selectBoost: a general algorithm to enhance the performance of variable selection methods

Abstract Motivation With the growth of big data, variable selection has become one of the critical challenges in statistics. Although many methods have been proposed in the literature, their performance in terms of recall (sensitivity) and precision (predictive positive value) is limited in a contex...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics Vol. 37; no. 5; pp. 659 - 668
Main Authors Bertrand, Frédéric, Aouadi, Ismaïl, Jung, Nicolas, Carapito, Raphael, Vallat, Laurent, Bahram, Seiamak, Maumy-Bertrand, Myriam
Format Journal Article
LanguageEnglish
Published England Oxford University Press 05.05.2021
Oxford University Press (OUP)
Subjects
Online AccessGet full text
ISSN1367-4803
1367-4811
1460-2059
1367-4811
DOI10.1093/bioinformatics/btaa855

Cover

Abstract Abstract Motivation With the growth of big data, variable selection has become one of the critical challenges in statistics. Although many methods have been proposed in the literature, their performance in terms of recall (sensitivity) and precision (predictive positive value) is limited in a context where the number of variables by far exceeds the number of observations or in a highly correlated setting. Results In this article, we propose a general algorithm, which improves the precision of any existing variable selection method. This algorithm is based on highly intensive simulations and takes into account the correlation structure of the data. Our algorithm can either produce a confidence index for variable selection or be used in an experimental design planning perspective. We demonstrate the performance of our algorithm on both simulated and real data. We then apply it in two different ways to improve biological network reverse-engineering. Availability and implementation Code is available as the SelectBoost package on the CRAN, https://cran.r-project.org/package=SelectBoost. Some network reverse-engineering functionalities are available in the Patterns CRAN package, https://cran.r-project.org/package=Patterns. Supplementary information Supplementary data are available at Bioinformatics online.
AbstractList Motivation: With the growth of big data, variable selection has become one of the critical challenges in statistics. Although many methods have been proposed in the literature, their performance in terms of recall (sensitivity) and precision (predictive positive value) is limited in a context where the number of variables by far exceeds the number of observations or in a highly correlated setting. Results: In this article, we propose a general algorithm, which improves the precision of any existing variable selection method. This algorithm is based on highly intensive simulations and takes into account the correlation structure of the data. Our algorithm can either produce a confidence index for variable selection or be used in an experimental design planning perspective. We demonstrate the performance of our algorithm on both simulated and real data. We then apply it in two different ways to improve biological network reverse-engineering.
With the growth of big data, variable selection has become one of the critical challenges in statistics. Although many methods have been proposed in the literature, their performance in terms of recall (sensitivity) and precision (predictive positive value) is limited in a context where the number of variables by far exceeds the number of observations or in a highly correlated setting.MOTIVATIONWith the growth of big data, variable selection has become one of the critical challenges in statistics. Although many methods have been proposed in the literature, their performance in terms of recall (sensitivity) and precision (predictive positive value) is limited in a context where the number of variables by far exceeds the number of observations or in a highly correlated setting.In this article, we propose a general algorithm, which improves the precision of any existing variable selection method. This algorithm is based on highly intensive simulations and takes into account the correlation structure of the data. Our algorithm can either produce a confidence index for variable selection or be used in an experimental design planning perspective. We demonstrate the performance of our algorithm on both simulated and real data. We then apply it in two different ways to improve biological network reverse-engineering.RESULTSIn this article, we propose a general algorithm, which improves the precision of any existing variable selection method. This algorithm is based on highly intensive simulations and takes into account the correlation structure of the data. Our algorithm can either produce a confidence index for variable selection or be used in an experimental design planning perspective. We demonstrate the performance of our algorithm on both simulated and real data. We then apply it in two different ways to improve biological network reverse-engineering.Code is available as the SelectBoost package on the CRAN, https://cran.r-project.org/package=SelectBoost. Some network reverse-engineering functionalities are available in the Patterns CRAN package, https://cran.r-project.org/package=Patterns.AVAILABILITY AND IMPLEMENTATIONCode is available as the SelectBoost package on the CRAN, https://cran.r-project.org/package=SelectBoost. Some network reverse-engineering functionalities are available in the Patterns CRAN package, https://cran.r-project.org/package=Patterns.Supplementary data are available at Bioinformatics online.SUPPLEMENTARY INFORMATIONSupplementary data are available at Bioinformatics online.
With the growth of big data, variable selection has become one of the critical challenges in statistics. Although many methods have been proposed in the literature, their performance in terms of recall (sensitivity) and precision (predictive positive value) is limited in a context where the number of variables by far exceeds the number of observations or in a highly correlated setting. In this article, we propose a general algorithm, which improves the precision of any existing variable selection method. This algorithm is based on highly intensive simulations and takes into account the correlation structure of the data. Our algorithm can either produce a confidence index for variable selection or be used in an experimental design planning perspective. We demonstrate the performance of our algorithm on both simulated and real data. We then apply it in two different ways to improve biological network reverse-engineering. Code is available as the SelectBoost package on the CRAN, https://cran.r-project.org/package=SelectBoost. Some network reverse-engineering functionalities are available in the Patterns CRAN package, https://cran.r-project.org/package=Patterns. Supplementary data are available at Bioinformatics online.
