Large-scale automated image analysis for computational profiling of brain tissue surrounding implanted neuroprosthetic devices using Python
In this article, we describe the use of Python for large-scale automated server-based bio-image analysis in FARSIGHT, a free and open-source toolkit of image analysis methods for quantitative studies of complex and dynamic tissue microenvironments imaged by modern optical microscopes, including conf...
Saved in:
| Published in | Frontiers in neuroinformatics Vol. 8; p. 39 |
|---|---|
| Main Authors | , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
Frontiers Research Foundation
29.04.2014
Frontiers Media S.A |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1662-5196 1662-5196 |
| DOI | 10.3389/fninf.2014.00039 |
Cover
| Abstract | In this article, we describe the use of Python for large-scale automated server-based bio-image analysis in FARSIGHT, a free and open-source toolkit of image analysis methods for quantitative studies of complex and dynamic tissue microenvironments imaged by modern optical microscopes, including confocal, multi-spectral, multi-photon, and time-lapse systems. The core FARSIGHT modules for image segmentation, feature extraction, tracking, and machine learning are written in C++, leveraging widely used libraries including ITK, VTK, Boost, and Qt. For solving complex image analysis tasks, these modules must be combined into scripts using Python. As a concrete example, we consider the problem of analyzing 3-D multi-spectral images of brain tissue surrounding implanted neuroprosthetic devices, acquired using high-throughput multi-spectral spinning disk step-and-repeat confocal microscopy. The resulting images typically contain 5 fluorescent channels. Each channel consists of 6000 × 10,000 × 500 voxels with 16 bits/voxel, implying image sizes exceeding 250 GB. These images must be mosaicked, pre-processed to overcome imaging artifacts, and segmented to enable cellular-scale feature extraction. The features are used to identify cell types, and perform large-scale analysis for identifying spatial distributions of specific cell types relative to the device. Python was used to build a server-based script (Dell 910 PowerEdge servers with 4 sockets/server with 10 cores each, 2 threads per core and 1TB of RAM running on Red Hat Enterprise Linux linked to a RAID 5 SAN) capable of routinely handling image datasets at this scale and performing all these processing steps in a collaborative multi-user multi-platform environment. Our Python script enables efficient data storage and movement between computers and storage servers, logs all the processing steps, and performs full multi-threaded execution of all codes, including open and closed-source third party libraries. |
|---|---|
| AbstractList | In this article, we describe use of Python for large-scale automated server-based bio-image analysis in FARSIGHT, a free and open-source toolkit of image analysis methods for quantitative studies of complex and dynamic tissue microenvironments imaged by modern optical microscopes including confocal, multi-spectral, multi-photon, and time-lapse systems. The core FARSIGHT modules for image segmentation, feature extraction, tracking, and machine learning are written in C++, leveraging widely used libraries including ITK, VTK, Boost, and Qt. For solving complex image analysis task, these modules must be combined into scripts using Python. As a concrete example, we consider the problem of analyzing 3-D multi-spectral brain tissue images surrounding implanted neuroprosthetic