Molecular Characterisation of a Rare Reassortant Porcine-Like G5P[6] Rotavirus Strain Detected in an Unvaccinated Child in Kasama, Zambia

A human-porcine reassortant strain, RVA/Human-wt/ZMB/UFS-NGS-MRC-DPRU4723/2014/G5P[6], was identified in a sample collected in 2014 from an unvaccinated 12 month old male hospitalised for gastroenteritis in Zambia. We sequenced and characterised the complete genome of this strain which presented the...

Full description

Saved in:
Bibliographic Details
Published inPathogens (Basel) Vol. 9; no. 8; p. 663
Main Authors Maringa, Wairimu M., Mwangi, Peter N., Simwaka, Julia, Mpabalwani, Evans M., Mwenda, Jason M., Peenze, Ina, Esona, Mathew D., Mphahlele, M. Jeffrey, Seheri, Mapaseka L., Nyaga, Martin M.
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 17.08.2020
MDPI
Subjects
Online AccessGet full text
ISSN2076-0817
2076-0817
DOI10.3390/pathogens9080663

Cover

Abstract A human-porcine reassortant strain, RVA/Human-wt/ZMB/UFS-NGS-MRC-DPRU4723/2014/G5P[6], was identified in a sample collected in 2014 from an unvaccinated 12 month old male hospitalised for gastroenteritis in Zambia. We sequenced and characterised the complete genome of this strain which presented the constellation: G5-P[6]-I1-R1-C1-M1-A8-N1-T1-E1-H1. The genotype A8 is often observed in porcine strains. Phylogenetic analyses showed that VP6, VP7, NSP2, NSP4, and NSP5 genes were closely related to cognate gene sequences of porcine strains (e.g., RVA/Pig-wt/CHN/DZ-2/2013/G5P[X] for VP7) from the NCBI database, while VP1, VP3, VP4, and NSP3 were closely related to porcine-like human strains (e.g., RVA/Human-wt/CHN/E931/2008/G4P[6] for VP1, and VP3). On the other hand, the origin of the VP2 was not clear from our analyses, as it was not only close to both porcine (e.g., RVA/Pig-tc/CHN/SWU-1C/2018/G9P[13]) and porcine-like human strains (e.g., RVA/Human-wt/LKA/R1207/2009/G4P[6]) but also to three human strains (e.g., RVA/Human-wt/USA/1476/1974/G1P[8]). The VP7 gene was located in lineage II that comprised only porcine strains, which suggests the occurrence of independent porcine-to-human reassortment events. The study strain may have collectively been derived through interspecies transmission, or through reassortment event(s) involving strains of porcine and porcine-like human origin. The results of this study underline the importance of whole-genome characterisation of rotavirus strains and provide insights into interspecies transmissions from porcine to humans.
AbstractList A human-porcine reassortant strain, RVA/Human-wt/ZMB/UFS-NGS-MRC-DPRU4723/2014/G5P[6], was identified in a sample collected in 2014 from an unvaccinated 12 month old male hospitalised for gastroenteritis in Zambia. We sequenced and characterised the complete genome of this strain which presented the constellation: G5-P[6]-I1-R1-C1-M1-A8-N1-T1-E1-H1. The genotype A8 is often observed in porcine strains. Phylogenetic analyses showed that VP6, VP7, NSP2, NSP4, and NSP5 genes were closely related to cognate gene sequences of porcine strains (e.g., RVA/Pig-wt/CHN/DZ-2/2013/G5P[X] for VP7) from the NCBI database, while VP1, VP3, VP4, and NSP3 were closely related to porcine-like human strains (e.g., RVA/Human-wt/CHN/E931/2008/G4P[6] for VP1, and VP3). On the other hand, the origin of the VP2 was not clear from our analyses, as it was not only close to both porcine (e.g., RVA/Pig-tc/CHN/SWU-1C/2018/G9P[13]) and porcine-like human strains (e.g., RVA/Human-wt/LKA/R1207/2009/G4P[6]) but also to three human strains (e.g., RVA/Human-wt/USA/1476/1974/G1P[8]). The VP7 gene was located in lineage II that comprised only porcine strains, which suggests the occurrence of independent porcine-to-human reassortment events. The study strain may have collectively been derived through interspecies transmission, or through reassortment event(s) involving strains of porcine and porcine-like human origin. The results of this study underline the importance of whole-genome characterisation of rotavirus strains and provide insights into interspecies transmissions from porcine to humans.
Author Mwangi, Peter N.
Peenze, Ina
Simwaka, Julia
Seheri, Mapaseka L.
Esona, Mathew D.
Mphahlele, M. Jeffrey
Mpabalwani, Evans M.
Maringa, Wairimu M.
Nyaga, Martin M.
Mwenda, Jason M.
AuthorAffiliation 2 Virology Laboratory, Department of Pathology & Microbiology, University Teaching Hospital, Adult and Emergency Hospital, Lusaka 10101, Zambia; juliachibumbya@gmail.com
1 Next Generation Sequencing Unit, Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa; makena96wairimu@gmail.com (W.M.M.); nthigapete@gmail.com (P.N.M.)
6 South African Medical Research Council, 1 Soutpansberg Road, Pretoria 0001, South Africa
3 Department of Paediatrics & Child Health, School of Medicine, University of Zambia, Ridgeway, Lusaka RW50000, Zambia; evans.mpabalwani@unza.zm
5 Diarrhoeal Pathogens Research Unit, Faculty of Health Sciences, Sefako Makgatho Health Sciences University, Medunsa, Pretoria 0204, South Africa; ina.peenze@smu.ac.za (I.P.); mathew.esona@gmail.com (M.D.E.); Jeffrey.Mphahlele@mrc.ac.za (M.J.M.); mapaseka.seheri@smu.ac.za (M.L.S.)
4 World Health Organization, Regional Office for Africa, Brazzaville P.O. Box 06, Congo; mwendaj@who.i
AuthorAffiliation_xml – name: 1 Next Generation Sequencing Unit, Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa; makena96wairimu@gmail.com (W.M.M.); nthigapete@gmail.com (P.N.M.)
– name: 3 Department of Paediatrics & Child Health, School of Medicine, University of Zambia, Ridgeway, Lusaka RW50000, Zambia; evans.mpabalwani@unza.zm
– name: 6 South African Medical Research Council, 1 Soutpansberg Road, Pretoria 0001, South Africa
– name: 2 Virology Laboratory, Department of Pathology & Microbiology, University Teaching Hospital, Adult and Emergency Hospital, Lusaka 10101, Zambia; juliachibumbya@gmail.com
– name: 4 World Health Organization, Regional Office for Africa, Brazzaville P.O. Box 06, Congo; mwendaj@who.int
– name: 5 Diarrhoeal Pathogens Research Unit, Faculty of Health Sciences, Sefako Makgatho Health Sciences University, Medunsa, Pretoria 0204, South Africa; ina.peenze@smu.ac.za (I.P.); mathew.esona@gmail.com (M.D.E.); Jeffrey.Mphahlele@mrc.ac.za (M.J.M.); mapaseka.seheri@smu.ac.za (M.L.S.)
