Large-scale automated image analysis for computational profiling of brain tissue surrounding implanted neuroprosthetic devices using Python

In this article, we describe the use of Python for large-scale automated server-based bio-image analysis in FARSIGHT, a free and open-source toolkit of image analysis methods for quantitative studies of complex and dynamic tissue microenvironments imaged by modern optical microscopes, including conf...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in neuroinformatics Vol. 8; p. 39
Main Authors Rey-Villamizar, Nicolas, Somasundar, Vinay, Megjhani, Murad, Xu, Yan, Lu, Yanbin, Padmanabhan, Raghav, Trett, Kristen, Shain, William, Roysam, Badri
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 29.04.2014
Frontiers Media S.A
Subjects
Online AccessGet full text
ISSN1662-5196
1662-5196
DOI10.3389/fninf.2014.00039

Cover

Abstract In this article, we describe the use of Python for large-scale automated server-based bio-image analysis in FARSIGHT, a free and open-source toolkit of image analysis methods for quantitative studies of complex and dynamic tissue microenvironments imaged by modern optical microscopes, including confocal, multi-spectral, multi-photon, and time-lapse systems. The core FARSIGHT modules for image segmentation, feature extraction, tracking, and machine learning are written in C++, leveraging widely used libraries including ITK, VTK, Boost, and Qt. For solving complex image analysis tasks, these modules must be combined into scripts using Python. As a concrete example, we consider the problem of analyzing 3-D multi-spectral images of brain tissue surrounding implanted neuroprosthetic devices, acquired using high-throughput multi-spectral spinning disk step-and-repeat confocal microscopy. The resulting images typically contain 5 fluorescent channels. Each channel consists of 6000 × 10,000 × 500 voxels with 16 bits/voxel, implying image sizes exceeding 250 GB. These images must be mosaicked, pre-processed to overcome imaging artifacts, and segmented to enable cellular-scale feature extraction. The features are used to identify cell types, and perform large-scale analysis for identifying spatial distributions of specific cell types relative to the device. Python was used to build a server-based script (Dell 910 PowerEdge servers with 4 sockets/server with 10 cores each, 2 threads per core and 1TB of RAM running on Red Hat Enterprise Linux linked to a RAID 5 SAN) capable of routinely handling image datasets at this scale and performing all these processing steps in a collaborative multi-user multi-platform environment. Our Python script enables efficient data storage and movement between computers and storage servers, logs all the processing steps, and performs full multi-threaded execution of all codes, including open and closed-source third party libraries.
AbstractList In this article, we describe use of Python for large-scale automated server-based bio-image analysis in FARSIGHT, a free and open-source toolkit of image analysis methods for quantitative studies of complex and dynamic tissue microenvironments imaged by modern optical microscopes including confocal, multi-spectral, multi-photon, and time-lapse systems. The core FARSIGHT modules for image segmentation, feature extraction, tracking, and machine learning are written in C++, leveraging widely used libraries including ITK, VTK, Boost, and Qt. For solving complex image analysis task, these modules must be combined into scripts using Python. As a concrete example, we consider the problem of analyzing 3-D multi-spectral brain tissue images surrounding implanted neuroprosthetic devices, acquired using high-throughput multi-spectral spinning disk step-and-repeat confocal microscopy. The resulting images typically contain 5 fluorescent channels, 6,000$times$10,000$times$500 voxels with 16 bits/voxel, implying image sizes exceeding 250GB. These images must be mosaicked, pre-processed to overcome imaging artifacts, and segmented to enable cellular-scale feature extraction. The features are used to identify cell types, and perform large-scale analytics for identifying spatial distributions of specific cell types relative to the device. Python was used to build a server-based script (Dell 910 PowerEdge servers with 4 sockets/server with 10 cores each, 2 threads per core and 1TB of RAM running on Red Hat Enterprise Linux linked to a RAID 5 SAN) capable of routinely handling image datasets at this scale and performing all these processing steps in a collaborative multi-user multi-platform environment consisting. Our Python script enables efficient data storage and movement between compute and storage servers, logging all processing steps, and performs full multi-threaded execution of all codes, including open and closed-source third party libraries.
