The Voxel-Wise Functional Connectome Can Be Efficiently Derived from Co-activations in a Sparse Spatio-Temporal Point-Process
Large efforts are currently under way to systematically map functional connectivity between all pairs of millimeter-scale brain regions based on large neuroimaging databases. The exploratory unraveling of this "functional connectome" based on functional Magnetic Resonance Imaging (fMRI) ca...
Saved in:
Published in | Frontiers in neuroscience Vol. 10; p. 381 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Research Foundation
23.08.2016
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
ISSN | 1662-453X 1662-4548 1662-453X |
DOI | 10.3389/fnins.2016.00381 |
Cover
Abstract | Large efforts are currently under way to systematically map functional connectivity between all pairs of millimeter-scale brain regions based on large neuroimaging databases. The exploratory unraveling of this "functional connectome" based on functional Magnetic Resonance Imaging (fMRI) can benefit from a better understanding of the contributors to resting state functional connectivity. In this work, we introduce a sparse representation of fMRI data in the form of a discrete point-process encoding high-amplitude events in the blood oxygenation level-dependent (BOLD) signal and we show it contains sufficient information for the estimation of functional connectivity between all pairs of voxels. We validate this method by replicating results obtained with standard whole-brain voxel-wise linear correlation matrices in two datasets. In the first one (n = 71), we study the changes in node strength (a measure of network centrality) during deep sleep. The second is a large database (n = 1147) of subjects in which we look at the age-related reorganization of the voxel-wise network of functional connections. In both cases it is shown that the proposed method compares well with standard techniques, despite requiring only data on the order of 1% of the original BOLD signal time series. Furthermore, we establish that the point-process approach does not reduce (and in one case increases) classification accuracy compared to standard linear correlations. Our results show how large fMRI datasets can be drastically simplified to include only the timings of large-amplitude events, while still allowing the recovery of all pair-wise interactions between voxels. The practical importance of this dimensionality reduction is manifest in the increasing number of collaborative efforts aiming to study large cohorts of healthy subjects as well as patients suffering from brain disease. Our method also suggests that the electrophysiological signals underlying the dynamics of fMRI time series consist of all-or-none temporally localized events, analogous to the avalanches of neural activity observed in recordings of local field potentials (LFP), an observation of potentially high neurobiological relevance. |
---|---|
AbstractList | Large efforts are currently under way to systematically map functional connectivity between all pairs of millimeter-scale brain regions based on large neuroimaging databases. The exploratory unraveling of this functional connectome based on functional Magnetic Resonance Imaging (fMRI) can benefit from a better understanding of the contributors to resting state functional connectivity. In this work, we introduce a sparse representation of fMRI data in the form of a discrete point-process encoding high-amplitude events in the blood oxygenation level-dependent (BOLD) signal and we show it contains sufficient information for the estimation of functional connectivity between all pairs of voxels. We validate this method by replicating results obtained with standard whole-brain voxel-wise linear correlation matrices in two datasets. In the first one (n=71), we study the changes in node strength (a measure of network centrality) during deep sleep. The second is a large database (n=1147) of subjects in which we look at the age-related reorganization of the voxel-wise network of functional connections. In both cases it is shown that the proposed method compares well with standard techniques, despite requiring only data on the order of 1% of the original BOLD signal time series. Furthermore, we establish that the point-process approach does not reduce (and in one case increases) classification accuracy compared to standard linear correlations. Our results show how large fMRI datasets can be drastically simplified to include only the timings of large-amplitude events, while still allowing the recovery of all pair-wise interactions between voxels. The practical importance of this dimensionality reduction is manifest in the increasing number of collaborative efforts aiming to study large cohorts of healthy subjects as well as patients suffering from brain disease. Our method also suggests that the electrophysiological signals underlying the dynamics of fMRI time series consist of all-or-none temporally localized events, analogous to the avalanches of neural activity observed in recordings of local field potentials, an observation of potentially high neurobiological relevance. Large efforts are currently under way to systematically map functional connectivity between all pairs of millimeter-scale brain regions based on large neuroimaging databases. The