Author_xml – sequence: 1
  givenname: Wairimu M.
  surname: Maringa
  fullname: Maringa, Wairimu M.
– sequence: 2
  givenname: Peter N.
  surname: Mwangi
  fullname: Mwangi, Peter N.
– sequence: 3
  givenname: Julia
  surname: Simwaka
  fullname: Simwaka, Julia
– sequence: 4
  givenname: Evans M.
  surname: Mpabalwani
  fullname: Mpabalwani, Evans M.
– sequence: 5
  givenname: Jason M.
  surname: Mwenda
  fullname: Mwenda, Jason M.
– sequence: 6
  givenname: Ina
  surname: Peenze
  fullname: Peenze, Ina
– sequence: 7
  givenname: Mathew D.
  surname: Esona
  fullname: Esona, Mathew D.
– sequence: 8
  givenname: M. Jeffrey
  surname: Mphahlele
  fullname: Mphahlele, M. Jeffrey
– sequence: 9
  givenname: Mapaseka L.
  surname: Seheri
  fullname: Seheri, Mapaseka L.
– sequence: 10
  givenname: Martin M.
  orcidid: 0000-0002-5017-5584
  surname: Nyaga
  fullname: Nyaga, Martin M.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32824526$$D View this record in MEDLINE/PubMed
BookMark eNp1Uk1vEzEQXaEiWkrvnJAlLhxY8K4_dveCVAUoFUFUgV5AaDX2ziYOGzvY3kj8BP41TlKqNhK-zNd7TzOeeZwdWWcxy54W9BVjDX29hrhwc7ShoTWVkj3ITkpayZzWRXV0xz_OzkJY0vRquo0fZcesrEsuSnmS_fnkBtTjAJ5MFuBBR_QmQDTOEtcTIDPwSGYIITgfwUZy5bw2FvOp-YnkQlx9lz_IzEXYGD8G8iV6MJa8xYhJqiPJB0uu7QZ0YsE2NVmYYVf4CAFW8JJ8g5Uy8CR72MMQ8OzGnmbX7999nXzIp58vLifn01zzhsZc00p1jQLVQMMp1lJUuitAqT5FWiglKyV02YsCpZZdw6hkuuSqKoSqWVGx0-xyr9s5WLZrb1bgf7cOTLtLOD9vwUejB2zLquNMcewE45zWDLAHbHopOylqhiJpvdlrrUe1wk6jTeMP90TvV6xZtHO3aSsuKS-KJPDiRsC7XyOG2K5M0DgMYNGNoS15U5dVyUqWoM8PoEs3epu-KqGYaCSvxHa6Z3c7um3l38YTgO4B2rsQPPa3kIK227tqD-8qUeQBRZu4O5Htsof_E_8C7t_V4g
CitedBy_id crossref_primary_10_3389_fmicb_2023_1194764
crossref_primary_10_3390_ani14121790
crossref_primary_10_3390_pathogens10080959
crossref_primary_10_3390_vaccines10091463
crossref_primary_10_3389_fmicb_2023_1193094
crossref_primary_10_3390_vaccines8040609
crossref_primary_10_3390_v13091872
crossref_primary_10_1016_j_meegid_2021_105133
crossref_primary_10_1016_j_virusres_2022_198715
crossref_primary_10_1016_j_vaccine_2021_03_014
crossref_primary_10_1128_jvi_01455_22
crossref_primary_10_3390_v15020501
crossref_primary_10_1016_j_vetmic_2024_110359
crossref_primary_10_1099_mgen_0_000809
crossref_primary_10_1007_s13337_022_00765_z
crossref_primary_10_1007_s00253_025_13435_z
crossref_primary_10_3390_pathogens12050658
crossref_primary_10_1016_j_heliyon_2022_e11750
Cites_doi 10.1016/j.meegid.2015.11.011
10.1128/JVI.02513-14
10.3201/eid1501.080899
10.1016/j.meegid.2012.03.002
10.1016/j.meegid.2014.03.024
10.1016/j.virol.2005.11.001
10.4236/wjv.2015.51006
10.1016/j.vaccine.2018.02.077
10.1093/cid/civ1027
10.1128/JCM.42.9.4338-4343.2004
10.1099/0022-1317-72-1-117
10.1001/jamapediatrics.2018.1960
10.1111/j.1469-0691.2010.03383.x
10.1086/653557
10.1016/j.meegid.2018.08.019
10.1099/jmm.0.042499-0
10.1016/j.jcv.2007.12.013
10.1099/vir.0.051011-0
10.1099/jgv.0.000722
10.3201/eid1308.061038
10.1017/S0950268810001810
10.1128/JVI.01562-14
10.1016/j.meegid.2018.05.013
10.15585/mmwr.mm6643a7
10.1099/vir.0.068403-0
10.1371/journal.pone.0178855
10.1016/j.vetmic.2012.08.028
10.1002/jmv.21968
10.1016/j.meegid.2015.04.010
10.2217/fmb.11.90
10.1128/JCM.42.1.441-444.2004
10.1093/molbev/msq137
10.1097/INF.0000000000000174
10.2307/2408678
10.1016/j.meegid.2012.07.002
10.1016/j.vetmic.2011.06.026
10.1186/1471-2105-5-113
10.1007/s00705-011-1006-z
10.1016/j.meegid.2018.07.014
10.1016/j.virol.2005.08.029
10.1016/j.meegid.2012.04.028
10.1093/molbev/mst197
10.1073/pnas.85.3.645
10.1007/s00705-018-3836-4
10.1128/jcm.32.5.1408-1409.1994
10.1016/j.meegid.2017.06.026
10.1371/journal.pone.0100953
10.1007/s00705-006-0904-y
10.1073/pnas.87.18.7155
10.1128/jvi.70.9.5832-5839.1996
10.3201/eid1908.121653
10.1016/j.coviro.2012.04.007
10.1128/JCM.00032-07
10.1586/14787210.2015.1089171
10.1097/INF.0b013e3181fefa1f
10.1016/j.vetmic.2013.03.020
10.1016/j.vetmic.2009.08.028
10.1016/j.meegid.2015.02.011
10.1002/jmv.2020
10.2217/fmb.09.96
10.1016/0042-6822(89)90289-4
10.1128/JVI.02257-07
10.1016/j.meegid.2018.05.009
10.1093/cid/civ1013
10.1073/pnas.83.10.3465
10.1099/vir.0.009381-0
10.1128/JVI.01622-06
10.1099/vir.0.2008/001206-0
10.1093/ve/vew027
10.1006/viro.1994.1397
10.1093/molbev/mst010
10.1007/BF01718422
10.1093/bioinformatics/bts199
10.1080/02724936.1995.11747747
10.1016/j.meegid.2013.08.024
10.1080/10635150390235520
10.1093/nar/gkh458
10.1016/j.meegid.2016.05.014
10.1590/0074-02760170083
10.1128/jvi.62.5.1819-1823.1988
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 by the authors. 2020
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
NPM
7T7
8FD
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M7P
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7S9
L.6
5PM
DOA
DOI 10.3390/pathogens9080663
DatabaseName CrossRef
PubMed
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic (New)