In this article, we describe the use of Python for large-scale automated server-based bio-image analysis in FARSIGHT, a free and open-source toolkit of image analysis methods for quantitative studies of complex and dynamic tissue microenvironments imaged by modern optical microscopes, including confocal, multi-spectral, multi-photon, and time-lapse systems. The core FARSIGHT modules for image segmentation, feature extraction, tracking, and machine learning are written in C++, leveraging widely used libraries including ITK, VTK, Boost, and Qt. For solving complex image analysis tasks, these modules must be combined into scripts using Python. As a concrete example, we consider the problem of analyzing 3-D multi-spectral images of brain tissue surrounding implanted neuroprosthetic devices, acquired using high-throughput multi-spectral spinning disk step-and-repeat confocal microscopy. The resulting images typically contain 5 fluorescent channels. Each channel consists of 6000 × 10,000 × 500 voxels with 16 bits/voxel, implying image sizes exceeding 250 GB. These images must be mosaicked, pre-processed to overcome imaging artifacts, and segmented to enable cellular-scale feature extraction. The features are used to identify cell types, and perform large-scale analysis for identifying spatial distributions of specific cell types relative to the device. Python was used to build a server-based script (Dell 910 PowerEdge servers with 4 sockets/server with 10 cores each, 2 threads per core and 1TB of RAM running on Red Hat Enterprise Linux linked to a RAID 5 SAN) capable of routinely handling image datasets at this scale and performing all these processing steps in a collaborative multi-user multi-platform environment. Our Python script enables efficient data storage and movement between computers and storage servers, logs all the processing steps, and performs full multi-threaded execution of all codes, including open and closed-source third party libraries.In this article, we describe the use of Python for large-scale automated server-based bio-image analysis in FARSIGHT, a free and open-source toolkit of image analysis methods for quantitative studies of complex and dynamic tissue microenvironments imaged by modern optical microscopes, including confocal, multi-spectral, multi-photon, and time-lapse systems. The core FARSIGHT modules for image segmentation, feature extraction, tracking, and machine learning are written in C++, leveraging widely used libraries including ITK, VTK, Boost, and Qt. For solving complex image analysis tasks, these modules must be combined into scripts using Python. As a concrete example, we consider the problem of analyzing 3-D multi-spectral images of brain tissue surrounding implanted neuroprosthetic devices, acquired using high-throughput multi-spectral spinning disk step-and-repeat confocal microscopy. The resulting images typically contain 5 fluorescent channels. Each channel consists of 6000 × 10,000 × 500 voxels with 16 bits/voxel, implying image sizes exceeding 250 GB. These images must be mosaicked, pre-processed to overcome imaging artifacts, and segmented to enable cellular-scale feature extraction. The features are used to identify cell types, and perform large-scale analysis for identifying spatial distributions of specific cell types relative to the device. Python was used to build a server-based script (Dell 910 PowerEdge servers with 4 sockets/server with 10 cores each, 2 threads per core and 1TB of RAM running on Red Hat Enterprise Linux linked to a RAID 5 SAN) capable of routinely handling image datasets at this scale and performing all these processing steps in a collaborative multi-user multi-platform environment. Our Python script enables efficient data storage and movement between computers and storage servers, logs all the processing steps, and performs full multi-threaded execution of all codes, including open and closed-source third party libraries.
In this article, we describe the use of Python for large-scale automated server-based bio-image analysis in FARSIGHT, a free and open-source toolkit of image analysis methods for quantitative studies of complex and dynamic tissue microenvironments imaged by modern optical microscopes, including confocal, multi-spectral, multi-photon, and time-lapse systems. The core FARSIGHT modules for image segmentation, feature extraction, tracking, and machine learning are written in C++, leveraging widely used libraries including ITK, VTK, Boost, and Qt. For solving complex image analysis tasks, these modules must be combined into scripts using Python. As a concrete example, we consider the problem of analyzing 3-D multi-spectral images of brain tissue surrounding implanted neuroprosthetic devices, acquired using high-throughput multi-spectral spinning disk step-and-repeat confocal microscopy. The resulting images typically contain 5 fluorescent channels. Each channel consists of 6000 × 10,000 × 500 voxels with 16 bits/voxel, implying image sizes exceeding 250 GB. These images must be mosaicked, pre-processed to overcome imaging artifacts, and segmented to enable cellular-scale feature extraction. The features are used to identify cell types, and perform large-scale analysis for identifying spatial distributions of specific cell types relative to the device. Python was used to build a server-based script (Dell 910 PowerEdge servers with 4 sockets/server with 10 cores each, 2 threads per core and 1TB of RAM running on Red Hat Enterprise Linux linked to a RAID 5 SAN) capable of routinely handling image datasets at this scale and performing all these processing steps in a collaborative multi-user multi-platform environment. Our Python script enables efficient data storage and movement between computers and storage servers, logs all the processing steps, and performs full multi-threaded execution of all codes, including open and closed-source third party libraries.
