Classification of Alzheimer's Disease, Mild Cognitive Impairment, and Normal Controls With Subnetwork Selection and Graph Kernel Principal Component Analysis Based on Minimum Spanning Tree Brain Functional Network
Effective and accurate diagnosis of Alzheimer's disease (AD), as well as its early stage (mild cognitive impairment, MCI), has attracted more and more attention recently. Researchers have constructed threshold brain function networks and extracted various features for the classification of brai...
Saved in:
| Published in | Frontiers in computational neuroscience Vol. 12; p. 31 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
Frontiers Research Foundation
09.05.2018
Frontiers Media S.A |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1662-5188 1662-5188 |
| DOI | 10.3389/fncom.2018.00031 |
Cover
| Abstract | Effective and accurate diagnosis of Alzheimer's disease (AD), as well as its early stage (mild cognitive impairment, MCI), has attracted more and more attention recently. Researchers have constructed threshold brain function networks and extracted various features for the classification of brain diseases. However, in the construction of the brain function network, the selection of threshold is very important, and the unreasonable setting will seriously affect the final classification results. To address this issue, in this paper, we propose a minimum spanning tree (MST) classification framework to identify Alzheimer's disease (AD), MCI, and normal controls (NCs). The proposed method mainly uses the MST method, graph-based Substructure Pattern mining (gSpan), and graph kernel Principal Component Analysis (graph kernel PCA). Specifically, MST is used to construct the brain functional connectivity network; gSpan, to extract features; and subnetwork selection and graph kernel PCA, to select features. Finally, the support vector machine is used to perform classification. We evaluate our method on MST brain functional networks of 21 AD, 25 MCI, and 22 NC subjects. The experimental results show that our proposed method achieves classification accuracy of 98.3, 91.3, and 77.3%, for MCI vs. NC, AD vs. NC, and AD vs. MCI, respectively. The results show our proposed method can achieve significantly improved classification performance compared to other state-of-the-art methods. |
|---|---|
| AbstractList | Effective and accurate diagnosis of Alzheimer's disease (AD), as well as its early stage (mild cognitive impairment, MCI), has attracted more and more attention recently. Researchers have constructed threshold brain function networks and extracted various features for the classification of brain diseases. However, in the construction of the brain function network, the selection of threshold is very important, and the unreasonable setting will seriously affect the final classification results. To address this issue, in this paper, we propose a minimum spanning tree (MST) classification framework to identify Alzheimer's disease (AD), MCI, and normal controls (NCs). The proposed method mainly uses the MST method, graph-based Substructure Pattern mining (gSpan), and graph kernel Principal Component Analysis (graph kernel PCA). Specifically, MST is used to construct the brain functional connectivity network; gSpan, to extract features; and subnetwork selection and graph kernel PCA, to select features. Finally, the support vector machine is used to perform classification. We evaluate our method on MST brain functional networks of 21 AD, 25 MCI, and 22 NC subjects. The experimental results show that our proposed method achieves classification accuracy of 98.3, 91.3, and 77.3%, for MCI vs. NC, AD vs. NC, and AD vs. MCI, respectively. The results show our proposed method can achieve significantly improved classification performance compared to other state-of-the-art methods. Effective and accurate diagnosis of Alzheimer's disease (AD), as well as its early stage (mild cognitive impairment (MCI)), has attracted more and more attention recently. Researchers have constructed threshold brain function networks and extracted various features for the classification of brain diseases. However, in the construction of the brain function network, the selection of threshold is very important, and the unreasonable setting will seriously affect the final classification results. To address this issue, in this paper, we propose a minimum spanning tree (MST) classification framework to identify Alzheimer’s disease (AD), mild cognitive impairment (MCI), and normal controls (NCs). The proposed method mainly uses the MST method, graph-based Substructure Pattern mining (gSpan), and graph kernel Principal Component Analysis (graph kernel PCA). Specifically, MST is used to construct the brain functional connectivity network; gSpan, to extract features; and subnetwork selection and graph kernel PCA, to select features. Finally, the support vector machine is used to perform classification. We evaluate our method on MST brain functional networks of 21 AD, 25 MCI, and 22 NC subjects. The experimental results show that our proposed method achieves classification accuracy of 98.3%, 91.3% and 77.3%, for MCI vs NC, AD vs NC and AD vs MCI, respectively. The results show our proposed method can achieve significantly improved classification performance compared to other state-of-the-art methods. Effective and accurate diagnosis of Alzheimer's disease (AD), as well as its early stage (mild cognitive impairment, MCI), has attracted more and more attention recently. Researchers have constructed threshold brain function networks and extracted various features for the classification of brain diseases. However, in the construction of the brain function network, the selection of threshold is very important, and the unreasonable setting will seriously affect the final classification results. To address this issue, in this paper, we propose a minimum spanning tree (MST) classification framework to identify Alzheimer's disease (AD), MCI, and normal controls (NCs). The proposed method mainly uses the MST method, graph-based Substructure Pattern mining (gSpan), and graph kernel Principal Component Analysis (graph kernel PCA). Specifically, MST is used to construct the brain functional connectivity network; gSpan, to extract features; and subnetwork selection and graph kernel PCA, to select features. Finally, the support vector machine is used to perform classification. We evaluate our method on MST brain functional networks of 21 AD, 25 MCI, and 22 NC subjects. The experimental results show that our proposed method achieves classification accuracy of 98.3, 91.3, and 77.3%, for MCI vs. NC, AD vs. NC, and AD vs. MCI, respectively. The results show our proposed method can achieve significantly improved classification performance compared to other state-of-the-art methods.Effective and accurate diagnosis of Alzheimer's disease (AD), as well as its early stage (mild cognitive impairment, MCI), has attracted more and more attention recently. Researchers have constructed threshold brain function networks and extracted various features for the classification of brain diseases. However, in the construction of the brain function network, the selection of threshold is very important, and the unreasonable setting will seriously affect the final classification results. To address this issue, in this paper, we propose a minimum spanning tree (MST) classification framework to identify Alzheimer's disease (AD), MCI, and normal controls (NCs). The proposed method mainly uses the MST method, graph-based Substructure Pattern mining (gSpan), and graph kernel Principal Component Analysis (graph kernel PCA). Specifically, MST is used to construct the brain functional connectivity network; gSpan, to extract features; and subnetwork selection and graph kernel PCA, to select features. Finally, the support vector machine is used to perform classification. We evaluate our method on MST brain functional networks of 21 AD, 25 MCI, and 22 NC subjects. The experimental results show that our proposed method achieves classification accuracy of 98.3, 91.3, and 77.3%, for MCI vs. NC, AD vs. NC, and AD vs. MCI, respectively. The results show our proposed method can achieve significantly improved classification performance compared to other state-of-the-art methods. |
| Author | Guo, Hao Zhang, Huijun Cui, Xiaohong Lan, Fangpeng Yin, Guimei Xiang, Jie Chen, Junjie |
| AuthorAffiliation | 2 Department of Computer Science and Technology, Taiyuan Normal University , Taiyuan , China 3 Department of Digital Media Technology, Communication University of Shanxi , Jinzhong , China 1 College of Information and Computer, Taiyuan University of Technology , Taiyuan , China |
| AuthorAffiliation_xml | – name: 2 Department of Computer Science and Technology, Taiyuan Normal University , Taiyuan , China – name: 3 Department of Digital Media Technology, Communication University of Shanxi , Jinzhong , China – name: 1 College of Information and Computer, Taiyuan University of Technology , Taiyuan , China |
| Author_xml | – sequence: 1 givenname: Xiaohong surname: Cui fullname: Cui, Xiaohong – sequence: 2 givenname: Jie surname: Xiang fullname: Xiang, Jie – sequence: 3 givenname: Hao surname: Guo fullname: Guo, Hao – sequence: 4 givenname: Guimei surname: Yin fullname: Yin, Guimei – sequence: 5 givenname: Huijun surname: Zhang fullname: Zhang, Huijun – sequence: 6 givenname: Fangpeng surname: Lan fullname: Lan, Fangpeng – sequence: 7 givenname: Junjie surname: Chen fullname: Chen, Junjie |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29867424$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFUk1v0zAYjtAQ-4A7J2SJAxzWYSex41yQusJGxTaQOsTRcu03rYdjBzvZNP4n_wcvHdO2A5xs2c_X-7GbbTnvIMteEnxQFLx-1zjl24McE36AMS7Ik2yHMJZPKOF86959O9uN8QJjljOKn2Xbec1ZVeblTvZ7ZmWMpjFK9sY75Bs0tb_WYFoIbyL6YCLICPvo1FiNZn7lTG8uAc3bTprQguv3kXQanfnQSpsArg_eRvTd9Gu0GJYO-isffqAFWFCjwQ36OMhujT5DcGDR12CcMt3IbrtUn-vR1El7HU1Eh8lco0Q7Nc60Q4sWnXTOuBU6DwDoMEjj0NHgRu0kcbbxe549baSN8OL23Mu-HX08n32anHw5ns-mJxNV1rifVCUplrRs8rIGihkmRU6JwpRyzaTWkleEFxi0VowyvFS5ZhQaBcuK5ozVdbGXzTe62ssL0QXTynAtvDRifPBhJWTojbIgoOGK8UaDwqzUtaopB1lRVUtSLUuQSYtstAbXyesrae2dIMHiZtxiHLe4GbcYx5047zecbli2oFXqXZD2QZCHP86sxcpfClrTkpAiCby9FQj-5wCxF62JCqyVDvwQkxfFJadk9Hr9CHrhh5CanlA5L4qcV7RMqFf3E91F-btxCcA2ABV8jAEaoUw_7l4KaOy_asWPiP9tzx9MJwA7 |
| CitedBy_id | crossref_primary_10_1016_j_health_2023_100223 crossref_primary_10_3389_fnins_2020_558434 crossref_primary_10_31083_j_jin2102056 crossref_primary_10_1016_j_dadm_2019_04_009 crossref_primary_10_3389_fnins_2022_889105 crossref_primary_10_1109_JBHI_2018_2863202 crossref_primary_10_1109_TPAMI_2023_3324799 crossref_primary_10_1016_j_nicl_2021_102917 crossref_primary_10_1002_hbm_26257 crossref_primary_10_1016_j_nicl_2019_101972 crossref_primary_10_1016_j_bspc_2024_106721 crossref_primary_10_3389_fninf_2019_00079 crossref_primary_10_3389_fnins_2019_00211 crossref_primary_10_1002_mp_17119 crossref_primary_10_3389_fnins_2018_00716 crossref_primary_10_1016_j_bspc_2023_105652 crossref_primary_10_1109_TNSRE_2023_3236007 crossref_primary_10_1002_alz_13411 crossref_primary_10_1016_j_eswa_2022_118633 crossref_primary_10_1016_j_tics_2018_09_007 crossref_primary_10_1007_s00521_022_07122_7 crossref_primary_10_1016_j_eswa_2023_122898 crossref_primary_10_1109_ACCESS_2019_2944899 crossref_primary_10_1016_j_neunet_2022_03_016 crossref_primary_10_1016_j_compbiomed_2023_107392 crossref_primary_10_1109_TBDATA_2021_3072001 |
| Cites_doi | 10.1017/S1355617709090523 10.1016/j.compbiomed.2015.07.006 10.1002/hbm.22353 10.1090/S0002-9939-1956-0078686-7 10.1016/j.jalz.2007.04.381 10.1016/j.neucom.2014.02.076 10.3389/fnins.2017.00639 10.1103/PhysRevE.81.021130 10.1007/BFb0020217 10.1103/PhysRevE.73.041920 10.1109/TBME.2013.2284195 10.1016/j.biopsych.2008.10.017 10.1016/j.mri.2011.11.001 10.1016/j.neuroimage.2014.10.002 10.1089/brain.2012.0106 10.1145/1961189.1961199 10.1016/j.neuroimage.2010.10.026 10.1093/brain/awn278 10.1103/PhysRevLett.86.5076 10.1016/j.compmedimag.2016.04.004 10.1016/j.neuroimage.2011.12.071 10.3389/fneur.2018.00003 10.1148/radiol.10091701 10.1016/j.neuroimage.2011.10.015 10.1006/nimg.2001.0978 10.1371/journal.pone.0037828 10.1038/srep00630 10.1016/j.media.2016.03.003 10.1016/j.mri.2014.05.008 10.1212/01.wnl.0000250326.77323.01 10.1109/ISCO.2013.6481189 10.1155/2017/4820935 10.1016/j.compbiomed.2013.07.004 10.1093/brain/awm112 10.1016/j.jns.2009.10.022 10.1016/j.ijpsycho.2014.04.001 10.1111/epi.12350 10.1016/j.asoc.2010.08.012 10.1016/j.pscychresns.2012.11.005 10.1142/S021963521350026X 10.1148/radiol.10100734 10.4236/ami.2012.22003 10.1016/j.neuroimage.2005.04.034 10.1007/978-3-642-15711-0_76 10.1016/j.neurobiolaging.2009.09.006 10.1016/j.compmedimag.2012.11.001 10.3389/fnins.2017.00392 10.1016/j.neuroimage.2014.10.015 10.1371/journal.pcbi.1000100 10.1016/j.neuroimage.2011.01.008 |
| ContentType | Journal Article |
| Copyright | 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2018 Cui, Xiang, Guo, Yin, Zhang, Lan and Chen. 2018 Cui, Xiang, Guo, Yin, Zhang, Lan and Chen |
| Copyright_xml | – notice: 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2018 Cui, Xiang, Guo, Yin, Zhang, Lan and Chen. 2018 Cui, Xiang, Guo, Yin, Zhang, Lan and Chen |
| DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3389/fncom.2018.00031 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Science Database (ProQuest) ProQuest Central Biological Science Database (via ProQuest) ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall Openly Available Collection - DOAJ |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1662-5188 |
| ExternalDocumentID | oai_doaj_org_article_ef8c68fdec064d9c958ea75c9a17b4ea 10.3389/fncom.2018.00031 PMC5954113 29867424 10_3389_fncom_2018_00031 |
| Genre | Journal Article |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61472270; 61402318; 61672374 – fundername: Natural Science Foundation of Shanxi Province grantid: 201601D021073 |
| GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABUWG ACGFO ACGFS ADBBV ADMLS ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS ARCSS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DWQXO E3Z F5P GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PUEGO RNS RPM TR2 ACXDI C1A IAO IEA IHR IPNFZ ISR NPM RIG 3V. 7XB 8FK PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC AFFHD UNPAY |
| ID | FETCH-LOGICAL-c490t-7413b54f249e506013251c0558d6adda871830eddc6560bc2d65efceb75266993 |
| IEDL.DBID | M48 |
| ISSN | 1662-5188 |
| IngestDate | Fri Oct 03 12:45:40 EDT 2025 Wed Oct 29 12:11:30 EDT 2025 Tue Sep 30 16:35:17 EDT 2025 Thu Sep 04 19:49:23 EDT 2025 Fri Jul 25 11:40:34 EDT 2025 Wed Feb 19 02:43:22 EST 2025 Thu Apr 24 22:57:45 EDT 2025 Wed Oct 01 02:59:51 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | mild cognitive impairment gSpan graph kernel principal component analysis classification Alzheimer's disease minimum spanning tree |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c490t-7413b54f249e506013251c0558d6adda871830eddc6560bc2d65efceb75266993 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Edited by: Pei-Ji Liang, Shanghai Jiao Tong University, China Reviewed by: Zhichao Lian, Nanjing University of Science and Technology, China; Xiaoli Guo, Shanghai Jiao Tong University, China |
| OpenAccessLink | https://doaj.org/article/ef8c68fdec064d9c958ea75c9a17b4ea |
| PMID | 29867424 |
| PQID | 2283328754 |
| PQPubID | 4424409 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ef8c68fdec064d9c958ea75c9a17b4ea unpaywall_primary_10_3389_fncom_2018_00031 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5954113 proquest_miscellaneous_2050485131 proquest_journals_2283328754 pubmed_primary_29867424 crossref_citationtrail_10_3389_fncom_2018_00031 crossref_primary_10_3389_fncom_2018_00031 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2018-05-09 |
| PublicationDateYYYYMMDD | 2018-05-09 |
| PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-09 day: 09 |
| PublicationDecade | 2010 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Lausanne |
| PublicationTitle | Frontiers in computational neuroscience |
| PublicationTitleAlternate | Front Comput Neurosci |
| PublicationYear | 2018 |
| Publisher | Frontiers Research Foundation Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
| References | Du (B15) 2016; 52 Aguilar (B1) 2013; 212 Dobrin (B14) 2001; 86 Wee (B46); 59 Brookmeyer (B6) 2007; 3 Machulda (B33) 2001; 15 Lee (B29) 2013; 43 Gray (B19) 2012; 60 Stam (B41) 2014; 92 Andersen (B2) 2012; 30 Shen (B39) 2010 Chen (B9) 2013; 37 Kruskal (B27) 1956; 7 Jackson (B23) 2010; 81 de Jong (B10) 2008; 131 Zanin (B50) 2012; 2 Schölkopf (B38) 1997 Boersma (B5) 2012; 3 Górriz (B17) 2011; 11 Liu (B32) 2018; 9 Nielsen (B36) 2005; 27 Supekar (B42) 2008; 4 Lee (B28) 2006; 73 Jie (B24) 2016; 32 Tzourio-Mazoyer (B44) 2002; 15 Bai (B3) 2009; 65 B40 Zhang (B52) 2010; 256 Guo (B21); 11 Demuru (B11) 2013; 12 Graña (B18) 2011 Wee (B45); 7 Hanyu (B22) 2010; 290 Diessen (B12) 2013; 54 Yan (B49) 2002 Moradi (B35) 2015; 104 Mesrob (B34) 2012; 2 Chang (B7) 2011; 2 Chen (B8) 2011; 259 Beheshti (B4) 2015; 64 Whitwell (B48) 2007; 130 Jie (B25); 61 Li (B31) 2014; 32 Wee (B47) 2011; 54 Geng (B16) 2017; 11 Jie (B26); 35 Tewarie (B43) 2015; 104 Zhang (B53) 2007; 68 Guo (B20); 11 Lenzi (B30) 2011; 32 Zhang (B51) 2011; 55 Papakostas (B37) 2015; 150 Dinesh (B13) 2013 |
| References_xml | – volume: 15 start-page: 372 year: 2001 ident: B33 article-title: Functional MRI changes in amnestic vs. nonamnestic MCI during a recognition memory task publication-title: J. Int. Neuropsychol. Soc. doi: 10.1017/S1355617709090523 – volume: 64 start-page: 208 year: 2015 ident: B4 article-title: Probability distribution function-based classification of structural MRI for the detection of Alzheimer's disease publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2015.07.006 – volume: 35 start-page: 2876 ident: B26 article-title: Topological graph kernel on multiple thresholded functional connectivity networks for mild cognitive impairment classification publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22353 – volume: 7 start-page: 48 year: 1956 ident: B27 article-title: On the shortest spanning subtree of a graph and the traveling salesman problem publication-title: Proc. Am. Math. Soc doi: 10.1090/S0002-9939-1956-0078686-7 – volume: 3 start-page: 186 year: 2007 ident: B6 article-title: Forecasting the global burden of Alzheimer's disease publication-title: Alzheimers Dement. doi: 10.1016/j.jalz.2007.04.381 – volume: 150 start-page: 37 year: 2015 ident: B37 article-title: A lattice computing approach to Alzheimer's disease computer assisted diagnosis based on MRI data publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.02.076 – volume: 11 start-page: 639 ident: B20 article-title: Alzheimer classification using a minimum spanning tree of high-order functional network on fMRI Dataset publication-title: Front. Neurosci. doi: 10.3389/fnins.2017.00639 – volume: 81 start-page: 021130 year: 2010 ident: B23 article-title: Theory of minimum spanning trees. I. Mean-field theory and strongly disordered spin-glass model publication-title: Phys. Rev. doi: 10.1103/PhysRevE.81.021130 – volume-title: International Conference on Artificial Neural Networks year: 1997 ident: B38 article-title: Kernel principal component analysis doi: 10.1007/BFb0020217 – volume: 73 start-page: 041920 year: 2006 ident: B28 article-title: Classification of epilepsy types through global network analysis of scalp electroencephalograms publication-title: Phys. Rev. doi: 10.1103/PhysRevE.73.041920 – volume: 61 start-page: 576 ident: B25 article-title: Integration of network topological and connectivity properties for neuroimaging classification publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2013.2284195 – volume: 65 start-page: 951 year: 2009 ident: B3 article-title: Abnormal functional connectivity of hippocampus during episodic memory retrieval processing network in amnestic mild cognitive impairment publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2008.10.017 – volume: 30 start-page: 446 year: 2012 ident: B2 article-title: Partial least squares for discrimination in fMRI data publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2011.11.001 – volume: 104 start-page: 398 year: 2015 ident: B35 article-title: Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.10.002 – volume: 3 start-page: 50 year: 2012 ident: B5 article-title: Growing trees in child brains: graph theoretical analysis of EEG derived minimum spanning tree in 5 and 7 year old children reflects brain maturation publication-title: Brain Connect. doi: 10.1089/brain.2012.0106 – volume: 2 start-page: 27 year: 2011 ident: B7 article-title: LIBSVM: a library for support vector machines publication-title: ACM Trans. Intell. Syst. Technol doi: 10.1145/1961189.1961199 – volume: 54 start-page: 1812 year: 2011 ident: B47 article-title: Enriched white matter connectivity networks for accurate identification of MCI patients publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.10.026 – ident: B40 – volume: 131 start-page: 3277 year: 2008 ident: B10 article-title: Strongly reduced volumes of putamen and thalamus in Alzheimer's disease: an MRI study publication-title: Brain doi: 10.1093/brain/awn278 – volume: 86 start-page: 5076 year: 2001 ident: B14 article-title: Minimum spanning trees on random networks publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.86.5076 – volume: 52 start-page: 82 year: 2016 ident: B15 article-title: Network-based classification of ADHD patients using discriminative subnetwork selection and graph kernel PCA publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2016.04.004 – volume: 60 start-page: 221 year: 2012 ident: B19 article-title: Multi-region analysis of longitudinal FDG-PET for the classification of Alzheimer's disease publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.12.071 – volume: 9 start-page: 3 year: 2018 ident: B32 article-title: Changes in brain lateralization in patients with mild cognitive impairment and Alzheimer's disease: a resting-state functional magnetic resonance study from Alzheimer's Disease neuroimaging initiative publication-title: Front. Neurol. doi: 10.3389/fneur.2018.00003 – volume-title: Proceedings IEEE International Conference on ICDM 2003 year: 2002 ident: B49 article-title: gspan: Graph-based substructure pattern mining. Data Mining – volume: 256 start-page: 598 year: 2010 ident: B52 article-title: Resting brain connectivity: changes during the progress of Alzheimer disease publication-title: Radiology doi: 10.1148/radiol.10091701 – volume: 59 start-page: 2045 ident: B46 article-title: Identification of MCI individuals using structural and functional connectivity networks publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.10.015 – start-page: 225 volume-title: Neurosci. Lett. year: 2011 ident: B18 article-title: Computer aided diagnosis system for Alzheimer disease using brain diffusion tensor imaging features selected by Pearson's correlation – volume: 15 start-page: 273 year: 2002 ident: B44 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain publication-title: Neuroimage doi: 10.1006/nimg.2001.0978 – volume: 7 start-page: e37828 ident: B45 article-title: Resting-state multi-spectrum functional connectivity networks for identification of MCI patients publication-title: PLoS ONE doi: 10.1371/journal.pone.0037828 – volume: 2 start-page: 630 year: 2012 ident: B50 article-title: Optimizing functional network representation of multivariate time series publication-title: Sci. Rep. doi: 10.1038/srep00630 – volume: 32 start-page: 84 year: 2016 ident: B24 article-title: Hyper-connectivity of functional networks for brain disease diagnosis publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.03.003 – volume: 32 start-page: 1043 year: 2014 ident: B31 article-title: Discriminative analysis of multivariate features from structural MRI and diffusion tensor images publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2014.05.008 – volume: 68 start-page: 13 year: 2007 ident: B53 article-title: Diffusion tensor imaging of cingulum fibers in mild cognitive impairment and Alzheimer disease publication-title: Neurology doi: 10.1212/01.wnl.0000250326.77323.01 – volume-title: 7th International Conference on Intelligent Systems and Control (ISCO) year: 2013 ident: B13 article-title: Instinctive classification of Alzheimer's disease using FMRI, pet and SPECT images doi: 10.1109/ISCO.2013.6481189 – volume: 11 start-page: 1 ident: B21 article-title: Machine-learning classifier for patients with major depressive disorder: multifeature approach based on a high-order minimum spanning tree functional brain network publication-title: Comput. Math. Methods Med. doi: 10.1155/2017/4820935 – volume: 43 start-page: 1313 year: 2013 ident: B29 article-title: Classification of diffusion tensor images for the early detection of Alzheimer's disease publication-title: Comput. Biol. Med doi: 10.1016/j.compbiomed.2013.07.004 – volume: 130 start-page: 1777 year: 2007 ident: B48 article-title: 3D maps from multiple MRI illustrate changing atrophy patterns as subjects progress from mild cognitive impairment to Alzheimer's disease publication-title: Brain doi: 10.1093/brain/awm112 – volume: 290 start-page: 96 year: 2010 ident: B22 article-title: The progression of cognitive deterioration and regional cerebral blood flow patterns in Alzheimer's disease: a longitudinal SPECT study publication-title: J. Neurol. Sci. doi: 10.1016/j.jns.2009.10.022 – volume: 92 start-page: 129 year: 2014 ident: B41 article-title: The trees and the forest: characterization of complex brain networks with minimum spanning trees publication-title: Int. J. Psychophysiol. doi: 10.1016/j.ijpsycho.2014.04.001 – volume: 54 start-page: 1855 year: 2013 ident: B12 article-title: Functional and structural brain networks in epilepsy: what have we learned? publication-title: Epilepsia doi: 10.1111/epi.12350 – volume: 11 start-page: 2313 year: 2011 ident: B17 article-title: GMM based SPECT image classification for the diagnosis of Alzheimer's disease publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2010.08.012 – volume: 212 start-page: 89 year: 2013 ident: B1 article-title: Different multivariate techniques for automated classification of MRI data in Alzheimer's disease and mild cognitive impairment publication-title: Psychiatry Res. doi: 10.1016/j.pscychresns.2012.11.005 – volume: 12 start-page: 441 year: 2013 ident: B11 article-title: Brain network analysis of EEG functional connectivity during imagery hand movements publication-title: J. Integr. Neurosci. doi: 10.1142/S021963521350026X – volume: 259 start-page: 213 year: 2011 ident: B8 article-title: Classification of Alzheimer disease, mild cognitive impairment, and normal cognitive status with large-scale network analysis based on resting-state functional MR imaging publication-title: Radiology doi: 10.1148/radiol.10100734 – volume: 2 start-page: 12 year: 2012 ident: B34 article-title: DTI and structural MRI classification in Alzheimer's disease publication-title: Adv. Mol. Imaging doi: 10.4236/ami.2012.22003 – volume: 27 start-page: 520 year: 2005 ident: B36 article-title: Mining the posterior cingulate: segregation between memory and pain components publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.04.034 – volume-title: International Conference on Medical Image Computing and Computer-Assisted Intervention year: 2010 ident: B39 article-title: Sparse bayesian learning for identifying imaging biomarkers in AD prediction doi: 10.1007/978-3-642-15711-0_76 – volume: 32 start-page: 1542 year: 2011 ident: B30 article-title: Single domain amnestic MCI: a multiple cognitive domains fMRI investigation publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2009.09.006 – volume: 37 start-page: 40 year: 2013 ident: B9 article-title: A semi-quantitative method for correlating brain disease groups with normal controls using SPECT: Alzheimer's disease versus vascular dementia publication-title: Comput. Med. Imaging Graph doi: 10.1016/j.compmedimag.2012.11.001 – volume: 11 start-page: 392 year: 2017 ident: B16 article-title: Effect of resting-state fNIRS scanning duration on functional brain connectivity and graph theory metrics of brain network publication-title: Front. Neurosci. doi: 10.3389/fnins.2017.00392 – volume: 104 start-page: 177 year: 2015 ident: B43 article-title: The minimum spanning tree: an unbiased method for brain network analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.10.015 – volume: 4 start-page: e1000100 year: 2008 ident: B42 article-title: Network analysis of intrinsic functional brain connectivity in Alzheimer's disease publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1000100 – volume: 55 start-page: 856 year: 2011 ident: B51 article-title: Multimodal classification of Alzheimer's disease and mild cognitive impairment publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.01.008 |
| SSID | ssj0062650 |
| Score | 2.3330076 |
| Snippet | Effective and accurate diagnosis of Alzheimer's disease (AD), as well as its early stage (mild cognitive impairment, MCI), has attracted more and more... Effective and accurate diagnosis of Alzheimer's disease (AD), as well as its early stage (mild cognitive impairment (MCI)), has attracted more and more... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 31 |
| SubjectTerms | Accuracy Algorithms Alzheimer's disease Classification Cognitive ability graph kernel principal component analysis gSpan Medical imaging mild cognitive impairment minimum spanning tree Neural networks Neurodegenerative diseases Neuroscience NMR Nuclear magnetic resonance Principal components analysis |
| SummonAdditionalLinks | – databaseName: Openly Available Collection - DOAJ dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZQL-WCoOWRUtAgIRCoq-zLu-tjEggFlAipreht5bW9ykobJ8pDqPxP_g8zdhI1AtEL1-x4PXK-nZdH3zD2Gl1iJMOoCuJKxkFqFA-IVSvQdVjrXKDDNVQaGI2z86v0yzW_vjXqi3rCPD2wP7iuqQuVFbU2Cp2nFkrwwsicKyGjvEqNC43CQmyTKW-DMUrnob-UxBRMdGtLrSHo66hxMkyiPSfkuPr_FmD-2Sd5uLZzefNDtu0tJzR8yB5sokfoea0fsXvGHrHjnsXMeXoDb8D1c7pC-TH75eZdUieQO3yY1dBrf05MMzWLt0v44G9mzmDUtBoG2y4i-Iz2oVlQzfAMpNUwpqC2hYFvaV_C92Y1ATQ31vePw4UbpEMbkPQn4r-Gr2ZhTQvffCHfrZ7OZxbfCVsSFOjj5hpw2aixzXQ9hYu5H58ElwtjoE-jK2CIXtcXK2Hs93vMroYfLwfnwWaIQ6BSEa4CjFiSiqc1pnmGyAwx--WRCjkvdIa2VWLCViSh0VoRDVClYp1xUytT5RxjB4yenrADixo-Y4CCmYirREmJWZOoZJIllYlUUedRqnjcYd3tv1qqDcM5DdpoS8x0CAelw0FJOCgdDjrs3W7F3LN7_EO2T0DZyREvt_sB0Vpu0FrehdYOO93CrNwYi2VJDEQJZq487bBXu8f4mdPdjbRmtkaZkKOt5RHp8dSjcqdJLIosT2Ncne_hdU_V_Se2mTgqcS54GkVJh73fIfvOgzj5HwfxnN2nN7rWUXHKDlaLtXmB4d2qeum-5N9q3lRk priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bb9MwFLZG9wAvCBiwwkAHCYFAi5qbc3lAqC0bA9RqYpvYW-TYDo2UuqUXofE_-T-c4ySFCjRek-PYaT6fm0-_w9hzNImecL3c8XPhO6GW3CFWLUcVbqHiFA2uptTAaBydXIQfL_nlDhu3_4WhsspWJ1pFrWaScuQ9omkJ0L3n4dv5N4e6RtHpattCQzStFdQbSzF2g-36xIzVYbuDo_Hp51Y3o_fO3fqwEkOztFcYKhlBG0gFlW7gbRkny-H_L8fz7_rJm2szF1ffRVX9YZyO77DbjVcJ_RoGd9mONvfYXt9gRD29ghdg6zxtAn2P_bR9MKlCyH4UmBXQr35MdDnVi5dLeFef2BzCqKwUDNvqIviAeqNcUC7xEIRRMCZnt4JhXeq-hC_lagKohkxdVw5ntsEOTUDS74kXGz7phdEVnNYJfjt6Op8ZfCa05CgwwMkV4LBRacrpegpn87qtEpwvtIYBtbSAY7TGdRITxvV899nF8dH58MRpmjs4MkzdlYOeTJDzsMDwTxPJIUbF3JMu54mKUOcKDOSSwNVKSaIHyqWvIq4LqfOYo0-BXtUD1jG4wn0GKBilfh5IITCaSnMRREGuPZkUsRdK7ndZr_2qmWyYz6kBR5VhBEQ4yCwOMsJBZnHQZa82I-Y168c1sgMCykaO-Lrthdnia9Zs_0wXiYySQmmJLqBKZcoTLWIuU-HFeahFlx20MMsaJbLMfkO-y55tbuP2pzMdYfRsjTIuRx3MPVrHwxqVm5X4aRLFoY-j4y28bi11-44pJ5ZinKc89Lygy15vkP3fH-LR9e_wmN0iWVssmh6wzmqx1k_QoVvlT5td-gsh11Cj priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zj9MwELag-wAvXMtRWNAgIRBos83lHI9toSygVivtVrBPkeM4akTqVj2Edv8n_4cZO60orECIxybj2onHc9hfvmHsBbpET7he7vi58J1QSe4Qq5ZTlG5ZxCk6XEVbA8NRdDwOP37hGzThsoFVlvTpPhWCrrRlCm4gYrTCMaNKO6UmpAe6LsJBolZ25kV5ne1FHMPxFtsbj06655RoRREmWl6S2OPJK5vuuCPD2n9VqPk7YvLGWs_FxTdR1z-5o8Ftlm8exKJQvh6tV_mRvPyF4_G_nvQOu9UEq9C18nfZNaXvsf2uxkR9egEvwcBHzb78PvtuymsS8MjMNcxK6NaXE1VN1eLVEt7ag6BDGFZ1Af0NaAk-oDmqFrRFeQhCFzCiGLqGvkXQL-FztZoAWjdt4epwaur2UAck_Z7otuGTWmhVw4k9NzCtp_OZxv-EDecK9LDzArDZsNLVdD2F07mt1gRnC6WgR5UyYIBO3u6Nwsj2d5-NB-_O-sdOUzPCkWHqrhwMkIKchyVmlYq4EzHZ5p50OU-KCE25wPwwCVxVFJJYh3LpFxFXpVR5zDFUwWDtAWtpHOEjBigYpX4eSCEwSUtzEURBrjyZlLEXSu63WWejOplsCNWprkedYWJFs5eZ2cto9jIze232ettibslE_iDbI23cyhENuLmAepI1epKpMpFRUhZKYmRZpDLliRIxl6nw4jxUos0ONrqcNbZpmRHhUYCJMg_b7Pn2NloVOioSWs3WKONyNO3co3E8tKq_HYmfJlEc-tg63lkUO0PdvaOriWEu5ykPPS9oszfb5fPXF_H4X4SfsJv0wyBS0wPWWi3W6ilGjav8WWMXfgBVu3CX priority: 102 providerName: Unpaywall |
| Title | Classification of Alzheimer's Disease, Mild Cognitive Impairment, and Normal Controls With Subnetwork Selection and Graph Kernel Principal Component Analysis Based on Minimum Spanning Tree Brain Functional Network |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/29867424 https://www.proquest.com/docview/2283328754 https://www.proquest.com/docview/2050485131 https://pubmed.ncbi.nlm.nih.gov/PMC5954113 https://www.frontiersin.org/articles/10.3389/fncom.2018.00031/pdf https://doaj.org/article/ef8c68fdec064d9c958ea75c9a17b4ea |
| UnpaywallVersion | publishedVersion |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1662-5188 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062650 issn: 1662-5188 databaseCode: KQ8 dateStart: 20070101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1662-5188 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062650 issn: 1662-5188 databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1662-5188 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062650 issn: 1662-5188 databaseCode: ADMLS dateStart: 20120501 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1662-5188 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062650 issn: 1662-5188 databaseCode: DIK dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1662-5188 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062650 issn: 1662-5188 databaseCode: GX1 dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1662-5188 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062650 issn: 1662-5188 databaseCode: M~E dateStart: 20070101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1662-5188 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062650 issn: 1662-5188 databaseCode: RPM dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1662-5188 dateEnd: 20211231 omitProxy: true ssIdentifier: ssj0062650 issn: 1662-5188 databaseCode: BENPR dateStart: 20071102 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1662-5188 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0062650 issn: 1662-5188 databaseCode: M48 dateStart: 20100101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9NAEF6h9gAXBJSHoUSDhECgmtqx148DQkloWkCJItqI9GSt12tiyXGCkwjC_-T_MLOODREFLjlkZ-2VPTsz3-z4G8aeoku0hWXHZjsWbdNVkpvEqmUmqZUmfogOV1FqYDD0zsbu-wmf_Po8evsAl1dCO-onNS7zV9--bN7ghn9NiBP97XFaUOEHejIqi7Too-p99FMhNXIYuM2ZAkbuul-r7XkIv-wgqA4tr7wCUQSHgYew0d3xV5rW_6pY9M-SyuvrYiE2X0We_-av-rfYzW2gCZ1KM26za6q4ww46BYLs2QaegS791Dn1A_ZDt8akoiH9nmCeQif_PlXZTJXPl_C2OsQ5gkGWJ9CrC47gHZqSrKT04hGIIoEhxb859Krq9yV8ylZTQMtUVKXmcK577tANSPqUqLLhgyoLlcOoyvnr2bPFvMBrQs2XAl28eQI4bZAV2Ww9g_NF1WkJLkqloEtdLqCPDrrKa8Kwut9dNu6fXPTOzG2_B1O6obUyMbhxYu6miAgV8R4iUOa2tDgPEg_NsEBsFziWShJJjEGxbCceV6lUsc8xzMBA6x7bK3CFDxigoBe2Y0cKgQArjIXjObGyZZD6tit522DH9VuN5JYMnXpy5BGCIlKJSKtERCoRaZUw2ItmxqIiAvmHbJcUpZEjCm_9x7z8HG0tQqTSQHpBmiiJUWESypAHSvhchsL2Y1cJgx3WahbV2yIisiIHQS53DfakGUaLQMc8olDzNcpYHM0yt2kd9yutbFZSa7XB_B193Vnq7kiRTTXrOA-5a9uOwV42mv3fB_Hwrwt4xG6QmC4dDQ_Z3qpcq8cY3q3iFtvvngxHH1s6PYK_pxO7pXcyjoyHo87lTzdXVKU |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF5V7UN5QUA5AgUGiUOgWvG1Ph4q1KQNLW2iiraib2a9u6aWHCfkUFV-HP-C_8PM2g5EoPLU13gnu8l-O9eOv2HsJZpER9hOarmpcC1fS24Rq5alMjtTYYwGV1NqoD8I9s_8j-f8fIX9aN6FobLKRicaRa1GknLkbaJp8dC95_778TeLukbR7WrTQkPUrRXUtqEYq1_sONRXlxjCTbcPdnG_X7lub--0u2_VXQYs6cf2zEKT6qXczzAO0cS2h-EZd6TNeaQCPPwCI4rIs7VSknhqUumqgOtM6jTkaNxiImNCE7Dme36Mwd9aZ29w_KmxBRgtcLu6HMVQMG5nJZWooM2lAk7bc5aMoekZ8C9H9-96zfV5ORZXl6Io_jCGvTvsdu3Fwk4Fu7tsRZf32MZOiRH88Apeg6krNQn7DfbT9N2kiiQDAhhlsFN8v9D5UE_eTGG3uiHagn5eKOg21UxwgHoqn1DucgtEqWBAznUB3aq0fgqf89kFoNorqzp2ODENfWgCGv2BeLjhUE9KXcBxdaFgpIfjUYnfCQ0ZC3RwcgUo1s_LfDgfwsm4auMEpxOtoUMtNKCH1r9KmsKgmu8-O7uRbX7AVktc4SMGODCI3dSTQmD0FqfCC7xUOzLKQseX3G2xdrOriayZ1qnhR5FgxEU4SAwOEsJBYnDQYm8XEuOKZeSasR0CymIc8YObD0aTr0mtbhKdRTKIMqUlupwqljGPtAi5jIUTpr4WLbbZwCypldY0-X3EWuzF4jGqG7pDEqUezXGMzVHnc4fW8bBC5WIlbhwFoe-idLiE16WlLj8p8wtDac5j7juO12LvFsj-7x_x-Prf8Jyt75_2j5Kjg8HhE3aL5EyharzJVmeTuX6KzuQsfVafWGBfblpJ_AKHZIxH |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VrQRcEFAegQKDxEOgWvFr_ThUKEkbWkqjirZqb2a9u6aWHCfkoar8RO78H2bWdiAClVOv8W68yY6_mdn5_A1jL9ElOsJ2UstNhWv5WnKLVLUsldmZCmN0uJqOBg4Gwe6J__GMn62wH827MESrbDDRALUaSTojb5NMi4fhPffbWU2LONzuvx9_s6iDFFVam3Yaom6zoLaM3Fj9kse-vrzAdG66tbeNe__Kdfs7x71dq-44YEk_tmcWulcv5X6GOYkm5T1M1bgjbc4jFSAQCMwuIs_WSknSrEmlqwKuM6nTkKOji0mYCd3BGhW_ECTWujuDw8-NX8DMgdtVoRTTwridlURXQf9LZE7bc5Yco-kf8K-g92_u5s15ORaXF6Io_nCM_Tvsdh3RQqcywbtsRZf32HqnxGx-eAmvwXBMzeH9OvtpenASO8kYBIwy6BTfz3U-1JM3U9iuqkWbcJAXCnoNswn2ELPyCZ1jboIoFQwo0C6gV9Hsp3Caz84BIbCsOO1wZJr70A1o9AfS5IZ9PSl1AYdVccHMHo5HJX4nNMIs0MWbK8BpB3mZD-dDOBpXLZ3geKI1dKmdBvQxEqgOUGFQ3e8-O7mWbX7AVktc4SMGODCI3dSTQmAmF6fCC7xUOzLKQseX3G2xdrOriaxV16n5R5Fg9kV2kBg7SMgOEmMHLfZ2MWNcKY5cMbZLhrIYR1rh5oPR5GtSQ0-is0gGUaa0xPBTxTLmkRYhl7FwwtTXosU2GjNLagCbJr8ftxZ7sbiM0EP1JFHq0RzH2Bzxnzu0joeVVS5W4sZREPouzg6X7HVpqctXyvzcyJvzmPuO47XYu4Vl__ePeHz1b3jObiBYJJ_2BvtP2C2aZjir8QZbnU3m-inGlbP0Wf3AAvty3RjxC8WTkHY |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zj9MwELag-wAvXMtRWNAgIRBos83lHI9toSygVivtVrBPkeM4akTqVj2Edv8n_4cZO60orECIxybj2onHc9hfvmHsBbpET7he7vi58J1QSe4Qq5ZTlG5ZxCk6XEVbA8NRdDwOP37hGzThsoFVlvTpPhWCrrRlCm4gYrTCMaNKO6UmpAe6LsJBolZ25kV5ne1FHMPxFtsbj06655RoRREmWl6S2OPJK5vuuCPD2n9VqPk7YvLGWs_FxTdR1z-5o8Ftlm8exKJQvh6tV_mRvPyF4_G_nvQOu9UEq9C18nfZNaXvsf2uxkR9egEvwcBHzb78PvtuymsS8MjMNcxK6NaXE1VN1eLVEt7ag6BDGFZ1Af0NaAk-oDmqFrRFeQhCFzCiGLqGvkXQL-FztZoAWjdt4epwaur2UAck_Z7otuGTWmhVw4k9NzCtp_OZxv-EDecK9LDzArDZsNLVdD2F07mt1gRnC6WgR5UyYIBO3u6Nwsj2d5-NB-_O-sdOUzPCkWHqrhwMkIKchyVmlYq4EzHZ5p50OU-KCE25wPwwCVxVFJJYh3LpFxFXpVR5zDFUwWDtAWtpHOEjBigYpX4eSCEwSUtzEURBrjyZlLEXSu63WWejOplsCNWprkedYWJFs5eZ2cto9jIze232ettibslE_iDbI23cyhENuLmAepI1epKpMpFRUhZKYmRZpDLliRIxl6nw4jxUos0ONrqcNbZpmRHhUYCJMg_b7Pn2NloVOioSWs3WKONyNO3co3E8tKq_HYmfJlEc-tg63lkUO0PdvaOriWEu5ykPPS9oszfb5fPXF_H4X4SfsJv0wyBS0wPWWi3W6ilGjav8WWMXfgBVu3CX |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+Alzheimer%27s+Disease%2C+Mild+Cognitive+Impairment%2C+and+Normal+Controls+With+Subnetwork+Selection+and+Graph+Kernel+Principal+Component+Analysis+Based+on+Minimum+Spanning+Tree+Brain+Functional+Network&rft.jtitle=Frontiers+in+computational+neuroscience&rft.au=Cui%2C+Xiaohong&rft.au=Xiang%2C+Jie&rft.au=Guo%2C+Hao&rft.au=Yin%2C+Guimei&rft.date=2018-05-09&rft.issn=1662-5188&rft.eissn=1662-5188&rft.volume=12&rft.spage=31&rft_id=info:doi/10.3389%2Ffncom.2018.00031&rft_id=info%3Apmid%2F29867424&rft.externalDocID=29867424 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5188&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5188&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5188&client=summon |