Abstract Motivation With the growth of big data, variable selection has become one of the critical challenges in statistics. Although many methods have been proposed in the literature, their performance in terms of recall (sensitivity) and precision (predictive positive value) is limited in a context where the number of variables by far exceeds the number of observations or in a highly correlated setting. Results In this article, we propose a general algorithm, which improves the precision of any existing variable selection method. This algorithm is based on highly intensive simulations and takes into account the correlation structure of the data. Our algorithm can either produce a confidence index for variable selection or be used in an experimental design planning perspective. We demonstrate the performance of our algorithm on both simulated and real data. We then apply it in two different ways to improve biological network reverse-engineering. Availability and implementation Code is available as the SelectBoost package on the CRAN, https://cran.r-project.org/package=SelectBoost. Some network reverse-engineering functionalities are available in the Patterns CRAN package, https://cran.r-project.org/package=Patterns. Supplementary information Supplementary data are available at Bioinformatics online.
Author Aouadi, Ismaïl
Vallat, Laurent
Carapito, Raphael
Maumy-Bertrand, Myriam
Bertrand, Frédéric
Jung, Nicolas
Bahram, Seiamak
AuthorAffiliation 2 Université de Technologie de Troyes, ICD, ROSAS, M2S , Troyes, France
4 Laboratoire International Associé (LIA) INSERM, Strasbourg (France) - Nagano (Japan) , Strasbourg, France
5 Fédération Hospitalo-Universitaire (FHU) OMICARE, Laboratoire Central d’Immunologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg , Strasbourg, France
3 ImmunoRhumatologie Moléculaire, INSERM UMR_S 1109, LabEx TRANSPLANTEX, Centre de Recherche d’Immunologie et d’Hématologie, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg , Strasbourg, France
1 Institut de Recherche Mathématique Avancée, CNRS UMR 7501, Labex IRMIA, Université de Strasbourg , Strasbourg, France
AuthorAffiliation_xml – name: 4 Laboratoire International Associé (LIA) INSERM, Strasbourg (France) - Nagano (Japan) , Strasbourg, France
– name: 2 Université de Technologie de Troyes, ICD, ROSAS, M2S , Troyes, France
– name: 3 ImmunoRhumatologie Moléculaire, INSERM UMR_S 1109, LabEx TRANSPLANTEX, Centre de Recherche d’Immunologie et d’Hématologie, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg , Strasbourg, France
– name: 1 Institut de Recherche Mathématique Avancée, CNRS UMR 7501, Labex IRMIA, Université de Strasbourg , Strasbourg, France
– name: 5 Fédération Hospitalo-Universitaire (FHU) OMICARE, Laboratoire Central d’Immunologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg , Strasbourg, France
Author_xml – sequence: 1
  givenname: Frédéric
  orcidid: 0000-0002-0837-8281
  surname: Bertrand
  fullname: Bertrand, Frédéric
  email: frederic.bertrand@utt.fr
  organization: Institut de Recherche Mathématique Avancée, CNRS UMR 7501, Labex IRMIA, Université de Strasbourg, Strasbourg, France
– sequence: 2
  givenname: Ismaïl
  surname: Aouadi
  fullname: Aouadi, Ismaïl
  organization: ImmunoRhumatologie Moléculaire, INSERM UMR_S 1109, LabEx TRANSPLANTEX, Centre de Recherche d’Immunologie et d’Hématologie, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
– sequence: 3
  givenname: Nicolas
  surname: Jung
  fullname: Jung, Nicolas
  organization: Institut de Recherche Mathématique Avancée, CNRS UMR 7501, Labex IRMIA, Université de Strasbourg, Strasbourg, France
– sequence: 4
  givenname: Raphael
  surname: Carapito
  fullname: Carapito, Raphael
  organization: ImmunoRhumatologie Moléculaire, INSERM UMR_S 1109, LabEx TRANSPLANTEX, Centre de Recherche d’Immunologie et d’Hématologie, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
– sequence: 5
  givenname: Laurent
  surname: Vallat