exploratory unraveling of this "functional connectome" based on functional Magnetic Resonance Imaging (fMRI) can benefit from a better understanding of the contributors to resting state functional connectivity. In this work, we introduce a sparse representation of fMRI data in the form of a discrete point-process encoding high-amplitude events in the blood oxygenation level-dependent (BOLD) signal and we show it contains sufficient information for the estimation of functional connectivity between all pairs of voxels. We validate this method by replicating results obtained with standard whole-brain voxel-wise linear correlation matrices in two datasets. In the first one (n = 71), we study the changes in node strength (a measure of network centrality) during deep sleep. The second is a large database (n = 1147) of subjects in which we look at the age-related reorganization of the voxel-wise network of functional connections. In both cases it is shown that the proposed method compares well with standard techniques, despite requiring only data on the order of 1% of the original BOLD signal time series. Furthermore, we establish that the point-process approach does not reduce (and in one case increases) classification accuracy compared to standard linear correlations. Our results show how large fMRI datasets can be drastically simplified to include only the timings of large-amplitude events, while still allowing the recovery of all pair-wise interactions between voxels. The practical importance of this dimensionality reduction is manifest in the increasing number of collaborative efforts aiming to study large cohorts of healthy subjects as well as patients suffering from brain disease. Our method also suggests that the electrophysiological signals underlying the dynamics of fMRI time series consist of all-or-none temporally localized events, analogous to the avalanches of neural activity observed in recordings of local field potentials (LFP), an observation of potentially high neurobiological relevance. Large efforts are currently under way to systematically map functional connectivity between all pairs of millimeter-scale brain regions based on large neuroimaging databases. The exploratory unraveling of this "functional connectome" based on functional Magnetic Resonance Imaging (fMRI) can benefit from a better understanding of the contributors to resting state functional connectivity. In this work, we introduce a sparse representation of fMRI data in the form of a discrete point-process encoding high-amplitude events in the blood oxygenation level-dependent (BOLD) signal and we show it contains sufficient information for the estimation of functional connectivity between all pairs of voxels. We validate this method by replicating results obtained with standard whole-brain voxel-wise linear correlation matrices in two datasets. In the first one (n = 71), we study the changes in node strength (a measure of network centrality) during deep sleep. The second is a large database (n = 1147) of subjects in which we look at the age-related reorganization of the voxel-wise network of functional connections. In both cases it is shown that the proposed method compares well with standard techniques, despite requiring only data on the order of 1% of the original BOLD signal time series. Furthermore, we establish that the point-process approach does not reduce (and in one case increases) classification accuracy compared to standard linear correlations. Our results show how large fMRI datasets can be drastically simplified to include only the timings of large-amplitude events, while still allowing the recovery of all pair-wise interactions between voxels. The practical importance of this dimensionality reduction is manifest in the increasing number of collaborative efforts aiming to study large cohorts of healthy subjects as well as patients suffering from brain disease. Our method also suggests that the electrophysiological signals underlying the dynamics of fMRI time series consist of all-or-none temporally localized events, analogous to the avalanches of neural activity observed in recordings of local field potentials (LFP), an observation of potentially high neurobiological relevance.Large efforts are currently under way to systematically map functional connectivity between all pairs of millimeter-scale brain regions based on large neuroimaging databases. The exploratory unraveling of this "functional connectome" based on functional Magnetic Resonance Imaging (fMRI) can benefit from a better understanding of the contributors to resting state functional connectivity. In this work, we introduce a sparse representation of fMRI data in the form of a discrete point-process encoding high-amplitude events in the blood oxygenation level-dependent (BOLD) signal and we show it contains sufficient information for the estimation of functional connectivity between all pairs of voxels. We validate this method by replicating results obtained with standard whole-brain voxel-wise linear correlation matrices in two datasets. In the first one (n = 71), we study the changes in node strength (a measure of network centrality) during deep sleep. The second is a large database (n = 1147) of subjects in which we look at the age-related reorganization of the voxel-wise network