ProQuest - Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
PubMed
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2076-0817
ExternalDocumentID oai_doaj_org_article_27d43b4ed5344083aefae9f66d6583e5
PMC7460411
32824526
10_3390_pathogens9080663
Genre Journal Article
GeographicLocations Zambia
Africa
GeographicLocations_xml – name: Africa
– name: Zambia
GrantInformation_xml – fundername: Bill and Melinda Gates Foundation
  grantid: BMGF-OPP1180423_2017
– fundername: World Health Organization
  grantid: UFS-AGR17-000378
– fundername: South African Medical Research Council
  grantid: Self-Initiated Research grant
– fundername: Poliomyelitis Research Foundation
  grantid: PRF-19/16
– fundername: World Health Organization
  grantid: 001
GroupedDBID 53G
5VS
8FE
8FH
AADQD
AAHBH
AAYXX
ADBBV
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
DIK
GROUPED_DOAJ
HCIFZ
HYE
IHR
KQ8
LK8
M48
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
NPM
PQGLB
7T7
8FD
ABUWG
AZQEC
C1K
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQQKQ
PQUKI
7S9
L.6
PUEGO
5PM
ID FETCH-LOGICAL-c490t-c07bd9bab9a940e8657cd1abbf40ec5bb67b5c2f51e6c6d93063c24b715b83173
IEDL.DBID M48
ISSN 2076-0817
IngestDate Wed Aug 27 01:29:10 EDT 2025
Thu Aug 21 18:16:26 EDT 2025
Fri Sep 05 11:26:13 EDT 2025
Fri Jul 25 12:13:04 EDT 2025
Mon Jul 21 06:04:52 EDT 2025
Tue Jul 01 04:15:32 EDT 2025
Thu Apr 24 23:11:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords porcine
reassortment
porcine-like human
genotype constellation
interspecies transmission
whole-genome
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c490t-c07bd9bab9a940e8657cd1abbf40ec5bb67b5c2f51e6c6d93063c24b715b83173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5017-5584
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/pathogens9080663
PMID 32824526
PQID 2435964757
PQPubID 2032351
ParticipantIDs doaj_primary_oai_doaj_org_article_27d43b4ed5344083aefae9f66d6583e5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7460411
proquest_miscellaneous_2498272323
proquest_journals_2435964757
pubmed_primary_32824526
crossref_primary_10_3390_pathogens9080663
crossref_citationtrail_10_3390_pathogens9080663
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200817
PublicationDateYYYYMMDD 2020-08-17
PublicationDate_xml – month: 8
  year: 2020
  text: 20200817
  day: 17
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Pathogens (Basel)
PublicationTitleAlternate Pathogens
PublicationYear 2020
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Edgar (ref_80) 2004; 5
Quaye (ref_27) 2018; 113
Komoto (ref_23) 2017; 98
Matthijnssens (ref_11) 2010; 27
Silva (ref_19) 2016; 43
Mwenda (ref_54) 2017; 66
Agbemabiese (ref_15) 2017; 54
Li (ref_41) 2008; 42
ref_52
Cowley (ref_22) 2013; 19
Matthijnssens (ref_5) 2008; 82
Kim (ref_16) 2012; 12
Rahman (ref_13) 2007; 81
Guindon (ref_83) 2003; 52
Gouvea (ref_36) 1994; 32
Arias (ref_68) 1996; 70
ref_59
Martella (ref_65) 2006; 344
Ahmed (ref_42) 2007; 13
Kaneko (ref_60) 2018; 163
Malasao (ref_24) 2018; 65
Nyaga (ref_31) 2015; 31
Chieochansin (ref_43) 2016; 37
My (ref_26) 2014; 95
Tacharoenmuang (ref_28) 2018; 63
Monini (ref_18) 2014; 25
Phan (ref_61) 2016; 2
Matthijnssens (ref_7) 2012; 2
Mwenda (ref_55) 2010; 202
Martella (ref_77) 2004; 42
Mwenda (ref_53) 2014; 33
Matthijnssens (ref_30) 2009; 4
Beards (ref_32) 1995; 13
Tort (ref_63) 2011; 83
Mpabalwani (ref_49) 1995; 15
Ghosh (ref_9) 2011; 6
Hwang (ref_37) 2012; 61
ref_29
Wang (ref_62) 2007; 152
Dallman (ref_10) 2011; 139
Kobayashi (ref_74) 1991; 72
Felsenstein (ref_84) 1985; 39
Zhang (ref_71) 2014; 88
Matthijnssens (ref_6) 2011; 156
Ciarlet (ref_72) 1995; 140
Green (ref_75) 1988; 62
Mladenova (ref_46) 2012; 12
Mpabalwani (ref_50) 2016; 62
Mukherjee (ref_25) 2011; 17
Komoto (ref_45) 2013; 94
Zhou (ref_58) 2015; 33
Katoh (ref_81) 2013; 30
Tate (ref_2) 2016; 62
Dong (ref_56) 2013; 20
Papp (ref_14) 2013; 165
Potgieter (ref_78) 2009; 90
Esona (ref_34) 2004; 42
Kearse (ref_79) 2012; 28
Laurin (ref_17) 2013; 162
Theuns (ref_20) 2015; 89
Patel (ref_12) 2011; 30
Doro (ref_21) 2015; 13
Martella (ref_39) 2006; 346
Mpabalwani (ref_51) 2018; 36
Mackow (ref_67) 1988; 85
Chilengi (ref_47) 2015; 5
Frazer (ref_85) 2004; 32
Martella (ref_4) 2010; 140
Nyaga (ref_40) 2018; 63
Lazdins (ref_73) 1986; 83
Yahiro (ref_57) 2018; 65
Zeller (ref_70) 2012; 12
ref_1
Bok (ref_33) 2001; 65
Lorenzetti (ref_38) 2011; 154
Esona (ref_35) 2009; 15
ref_48
Burke (ref_66) 1994; 202
Duan (ref_44) 2007; 45
Green (ref_64) 1989; 168
Troeger (ref_3) 2018; 172
ref_8
Gorziglia (ref_76) 1990; 87
Steyer (ref_69) 2008; 89
Tamura (ref_82) 2013; 30
References_xml – volume: 37
  start-page: 129
  year: 2016
  ident: ref_43
  article-title: The prevalence and genotype diversity of Human Rotavirus A circulating in Thailand, 2011–2014
  publication-title: Infect. Genet. Evol.