devices, acquired using high-throughput multi-spectral spinning disk step-and-repeat confocal microscopy. The resulting images typically contain 5 fluorescent channels, 6,000$times$10,000$times$500 voxels with 16 bits/voxel, implying image sizes exceeding 250GB. These images must be mosaicked, pre-processed to overcome imaging artifacts, and segmented to enable cellular-scale feature extraction. The features are used to identify cell types, and perform large-scale analytics for identifying spatial distributions of specific cell types relative to the device. Python was used to build a server-based script (Dell 910 PowerEdge servers with 4 sockets/server with 10 cores each, 2 threads per core and 1TB of RAM running on Red Hat Enterprise Linux linked to a RAID 5 SAN) capable of routinely handling image datasets at this scale and performing all these processing steps in a collaborative multi-user multi-platform environment consisting. Our Python script enables efficient data storage and movement between compute and storage servers, logging all processing steps, and performs full multi-threaded execution of all codes, including open and closed-source third party libraries. In this article, we describe the use of Python for large-scale automated server-based bio-image analysis in FARSIGHT, a free and open-source toolkit of image analysis methods for quantitative studies of complex and dynamic tissue microenvironments imaged by modern optical microscopes, including confocal, multi-spectral, multi-photon, and time-lapse systems. The core FARSIGHT modules for image segmentation, feature extraction, tracking, and machine learning are written in C++, leveraging widely used libraries including ITK, VTK, Boost, and Qt. For solving complex image analysis tasks, these modules must be combined into scripts using Python. As a concrete example, we consider the problem of analyzing 3-D multi-spectral images of brain tissue surrounding implanted neuroprosthetic devices, acquired using high-throughput multi-spectral spinning disk step-and-repeat confocal microscopy. The resulting images typically contain 5 fluorescent channels. Each channel consists of 6000 × 10,000 × 500 voxels with 16 bits/voxel, implying image sizes exceeding 250 GB. These images must be mosaicked, pre-processed to overcome imaging artifacts, and segmented to enable cellular-scale feature extraction. The features are used to identify cell types, and perform large-scale analysis for identifying spatial distributions of specific cell types relative to the device. Python was used to build a server-based script (Dell 910 PowerEdge servers with 4 sockets/server with 10 cores each, 2 threads per core and 1TB of RAM running on Red Hat Enterprise Linux linked to a RAID 5 SAN) capable of routinely handling image datasets at this scale and performing all these processing steps in a collaborative multi-user multi-platform environment. Our Python script enables efficient data storage and movement between computers and storage servers, logs all the processing steps, and performs full multi-threaded execution of all codes, including open and closed-source third party libraries.In this article, we describe the use of Python for large-scale automated server-based bio-image analysis in FARSIGHT, a free and open-source toolkit of image analysis methods for quantitative studies of complex and dynamic tissue microenvironments imaged by modern optical microscopes, including confocal, multi-spectral, multi-photon, and time-lapse systems. The core FARSIGHT modules for image segmentation, feature