of functional connections. In both cases it is shown that the proposed method compares well with standard techniques, despite requiring only data on the order of 1% of the original BOLD signal time series. Furthermore, we establish that the point-process approach does not reduce (and in one case increases) classification accuracy compared to standard linear correlations. Our results show how large fMRI datasets can be drastically simplified to include only the timings of large-amplitude events, while still allowing the recovery of all pair-wise interactions between voxels. The practical importance of this dimensionality reduction is manifest in the increasing number of collaborative efforts aiming to study large cohorts of healthy subjects as well as patients suffering from brain disease. Our method also suggests that the electrophysiological signals underlying the dynamics of fMRI time series consist of all-or-none temporally localized events, analogous to the avalanches of neural activity observed in recordings of local field potentials (LFP), an observation of potentially high neurobiological relevance. |
Author | Laufs, Helmut Siniatchkin, Michael Chialvo, Dante R. Tagliazucchi, Enzo |
AuthorAffiliation | 3 Department of Sleep and Cognition, Netherlands Institute for Neuroscience Amsterdam, Netherlands 6 Center for Multidisciplinary Complex Systems Studies and Brain Sciences (CEMSC3), Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín Buenos Aires, Argentina 5 Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) Buenos Aires, Argentina 1 Institute for Medical Psychology, Christian-Albrechts University Kiel, Germany 2 Department of Neurology and Brain Imaging Center, Goethe University Frankfurt am Main Germany 4 Department of Neurology, University Hospital Schleswig-Holstein, Christian-Albrechts-University Kiel Kiel, Germany |
AuthorAffiliation_xml | – name: 3 Department of Sleep and Cognition, Netherlands Institute for Neuroscience Amsterdam, Netherlands – name: 6 Center for Multidisciplinary Complex Systems Studies and Brain Sciences (CEMSC3), Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín Buenos Aires, Argentina – name: 1 Institute for Medical Psychology, Christian-Albrechts University Kiel, Germany – name: 4 Department of Neurology, University Hospital Schleswig-Holstein, Christian-Albrechts-University Kiel Kiel, Germany – name: 5 Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) Buenos Aires, Argentina – name: 2 Department of Neurology and Brain Imaging Center, Goethe University Frankfurt am Main Germany |
Author_xml | – sequence: 1 givenname: Enzo surname: Tagliazucchi fullname: Tagliazucchi, Enzo – sequence: 2 givenname: Michael surname: Siniatchkin fullname: Siniatchkin, Michael – sequence: 3 givenname: Helmut surname: Laufs fullname: Laufs, Helmut – sequence: 4 givenname: Dante R. surname: Chialvo fullname: Chialvo, Dante R. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27601975$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kktvEzEUhUeoiD5gzwpZYsNmgl9jezZIEFqoVIlKhMfO8niuW0czdrAnEV3w33GSFrWVWF3LPufTvb7nuDoIMUBVvSR4xphq37rgQ55RTMQMY6bIk-qICEFr3rCfB_fOh9VxzkuMBVWcPqsOqRSYtLI5qv4srgF9j79hqH_4DOhsHezkYzADmscQwE5xBDQ3AX0AdOqctx7CNNygj5D8BnrkUhyLtDbFtjFba0Y-IIO-rkwqwFLKZb2AcRVToV5GH6b6MkULOT-vnjozZHhxW0-qb2eni_nn-uLLp_P5-4va8hZPNXXYcsdZKzuQrROd5JgL7FzfSNkTRkhbxhGKC8pFTznBnAkLplPcQGMpO6nO99w-mqVeJT-adKOj8Xp3EdOVNmnydgDdtlwRYqjoGsZJ17SOCmeYElx2nEpTWO_2rNW6G6G35TvKXA-gD1-Cv9ZXcaN5QTdMFcCbW0CKv9aQJz36bGEYTIC4zpooIhVnjcJF-vqRdBnXqSwna8pw02BVtlhUr-539K-Vuy0XgdgLbIo5J3Da-mm3q9KgHzTBehsnvYuT3sZJ7-JUjPiR8Y79X8tfcSbNqA |
CitedBy_id | crossref_primary_10_1016_j_neuroimage_2022_119460 crossref_primary_10_1016_j_neuroimage_2017_03_022 crossref_primary_10_1038_s41467_022_29775_7 crossref_primary_10_1038_s41598_018_21785_0 crossref_primary_10_1016_j_neuroimage_2022_118993 crossref_primary_10_1016_j_neuroimage_2023_119865 crossref_primary_10_1073_pnas_2005531117 crossref_primary_10_1088_1741_2552_aba55e crossref_primary_10_3389_fneur_2021_744688 crossref_primary_10_3389_fnsys_2020_00020 crossref_primary_10_1186_s13195_022_01066_9 crossref_primary_10_1093_scan_nsaa114 crossref_primary_10_1016_j_neuroimage_2017_07_065 crossref_primary_10_1162_netn_a_00300 crossref_primary_10_1016_j_neuroimage_2017_09_065 crossref_primary_10_1016_j_neuroimage_2021_118679 crossref_primary_10_3389_fnins_2021_700171 crossref_primary_10_1016_j_neuroimage_2016_12_061 crossref_primary_10_1016_j_neuroimage_2019_116390 crossref_primary_10_1016_j_neuroimage_2017_02_036 crossref_primary_10_1016_j_nic_2017_06_009 crossref_primary_10_1002_hbm_23821 crossref_primary_10_1098_rsif_2019_0262 crossref_primary_10_1016_j_cobme_2017_09_008 crossref_primary_10_1016_j_neuroimage_2022_119013 crossref_primary_10_1109_TMI_2018_2863944 crossref_primary_10_1111_cns_13387 crossref_primary_10_1162_netn_a_00116 crossref_primary_10_1063_5_0046047 crossref_primary_10_1088_2632_072X_adab5c crossref_primary_10_3389_fnins_2023_1198839 crossref_primary_10_1162_netn_a_00111 crossref_primary_10_1063_1_4979046 crossref_primary_10_1016_j_media_2023_103010 crossref_primary_10_1038_s42003_022_03466_x crossref_primary_10_1523_JNEUROSCI_1786_20_2020 crossref_primary_10_1371_journal_pcbi_1006196 crossref_primary_10_3389_fnins_2019_00648 crossref_primary_10_1016_j_neuroimage_2019_116081 crossref_primary_10_1016_j_jneumeth_2021_109299 crossref_primary_10_1142_S0129065719500072 crossref_primary_10_1177_13872877241313056 crossref_primary_10_1016_j_neuroimage_2017_10_003 crossref_primary_10_1002_hbm_26606 |