Author Padmanabhan, Raghav
Somasundar, Vinay
Xu, Yan
Roysam, Badri
Lu, Yanbin
Shain, William
Rey-Villamizar, Nicolas
Megjhani, Murad
Trett, Kristen
AuthorAffiliation 1 BioImage Analytics Laboratory, Department of Electrical and Computer Engineering, University of Houston Houston, TX, USA
2 Center for Integrative Brain Research, Seattle Children's Research Institute Seattle, WA, USA
AuthorAffiliation_xml – name: 1 BioImage Analytics Laboratory, Department of Electrical and Computer Engineering, University of Houston Houston, TX, USA
– name: 2 Center for Integrative Brain Research, Seattle Children's Research Institute Seattle, WA, USA
Author_xml – sequence: 1
  givenname: Nicolas
  surname: Rey-Villamizar
  fullname: Rey-Villamizar, Nicolas
– sequence: 2
  givenname: Vinay
  surname: Somasundar
  fullname: Somasundar, Vinay
– sequence: 3
  givenname: Murad
  surname: Megjhani
  fullname: Megjhani, Murad
– sequence: 4
  givenname: Yan
  surname: Xu
  fullname: Xu, Yan
– sequence: 5
  givenname: Yanbin
  surname: Lu
  fullname: Lu, Yanbin
– sequence: 6
  givenname: Raghav
  surname: Padmanabhan
  fullname: Padmanabhan, Raghav
– sequence: 7
  givenname: Kristen
  surname: Trett
  fullname: Trett, Kristen
– sequence: 8
  givenname: William
  surname: Shain
  fullname: Shain, William
– sequence: 9
  givenname: Badri
  surname: Roysam
  fullname: Roysam, Badri
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24808857$$D View this record in MEDLINE/PubMed
BookMark eNqNUk1v1DAUjFARbRfunFAkLlx28Vcc54KEKj4qrQQHOFsvtrPrVWIHO261v4E_jbMpVVsJiZPt996MZjzvsjhz3pmieI3RhlLRvO-cdd2GIMw2CCHaPCsuMOdkXeGGnz24nxeXMR4Q4oRX9YvinDCBhKjqi-L3FsLOrKOC3pSQJj_AZHRpB9jlt4P-GG0sOx9K5YcxTTBZn6vlGHxne-t2pe_KNoB15WRjTKaMKQSfnJ57dhh7cDOhMyn4DIrT3kxWldrcWGVimeI89_047b17WTzvoI_m1d25Kn5-_vTj6ut6--3L9dXH7VqxBk3rqlEN0Rx0S3UroMVGA-4MFcqwSoi25Qjarq5oS7QG1oDgLeMNRYQq0xBGV8X1wqs9HOQYstlwlB6sPBV82EkIWWRvpNK6Bo5UVQFhinDAosVU1MYIXCHSZS68cCU3wvEW-v6eECM5hyRPIck5JHkKKWM-LJgxtYPRyrgpQP9IyOOOs3u58zeSIYxqRjLBuzuC4H8lEyc52KhMn__a-BQlrghliMymV8XbJ6MHn0JOMEpCmooxKtBM-Oahonspf_ckD6BlQOUIYzDd_7jkTyDKLuuTPdn-38A_iA_oCA
CitedBy_id crossref_primary_10_1016_j_jneumeth_2016_03_021
crossref_primary_10_1186_s12859_020_3490_1
crossref_primary_10_1016_j_jneumeth_2021_109102
crossref_primary_10_1038_s42256_020_0227_9
crossref_primary_10_1007_s12021_014_9237_2
crossref_primary_10_3389_fncel_2021_701673
crossref_primary_10_1007_s12021_020_09484_6
crossref_primary_10_1038_s41467_021_21735_x
crossref_primary_10_3389_fncir_2014_00146
crossref_primary_10_1109_JSTSP_2015_2505660
crossref_primary_10_1159_000446821
crossref_primary_10_1093_bioinformatics_btv109
Cites_doi 10.1109/42.993126
10.1111/j.1365-2818.1994.tb03433.x
10.1137/05064182X
10.1109/TBME.2009.2035102
ContentType Journal Article
Copyright 2014. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2014 Rey-Villamizar, Somasundar, Megjhani, Xu, Lu, Padmanabhan, Trett, Shain and Roysam. 2014
Copyright_xml – notice: 2014. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2014 Rey-Villamizar, Somasundar, Megjhani, Xu, Lu, Padmanabhan, Trett, Shain and Roysam. 2014
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3389/fninf.2014.00039
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
ProQuest SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

PubMed
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-5196
ExternalDocumentID oai_doaj_org_article_cdd7a60c55a24c26a18b1387ee81502f
10.3389/fninf.2014.00039
PMC4010742
24808857
10_3389_fninf_2014_00039
Genre Journal Article
GeographicLocations United States--US
San Francisco California
Fiji
GeographicLocations_xml – name: Fiji
– name: San Francisco California
– name: United States--US
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAKPC
AAYXX
ABUWG
ACGFO
ACGFS
ADBBV
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARCSS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
F5P
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PUEGO
RNS
RPM
TR2
ACXDI
C1A
IPNFZ
NPM
RIG
3V.
