Diagnostic accuracy of a novel software technology for detecting pneumothorax in a porcine model
Our objective was to measure the diagnostic accuracy of a novel software technology to detect pneumothorax on Brightness (B) mode and Motion (M) mode ultrasonography. Ultrasonography fellowship-trained emergency physicians performed thoracic ultrasonography at baseline and after surgically creating...
Saved in:
Published in | The American journal of emergency medicine Vol. 35; no. 9; pp. 1285 - 1290 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.09.2017
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 0735-6757 1532-8171 1532-8171 |
DOI | 10.1016/j.ajem.2017.03.073 |
Cover
Abstract | Our objective was to measure the diagnostic accuracy of a novel software technology to detect pneumothorax on Brightness (B) mode and Motion (M) mode ultrasonography.
Ultrasonography fellowship-trained emergency physicians performed thoracic ultrasonography at baseline and after surgically creating a pneumothorax in eight intubated, spontaneously breathing porcine subjects. Prior to pneumothorax induction, we captured sagittal M-mode still images and B-mode videos of each intercostal space with a linear array transducer at 4cm of depth. After collection of baseline images, we placed a chest tube, injected air into the pleural space in 250mL increments, and repeated the ultrasonography for pneumothorax volumes of 250mL, 500mL, 750mL, and 1000mL. We confirmed pneumothorax with intrapleural digital manometry and ultrasound by expert sonographers. We exported collected images for interpretation by the software. We treated each individual scan as a single test for interpretation by the software.
Excluding indeterminate results, we collected 338M-mode images for which the software demonstrated a sensitivity of 98% (95% confidence interval [CI] 92–99%), specificity of 95% (95% CI 86–99), positive likelihood ratio (LR+) of 21.6 (95% CI 7.1–65), and negative likelihood ratio (LR−) of 0.02 (95% CI 0.008–0.046). Among 364 B-mode videos, the software demonstrated a sensitivity of 86% (95% CI 81–90%), specificity of 85% (81–91%), LR+ of 5.7 (95% CI 3.2–10.2), and LR− of 0.17 (95% CI 0.12–0.22).
This novel technology has potential as a useful adjunct to diagnose pneumothorax on thoracic ultrasonography. |
---|---|
AbstractList | Our objective was to measure the diagnostic accuracy of a novel software technology to detect pneumothorax on Brightness (B) mode and Motion (M) mode ultrasonography.INTRODUCTIONOur objective was to measure the diagnostic accuracy of a novel software technology to detect pneumothorax on Brightness (B) mode and Motion (M) mode ultrasonography.Ultrasonography fellowship-trained emergency physicians performed thoracic ultrasonography at baseline and after surgically creating a pneumothorax in eight intubated, spontaneously breathing porcine subjects. Prior to pneumothorax induction, we captured sagittal M-mode still images and B-mode videos of each intercostal space with a linear array transducer at 4cm of depth. After collection of baseline images, we placed a chest tube, injected air into the pleural space in 250mL increments, and repeated the ultrasonography for pneumothorax volumes of 250mL, 500mL, 750mL, and 1000mL. We confirmed pneumothorax with intrapleural digital manometry and ultrasound by expert sonographers. We exported collected images for interpretation by the software. We treated each individual scan as a single test for interpretation by the software.METHODSUltrasonography fellowship-trained emergency physicians performed thoracic ultrasonography at baseline and after surgically creating a pneumothorax in eight intubated, spontaneously breathing porcine subjects. Prior to pneumothorax induction, we captured sagittal M-mode still images and B-mode videos of each intercostal space with a linear array transducer at 4cm of depth. After collection of baseline images, we placed a chest tube, injected air into the pleural space in 250mL increments, and repeated the ultrasonography for pneumothorax volumes of 250mL, 500mL, 750mL, and 1000mL. We confirmed pneumothorax with intrapleural digital manometry and ultrasound by expert sonographers. We exported collected images for interpretation by the software. We treated each individual scan as a single test for interpretation by the software.Excluding indeterminate results, we collected 338M-mode images for which the software demonstrated a sensitivity of 98% (95% confidence interval [CI] 92-99%), specificity of 95% (95% CI 86-99), positive likelihood ratio (LR+) of 21.6 (95% CI 7.1-65), and negative likelihood ratio (LR-) of 0.02 (95% CI 0.008-0.046). Among 364 B-mode videos, the software demonstrated a sensitivity of 86% (95% CI 81-90%), specificity of 85% (81-91%), LR+ of 5.7 (95% CI 3.2-10.2), and LR- of 0.17 (95% CI 0.12-0.22).RESULTSExcluding indeterminate results, we collected 338M-mode images for which the software demonstrated a sensitivity of 98% (95% confidence interval [CI] 92-99%), specificity of 95% (95% CI 86-99), positive likelihood ratio (LR+) of 21.6 (95% CI 7.1-65), and negative likelihood ratio (LR-) of 0.02 (95% CI 0.008-0.046). Among 364 B-mode videos, the software demonstrated a sensitivity of 86% (95% CI 81-90%), specificity of 85% (81-91%), LR+ of 5.7 (95% CI 3.2-10.2), and LR- of 0.17 (95% CI 0.12-0.22).This novel technology has potential as a useful adjunct to diagnose pneumothorax on thoracic