extraction, tracking, and machine learning are written in C++, leveraging widely used libraries including ITK, VTK, Boost, and Qt. For solving complex image analysis tasks, these modules must be combined into scripts using Python. As a concrete example, we consider the problem of analyzing 3-D multi-spectral images of brain tissue surrounding implanted neuroprosthetic devices, acquired using high-throughput multi-spectral spinning disk step-and-repeat confocal microscopy. The resulting images typically contain 5 fluorescent channels. Each channel consists of 6000 × 10,000 × 500 voxels with 16 bits/voxel, implying image sizes exceeding 250 GB. These images must be mosaicked, pre-processed to overcome imaging artifacts, and segmented to enable cellular-scale feature extraction. The features are used to identify cell types, and perform large-scale analysis for identifying spatial distributions of specific cell types relative to the device. Python was used to build a server-based script (Dell 910 PowerEdge servers with 4 sockets/server with 10 cores each, 2 threads per core and 1TB of RAM running on Red Hat Enterprise Linux linked to a RAID 5 SAN) capable of routinely handling image datasets at this scale and performing all these processing steps in a collaborative multi-user multi-platform environment. Our Python script enables efficient data storage and movement between computers and storage servers, logs all the processing steps, and performs full multi-threaded execution of all codes, including open and closed-source third party libraries. In this article, we describe the use of Python for large-scale automated server-based bio-image analysis in FARSIGHT, a free and open-source toolkit of image analysis methods for quantitative studies of complex and dynamic tissue microenvironments imaged by modern optical microscopes, including confocal, multi-spectral, multi-photon, and time-lapse systems. The core FARSIGHT modules for image segmentation, feature extraction, tracking, and machine learning are written in C++, leveraging widely used libraries including ITK, VTK, Boost, and Qt. For solving complex image analysis tasks, these modules must be combined into scripts using Python. As a concrete example, we consider the problem of analyzing 3-D multi-spectral images of brain tissue surrounding implanted neuroprosthetic devices, acquired using high-throughput multi-spectral spinning disk step-and-repeat confocal microscopy. The resulting images typically contain 5 fluorescent channels. Each channel consists of 6000 × 10,000 × 500 voxels with 16 bits/voxel, implying image sizes exceeding 250 GB. These images must be mosaicked, pre-processed to overcome imaging artifacts, and segmented to enable cellular-scale feature extraction. The features are used to identify cell types, and perform large-scale analysis for identifying spatial distributions of specific cell types relative to the device. Python was used to build a server-based script (Dell 910 PowerEdge servers with 4 sockets/server with 10 cores each, 2 threads per core and 1TB of RAM running on Red Hat Enterprise Linux linked to a RAID 5 SAN) capable of routinely handling image datasets at this scale and performing all these processing steps in a collaborative multi-user multi-platform environment. Our Python script enables efficient data storage and movement between computers and storage servers, logs all the processing steps, and performs full multi-threaded execution of all codes, including open and closed-source third party libraries. |