7XB
8FK
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c490t-59c92d6adb3db8ab1eda1fe38ce4588bb60abf753b2dda49a86b4693023ce9243
IEDL.DBID M48
ISSN 1662-5196
IngestDate Tue Oct 14 19:06:19 EDT 2025
Sun Oct 26 03:35:26 EDT 2025
Tue Sep 30 16:43:36 EDT 2025
Sun Aug 24 04:13:44 EDT 2025
Fri Jul 25 11:54:05 EDT 2025
Mon Jul 21 05:54:45 EDT 2025
Wed Oct 01 01:58:00 EDT 2025
Thu Apr 24 23:02:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords C++
neuroscience
segmentation
image processing software
microglia tracing
Python
neuroprostetic device
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c490t-59c92d6adb3db8ab1eda1fe38ce4588bb60abf753b2dda49a86b4693023ce9243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Edited by: Fernando Perez, University of California at Berkeley, USA
Reviewed by: Eleftherios Garyfallidis, University of Sherbrooke, Canada; Stefan Johann Van Der Walt, Stellenbosch University, South Africa
This article was submitted to the journal Frontiers in Neuroinformatics.
OpenAccessLink https://doaj.org/article/cdd7a60c55a24c26a18b1387ee81502f
PMID 24808857
PQID 2295443802
PQPubID 4424404
ParticipantIDs doaj_primary_oai_doaj_org_article_cdd7a60c55a24c26a18b1387ee81502f
unpaywall_primary_10_3389_fninf_2014_00039
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4010742
proquest_miscellaneous_1523402469
proquest_journals_2295443802
pubmed_primary_24808857
crossref_primary_10_3389_fninf_2014_00039
crossref_citationtrail_10_3389_fninf_2014_00039
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-04-29
PublicationDateYYYYMMDD 2014-04-29
PublicationDate_xml – month: 04
  year: 2014
  text: 2014-04-29
  day: 29
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in neuroinformatics
PublicationTitleAlternate Front Neuroinform
PublicationYear 2014
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Aharon (B1) 2005
Aylward (B3) 2002; 21
Cohen (B5) 1994; 173
Candes (B4) 2006; 5
Al-Kofahi (B2) 2010; 57
22743772 - Nat Methods. 2012 Jun 28;9(7):676-82
11929106 - IEEE Trans Med Imaging. 2002 Feb;21(2):61-75
17848778 - IEEE Trans Pattern Anal Mach Intell. 2007 Nov;29(11):1973-89
21487683 - Neuroinformatics. 2011 Sep;9(2-3):305-15
8169949 - J Microsc. 1994 Feb;173(Pt 2):103-14
21361958 - J Microsc. 2011 Aug;243(2):154-71
19884070 - IEEE Trans Biomed Eng. 2010 Apr;57(4):841-52
20583273 - Cytometry A. 2010 Jul;77(7):693-704
21399937 - Neuroinformatics. 2011 Sep;9(2-3):193-217
20879349 - Med Image Comput Comput Assist Interv. 2010;13(Pt 2):472-9
References_xml – volume: 21
  start-page: 61
  year: 2002
  ident: B3