ultrasonography.CONCLUSIONSThis novel technology has potential as a useful adjunct to diagnose pneumothorax on thoracic ultrasonography. Our objective was to measure the diagnostic accuracy of a novel software technology to detect pneumothorax on Brightness (B) mode and Motion (M) mode ultrasonography. Ultrasonography fellowship-trained emergency physicians performed thoracic ultrasonography at baseline and after surgically creating a pneumothorax in eight intubated, spontaneously breathing porcine subjects. Prior to pneumothorax induction, we captured sagittal M-mode still images and B-mode videos of each intercostal space with a linear array transducer at 4cm of depth. After collection of baseline images, we placed a chest tube, injected air into the pleural space in 250mL increments, and repeated the ultrasonography for pneumothorax volumes of 250mL, 500mL, 750mL, and 1000mL. We confirmed pneumothorax with intrapleural digital manometry and ultrasound by expert sonographers. We exported collected images for interpretation by the software. We treated each individual scan as a single test for interpretation by the software. Excluding indeterminate results, we collected 338M-mode images for which the software demonstrated a sensitivity of 98% (95% confidence interval [CI] 92–99%), specificity of 95% (95% CI 86–99), positive likelihood ratio (LR+) of 21.6 (95% CI 7.1–65), and negative likelihood ratio (LR−) of 0.02 (95% CI 0.008–0.046). Among 364 B-mode videos, the software demonstrated a sensitivity of 86% (95% CI 81–90%), specificity of 85% (81–91%), LR+ of 5.7 (95% CI 3.2–10.2), and LR− of 0.17 (95% CI 0.12–0.22). This novel technology has potential as a useful adjunct to diagnose pneumothorax on thoracic ultrasonography. Introduction Our objective was to measure the diagnostic accuracy of a novel software technology to detect pneumothorax on Brightness (B) mode and Motion (M) mode ultrasonography. Methods Ultrasonography fellowship-trained emergency physicians performed thoracic ultrasonography at baseline and after surgically creating a pneumothorax in eight intubated, spontaneously breathing porcine subjects. Prior to pneumothorax induction, we captured sagittal M-mode still images and B-mode videos of each intercostal space with a linear array transducer at 4cm of depth. After collection of baseline images, we placed a chest tube, injected air into the pleural space in 250mL increments, and repeated the ultrasonography for pneumothorax volumes of 250mL, 500mL, 750mL, and 1000mL. We confirmed pneumothorax with intrapleural digital manometry and ultrasound by expert sonographers. We exported collected images for interpretation by the software. We treated each individual scan as a single test for interpretation by the software. Results Excluding indeterminate results, we collected 338M-mode images for which the software demonstrated a sensitivity of 98% (95% confidence interval [CI] 92-99%), specificity of 95% (95% CI 86-99), positive likelihood ratio (LR+) of 21.6 (95% CI 7.1-65), and negative likelihood ratio (LR−) of 0.02 (95% CI 0.008-0.046). Among 364 B-mode videos, the software demonstrated a sensitivity of 86% (95% CI 81-90%), specificity of 85% (81-91%), LR+ of 5.7 (95% CI 3.2-10.2), and LR− of 0.17 (95% CI 0.12-0.22). Conclusions This novel technology has potential as a useful adjunct to diagnose pneumothorax on thoracic ultrasonography. Abstract Introduction Our objective was to measure the diagnostic accuracy of a novel software technology to detect pneumothorax on Brightness (B) mode and Motion (M) mode ultrasonography. Methods Ultrasonography fellowship-trained emergency physicians performed thoracic ultrasonography at baseline and after surgically creating a pneumothorax in eight intubated, spontaneously breathing porcine subjects. Prior to pneumothorax induction, we captured sagittal M-mode still images and B-mode videos of each intercostal space with a linear array transducer at 4 cm of depth. After collection of baseline images, we placed a chest tube, injected air into the pleural space in 250 mL increments, and repeated the ultrasonography for pneumothorax volumes of 250 mL, 500 mL, 750 mL, and 1000 mL. We confirmed pneumothorax with intrapleural digital manometry and ultrasound by expert sonographers. We exported collected images for interpretation by the software. We treated each individual scan as a single test for interpretation by the software. Results Excluding indeterminate results, we collected 338 M-mode images for which the software demonstrated a sensitivity of 98% (95% confidence interval [CI] 92–99%), specificity of 95% (95% CI 86–99), positive likelihood ratio (LR +) of 21.6 (95% CI 7.1–65), and negative likelihood ratio (LR −) of 0.02 (95% CI 0.008–0.046). Among 364 B-mode videos, the software demonstrated a sensitivity of 86% (95% CI 81–90%), specificity of 85% (81–91%), LR + of 5.7 (95% CI 3.2–10.2), and LR − of 0.17 (95% CI 0.12–0.22). Conclusions This novel technology has potential as a useful adjunct to diagnose pneumothorax on thoracic ultrasonography. Our objective was to measure the diagnostic accuracy of a novel software technology to detect pneumothorax on Brightness (B) mode and Motion (M) mode ultrasonography. Ultrasonography fellowship-trained emergency physicians performed thoracic ultrasonography at baseline and after surgically creating a pneumothorax in eight intubated, spontaneously breathing porcine subjects. Prior to pneumothorax induction, we captured sagittal M-mode still images and B-mode videos of each intercostal space with a linear array transducer at 4cm of depth. After collection of baseline images, we placed a chest tube, injected air into the pleural space in 250mL increments, and repeated the ultrasonography for pneumothorax volumes of 250mL, 500mL, 750mL, and 1000mL. We confirmed pneumothorax with intrapleural digital manometry and ultrasound by expert sonographers. We exported collected images for interpretation by the software. We treated each individual scan as a single test for interpretation by the software. Excluding indeterminate results, we collected 338M-mode images for which the software demonstrated a sensitivity of 98% (95% confidence interval [CI] 92-99%), specificity of 95% (95% CI 86-99), positive likelihood ratio (LR+) of 21.6 (95% CI 7.1-65), and negative likelihood ratio (LR-) of 0.02 (95% CI 0.008-0.046). Among 364 B-mode videos, the software demonstrated a sensitivity of 86% (95% CI 81-90%), specificity of 85% (81-91%), LR+ of 5.7 (95% CI 3.2-10.2), and LR- of 0.17 (95% CI 0.12-0.22). This novel technology has potential as a useful adjunct to diagnose pneumothorax on thoracic ultrasonography. |
Author | Kheirabadi, Bijan S. Salinas, Jose Grisell, Ronald D. Chin, Eric J. Blackbourne, Lorne H. Lospinoso, Joshua A. Summers, Shane M. April, Michael D. |
Author_xml | – sequence: 1 givenname: Shane M. surname: Summers fullname: Summers, Shane M. organization: Department of Emergency Medicine, San Antonio Military Medical Center, JBSA Fort Sam Houston, TX, USA – sequence: 2 givenname: Eric J. surname: Chin fullname: Chin, Eric J. organization: Department of Emergency Medicine, San Antonio Military Medical Center, JBSA Fort Sam Houston, TX, USA – sequence: 3 givenname: Michael D. orcidid: 0000-0001-5621-441X surname: April fullname: April, Michael D. email: Michael.D.April@post.harvard.edu organization: Department of Emergency Medicine, San Antonio Military Medical Center, JBSA Fort Sam Houston, TX, USA – sequence: 4 givenname: Ronald D. surname: Grisell fullname: Grisell, Ronald D. organization: United States Army Institute of Surgical Research, JBSA Fort Sam Houston, TX, USA – sequence: 5 givenname: Joshua A. surname: Lospinoso fullname: Lospinoso, Joshua A. organization: Department of Emergency Medicine, San Antonio Military Medical Center, JBSA Fort Sam Houston, TX, USA – sequence: 6 givenname: Bijan S. surname: Kheirabadi fullname: Kheirabadi, Bijan S. organization: United States Army Institute of Surgical Research, JBSA Fort Sam Houston, TX, USA – sequence: 7 givenname: Jose surname: Salinas fullname: Salinas, Jose organization: United States Army Institute of Surgical Research, JBSA Fort Sam Houston, TX, USA – sequence: 8 givenname: Lorne H. surname: Blackbourne fullname: Blackbourne, Lorne H. organization: United States Army Medical Department Center and School (AMEDD C&S), JBSA Fort Sam Houston, TX, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28400069$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk9v1DAQxS1URLeFL8ABWeLCJWFsJ3EWISTU8k-qxAE4G9cZbx0Se2snpfvtcbStkFainGyP3u-NNW9OyJEPHgl5zqBkwJrXfal7HEsOTJYgSpDiEVmxWvCiZZIdkVWu1EUja3lMTlLqARir6uoJOeZtBQDNekV-nju98SFNzlBtzBy12dFgqaY-3OBAU7DTbx2RTmiufBjCZkdtiLTDXJic39Ctx3kM01WI-pY6n8ltiMZ5pGPocHhKHls9JHx2d56SHx8_fD_7XFx8_fTl7P1FYao1TAWDTnAUWl421lqeX422tuFoWL52IGwlGhBo1nXNK2EqrRGyrMKaSyGtOCWv9r7bGK5nTJMaXTI4DNpjmJNibSuhZhWvs_TlgbQPc_T5d4qtq7qVnItF9eJONV-O2KltdKOOO3U_uyxo9wITQ0oRrTJu0pMLforaDYqBWmJSvVpiUktMCoTKoWSUH6D37g9Cb_cQ5jHeOIwqGYfeYOdizkJ1wT2MvzvAzeC8M3r4hTtMf0egElegvi3Ls-wOkwJ4wyEbvPm3wf-6_wHrMNOD |
CitedBy_id | crossref_primary_10_1016_j_compbiomed_2022_105953 crossref_primary_10_1097_TA_0000000000003845 crossref_primary_10_3390_app11156976 crossref_primary_10_3390_diagnostics14111081 |
Cites_doi | 10.5811/westjem.2016.1.28087 10.1214/aos/1176345462 10.1118/1.4816310 10.7863/ultra.14.11077 10.1378/chest.12-1445 10.1097/PEC.0000000000000432 10.1136/bmj.f2778 10.1016/j.tice.2016.07.006 10.1007/s00068-014-0484-6 10.1016/j.injury.2016.05.041 10.4329/wjr.v8.i8.729 10.1118/1.3013555 10.1097/TA.0b013e3182988afe 10.7863/ultra.32.12.2185 10.1016/S0736-4679(96)00312-5 10.1016/j.amjcard.2015.07.014 10.1378/chest.10-2946 10.1378/chest.11-0131 10.1111/j.1553-2712.2012.01349.x 10.1007/s00134-012-2513-4 10.1016/j.chest.2016.04.013 10.3233/JAD-160850 10.1161/JAHA.115.002057 10.1016/j.jemermed.2010.05.004 10.1186/1757-7241-21-11 10.1016/j.jacr.2016.08.014 10.1016/j.acra.2016.03.010 |
ContentType | Journal Article |
Copyright | 2017 Published by Elsevier Inc. Copyright Elsevier Limited 2017 |
Copyright_xml | – notice: 2017 – notice: Published by Elsevier Inc. – notice: Copyright Elsevier Limited 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7T5 7X7 7XB 88E 8FI 8FJ 8FK 8G5 ABUWG AEUYN AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH H94 K9. KB0 M0S M1P M2O MBDVC NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS Q9U 7X8 |
DOI | 10.1016/j.ajem.2017.03.073 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database (ProQuest) Immunology Abstracts Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Health & Medical Collection Medical Database Research Library Research Library (Corporate) Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection AIDS and Cancer Research Abstracts ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Immunology Abstracts ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Research Library Prep MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1532-8171 |
EndPage | 1290 |
ExternalDocumentID | 28400069 10_1016_j_ajem_2017_03_073 S0735675717302620 1_s2_0_S0735675717302620 |
Genre | Journal Article |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 123 1B1 1P~ 1RT 1~. 1~5 23M 354 4.4 457 4G. 53G 5RE 5VS 6J9 7-5 71M 7RV 7X7 88E 8F7 8FI 8FJ 8G5 8P~ 9JM A8Z AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQQT AAQXK AATTM AAWTL AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABLJU ABMAC ABMZM ABOCM ABUWG ABWVN ABXDB ACDAQ ACGFO ACGFS ACIEU ACIWK ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFRT ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEUYN AEVXI AFFNX AFJKZ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN AZQEC BENPR BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI C45 CAG CCPQU COF CS3 DWQXO EBS EFJIC EFKBS EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ GUQSH HDV HMCUK HMK HMO HVGLF HZ~ IHE J1W K-O KOM LX1 M1P M29 M2O M41 MO0 N4W N9A NAPCQ O-L O9- OAUVE OBH OB~ OHH OM0 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQQKQ PROAC PSQYO PUEGO Q38 R2- ROL RPZ SAE SDF SDG SDP SEL SES SEW SJN SPCBC SSH SSZ SV3 T5K TEORI UAP UHS UKHRP UNMZH UV1 WOW WUQ Z5R ZGI ZY1 ~G- 3V. AACTN AFCTW AFKWA AJOXV ALIPV AMFUW PKN RIG AAIAV ABLVK ABYKQ AJBFU EFLBG ESTFP LCYCR AAYXX ACLOT CITATION ~HD CGR CUY CVF ECM EIF NPM 7T5 7XB 8FK H94 K9. MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-c490t-10d32e3a7b6fff20d36aff62ec1d36d03f43603ec955243c4aae020d4e52737f3 |
IEDL.DBID | 7X7 |
ISSN | 0735-6757 1532-8171 |
IngestDate | Sun Sep 28 06:31:24 EDT 2025 Wed Aug 13 06:51:50 EDT 2025 Thu Apr 03 07:00:27 EDT 2025 Wed Oct 01 03:41:02 EDT 2025 Thu Apr 24 22:50:54 EDT 2025 Fri Feb 23 02:31:09 EST 2024 Tue Feb 25 19:57:50 EST 2025 Tue Aug 26 17:00:38 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Pneumothorax Software Diagnosis Swine Ultrasonography |
Language | English |
License | Published by Elsevier Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c490t-10d32e3a7b6fff20d36aff62ec1d36d03f43603ec955243c4aae020d4e52737f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5621-441X |
PMID | 28400069 |
PQID | 1945872235 |
PQPubID | 1216387 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1887051425 proquest_journals_1945872235 pubmed_primary_28400069 crossref_citationtrail_10_1016_j_ajem_2017_03_073 crossref_primary_10_1016_j_ajem_2017_03_073 elsevier_sciencedirect_doi_10_1016_j_ajem_2017_03_073 elsevier_clinicalkeyesjournals_1_s2_0_S0735675717302620 elsevier_clinicalkey_doi_10_1016_j_ajem_2017_03_073 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-09-01 |
PublicationDateYYYYMMDD | 2017-09-01 |
PublicationDate_xml | – month: 09 year: 2017 text: 2017-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Philadelphia |
PublicationTitle | The American journal of emergency medicine |
PublicationTitleAlternate | Am J Emerg Med |
PublicationYear | 2017 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Kheirabadi, Terrazas, Koller (bb0035) 2013; 75 Sanchez-de-Toledo, Renter-Valdovinos, Esteves, Fonseca, Villaverde, Rosal (bb0155) 2016; 32 Shinkins, Thompson, Mallett, Perera (bb0050) 2013; 346 Ghobadi, Hayman, Finkle, Walter, Xu (bb0070) 2017; 14 G, R (bb0120) 2016; 17 Petrick, Sahiner, Armato (bb0060) 2013; 40 Bloch, Bloch, Secreti, Prasad (bb0160) 2011; 41 Hashoul, Gaspar, Halon (bb0080) 2015; 116 Oveland, Lossius, Wemmelund, Stokkeland, Knudsen, Sloth (bb0140) 2013; 143 Kong, Sartorius, Clarke (bb0010) 2015; 41 Rhee, Hong, Kim, Lee, Cha, Jeong (bb0105) 2015; 34 Ebrahimi, Yousefifard, Mohammad Kazemi (bb0015) 2014; 13 Brattain, Telfer, Liteplo, Noble (bb0090) 2013; 32 Beheshti, Maikusa, Matsuda, Demirel, Anbarjafari (bb0110) 2017; 55 Efron, Stein (bb0055) 1981; 9 Arnaud, Maudlin-Jeronimo, Higgins (bb0040) 2016; 47 Perandini, Soardi, Motton (bb0115) 2016; 8 Alrajhi, Woo, Vaillancourt (bb0135) 2012; 141 Oveland, Soreide, Lossius (bb0150) 2013; 21 Oveland, Sloth, Andersen, Lossius (bb0145) 2012; 19 Ding, Shen, Yang, He, Zhang (bb0005) 2011; 140 Volpicelli, Elbarbary, Blaivas (bb0025) 2012; 38 Giger, Chan, Boone (bb0065) 2008; 35 Liu, Tian, Zhang, Fei (bb0130) 2016; 23 Al-Zaiti, Callaway, Kozik, Carey, Pelter (bb0085) 2015; 4 Saha, Mukherjee, Chakraborty (bb0125) 2016; 48 Blackbourne, Chin, Grisell, Salinas, Summers (bb0020) 2016 ElTanboly, Ismail, Shalaby (bb0100) 2016 Barton, Rhee, Hutton, Rosen (bb0045) 1997; 15 Corradi, Brusasco, Vezzani (bb0095) 2016; 150 Summers, Chin, Long (bb0030) 2016; 17 Faust, Acharya, Sudarshan (bb0075) 2016 Corradi (10.1016/j.ajem.2017.03.073_bb0095) 2016; 150 Liu (10.1016/j.ajem.2017.03.073_bb0130) 2016; 23 Kong (10.1016/j.ajem.2017.03.073_bb0010) 2015; 41 Faust (10.1016/j.ajem.2017.03.073_bb0075) 2016 Sanchez-de-Toledo (10.1016/j.ajem.2017.03.073_bb0155) 2016; 32 Bloch (10.1016/j.ajem.2017.03.073_bb0160) 2011; 41 ElTanboly (10.1016/j.ajem.2017.03.073_bb0100) 2016 Ebrahimi (10.1016/j.ajem.2017.03.073_bb0015) 2014; 13 Giger (10.1016/j.ajem.2017.03.073_bb0065) 2008; 35 Ghobadi (10.1016/j.ajem.2017.03.073_bb0070) 2017; 14 Perandini (10.1016/j.ajem.2017.03.073_bb0115) 2016; 8 Alrajhi (10.1016/j.ajem.2017.03.073_bb0135) 2012; 141 Saha (10.1016/j.ajem.2017.03.073_bb0125) 2016; 48 Volpicelli (10.1016/j.ajem.2017.03.073_bb0025) 2012; 38 Al-Zaiti (10.1016/j.ajem.2017.03.073_bb0085) 2015; 4 Brattain (10.1016/j.ajem.2017.03.073_bb0090) 2013; 32 Beheshti (10.1016/j.ajem.2017.03.073_bb0110) 2017; 55 Kheirabadi (10.1016/j.ajem.2017.03.073_bb0035) 2013; 75 Petrick (10.1016/j.ajem.2017.03.073_bb0060) 2013; 40 Efron (10.1016/j.ajem.2017.03.073_bb0055) 1981; 9 Rhee (10.1016/j.ajem.2017.03.073_bb0105) 2015; 34 Summers (10.1016/j.ajem.2017.03.073_bb0030) 2016; 17 Arnaud (10.1016/j.ajem.2017.03.073_bb0040) 2016; 47 G (10.1016/j.ajem.2017.03.073_bb0120) 2016; 17 Hashoul (10.1016/j.ajem.2017.03.073_bb0080) 2015; 116 Barton (10.1016/j.ajem.2017.03.073_bb0045) 1997; 15 Shinkins (10.1016/j.ajem.2017.03.073_bb0050) 2013; 346 Oveland (10.1016/j.ajem.2017.03.073_bb0150) 2013; 21 Ding (10.1016/j.ajem.2017.03.073_bb0005) 2011; 140 Oveland (10.1016/j.ajem.2017.03.073_bb0140) 2013; 143 Blackbourne (10.1016/j.ajem.2017.03.073_bb0020) 2016 Oveland (10.1016/j.ajem.2017.03.073_bb0145) 2012; 19 |
References_xml | – volume: 41 start-page: 647 year: 2015 end-page: 650 ident: bb0010 article-title: The accuracy of physical examination in identifying significant pathologies in penetrating thoracic trauma publication-title: Eur J Trauma Emerg Surg – volume: 35 start-page: 5799 year: 2008 end-page: 5820 ident: bb0065 article-title: Anniversary paper: history and status of CAD and quantitative image analysis: the role of medical physics and AAPM publication-title: Med Phys – volume: 75 start-page: 150 year: 2013 end-page: 156 ident: bb0035 article-title: Vented versus unvented chest seals for treatment of pneumothorax and prevention of tension pneumothorax in a swine model publication-title: J Trauma Acute Care Surg – volume: 4 year: 2015 ident: bb0085 article-title: Clinical utility of ventricular repolarization dispersion for real-time detection of non-ST elevation myocardial infarction in emergency departments publication-title: J Am Heart Assoc – volume: 8 start-page: 729 year: 2016 end-page: 734 ident: bb0115 article-title: Enhanced characterization of solid solitary pulmonary nodules with Bayesian analysis-based computer-aided diagnosis publication-title: World J Radiol – volume: 32 start-page: 768 year: 2016 end-page: 772 ident: bb0155 article-title: Teaching chest ultrasound in an experimental porcine model publication-title: Pediatr Emerg Care – volume: 21 start-page: 11 year: 2013 ident: bb0150 article-title: The intrapleural volume threshold for ultrasound detection of pneumothoraces: an experimental study on porcine models publication-title: Scand J Trauma Resusc Emerg Med – volume: 19 start-page: 586 year: 2012 end-page: 592 ident: bb0145 article-title: A porcine pneumothorax model for teaching ultrasound diagnostics publication-title: Acad Emerg Med – year: 2016 ident: bb0075 article-title: Computer aided diagnosis of coronary artery disease, myocardial infarction and carotid atherosclerosis using ultrasound images: a review publication-title: Phys Med – volume: 143 start-page: 415 year: 2013 end-page: 422 ident: bb0140 article-title: Using thoracic ultrasonography to accurately assess pneumothorax progression during positive pressure ventilation: a comparison with CT scanning publication-title: Chest – volume: 116 start-page: 1017 year: 2015 end-page: 1021 ident: bb0080 article-title: Automated computer-assisted diagnosis of obstructive coronary artery disease in emergency department patients undergoing 256-slice coronary computed tomography angiography for acute chest pain publication-title: Am J Cardiol – volume: 34 start-page: 2237 year: 2015 end-page: 2243 ident: bb0105 article-title: Using acoustic structure quantification during B-mode sonography for evaluation of Hashimoto thyroiditis publication-title: J Ultrasound Med – volume: 14 start-page: 24 year: 2017 end-page: 33 ident: bb0070 article-title: Radiological medical device innovation: approvals via the premarket approval pathway from 2000 to 2015 publication-title: J Am Coll Radiol – volume: 40 start-page: 087001 year: 2013 ident: bb0060 article-title: Evaluation of computer-aided detection and diagnosis systems publication-title: Med Phys – volume: 32 start-page: 2185 year: 2013 end-page: 2190 ident: bb0090 article-title: Automated B-line scoring on thoracic sonography publication-title: J Ultrasound Med – year: 2016 ident: bb0020 article-title: Automatic focused assessment with sonography for trauma exams publication-title: Google patents – volume: 48 start-page: 461 year: 2016 end-page: 474 ident: bb0125 article-title: Computer-aided diagnosis of breast cancer using cytological images: a systematic review publication-title: Tissue Cell – volume: 41 start-page: 176 year: 2011 end-page: 181 ident: bb0160 article-title: A porcine training model for ultrasound diagnosis of pneumothoraces publication-title: J Emerg Med – volume: 38 start-page: 577 year: 2012 end-page: 591 ident: bb0025 article-title: International evidence-based recommendations for point-of-care lung ultrasound publication-title: Intensive Care Med – volume: 150 start-page: 640 year: 2016 end-page: 651 ident: bb0095 article-title: Computer-aided quantitative ultrasonography for detection of pulmonary edema in mechanically ventilated cardiac surgery patients publication-title: Chest – year: 2016 ident: bb0100 article-title: A computer aided diagnostic system for detecting diabetic retinopathy in optical coherence tomography images publication-title: Med Phys – volume: 47 start-page: 2097 year: 2016 end-page: 2104 ident: bb0040 article-title: Adherence evaluation of vented chest seals in a swine skin model publication-title: Injury – volume: 140 start-page: 859 year: 2011 end-page: 866 ident: bb0005 article-title: Diagnosis of pneumothorax by radiography and ultrasonography: a meta-analysis publication-title: Chest – volume: 17 start-page: 209 year: 2016 end-page: 215 ident: bb0030 article-title: Computerized diagnostic assistant for the automatic detection of pneumothorax on ultrasound: a pilot study publication-title: West J Emerg Med – volume: 9 start-page: 586 year: 1981 end-page: 596 ident: bb0055 article-title: The jackknife estimate of variance publication-title: Ann Stat – volume: 55 start-page: 1571 year: 2017 end-page: 1582 ident: bb0110 article-title: Histogram-based feature extraction from individual gray matter similarity-matrix for Alzheimer's disease classification publication-title: J Alzheimers Dis – volume: 141 start-page: 703 year: 2012 end-page: 708 ident: bb0135 article-title: Test characteristics of ultrasonography for the detection of pneumothorax: a systematic review and meta-analysis publication-title: Chest – volume: 346 start-page: f2778 year: 2013 ident: bb0050 article-title: Diagnostic accuracy studies: how to report and analyse inconclusive test results publication-title: BMJ – volume: 17 start-page: 4869 year: 2016 end-page: 4873 ident: bb0120 article-title: Automatic colorectal polyp detection in colonoscopy video frames publication-title: Asian Pac J Cancer Prev – volume: 23 start-page: 1024 year: 2016 end-page: 1046 ident: bb0130 article-title: Computer-aided detection of prostate cancer with MRI: technology and applications publication-title: Acad Radiol – volume: 13 start-page: 29 year: 2014 end-page: 40 ident: bb0015 article-title: Diagnostic accuracy of chest ultrasonography versus chest radiography for identification of pneumothorax: a systematic review and meta-analysis publication-title: Tanaffos – volume: 15 start-page: 147 year: 1997 end-page: 153 ident: bb0045 article-title: The pathophysiology of tension pneumothorax in ventilated swine publication-title: J Emerg Med – volume: 17 start-page: 209 year: 2016 ident: 10.1016/j.ajem.2017.03.073_bb0030 article-title: Computerized diagnostic assistant for the automatic detection of pneumothorax on ultrasound: a pilot study publication-title: West J Emerg Med doi: 10.5811/westjem.2016.1.28087 – volume: 9 start-page: 586 year: 1981 ident: 10.1016/j.ajem.2017.03.073_bb0055 article-title: The jackknife estimate of variance publication-title: Ann Stat doi: 10.1214/aos/1176345462 – volume: 40 start-page: 087001 year: 2013 ident: 10.1016/j.ajem.2017.03.073_bb0060 article-title: Evaluation of computer-aided detection and diagnosis systems publication-title: Med Phys doi: 10.1118/1.4816310 – volume: 34 start-page: 2237 year: 2015 ident: 10.1016/j.ajem.2017.03.073_bb0105 article-title: Using acoustic structure quantification during B-mode sonography for evaluation of Hashimoto thyroiditis publication-title: J Ultrasound Med doi: 10.7863/ultra.14.11077 – volume: 143 start-page: 415 year: 2013 ident: 10.1016/j.ajem.2017.03.073_bb0140 article-title: Using thoracic ultrasonography to accurately assess pneumothorax progression during positive pressure ventilation: a comparison with CT scanning publication-title: Chest doi: 10.1378/chest.12-1445 – volume: 32 start-page: 768 year: 2016 ident: 10.1016/j.ajem.2017.03.073_bb0155 article-title: Teaching chest ultrasound in an experimental porcine model publication-title: Pediatr Emerg Care doi: 10.1097/PEC.0000000000000432 – volume: 346 start-page: f2778 year: 2013 ident: 10.1016/j.ajem.2017.03.073_bb0050 article-title: Diagnostic accuracy studies: how to report and analyse inconclusive test results publication-title: BMJ doi: 10.1136/bmj.f2778 – volume: 13 start-page: 29 year: 2014 ident: 10.1016/j.ajem.2017.03.073_bb0015 article-title: Diagnostic accuracy of chest ultrasonography versus chest radiography for identification of pneumothorax: a systematic review and meta-analysis publication-title: Tanaffos – volume: 48 start-page: 461 year: 2016 ident: 10.1016/j.ajem.2017.03.073_bb0125 article-title: Computer-aided diagnosis of breast cancer using cytological images: a systematic review publication-title: Tissue Cell doi: 10.1016/j.tice.2016.07.006 – volume: 41 start-page: 647 year: 2015 ident: 10.1016/j.ajem.2017.03.073_bb0010 article-title: The accuracy of physical examination in identifying significant pathologies in penetrating thoracic trauma publication-title: Eur J Trauma Emerg Surg doi: 10.1007/s00068-014-0484-6 – year: 2016 ident: 10.1016/j.ajem.2017.03.073_bb0020 article-title: Automatic focused assessment with sonography for trauma exams – volume: 47 start-page: 2097 year: 2016 ident: 10.1016/j.ajem.2017.03.073_bb0040 article-title: Adherence evaluation of vented chest seals in a swine skin model publication-title: Injury doi: 10.1016/j.injury.2016.05.041 – volume: 8 start-page: 729 year: 2016 ident: 10.1016/j.ajem.2017.03.073_bb0115 article-title: Enhanced characterization of solid solitary pulmonary nodules with Bayesian analysis-based computer-aided diagnosis publication-title: World J Radiol doi: 10.4329/wjr.v8.i8.729 – volume: 35 start-page: 5799 year: 2008 ident: 10.1016/j.ajem.2017.03.073_bb0065 article-title: Anniversary paper: history and status of CAD and quantitative image analysis: the role of medical physics and AAPM publication-title: Med Phys doi: 10.1118/1.3013555 – volume: 75 start-page: 150 year: 2013 ident: 10.1016/j.ajem.2017.03.073_bb0035 article-title: Vented versus unvented chest seals for treatment of pneumothorax and prevention of tension pneumothorax in a swine model publication-title: J Trauma Acute Care Surg doi: 10.1097/TA.0b013e3182988afe – volume: 32 start-page: 2185 year: 2013 ident: 10.1016/j.ajem.2017.03.073_bb0090 article-title: Automated B-line scoring on thoracic sonography publication-title: J Ultrasound Med doi: 10.7863/ultra.32.12.2185 – volume: 15 start-page: 147 year: 1997 ident: 10.1016/j.ajem.2017.03.073_bb0045 article-title: The pathophysiology of tension pneumothorax in ventilated swine publication-title: J Emerg Med doi: 10.1016/S0736-4679(96)00312-5 – volume: 116 start-page: 1017 year: 2015 ident: 10.1016/j.ajem.2017.03.073_bb0080 article-title: Automated computer-assisted diagnosis of obstructive coronary artery disease in emergency department patients undergoing 256-slice coronary computed tomography angiography for acute chest pain publication-title: Am J Cardiol doi: 10.1016/j.amjcard.2015.07.014 – volume: 140 start-page: 859 year: 2011 ident: 10.1016/j.ajem.2017.03.073_bb0005 article-title: Diagnosis of pneumothorax by radiography and ultrasonography: a meta-analysis publication-title: Chest doi: 10.1378/chest.10-2946 – volume: 17 start-page: 4869 year: 2016 ident: 10.1016/j.ajem.2017.03.073_bb0120 article-title: Automatic colorectal polyp detection in colonoscopy video frames publication-title: Asian Pac J Cancer Prev – volume: 141 start-page: 703 year: 2012 ident: 10.1016/j.ajem.2017.03.073_bb0135 article-title: Test characteristics of ultrasonography for the detection of pneumothorax: a systematic review and meta-analysis publication-title: Chest doi: 10.1378/chest.11-0131 – volume: 19 start-page: 586 year: 2012 ident: 10.1016/j.ajem.2017.03.073_bb0145 article-title: A porcine pneumothorax model for teaching ultrasound diagnostics publication-title: Acad Emerg Med doi: 10.1111/j.1553-2712.2012.01349.x – volume: 38 start-page: 577 year: 2012 ident: 10.1016/j.ajem.2017.03.073_bb0025 article-title: International evidence-based recommendations for point-of-care lung ultrasound publication-title: Intensive Care Med doi: 10.1007/s00134-012-2513-4 – year: 2016 ident: 10.1016/j.ajem.2017.03.073_bb0100 article-title: A computer aided diagnostic system for detecting diabetic retinopathy in optical coherence tomography images publication-title: Med Phys – volume: 150 start-page: 640 year: 2016 ident: 10.1016/j.ajem.2017.03.073_bb0095 article-title: Computer-aided quantitative ultrasonography for detection of pulmonary edema in mechanically ventilated cardiac surgery patients publication-title: Chest doi: 10.1016/j.chest.2016.04.013 – volume: 55 start-page: 1571 year: 2017 ident: 10.1016/j.ajem.2017.03.073_bb0110 article-title: Histogram-based feature extraction from individual gray matter similarity-matrix for Alzheimer's disease classification publication-title: J Alzheimers Dis doi: 10.3233/JAD-160850 – volume: 4 year: 2015 ident: 10.1016/j.ajem.2017.03.073_bb0085 article-title: Clinical utility of ventricular repolarization dispersion for real-time detection of non-ST elevation myocardial infarction in emergency departments publication-title: J Am Heart Assoc doi: 10.1161/JAHA.115.002057 – volume: 41 start-page: 176 year: 2011 ident: 10.1016/j.ajem.2017.03.073_bb0160 article-title: A porcine training model for ultrasound diagnosis of pneumothoraces publication-title: J Emerg Med doi: 10.1016/j.jemermed.2010.05.004 – volume: 21 start-page: 11 year: 2013 ident: 10.1016/j.ajem.2017.03.073_bb0150 article-title: The intrapleural volume threshold for ultrasound detection of pneumothoraces: an experimental study on porcine models publication-title: Scand J Trauma Resusc Emerg Med doi: 10.1186/1757-7241-21-11 – volume: 14 start-page: 24 year: 2017 ident: 10.1016/j.ajem.2017.03.073_bb0070 article-title: Radiological medical device innovation: approvals via the premarket approval pathway from 2000 to 2015 publication-title: J Am Coll Radiol doi: 10.1016/j.jacr.2016.08.014 – year: 2016 ident: 10.1016/j.ajem.2017.03.073_bb0075 article-title: Computer aided diagnosis of coronary artery disease, myocardial infarction and carotid atherosclerosis using ultrasound images: a review publication-title: Phys Med – volume: 23 start-page: 1024 year: 2016 ident: 10.1016/j.ajem.2017.03.073_bb0130 article-title: Computer-aided detection of prostate cancer with MRI: technology and applications publication-title: Acad Radiol doi: 10.1016/j.acra.2016.03.010 |
SSID | ssj0011454 |
Score | 2.2108924 |
Snippet | Our objective was to measure the diagnostic accuracy of a novel software technology to detect pneumothorax on Brightness (B) mode and Motion (M) mode... Abstract Introduction Our objective was to measure the diagnostic accuracy of a novel software technology to detect pneumothorax on Brightness (B) mode and... Introduction Our objective was to measure the diagnostic accuracy of a novel software technology to detect pneumothorax on Brightness (B) mode and Motion (M)... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1285 |
SubjectTerms | Accuracy Algorithms Anesthesia Animals Automation Cancer Cardiovascular disease Chest Tubes Computer programs Coronary vessels Diabetic retinopathy Diagnosis Emergency Emergency medical care Engineers Female Heart attacks Image Interpretation, Computer-Assisted - methods Laboratory animals Medical diagnosis Pneumothorax Pneumothorax - diagnostic imaging Sensitivity and Specificity Software Swine Thoracic Wall - diagnostic imaging Thorax Ultrasonic imaging Ultrasonography Ultrasound Ventilation |