Cites_doi | 10.1038/35084005 10.1111/j.1749-6632.2010.05888.x 10.1016/j.neuron.2014.03.020 10.1016/j.neuroimage.2013.05.041 10.3389/fnsys.2013.00101 10.1016/j.neulet.2010.11.020 10.1093/cercor/bhs416 10.1126/science.1239276 10.1002/hbm.22562 10.1371/journal.pone.0100012 10.1016/j.neurobiolaging.2008.05.022 10.1523/JNEUROSCI.23-35-11167.2003 10.1016/S0149-7634(02)00068-4 10.3389/fnsys.2010.00019 10.1016/j.neuroimage.2012.06.036 10.1523/JNEUROSCI.5062-08.2009 10.1002/hbm.22307 10.1016/j.media.2013.01.003 10.3389/fphys.2012.00015 10.1016/j.tics.2004.07.008 10.1006/nimg.1998.0361 10.1073/pnas.1312848110 10.1002/hbm.21513 10.1103/physrevlett.94.018102 10.1038/nphys1803 10.1093/cercor/bhi016 10.1109/ISBI.2014.6867959 10.1073/pnas.0911855107 10.1098/rstb.2005.1634 10.1016/j.neuroimage.2015.01.057 10.1016/j.neuroimage.2009.12.027 10.1371/journal.pbio.1000278 10.1016/j.tics.2012.02.001 10.1523/JNEUROSCI.4286-12.2013 10.1073/pnas.1208933109 10.1093/brain/awu132 10.1371/journal.pbio.0060159 10.1016/j.neuroimage.2013.05.039 10.3389/fnhum.2012.00339 10.1016/S0730-725X(02)00503-9 10.1016/j.neucom.2014.05.045 10.1109/MIS.2009.36 10.1016/j.physa.2004.08.047 10.1002/hbm.22058 10.1073/pnas.1216856110 10.1002/hbm.20623 |
ContentType | Journal Article |
Copyright | 2016. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2016 Tagliazucchi, Siniatchkin, Laufs and Chialvo. 2016 Tagliazucchi, Siniatchkin, Laufs and Chialvo |
Copyright_xml | – notice: 2016. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2016 Tagliazucchi, Siniatchkin, Laufs and Chialvo. 2016 Tagliazucchi, Siniatchkin, Laufs and Chialvo |
DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.3389/fnins.2016.00381 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest : Biological Science Collection journals [unlimited simultaneous users] ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1662-453X |
ExternalDocumentID | oai_doaj_org_article_994811a26b5341b59f26fa38647b427a PMC4994538 27601975 10_3389_fnins_2016_00381 |
Genre | Journal Article |
GeographicLocations | Netherlands Argentina Germany |
GeographicLocations_xml | – name: Netherlands – name: Argentina – name: Germany |
GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABUWG ACGFO ACGFS ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EBS EJD EMOBN F5P FRP GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PUEGO RNS RPM W2D ACXDI C1A IAO IEA IHR ISR M~E NPM 3V. 7XB 8FK PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c490t-2f0c4f4397be79f6b740460ffd577d131190196846246d2410436ceab84ae5c23 |
IEDL.DBID | M48 |
ISSN | 1662-453X 1662-4548 |
IngestDate | Wed Aug 27 01:30:43 EDT 2025 Tue Sep 30 16:35:15 EDT 2025 Fri Sep 05 14:13:03 EDT 2025 Fri Jul 25 11:44:18 EDT 2025 Thu Jan 02 22:19:16 EST 2025 Wed Oct 01 01:43:04 EDT 2025 Thu Apr 24 22:52:33 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | dimensionality reduction functional connectivity resting state fMRI point process functional connectome |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c490t-2f0c4f4397be79f6b740460ffd577d131190196846246d2410436ceab84ae5c23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 This article was submitted to Brain Imaging Methods, a section of the journal Frontiers in Neuroscience Edited by: Brian Caffo, Johns Hopkins University, USA Reviewed by: Joshua T. Vogelstein, Johns Hopkins University, USA; Jian Kang, Emory University, USA |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnins.2016.00381 |
PMID | 27601975 |
PQID | 2305508197 |
PQPubID | 4424402 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_994811a26b5341b59f26fa38647b427a pubmedcentral_primary_oai_pubmedcentral_nih_gov_4994538 proquest_miscellaneous_1817843580 proquest_journals_2305508197 pubmed_primary_27601975 crossref_citationtrail_10_3389_fnins_2016_00381 crossref_primary_10_3389_fnins_2016_00381 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-08-23 |
PublicationDateYYYYMMDD | 2016-08-23 |
PublicationDate_xml | – month: 08 year: 2016 text: 2016-08-23 day: 23 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Lausanne |
PublicationTitle | Frontiers in neuroscience |
PublicationTitleAlternate | Front Neurosci |
PublicationYear | 2016 |
Publisher | Frontiers Research Foundation Frontiers Media S.A |
Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