  doi: 10.1016/j.meegid.2015.11.011
– volume: 89
  start-page: 1043
  year: 2015
  ident: ref_20
  article-title: Complete genome characterisation of recent and ancient Belgian pig Group A rotaviruses and assessment of their evolutionary relationship with human rotaviruses
  publication-title: J. Virol.
  doi: 10.1128/JVI.02513-14
– volume: 15
  start-page: 83
  year: 2009
  ident: ref_35
  article-title: Novel human rotavirus genotype G5P[7] from child with diarrhoea, Cameroon
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid1501.080899
– volume: 12
  start-page: 1492
  year: 2012
  ident: ref_70
  article-title: Full genome characterisation of a porcine-like human G9P[6] rotavirus strain isolated from an infant in Belgium
  publication-title: Infect. Genet. Evol.
  doi: 10.1016/j.meegid.2012.03.002
– volume: 25
  start-page: 4
  year: 2014
  ident: ref_18
  article-title: Full-length genomic analysis of porcine rotavirus strains isolated from pigs with diarrhoea in Northern Italy
  publication-title: Infect. Genet. Evol.
  doi: 10.1016/j.meegid.2014.03.024
– volume: 346
  start-page: 301
  year: 2006
  ident: ref_39
  article-title: Identification of a novel VP4 genotype carried by a serotype G5 porcine rotavirus strain
  publication-title: Virology
  doi: 10.1016/j.virol.2005.11.001
– volume: 5
  start-page: 43
  year: 2015
  ident: ref_47
  article-title: Successes, challenges and lessons learned in accelerating introduction of rotavirus immunisation in Zambia
  publication-title: World J. Vaccines
  doi: 10.4236/wjv.2015.51006
– volume: 36
  start-page: 7165
  year: 2018
  ident: ref_51
  article-title: Sustained impact of rotavirus vaccine on rotavirus hospitalisations in Lusaka, Zambia, 2009–2016
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2018.02.077
– volume: 13
  start-page: 235
  year: 1995
  ident: ref_32
  article-title: Temporal distribution of rotavirus G-serotypes in the West Midlands region of the United Kingdom, 1983–1994
  publication-title: J. Diarrhoeal Dis. Res.
– volume: 62
  start-page: S183
  year: 2016
  ident: ref_50
  article-title: Impact of rotavirus vaccination on diarrhoeal Hospitalisations in children aged <5 Years in Lusaka, Zambia
  publication-title: Clin. Infect. Dis.
  doi: 10.1093/cid/civ1027
– volume: 42
  start-page: 4338
  year: 2004
  ident: ref_77
  article-title: Sequencing and phylogenetic analysis of human genotype P[6] rotavirus strains detected in Hungary provides evidence for genetic heterogeneity within the P[6] VP4 gene
  publication-title: J. Clin. Microbiol.
  doi: 10.1128/JCM.42.9.4338-4343.2004
– volume: 72
  start-page: 117
  year: 1991
  ident: ref_74
  article-title: Analysis of the newly identified neutralisation epitopes on VP7 of human rotavirus serotype 1
  publication-title: J. Gen. Virol.
  doi: 10.1099/0022-1317-72-1-117
– volume: 172
  start-page: 958
  year: 2018
  ident: ref_3
  article-title: Rotavirus vaccination and the global burden of rotavirus diarrhoea among children younger than 5 years
  publication-title: JAMA Pediatr.
  doi: 10.1001/jamapediatrics.2018.1960
– volume: 17
  start-page: 1343
  year: 2011
  ident: ref_25
  article-title: Full genomic analyses of human rotavirus G4P[4], G4P[6], G9P[19] and G10P[6] strains from north-eastern India: Evidence for interspecies transmission and complex reassortment events
  publication-title: Clin. Microbiol. Infect.
  doi: 10.1111/j.1469-0691.2010.03383.x
– volume: 202
  start-page: S5
  year: 2010
  ident: ref_55
  article-title: Burden and epidemiology of rotavirus diarrhoea in selected African countries: Preliminary results from the African Rotavirus Surveillance Network
  publication-title: J. Infect. Dis.
  doi: 10.1086/653557
– ident: ref_1
– volume: 65
  start-page: 357
  year: 2018
  ident: ref_24
  article-title: Complete genome sequence analysis of rare G4P[6] rotavirus strains from human and pig reveals the evidence for interspecies transmission
  publication-title: Infect. Genet. Evol.
  doi: 10.1016/j.meegid.2018.08.019
– volume: 61
  start-page: 990
  year: 2012
  ident: ref_37
  article-title: Identification of porcine rotavirus-like genotype P[6] strains in Taiwanese children
  publication-title: J. Med. Microbiol.
  doi: 10.1099/jmm.0.042499-0
– volume: 42
  start-page: 141
  year: 2008
  ident: ref_41
  article-title: Molecular characterisation of unusual human G5P[6] rotaviruses identified in China
  publication-title: J. Clin. Virol.
  doi: 10.1016/j.jcv.2007.12.013
– volume: 94
  start-page: 1568
  year: 2013
  ident: ref_45
  article-title: Whole genomic analysis of a porcine-like human G5P[6] rotavirus strain isolated from a child with diarrhoea and encephalopathy in Japan
  publication-title: J. Gen. Virol.
  doi: 10.1099/vir.0.051011-0
– volume: 98
  start-page: 532
  year: 2017
  ident: ref_23
  article-title: Identification and characterisation of a human G9P[23] rotavirus strain from a child with diarrhoea in Thailand: Evidence for porcine-to-human interspecies transmission
  publication-title: J. Gen. Virol.
  doi: 10.1099/jgv.0.000722
– volume: 13
  start-page: 1232
  year: 2007
  ident: ref_42
  article-title: Rotavirus G5P[6] in child with diarrhoea, Vietnam
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid1308.061038
– ident: ref_8
– volume: 139
  start-page: 895
  year: 2011
  ident: ref_10
  article-title: Rotavirus genotypes co-circulating in Europe between 2006 and 2009 as determined by EuroRotaNet, a pan-European collaborative strain surveillance network
  publication-title: Epidemiol. Infect.
  doi: 10.1017/S0950268810001810
– volume: 88
  start-page: 9842
  year: 2014
  ident: ref_71
  article-title: Analysis of human rotaviruses from a single location over an 18-Year time span suggests that protein co-adaption influences gene constellations
  publication-title: J. Virol.
  doi: 10.1128/JVI.01562-14
– volume: 63
  start-page: 79
  year: 2018
  ident: ref_40
  article-title: Whole-genome sequencing and analyses identify high genetic heterogeneity, diversity and endemicity of rotavirus genotype P[6] strains circulating in Africa
  publication-title: Infect. Genet. Evol.
  doi: 10.1016/j.meegid.2018.05.013
– volume: 66
  start-page: 1192
  year: 2017
  ident: ref_54
  article-title: Implementation of rotavirus surveillance and vaccine introduction—World Health Organization African region, 2007–2016
  publication-title: Morb. Mortal. Wkly. Rep.
  doi: 10.15585/mmwr.mm6643a7
– volume: 95
  start-page: 2727
  year: 2014
  ident: ref_26
  article-title: Novel porcine-like human G26P[19] rotavirus identified in hospitalised paediatric diarrhoea patients in Ho Chi Minh City, Vietnam
  publication-title: J. Gen. Virol.
  doi: 10.1099/vir.0.068403-0
– ident: ref_29
  doi: 10.1371/journal.pone.0178855
– ident: ref_52
– volume: 162
  start-page: 94
  year: 2013
  ident: ref_17
  article-title: Full-length genome analysis of G2, G9 and G11 porcine group A rotaviruses
  publication-title: Vet. Microbiol.
  doi: 10.1016/j.vetmic.2012.08.028
– ident: ref_48
– volume: 83
  start-page: 357
  year: 2011
  ident: ref_63
  article-title: VP7 Gene of human rotavirus A genotype G5: Phylogenetic analysis reveals the existence of three different lineages worldwide
  publication-title: J. Med. Virol.
  doi: 10.1002/jmv.21968
– volume: 33
  start-page: 55
  year: 2015
  ident: ref_58
  article-title: Genomic characterisation of G3P[6], G4P[6] and G4P[8] human rotaviruses from Wuhan, China: Evidence for interspecies transmission and reassortment events
  publication-title: Infect. Genet. Evol.
  doi: 10.1016/j.meegid.2015.04.010
– volume: 6
  start-page: 1049
  year: 2011
  ident: ref_9
  article-title: Whole-genomic analysis of rotavirus strains: Current status and future prospects
  publication-title: Future Microbiol.
  doi: 10.2217/fmb.11.90
– volume: 42
  start-page: 441
  year: 2004
  ident: ref_34
  article-title: Detection of an unusual human rotavirus strain with G5P[8] specificity in a Cameroonian child with diarrhoea
  publication-title: J. Clin. Microbiol.
  doi: 10.1128/JCM.42.1.441-444.2004
– volume: 27
  start-page: 2431
  year: 2010
  ident: ref_11
  article-title: Phylodynamic analyses of rotavirus genotypes G9 and G12 underscore their potential for swift global spread
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msq137
– volume: 33
  start-page: S6
  year: 2014
  ident: ref_53
  article-title: African Rotavirus Surveillance Network: A brief overview
  publication-title: Pediatr. Infect. Dis. J.
  doi: 10.1097/INF.0000000000000174
– volume: 39
  start-page: 783
  year: 1985
  ident: ref_84
  article-title: Confidence Limits on Phylogenies: An approach using the bootstrap
  publication-title: Evolution
  doi: 10.2307/2408678
– volume: 12
  start-page: 1676
  year: 2012
  ident: ref_46
  article-title: Detection of rare reassortant G5P[6] rotavirus, Bulgaria
  publication-title: Infect. Genet. Evol.
  doi: 10.1016/j.meegid.2012.07.002
– volume: 154
  start-page: 191
  year: 2011
  ident: ref_38
  article-title: Genetic heterogeneity of wild-type G4P[6] porcine rotavirus strains detected in a diarrhoea outbreak in a regularly vaccinated pig herd
  publication-title: Vet. Microbiol.
  doi: 10.1016/j.vetmic.2011.06.026
– volume: 5
  start-page: 1
  year: 2004
  ident: ref_80
  article-title: MUSCLE: A multiple sequence alignment method with reduced time and space complexity
  publication-title: BMC Bioinform.
  doi: 10.1186/1471-2105-5-113
– volume: 156
  start-page: 1397
  year: 2011
  ident: ref_6
  article-title: Uniformity of rotavirus strain nomenclature proposed by the Rotavirus Classification Working Group (RCWG)
  publication-title: Arch. Virol.
  doi: 10.1007/s00705-011-1006-z
– volume: 65
  start-page: 170
  year: 2018
  ident: ref_57
  article-title: Human-porcine reassortant rotavirus generated by multiple reassortment events in a Sri Lankan child with diarrhoea
  publication-title: Infect. Genet. Evol.
  doi: 10.1016/j.meegid.2018.07.014
– volume: 344
  start-page: 509
  year: 2006
  ident: ref_65
  article-title: Relationships among porcine and human P[6] rotaviruses: Evidence that the different human P[6] lineages have originated from multiple interspecies transmission events
  publication-title: Virology
  doi: 10.1016/j.virol.2005.08.029
– volume: 12
  start-page: 1427
  year: 2012
  ident: ref_16
  article-title: Full-length genomic analysis of porcine G9P[23] and G9P[7] rotavirus strains isolated from pigs with diarrhoea in South Korea
  publication-title: Infect. Genet. Evol.
  doi: 10.1016/j.meegid.2012.04.028
– volume: 30
  start-page: 2725
  year: 2013
  ident: ref_82
  article-title: MEGA 6: Molecular evolutionary genetics analysis version 6.0
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/mst197
– volume: 85
  start-page: 645
  year: 1988
  ident: ref_67
  article-title: The rhesus rotavirus gene encoding protein VP3: Location of amino acids involved in homologous and heterologous rotavirus neutralization and identification of a putative fusion region
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.85.3.645
– volume: 163
  start-page: 2261
  year: 2018
  ident: ref_60
  article-title: Porcine-like G3P[6] and G4P[6] rotavirus A strains detected from children with diarrhoea in Vietnam
  publication-title: Arch. Virol.
  doi: 10.1007/s00705-018-3836-4
– volume: 32
  start-page: 1408
  year: 1994
  ident: ref_36
  article-title: Rotavirus serotype G5 associated with diarrhoea in Brazilian children
  publication-title: J. Clin. Microbiol.
  doi: 10.1128/jcm.32.5.1408-1409.1994
– volume: 54
  start-page: 164
  year: 2017
  ident: ref_15
  article-title: Whole genome characterisation of a porcine-like human reassortant G26P[19] Rotavirus A strain detected in a child hospitalised for diarrhoea in Nepal, 2007
  publication-title: Infect. Genet. Evol.
  doi: 10.1016/j.meegid.2017.06.026
– ident: ref_59
  doi: 10.1371/journal.pone.0100953
– volume: 152
  start-page: 669
  year: 2007
  ident: ref_62
  article-title: Molecular epidemiologic analysis of group A rotaviruses in adults and children with diarrhoea in Wuhan city, China, 2000–2006
  publication-title: Arch. Virol.
  doi: 10.1007/s00705-006-0904-y
– volume: 87
  start-page: 7155
  year: 1990
  ident: ref_76
  article-title: Antigenic relationships among human rotaviruses as determined by outer capsid protein VP4
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.87.18.7155
– volume: 70
  start-page: 5832
  year: 1996
  ident: ref_68
  article-title: Trypsin activation pathway of rotavirus infectivity
  publication-title: J. Virol.
  doi: 10.1128/jvi.70.9.5832-5839.1996
– volume: 19
  start-page: 1324
  year: 2013
  ident: ref_22
  article-title: Novel G10P[14] Rotavirus Strain, Northern Territory, Australia
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid1908.121653
– volume: 2
  start-page: 426
  year: 2012
  ident: ref_7
  article-title: Genotype constellation and evolution of group A rotaviruses infecting humans
  publication-title: Curr. Opin. Virol.
  doi: 10.1016/j.coviro.2012.04.007
– volume: 45
  start-page: 1614
  year: 2007
  ident: ref_44
  article-title: Novel human rotavirus of genotype G5P[6] identified in a stool specimen from a Chinese girl with diarrhoea
  publication-title: J. Clin. Microbiol.
  doi: 10.1128/JCM.00032-07
– volume: 13
  start-page: 1337
  year: 2015
  ident: ref_21
  article-title: Zoonotic transmission of rotavirus: Surveillance and control. Expert Rev
  publication-title: Anti. Infect. Ther.
  doi: 10.1586/14787210.2015.1089171
– volume: 30
  start-page: 1
  year: 2011
  ident: ref_12
  article-title: Real-world impact of rotavirus vaccination
  publication-title: Pediatr. Infect. Dis. J.
  doi: 10.1097/INF.0b013e3181fefa1f
– volume: 165
  start-page: 190
  year: 2013
  ident: ref_14
  article-title: Review of group A rotavirus strains reported in swine and cattle
  publication-title: Vet. Microbiol.
  doi: 10.1016/j.vetmic.2013.03.020
– volume: 140
  start-page: 246
  year: 2010
  ident: ref_4
  article-title: Zoonotic aspects of rotaviruses
  publication-title: Vet. Microbiol.
  doi: 10.1016/j.vetmic.2009.08.028
– volume: 31
  start-page: 321
  year: 2015
  ident: ref_31
  article-title: Whole genome detection of rotavirus mixed infections in human, porcine and bovine samples co-infected with various rotavirus strains collected from sub-Saharan Africa
  publication-title: Infect. Genet. Evol.
  doi: 10.1016/j.meegid.2015.02.011
– volume: 65
  start-page: 190
  year: 2001
  ident: ref_33
  article-title: Surveillance for rotavirus in Argentina
  publication-title: J. Med. Virol.
  doi: 10.1002/jmv.2020
– volume: 4
  start-page: 1303
  year: 2009
  ident: ref_30
  article-title: Rotavirus disease and vaccination: Impact on genotype diversity
  publication-title: Future Microbiol.
  doi: 10.2217/fmb.09.96
– volume: 168
  start-page: 429
  year: 1989
  ident: ref_64
  article-title: Sequence analysis of the gene encoding the serotype-specific glycoprotein (VP7) of two new human rotavirus serotypes
  publication-title: Virology
  doi: 10.1016/0042-6822(89)90289-4
– volume: 82
  start-page: 3204
  year: 2008
  ident: ref_5
  article-title: Full genome-based classification of rotaviruses reveals a common origin between human Wa-like and porcine rotavirus strains and human DS-1-like and bovine rotavirus strains
  publication-title: J. Virol.
  doi: 10.1128/JVI.02257-07
– volume: 63
  start-page: 43
  year: 2018
  ident: ref_28
  article-title: Characterisation of a G10P[14] rotavirus strain from a diarrhoeic child in Thailand: Evidence for bovine-to-human zoonotic transmission
  publication-title: Infect. Genet. Evol.
  doi: 10.1016/j.meegid.2018.05.009
– volume: 62
  start-page: S96
  year: 2016
  ident: ref_2
  article-title: World Health Organization—Coordinated Global Rotavirus Surveillance Network. Global, regional, and national estimates of rotavirus mortality in children <5 years of age, 2000–2013
  publication-title: Clin. Infect. Dis.
  doi: 10.1093/cid/civ1013
– volume: 83
  start-page: 3465
  year: 1986
  ident: ref_73
  article-title: Location of the major antigenic sites involved in rotavirus serotype-specific neutralisation
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.83.10.3465
– volume: 90
  start-page: 1423
  year: 2009
  ident: ref_78
  article-title: Improved strategies for sequence-independent amplification and sequencing of viral double-stranded RNA genomes
  publication-title: J. Gen. Virol.
  doi: 10.1099/vir.0.009381-0
– volume: 81
  start-page: 2382
  year: 2007
  ident: ref_13
  article-title: Evolutionary history and global spread of the emerging G12 human rotaviruses
  publication-title: J. Virol.
  doi: 10.1128/JVI.01622-06
– volume: 89
  start-page: 1690
  year: 2008
  ident: ref_69
  article-title: Human, porcine and bovine rotaviruses in Slovenia: Evidence of interspecies transmission and genome reassortment
  publication-title: J. Gen. Virol.
  doi: 10.1099/vir.0.2008/001206-0
– volume: 2
  start-page: 1
  year: 2016
  ident: ref_61
  article-title: Unbiased whole-genome deep sequencing of human and porcine stool samples reveals circulation of multiple groups of rotaviruses and a putative zoonotic infection
  publication-title: Virus Evol.
  doi: 10.1093/ve/vew027
– volume: 202
  start-page: 754
  year: 1994
  ident: ref_66
  article-title: Temporal correlation between a single amino acid change in the VP4 of a porcine rotavirus and a marked change in pathogenicity
  publication-title: Virology
  doi: 10.1006/viro.1994.1397
– volume: 30
  start-page: 772
  year: 2013
  ident: ref_81
  article-title: MAFFT multiple sequence alignment software version 7: Improvements in performance and usability
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/mst010
– volume: 140
  start-page: 437
  year: 1995
  ident: ref_72
  article-title: Comparative amino acid sequence analysis of the major outer capsid protein (VP7) of porcine rotaviruses with G3 and G5 serotype specificities isolated in Venezuela and Argentina
  publication-title: Arch. Virol.
  doi: 10.1007/BF01718422
– volume: 28
  start-page: 1647
  year: 2012
  ident: ref_79
  article-title: Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts199
– volume: 15
  start-page: 39
  year: 1995
  ident: ref_49
  article-title: Rotavirus gastro-enteritis in hospitalised children with acute diarrhoea in Zambia
  publication-title: Ann. Trop. Paediatr.
  doi: 10.1080/02724936.1995.11747747
– volume: 20
  start-page: 155
  year: 2013
  ident: ref_56
  article-title: Identification of circulating porcine-human reassortant G4P[6] rotavirus from children with acute diarrhoea in China by whole genome analyses
  publication-title: Infect. Genet. Evol.
  doi: 10.1016/j.meegid.2013.08.024
– volume: 52
  start-page: 696
  year: 2003
  ident: ref_83
  article-title: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood
  publication-title: Syst. Biol.
  doi: 10.1080/10635150390235520
– volume: 32
  start-page: 273
  year: 2004
  ident: ref_85
  article-title: VISTA: Computational tools for comparative genomics
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkh458
– volume: 43
  start-page: 6
  year: 2016
  ident: ref_19
  article-title: Distinguishing the genotype 1 genes and proteins of human Wa-like rotaviruses vs. porcine rotaviruses
  publication-title: Infect. Genet. Evol.
  doi: 10.1016/j.meegid.2016.05.014
– volume: 113
  start-page: 9
  year: 2018
  ident: ref_27
  article-title: Characterisation of a rare, reassortant human G10P[14] rotavirus strain detected in Honduras. Mem
  publication-title: Inst. Oswaldo Cruz.
  doi: 10.1590/0074-02760170083
– volume: 62
  start-page: 1819
  year: 1988
  ident: ref_75
  article-title: Prediction of human rotavirus serotype by nucleotide sequence analysis of the VP7 protein gene
  publication-title: J. Virol.
  doi: 10.1128/jvi.62.5.1819-1823.1988
SSID ssj0000800817
Score 2.2292972
Snippet A human-porcine reassortant strain, RVA/Human-wt/ZMB/UFS-NGS-MRC-DPRU4723/2014/G5P[6], was identified in a sample collected in 2014 from an unvaccinated 12...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 663
SubjectTerms children
Classification
Constellations
Diarrhea
disease transmission
Gastroenteritis
Gene sequencing
genes
Genomes
genotype
Genotype & phenotype
genotype constellation
Genotypes
humans
interspecies transmission
males
nucleotide sequences
occurrence
Pathogens
Phylogenetics
Phylogeny
porcine
porcine-like human
Proteins
reassortment
Rotavirus
strains
Strains (organisms)
Surveillance
swine
Vaccines
Viruses
VP7 gene
whole-genome
Zambia
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEG5kQfAivs26SgteBMMmnX4kR11dF18sowOLIqH6xY66icxkFvwJ_murksw4s4hevHVS3dDdVU19lep8xdgjdCEUlYgUhPepzKNIrYjYiiZCJXV00LN9vtNHU_nqRJ1slPqiO2EDPfCwcfvCeFlYGbwqqDhyASFCqKLWHn1nEXr20qzKNoKpLyMOKnMz5CULjOvpfvVpizpZVCjTutjyQz1d_58w5sWrkhu-5_AauzqCRv50mOx1dik0N9jloYzkj5vs59tVjVt-8Jt_ud9y3kYOfALzwCcBcTKB7abjx-2cEurpm9nXwF-q40_6M5-0HZzP5ssFf9_XjeDPAyUYgufYhoZPm3NwOAroVc-ITILXsIAzeMI_wpmdwS02PXzx4eAoHUsspE5WWZe6zFhfWbAVKiYLpVbG-RysjfjklLXaWOVEVHnQTvsKA4zCCWlNrmyJ0KO4zXaatgl3Gc8BwYoKGQI6kAGBoS094onoEb571GDC9lcbXruRf5yW863GOIRUVF9UUcIer0d8H7g3_tL3Gelw3Y9Ys_sXaEv1aEv1v2wpYXsrC6jHo7yoBQJK-l1XmYQ9XIvxEFJmBZrQLqlPVQqD4BTncWcwmPVMCgxqqY57wsyWKW1NdVvSzE57om8jdSbzfPd_rO0euyLoUwGx-Zo9ttPNl-E-4qnOPuiPzi-76SHW
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9RAFB7qFsEX8d60VUbwRTA0mWRmNg8itrYWL8uyulAUCWcyMzZok7qbLfgT_Neek022bpG-JZkJnMyZy3fmTL6PsWe4hFBUIkIQ1oZp7EVohMcrrz1kqfIFtGyfI3U8Td-dyJMNNur_haFjlf2c2E7Uti5oj3xP4LpOf01K_er8V0iqUZRd7SU0oJNWsC9birEbbBOnZBkN2Ob-4Wg8We26ED4axnqZr0ww3qdz16c1-mqeYZlSydr61NL4_w97Xj1C-c-adHSH3e7AJH-99P5dtuGqe-zmUl7y933252OvfcsPLnmZW1fw2nPgE5g5PnGInwmEVw0f1zNKtIcfyh-Ov5Xjr-obn9QNXJSzxZx_avUk-BtHiQdnOV5DxafVBbZLWQE9apmSqeA9zOEMXvAvcGZKeMCmR4efD47DTnohLNIsasIi0sZmBkyGDovcUEld2BiM8XhXSGOUNrIQXsZOFcpmGHgkhUiNjqUZIiRJHrJBVVdui_EYEMRIFyHQg9QhYDRDizjDW4T1NjFpwPb6Bs-LjpecPudnjvEJuSi_6qKAPV-9cb7k5Lim7j75cFWP2LTbB_Xse94Nzlxom6IlzsqEBLgTcB5c5pWyiM8SJwO22_eAvBvi8_yyQwbs6aoYBydlXKBy9YLqZEOhEbSiHY-WHWZlSYLBLum7B0yvdaU1U9dLqvK0JQDXqYrSON6-3qwddkvQ5gDx9-pdNmhmC_cYEVRjnnTD4i8j_R_F