SummonAdditionalLinks | – databaseName: Elsevier ScienceDirect dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbLHkovpelz8ygK9FbclfXy-hjShhBIL-1CbqpWHsEuwbvso00u-e2ZsWWX0iaF3vyYscx4ZvTJ8xBj74MWIYCBzAIuUXQeNdqc1JmJIpaIEPwkp-Lkyy_2fKovrszVgJ12tTCUVpl8f-vTG2-droyTNMer-Xz8FZXTINylMLKgtupUwa4tpfV9vOvTPBDuNzuhEXFG1Klwps3x8gugavS8aBqdFuqhyekh8NlMQmfP2bOEHvlJ-4J7bAD1C_bkMsXHX7Lvn9rMObzNfQi7tQ-3fBm55_XyB1zzDTrdn34NfNv_UeeIWnkFFEvAWYyvatjR10PNuOHzGjkRoNPDebNnzis2Pfv87fQ8S3soZEGXYotetlISlC9mNsYo8cz6GK2EkONhJVTUygoFoTRGahW094AIstJAndmKqF6zYb2s4S3jEdfdpvBSRBLqTE7AhoksopBQQGXFiOWd8FxIDcZpn4tr12WSLRwJ3JHAnVAOBT5iH3qeVdte41Fq1X0T1xWOoqtz6P0f5Sr-xgWbZK0bl7uNdML9oVEjZnrO35TynyMedgrjfg1SaoNmIJUZseP-NhozRWh8Dcsd0qDLp4b0EmnetIrWiwVxBGGLcv8_X-qAPaWzNj_ukA236x0cIaDazt41FnMPpogcZw priority: 102 providerName: Elsevier |
Title | Diagnostic accuracy of a novel software technology for detecting pneumothorax in a porcine model |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0735675717302620 https://www.clinicalkey.es/playcontent/1-s2.0-S0735675717302620 https://dx.doi.org/10.1016/j.ajem.2017.03.073 https://www.ncbi.nlm.nih.gov/pubmed/28400069 https://www.proquest.com/docview/1945872235 https://www.proquest.com/docview/1887051425 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1532-8171 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011454 issn: 0735-6757 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1532-8171 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011454 issn: 0735-6757 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1532-8171 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011454 issn: 0735-6757 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1532-8171 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011454 issn: 0735-6757 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1532-8171 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011454 issn: 0735-6757 databaseCode: AKRWK dateStart: 19830701 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Health & Medical Collection (Proquest) customDbUrl: eissn: 1532-8171 dateEnd: 20250801 omitProxy: true ssIdentifier: ssj0011454 issn: 0735-6757 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1532-8171 dateEnd: 20250801 omitProxy: true ssIdentifier: ssj0011454 issn: 0735-6757 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELfYJiFeEN8URmUk3lDB8UfcPqEBmwrVKjSY6JtxnbPENCWlafl44W_nLnHCCytPSWSfHZ3P59_Z5zvGngUtQgADoxzQRNFZ1DjnpB6ZKOIEEYIfZ3Q5-XSeT8_1-4VZpA23OrlVdjqxUdRFFWiP_CUa2wZbkcq8Wn0bUdYoOl1NKTT22EGGUIWk2i56gwuhfpMFDaWYHOyNTZdmWv8ufwF0Ez2zTZBTq65amK4Cns0CdHKL3UzIkR-1Q32bXYPyDrt-ms7G77Ivb1uvOSzmPoTt2odfvIrc87L6Dpe8RoX7w6-Bb_rddI6IlRdA5wi4gvFVCVsaOZSKn_xriZQIzqlx3uTLucfOT44_vZmOUv6EUdATsUENWygJyttlHmOU-JX7GHMJIcPXQqioVS4UhIkxUqugvQdEj4UGispmo7rP9suqhIeMR7S5jfVSRGLqUo4hD2Npo5BgocjFgGUd81xIwcUpx8Wl67zILhwx3BHDnVAOGT5gz3uaVRtaY2dt1Y2J6y6NoppzqPl3Utl_UUGdZmrtMldLJ9xHEhKSkQxVHgXpHzDTUyYw0oKM__Z42AmM-9tJL7wD9rQvxolMpzO-hGqLdVDdUzB6iXUetILWswUxBOGKyaPdjT9mN-hPWhe4Q7a_WW_hCWKmzXLI9l78zobN9Biyg6N3s-mcnrOzzzN8vj6efzj7A1zdGWU |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIkEviHcDBRYJTshivQ9vcqgqRKlS2vRCK-W23axnJarKDnFC6Z_iNzLjFxcaTr0l8s7aGs_jG-88GHsXtAgBDCQZYIii06hR56ROTBRxhAjBD1MqTp6cZOMz_XVqphvsd1cLQ2mVnU2sDXVeBvpG_hGDbYO7SGX25j8SmhpFp6vdCI1GLI7g-gpDtmr3cB_f73spD76cfh4n7VSBJOiRWKLdyZUE5e0sizFK_Jf5GDMJIcWfuVBRq0woCCNjpFZBew-IqXIN1KvMRoX73mF3tRKaevXbaR_gYWhRT11DraGEfmPbIp0mn8xfAFW-p7ZuqmrVTY7wJqBbO7yDh-xBi1T5p0a0HrENKB6ze5P2LP4JO99vsvTwMvchrBY-XPMycs-L8idc8goN_JVfAF_2X-85ImSeA51boMfk8wJWJCkohb_49wIpMRigzXk9n-cpO7sVzj5jm0VZwDbjEWN8Y70UkZg6k0PIwlDaKCRYyDMxYGnHPBfaZuY0U-PSdVlrF44Y7ojhTiiHDB-wDz3NvGnlsXa16t6J64pU0aw69DRrqey_qKBqLUPlUldJJ9w3EhKSkRRNLA0FGDDTU7bgpwE1_73jTicw7u9NemUZsLf9ZTQcdBrkCyhXuAbdCzW_l7jmeSNoPVsQsxCOGb1Yv_kbdn98Ojl2x4cnRy_ZFj1Vk363wzaXixW8Qry2nL2ulYSz89vWyj8nOlBq |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIlVcEG9SCiwSnJDV9T68yQEhRIhaSiskqJTbdrOelagqO8RJH3-tv44Zv7jQcOotkXfW1nge33jnwdjboEUIYCDJAEMUnUaNOid1YqKII0QIfphScfLhUbZ3rL9OzXSDXXe1MJRW2dnE2lDnZaBv5LsYbBvcRSqzG9u0iO_jycf574QmSNFJazdOoxGRA7i6wPCt-rA_xnf9TsrJl5-f95J2wkAS9Egs0QblSoLydpbFGCX-y3yMmYSQ4s9cqKhVJhSEkTFSq6C9B8RXuQbqW2ajwn3vsLtWaUXpZHbaB3sYZtQT2FCDKLnf2LZgp8kt86dAVfCprRusWnWTU7wJ9NbOb_KA3W9RK__UiNlDtgHFI7Z12J7LP2Yn4yZjDy9zH8Jq4cMVLyP3vCjP4YxXaOwv_AL4sv-SzxEt8xzoDAO9J58XsCKpQYm85L8KpMTAgDbn9ayeJ-z4Vjj7lG0WZQHPGY8Y7xvrpYjE1JkcQhaG0kYhwUKeiQFLO-a50DY2p_kaZ67LYDt1xHBHDHdCOWT4gL3vaeZNW4-1q1X3TlxXsIom1qHXWUtl_0UFVWslKpe6SjrhfpCQkIykaG5pQMCAmZ6yBUINwPnvHXc6gXF_b9IrzoC96S-jEaGTIV9AucI16GqoEb7ENc8aQevZgviFMM1oe_3mr9kW6qP7tn908ILdo4dqMvF22OZysYKXCN2Ws1e1jnB2cttK-Qf55FSl |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diagnostic+accuracy+of+a+novel+software+technology+for+detecting+pneumothorax+in+a+porcine+model&rft.jtitle=The+American+journal+of+emergency+medicine&rft.au=Summers%2C+Shane+M&rft.au=Chin%2C+Eric+J&rft.au=April%2C+Michael+D&rft.au=Grisell%2C+Ronald+D&rft.date=2017-09-01&rft.pub=Elsevier+Limited&rft.issn=0735-6757&rft.eissn=1532-8171&rft.volume=35&rft.issue=9&rft.spage=1285&rft_id=info:doi/10.1016%2Fj.ajem.2017.03.073&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0735-6757&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0735-6757&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0735-6757&client=summon |