References | Dolcos (B15) 2002; 26 Sporns (B35) 2004; 8 Buckner (B9) 2009; 29 Achard (B1) 2012; 109 Jiang (B22) 2014 Beckmann (B6) 2005; 360 Zalesky (B47) 2010; 50 Shriki (B31) 2013; 33 Insel (B21) 2013; 340 Tagliazucchi (B40) 2012c; 63 American Academy of Sleep Medicine (B3) 2007 Beggs (B7) 2003; 23 Crossley (B13) 2014; 137 Davis (B14) 2013; 24 Liu (B26) 2013; 110 Tagliazucchi (B41) 2013; 110 Cordes (B12) 2002; 20 Tagliazucchi (B42) 2012b; 6 Biswal (B8) 2010; 107 Chen (B10) 2015; 111 Logothetis (B27) 2001; 412 Barthelemy (B5) 2005; 346 Hutchison (B20) 2013; 34 Allen (B2) 1998; 8 Smith (B33) 2013; 80 Kelly (B23) 2012; 16 Li (B24) 2014; 145 Petridou (B28) 2013; 34 Salvador (B29) 2005; 15 Van Essen (B44) 2013; 80 Hagmann (B18) 2008; 6 Siegel (B32) 2014; 35 Tagliazucchi (B37) 2011; 488 Wu (B46) 2013; 17 Sambataro (B30) 2010; 31 Tagliazucchi (B39) 2014; 82 Sporns (B34) 2011; 1224 Fox (B17) 2010; 4 Thiagarajan (B43) 2010; 8 Tagliazucchi (B36) 2012a; 3 Amico (B4) 2014; 9 Eguíluz (B16) 2005; 94 Halevy (B19) 2009; 24 Tagliazucchi (B38) 2014; 35 Chialvo (B11) 2010; 6 Liu (B25) 2013; 7 Wang (B45) 2009; 30 20084093 - PLoS Biol. 2010 Jan 12;8(1):e1000278 24003146 - Proc Natl Acad Sci U S A. 2013 Sep 17;110(38):15419-24 23595765 - J Neurosci. 2013 Apr 17;33(16):7079-90 20592951 - Front Syst Neurosci. 2010 Jun 17;4:19 20176931 - Proc Natl Acad Sci U S A. 2010 Mar 9;107(10):4734-9 25662866 - Neuroimage. 2015 May 1;111:476-88 23329729 - Cereb Cortex. 2014 May;24(5):1332-50 23293596 - Front Hum Neurosci. 2012 Dec 28;6:339 22347863 - Front Physiol. 2012 Feb 08;3:15 24811386 - Neuron. 2014 May 7;82(3):695-708 22743197 - Neuroimage. 2012 Oct 15;63(1):63-72 15698136 - Phys Rev Lett. 2005 Jan 14;94(1):018102 15635061 - Cereb Cortex. 2005 Sep;15(9):1332-42 23702415 - Neuroimage. 2013 Oct 15;80:144-68 25057133 - Brain. 2014 Aug;137(Pt 8):2382-95 20035887 - Neuroimage. 2010 Apr 15;50(3):970-83 21251014 - Ann N Y Acad Sci. 2011 Apr;1224:109-25 16087444 - Philos Trans R Soc Lond B Biol Sci. 2005 May 29;360(1457):1001-13 15350243 - Trends Cogn Sci. 2004 Sep;8(9):418-25 18674847 - Neurobiol Aging. 2010 May;31(5):839-52 23661744 - Science. 2013 May 10;340(6133):687-8 24550788 - Front Syst Neurosci. 2013 Dec 04;7:101 9758737 - Neuroimage. 1998 Oct;8(3):229-39 11449264 - Nature. 2001 Jul 12;412(6843):150-7 24979748 - PLoS One. 2014 Jun 30;9(6):e100012 23684880 - Neuroimage. 2013 Oct 15;80:62-79 18649353 - Hum Brain Mapp. 2009 May;30(5):1511-23 23861343 - Hum Brain Mapp. 2014 May;35(5):1981-96 12470693 - Neurosci Biobehav Rev. 2002 Nov;26(7):819-25 12165349 - Magn Reson Imaging. 2002 May;20(4):305-17 14657176 - J Neurosci. 2003 Dec 3;23(35):11167-77 23422254 - Med Image Anal. 2013 Apr;17(3):365-74 22331588 - Hum Brain Mapp. 2013 Jun;34(6):1319-29 22438275 - Hum Brain Mapp. 2013 Sep;34(9):2154-77 21078369 - Neurosci Lett. 2011 Jan 20;488(2):158-63 22341211 - Trends Cogn Sci. 2012 Mar;16(3):181-8 23440216 - Proc Natl Acad Sci U S A. 2013 Mar 12;110(11):4392-7 24989126 - Hum Brain Mapp. 2014 Nov;35(11):5442-56 23185007 - Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20608-13 18597554 - PLoS Biol. 2008 Jul 1;6(7):e159 19211893 - J Neurosci. 2009 Feb 11;29(6):1860-73 |
References_xml | – volume: 412 start-page: 150 year: 2001 ident: B27 article-title: Neurophysiological investigation of the basis of the fMRI signal publication-title: Nature doi: 10.1038/35084005 – volume: 1224 start-page: 109 year: 2011 ident: B34 article-title: The human connectome: a complex network publication-title: Ann. N.Y. Acad. Sci. doi: 10.1111/j.1749-6632.2010.05888.x – volume: 82 start-page: 695 year: 2014 ident: B39 article-title: Decoding wakefulness levels from typical fMRI resting-state data reveals reliable drifts between wakefulness and sleep publication-title: Neuron doi: 10.1016/j.neuron.2014.03.020 – volume: 80 start-page: 62 year: 2013 ident: B44 article-title: The WU-Minn human connectome project: an overview publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.041 – volume: 7 start-page: 101 year: 2013 ident: B25 article-title: Decomposition of spontaneous brain activity into distinct fMRI co-activation patterns publication-title: Front. Sys. Neurosci. doi: 10.3389/fnsys.2013.00101 – volume: 488 start-page: 158 year: 2011 ident: B37 article-title: Spontaneous BOLD event triggered averages for estimating functional connectivity at resting state publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2010.11.020 – volume: 24 start-page: 1332 year: 2013 ident: B14 article-title: Functional and developmental significance of amplitude variance asymmetry in the BOLD resting-state signal publication-title: Cereb. Cortex doi: 10.1093/cercor/bhs416 – volume: 340 start-page: 687 year: 2013 ident: B21 article-title: The NIH brain initiative publication-title: Science doi: 10.1126/science.1239276 – volume: 35 start-page: 5442 year: 2014 ident: B38 article-title: Enhanced repertoire of brain dynamical states during the psychedelic experience publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22562 – volume: 9 start-page: e100012 year: 2014 ident: B4 article-title: Posterior cingulate cortex-related co-activation patterns: a resting state fMRI study in propofol-induced loss of consciousness publication-title: PLoS ONE doi: 10.1371/journal.pone.0100012 – volume: 31 start-page: 839 year: 2010 ident: B30 article-title: Age-related alterations in default mode network: impact on working memory performance publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2008.05.022 – volume: 23 start-page: 11167 year: 2003 ident: B7 article-title: Neuronal avalanches in neocortical circuits publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.23-35-11167.2003 – volume: 26 start-page: 819 year: 2002 ident: B15 article-title: Hemispheric asymmetry and aging: right hemisphere decline or asymmetry reduction publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/S0149-7634(02)00068-4 – volume: 4 start-page: 19 year: 2010 ident: B17 article-title: Clinical applications of resting state functional connectivity publication-title: Front. Sys. Neurosci