  fullname: Vallat, Laurent
  organization: ImmunoRhumatologie Moléculaire, INSERM UMR_S 1109, LabEx TRANSPLANTEX, Centre de Recherche d’Immunologie et d’Hématologie, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
– sequence: 6
  givenname: Seiamak
  surname: Bahram
  fullname: Bahram, Seiamak
  organization: ImmunoRhumatologie Moléculaire, INSERM UMR_S 1109, LabEx TRANSPLANTEX, Centre de Recherche d’Immunologie et d’Hématologie, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
– sequence: 7
  givenname: Myriam
  surname: Maumy-Bertrand
  fullname: Maumy-Bertrand, Myriam
  organization: Institut de Recherche Mathématique Avancée, CNRS UMR 7501, Labex IRMIA, Université de Strasbourg, Strasbourg, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33016991$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03206128$$DView record in HAL
BookMark eNqNkU1vFSEUhompsR_6FxqWupgWBuYDY0xqo9bkJm504YowzOEOhoFxYK7pv5fbuTa2G7sCDu_zHs7LKTrywQNC55RcUCLYZWeD9SbMo0pWx8suKdVW1TN0QnlNipJU4ijvWd0UvCXsGJ3G-JOQinLOX6BjxgithaAn6EcEBzp9CCGmt1jhLXiYlcPKbcNs0zDiFDD4QXkNOA2AJ5jv2u7PweCdmq3qHODVxwaPR0hD6ONL9NwoF-HVYT1D3z99_HZ9U2y-fv5yfbUpNBckFaIntOsq0xtuSs36BgQtddeLSvNKdL0mJeSqYXVnWCd4meckpaaCGE4aXrIz1Ky-i5_U7W_lnJxmO6r5VlIi92HJh2HJQ1iZfL-S09KN0GvwKY9-Twdl5cMbbwe5DTvZEtHUbZsN3qwGwyPs5moj9zXCSlLTst3RrH19aDaHXwvEJEcbNTinPIQlypLztmY1J3WWnv_7rnvnv7-WBe9WgZ5DjDMYqW1S-_DzM637_9z1I_zJgdEVDMv0VOYPaqbdWg
CitedBy_id crossref_primary_10_1038_s41375_021_01221_5
crossref_primary_10_1109_TPAMI_2023_3340990
Cites_doi 10.1214/11-AOAS455
10.1137/S0097539792240406
10.1111/j.1467-9868.2009.00723.x
10.1126/science.286.5439.531
10.1093/bioinformatics/bty764
10.1137/S003614450037906X
10.1214/10-AOAS377
10.1007/s00180-011-0232-x
10.1073/pnas.0914005107
10.1007/s11222-016-9651-4
10.1080/01621459.1994.10476871
10.1016/j.cell.2016.02.065
10.1103/PhysRevE.70.066111
10.1093/bioinformatics/btt350
10.1007/3-540-48885-5_8
10.1371/journal.pgen.1003264
10.2307/2529336
10.1080/00220670209598786
10.1089/106652703322756177
10.1198/016214506000000843
10.1109/TAC.1974.1100705
10.1073/pnas.1211130110
10.1093/bioinformatics/btt705
10.18637/jss.v033.i01
10.1038/4447
10.1198/016214505000000628
10.1007/978-3-540-72031-7_22
10.1073/pnas.0437847100
10.1198/004017005000000319
10.1214/09-AOS729
10.1111/j.1467-9868.2005.00503.x
10.1214/12-BA703
10.1111/j.2517-6161.1996.tb02080.x
10.1093/bioinformatics/bth447
10.1093/bioinformatics/btu660
10.1214/aos/1176344136
10.1111/j.1467-9868.2005.00532.x
10.1093/nar/gkv007
10.1080/00401706.1970.10488634
10.1111/j.1467-9868.2010.00740.x
10.1214/009053604000000067
10.1080/00949655.2010.543981
10.1198/016214506000000735
ContentType Journal Article
Copyright The Author(s) 2020. Published by Oxford University Press. 2020
The Author(s) 2020. Published by Oxford University Press.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s) 2020. Published by Oxford University Press. 2020
– notice: The Author(s) 2020. Published by Oxford University Press.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
VOOES
5PM
ADTOC
UNPAY
DOI 10.1093/bioinformatics/btaa855
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Statistics
Computer Science
EISSN 1460-2059
1367-4811
EndPage 668
ExternalDocumentID 10.1093/bioinformatics/btaa855
PMC8097688
oai:HAL:hal-03206128v1
33016991
10_1093_bioinformatics_btaa855
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ;
– fundername: ;
  grantid: UMR 7501
– fundername: ;
  grantid: UR 201923174L
– fundername: ;
  grantid: ANR-11-LABX-0070_TRANSPLANTEX
– fundername: ;
  grantid: ANR-11-LABX-0055_IRMIA
– fundername: ;
  grantid: UMR_S 1109
GroupedDBID -~X
.2P
.I3
482
48X
53G
5GY
6.Y
AAIMJ
AAJKP
AAKPC
AAMVS
AAPQZ
AAPXW
AARHZ
AAVAP
ABEFU
ABNKS
ABPTD
ABSAR
ABSMQ
ABWST
ABXVV
ABZBJ
ACGFS
ACMRT
ACPQN
ACUFI
ACYTK
ADEYI
ADFTL
ADGZP
ADHKW
ADOCK
ADRIX
ADRTK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKPW
AEKSI
AELWJ
AEPUE
AETBJ
AFFNX
AFFZL
AFOFC
AFSHK
AFXEN
AGINJ
AGKRT
AGQXC
AI.