  priority: 102
  providerName: ProQuest
Title Molecular Characterisation of a Rare Reassortant Porcine-Like G5P[6] Rotavirus Strain Detected in an Unvaccinated Child in Kasama, Zambia
URI https://www.ncbi.nlm.nih.gov/pubmed/32824526
https://www.proquest.com/docview/2435964757
https://www.proquest.com/docview/2498272323
https://pubmed.ncbi.nlm.nih.gov/PMC7460411
https://doaj.org/article/27d43b4ed5344083aefae9f66d6583e5
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1tb9MwELZgE2hfEO8ERmUkviARaJw4Tj4gxMbGxMtUFSpNTCg6xzYrbAmk6cR-Av-aOzft6FT45vhNju8sP-ezn2PsMW4hZJWIEIQxYRI5EWrhMOWUgzxJXQme7XM_3Rslbw_kwfnz6G4CJytNO4onNWqOn_36efYSF_wLsjjRZKer00c1TvckR_iDO-hltu69RXSRrwP73zpslPkQvAKN95DSM7_lyk422NUYzRGKwL20ZXlm_1Vw9OKtyr-2qd3r7FqHL_mrmULcYJdsdZNdmUWcPLvFfn-Yh8Pl2-dUzV46vHYc-BAay4cWITVNSdXyQd2Q7z18P_5u-Rs5OEy_8GHdwum4mU74Rx9igr-25IuwhmMaKj6qTqHEVkBZnjyZCt7BBE7gKf8MJ3oMt9lod-fT9l7YRWMIyyTvt2HZV9rkGnSOMuzbLJWqNBFo7fCrlFqnSstSOBnZtExNjrZIXIpEq0jqDFFKfIetVXVl7zEeAeIaafuI_SCxiCF1ZhB6OINI38Q6Cdjz-YQXZUdVTr9zXKDJQtIqLkorYE8WLX7MaDr-U3eLZLioRwTbPqNuvhbdei2EMgmOxBoZU0zuGKwDm7s0NQjZYisDtjnXgGKutIVA7Ekve6UK2KNFMa5XcsJAZesp1ckzoRDH4jjuzhRmMZK5wgVMLanS0lCXS6rxkecEV0naT6Lo_j_7fMA2BB0VEJuv2mRrbTO1DxFPtbrH1rd29gfDnj-P6PlF8weL0SH2
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJwQviDuFAUaCBySiJY4vzcOE2I2OdlVVVmkCoWDHNqtgyehlaD-BP8Vv45w06eiE9ra3NHaik57j4-_42Ocj5CVMIRiVsEAzawMeeRYY5uHKK68TLn2my2qfPdke8g-H4nCF_KnPwuC2ytonlo7aFhmuka8zmNfx1KRQb09-BsgahdnVmkJDV9QKdqMsMVYd7Oi4s18Qwk029rZB368Y29052GoHFctAkPEknAZZqIxNjDYJyBa6lhQqs5E2xsOvTBgjlREZ8yJyMpM2AYwdZ4wbFQnTgtk3hvdeI6scF1AaZHVzp9cfLFZ5EI-1IjXPj8ZxEuI-76MCbGOSQJuU8dJ8WNIG_A_rXtyy-c8cuHub3KrAK303t7Y7ZMXld8n1OZ3l2T3ye7_m2qVb53WgS9XTwlNNB3rs6MABXkfQn09pvxhjYj_ojr47-l70P8svdFBM9eloPJvQjyV_Bd12mOhwlsK1zukwPwU9jHKNt8rKzNjQ0RN9rN_QT_rYjPR9MrwSJTwgjbzI3SNCIw2gSbgQgKXmDgCqaVnANd5CGGFjw5tkvf7D06yqg46f8yOFeAhVlF5UUZO8XjxxMq8BcknfTdThoh9W7y5vFONvaeUMUqYsB0mcFTESfsfaee0SL6UFPBg70SRrtQWklUuZpOcDoEleLJrBGWCGR-eumGGfpMUUgGSQ4-HcYBaSxBBcI598k6glU1oSdbklHx2VBccVlyGPoseXi_Wc3Ggf7HfT7l6v84TcZLgwgbWD1RppTMcz9xTQ29Q8q4YIJV-velT-BT_8XYI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELfGJhAviP8UBhgJHpCIljiJ3TxMiK0rGx1VVag0gVA4xzaLYMnon6F9BL4an4q7NOnohPa2tzR2okvv7Pudz74fY8_RhVBUIjwQxnhR4ISnhcMrpxwkkXQZVNU--3J3FL07iA9W2J_mLAxtq2zmxGqiNmVGa-QbAv06nZrEAN7V2yIGne7r458eMUhRprWh04CaZsFsVuXG6kMePXv6C8O5yeZeB3X_QojuzsftXa9mHPCyKPGnXuYrbRINOkE5fduWscpMAFo7_JXFWkul40y4OLAykyZBvB1mItIqiHUbPXGI773C1hR6fQwE17Z2-oPhYsWHsFk7UPNcaRgmPu35PizRTiYJtkkZLvnGikLgf7j3_PbNf_xh9ya7UQNZ_mZuebfYii1us6tzasvTO-z3-4Z3l2-f1YSuzICXjgMfwtjyoUXsTgFAMeWDckxJfm8__27523jwWX7hw3IKJ_l4NuEfKi4L3rGU9LCG4zUUfFScoB7yAuhWVaWZGnowgSN4xT_Bkc7hLhtdihLusdWiLOwDxgNAABVbH0EmRBbBqm4bxDjOYEhhQh212Ebzh6dZXROdPudHirERqSg9r6IWe7l44nheD-SCvlukw0U_quRd3SjH39J6YkiFMhFKYk0cEvl3CNaBTZyUBrFhaOMWW28sIK2nl0l6Nhha7NmiGScGyvZAYcsZ9UnaQiFgRjnuzw1mIUmIgTZxy7eYWjKlJVGXW4r8sCo-riLpR0Hw8GKxnrJrODrT_b1-7xG7LmiNgsoIq3W2Oh3P7GMEclP9pB4hnH297EH5F3NpYcY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+Characterisation+of+a+Rare+Reassortant+Porcine-Like+G5P%5B6%5D+Rotavirus+Strain+Detected+in+an+Unvaccinated+Child+in+Kasama%2C+Zambia&rft.jtitle=Pathogens+%28Basel%29&rft.au=Maringa%2C+Wairimu+M&rft.au=Mwangi%2C+Peter+N&rft.au=Simwaka%2C+Julia&rft.au=Mpabalwani%2C+Evans+M&rft.date=2020-08-17&rft.issn=2076-0817&rft.eissn=2076-0817&rft.volume=9&rft.issue=8&rft_id=info:doi/10.3390%2Fpathogens9080663&rft_id=info%3Apmid%2F32824526&rft.externalDocID=32824526
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-0817&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-0817&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-0817&client=summon