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.993126
– volume: 173
  start-page: 103
  year: 1994
  ident: B5
  article-title: Automated tracing and volume measurements of neurons from 3-d confocal fluorescence microscopy data
  publication-title: J. Microsc
  doi: 10.1111/j.1365-2818.1994.tb03433.x
– start-page: 9
  volume-title: Proceedings of SPARS'05, Workshop on Signal Processing with Adaptive Sparse/Structured Representations was held at IRISA, Rennes, France
  year: 2005
  ident: B1
  article-title: K-svd: design of dictionaries for sparse representation
– volume: 5
  start-page: 861
  year: 2006
  ident: B4
  article-title: Fast discrete curvelet transforms
  publication-title: Multiscale Model. Simul
  doi: 10.1137/05064182X
– volume: 57
  start-page: 841
  year: 2010
  ident: B2
  article-title: Improved automatic detection and segmentation of cell nuclei in histopathology images
  publication-title: IEEE Trans. Biomed. Eng
  doi: 10.1109/TBME.2009.2035102
– reference: 17848778 - IEEE Trans Pattern Anal Mach Intell. 2007 Nov;29(11):1973-89
– reference: 19884070 - IEEE Trans Biomed Eng. 2010 Apr;57(4):841-52
– reference: 8169949 - J Microsc. 1994 Feb;173(Pt 2):103-14
– reference: 11929106 - IEEE Trans Med Imaging. 2002 Feb;21(2):61-75
– reference: 21399937 - Neuroinformatics. 2011 Sep;9(2-3):193-217
– reference: 20879349 - Med Image Comput Comput Assist Interv. 2010;13(Pt 2):472-9
– reference: 22743772 - Nat Methods. 2012 Jun 28;9(7):676-82
– reference: 20583273 - Cytometry A. 2010 Jul;77(7):693-704
– reference: 21361958 - J Microsc. 2011 Aug;243(2):154-71
– reference: 21487683 - Neuroinformatics. 2011 Sep;9(2-3):305-15
SSID ssj0062657
Score 2.070513
Snippet In this article, we describe the use of Python for large-scale automated server-based bio-image analysis in FARSIGHT, a free and open-source toolkit of image...
In this article, we describe use of Python for large-scale automated server-based bio-image analysis in FARSIGHT, a free and open-source toolkit of image...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 39
SubjectTerms Algorithms
Automation
Brain research
C++
Computational neuroscience
Confocal microscopy
Datasets
Human error
Image processing
Image Processing Software
Itk protein
Learning algorithms
Microenvironments
Microscopes
Microscopy
Morphology
Neuroimaging
neuroprostetic device
Neuroscience
Prostheses
Prosthetics
python
Registration
Segmentation
Software
Spatial distribution
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1dixMxFA2yL_oi6vox665EEEFhaCbJzCSPq7gsouKDC_sW8jVuoZ2WtoP0N_in997MdGhR3Bdfm0wJOTc39yY35xDyBvYMLpwLOfO8yWXBVO5ULXOlpIh1rFgM-Hb467fq8kp-vi6v96S-sCaspwfuJ27iQ6htxXxZWi49r2yhXCFUHaOCWIY36H2Z0rtkqvfBEKWXdX8pCSmYnjQtwIV1XEiVzVAYfG8TSlz9fwsw_6yTvN-1S7v9ZWezvU3o4hF5OESP9Lwf9WNyL7ZPyPF5C5nzfEvf0lTPmQ7Kj8nvL1jkna8BhEhtBz0grAx0OgcPQu3ARUIhZqU-KTsMp4K0V_GGHY0uGupQQYJuEjp03a1WqMKEbdP5coagBJoYMZf4eOQGH0TSEJPzoVhR_5N-3yI5wVNydfHpx8fLfJBeyL3UbJOX2mseKhucCE5ZVwBkRROF8hGftjpXMesaSHUcD8FKbVXlJKoqcuEjpHTiGTlqF218Qai2ngvtITGLtYRgwQkvQ-kEd6VrWNQZmeywMH7gJUd5jJmB_ATRMwk9g-iZhF5G3o1fLHtOjn_0_YDwjv2QTTv9ADZmBhszd9lYRk53xmGGJb42qIMuka-fZ-T12AyLE29cbBsX3dpAcCQgQYeZycjz3pbGkXCpwMOXdUbqAys7GOphSzu9SQTgkBPjkUZG3o_2eOdEnPyPiXhJHuA_4m0a16fkaLPq4hkEZRv3Kq2_W9LGOrA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fi9NAEB7O3oO-iHr-iJ6ygggKoenuJtk8iNzJHYdoOcSDewv7K3eFNq1tg_Rv8J92ZpvEK8r52t1Amm92dmZ35vsA3uCewYUxLk4sr2I5SlRsVC5jpaTwuc8S76h3-Os4O7uQny_Tyz0Yd70wVFbZ-cTgqN3c0hn5kGSnJdGj84-LHzGpRtHtaiehoVtpBfchUIzdgX1OzFgD2D8-GZ9_63wzRu9pvr2sxNSsGFY1wkj1XUShnZBg-I3NKXD4_yvw_Lt-8m5TL_Tmp55Ob2xOpw_gfhtVsqOtGTyEPV8_goOjGjPq2Ya9ZaHOMxygH8CvL1T8Ha8QHM90gzMw3HRsMkPPwnTLUcIwlmU2KD60p4Vsq-6NOx2bV8yQsgRbB9TYqlkuSZ2JxiazxZTAciwwZS6oqeSaGiWZ88EpMaq0v2LnGyIteAwXpyffP53FrSRDbGWRrOO0sAV3mXZGOKO0GSGUo8oLZT21vBqTJdpUmAIZ7pyWhVaZkaS2yIX1mOqJJzCo57V_BqzQlovCYsLmc4lBhBFWutQIblJTJb6IYNhhUdqWr5xkM6Yl5i2EXhnQKwm9MqAXwbv-icWWq-OWuccEbz-PWLbDD_PlVdku2tI6l-sssWmqubQ80yNlRkLl3iuMo3kVwWFnHGW79FflH0ON4HU_jIuWbmJ07efNqsSgSWDijl8mgqdbW-rfhEuFnj_NI8h3rGznVXdH6sl1IAbHXJmOOiJ439vjfz_E89v_wwu4R3Pp_owXhzBYLxv_EsOwtXnVrq3fa5g4qQ
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELage4ALr-URWJCREBJI2Sa24zjHglitEKz2QCU4RX6FrWjTqmmEyl_gTzPjpBGFFQhxbD2RnPHE84098w0hz8BnMG6MixPLqlikiYqNykWslOA-9zLxDmuH35_J06l4-zHbZRM2fVplhaX72Ah6VndMwX2KGH7hEFEV46oG7WNaFjJfJ7wYr1x1lRzIDOD4iBxMz84nnzDQkhICLTCx7nry0kf33FFg7b8Mav6eMXmtrVd6-1XP5z-5o5ObxOxepMtC-XLcbsyx_fYLx-N_vektcqMHq3TSyd8mV3x9hxxOagjUF1v6nIb00XAuf0i-v8Oc8riBNfdUtyABKNbR2QI2LKp76hMKEJna0EiiP4SkXdNwcKB0WVGDDSvoJhgDbdr1Gps-4dhssZqjDTgaCDhXWKtygfWX1Pmw11FM4P9Mz7fIhXCXTE_efHh9GvedHmIrimQTZ4UtmJPaGe6M0iYFC0krz5X1WElrjEy0qSCyMsw5LQqtpBHYxJFx6yGC5PfIqF7W_gGhhbaMFxbiQJ8LwCaGW-Eyw5nJTJX4IiLj3YKXtqdBx24c8xLCIdR5GXReos7LoPOIvBieWHUUIH-QfYU2NMgheXf4A1a37Fe3tM7lWiY2yzQTlkmdKpNylXuvAJ6zKiJHOwss-x2lKbHtusD2ACwiT4dh2AvwgkfXftk2JWAxLgB0SZjH_c5gh5kwocChZHlE8j1T3pvq_kg9uwh84xCC4wlKRF4ORv9XRTz8F-FH5Dr-wEs6VhyR0Wbd-seA9TbmSf81_wBp8Vil
  priority: 102
  providerName: Unpaywall
Title Large-scale automated image analysis for computational profiling of brain tissue surrounding implanted neuroprosthetic devices using Python
URI https://www.ncbi.nlm.nih.gov/pubmed/24808857