| Author | Padmanabhan, Raghav Somasundar, Vinay Xu, Yan Roysam, Badri Lu, Yanbin Shain, William Rey-Villamizar, Nicolas Megjhani, Murad Trett, Kristen |
| AuthorAffiliation | 1 BioImage Analytics Laboratory, Department of Electrical and Computer Engineering, University of Houston Houston, TX, USA 2 Center for Integrative Brain Research, Seattle Children's Research Institute Seattle, WA, USA |
| AuthorAffiliation_xml | – name: 1 BioImage Analytics Laboratory, Department of Electrical and Computer Engineering, University of Houston Houston, TX, USA – name: 2 Center for Integrative Brain Research, Seattle Children's Research Institute Seattle, WA, USA |
| Author_xml | – sequence: 1 givenname: Nicolas surname: Rey-Villamizar fullname: Rey-Villamizar, Nicolas – sequence: 2 givenname: Vinay surname: Somasundar fullname: Somasundar, Vinay – sequence: 3 givenname: Murad surname: Megjhani fullname: Megjhani, Murad – sequence: 4 givenname: Yan surname: Xu fullname: Xu, Yan – sequence: 5 givenname: Yanbin surname: Lu fullname: Lu, Yanbin – sequence: 6 givenname: Raghav surname: Padmanabhan fullname: Padmanabhan, Raghav – sequence: 7 givenname: Kristen surname: Trett fullname: Trett, Kristen – sequence: 8 givenname: William surname: Shain fullname: Shain, William – sequence: 9 givenname: Badri surname: Roysam fullname: Roysam, Badri |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24808857$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUk1v1DAUjFARbRfunFAkLlx28Vcc54KEKj4qrQQHOFsvtrPrVWIHO261v4E_jbMpVVsJiZPt996MZjzvsjhz3pmieI3RhlLRvO-cdd2GIMw2CCHaPCsuMOdkXeGGnz24nxeXMR4Q4oRX9YvinDCBhKjqi-L3FsLOrKOC3pSQJj_AZHRpB9jlt4P-GG0sOx9K5YcxTTBZn6vlGHxne-t2pe_KNoB15WRjTKaMKQSfnJ57dhh7cDOhMyn4DIrT3kxWldrcWGVimeI89_047b17WTzvoI_m1d25Kn5-_vTj6ut6--3L9dXH7VqxBk3rqlEN0Rx0S3UroMVGA-4MFcqwSoi25Qjarq5oS7QG1oDgLeMNRYQq0xBGV8X1wqs9HOQYstlwlB6sPBV82EkIWWRvpNK6Bo5UVQFhinDAosVU1MYIXCHSZS68cCU3wvEW-v6eECM5hyRPIck5JHkKKWM-LJgxtYPRyrgpQP9IyOOOs3u58zeSIYxqRjLBuzuC4H8lEyc52KhMn__a-BQlrghliMymV8XbJ6MHn0JOMEpCmooxKtBM-Oahonspf_ckD6BlQOUIYzDd_7jkTyDKLuuTPdn-38A_iA_oCA |
| CitedBy_id | crossref_primary_10_1016_j_jneumeth_2016_03_021 crossref_primary_10_1186_s12859_020_3490_1 crossref_primary_10_1016_j_jneumeth_2021_109102 crossref_primary_10_1038_s42256_020_0227_9 crossref_primary_10_1007_s12021_014_9237_2 crossref_primary_10_3389_fncel_2021_701673 crossref_primary_10_1007_s12021_020_09484_6 crossref_primary_10_1038_s41467_021_21735_x crossref_primary_10_3389_fncir_2014_00146 crossref_primary_10_1109_JSTSP_2015_2505660 crossref_primary_10_1159_000446821 crossref_primary_10_1093_bioinformatics_btv109 |
| Cites_doi | 10.1109/42.993126 10.1111/j.1365-2818.1994.tb03433.x 10.1137/05064182X 10.1109/TBME.2009.2035102 |
| ContentType | Journal Article |
| Copyright | 2014. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2014 Rey-Villamizar, Somasundar, Megjhani, Xu, Lu, Padmanabhan, Trett, Shain and Roysam. 2014 |
| Copyright_xml | – notice: 2014. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2014 Rey-Villamizar, Somasundar, Megjhani, Xu, Lu, Padmanabhan, Trett, Shain and Roysam. 2014 |
| DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3389/fninf.2014.00039 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student ProQuest SciTech Premium Collection Biological Sciences Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1662-5196 |
| ExternalDocumentID | oai_doaj_org_article_cdd7a60c55a24c26a18b1387ee81502f 10.3389/fninf.2014.00039 PMC4010742 24808857 10_3389_fninf_2014_00039 |
| Genre | Journal Article |
| GeographicLocations | United States--US San Francisco California Fiji |
| GeographicLocations_xml | – name: Fiji – name: San Francisco California – name: United States--US |
| GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAKPC AAYXX ABUWG ACGFO ACGFS ADBBV ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS ARCSS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DWQXO E3Z F5P GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P M~E O5R O5S OK1 OVT PGMZT PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PUEGO RNS RPM TR2 ACXDI C1A IPNFZ NPM RIG 3V. 7XB 8FK PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c490t-59c92d6adb3db8ab1eda1fe38ce4588bb60abf753b2dda49a86b4693023ce9243 |
| IEDL.DBID | M48 |
| ISSN | 1662-5196 |
| IngestDate | Tue Oct 14 19:06:19 EDT 2025 Sun Oct 26 03:35:26 EDT 2025 Tue Sep 30 16:43:36 EDT 2025 Sun Aug 24 04:13:44 EDT 2025 Fri Jul 25 11:54:05 EDT 2025 Mon Jul 21 05:54:45 EDT 2025 Wed Oct 01 01:58:00 EDT 2025 Thu Apr 24 23:02:18 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | C++ neuroscience segmentation image processing software microglia tracing Python neuroprostetic device |
| Language | English |
| License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c490t-59c92d6adb3db8ab1eda1fe38ce4588bb60abf753b2dda49a86b4693023ce9243 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Edited by: Fernando Perez, University of California at Berkeley, USA Reviewed by: Eleftherios Garyfallidis, University of Sherbrooke, Canada; Stefan Johann Van Der Walt, Stellenbosch University, South Africa This article was submitted to the journal Frontiers in Neuroinformatics. |
| OpenAccessLink | https://doaj.org/article/cdd7a60c55a24c26a18b1387ee81502f |
| PMID | 24808857 |
| PQID | 2295443802 |
| PQPubID | 4424404 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_cdd7a60c55a24c26a18b1387ee81502f unpaywall_primary_10_3389_fninf_2014_00039 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4010742 proquest_miscellaneous_1523402469 proquest_journals_2295443802 pubmed_primary_24808857 crossref_primary_10_3389_fninf_2014_00039 crossref_citationtrail_10_3389_fninf_2014_00039 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2014-04-29 |
| PublicationDateYYYYMMDD | 2014-04-29 |
| PublicationDate_xml | – month: 04 year: 2014 text: 2014-04-29 day: 29 |
| PublicationDecade | 2010 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Lausanne |
| PublicationTitle | Frontiers in neuroinformatics |
| PublicationTitleAlternate | Front Neuroinform |
| PublicationYear | 2014 |
| Publisher | Frontiers Research Foundation Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
| References | Aharon (B1) 2005 Aylward (B3) 2002; 21 Cohen (B5) 1994; 173 Candes (B4) 2006; 5 Al-Kofahi (B2) 2010; 57 22743772 - Nat Methods. 2012 Jun 28;9(7):676-82 11929106 - IEEE Trans Med Imaging. 2002 Feb;21(2):61-75 17848778 - IEEE Trans Pattern Anal Mach Intell. 2007 Nov;29(11):1973-89 21487683 - Neuroinformatics. 2011 Sep;9(2-3):305-15 8169949 - J Microsc. 1994 Feb;173(Pt 2):103-14 21361958 - J Microsc. 2011 Aug;243(2):154-71 19884070 - IEEE Trans Biomed Eng. 2010 Apr;57(4):841-52 20583273 - Cytometry A. 2010 Jul;77(7):693-704 21399937 - Neuroinformatics. 2011 Sep;9(2-3):193-217 20879349 - Med Image Comput Comput Assist Interv. 2010;13(Pt 2):472-9 |