doi: 10.3389/fnsys.2010.00019 – volume: 63 start-page: 63 year: 2012c ident: B40 article-title: Automatic sleep staging using fMRI functional connectivity data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.06.036 – volume: 29 start-page: 1860 year: 2009 ident: B9 article-title: Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer's disease publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5062-08.2009 – volume: 35 start-page: 1981 year: 2014 ident: B32 article-title: Statistical improvements in functional magnetic resonance imaging analyses produced by censoring high-motion data points publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22307 – volume: 17 start-page: 365 year: 2013 ident: B46 article-title: A blind deconvolution approach to recover effective connectivity brain networks from resting state fMRI data publication-title: Med. Image Anal. doi: 10.1016/j.media.2013.01.003 – volume: 3 start-page: 15 year: 2012a ident: B36 article-title: Criticality in large-scale brain fMRI dynamics unveiled by a novel point process analysis publication-title: Front. Physiol doi: 10.3389/fphys.2012.00015 – volume: 8 start-page: 418 year: 2004 ident: B35 article-title: Organization, development and function of complex brain networks publication-title: Trends. Cogn. Sci. doi: 10.1016/j.tics.2004.07.008 – volume: 8 start-page: 229 year: 1998 ident: B2 article-title: Identification of EEG events in the MR scanner: the problem of pulse artifact and a method for its subtraction publication-title: Neuroimage doi: 10.1006/nimg.1998.0361 – volume: 110 start-page: 15419 year: 2013 ident: B41 article-title: Breakdown of long-range temporal dependence in default mode and attention networks during deep sleep publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1312848110 – volume: 34 start-page: 1319 year: 2013 ident: B28 article-title: Periods of rest in fMRI contain individual spontaneous events which are related to slowly fluctuating spontaneous activity publication-title: Hum. Brain. Mapp. doi: 10.1002/hbm.21513 – volume: 94 start-page: 018102 year: 2005 ident: B16 article-title: Scale-free brain functional networks publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.94.018102 – volume: 6 start-page: 744 year: 2010 ident: B11 article-title: Emergent complex neural dynamics publication-title: Nat. Phys. doi: 10.1038/nphys1803 – volume: 15 start-page: 1332 year: 2005 ident: B29 article-title: Neurophysiological architecture of functional magnetic resonance images of human brain publication-title: Cereb. Cortex doi: 10.1093/cercor/bhi016 – start-page: 669 volume-title: Biomedical Imaging (ISBI), 2014 IEEE 11th International Symposium on year: 2014 ident: B22 article-title: Integrating group-wise functional brain activities via point processes doi: 10.1109/ISBI.2014.6867959 – volume: 107 start-page: 4734 year: 2010 ident: B8 article-title: Toward discovery science of human brain function publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0911855107 – volume: 360 start-page: 1001 year: 2005 ident: B6 article-title: Investigations into resting-state connectivity using independent component analysis publication-title: Philos. Trans. Roy. Soc. B Biol. Sci. doi: 10.1098/rstb.2005.1634 – volume: 111 start-page: 476 year: 2015 ident: B10 article-title: Introducing co-activation pattern metrics to quantify spontaneous brain network dynamics publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.01.057 – volume: 50 start-page: 970 year: 2010 ident: B47 article-title: Whole-brain anatomical networks: does the choice of nodes matter? publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.12.027 – volume: 8 start-page: e1000278 year: 2010 ident: B43 article-title: Coherence potentials: loss-less, all-or-none network events in the cortex publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1000278 – volume: 16 start-page: 181 year: 2012 ident: B23 article-title: Characterizing variation in the functional connectome: promise and pitfalls publication-title: Trends. Cogn. Sci. doi: 10.1016/j.tics.2012.02.001 – volume: 33 start-page: 7079 year: 2013 ident: B31 article-title: Neuronal avalanches in the resting MEG of the human brain publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4286-12.2013 – volume: 109 start-page: 20608 year: 2012 ident: B1 article-title: Hubs of brain functional networks are radically reorganized in comatose patients publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1208933109 – volume: 137 start-page: 2382 year: 2014 ident: B13 article-title: The hubs of the human connectome are generally implicated in the anatomy of brain disorders publication-title: Brain doi: 10.1093/brain/awu132 – volume: 6 start-page: e159 year: 2008 ident: B18 article-title: Mapping the structural core of human cerebral cortex publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0060159 – volume: 80 start-page: 144 year: 2013 ident: B33 article-title: Resting-state fMRI in the human connectome project publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.039 – volume: 6 start-page: 339 year: 2012b ident: B42 article-title: Dynamic BOLD functional connectivity in humans and its electrophysiological correlates publication-title: Front. Hum. Neurosci doi: 10.3389/fnhum.2012.00339 – volume: 20 start-page: 