https://www.proquest.com/docview/2295443802
https://www.proquest.com/docview/1523402469
https://pubmed.ncbi.nlm.nih.gov/PMC4010742
https://www.frontiersin.org/articles/10.3389/fninf.2014.00039/pdf
https://doaj.org/article/cdd7a60c55a24c26a18b1387ee81502f
UnpaywallVersion publishedVersion
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: KQ8
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: DIK
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: GX1
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: M~E
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: RPM
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1662-5196
  dateEnd: 20211231
  omitProxy: true
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: BENPR
  dateStart: 20071102
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1662-5196
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0062657
  issn: 1662-5196
  databaseCode: M48
  dateStart: 20110801
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fi9NAEF707kFfRD314p1lBREU4iW7m2TzINKTOw_xShEL9Snsr9wV2rSXtmj_Bv9pZ7ZptFgUXwrpbELYmc3MtzvzDSEvwGcwrrUNI8PKUMSRDLXMRCil4C5zaeQs1g5f9tKLgfg4TIa_yqObCZzvhHbYT2pQj998v1m9gwX_FhEn-NuTsgIxZmkhEXbE89tkH_xUjo0cLkV7pgCRu-f9jNMU4BcY3vrQcucTtpyU5_LfFYD-mUd5Z1nN1OqbGo9_c1Ln98m9Jrqk3bU5PCC3XPWQHHQrQNaTFX1Jfb6n30g_ID8-YRJ4OAclOaqWMALCTktHE_jCUNVwlVCIaanxnR-aXUO67vINHo9OS6qxwwRdeO3R-bKusUsTykaT2RiVZqlnzJxhcck1FkxS6_zHiWLG_RXtr5C84BEZnJ99eX8RNq0ZQiPyaBEmucmZTZXV3GqpdAwqjUvHpXFY-qp1GildAhTSzFolciVTLbDrIuPGAeTjj8leNa3cIaG5MoznBoCbywQEE5obYRPNmU50Gbk8ICcbXRSm4S3H9hnjAvALaq_w2itQe4XXXkBetXfM1pwdfxl7iuptxyHbtv9jWl8VzeItjLWZSiOTJIoJw1IVSx1zmTknIZ5mZUCON8ZRbCy4wD7pAvn8WUCet2JYvHgioyo3Xc4LCJ44AHiYmYA8WdtS-yZMSPAASRaQbMvKtl51W1KNrj1BOGBm3PIIyOvWHv85EU__Y9KOyF28wEM1lh-TvUW9dM8gNlvoDtk_Pev1P3f83gb8fhjGHb8MQTLo9btffwJQUEDU
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKeygXBJTHQgEjARJIq-za3tehQi20SmkaVaiVenP92jZSsgl5qMpv4D_x25hxdkMjUDn1uvZG3sx45ht7Zj5C3oHPYFxrG0aGlaGIozzUeSbCPBfcZS6NnMXa4eNu2j4T386T8zXyq6mFwbTKxiZ6Q22HBs_IW0g7LbA9Ovs8-hEiaxTerjYUGqqmVrA7vsVYXdhx5ObXEMJNdg6_grzfM3awf_qlHdYsA6ERRTQNk8IUzKbKam51rnQMq4tLx3PjsIpT6zRSugRUr5m1ShQqT7VAAkHGjYPohcPv3iMbgosCgr-Nvf3uyffGF0C0kGSLy1EIBYtWWYHaYD4ZtuyOkKD8hjP0nAH_Arp_52tuzqqRml-rfv-GMzx4SB7UKJbuLtTuEVlz1WOytVtBBD-Y0w_U55X6A_st8rODyebhBJTBUTWDGQBvLe0NwJJRVfdEoYCdqfEME_XpJF2wiYNnpcOSamSyoFOvJXQyG4-RDQrHeoNRH5XDUt-Zc4RFLFdYmEmt80aQYmb_JT2ZY5OEJ-TsToTzlKxXw8o9J7RQhvHCQIDoMgGgRXMjbKI504kuI1cEpNXIQpq6PzrSdPQlxEkoPemlJ1F60ksvIB-Xb4wWvUFumbuH4l3Ow67e_sFwfClrIyGNtZlKI5MkignDUhXnOuZ55lwOuJ2VAdlulEPWpmYi_2yMgLxdDoORwJsfVbnhbCIBpHEBaCyFdTxb6NJyJUzk4GmSLCDZipatLHV1pOpd-UbkEJvj0UpAPi318b9_xIvbv-EN2WyfHndk57B79JLcx_fw7o4V22R9Op65VwABp_p1vc8oubjrrf0by0h3RQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1tb9MwELbGJgFfEDBeAgOMBEggRU1tJ3E-TGhjmzY2qgoxad-M37JVatPSF039DfwzfhV3blJWgcanfY2dyumd756z7-4h5A34DMaNcXFiWRmLdiJjI3MRSym4z32WeIe1w1862eGp-HyWnq2RX00tDKZVNjYxGGo3tHhG3kLaaYHt0VmrrNMiunsHH0c_YmSQwpvWhk5D1zQLbju0G6uLPI79_BLCucn20R7I_i1jB_vfPh3GNeNAbEWRTOO0sAVzmXaGOyO1acNK26Xn0nqs6DQmS7QpAeEb5pwWhZaZEUgmyLj1EMlw-N1bZAMvv8BIbOzud7pfG78AkUOaLy5KISwsWmUFKoS5Zdi-O0Gy8iuOMfAH_Av0_p27eWdWjfT8Uvf7VxzjwX1yr0a0dGehgg_Imq8eks2dCqL5wZy-oyHHNBzeb5KfJ5h4Hk9AMTzVM5gBUNfR3gCsGtV1fxQKOJrawDZRn1TSBbM4eFk6LKlBVgs6DRpDJ7PxGJmhcKw3GPVRURwNXTpHWNBygUWa1PlgEClm-Z_T7hwbJjwipzcinMdkvRpW_imhhbaMFxaCRZ8LADCGW-FSw5lJTZn4IiKtRhbK1r3SkbKjryBmQumpID2F0lNBehF5v3xjtOgTcs3cXRTvch52-A4PhuNzVRsMZZ3LdZbYNNVMWJbptjRtLnPvJWB4VkZkq1EOVZudifqzSSLyejkMBgNvgXTlh7OJAsDGBSCzDNbxZKFLy5UwIcHrpHlE8hUtW1nq6kjVuwhNySFOx2OWiHxY6uN__4hn13_DK3Ibtrg6OeocPyd38TW8xmPFFlmfjmf-BaDBqXlZbzNKvt_0zv4Nz3l7dA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELage4ALr-URWJCREBJI2Sa24zjHglitEKz2QCU4RX6FrWjTqmmEyl_gTzPjpBGFFQhxbD2RnPHE84098w0hz8BnMG6MixPLqlikiYqNykWslOA-9zLxDmuH35_J06l4-zHbZRM2fVplhaX72Ah6VndMwX2KGH7hEFEV46oG7WNaFjJfJ7wYr1x1lRzIDOD4iBxMz84nnzDQkhICLTCx7nry0kf33FFg7b8Mav6eMXmtrVd6-1XP5z-5o5ObxOxepMtC-XLcbsyx_fYLx-N_vektcqMHq3TSyd8mV3x9hxxOagjUF1v6nIb00XAuf0i-v8Oc8riBNfdUtyABKNbR2QI2LKp76hMKEJna0EiiP4SkXdNwcKB0WVGDDSvoJhgDbdr1Gps-4dhssZqjDTgaCDhXWKtygfWX1Pmw11FM4P9Mz7fIhXCXTE_efHh9GvedHmIrimQTZ4UtmJPaGe6M0iYFC0krz5X1WElrjEy0qSCyMsw5LQqtpBHYxJFx6yGC5PfIqF7W_gGhhbaMFxbiQJ8LwCaGW-Eyw5nJTJX4IiLj3YKXtqdBx24c8xLCIdR5GXReos7LoPOIvBieWHUUIH-QfYU2NMgheXf4A1a37Fe3tM7lWiY2yzQTlkmdKpNylXuvAJ6zKiJHOwss-x2lKbHtusD2ACwiT4dh2AvwgkfXftk2JWAxLgB0SZjH_c5gh5kwocChZHlE8j1T3pvq_kg9uwh84xCC4wlKRF4ORv9XRTz8F-FH5Dr-wEs6VhyR0Wbd-seA9TbmSf81_wBp8Vil
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large-scale+automated+image+analysis+for+computational+profiling+of+brain+tissue+surrounding+implanted+neuroprosthetic+devices+using+Python&rft.jtitle=Frontiers+in+neuroinformatics&rft.au=Rey-Villamizar%2C+Nicolas&rft.au=Somasundar%2C+Vinay&rft.au=Megjhani%2C+Murad&rft.au=Xu%2C+Yan&rft.date=2014-04-29&rft.issn=1662-5196&rft.eissn=1662-5196&rft.volume=8&rft_id=info:doi/10.3389%2Ffninf.2014.00039&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fninf_2014_00039
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5196&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5196&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5196&client=summon