkaWp6lUeCqx2wlnCPPKwUaTtTBhGncHJekTsqNjOVHd7ytnUsYIj6w7nwiOvtsr43x_x6OZveEwOcGxzBfOE9NbL2jwBDLZWT1vD-g2bjTRU priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Ri9QwEA56PuiLqKde9ZQIIijUa9M0aR9E9jyPU9wTThfurSRp4i6s7bnbqot_3pm0W11cFB_btCXNzHS-6Uy-IeSxyZJIxZEJjShNyJlzoc7yKJQpU7KUHCwK_0OOT8XJhL89T89_bY_uF3C5NbTDflKTxfz59y-rl2DwLzDiBH974Kppi5vKY59XYNllcgX8VI6NHMZ8yCkAcvfNGGMhIPwCoNMlLbc-YcNJeS7_bQD0zzrKq211oVbf1Hz-m5M6vkGu9-iSjjp1uEku2eoW2R1VEFl_XtEn1Nd7-h_pu-QHhKGg5vRohl-OriKGrjlK6MhMZ_arXVIsBKG-dSYWFXk5wqBpF8qsKCBeCgiSHr5_d0Td-OwNPetqbi1tanqqPKmHp4Km4xo8MP3QzLAe6zaZHL_--Ook7FsxhIbnURMaJjVLlEocF06kqVNwRupU2Fhqm6XK5rl1aRYnpeaAoZyOM20dWLdJVKKz5A7ZqerK7hGaaxk5LmXmrOYR3GMBA8WJsYkVtkzygBys174wPU85tsuYFxCvoLQKL60CpVV4aQXk6XDHRcfR8ZdrD1Gcw3XIru1P1ItPRW-sRVbyCGbPYgfg2DKhACZyZgCMSaFdFAVkf60MxVpjCyTOz3FnMbzBo2EYjBUzMKqydbssYomNTlImWEDudrozzIRhwhm-rwGRG1q1MdXNkWo29YTgSLiTpjIgzwb9--dC3PuPRbtPruFBtxVzn-w0i9Y-ACzW6IfexH4CdwQzEQ priority: 102 providerName: Scholars Portal |
| Title | Linear Discriminant Analysis Achieves High Classification Accuracy for the BOLD fMRI Response to Naturalistic Movie Stimuli |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/27065832 https://www.proquest.com/docview/2290922279 https://www.proquest.com/docview/1780815262 https://pubmed.ncbi.nlm.nih.gov/PMC4815557 https://www.frontiersin.org/articles/10.3389/fnhum.2016.00128/pdf https://doaj.org/article/8d40bef21f774e26a50542c71076bf00 |
| UnpaywallVersion | publishedVersion |
| Volume | 10 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1662-5161 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062651 issn: 1662-5161 databaseCode: KQ8 dateStart: 20070101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1662-5161 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062651 issn: 1662-5161 databaseCode: KQ8 dateStart: 20080101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: Directory of Open Access Journals (DOAJ) customDbUrl: eissn: 1662-5161 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062651 issn: 1662-5161 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1662-5161 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062651 issn: 1662-5161 databaseCode: DIK dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1662-5161 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062651 issn: 1662-5161 databaseCode: GX1 dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1662-5161 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062651 issn: 1662-5161 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central (LAB) customDbUrl: eissn: 1662-5161 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062651 issn: 1662-5161 databaseCode: RPM dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1662-5161 dateEnd: 20211231 omitProxy: true ssIdentifier: ssj0062651 issn: 1662-5161 databaseCode: BENPR dateStart: 20080328 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1662-5161 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0062651 issn: 1662-5161 databaseCode: M48 dateStart: 20100101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwGLWgfYAXbuMSGJWREBJIWRPHl-SxZRsD0TIVJo2nyHZstaKk1ZqACn-ez05aUZhAiBdLiW3Jl8_2-ezjY4Se6jSJZBzpUPNCh5RYG6o0i0LBiBSFoDCi3D7kaMxPzuibc7ZhE65aWqV1V_fdQ9CzslEKbiliboSDR5X1bTmt3S3y2B8kkLS_LOxV1OUM4HgHdc_Gp4OPztHiHBwtgDTN8eSlWXeWI6_afxnU_J0xea0ul3L9Vc7nPy1HxzeR2lSkYaF8OqgrdaC__aLx-F81vYVutGAVD5r0t9EVU95Be4MSHPXPa_wMe_qo35ffQ9_Bq4VRgw9nbiJqCDZ4I3mCB3o6M1_MCjteCfYvcTqOkjcLiNT1hdRrDAAaAyDFw3dvD7EdTV7jSUPhNbha4LH0GiFeWRqPFrCg4_fVzNG77qKz46MPL0_C9mWHUNMsqkJNhCKJlIml3HLGrIQ_QjFuYqFMyqTJMmNZGieFogDJrIpTZSxMFjqRiUqTe6hTLkrzAOFMichSIVJrFI0gjwFIFSfaJIabIskC1N90cK5b2XP3-sY8B_fHtXHu2zh3bZz7Ng7Q822OZSP58Ye0Q2cz23ROrNv_gN7M297M04JGUHoSW8DahnAJqJMSDdhOcGWjKED7G4vL2xlklTsd_sxdVIYaPNlGw9h3BzqyNIt6lcfCvZvCCCcBut8Y6LYkxJ1fw3QdILFjujtF3Y0pZ1OvL-70exgTAXqxNfK_NsTDf0n8CF13H83Vzn3UqS5q8xiwXaV6qDs8Gp9Oen5vBMJX5zGEI5r22nH9A1IlVIA |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfG9rC9INj4CAwwEiCBFDVxnDh5mFBLN7WsLahs0t4y27FppZKUfjBV_G_8bZydpKwCjae9xnHi5M7n3_nOv0PolYwDj_uedGWUSZcSrV0RJ57LQsJZxijMKLMP2R9EnXP68SK82EK_6rMwJq2ytonWUGeFNHvkDcNLnpiDm8n76XfXVI0y0dW6hAavSitkR5ZirDrYcapWV-DCzY-6bZD3a0JOjs8-dNyqyoAraeItXEmYIAHngaaRjsJQc7jCRBgpnwkVh1wlidJh7AeZoAAPtPBjoTQorgx4IOIAnnsH7dCAJuD87bSOB5-H9VoA3kLol8FRcAWThs5HS3P83bcREFMB_tpiaGsG_Avo_p2vubvMp3x1xSeTa4vhyT10t0KxuFmq3X20pfJ9dNDMwYP_tsJvsM0rtRv2-2jP4NmSDvoA_QTfF34abo-NuSrTcHBNjIKbcjRWP9Qcm-wTbOt1mkwmqzzQKJczLlcYYDYG2Ipbn3ptrPvDLh6Wib4KLwo84JZJxL4Q9wuQKv6yGJsksAfo_FYk8xBt50WuHiOcCOZpylislaAe9FEAvPxAqkBFKgsSBzVqQaSyIkc3NTomKThJRnSpFV1qRJda0Tno7brHtCQGueHelpHt-j5D6W0vFLOvaWUh0jijHoye-BoQuSIRB2xKiQQEyCKhPc9Bh7VmpJWdmad_ZoWDXq6bwUKYsA_PVbGcpz4z1VVCEhEHPSoVaT0SYqLcYNQdxDZUbGOomy35eGRZyA3LTxgyB71bK-N_f8STm7_hBdrtnPV7aa87OH2K9ky_8vjnIdpezJbqGeC_hXheTTKMLm97Xv8GbAVyRg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGJsFeEGxcAgOMBEggRU2ci5OHCbV01crWMg0m7S2zHZtWKmnphaniH_KrOMdJyirQeNprHCdOzsXf8bkR8kolgSd8T7kqzpUbMmNcmaSeyyMmeM5DkCg8h-z148Oz8ON5dL5BftW5MBhWWetEq6jzscIz8gbWJU8xcTNtmCos4qTdeT_57mIHKfS01u00RNVmId-35caqJI8jvbwEc262320D7V8z1jn48uHQrToOuCpMvbmrGJcsECIwYWziKDICrnAZxdrnUieR0GmqTZT4QS5DgApG-onUBphYBSKQSQDPvUW20PkFSmKrddA_Oa33BbAcIr90lIJZCF9RDBaYCu9bbwh2g7-yMdr-Af8CvX_Hbt5ZFBOxvBSj0ZWNsXOP3K0QLW2WLHifbOhih-w2C7Dmvy3pG2pjTO3h_Q7ZRmxblobeJT_BDoafRttDVF1lSA6ti6TQphoM9Q89oxiJQm3vToxqsowEg2oxFWpJAXJTgLC09em4TU3vtEtPy6BfTedj2he2qoh9Ie2NgcL083yIAWEPyNmNUOYh2SzGhX5MaCq5Z0LOE6Nl6MEcDSDMD5QOdKzzIHVIoyZEpqpC6divY5SBwYSkyyzpMiRdZknnkLerGZOySMg197aQtqv7sLy3vTCefs0qbZEleejB6plvAJ1rFgvAqSFTgAZ5LI3nOWSv5oys0jmz7I-EOOTlahi0BbqARKHHi1nmc-y0ErGYOeRRyUirlTD0eIOCdwhfY7G1pa6PFMOBrUiOFX-iiDvk3YoZ__sjnlz_DS_IbZDv7LjbP3pKtnFamQm6Rzbn04V-BlBwLp9XMkbJxU2L9W9uQXZ1 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Bb9MwFLagO8CFAYORMZCREBJIWRMntpNjx5gGogUNKsEpsh1brShptSagwp_nPSetKEwgxDGxLdnPz_b37M-fCXlssiRScWRCI0oTpsy5UGd5FErOlCxlCiMK9yGHI3E2Tl994Gs24bKjVTq8uo8PQU-rVim4o4jhCIeIKu-7atLgLfLYHySwrL8o3VWyIzjA8R7ZGY_eDj5ioCUEBFoAadrjyUuLbi1HXrX_Mqj5O2PyWlMt1Oqrms1-Wo5Od4leN6RloXw6amp9ZL79ovH4Xy29SW50YJUO2vy3yBVb3SZ7gwoC9c8r-oR6-qjfl98j3yGqhVFDT6Y4EbUEG7qWPKEDM5naL3ZJkVdC_UucyFHybgGJprlQZkUBQFMApPT4zesT6obnL-l5S-G1tJ7TkfIaIV5Zmg7nsKDTd_UU6V13yPj0xfvnZ2H3skNo0jyqQ8OkZolSiUuFE5w7BX-k5sLGUtuMK5vn1vEsTkqdAiRzOs60dTBZmEQlOkvukl41r-w9QnMtI5dKmTmr0wjKWIBUcWJsYoUtkzwg_XUHF6aTPcfXN2YFhD9o48LbuEAbF97GAXm6KbFoJT_-kPcYfWaTD8W6_Q_ozaLrzSIr0whqz2IHWNsyoQB1pswAtpNCuygKyOHa44puBlkWqMOf40VlaMGjTTKMfTzQUZWdN8silvhuCmeCBWS_ddBNTRieX8N0HRC55bpbVd1OqaYTry-O-j2cy4A82zj5Xw1x8C-Z75Pr-NFe7TwkvfqisQ8A29X6YTd6fwD8bFAm |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linear+Discriminant+Analysis+Achieves+High+Classification+Accuracy+for+the+BOLD+fMRI+Response+to+Naturalistic+Movie+Stimuli&rft.jtitle=Frontiers+in+human+neuroscience&rft.au=Mandelkow%2C+Hendrik&rft.au=de+Zwart%2C+Jacco+A.&rft.au=Duyn%2C+Jeff+H.&rft.date=2016-03-31&rft.issn=1662-5161&rft.eissn=1662-5161&rft.volume=10&rft_id=info:doi/10.3389%2Ffnhum.2016.00128&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fnhum_2016_00128 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5161&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5161&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5161&client=summon |