305 year: 2002 ident: B12 article-title: Hierarchical clustering to measure connectivity in fMRI resting-state data publication-title: Magn. Reson. Imaging doi: 10.1016/S0730-725X(02)00503-9 – volume: 145 start-page: 182 year: 2014 ident: B24 article-title: Point process analysis in brain Networks of Patients with diabetes publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.05.045 – volume: 24 start-page: 8 year: 2009 ident: B19 article-title: The unreasonable effectiveness of data publication-title: Intell. Syst. IEEE doi: 10.1109/MIS.2009.36 – volume: 346 start-page: 34 year: 2005 ident: B5 article-title: Characterization and modeling of weighted networks publication-title: Phys. A doi: 10.1016/j.physa.2004.08.047 – volume: 34 start-page: 2154 year: 2013 ident: B20 article-title: Resting-state networks show dynamic functional connectivity in awake humans and anesthetized macaques publication-title: Hum. Brain. Mapp. doi: 10.1002/hbm.22058 – volume-title: The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications year: 2007 ident: B3 – volume: 110 start-page: 4392 year: 2013 ident: B26 article-title: Time-varying functional network information extracted from brief instances of spontaneous brain activity publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1216856110 – volume: 30 start-page: 1511 year: 2009 ident: B45 article-title: Parcellation-dependent small-world brain functional networks: a resting-state fMRI study publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20623 – reference: 24989126 - Hum Brain Mapp. 2014 Nov;35(11):5442-56 – reference: 20084093 - PLoS Biol. 2010 Jan 12;8(1):e1000278 – reference: 12470693 - Neurosci Biobehav Rev. 2002 Nov;26(7):819-25 – reference: 25662866 - Neuroimage. 2015 May 1;111:476-88 – reference: 18649353 - Hum Brain Mapp. 2009 May;30(5):1511-23 – reference: 23661744 - Science. 2013 May 10;340(6133):687-8 – reference: 22341211 - Trends Cogn Sci. 2012 Mar;16(3):181-8 – reference: 23422254 - Med Image Anal. 2013 Apr;17(3):365-74 – reference: 22347863 - Front Physiol. 2012 Feb 08;3:15 – reference: 24811386 - Neuron. 2014 May 7;82(3):695-708 – reference: 23293596 - Front Hum Neurosci. 2012 Dec 28;6:339 – reference: 22331588 - Hum Brain Mapp. 2013 Jun;34(6):1319-29 – reference: 12165349 - Magn Reson Imaging. 2002 May;20(4):305-17 – reference: 24979748 - PLoS One. 2014 Jun 30;9(6):e100012 – reference: 20176931 - Proc Natl Acad Sci U S A. 2010 Mar 9;107(10):4734-9 – reference: 14657176 - J Neurosci. 2003 Dec 3;23(35):11167-77 – reference: 23595765 - J Neurosci. 2013 Apr 17;33(16):7079-90 – reference: 23329729 - Cereb Cortex. 2014 May;24(5):1332-50 – reference: 15350243 - Trends Cogn Sci. 2004 Sep;8(9):418-25 – reference: 20592951 - Front Syst Neurosci. 2010 Jun 17;4:19 – reference: 24550788 - Front Syst Neurosci. 2013 Dec 04;7:101 – reference: 16087444 - Philos Trans R Soc Lond B Biol Sci. 2005 May 29;360(1457):1001-13 – reference: 15698136 - Phys Rev Lett. 2005 Jan 14;94(1):018102 – reference: 25057133 - Brain. 2014 Aug;137(Pt 8):2382-95 – reference: 11449264 - Nature. 2001 Jul 12;412(6843):150-7 – reference: 15635061 - Cereb Cortex. 2005 Sep;15(9):1332-42 – reference: 23185007 - Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20608-13 – reference: 19211893 - J Neurosci. 2009 Feb 11;29(6):1860-73 – reference: 24003146 - Proc Natl Acad Sci U S A. 2013 Sep 17;110(38):15419-24 – reference: 18597554 - PLoS Biol. 2008 Jul 1;6(7):e159 – reference: 22438275 - Hum Brain Mapp. 2013 Sep;34(9):2154-77 – reference: 23861343 - Hum Brain Mapp. 2014 May;35(5):1981-96 – reference: 21078369 - Neurosci Lett. 2011 Jan 20;488(2):158-63 – reference: 9758737 - Neuroimage. 1998 Oct;8(3):229-39 – reference: 18674847 - Neurobiol Aging. 2010 May;31(5):839-52 – reference: 23702415 - Neuroimage. 2013 Oct 15;80:144-68 – reference: 21251014 - Ann N Y Acad Sci. 2011 Apr;1224:109-25 – reference: 22743197 - Neuroimage. 2012 Oct 15;63(1):63-72 – reference: 20035887 - Neuroimage. 2010 Apr 15;50(3):970-83 – reference: 23440216 - Proc Natl Acad Sci U S A. 2013 Mar 12;110(11):4392-7 – reference: 23684880 - Neuroimage. 2013 Oct 15;80:62-79 |
SSID | ssj0062842 |
Score | 2.3700058 |
Snippet | Large efforts are currently under way to systematically map functional connectivity between all pairs of millimeter-scale brain regions based on large... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 381 |
SubjectTerms | Age Brain Brain mapping dimensionality reduction functional connectivity functional connectome Functional magnetic resonance imaging Neural networks Neuroimaging Neuroscience Neurosciences Noise point process resting state fMRI Sleep |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PbxQhFCamJy9GrT9GW4OJMfFAdgcYGI6tsWlM9GST3ggwECdZ2U13W-3B_933YHbTNUYvXgeYYXgP3vd4jw9C3iTABH1ymgXhBJNcKuaV9GwQXvfOx1YOeMD502d1fiE_XnaXd676wpywSg9cB25mkE6kdVz5DhZc35nEVXKiV1J7yXWBRmDGts5UXYMVLLq8BiXBBTOzlMeM3NwtRh5E3-4ZocLV_yeA-Xue5B3Dc_aQPJgQIz2pPX1E7sX8mByeZPCWv93St7TkcJbN8UPyE6ROb5Y_4oJ9H9eRotWqm300YEZLgDaRwmhSH2ks7BHw0cUtHUARb-JA8bQJVGV43KFu1q7pmKmjsPBcwQvXJQGbTYRWC7pajnnDVvW0wRNycfbhy_tzNl2wwII08w3jaR5kQkjiozZJeS0xTprS0Gk9IBGPQfocgCggwwFsPfLVh-h8L13sAhdPyUFe5vicUC8TjwD9ZBBCzp0xXIG4XC-9DG3qY0Nm2xG3YWIfx0swFha8EJSRLTKyKCNbZNSQd7sWq8q88Ze6pyjEXT3kzC4PQJPspEn2X5rUkKOtCthpIsM3kBENYZNuyOtdMUxBjKu4HJfXawsgSfcS48kNeVY1ZtcTjjlHRncN0Xu6tNfV_ZI8fi003-CLSjBHL_7Hv70k93G0cDOciyNysLm6jseApjb-VZk4vwAZZh59 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELbK9sIFAeURKMhICImDtbuOYycHhLplVxUSqwpa6C2yHRsiLc7S3SJ64L8z4zzEItRTpMRRrMzY83ke3xDy0gMmyL1WzKY6ZYILyYwUhlWpUbk2bioqLHD-sJQn5-L9RXaxR5Z9LQymVfZ7Ytyoq8aij3zMkZoK7Zd6u_7BsGsURlf7Fhq6a61QvYkUY7fIPseuyiOyP5svTz_2e7OEzTjGPyXWCgFYbwOXcEwrxj7UAfm7pxidSPPpjqGKfP7_A6H_5lL-ZZwWd8mdDlXSo1YN7pE9F-6Tg6MAJ-rv1_QVjXme0YF-QH6DZtDPzS-3Yl_qjaMLsGytQ5DGrBcL7zh6rAOdOTqPDBPw0dU1fQfK-tNVFCtSYCjDkojWobuhdaCaflrDKdnhBW6ys5b0akVPmzpsWVeR8ICcL-Znxyesa8LArCgmW8b9xAqPsMU4VXhplMBYqvdVplSFZD0FUuwAjAE5V4AHkNPeOm1yoV1mefqQjEIT3GNCjfDcATwUNk3FRBcFl2BDdS6MsFOfu4SM-z9e2o6hHBtlrEo4qaCMyiijEmVURhkl5PXwxrpl57hh7AyFOIxDXu14o7n8WnbLtCyQvGaquTQZTM1khefS6zSXQhnBlU7IYa8CZbfY4RuDaibkxfAYlinGXnRwzdWmBCClcoEx54Q8ajVmmAnHvKRCZQlRO7q0M9XdJ6H-FqnA4bwqwGQ9uXlaT8lt_A_oCufpIRltL6_cM8BSW_O8WyB_AE5rHgc priority: 102 providerName: ProQuest |
Title | The Voxel-Wise Functional Connectome Can Be Efficiently Derived from Co-activations in a Sparse Spatio-Temporal Point-Process |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27601975 https://www.proquest.com/docview/2305508197 https://www.proquest.com/docview/1817843580 https://pubmed.ncbi.nlm.nih.gov/PMC4994538 https://doaj.org/article/994811a26b5341b59f26fa38647b427a |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1662-453X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: KQ8 dateStart: 20070101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1662-453X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1662-453X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: DIK dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1662-453X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: GX1 dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1662-453X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: RPM dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1662-453X dateEnd: 20211231 omitProxy: true ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: BENPR dateStart: 20071015 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1662-453X dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0062842 issn: 1662-453X databaseCode: M48 dateStart: 20071001 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELbG9sILYowfgVEZCU3iwax1nDh5QGgdLRPSpglW6FtkJzZECk7XdtP6wP_OnZNGFFV7aaXEaay7c-87n-87Qt5awASJVZLloQqZ4CJmOhaaFaGWidJmIAoscD6_iM8m4ss0mu6QdXVJK8DF1tAO-0lN5tX7u-vVR1jwHzDiBH97bF3pkHl7gHkF8EBHs2uGbaUw_dr22HhA9sBVcTT7c9GlGWL4b_bp0BhLhwC7N3nMrT-64bc8vf82TPr_0cp_fNX4MXnUgkx60ljFPtkx7gk5OHEQYP9e0SPqj336_fQD8gcMhX6v70zFfpQLQ8fg6Jr9QeoPweTwjKGnytGhoSNPOAEvrVb0E9jurSkoFqjAUIYVEs3-7oKWjir6bQaSNfgFF9lVw4FV0cu6dEvWFig8JZPx6Or0jLU9GVgu0v6ScdvPhUUUo41MbaylwNSqtUUkZYHcPSky7gCqAbUXIHOkuM-N0olQJsp5-IzsutqZF4RqYbkBtCjyMBR9laY8BpeqEqFFPrCJCcjxWuJZ3hKWY9-MKoPABXWUeR1lqKPM6ygg77onZg1Zxz1jh6jEbhzSbPsL9fxn1q7aLEUum4HisY5gajpKLY-tCpNYSC24VAE5XJtAtjbdjCOJGiItGZA33W1YtZiKUc7UN4sMcJVMBKagA_K8sZhuJhyPKaUyCojcsKWNqW7eceUvzwwO4asAD_by_mm9Ig9RDrgzzsNDsruc35jXAK2Wukf2hqOLy689vzUBn5-ng55fMn8BxDUmKA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLem7QAXBIyPwAAjARIHq43jxMlhQuvWqmNbNUEHuwU7saFSccraAT3wr_G38Z6TVBSh3XaqlDiKm2e_3_vw-z1CXliwCVKrJCsiFTHBRcJ0IjQrIy1TpU0oSixwPhklwzPx9jw-3yC_21oYPFbZ6kSvqMuqwBh5hyM1FeKXfDP7xrBrFGZX2xYaqmmtUO56irGmsOPILH-ACzffPTwAeb_kfNAf7w9Z02WAFSLrLhi33UJYxGVtZGYTLQUmC60tYylLZKPJkEMGcBr-SAmAh6TthVE6FcrEBRIfAARsgdkRwa7a6vVHp-9aLEhA-ft8a4K1SeAc1IlScAuzjnUTh3zhIWZDojRcA0bfP-B_Ru-_Zzf_AsPBbXKrsWLpXr3s7pAN4-6S7T0HHvzXJX1F_blSH7DfJr9gJdIP1U8zZR8nc0MHgKR1AJL6UzYFPGPovnK0Z2jfM1rAS6dLegCb47spKVbAwFCGJRh1AHlOJ44q-n4GXrnBH7jIxjXJ1pSeVhO3YE0FxD1ydi3iuE82XeXMQ0K1sNyAOSqKKBJdlWU8AcxWqdCiCG1qAtJpv3heNIzo2JhjmoNnhDLKvYxylFHuZRSQ16snZjUbyBVjeyjE1Tjk8fYXqovPeaMW8gzJckLFEx3D1HScWZ5YFaWJkFpwqQKy0y6BvFEu8I7VVgjI89VtUAuY61HOVJfzHAw3mQrMcQfkQb1iVjPheA4qk3FA5NpaWpvq-h03-eKpx8E_FgCRj66e1jNyYzg-Oc6PD0dHj8lN_CYYhufRDtlcXFyaJ2DHLfTTZrNQ8um69-cfKb9Y4A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLemTkJcEDA-AgOMBEgcrDaOEyeHCa1rq41BVcEGuwU7saFSccraAT3wD_JX8Z6TVBSh3XaqlDiKm2f79z5_j5BnFnSC1CrJikhFTHCRMJ0IzcpIy1RpE4oSC5zfjpPDU_H6LD7bIr_bWhhMq2zPRH9Ql1WBPvIuR2oqxC_ZtU1axGQwejX_xrCDFEZa23YaqmmzUO55urGmyOPYrH6AObfYOxqA7J9zPhqeHByypuMAK0TWWzJue4WwiNHayMwmWgoMHFpbxlKWyEyTIZ8MYDb8qRLADwncC6N0KpSJCyRBADjYllgv2iHb_eF48q7FhQSAwMdeE6xTAkOhDpqCiZh1rZs65A4PMTISpeEGSPpeAv9TgP_N4_wLGEc3yY1Go6X79RK8RbaMu0129h1Y819X9AX1Oabeeb9DfsGqpB-qn2bGPk4Xho4AVWtnJPUZNwU8Y-iBcrRv6NCzW8BLZys6gI3y3ZQUq2FgKMNyjNqZvKBTRxV9PwcL3eAPXGQnNeHWjE6qqVuyphriDjm9EnHcJR1XOXOfUC0sN6CaiiKKRE9lGU8Av1UqtChCm5qAdNsvnhcNOzo26ZjlYCWhjHIvoxxllHsZBeTl-ol5zQxyydg-CnE9Djm9_YXq_HPeHBF5hsQ5oeKJjmFqOs4sT6yK0kRILbhUAdltl0DeHDTwjvW2CMjT9W04IjDuo5ypLhY5KHEyFRjvDsi9esWsZ8IxJyqTcUDkxlramOrmHTf94mnIwVYWAJcPLp_WE3IN9mn-5mh8_JBcx0-CHnke7ZLO8vzCPAKVbqkfN3uFkk9XvT3_AGzvXRo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Voxel-Wise+Functional+Connectome+Can+Be+Efficiently+Derived+from+Co-activations+in+a+Sparse+Spatio-Temporal+Point-Process&rft.jtitle=Frontiers+in+neuroscience&rft.au=Tagliazucchi%2C+Enzo&rft.au=Siniatchkin%2C+Michael&rft.au=Laufs%2C+Helmut&rft.au=Chialvo%2C+Dante+R&rft.date=2016-08-23&rft.pub=Frontiers+Research+Foundation&rft.issn=1662-4548&rft.eissn=1662-453X&rft_id=info:doi/10.3389%2Ffnins.2016.00381&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon |