Classification of Alzheimer's Disease, Mild Cognitive Impairment, and Normal Controls With Subnetwork Selection and Graph Kernel Principal Component Analysis Based on Minimum Spanning Tree Brain Functional Network

Effective and accurate diagnosis of Alzheimer's disease (AD), as well as its early stage (mild cognitive impairment, MCI), has attracted more and more attention recently. Researchers have constructed threshold brain function networks and extracted various features for the classification of brai...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in computational neuroscience Vol. 12; p. 31
Main Authors Cui, Xiaohong, Xiang, Jie, Guo, Hao, Yin, Guimei, Zhang, Huijun, Lan, Fangpeng, Chen, Junjie
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 09.05.2018
Frontiers Media S.A
Subjects
Online AccessGet full text
ISSN1662-5188
1662-5188
DOI10.3389/fncom.2018.00031

Cover

Abstract Effective and accurate diagnosis of Alzheimer's disease (AD), as well as its early stage (mild cognitive impairment, MCI), has attracted more and more attention recently. Researchers have constructed threshold brain function networks and extracted various features for the classification of brain diseases. However, in the construction of the brain function network, the selection of threshold is very important, and the unreasonable setting will seriously affect the final classification results. To address this issue, in this paper, we propose a minimum spanning tree (MST) classification framework to identify Alzheimer's disease (AD), MCI, and normal controls (NCs). The proposed method mainly uses the MST method, graph-based Substructure Pattern mining (gSpan), and graph kernel Principal Component Analysis (graph kernel PCA). Specifically, MST is used to construct the brain functional connectivity network; gSpan, to extract features; and subnetwork selection and graph kernel PCA, to select features. Finally, the support vector machine is used to perform classification. We evaluate our method on MST brain functional networks of 21 AD, 25 MCI, and 22 NC subjects. The experimental results show that our proposed method achieves classification accuracy of 98.3, 91.3, and 77.3%, for MCI vs. NC, AD vs. NC, and AD vs. MCI, respectively. The results show our proposed method can achieve significantly improved classification performance compared to other state-of-the-art methods.
AbstractList Effective and accurate diagnosis of Alzheimer's disease (AD), as well as its early stage (mild cognitive impairment, MCI), has attracted more and more attention recently. Researchers have constructed threshold brain function networks and extracted various features for the classification of brain diseases. However, in the construction of the brain function network, the selection of threshold is very important, and the unreasonable setting will seriously affect the final classification results. To address this issue, in this paper, we propose a minimum spanning tree (MST) classification framework to identify Alzheimer's disease (AD), MCI, and normal controls (NCs). The proposed method mainly uses the MST method, graph-based Substructure Pattern mining (gSpan), and graph kernel Principal Component Analysis (graph kernel PCA). Specifically, MST is used to construct the brain functional connectivity network; gSpan, to extract features; and subnetwork selection and graph kernel PCA, to select features. Finally, the support vector machine is used to perform classification. We evaluate our method on MST brain functional networks of 21 AD, 25 MCI, and 22 NC subjects. The experimental results show that our proposed method achieves classification accuracy of 98.3, 91.3, and 77.3%, for MCI vs. NC, AD vs. NC, and AD vs. MCI, respectively. The results show our proposed method can achieve significantly improved classification performance compared to other state-of-the-art methods.
Effective and accurate diagnosis of Alzheimer's disease (AD), as well as its early stage (mild cognitive impairment (MCI)), has attracted more and more attention recently. Researchers have constructed threshold brain function networks and extracted various features for the classification of brain diseases. However, in the construction of the brain function network, the selection of threshold is very important, and the unreasonable setting will seriously affect the final classification results. To address this issue, in this paper, we propose a minimum spanning tree (MST) classification framework to identify Alzheimer’s disease (AD), mild cognitive impairment (MCI), and normal controls (NCs). The proposed method mainly uses the MST method, graph-based Substructure Pattern mining (gSpan), and graph kernel Principal Component Analysis (graph kernel PCA). Specifically, MST is used to construct the brain functional connectivity network; gSpan, to extract features; and subnetwork selection and graph kernel PCA, to select features. Finally, the support vector machine is used to perform classification. We evaluate our method on MST brain functional networks of 21 AD, 25 MCI, and 22 NC subjects. The experimental results show that our proposed method achieves classification accuracy of 98.3%, 91.3% and 77.3%, for MCI vs NC, AD vs NC and AD vs MCI, respectively. The results show our proposed method can achieve significantly improved classification performance compared to other state-of-the-art methods.
Effective and accurate diagnosis of Alzheimer's disease (AD), as well as its early stage (mild cognitive impairment, MCI), has attracted more and more attention recently. Researchers have constructed threshold brain function networks and extracted various features for the classification of brain diseases. However, in the construction of the brain function network, the selection of threshold is very important, and the unreasonable setting will seriously affect the final classification results. To address this issue, in this paper, we propose a minimum spanning tree (MST) classification framework to identify Alzheimer's disease (AD), MCI, and normal controls (NCs). The proposed method mainly uses the MST method, graph-based Substructure Pattern mining (gSpan), and graph kernel Principal Component Analysis (graph kernel PCA). Specifically, MST is used to construct the brain functional connectivity network; gSpan, to extract features; and subnetwork selection and graph kernel PCA, to select features. Finally, the support vector machine is used to perform classification. We evaluate our method on MST brain functional networks of 21 AD, 25 MCI, and 22 NC subjects. The experimental results show that our proposed method achieves classification accuracy of 98.3, 91.3, and 77.3%, for MCI vs. NC, AD vs. NC, and AD vs. MCI, respectively. The results show our proposed method can achieve significantly improved classification performance compared to other state-of-the-art methods.Effective and accurate diagnosis of Alzheimer's disease (AD), as well as its early stage (mild cognitive impairment, MCI), has attracted more and more attention recently. Researchers have constructed threshold brain function networks and extracted various features for the classification of brain diseases. However, in the construction of the brain function network, the selection of threshold is very important, and the unreasonable setting will seriously affect the final classification results. To address this issue, in this paper, we propose a minimum spanning tree (MST) classification framework to identify Alzheimer's disease (AD), MCI, and normal controls (NCs). The proposed method mainly uses the MST method, graph-based Substructure Pattern mining (gSpan), and graph kernel Principal Component Analysis (graph kernel PCA). Specifically, MST is used to construct the brain functional connectivity network; gSpan, to extract features; and subnetwork selection and graph kernel PCA, to select features. Finally, the support vector machine is used to perform classification. We evaluate our method on MST brain functional networks of 21 AD, 25 MCI, and 22 NC subjects. The experimental results show that our proposed method achieves classification accuracy of 98.3, 91.3, and 77.3%, for MCI vs. NC, AD vs. NC, and AD vs. MCI, respectively. The results show our proposed method can achieve significantly improved classification performance compared to other state-of-the-art methods.
Author Guo, Hao
Zhang, Huijun
Cui, Xiaohong
Lan, Fangpeng
Yin, Guimei
Xiang, Jie
Chen, Junjie
AuthorAffiliation 2 Department of Computer Science and Technology, Taiyuan Normal University , Taiyuan , China
3 Department of Digital Media Technology, Communication University of Shanxi , Jinzhong , China
1 College of Information and Computer, Taiyuan University of Technology , Taiyuan , China
AuthorAffiliation_xml – name: 2 Department of Computer Science and Technology, Taiyuan Normal University , Taiyuan , China
– name: 3 Department of Digital Media Technology, Communication University of Shanxi , Jinzhong , China
– name: 1 College of Information and Computer, Taiyuan University of Technology , Taiyuan , China
Author_xml – sequence: 1
  givenname: Xiaohong
  surname: Cui
  fullname: Cui, Xiaohong
– sequence: 2
  givenname: Jie
  surname: Xiang
  fullname: Xiang, Jie
– sequence: 3
  givenname: Hao
  surname: Guo
  fullname: Guo, Hao
– sequence: 4
  givenname: Guimei
  surname: Yin
  fullname: Yin, Guimei
– sequence: 5
  givenname: Huijun
  surname: Zhang
  fullname: Zhang, Huijun
– sequence: 6
  givenname: Fangpeng
  surname: Lan
  fullname: Lan, Fangpeng
– sequence: 7
  givenname: Junjie
  surname: Chen
  fullname: Chen, Junjie
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29867424$$D View this record in MEDLINE/PubMed
BookMark eNqFUk1v0zAYjtAQ-4A7J2SJAxzWYSex41yQusJGxTaQOsTRcu03rYdjBzvZNP4n_wcvHdO2A5xs2c_X-7GbbTnvIMteEnxQFLx-1zjl24McE36AMS7Ik2yHMJZPKOF86959O9uN8QJjljOKn2Xbec1ZVeblTvZ7ZmWMpjFK9sY75Bs0tb_WYFoIbyL6YCLICPvo1FiNZn7lTG8uAc3bTprQguv3kXQanfnQSpsArg_eRvTd9Gu0GJYO-isffqAFWFCjwQ36OMhujT5DcGDR12CcMt3IbrtUn-vR1El7HU1Eh8lco0Q7Nc60Q4sWnXTOuBU6DwDoMEjj0NHgRu0kcbbxe549baSN8OL23Mu-HX08n32anHw5ns-mJxNV1rifVCUplrRs8rIGihkmRU6JwpRyzaTWkleEFxi0VowyvFS5ZhQaBcuK5ozVdbGXzTe62ssL0QXTynAtvDRifPBhJWTojbIgoOGK8UaDwqzUtaopB1lRVUtSLUuQSYtstAbXyesrae2dIMHiZtxiHLe4GbcYx5047zecbli2oFXqXZD2QZCHP86sxcpfClrTkpAiCby9FQj-5wCxF62JCqyVDvwQkxfFJadk9Hr9CHrhh5CanlA5L4qcV7RMqFf3E91F-btxCcA2ABV8jAEaoUw_7l4KaOy_asWPiP9tzx9MJwA7
CitedBy_id crossref_primary_10_1016_j_health_2023_100223
crossref_primary_10_3389_fnins_2020_558434
crossref_primary_10_31083_j_jin2102056
crossref_primary_10_1016_j_dadm_2019_04_009
crossref_primary_10_3389_fnins_2022_889105
crossref_primary_10_1109_JBHI_2018_2863202
crossref_primary_10_1109_TPAMI_2023_3324799
crossref_primary_10_1016_j_nicl_2021_102917
crossref_primary_10_1002_hbm_26257
crossref_primary_10_1016_j_nicl_2019_101972
crossref_primary_10_1016_j_bspc_2024_106721
crossref_primary_10_3389_fninf_2019_00079
crossref_primary_10_3389_fnins_2019_00211
crossref_primary_10_1002_mp_17119
crossref_primary_10_3389_fnins_2018_00716
crossref_primary_10_1016_j_bspc_2023_105652
crossref_primary_10_1109_TNSRE_2023_3236007
crossref_primary_10_1002_alz_13411
crossref_primary_10_1016_j_eswa_2022_118633
crossref_primary_10_1016_j_tics_2018_09_007
crossref_primary_10_1007_s00521_022_07122_7
crossref_primary_10_1016_j_eswa_2023_122898
crossref_primary_10_1109_ACCESS_2019_2944899
crossref_primary_10_1016_j_neunet_2022_03_016
crossref_primary_10_1016_j_compbiomed_2023_107392
crossref_primary_10_1109_TBDATA_2021_3072001
Cites_doi 10.1017/S1355617709090523
10.1016/j.compbiomed.2015.07.006
10.1002/hbm.22353
10.1090/S0002-9939-1956-0078686-7
10.1016/j.jalz.2007.04.381
10.1016/j.neucom.2014.02.076
10.3389/fnins.2017.00639
10.1103/PhysRevE.81.021130
10.1007/BFb0020217
10.1103/PhysRevE.73.041920
10.1109/TBME.2013.2284195
10.1016/j.biopsych.2008.10.017
10.1016/j.mri.2011.11.001
10.1016/j.neuroimage.2014.10.002
10.1089/brain.2012.0106
10.1145/1961189.1961199
10.1016/j.neuroimage.2010.10.026
10.1093/brain/awn278
10.1103/PhysRevLett.86.5076
10.1016/j.compmedimag.2016.04.004
10.1016/j.neuroimage.2011.12.071
10.3389/fneur.2018.00003
10.1148/radiol.10091701
10.1016/j.neuroimage.2011.10.015
10.1006/nimg.2001.0978
10.1371/journal.pone.0037828
10.1038/srep00630
10.1016/j.media.2016.03.003
10.1016/j.mri.2014.05.008
10.1212/01.wnl.0000250326.77323.01
10.1109/ISCO.2013.6481189
10.1155/2017/4820935
10.1016/j.compbiomed.2013.07.004
10.1093/brain/awm112
10.1016/j.jns.2009.10.022
10.1016/j.ijpsycho.2014.04.001
10.1111/epi.12350
10.1016/j.asoc.2010.08.012
10.1016/j.pscychresns.2012.11.005
10.1142/S021963521350026X
10.1148/radiol.10100734
10.4236/ami.2012.22003
10.1016/j.neuroimage.2005.04.034
10.1007/978-3-642-15711-0_76
10.1016/j.neurobiolaging.2009.09.006
10.1016/j.compmedimag.2012.11.001
10.3389/fnins.2017.00392
10.1016/j.neuroimage.2014.10.015
10.1371/journal.pcbi.1000100
10.1016/j.neuroimage.2011.01.008
ContentType Journal Article
Copyright 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2018 Cui, Xiang, Guo, Yin, Zhang, Lan and Chen. 2018 Cui, Xiang, Guo, Yin, Zhang, Lan and Chen
Copyright_xml – notice: 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2018 Cui, Xiang, Guo, Yin, Zhang, Lan and Chen. 2018 Cui, Xiang, Guo, Yin, Zhang, Lan and Chen
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3389/fncom.2018.00031
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database (ProQuest)
ProQuest Central Biological Science Database (via ProQuest)
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
Openly Available Collection - DOAJ
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-5188
ExternalDocumentID oai_doaj_org_article_ef8c68fdec064d9c958ea75c9a17b4ea
10.3389/fncom.2018.00031
PMC5954113
29867424
10_3389_fncom_2018_00031
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61472270; 61402318; 61672374
– fundername: Natural Science Foundation of Shanxi Province
  grantid: 201601D021073
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFO
ACGFS
ADBBV
ADMLS
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARCSS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
F5P
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PUEGO
RNS
RPM
TR2
ACXDI
C1A
IAO
IEA
IHR
IPNFZ
ISR
NPM
RIG
3V.
7XB
8FK
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
AFFHD
UNPAY
ID FETCH-LOGICAL-c490t-7413b54f249e506013251c0558d6adda871830eddc6560bc2d65efceb75266993
IEDL.DBID M48
ISSN 1662-5188
IngestDate Fri Oct 03 12:45:40 EDT 2025
Wed Oct 29 12:11:30 EDT 2025
Tue Sep 30 16:35:17 EDT 2025
Thu Sep 04 19:49:23 EDT 2025
Fri Jul 25 11:40:34 EDT 2025
Wed Feb 19 02:43:22 EST 2025
Thu Apr 24 22:57:45 EDT 2025
Wed Oct 01 02:59:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords mild cognitive impairment
gSpan
graph kernel principal component analysis
classification
Alzheimer's disease
minimum spanning tree
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c490t-7413b54f249e506013251c0558d6adda871830eddc6560bc2d65efceb75266993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Edited by: Pei-Ji Liang, Shanghai Jiao Tong University, China
Reviewed by: Zhichao Lian, Nanjing University of Science and Technology, China; Xiaoli Guo, Shanghai Jiao Tong University, China
OpenAccessLink https://doaj.org/article/ef8c68fdec064d9c958ea75c9a17b4ea
PMID 29867424
PQID 2283328754
PQPubID 4424409
ParticipantIDs doaj_primary_oai_doaj_org_article_ef8c68fdec064d9c958ea75c9a17b4ea
unpaywall_primary_10_3389_fncom_2018_00031
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5954113
proquest_miscellaneous_2050485131
proquest_journals_2283328754
pubmed_primary_29867424
crossref_citationtrail_10_3389_fncom_2018_00031
crossref_primary_10_3389_fncom_2018_00031
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-05-09
PublicationDateYYYYMMDD 2018-05-09
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-09
  day: 09
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in computational neuroscience
PublicationTitleAlternate Front Comput Neurosci
PublicationYear 2018
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Du (B15) 2016; 52
Aguilar (B1) 2013; 212
Dobrin (B14) 2001; 86
Wee (B46); 59
Brookmeyer (B6) 2007; 3
Machulda (B33) 2001; 15
Lee (B29) 2013; 43
Gray (B19) 2012; 60
Stam (B41) 2014; 92
Andersen (B2) 2012; 30
Shen (B39) 2010
Chen (B9) 2013; 37
Kruskal (B27) 1956; 7
Jackson (B23) 2010; 81
de Jong (B10) 2008; 131
Zanin (B50) 2012; 2
Schölkopf (B38) 1997
Boersma (B5) 2012; 3
Górriz (B17) 2011; 11
Liu (B32) 2018; 9
Nielsen (B36) 2005; 27
Supekar (B42) 2008; 4
Lee (B28) 2006; 73
Jie (B24) 2016; 32
Tzourio-Mazoyer (B44) 2002; 15
Bai (B3) 2009; 65
B40
Zhang (B52) 2010; 256
Guo (B21); 11
Demuru (B11) 2013; 12
Graña (B18) 2011
Wee (B45); 7
Hanyu (B22) 2010; 290
Diessen (B12) 2013; 54
Yan (B49) 2002
Moradi (B35) 2015; 104
Mesrob (B34) 2012; 2
Chang (B7) 2011; 2
Chen (B8) 2011; 259
Beheshti (B4) 2015; 64
Whitwell (B48) 2007; 130
Jie (B25); 61
Li (B31) 2014; 32
Wee (B47) 2011; 54
Geng (B16) 2017; 11
Jie (B26); 35
Tewarie (B43) 2015; 104
Zhang (B53) 2007; 68
Guo (B20); 11
Lenzi (B30) 2011; 32
Zhang (B51) 2011; 55
Papakostas (B37) 2015; 150
Dinesh (B13) 2013
References_xml – volume: 15
  start-page: 372
  year: 2001
  ident: B33
  article-title: Functional MRI changes in amnestic vs. nonamnestic MCI during a recognition memory task
  publication-title: J. Int. Neuropsychol. Soc.
  doi: 10.1017/S1355617709090523
– volume: 64
  start-page: 208
  year: 2015
  ident: B4
  article-title: Probability distribution function-based classification of structural MRI for the detection of Alzheimer's disease
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2015.07.006
– volume: 35
  start-page: 2876
  ident: B26
  article-title: Topological graph kernel on multiple thresholded functional connectivity networks for mild cognitive impairment classification
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22353
– volume: 7
  start-page: 48
  year: 1956
  ident: B27
  article-title: On the shortest spanning subtree of a graph and the traveling salesman problem
  publication-title: Proc. Am. Math. Soc
  doi: 10.1090/S0002-9939-1956-0078686-7
– volume: 3
  start-page: 186
  year: 2007
  ident: B6
  article-title: Forecasting the global burden of Alzheimer's disease
  publication-title: Alzheimers Dement.
  doi: 10.1016/j.jalz.2007.04.381
– volume: 150
  start-page: 37
  year: 2015
  ident: B37
  article-title: A lattice computing approach to Alzheimer's disease computer assisted diagnosis based on MRI data
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.02.076
– volume: 11
  start-page: 639
  ident: B20
  article-title: Alzheimer classification using a minimum spanning tree of high-order functional network on fMRI Dataset
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2017.00639
– volume: 81
  start-page: 021130
  year: 2010
  ident: B23
  article-title: Theory of minimum spanning trees. I. Mean-field theory and strongly disordered spin-glass model
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRevE.81.021130
– volume-title: International Conference on Artificial Neural Networks
  year: 1997
  ident: B38
  article-title: Kernel principal component analysis
  doi: 10.1007/BFb0020217
– volume: 73
  start-page: 041920
  year: 2006
  ident: B28
  article-title: Classification of epilepsy types through global network analysis of scalp electroencephalograms
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRevE.73.041920
– volume: 61
  start-page: 576
  ident: B25
  article-title: Integration of network topological and connectivity properties for neuroimaging classification
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2013.2284195
– volume: 65
  start-page: 951
  year: 2009
  ident: B3
  article-title: Abnormal functional connectivity of hippocampus during episodic memory retrieval processing network in amnestic mild cognitive impairment
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2008.10.017
– volume: 30
  start-page: 446
  year: 2012
  ident: B2
  article-title: Partial least squares for discrimination in fMRI data
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2011.11.001
– volume: 104
  start-page: 398
  year: 2015
  ident: B35
  article-title: Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.10.002
– volume: 3
  start-page: 50
  year: 2012
  ident: B5
  article-title: Growing trees in child brains: graph theoretical analysis of EEG derived minimum spanning tree in 5 and 7 year old children reflects brain maturation
  publication-title: Brain Connect.
  doi: 10.1089/brain.2012.0106
– volume: 2
  start-page: 27
  year: 2011
  ident: B7
  article-title: LIBSVM: a library for support vector machines
  publication-title: ACM Trans. Intell. Syst. Technol
  doi: 10.1145/1961189.1961199
– volume: 54
  start-page: 1812
  year: 2011
  ident: B47
  article-title: Enriched white matter connectivity networks for accurate identification of MCI patients
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.10.026
– ident: B40
– volume: 131
  start-page: 3277
  year: 2008
  ident: B10
  article-title: Strongly reduced volumes of putamen and thalamus in Alzheimer's disease: an MRI study
  publication-title: Brain
  doi: 10.1093/brain/awn278
– volume: 86
  start-page: 5076
  year: 2001
  ident: B14
  article-title: Minimum spanning trees on random networks
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.86.5076
– volume: 52
  start-page: 82
  year: 2016
  ident: B15
  article-title: Network-based classification of ADHD patients using discriminative subnetwork selection and graph kernel PCA
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2016.04.004
– volume: 60
  start-page: 221
  year: 2012
  ident: B19
  article-title: Multi-region analysis of longitudinal FDG-PET for the classification of Alzheimer's disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.12.071
– volume: 9
  start-page: 3
  year: 2018
  ident: B32
  article-title: Changes in brain lateralization in patients with mild cognitive impairment and Alzheimer's disease: a resting-state functional magnetic resonance study from Alzheimer's Disease neuroimaging initiative
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2018.00003
– volume-title: Proceedings IEEE International Conference on ICDM 2003
  year: 2002
  ident: B49
  article-title: gspan: Graph-based substructure pattern mining. Data Mining
– volume: 256
  start-page: 598
  year: 2010
  ident: B52
  article-title: Resting brain connectivity: changes during the progress of Alzheimer disease
  publication-title: Radiology
  doi: 10.1148/radiol.10091701
– volume: 59
  start-page: 2045
  ident: B46
  article-title: Identification of MCI individuals using structural and functional connectivity networks
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.10.015
– start-page: 225
  volume-title: Neurosci. Lett.
  year: 2011
  ident: B18
  article-title: Computer aided diagnosis system for Alzheimer disease using brain diffusion tensor imaging features selected by Pearson's correlation
– volume: 15
  start-page: 273
  year: 2002
  ident: B44
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0978
– volume: 7
  start-page: e37828
  ident: B45
  article-title: Resting-state multi-spectrum functional connectivity networks for identification of MCI patients
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0037828
– volume: 2
  start-page: 630
  year: 2012
  ident: B50
  article-title: Optimizing functional network representation of multivariate time series
  publication-title: Sci. Rep.
  doi: 10.1038/srep00630
– volume: 32
  start-page: 84
  year: 2016
  ident: B24
  article-title: Hyper-connectivity of functional networks for brain disease diagnosis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.03.003
– volume: 32
  start-page: 1043
  year: 2014
  ident: B31
  article-title: Discriminative analysis of multivariate features from structural MRI and diffusion tensor images
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2014.05.008
– volume: 68
  start-page: 13
  year: 2007
  ident: B53
  article-title: Diffusion tensor imaging of cingulum fibers in mild cognitive impairment and Alzheimer disease
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000250326.77323.01
– volume-title: 7th International Conference on Intelligent Systems and Control (ISCO)
  year: 2013
  ident: B13
  article-title: Instinctive classification of Alzheimer's disease using FMRI, pet and SPECT images
  doi: 10.1109/ISCO.2013.6481189
– volume: 11
  start-page: 1
  ident: B21
  article-title: Machine-learning classifier for patients with major depressive disorder: multifeature approach based on a high-order minimum spanning tree functional brain network
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2017/4820935
– volume: 43
  start-page: 1313
  year: 2013
  ident: B29
  article-title: Classification of diffusion tensor images for the early detection of Alzheimer's disease
  publication-title: Comput. Biol. Med
  doi: 10.1016/j.compbiomed.2013.07.004
– volume: 130
  start-page: 1777
  year: 2007
  ident: B48
  article-title: 3D maps from multiple MRI illustrate changing atrophy patterns as subjects progress from mild cognitive impairment to Alzheimer's disease
  publication-title: Brain
  doi: 10.1093/brain/awm112
– volume: 290
  start-page: 96
  year: 2010
  ident: B22
  article-title: The progression of cognitive deterioration and regional cerebral blood flow patterns in Alzheimer's disease: a longitudinal SPECT study
  publication-title: J. Neurol. Sci.
  doi: 10.1016/j.jns.2009.10.022
– volume: 92
  start-page: 129
  year: 2014
  ident: B41
  article-title: The trees and the forest: characterization of complex brain networks with minimum spanning trees
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/j.ijpsycho.2014.04.001
– volume: 54
  start-page: 1855
  year: 2013
  ident: B12
  article-title: Functional and structural brain networks in epilepsy: what have we learned?
  publication-title: Epilepsia
  doi: 10.1111/epi.12350
– volume: 11
  start-page: 2313
  year: 2011
  ident: B17
  article-title: GMM based SPECT image classification for the diagnosis of Alzheimer's disease
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2010.08.012
– volume: 212
  start-page: 89
  year: 2013
  ident: B1
  article-title: Different multivariate techniques for automated classification of MRI data in Alzheimer's disease and mild cognitive impairment
  publication-title: Psychiatry Res.
  doi: 10.1016/j.pscychresns.2012.11.005
– volume: 12
  start-page: 441
  year: 2013
  ident: B11
  article-title: Brain network analysis of EEG functional connectivity during imagery hand movements
  publication-title: J. Integr. Neurosci.
  doi: 10.1142/S021963521350026X
– volume: 259
  start-page: 213
  year: 2011
  ident: B8
  article-title: Classification of Alzheimer disease, mild cognitive impairment, and normal cognitive status with large-scale network analysis based on resting-state functional MR imaging
  publication-title: Radiology
  doi: 10.1148/radiol.10100734
– volume: 2
  start-page: 12
  year: 2012
  ident: B34
  article-title: DTI and structural MRI classification in Alzheimer's disease
  publication-title: Adv. Mol. Imaging
  doi: 10.4236/ami.2012.22003
– volume: 27
  start-page: 520
  year: 2005
  ident: B36
  article-title: Mining the posterior cingulate: segregation between memory and pain components
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.04.034
– volume-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
  year: 2010
  ident: B39
  article-title: Sparse bayesian learning for identifying imaging biomarkers in AD prediction
  doi: 10.1007/978-3-642-15711-0_76
– volume: 32
  start-page: 1542
  year: 2011
  ident: B30
  article-title: Single domain amnestic MCI: a multiple cognitive domains fMRI investigation
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2009.09.006
– volume: 37
  start-page: 40
  year: 2013
  ident: B9
  article-title: A semi-quantitative method for correlating brain disease groups with normal controls using SPECT: Alzheimer's disease versus vascular dementia
  publication-title: Comput. Med. Imaging Graph
  doi: 10.1016/j.compmedimag.2012.11.001
– volume: 11
  start-page: 392
  year: 2017
  ident: B16
  article-title: Effect of resting-state fNIRS scanning duration on functional brain connectivity and graph theory metrics of brain network
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2017.00392
– volume: 104
  start-page: 177
  year: 2015
  ident: B43
  article-title: The minimum spanning tree: an unbiased method for brain network analysis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.10.015
– volume: 4
  start-page: e1000100
  year: 2008
  ident: B42
  article-title: Network analysis of intrinsic functional brain connectivity in Alzheimer's disease
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1000100
– volume: 55
  start-page: 856
  year: 2011
  ident: B51
  article-title: Multimodal classification of Alzheimer's disease and mild cognitive impairment
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.01.008
SSID ssj0062650
Score 2.3330076
Snippet Effective and accurate diagnosis of Alzheimer's disease (AD), as well as its early stage (mild cognitive impairment, MCI), has attracted more and more...
Effective and accurate diagnosis of Alzheimer's disease (AD), as well as its early stage (mild cognitive impairment (MCI)), has attracted more and more...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 31
SubjectTerms Accuracy
Algorithms
Alzheimer's disease
Classification
Cognitive ability
graph kernel principal component analysis
gSpan
Medical imaging
mild cognitive impairment
minimum spanning tree
Neural networks
Neurodegenerative diseases
Neuroscience
NMR
Nuclear magnetic resonance
Principal components analysis
SummonAdditionalLinks – databaseName: Openly Available Collection - DOAJ
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZQL-WCoOWRUtAgIRCoq-zLu-tjEggFlAipreht5bW9ykobJ8pDqPxP_g8zdhI1AtEL1-x4PXK-nZdH3zD2Gl1iJMOoCuJKxkFqFA-IVSvQdVjrXKDDNVQaGI2z86v0yzW_vjXqi3rCPD2wP7iuqQuVFbU2Cp2nFkrwwsicKyGjvEqNC43CQmyTKW-DMUrnob-UxBRMdGtLrSHo66hxMkyiPSfkuPr_FmD-2Sd5uLZzefNDtu0tJzR8yB5sokfoea0fsXvGHrHjnsXMeXoDb8D1c7pC-TH75eZdUieQO3yY1dBrf05MMzWLt0v44G9mzmDUtBoG2y4i-Iz2oVlQzfAMpNUwpqC2hYFvaV_C92Y1ATQ31vePw4UbpEMbkPQn4r-Gr2ZhTQvffCHfrZ7OZxbfCVsSFOjj5hpw2aixzXQ9hYu5H58ElwtjoE-jK2CIXtcXK2Hs93vMroYfLwfnwWaIQ6BSEa4CjFiSiqc1pnmGyAwx--WRCjkvdIa2VWLCViSh0VoRDVClYp1xUytT5RxjB4yenrADixo-Y4CCmYirREmJWZOoZJIllYlUUedRqnjcYd3tv1qqDcM5DdpoS8x0CAelw0FJOCgdDjrs3W7F3LN7_EO2T0DZyREvt_sB0Vpu0FrehdYOO93CrNwYi2VJDEQJZq487bBXu8f4mdPdjbRmtkaZkKOt5RHp8dSjcqdJLIosT2Ncne_hdU_V_Se2mTgqcS54GkVJh73fIfvOgzj5HwfxnN2nN7rWUXHKDlaLtXmB4d2qeum-5N9q3lRk
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bb9MwFLZG9wAvCBiwwkAHCYFAi5qbc3lAqC0bA9RqYpvYW-TYDo2UuqUXofE_-T-c4ySFCjRek-PYaT6fm0-_w9hzNImecL3c8XPhO6GW3CFWLUcVbqHiFA2uptTAaBydXIQfL_nlDhu3_4WhsspWJ1pFrWaScuQ9omkJ0L3n4dv5N4e6RtHpattCQzStFdQbSzF2g-36xIzVYbuDo_Hp51Y3o_fO3fqwEkOztFcYKhlBG0gFlW7gbRkny-H_L8fz7_rJm2szF1ffRVX9YZyO77DbjVcJ_RoGd9mONvfYXt9gRD29ghdg6zxtAn2P_bR9MKlCyH4UmBXQr35MdDnVi5dLeFef2BzCqKwUDNvqIviAeqNcUC7xEIRRMCZnt4JhXeq-hC_lagKohkxdVw5ntsEOTUDS74kXGz7phdEVnNYJfjt6Op8ZfCa05CgwwMkV4LBRacrpegpn87qtEpwvtIYBtbSAY7TGdRITxvV899nF8dH58MRpmjs4MkzdlYOeTJDzsMDwTxPJIUbF3JMu54mKUOcKDOSSwNVKSaIHyqWvIq4LqfOYo0-BXtUD1jG4wn0GKBilfh5IITCaSnMRREGuPZkUsRdK7ndZr_2qmWyYz6kBR5VhBEQ4yCwOMsJBZnHQZa82I-Y168c1sgMCykaO-Lrthdnia9Zs_0wXiYySQmmJLqBKZcoTLWIuU-HFeahFlx20MMsaJbLMfkO-y55tbuP2pzMdYfRsjTIuRx3MPVrHwxqVm5X4aRLFoY-j4y28bi11-44pJ5ZinKc89Lygy15vkP3fH-LR9e_wmN0iWVssmh6wzmqx1k_QoVvlT5td-gsh11Cj
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zj9MwELag-wAvXMtRWNAgIRBos83lHI9toSygVivtVrBPkeM4akTqVj2Edv8n_4cZO60orECIxybj2onHc9hfvmHsBbpET7he7vi58J1QSe4Qq5ZTlG5ZxCk6XEVbA8NRdDwOP37hGzThsoFVlvTpPhWCrrRlCm4gYrTCMaNKO6UmpAe6LsJBolZ25kV5ne1FHMPxFtsbj06655RoRREmWl6S2OPJK5vuuCPD2n9VqPk7YvLGWs_FxTdR1z-5o8Ftlm8exKJQvh6tV_mRvPyF4_G_nvQOu9UEq9C18nfZNaXvsf2uxkR9egEvwcBHzb78PvtuymsS8MjMNcxK6NaXE1VN1eLVEt7ag6BDGFZ1Af0NaAk-oDmqFrRFeQhCFzCiGLqGvkXQL-FztZoAWjdt4epwaur2UAck_Z7otuGTWmhVw4k9NzCtp_OZxv-EDecK9LDzArDZsNLVdD2F07mt1gRnC6WgR5UyYIBO3u6Nwsj2d5-NB-_O-sdOUzPCkWHqrhwMkIKchyVmlYq4EzHZ5p50OU-KCE25wPwwCVxVFJJYh3LpFxFXpVR5zDFUwWDtAWtpHOEjBigYpX4eSCEwSUtzEURBrjyZlLEXSu63WWejOplsCNWprkedYWJFs5eZ2cto9jIze232ettibslE_iDbI23cyhENuLmAepI1epKpMpFRUhZKYmRZpDLliRIxl6nw4jxUos0ONrqcNbZpmRHhUYCJMg_b7Pn2NloVOioSWs3WKONyNO3co3E8tKq_HYmfJlEc-tg63lkUO0PdvaOriWEu5ykPPS9oszfb5fPXF_H4X4SfsJv0wyBS0wPWWi3W6ilGjav8WWMXfgBVu3CX
  priority: 102
  providerName: Unpaywall
Title Classification of Alzheimer's Disease, Mild Cognitive Impairment, and Normal Controls With Subnetwork Selection and Graph Kernel Principal Component Analysis Based on Minimum Spanning Tree Brain Functional Network
URI https://www.ncbi.nlm.nih.gov/pubmed/29867424
https://www.proquest.com/docview/2283328754
https://www.proquest.com/docview/2050485131
https://pubmed.ncbi.nlm.nih.gov/PMC5954113
https://www.frontiersin.org/articles/10.3389/fncom.2018.00031/pdf
https://doaj.org/article/ef8c68fdec064d9c958ea75c9a17b4ea
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1662-5188
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062650
  issn: 1662-5188
  databaseCode: KQ8
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1662-5188
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062650
  issn: 1662-5188
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1662-5188
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062650
  issn: 1662-5188
  databaseCode: ADMLS
  dateStart: 20120501
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1662-5188
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062650
  issn: 1662-5188
  databaseCode: DIK
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1662-5188
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062650
  issn: 1662-5188
  databaseCode: GX1
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1662-5188
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062650
  issn: 1662-5188
  databaseCode: M~E
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1662-5188
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062650
  issn: 1662-5188
  databaseCode: RPM
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1662-5188
  dateEnd: 20211231
  omitProxy: true
  ssIdentifier: ssj0062650
  issn: 1662-5188
  databaseCode: BENPR
  dateStart: 20071102
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1662-5188
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0062650
  issn: 1662-5188
  databaseCode: M48
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9NAEF6h9gAXBJSHoUSDhECgmtqx148DQkloWkCJItqI9GSt12tiyXGCkwjC_-T_MLOODREFLjlkZ-2VPTsz3-z4G8aeoku0hWXHZjsWbdNVkpvEqmUmqZUmfogOV1FqYDD0zsbu-wmf_Po8evsAl1dCO-onNS7zV9--bN7ghn9NiBP97XFaUOEHejIqi7Too-p99FMhNXIYuM2ZAkbuul-r7XkIv-wgqA4tr7wCUQSHgYew0d3xV5rW_6pY9M-SyuvrYiE2X0We_-av-rfYzW2gCZ1KM26za6q4ww46BYLs2QaegS791Dn1A_ZDt8akoiH9nmCeQif_PlXZTJXPl_C2OsQ5gkGWJ9CrC47gHZqSrKT04hGIIoEhxb859Krq9yV8ylZTQMtUVKXmcK577tANSPqUqLLhgyoLlcOoyvnr2bPFvMBrQs2XAl28eQI4bZAV2Ww9g_NF1WkJLkqloEtdLqCPDrrKa8Kwut9dNu6fXPTOzG2_B1O6obUyMbhxYu6miAgV8R4iUOa2tDgPEg_NsEBsFziWShJJjEGxbCceV6lUsc8xzMBA6x7bK3CFDxigoBe2Y0cKgQArjIXjObGyZZD6tit522DH9VuN5JYMnXpy5BGCIlKJSKtERCoRaZUw2ItmxqIiAvmHbJcUpZEjCm_9x7z8HG0tQqTSQHpBmiiJUWESypAHSvhchsL2Y1cJgx3WahbV2yIisiIHQS53DfakGUaLQMc8olDzNcpYHM0yt2kd9yutbFZSa7XB_B193Vnq7kiRTTXrOA-5a9uOwV42mv3fB_Hwrwt4xG6QmC4dDQ_Z3qpcq8cY3q3iFtvvngxHH1s6PYK_pxO7pXcyjoyHo87lTzdXVKU
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF5V7UN5QUA5AgUGiUOgWvG1Ph4q1KQNLW2iiraib2a9u6aWHCfkUFV-HP-C_8PM2g5EoPLU13gnu8l-O9eOv2HsJZpER9hOarmpcC1fS24Rq5alMjtTYYwGV1NqoD8I9s_8j-f8fIX9aN6FobLKRicaRa1GknLkbaJp8dC95_778TeLukbR7WrTQkPUrRXUtqEYq1_sONRXlxjCTbcPdnG_X7lub--0u2_VXQYs6cf2zEKT6qXczzAO0cS2h-EZd6TNeaQCPPwCI4rIs7VSknhqUumqgOtM6jTkaNxiImNCE7Dme36Mwd9aZ29w_KmxBRgtcLu6HMVQMG5nJZWooM2lAk7bc5aMoekZ8C9H9-96zfV5ORZXl6Io_jCGvTvsdu3Fwk4Fu7tsRZf32MZOiRH88Apeg6krNQn7DfbT9N2kiiQDAhhlsFN8v9D5UE_eTGG3uiHagn5eKOg21UxwgHoqn1DucgtEqWBAznUB3aq0fgqf89kFoNorqzp2ODENfWgCGv2BeLjhUE9KXcBxdaFgpIfjUYnfCQ0ZC3RwcgUo1s_LfDgfwsm4auMEpxOtoUMtNKCH1r9KmsKgmu8-O7uRbX7AVktc4SMGODCI3dSTQmD0FqfCC7xUOzLKQseX3G2xdrOriayZ1qnhR5FgxEU4SAwOEsJBYnDQYm8XEuOKZeSasR0CymIc8YObD0aTr0mtbhKdRTKIMqUlupwqljGPtAi5jIUTpr4WLbbZwCypldY0-X3EWuzF4jGqG7pDEqUezXGMzVHnc4fW8bBC5WIlbhwFoe-idLiE16WlLj8p8wtDac5j7juO12LvFsj-7x_x-Prf8Jyt75_2j5Kjg8HhE3aL5EyharzJVmeTuX6KzuQsfVafWGBfblpJ_AKHZIxH
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VrQRcEFAegQKDxEOgWvFr_ThUKEkbWkqjirZqb2a9u6aWHCfkoar8RO78H2bWdiAClVOv8W68yY6_mdn5_A1jL9ElOsJ2UstNhWv5WnKLVLUsldmZCmN0uJqOBg4Gwe6J__GMn62wH827MESrbDDRALUaSTojb5NMi4fhPffbWU2LONzuvx9_s6iDFFVam3Yaom6zoLaM3Fj9kse-vrzAdG66tbeNe__Kdfs7x71dq-44YEk_tmcWulcv5X6GOYkm5T1M1bgjbc4jFSAQCMwuIs_WSknSrEmlqwKuM6nTkKOji0mYCd3BGhW_ECTWujuDw8-NX8DMgdtVoRTTwridlURXQf9LZE7bc5Yco-kf8K-g92_u5s15ORaXF6Io_nCM_Tvsdh3RQqcywbtsRZf32HqnxGx-eAmvwXBMzeH9OvtpenASO8kYBIwy6BTfz3U-1JM3U9iuqkWbcJAXCnoNswn2ELPyCZ1jboIoFQwo0C6gV9Hsp3Caz84BIbCsOO1wZJr70A1o9AfS5IZ9PSl1AYdVccHMHo5HJX4nNMIs0MWbK8BpB3mZD-dDOBpXLZ3geKI1dKmdBvQxEqgOUGFQ3e8-O7mWbX7AVktc4SMGODCI3dSTQmAmF6fCC7xUOzLKQseX3G2xdrOriaxV16n5R5Fg9kV2kBg7SMgOEmMHLfZ2MWNcKY5cMbZLhrIYR1rh5oPR5GtSQ0-is0gGUaa0xPBTxTLmkRYhl7FwwtTXosU2GjNLagCbJr8ftxZ7sbiM0EP1JFHq0RzH2Bzxnzu0joeVVS5W4sZREPouzg6X7HVpqctXyvzcyJvzmPuO47XYu4Vl__ePeHz1b3jObiBYJJ_2BvtP2C2aZjir8QZbnU3m-inGlbP0Wf3AAvty3RjxC8WTkHY
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zj9MwELag-wAvXMtRWNAgIRBos83lHI9toSygVivtVrBPkeM4akTqVj2Edv8n_4cZO60orECIxybj2onHc9hfvmHsBbpET7he7vi58J1QSe4Qq5ZTlG5ZxCk6XEVbA8NRdDwOP37hGzThsoFVlvTpPhWCrrRlCm4gYrTCMaNKO6UmpAe6LsJBolZ25kV5ne1FHMPxFtsbj06655RoRREmWl6S2OPJK5vuuCPD2n9VqPk7YvLGWs_FxTdR1z-5o8Ftlm8exKJQvh6tV_mRvPyF4_G_nvQOu9UEq9C18nfZNaXvsf2uxkR9egEvwcBHzb78PvtuymsS8MjMNcxK6NaXE1VN1eLVEt7ag6BDGFZ1Af0NaAk-oDmqFrRFeQhCFzCiGLqGvkXQL-FztZoAWjdt4epwaur2UAck_Z7otuGTWmhVw4k9NzCtp_OZxv-EDecK9LDzArDZsNLVdD2F07mt1gRnC6WgR5UyYIBO3u6Nwsj2d5-NB-_O-sdOUzPCkWHqrhwMkIKchyVmlYq4EzHZ5p50OU-KCE25wPwwCVxVFJJYh3LpFxFXpVR5zDFUwWDtAWtpHOEjBigYpX4eSCEwSUtzEURBrjyZlLEXSu63WWejOplsCNWprkedYWJFs5eZ2cto9jIze232ettibslE_iDbI23cyhENuLmAepI1epKpMpFRUhZKYmRZpDLliRIxl6nw4jxUos0ONrqcNbZpmRHhUYCJMg_b7Pn2NloVOioSWs3WKONyNO3co3E8tKq_HYmfJlEc-tg63lkUO0PdvaOriWEu5ykPPS9oszfb5fPXF_H4X4SfsJv0wyBS0wPWWi3W6ilGjav8WWMXfgBVu3CX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+Alzheimer%27s+Disease%2C+Mild+Cognitive+Impairment%2C+and+Normal+Controls+With+Subnetwork+Selection+and+Graph+Kernel+Principal+Component+Analysis+Based+on+Minimum+Spanning+Tree+Brain+Functional+Network&rft.jtitle=Frontiers+in+computational+neuroscience&rft.au=Cui%2C+Xiaohong&rft.au=Xiang%2C+Jie&rft.au=Guo%2C+Hao&rft.au=Yin%2C+Guimei&rft.date=2018-05-09&rft.issn=1662-5188&rft.eissn=1662-5188&rft.volume=12&rft.spage=31&rft_id=info:doi/10.3389%2Ffncom.2018.00031&rft_id=info%3Apmid%2F29867424&rft.externalDocID=29867424
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5188&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5188&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5188&client=summon