ALMA_UNASSIGNED_HOLDINGS
ALTZX
AQDSO
ARIXL
ASAOO
ATDFG
ATTQO
AXUDD
AYOIW
AZFZN
AZVOD
BCRHZ
BHONS
CXTWN
CZ4
DFGAJ
EE~
ELUNK
F5P
F9B
FEDTE
H5~
HAR
HVGLF
HW0
IOX
KOP
KSI
KSN
MBTAY
MVM
NGC
PB-
Q1.
Q5Y
QBD
RD5
RIG
ROL
ROX
ROZ
RXO
TCN
TLC
TN5
TOX
TR2
VH1
WH7
XJT
ZGI
~91
---
-E4
.DC
0R~
23N
2WC
4.4
5WA
70D
AAIJN
AAMDB
AAOGV
AAVLN
AAYXX
ABEJV
ABEUO
ABGNP
ABIXL
ABPQP
ABQLI
ACIWK
ACPRK
ACUXJ
ADBBV
ADEZT
ADGKP
ADHZD
ADMLS
ADPDF
ADRDM
ADVEK
AEMDU
AENEX
AENZO
AEWNT
AFGWE
AFIYH
AFRAH
AGKEF
AGSYK
AHMBA
AHXPO
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALUQC
AMNDL
APIBT
APWMN
ASPBG
AVWKF
BAWUL
BAYMD
BQDIO
BQUQU
BSWAC
BTQHN
C45
CDBKE
CITATION
CS3
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EMOBN
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
HZ~
J21
JXSIZ
KAQDR
KQ8
M-Z
MK~
ML0
N9A
NLBLG
NMDNZ
NOMLY
NU-
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
R44
RNS
RPM
RUSNO
RW1
SV3
TEORI
TJP
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~KM
CGR
CUY
CVF
ECM
EIF
M49
NPM
7X8
.-4
.GJ
1TH
1XC
AAJQQ
AAUQX
ABNGD
ACUKT
AGQPQ
C1A
CAG
COF
EJD
NTWIH
NVLIB
O0~
O~Y
RNI
RZF
RZO
VOOES
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c490t-9d01bb5fdf4f2c3d7e912cbd95c459bdc02e3d7f36bf3b942a8502c190f407423
IEDL.DBID UNPAY
ISSN 1367-4803
1367-4811
IngestDate Sun Oct 26 04:13:06 EDT 2025
Thu Aug 21 14:01:54 EDT 2025
Tue Oct 14 19:57:59 EDT 2025
Thu Jul 10 19:07:33 EDT 2025
Wed Feb 19 02:24:51 EST 2025
Tue Jul 01 02:33:53 EDT 2025
Thu Apr 24 23:11:08 EDT 2025
Wed Aug 28 03:17:35 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords model selection regression classification regularization prediction dimension cancer pls
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
http://creativecommons.org/licenses/by-nc/4.0
The Author(s) 2020. Published by Oxford University Press.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c490t-9d01bb5fdf4f2c3d7e912cbd95c459bdc02e3d7f36bf3b942a8502c190f407423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Ismaïl Aouadi and Nicolas Jung authors wish it to be known that these authors contributed equally.
ORCID 0000-0002-0837-8281
0000-0002-4615-1512
0000-0002-7036-442X
0000-0002-5226-7706
OpenAccessLink https://proxy.k.utb.cz/login?url=https://academic.oup.com/bioinformatics/article-pdf/37/5/659/37808861/btaa855.pdf
PMID 33016991
PQID 2448636406
PQPubID 23479
PageCount 10
ParticipantIDs unpaywall_primary_10_1093_bioinformatics_btaa855
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8097688
hal_primary_oai_HAL_hal_03206128v1
proquest_miscellaneous_2448636406
pubmed_primary_33016991
crossref_citationtrail_10_1093_bioinformatics_btaa855
crossref_primary_10_1093_bioinformatics_btaa855
oup_primary_10_1093_bioinformatics_btaa855
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-05
PublicationDateYYYYMMDD 2021-05-05
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-05
  day: 05
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioinformatics
PublicationTitleAlternate Bioinformatics
PublicationYear 2021
Publisher Oxford University Press
Oxford University Press (OUP)
Publisher_xml – name: Oxford University Press
– name: Oxford University Press (OUP)
References Peng (2023051704104166100_btaa855-B37) 2002; 96
Abramowitz (2023051704104166100_btaa855-B1) 1972
Akaike (2023051704104166100_btaa855-B2) 1974; 19
Magnanensi (2023051704104166100_btaa855-B33) 2017; 27
Schwarz (2023051704104166100_btaa855-B40) 1978; 6
Lipshutz (2023051704104166100_btaa855-B31) 1999; 21
Fan (2023051704104166100_btaa855-B19) 1997; 6
Clauset (2023051704104166100_btaa855-B13) 2004; 70
Zhang (2023051704104166100_btaa855-B48) 2010; 38
Segal (2023051704104166100_btaa855-B41) 2003; 10
Wang (2023051704104166100_btaa855-B45) 2011; 5
Ritchie (2023051704104166100_btaa855-B39) 2015; 43
Cook (2023051704104166100_btaa855-B14) 1994; 89
Golub (2023051704104166100_btaa855-B24) 1999; 286
Hoerl (2023051704104166100_btaa855-B27) 1970; 12
Natarajan (2023051704104166100_btaa855-B36) 1995; 24
Barabási (2023051704104166100_btaa855-B5) 2003
Zhao (2023051704104166100_btaa855-B49) 2006; 7
Donoho (2023051704104166100_btaa855-B16) 2003; 100
Friedman (2023051704104166100_btaa855-B22) 2010
Zou (2023051704104166100_btaa855-B51) 2006; 101
Chun (2023051704104166100_btaa855-B12) 2010; 72
Dettling (2023051704104166100_btaa855-B15) 2004; 20
Bair (2023051704104166100_btaa855-B4) 2006; 101
Chen (2023051704104166100_btaa855-B9) 2007
Bach (2023051704104166100_btaa855-B3) 2008
Boulesteix (2023051704104166100_btaa855-B7) 2014
Morgan (2023051704104166100_btaa855-B35) 2019; 35
Yuan (2023051704104166100_btaa855-B47) 2006; 68
Zou (2023051704104166100_btaa855-B52) 2005; 67
Zhou (2023051704104166100_btaa855-B50) 2013; 9
Chen (2023051704104166100_btaa855-B10) 2001; 43
Bastien (2023051704104166100_btaa855-B6) 2015; 31
Meinshausen (2023051704104166100_btaa855-B34) 2010; 72
Fan (2023051704104166100_btaa855-B21) 2010; 20
Luo (2023051704104166100_btaa855-B32) 2006; 48
Efron (2023051704104166100_btaa855-B17) 2004; 32
Carbonetto (2023051704104166100_btaa855-B11) 2012; 7
Sra (2023051704104166100_btaa855-B42) 2012; 27
Eklund (2023051704104166100_btaa855-B18) 2012; 82
Guan (2023051704104166100_btaa855-B25) 2011; 5
Fan (2023051704104166100_btaa855-B20) 2006
Bourgon (2023051704104166100_btaa855-B8) 2010; 107
Tibshirani (2023051704104166100_btaa855-B43) 1996; 58
Jung (2023051704104166100_btaa855-B29) 2014; 30
Rau (2023051704104166100_btaa855-B38) 2013; 29
Hugo (2023051704104166100_btaa855-B28) 2016; 165
Wu (2023051704104166100_btaa855-B46) 2007; 102
Friedman (2023051704104166100_btaa855-B23) 2010; 33
Hocking (2023051704104166100_btaa855-B26) 1976; 32
Koza (2023051704104166100_btaa855-B30) 1999
Vallat (2023051704104166100_btaa855-B44) 2013; 110
References_xml – volume: 5
  start-page: 1780
  year: 2011
  ident: 2023051704104166100_btaa855-B25
  article-title: Bayesian variable selection regression for genome-wide association studies and other large-scale problems
  publication-title: Ann. Appl. Stat
  doi: 10.1214/11-AOAS455
– volume: 24
  start-page: 227
  year: 1995
  ident: 2023051704104166100_btaa855-B36
  article-title: Sparse approximate solutions to linear systems
  publication-title: SIAM J. Comput
  doi: 10.1137/S0097539792240406
– volume: 72
  start-page: 3
  year: 2010
  ident: 2023051704104166100_btaa855-B12
  article-title: Sparse partial least squares regression for simultaneous dimension reduction and variable selection
  publication-title: J. R. Stat. Soc. Series B Stat. Methodol
  doi: 10.1111/j.1467-9868.2009.00723.x
– volume-title: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
  year: 1972
  ident: 2023051704104166100_btaa855-B1
– volume: 286
  start-page: 531
  year: 1999
  ident: 2023051704104166100_btaa855-B24
  article-title: Molecular classification -of cancer: class discovery and class prediction by gene expression monitoring
  publication-title: Science
  doi: 10.1126/science.286.5439.531
– volume: 7
  start-page: 2541
  year: 2006
  ident: 2023051704104166100_btaa855-B49
  article-title: On model selection consistency of lasso
  publication-title: J. Mach. Learn. Res
– volume: 35
  start-page: 1026
  year: 2019
  ident: 2023051704104166100_btaa855-B35
  article-title: A generalized framework for controlling FDR in gene regulatory network inference
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty764
– volume: 43
  start-page: 129
  year: 2001
  ident: 2023051704104166100_btaa855-B10
  article-title: Atomic decomposition by basis pursuit
  publication-title: SIAM Rev
  doi: 10.1137/S003614450037906X
– volume: 5
  start-page: 468
  year: 2011
  ident: 2023051704104166100_btaa855-B45
  article-title: Random lasso
  publication-title: Ann. Appl. Stat
  doi: 10.1214/10-AOAS377
– volume: 27
  start-page: 177
  year: 2012
  ident: 2023051704104166100_btaa855-B42
  article-title: A short note on parameter approximation for von Mises-Fisher distributions: and a fast implementation of I s (x)
  publication-title: Comput. Stat
  doi: 10.1007/s00180-011-0232-x
– volume: 107
  start-page: 9546
  year: 2010
  ident: 2023051704104166100_btaa855-B8
  article-title: Independent filtering increases detection power for high-throughput experiments
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0914005107
– volume: 27
  start-page: 757
  year: 2017
  ident: 2023051704104166100_btaa855-B33
  article-title: A new universal resample-stable bootstrap-based stopping criterion for PLS component construction
  publication-title: Stat. Comput
  doi: 10.1007/s11222-016-9651-4
– start-page: 33
  year: 2008
  ident: 2023051704104166100_btaa855-B3
– volume: 89
  start-page: 1314
  year: 1994
  ident: 2023051704104166100_btaa855-B14
  article-title: Simulation-extrapolation estimation in parametric measurement error models
  publication-title: J. Am. Stat. Assoc
  doi: 10.1080/01621459.1994.10476871
– volume: 165
  start-page: 35
  year: 2016
  ident: 2023051704104166100_btaa855-B28
  article-title: Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma
  publication-title: Cell
  doi: 10.1016/j.cell.2016.02.065
– volume: 70
  start-page: 066111
  year: 2004
  ident: 2023051704104166100_btaa855-B13
  article-title: Finding community structure in very large networks
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.70.066111
– volume: 29
  start-page: 2146
  year: 2013
  ident: 2023051704104166100_btaa855-B38
  article-title: Data-based filtering for replicated high-throughput transcriptome sequencing experiments
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt350
– volume-title: Genetic Programming as a Darwinian Invention Machine
  year: 1999
  ident: 2023051704104166100_btaa855-B30
  doi: 10.1007/3-540-48885-5_8
– start-page: 13
  volume-title: PLS–14 Book of Abstracts, Paris, France
  year: 2014
  ident: 2023051704104166100_btaa855-B7
– volume: 9
  start-page: e1003264
  year: 2013
  ident: 2023051704104166100_btaa855-B50
  article-title: Polygenic modeling with Bayesian sparse linear mixed models
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1003264
– volume: 32
  start-page: 1
  year: 1976
  ident: 2023051704104166100_btaa855-B26
  article-title: A Biometrics invited paper. The analysis and selection of variables in linear regression
  publication-title: Biometrics
  doi: 10.2307/2529336
– volume: 96
  start-page: 3
  year: 2002
  ident: 2023051704104166100_btaa855-B37
  article-title: An introduction to logistic regression analysis and reporting
  publication-title: J. Educ. Res
  doi: 10.1080/00220670209598786
– volume: 10
  start-page: 961
  year: 2003
  ident: 2023051704104166100_btaa855-B41
  article-title: Regression approaches for microarray data analysis
  publication-title: J. Comput. Biol
  doi: 10.1089/106652703322756177
– volume: 102
  start-page: 235
  year: 2007
  ident: 2023051704104166100_btaa855-B46
  article-title: Controlling variable selection by the addition of pseudovariables
  publication-title: J. Am. Stat. Assoc
  doi: 10.1198/016214506000000843
– volume: 19
  start-page: 716
  year: 1974
  ident: 2023051704104166100_btaa855-B2
  article-title: A new look at the statistical model identification
  publication-title: IEEE Trans. Automat. Contr
  doi: 10.1109/TAC.1974.1100705
– volume: 20
  start-page: 101
  year: 2010
  ident: 2023051704104166100_btaa855-B21
  article-title: A selective overview of variable selection in high dimensional feature space
  publication-title: Stat. Sin
– start-page: 595
  volume-title: Proceedings International Congress of Mathematicitans
  year: 2006
  ident: 2023051704104166100_btaa855-B20
– volume: 110
  start-page: 459
  year: 2013
  ident: 2023051704104166100_btaa855-B44
  article-title: Reverse-engineering the genetic circuitry of a cancer cell with predicted intervention in chronic lymphocytic leukemia
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1211130110
– start-page: 69
  volume-title: Handbook of Graphs and Networks: From the Genome to the Internet
  year: 2003
  ident: 2023051704104166100_btaa855-B5
– volume: 6
  start-page: 131
  year: 1997
  ident: 2023051704104166100_btaa855-B19
  article-title: Comments on “Wavelets in statistics: a review” by A. Antoniadis
  publication-title: Stat. Meth. Appl
– year: 2010
  ident: 2023051704104166100_btaa855-B22
  article-title: A note on the group lasso and a sparse group lasso
  publication-title: arXiv preprint arXiv: 1001.0736
– volume: 30
  start-page: 571
  year: 2014
  ident: 2023051704104166100_btaa855-B29
  article-title: Cascade: a R package to study, predict and simulate the diffusion of a signal through a temporal gene network
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt705
– volume: 33
  start-page: 1
  year: 2010
  ident: 2023051704104166100_btaa855-B23
  article-title: Regularization paths for generalized linear models via coordinate descent
  publication-title: J. Stat. Softw
  doi: 10.18637/jss.v033.i01
– volume: 21
  start-page: 20
  year: 1999
  ident: 2023051704104166100_btaa855-B31
  article-title: High density synthetic oligonucleotide arrays
  publication-title: Nat. Genet
  doi: 10.1038/4447
– volume: 101
  start-page: 119
  year: 2006
  ident: 2023051704104166100_btaa855-B4
  article-title: Prediction by supervised principal components
  publication-title: J. Am. Stat. Assoc
  doi: 10.1198/016214505000000628
– start-page: 237
  volume-title: Bioinformatics Research and Applications, Atlanta, GA, USA
  year: 2007
  ident: 2023051704104166100_btaa855-B9
  doi: 10.1007/978-3-540-72031-7_22
– volume: 100
  start-page: 2197
  year: 2003
  ident: 2023051704104166100_btaa855-B16
  article-title: Optimally sparse representation in general (nonorthogonal) dictionaries via L1 minimization
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0437847100
– volume: 48
  start-page: 165
  year: 2006
  ident: 2023051704104166100_btaa855-B32
  article-title: Tuning variable selection procedures by adding noise
  publication-title: Technometrics
  doi: 10.1198/004017005000000319
– volume: 38
  start-page: 894
  year: 2010
  ident: 2023051704104166100_btaa855-B48
  article-title: Nearly unbiased variable selection under minimax concave penalty
  publication-title: Ann. Stat
  doi: 10.1214/09-AOS729
– volume: 67
  start-page: 301
  year: 2005
  ident: 2023051704104166100_btaa855-B52
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. R. Stat. Soc. Series B Stat. Methodol
  doi: 10.1111/j.1467-9868.2005.00503.x
– volume: 7
  start-page: 73
  year: 2012
  ident: 2023051704104166100_btaa855-B11
  article-title: Scalable variational inference for Bayesian variable selection in regression, and its accuracy in genetic association studies
  publication-title: Bayesian Anal
  doi: 10.1214/12-BA703
– volume: 58
  start-page: 267
  year: 1996
  ident: 2023051704104166100_btaa855-B43
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc. Series B Methodol
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 20
  start-page: 3583
  year: 2004
  ident: 2023051704104166100_btaa855-B15
  article-title: BagBoosting for tumor classification with gene expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth447
– volume: 31
  start-page: 397
  year: 2015
  ident: 2023051704104166100_btaa855-B6
  article-title: Deviance residuals-based sparse PLS and sparse kernel PLS regression for censored data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu660
– volume: 6
  start-page: 461
  year: 1978
  ident: 2023051704104166100_btaa855-B40
  article-title: Estimating the dimension of a model
  publication-title: Ann. Stat
  doi: 10.1214/aos/1176344136
– volume: 68
  start-page: 49
  year: 2006
  ident: 2023051704104166100_btaa855-B47
  article-title: Model selection and estimation in regression with grouped variables
  publication-title: J. R. Stat. Soc. Series B Stat. Methodol
  doi: 10.1111/j.1467-9868.2005.00532.x
– volume: 43
  start-page: e47
  year: 2015
  ident: 2023051704104166100_btaa855-B39
  article-title: limma powers differential expression analyses for RNA-sequencing and microarray studies
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv007
– volume: 12
  start-page: 55
  year: 1970
  ident: 2023051704104166100_btaa855-B27
  article-title: Ridge regression: biased estimation for nonorthogonal problems
  publication-title: Technometrics
  doi: 10.1080/00401706.1970.10488634
– volume: 72
  start-page: 417
  year: 2010
  ident: 2023051704104166100_btaa855-B34
  article-title: Stability selection
  publication-title: J. R. Stat. Soc. Series B Stat. Methodol
  doi: 10.1111/j.1467-9868.2010.00740.x
– volume: 32
  start-page: 407
  year: 2004
  ident: 2023051704104166100_btaa855-B17
  article-title: Least angle regression
  publication-title: Ann. Stat
  doi: 10.1214/009053604000000067
– volume: 82
  start-page: 515
  year: 2012
  ident: 2023051704104166100_btaa855-B18
  article-title: SimSel: a new simulation method for variable selection
  publication-title: J. Stat. Comput. Simul
  doi: 10.1080/00949655.2010.543981
– volume: 101
  start-page: 1418
  year: 2006
  ident: 2023051704104166100_btaa855-B51
  article-title: The adaptive lasso and its oracle properties
  publication-title: J. Am. Stat. Assoc
  doi: 10.1198/016214506000000735
SSID ssj0051444
ssj0005056
Score 2.3731432
Snippet Abstract Motivation With the growth of big data, variable selection has become one of the critical challenges in statistics. Although many methods have been...
With the growth of big data, variable selection has become one of the critical challenges in statistics. Although many methods have been proposed in the...
Motivation: With the growth of big data, variable selection has become one of the critical challenges in statistics. Although many methods have been proposed...