| References_xml | – volume: 21 start-page: 61 year: 2002 ident: B3 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.993126 – volume: 173 start-page: 103 year: 1994 ident: B5 article-title: Automated tracing and volume measurements of neurons from 3-d confocal fluorescence microscopy data publication-title: J. Microsc doi: 10.1111/j.1365-2818.1994.tb03433.x – start-page: 9 volume-title: Proceedings of SPARS'05, Workshop on Signal Processing with Adaptive Sparse/Structured Representations was held at IRISA, Rennes, France year: 2005 ident: B1 article-title: K-svd: design of dictionaries for sparse representation – volume: 5 start-page: 861 year: 2006 ident: B4 article-title: Fast discrete curvelet transforms publication-title: Multiscale Model. Simul doi: 10.1137/05064182X – volume: 57 start-page: 841 year: 2010 ident: B2 article-title: Improved automatic detection and segmentation of cell nuclei in histopathology images publication-title: IEEE Trans. Biomed. Eng doi: 10.1109/TBME.2009.2035102 – reference: 17848778 - IEEE Trans Pattern Anal Mach Intell. 2007 Nov;29(11):1973-89 – reference: 19884070 - IEEE Trans Biomed Eng. 2010 Apr;57(4):841-52 – reference: 8169949 - J Microsc. 1994 Feb;173(Pt 2):103-14 – reference: 11929106 - IEEE Trans Med Imaging. 2002 Feb;21(2):61-75 – reference: 21399937 - Neuroinformatics. 2011 Sep;9(2-3):193-217 – reference: 20879349 - Med Image Comput Comput Assist Interv. 2010;13(Pt 2):472-9 – reference: 22743772 - Nat Methods. 2012 Jun 28;9(7):676-82 – reference: 20583273 - Cytometry A. 2010 Jul;77(7):693-704 – reference: 21361958 - J Microsc. 2011 Aug;243(2):154-71 – reference: 21487683 - Neuroinformatics. 2011 Sep;9(2-3):305-15 |
| SSID | ssj0062657 |
| Score | 2.070513 |
| Snippet | In this article, we describe the use of Python for large-scale automated server-based bio-image analysis in FARSIGHT, a free and open-source toolkit of image... In this article, we describe use of Python for large-scale automated server-based bio-image analysis in FARSIGHT, a free and open-source toolkit of image... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 39 |
| SubjectTerms | Algorithms Automation Brain research C++ Computational neuroscience Confocal microscopy Datasets Human error Image processing Image Processing Software Itk protein Learning algorithms Microenvironments Microscopes Microscopy Morphology Neuroimaging neuroprostetic device Neuroscience Prostheses Prosthetics python Registration Segmentation Software Spatial distribution |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1dixMxFA2yL_oi6vox665EEEFhaCbJzCSPq7gsouKDC_sW8jVuoZ2WtoP0N_in997MdGhR3Bdfm0wJOTc39yY35xDyBvYMLpwLOfO8yWXBVO5ULXOlpIh1rFgM-Hb467fq8kp-vi6v96S-sCaspwfuJ27iQ6htxXxZWi49r2yhXCFUHaOCWIY36H2Z0rtkqvfBEKWXdX8pCSmYnjQtwIV1XEiVzVAYfG8TSlz9fwsw_6yTvN-1S7v9ZWezvU3o4hF5OESP9Lwf9WNyL7ZPyPF5C5nzfEvf0lTPmQ7Kj8nvL1jkna8BhEhtBz0grAx0OgcPQu3ARUIhZqU-KTsMp4K0V_GGHY0uGupQQYJuEjp03a1WqMKEbdP5coagBJoYMZf4eOQGH0TSEJPzoVhR_5N-3yI5wVNydfHpx8fLfJBeyL3UbJOX2mseKhucCE5ZVwBkRROF8hGftjpXMesaSHUcD8FKbVXlJKoqcuEjpHTiGTlqF218Qai2ngvtITGLtYRgwQkvQ-kEd6VrWNQZmeywMH7gJUd5jJmB_ATRMwk9g-iZhF5G3o1fLHtOjn_0_YDwjv2QTTv9ADZmBhszd9lYRk53xmGGJb42qIMuka-fZ-T12AyLE29cbBsX3dpAcCQgQYeZycjz3pbGkXCpwMOXdUbqAys7GOphSzu9SQTgkBPjkUZG3o_2eOdEnPyPiXhJHuA_4m0a16fkaLPq4hkEZRv3Kq2_W9LGOrA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fi9NAEB7O3oO-iHr-iJ6ygggKoenuJtk8iNzJHYdoOcSDewv7K3eFNq1tg_Rv8J92ZpvEK8r52t1Amm92dmZ35vsA3uCewYUxLk4sr2I5SlRsVC5jpaTwuc8S76h3-Os4O7uQny_Tyz0Yd70wVFbZ-cTgqN3c0hn5kGSnJdGj84-LHzGpRtHtaiehoVtpBfchUIzdgX1OzFgD2D8-GZ9_63wzRu9pvr2sxNSsGFY1wkj1XUShnZBg-I3NKXD4_yvw_Lt-8m5TL_Tmp55Ob2xOpw_gfhtVsqOtGTyEPV8_goOjGjPq2Ya9ZaHOMxygH8CvL1T8Ha8QHM90gzMw3HRsMkPPwnTLUcIwlmU2KD60p4Vsq-6NOx2bV8yQsgRbB9TYqlkuSZ2JxiazxZTAciwwZS6oqeSaGiWZ88EpMaq0v2LnGyIteAwXpyffP53FrSRDbGWRrOO0sAV3mXZGOKO0GSGUo8oLZT21vBqTJdpUmAIZ7pyWhVaZkaS2yIX1mOqJJzCo57V_BqzQlovCYsLmc4lBhBFWutQIblJTJb6IYNhhUdqWr5xkM6Yl5i2EXhnQKwm9MqAXwbv-icWWq-OWuccEbz-PWLbDD_PlVdku2tI6l-sssWmqubQ80yNlRkLl3iuMo3kVwWFnHGW79FflH0ON4HU_jIuWbmJ07efNqsSgSWDijl8mgqdbW-rfhEuFnj_NI8h3rGznVXdH6sl1IAbHXJmOOiJ439vjfz_E89v_wwu4R3Pp_owXhzBYLxv_EsOwtXnVrq3fa5g4qQ priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELage4ALr-URWJCREBJI2Sa24zjHglitEKz2QCU4RX6FrWjTqmmEyl_gTzPjpBGFFQhxbD2RnPHE84098w0hz8BnMG6MixPLqlikiYqNykWslOA-9zLxDmuH35_J06l4-zHbZRM2fVplhaX72Ah6VndMwX2KGH7hEFEV46oG7WNaFjJfJ7wYr1x1lRzIDOD4iBxMz84nnzDQkhICLTCx7nry0kf33FFg7b8Mav6eMXmtrVd6-1XP5z-5o5ObxOxepMtC-XLcbsyx_fYLx-N_vektcqMHq3TSyd8mV3x9hxxOagjUF1v6nIb00XAuf0i-v8Oc8riBNfdUtyABKNbR2QI2LKp76hMKEJna0EiiP4SkXdNwcKB0WVGDDSvoJhgDbdr1Gps-4dhssZqjDTgaCDhXWKtygfWX1Pmw11FM4P9Mz7fIhXCXTE_efHh9GvedHmIrimQTZ4UtmJPaGe6M0iYFC0krz5X1WElrjEy0qSCyMsw5LQqtpBHYxJFx6yGC5PfIqF7W_gGhhbaMFxbiQJ8LwCaGW-Eyw5nJTJX4IiLj3YKXtqdBx24c8xLCIdR5GXReos7LoPOIvBieWHUUIH-QfYU2NMgheXf4A1a37Fe3tM7lWiY2yzQTlkmdKpNylXuvAJ6zKiJHOwss-x2lKbHtusD2ACwiT4dh2AvwgkfXftk2JWAxLgB0SZjH_c5gh5kwocChZHlE8j1T3pvq_kg9uwh84xCC4wlKRF4ORv9XRTz8F-FH5Dr-wEs6VhyR0Wbd-seA9TbmSf81_wBp8Vil priority: 102 providerName: Unpaywall |
| Title | Large-scale automated image analysis for computational profiling of brain tissue surrounding implanted neuroprosthetic devices using Python |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/24808857 https://www.proquest.com/docview/2295443802 https://www.proquest.com/docview/1523402469 https://pubmed.ncbi.nlm.nih.gov/PMC4010742 https://www.frontiersin.org/articles/10.3389/fninf.2014.00039/pdf https://doaj.org/article/cdd7a60c55a24c26a18b1387ee81502f |
| UnpaywallVersion | publishedVersion |
| Volume | 8 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1662-5196 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062657 issn: 1662-5196 databaseCode: KQ8 dateStart: 20070101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1662-5196 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062657 issn: 1662-5196 databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1662-5196 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062657 issn: 1662-5196 databaseCode: DIK dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1662-5196 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062657 issn: 1662-5196 databaseCode: GX1 dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1662-5196 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062657 issn: 1662-5196 databaseCode: M~E dateStart: 20070101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1662-5196 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062657 issn: 1662-5196 databaseCode: RPM dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1662-5196 dateEnd: 20211231 omitProxy: true ssIdentifier: ssj0062657 issn: 1662-5196 databaseCode: BENPR dateStart: 20071102 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1662-5196 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0062657 issn: 1662-5196 databaseCode: M48 dateStart: 20110801 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fi9NAEF707kFfRD314p1lBREU4iW7m2TzINKTOw_xShEL9Snsr9wV2rSXtmj_Bv9pZ7ZptFgUXwrpbELYmc3MtzvzDSEvwGcwrrUNI8PKUMSRDLXMRCil4C5zaeQs1g5f9tKLgfg4TIa_yqObCZzvhHbYT2pQj998v1m9gwX_FhEn-NuTsgIxZmkhEXbE89tkH_xUjo0cLkV7pgCRu-f9jNMU4BcY3vrQcucTtpyU5_LfFYD-mUd5Z1nN1OqbGo9_c1Ln98m9Jrqk3bU5PCC3XPWQHHQrQNaTFX1Jfb6n30g_ID8-YRJ4OAclOaqWMALCTktHE_jCUNVwlVCIaanxnR-aXUO67vINHo9OS6qxwwRdeO3R-bKusUsTykaT2RiVZqlnzJxhcck1FkxS6_zHiWLG_RXtr5C84BEZnJ99eX8RNq0ZQiPyaBEmucmZTZXV3GqpdAwqjUvHpXFY-qp1GildAhTSzFolciVTLbDrIuPGAeTjj8leNa3cIaG5MoznBoCbywQEE5obYRPNmU50Gbk8ICcbXRSm4S3H9hnjAvALaq_w2itQe4XXXkBetXfM1pwdfxl7iuptxyHbtv9jWl8VzeItjLWZSiOTJIoJw1IVSx1zmTknIZ5mZUCON8ZRbCy4wD7pAvn8WUCet2JYvHgioyo3Xc4LCJ44AHiYmYA8WdtS-yZMSPAASRaQbMvKtl51W1KNrj1BOGBm3PIIyOvWHv85EU__Y9KOyF28wEM1lh-TvUW9dM8gNlvoDtk_Pev1P3f83gb8fhjGHb8MQTLo9btffwJQUEDU |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKeygXBJTHQgEjARJIq-za3tehQi20SmkaVaiVenP92jZSsgl5qMpv4D_x25hxdkMjUDn1uvZG3sx45ht7Zj5C3oHPYFxrG0aGlaGIozzUeSbCPBfcZS6NnMXa4eNu2j4T386T8zXyq6mFwbTKxiZ6Q22HBs_IW0g7LbA9Ovs8-hEiaxTerjYUGqqmVrA7vsVYXdhx5ObXEMJNdg6_grzfM3awf_qlHdYsA6ERRTQNk8IUzKbKam51rnQMq4tLx3PjsIpT6zRSugRUr5m1ShQqT7VAAkHGjYPohcPv3iMbgosCgr-Nvf3uyffGF0C0kGSLy1EIBYtWWYHaYD4ZtuyOkKD8hjP0nAH_Arp_52tuzqqRml-rfv-GMzx4SB7UKJbuLtTuEVlz1WOytVtBBD-Y0w_U55X6A_st8rODyebhBJTBUTWDGQBvLe0NwJJRVfdEoYCdqfEME_XpJF2wiYNnpcOSamSyoFOvJXQyG4-RDQrHeoNRH5XDUt-Zc4RFLFdYmEmt80aQYmb_JT2ZY5OEJ-TsToTzlKxXw8o9J7RQhvHCQIDoMgGgRXMjbKI504kuI1cEpNXIQpq6PzrSdPQlxEkoPemlJ1F60ksvIB-Xb4wWvUFumbuH4l3Ow67e_sFwfClrIyGNtZlKI5MkignDUhXnOuZ55lwOuJ2VAdlulEPWpmYi_2yMgLxdDoORwJsfVbnhbCIBpHEBaCyFdTxb6NJyJUzk4GmSLCDZipatLHV1pOpd-UbkEJvj0UpAPi318b9_xIvbv-EN2WyfHndk57B79JLcx_fw7o4V22R9Op65VwABp_p1vc8oubjrrf0by0h3RQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1tb9MwELbGJgFfEDBeAgOMBEggRU1tJ3E-TGhjmzY2qgoxad-M37JVatPSF039DfwzfhV3blJWgcanfY2dyumd756z7-4h5A34DMaNcXFiWRmLdiJjI3MRSym4z32WeIe1w1862eGp-HyWnq2RX00tDKZVNjYxGGo3tHhG3kLaaYHt0VmrrNMiunsHH0c_YmSQwpvWhk5D1zQLbju0G6uLPI79_BLCucn20R7I_i1jB_vfPh3GNeNAbEWRTOO0sAVzmXaGOyO1acNK26Xn0nqs6DQmS7QpAeEb5pwWhZaZEUgmyLj1EMlw-N1bZAMvv8BIbOzud7pfG78AkUOaLy5KISwsWmUFKoS5Zdi-O0Gy8iuOMfAH_Av0_p27eWdWjfT8Uvf7VxzjwX1yr0a0dGehgg_Imq8eks2dCqL5wZy-oyHHNBzeb5KfJ5h4Hk9AMTzVM5gBUNfR3gCsGtV1fxQKOJrawDZRn1TSBbM4eFk6LKlBVgs6DRpDJ7PxGJmhcKw3GPVRURwNXTpHWNBygUWa1PlgEClm-Z_T7hwbJjwipzcinMdkvRpW_imhhbaMFxaCRZ8LADCGW-FSw5lJTZn4IiKtRhbK1r3SkbKjryBmQumpID2F0lNBehF5v3xjtOgTcs3cXRTvch52-A4PhuNzVRsMZZ3LdZbYNNVMWJbptjRtLnPvJWB4VkZkq1EOVZudifqzSSLyejkMBgNvgXTlh7OJAsDGBSCzDNbxZKFLy5UwIcHrpHlE8hUtW1nq6kjVuwhNySFOx2OWiHxY6uN__4hn13_DK3Ibtrg6OeocPyd38TW8xmPFFlmfjmf-BaDBqXlZbzNKvt_0zv4Nz3l7dA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELage4ALr-URWJCREBJI2Sa24zjHglitEKz2QCU4RX6FrWjTqmmEyl_gTzPjpBGFFQhxbD2RnPHE84098w0hz8BnMG6MixPLqlikiYqNykWslOA-9zLxDmuH35_J06l4-zHbZRM2fVplhaX72Ah6VndMwX2KGH7hEFEV46oG7WNaFjJfJ7wYr1x1lRzIDOD4iBxMz84nnzDQkhICLTCx7nry0kf33FFg7b8Mav6eMXmtrVd6-1XP5z-5o5ObxOxepMtC-XLcbsyx_fYLx-N_vektcqMHq3TSyd8mV3x9hxxOagjUF1v6nIb00XAuf0i-v8Oc8riBNfdUtyABKNbR2QI2LKp76hMKEJna0EiiP4SkXdNwcKB0WVGDDSvoJhgDbdr1Gps-4dhssZqjDTgaCDhXWKtygfWX1Pmw11FM4P9Mz7fIhXCXTE_efHh9GvedHmIrimQTZ4UtmJPaGe6M0iYFC0krz5X1WElrjEy0qSCyMsw5LQqtpBHYxJFx6yGC5PfIqF7W_gGhhbaMFxbiQJ8LwCaGW-Eyw5nJTJX4IiLj3YKXtqdBx24c8xLCIdR5GXReos7LoPOIvBieWHUUIH-QfYU2NMgheXf4A1a37Fe3tM7lWiY2yzQTlkmdKpNylXuvAJ6zKiJHOwss-x2lKbHtusD2ACwiT4dh2AvwgkfXftk2JWAxLgB0SZjH_c5gh5kwocChZHlE8j1T3pvq_kg9uwh84xCC4wlKRF4ORv9XRTz8F-FH5Dr-wEs6VhyR0Wbd-seA9TbmSf81_wBp8Vil |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large-scale+automated+image+analysis+for+computational+profiling+of+brain+tissue+surrounding+implanted+neuroprosthetic+devices+using+Python&rft.jtitle=Frontiers+in+neuroinformatics&rft.au=Rey-Villamizar%2C+Nicolas&rft.au=Somasundar%2C+Vinay&rft.au=Megjhani%2C+Murad&rft.au=Xu%2C+Yan&rft.date=2014-04-29&rft.issn=1662-5196&rft.eissn=1662-5196&rft.volume=8&rft_id=info:doi/10.3389%2Ffninf.2014.00039&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fninf_2014_00039 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5196&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5196&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5196&client=summon |