SourceID unpaywall
pubmedcentral
hal
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 659
SubjectTerms Algorithms
Applications
Big Data
Bioinformatics
Computer Science
Human health and pathology
Life Sciences
Methodology
Original Papers
Research Design
Software
Statistics
Title selectBoost: a general algorithm to enhance the performance of variable selection methods
URI https://www.ncbi.nlm.nih.gov/pubmed/33016991
https://www.proquest.com/docview/2448636406
https://hal.science/hal-03206128
https://pubmed.ncbi.nlm.nih.gov/PMC8097688
https://academic.oup.com/bioinformatics/article-pdf/37/5/659/37808861/btaa855.pdf
UnpaywallVersion publishedVersion
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: KQ8
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: ADMLS
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: DIK
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: GX1
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: RPM
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVOVD
  databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: OVEED
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://ovidsp.ovid.com/
  providerName: Ovid
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 20220930
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-tnRC88D0IH5NBPCGlTeLYiXkriKlCMEBape4pspN4rShJ1aZD46_nXDtlGQ8MiTfLzvnzHP8s3_0O4FXCRahTTf0kotzHv5_wFad4a9UIXqUKyrAwDs6fjvl4En-YsukefG19YaSzCh-0Lg1qXjsKUUNbPHTz6S8LPaQmcDVnAhMpbhYeDlUjZcrYAEt7sI9FPOjD_uT4y-jU-l8lfpxuoyW7dBi2XsOCXm3KVdY5sHozYy7ZcYW7hEj_NKy8uamW8uKHXCwunVpHd2DVjtcaq3wbbBo1yH9eoYL8rxNyF247jEtGVuYe7JXVfbhho15ePIDT9Tb2ztu6XjdviCRnlvmayMVZvZo3s--kqUlZzYw-EsSnZPnbuYHUmpzj9d44fBFbDyoWsXGw1w9hcvT-5N3YdxEe_DwWQeOLIgiVYrrQsY5yWiSlCKNcFYLlMROqyIOoxFxNudJUiTjCwQRRjiBGx-ZSTw-gX9VV-RgISjI8jmVkngpjXqpc4903VYHOeVLG0gPWLmOWO_pzE4VjkdlneJp1JzZzU-fBcCe3tAQgf5V4iVqy-9jwd49HHzOTZ6LVI6RMz0MPXuOCXrvGF62uZbj7zZOOrMp6s85wqCmnHFGZB4-s7u3qpNQw7QhsKuloZadn3ZJqPtsyjKcBotQ09SDY6e81u_rk30Wewq3IGAoZK1L2DPrNalM-R6TXqEPonXyeHrod_Asv81uj
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLa2TgheuF_CTQbxhJQ2iWPH5q0gpgrBBBKVtqfIduy1oiRVmw6NX89x7ZRlPDAk3iw7x9fj-LN8zncQelUwkVpuSVxkhMXw9xOxYgRurRbAq1SJSSvn4PzpiE2m-YdjeryHvnS-MDJYhQ87lwY1bwKFqKMtHoX5jJeVHREXuJpRAQkOm4WlI9VKySkdQuk-OoAilgzQwfTo8_jE-18Vcc630ZJDOk07r2FBLjcVKusdWPszZy7Zc4W7gEj_NKy8vqmX8vyHXCwunFqHt9CqG683Vvk23LRqqH9eooL8rxNyG90MGBePvcwdtGfqu-iaj3p5fg-drLexd942zbp9gyU-9czXWC5Om9W8nX3HbYNNPXP6iAGf4uVv5wbcWHwG13vn8IV9PaBY2MfBXt9H08P3X99N4hDhIda5SNpYVEmqFLWVzW2mSVUYkWZaVYLqnApV6SQzkGsJU5YokWcwmCTTAGJs7i715AEa1E1tHiEMkhSOY5m5p8KcGaUt3H25SqxmhcllhGi3jKUO9OcuCsei9M_wpOxPbBmmLkKjndzSE4D8VeIlaMnuY8ffPRl_LF2ei1YPkJKfpRF6DQt65RpfdLpWwu53TzqyNs1mXcJQOSMMUFmEHnrd29VJiGPaEdBU0dPKXs_6JfV8tmUY5wmgVM4jlOz094pdffzvIk_QjcwZCjkrUvoUDdrVxjwDpNeq52Hv_gIPOVqH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=selectBoost%3A+a+general+algorithm+to+enhance+the+performance+of+variable+selection+methods&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Bertrand%2C+Fr%C3%A9d%C3%A9ric&rft.au=Aouadi%2C+Isma%C3%AFl&rft.au=Jung%2C+Nicolas&rft.au=Carapito%2C+Raphael&rft.date=2021-05-05&rft.pub=Oxford+University+Press&rft.issn=1367-4803&rft.eissn=1367-4811&rft.volume=37&rft.issue=5&rft.spage=659&rft.epage=668&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtaa855&rft_id=info%3Apmid%2F33016991&rft.externalDocID=PMC8097688
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon