Diagnostic accuracy of a novel software technology for detecting pneumothorax in a porcine model

Our objective was to measure the diagnostic accuracy of a novel software technology to detect pneumothorax on Brightness (B) mode and Motion (M) mode ultrasonography. Ultrasonography fellowship-trained emergency physicians performed thoracic ultrasonography at baseline and after surgically creating...

Full description

Saved in:
Bibliographic Details
Published inThe American journal of emergency medicine Vol. 35; no. 9; pp. 1285 - 1290
Main Authors Summers, Shane M., Chin, Eric J., April, Michael D., Grisell, Ronald D., Lospinoso, Joshua A., Kheirabadi, Bijan S., Salinas, Jose, Blackbourne, Lorne H.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.09.2017
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0735-6757
1532-8171
1532-8171
DOI10.1016/j.ajem.2017.03.073

Cover

Abstract Our objective was to measure the diagnostic accuracy of a novel software technology to detect pneumothorax on Brightness (B) mode and Motion (M) mode ultrasonography. Ultrasonography fellowship-trained emergency physicians performed thoracic ultrasonography at baseline and after surgically creating a pneumothorax in eight intubated, spontaneously breathing porcine subjects. Prior to pneumothorax induction, we captured sagittal M-mode still images and B-mode videos of each intercostal space with a linear array transducer at 4cm of depth. After collection of baseline images, we placed a chest tube, injected air into the pleural space in 250mL increments, and repeated the ultrasonography for pneumothorax volumes of 250mL, 500mL, 750mL, and 1000mL. We confirmed pneumothorax with intrapleural digital manometry and ultrasound by expert sonographers. We exported collected images for interpretation by the software. We treated each individual scan as a single test for interpretation by the software. Excluding indeterminate results, we collected 338M-mode images for which the software demonstrated a sensitivity of 98% (95% confidence interval [CI] 92–99%), specificity of 95% (95% CI 86–99), positive likelihood ratio (LR+) of 21.6 (95% CI 7.1–65), and negative likelihood ratio (LR−) of 0.02 (95% CI 0.008–0.046). Among 364 B-mode videos, the software demonstrated a sensitivity of 86% (95% CI 81–90%), specificity of 85% (81–91%), LR+ of 5.7 (95% CI 3.2–10.2), and LR− of 0.17 (95% CI 0.12–0.22). This novel technology has potential as a useful adjunct to diagnose pneumothorax on thoracic ultrasonography.
AbstractList Our objective was to measure the diagnostic accuracy of a novel software technology to detect pneumothorax on Brightness (B) mode and Motion (M) mode ultrasonography.INTRODUCTIONOur objective was to measure the diagnostic accuracy of a novel software technology to detect pneumothorax on Brightness (B) mode and Motion (M) mode ultrasonography.Ultrasonography fellowship-trained emergency physicians performed thoracic ultrasonography at baseline and after surgically creating a pneumothorax in eight intubated, spontaneously breathing porcine subjects. Prior to pneumothorax induction, we captured sagittal M-mode still images and B-mode videos of each intercostal space with a linear array transducer at 4cm of depth. After collection of baseline images, we placed a chest tube, injected air into the pleural space in 250mL increments, and repeated the ultrasonography for pneumothorax volumes of 250mL, 500mL, 750mL, and 1000mL. We confirmed pneumothorax with intrapleural digital manometry and ultrasound by expert sonographers. We exported collected images for interpretation by the software. We treated each individual scan as a single test for interpretation by the software.METHODSUltrasonography fellowship-trained emergency physicians performed thoracic ultrasonography at baseline and after surgically creating a pneumothorax in eight intubated, spontaneously breathing porcine subjects. Prior to pneumothorax induction, we captured sagittal M-mode still images and B-mode videos of each intercostal space with a linear array transducer at 4cm of depth. After collection of baseline images, we placed a chest tube, injected air into the pleural space in 250mL increments, and repeated the ultrasonography for pneumothorax volumes of 250mL, 500mL, 750mL, and 1000mL. We confirmed pneumothorax with intrapleural digital manometry and ultrasound by expert sonographers. We exported collected images for interpretation by the software. We treated each individual scan as a single test for interpretation by the software.Excluding indeterminate results, we collected 338M-mode images for which the software demonstrated a sensitivity of 98% (95% confidence interval [CI] 92-99%), specificity of 95% (95% CI 86-99), positive likelihood ratio (LR+) of 21.6 (95% CI 7.1-65), and negative likelihood ratio (LR-) of 0.02 (95% CI 0.008-0.046). Among 364 B-mode videos, the software demonstrated a sensitivity of 86% (95% CI 81-90%), specificity of 85% (81-91%), LR+ of 5.7 (95% CI 3.2-10.2), and LR- of 0.17 (95% CI 0.12-0.22).RESULTSExcluding indeterminate results, we collected 338M-mode images for which the software demonstrated a sensitivity of 98% (95% confidence interval [CI] 92-99%), specificity of 95% (95% CI 86-99), positive likelihood ratio (LR+) of 21.6 (95% CI 7.1-65), and negative likelihood ratio (LR-) of 0.02 (95% CI 0.008-0.046). Among 364 B-mode videos, the software demonstrated a sensitivity of 86% (95% CI 81-90%), specificity of 85% (81-91%), LR+ of 5.7 (95% CI 3.2-10.2), and LR- of 0.17 (95% CI 0.12-0.22).This novel technology has potential as a useful adjunct to diagnose pneumothorax on thoracic ultrasonography.CONCLUSIONSThis novel technology has potential as a useful adjunct to diagnose pneumothorax on thoracic ultrasonography.
Our objective was to measure the diagnostic accuracy of a novel software technology to detect pneumothorax on Brightness (B) mode and Motion (M) mode ultrasonography. Ultrasonography fellowship-trained emergency physicians performed thoracic ultrasonography at baseline and after surgically creating a pneumothorax in eight intubated, spontaneously breathing porcine subjects. Prior to pneumothorax induction, we captured sagittal M-mode still images and B-mode videos of each intercostal space with a linear array transducer at 4cm of depth. After collection of baseline images, we placed a chest tube, injected air into the pleural space in 250mL increments, and repeated the ultrasonography for pneumothorax volumes of 250mL, 500mL, 750mL, and 1000mL. We confirmed pneumothorax with intrapleural digital manometry and ultrasound by expert sonographers. We exported collected images for interpretation by the software. We treated each individual scan as a single test for interpretation by the software. Excluding indeterminate results, we collected 338M-mode images for which the software demonstrated a sensitivity of 98% (95% confidence interval [CI] 92–99%), specificity of 95% (95% CI 86–99), positive likelihood ratio (LR+) of 21.6 (95% CI 7.1–65), and negative likelihood ratio (LR−) of 0.02 (95% CI 0.008–0.046). Among 364 B-mode videos, the software demonstrated a sensitivity of 86% (95% CI 81–90%), specificity of 85% (81–91%), LR+ of 5.7 (95% CI 3.2–10.2), and LR− of 0.17 (95% CI 0.12–0.22). This novel technology has potential as a useful adjunct to diagnose pneumothorax on thoracic ultrasonography.
Introduction Our objective was to measure the diagnostic accuracy of a novel software technology to detect pneumothorax on Brightness (B) mode and Motion (M) mode ultrasonography. Methods Ultrasonography fellowship-trained emergency physicians performed thoracic ultrasonography at baseline and after surgically creating a pneumothorax in eight intubated, spontaneously breathing porcine subjects. Prior to pneumothorax induction, we captured sagittal M-mode still images and B-mode videos of each intercostal space with a linear array transducer at 4cm of depth. After collection of baseline images, we placed a chest tube, injected air into the pleural space in 250mL increments, and repeated the ultrasonography for pneumothorax volumes of 250mL, 500mL, 750mL, and 1000mL. We confirmed pneumothorax with intrapleural digital manometry and ultrasound by expert sonographers. We exported collected images for interpretation by the software. We treated each individual scan as a single test for interpretation by the software. Results Excluding indeterminate results, we collected 338M-mode images for which the software demonstrated a sensitivity of 98% (95% confidence interval [CI] 92-99%), specificity of 95% (95% CI 86-99), positive likelihood ratio (LR+) of 21.6 (95% CI 7.1-65), and negative likelihood ratio (LR−) of 0.02 (95% CI 0.008-0.046). Among 364 B-mode videos, the software demonstrated a sensitivity of 86% (95% CI 81-90%), specificity of 85% (81-91%), LR+ of 5.7 (95% CI 3.2-10.2), and LR− of 0.17 (95% CI 0.12-0.22). Conclusions This novel technology has potential as a useful adjunct to diagnose pneumothorax on thoracic ultrasonography.
Abstract Introduction Our objective was to measure the diagnostic accuracy of a novel software technology to detect pneumothorax on Brightness (B) mode and Motion (M) mode ultrasonography. Methods Ultrasonography fellowship-trained emergency physicians performed thoracic ultrasonography at baseline and after surgically creating a pneumothorax in eight intubated, spontaneously breathing porcine subjects. Prior to pneumothorax induction, we captured sagittal M-mode still images and B-mode videos of each intercostal space with a linear array transducer at 4 cm of depth. After collection of baseline images, we placed a chest tube, injected air into the pleural space in 250 mL increments, and repeated the ultrasonography for pneumothorax volumes of 250 mL, 500 mL, 750 mL, and 1000 mL. We confirmed pneumothorax with intrapleural digital manometry and ultrasound by expert sonographers. We exported collected images for interpretation by the software. We treated each individual scan as a single test for interpretation by the software. Results Excluding indeterminate results, we collected 338 M-mode images for which the software demonstrated a sensitivity of 98% (95% confidence interval [CI] 92–99%), specificity of 95% (95% CI 86–99), positive likelihood ratio (LR +) of 21.6 (95% CI 7.1–65), and negative likelihood ratio (LR −) of 0.02 (95% CI 0.008–0.046). Among 364 B-mode videos, the software demonstrated a sensitivity of 86% (95% CI 81–90%), specificity of 85% (81–91%), LR + of 5.7 (95% CI 3.2–10.2), and LR − of 0.17 (95% CI 0.12–0.22). Conclusions This novel technology has potential as a useful adjunct to diagnose pneumothorax on thoracic ultrasonography.
Our objective was to measure the diagnostic accuracy of a novel software technology to detect pneumothorax on Brightness (B) mode and Motion (M) mode ultrasonography. Ultrasonography fellowship-trained emergency physicians performed thoracic ultrasonography at baseline and after surgically creating a pneumothorax in eight intubated, spontaneously breathing porcine subjects. Prior to pneumothorax induction, we captured sagittal M-mode still images and B-mode videos of each intercostal space with a linear array transducer at 4cm of depth. After collection of baseline images, we placed a chest tube, injected air into the pleural space in 250mL increments, and repeated the ultrasonography for pneumothorax volumes of 250mL, 500mL, 750mL, and 1000mL. We confirmed pneumothorax with intrapleural digital manometry and ultrasound by expert sonographers. We exported collected images for interpretation by the software. We treated each individual scan as a single test for interpretation by the software. Excluding indeterminate results, we collected 338M-mode images for which the software demonstrated a sensitivity of 98% (95% confidence interval [CI] 92-99%), specificity of 95% (95% CI 86-99), positive likelihood ratio (LR+) of 21.6 (95% CI 7.1-65), and negative likelihood ratio (LR-) of 0.02 (95% CI 0.008-0.046). Among 364 B-mode videos, the software demonstrated a sensitivity of 86% (95% CI 81-90%), specificity of 85% (81-91%), LR+ of 5.7 (95% CI 3.2-10.2), and LR- of 0.17 (95% CI 0.12-0.22). This novel technology has potential as a useful adjunct to diagnose pneumothorax on thoracic ultrasonography.
Author Kheirabadi, Bijan S.
Salinas, Jose
Grisell, Ronald D.
Chin, Eric J.
Blackbourne, Lorne H.
Lospinoso, Joshua A.
Summers, Shane M.
April, Michael D.
Author_xml – sequence: 1
  givenname: Shane M.
  surname: Summers
  fullname: Summers, Shane M.
  organization: Department of Emergency Medicine, San Antonio Military Medical Center, JBSA Fort Sam Houston, TX, USA
– sequence: 2
  givenname: Eric J.
  surname: Chin
  fullname: Chin, Eric J.
  organization: Department of Emergency Medicine, San Antonio Military Medical Center, JBSA Fort Sam Houston, TX, USA
– sequence: 3
  givenname: Michael D.
  orcidid: 0000-0001-5621-441X
  surname: April
  fullname: April, Michael D.
  email: Michael.D.April@post.harvard.edu
  organization: Department of Emergency Medicine, San Antonio Military Medical Center, JBSA Fort Sam Houston, TX, USA
– sequence: 4
  givenname: Ronald D.
  surname: Grisell
  fullname: Grisell, Ronald D.
  organization: United States Army Institute of Surgical Research, JBSA Fort Sam Houston, TX, USA
– sequence: 5
  givenname: Joshua A.
  surname: Lospinoso
  fullname: Lospinoso, Joshua A.
  organization: Department of Emergency Medicine, San Antonio Military Medical Center, JBSA Fort Sam Houston, TX, USA
– sequence: 6
  givenname: Bijan S.
  surname: Kheirabadi
  fullname: Kheirabadi, Bijan S.
  organization: United States Army Institute of Surgical Research, JBSA Fort Sam Houston, TX, USA
– sequence: 7
  givenname: Jose
  surname: Salinas
  fullname: Salinas, Jose
  organization: United States Army Institute of Surgical Research, JBSA Fort Sam Houston, TX, USA
– sequence: 8
  givenname: Lorne H.
  surname: Blackbourne
  fullname: Blackbourne, Lorne H.
  organization: United States Army Medical Department Center and School (AMEDD C&S), JBSA Fort Sam Houston, TX, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28400069$$D View this record in MEDLINE/PubMed
BookMark eNqFkk9v1DAQxS1URLeFL8ABWeLCJWFsJ3EWISTU8k-qxAE4G9cZbx0Se2snpfvtcbStkFainGyP3u-NNW9OyJEPHgl5zqBkwJrXfal7HEsOTJYgSpDiEVmxWvCiZZIdkVWu1EUja3lMTlLqARir6uoJOeZtBQDNekV-nju98SFNzlBtzBy12dFgqaY-3OBAU7DTbx2RTmiufBjCZkdtiLTDXJic39Ctx3kM01WI-pY6n8ltiMZ5pGPocHhKHls9JHx2d56SHx8_fD_7XFx8_fTl7P1FYao1TAWDTnAUWl421lqeX422tuFoWL52IGwlGhBo1nXNK2EqrRGyrMKaSyGtOCWv9r7bGK5nTJMaXTI4DNpjmJNibSuhZhWvs_TlgbQPc_T5d4qtq7qVnItF9eJONV-O2KltdKOOO3U_uyxo9wITQ0oRrTJu0pMLforaDYqBWmJSvVpiUktMCoTKoWSUH6D37g9Cb_cQ5jHeOIwqGYfeYOdizkJ1wT2MvzvAzeC8M3r4hTtMf0egElegvi3Ls-wOkwJ4wyEbvPm3wf-6_wHrMNOD
CitedBy_id crossref_primary_10_1016_j_compbiomed_2022_105953
crossref_primary_10_1097_TA_0000000000003845
crossref_primary_10_3390_app11156976
crossref_primary_10_3390_diagnostics14111081
Cites_doi 10.5811/westjem.2016.1.28087
10.1214/aos/1176345462
10.1118/1.4816310
10.7863/ultra.14.11077
10.1378/chest.12-1445
10.1097/PEC.0000000000000432
10.1136/bmj.f2778
10.1016/j.tice.2016.07.006
10.1007/s00068-014-0484-6
10.1016/j.injury.2016.05.041
10.4329/wjr.v8.i8.729
10.1118/1.3013555
10.1097/TA.0b013e3182988afe
10.7863/ultra.32.12.2185
10.1016/S0736-4679(96)00312-5
10.1016/j.amjcard.2015.07.014
10.1378/chest.10-2946
10.1378/chest.11-0131
10.1111/j.1553-2712.2012.01349.x
10.1007/s00134-012-2513-4
10.1016/j.chest.2016.04.013
10.3233/JAD-160850
10.1161/JAHA.115.002057
10.1016/j.jemermed.2010.05.004
10.1186/1757-7241-21-11
10.1016/j.jacr.2016.08.014
10.1016/j.acra.2016.03.010
ContentType Journal Article
Copyright 2017
Published by Elsevier Inc.
Copyright Elsevier Limited 2017
Copyright_xml – notice: 2017
– notice: Published by Elsevier Inc.
– notice: Copyright Elsevier Limited 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7T5
7X7
7XB
88E
8FI
8FJ
8FK
8G5
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
H94
K9.
KB0
M0S
M1P
M2O
MBDVC
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.ajem.2017.03.073
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database (ProQuest)
Immunology Abstracts
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Health & Medical Collection
Medical Database
Research Library
Research Library (Corporate)
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Immunology Abstracts
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Research Library Prep


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1532-8171
EndPage 1290
ExternalDocumentID 28400069
10_1016_j_ajem_2017_03_073
S0735675717302620
1_s2_0_S0735675717302620
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
123
1B1
1P~
1RT
1~.
1~5
23M
354
4.4
457
4G.
53G
5RE
5VS
6J9
7-5
71M
7RV
7X7
88E
8F7
8FI
8FJ
8G5
8P~
9JM
A8Z
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQQT
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABLJU
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACIWK
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEUYN
AEVXI
AFFNX
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BENPR
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
C45
CAG
CCPQU
COF
CS3
DWQXO
EBS
EFJIC
EFKBS
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GUQSH
HDV
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K-O
KOM
LX1
M1P
M29
M2O
M41
MO0
N4W
N9A
NAPCQ
O-L
O9-
OAUVE
OBH
OB~
OHH
OM0
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
PUEGO
Q38
R2-
ROL
RPZ
SAE
SDF
SDG
SDP
SEL
SES
SEW
SJN
SPCBC
SSH
SSZ
SV3
T5K
TEORI
UAP
UHS
UKHRP
UNMZH
UV1
WOW
WUQ
Z5R
ZGI
ZY1
~G-
3V.
AACTN
AFCTW
AFKWA
AJOXV
ALIPV
AMFUW
PKN
RIG
AAIAV
ABLVK
ABYKQ
AJBFU
EFLBG
ESTFP
LCYCR
AAYXX
ACLOT
CITATION
~HD
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7XB
8FK
H94
K9.
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c490t-10d32e3a7b6fff20d36aff62ec1d36d03f43603ec955243c4aae020d4e52737f3
IEDL.DBID 7X7
ISSN 0735-6757
1532-8171
IngestDate Sun Sep 28 06:31:24 EDT 2025
Wed Aug 13 06:51:50 EDT 2025
Thu Apr 03 07:00:27 EDT 2025
Wed Oct 01 03:41:02 EDT 2025
Thu Apr 24 22:50:54 EDT 2025
Fri Feb 23 02:31:09 EST 2024
Tue Feb 25 19:57:50 EST 2025
Tue Aug 26 17:00:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Pneumothorax
Software
Diagnosis
Swine
Ultrasonography
Language English
License Published by Elsevier Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c490t-10d32e3a7b6fff20d36aff62ec1d36d03f43603ec955243c4aae020d4e52737f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5621-441X
PMID 28400069
PQID 1945872235
PQPubID 1216387
PageCount 6
ParticipantIDs proquest_miscellaneous_1887051425
proquest_journals_1945872235
pubmed_primary_28400069
crossref_citationtrail_10_1016_j_ajem_2017_03_073
crossref_primary_10_1016_j_ajem_2017_03_073
elsevier_sciencedirect_doi_10_1016_j_ajem_2017_03_073
elsevier_clinicalkeyesjournals_1_s2_0_S0735675717302620
elsevier_clinicalkey_doi_10_1016_j_ajem_2017_03_073
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-09-01
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Philadelphia
PublicationTitle The American journal of emergency medicine
PublicationTitleAlternate Am J Emerg Med
PublicationYear 2017
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Kheirabadi, Terrazas, Koller (bb0035) 2013; 75
Sanchez-de-Toledo, Renter-Valdovinos, Esteves, Fonseca, Villaverde, Rosal (bb0155) 2016; 32
Shinkins, Thompson, Mallett, Perera (bb0050) 2013; 346
Ghobadi, Hayman, Finkle, Walter, Xu (bb0070) 2017; 14
G, R (bb0120) 2016; 17
Petrick, Sahiner, Armato (bb0060) 2013; 40
Bloch, Bloch, Secreti, Prasad (bb0160) 2011; 41
Hashoul, Gaspar, Halon (bb0080) 2015; 116
Oveland, Lossius, Wemmelund, Stokkeland, Knudsen, Sloth (bb0140) 2013; 143
Kong, Sartorius, Clarke (bb0010) 2015; 41
Rhee, Hong, Kim, Lee, Cha, Jeong (bb0105) 2015; 34
Ebrahimi, Yousefifard, Mohammad Kazemi (bb0015) 2014; 13
Brattain, Telfer, Liteplo, Noble (bb0090) 2013; 32
Beheshti, Maikusa, Matsuda, Demirel, Anbarjafari (bb0110) 2017; 55
Efron, Stein (bb0055) 1981; 9
Arnaud, Maudlin-Jeronimo, Higgins (bb0040) 2016; 47
Perandini, Soardi, Motton (bb0115) 2016; 8
Alrajhi, Woo, Vaillancourt (bb0135) 2012; 141
Oveland, Soreide, Lossius (bb0150) 2013; 21
Oveland, Sloth, Andersen, Lossius (bb0145) 2012; 19
Ding, Shen, Yang, He, Zhang (bb0005) 2011; 140
Volpicelli, Elbarbary, Blaivas (bb0025) 2012; 38
Giger, Chan, Boone (bb0065) 2008; 35
Liu, Tian, Zhang, Fei (bb0130) 2016; 23
Al-Zaiti, Callaway, Kozik, Carey, Pelter (bb0085) 2015; 4
Saha, Mukherjee, Chakraborty (bb0125) 2016; 48
Blackbourne, Chin, Grisell, Salinas, Summers (bb0020) 2016
ElTanboly, Ismail, Shalaby (bb0100) 2016
Barton, Rhee, Hutton, Rosen (bb0045) 1997; 15
Corradi, Brusasco, Vezzani (bb0095) 2016; 150
Summers, Chin, Long (bb0030) 2016; 17
Faust, Acharya, Sudarshan (bb0075) 2016
Corradi (10.1016/j.ajem.2017.03.073_bb0095) 2016; 150
Liu (10.1016/j.ajem.2017.03.073_bb0130) 2016; 23
Kong (10.1016/j.ajem.2017.03.073_bb0010) 2015; 41
Faust (10.1016/j.ajem.2017.03.073_bb0075) 2016
Sanchez-de-Toledo (10.1016/j.ajem.2017.03.073_bb0155) 2016; 32
Bloch (10.1016/j.ajem.2017.03.073_bb0160) 2011; 41
ElTanboly (10.1016/j.ajem.2017.03.073_bb0100) 2016
Ebrahimi (10.1016/j.ajem.2017.03.073_bb0015) 2014; 13
Giger (10.1016/j.ajem.2017.03.073_bb0065) 2008; 35
Ghobadi (10.1016/j.ajem.2017.03.073_bb0070) 2017; 14
Perandini (10.1016/j.ajem.2017.03.073_bb0115) 2016; 8
Alrajhi (10.1016/j.ajem.2017.03.073_bb0135) 2012; 141
Saha (10.1016/j.ajem.2017.03.073_bb0125) 2016; 48
Volpicelli (10.1016/j.ajem.2017.03.073_bb0025) 2012; 38
Al-Zaiti (10.1016/j.ajem.2017.03.073_bb0085) 2015; 4
Brattain (10.1016/j.ajem.2017.03.073_bb0090) 2013; 32
Beheshti (10.1016/j.ajem.2017.03.073_bb0110) 2017; 55
Kheirabadi (10.1016/j.ajem.2017.03.073_bb0035) 2013; 75
Petrick (10.1016/j.ajem.2017.03.073_bb0060) 2013; 40
Efron (10.1016/j.ajem.2017.03.073_bb0055) 1981; 9
Rhee (10.1016/j.ajem.2017.03.073_bb0105) 2015; 34
Summers (10.1016/j.ajem.2017.03.073_bb0030) 2016; 17
Arnaud (10.1016/j.ajem.2017.03.073_bb0040) 2016; 47
G (10.1016/j.ajem.2017.03.073_bb0120) 2016; 17
Hashoul (10.1016/j.ajem.2017.03.073_bb0080) 2015; 116
Barton (10.1016/j.ajem.2017.03.073_bb0045) 1997; 15
Shinkins (10.1016/j.ajem.2017.03.073_bb0050) 2013; 346
Oveland (10.1016/j.ajem.2017.03.073_bb0150) 2013; 21
Ding (10.1016/j.ajem.2017.03.073_bb0005) 2011; 140
Oveland (10.1016/j.ajem.2017.03.073_bb0140) 2013; 143
Blackbourne (10.1016/j.ajem.2017.03.073_bb0020) 2016
Oveland (10.1016/j.ajem.2017.03.073_bb0145) 2012; 19
References_xml – volume: 41
  start-page: 647
  year: 2015
  end-page: 650
  ident: bb0010
  article-title: The accuracy of physical examination in identifying significant pathologies in penetrating thoracic trauma
  publication-title: Eur J Trauma Emerg Surg
– volume: 35
  start-page: 5799
  year: 2008
  end-page: 5820
  ident: bb0065
  article-title: Anniversary paper: history and status of CAD and quantitative image analysis: the role of medical physics and AAPM
  publication-title: Med Phys
– volume: 75
  start-page: 150
  year: 2013
  end-page: 156
  ident: bb0035
  article-title: Vented versus unvented chest seals for treatment of pneumothorax and prevention of tension pneumothorax in a swine model
  publication-title: J Trauma Acute Care Surg
– volume: 4
  year: 2015
  ident: bb0085
  article-title: Clinical utility of ventricular repolarization dispersion for real-time detection of non-ST elevation myocardial infarction in emergency departments
  publication-title: J Am Heart Assoc
– volume: 8
  start-page: 729
  year: 2016
  end-page: 734
  ident: bb0115
  article-title: Enhanced characterization of solid solitary pulmonary nodules with Bayesian analysis-based computer-aided diagnosis
  publication-title: World J Radiol
– volume: 32
  start-page: 768
  year: 2016
  end-page: 772
  ident: bb0155
  article-title: Teaching chest ultrasound in an experimental porcine model
  publication-title: Pediatr Emerg Care
– volume: 21
  start-page: 11
  year: 2013
  ident: bb0150
  article-title: The intrapleural volume threshold for ultrasound detection of pneumothoraces: an experimental study on porcine models
  publication-title: Scand J Trauma Resusc Emerg Med
– volume: 19
  start-page: 586
  year: 2012
  end-page: 592
  ident: bb0145
  article-title: A porcine pneumothorax model for teaching ultrasound diagnostics
  publication-title: Acad Emerg Med
– year: 2016
  ident: bb0075
  article-title: Computer aided diagnosis of coronary artery disease, myocardial infarction and carotid atherosclerosis using ultrasound images: a review
  publication-title: Phys Med
– volume: 143
  start-page: 415
  year: 2013
  end-page: 422
  ident: bb0140
  article-title: Using thoracic ultrasonography to accurately assess pneumothorax progression during positive pressure ventilation: a comparison with CT scanning
  publication-title: Chest
– volume: 116
  start-page: 1017
  year: 2015
  end-page: 1021
  ident: bb0080
  article-title: Automated computer-assisted diagnosis of obstructive coronary artery disease in emergency department patients undergoing 256-slice coronary computed tomography angiography for acute chest pain
  publication-title: Am J Cardiol
– volume: 34
  start-page: 2237
  year: 2015
  end-page: 2243
  ident: bb0105
  article-title: Using acoustic structure quantification during B-mode sonography for evaluation of Hashimoto thyroiditis
  publication-title: J Ultrasound Med
– volume: 14
  start-page: 24
  year: 2017
  end-page: 33
  ident: bb0070
  article-title: Radiological medical device innovation: approvals via the premarket approval pathway from 2000 to 2015
  publication-title: J Am Coll Radiol
– volume: 40
  start-page: 087001
  year: 2013
  ident: bb0060
  article-title: Evaluation of computer-aided detection and diagnosis systems
  publication-title: Med Phys
– volume: 32
  start-page: 2185
  year: 2013
  end-page: 2190
  ident: bb0090
  article-title: Automated B-line scoring on thoracic sonography
  publication-title: J Ultrasound Med
– year: 2016
  ident: bb0020
  article-title: Automatic focused assessment with sonography for trauma exams
  publication-title: Google patents
– volume: 48
  start-page: 461
  year: 2016
  end-page: 474
  ident: bb0125
  article-title: Computer-aided diagnosis of breast cancer using cytological images: a systematic review
  publication-title: Tissue Cell
– volume: 41
  start-page: 176
  year: 2011
  end-page: 181
  ident: bb0160
  article-title: A porcine training model for ultrasound diagnosis of pneumothoraces
  publication-title: J Emerg Med
– volume: 38
  start-page: 577
  year: 2012
  end-page: 591
  ident: bb0025
  article-title: International evidence-based recommendations for point-of-care lung ultrasound
  publication-title: Intensive Care Med
– volume: 150
  start-page: 640
  year: 2016
  end-page: 651
  ident: bb0095
  article-title: Computer-aided quantitative ultrasonography for detection of pulmonary edema in mechanically ventilated cardiac surgery patients
  publication-title: Chest
– year: 2016
  ident: bb0100
  article-title: A computer aided diagnostic system for detecting diabetic retinopathy in optical coherence tomography images
  publication-title: Med Phys
– volume: 47
  start-page: 2097
  year: 2016
  end-page: 2104
  ident: bb0040
  article-title: Adherence evaluation of vented chest seals in a swine skin model
  publication-title: Injury
– volume: 140
  start-page: 859
  year: 2011
  end-page: 866
  ident: bb0005
  article-title: Diagnosis of pneumothorax by radiography and ultrasonography: a meta-analysis
  publication-title: Chest
– volume: 17
  start-page: 209
  year: 2016
  end-page: 215
  ident: bb0030
  article-title: Computerized diagnostic assistant for the automatic detection of pneumothorax on ultrasound: a pilot study
  publication-title: West J Emerg Med
– volume: 9
  start-page: 586
  year: 1981
  end-page: 596
  ident: bb0055
  article-title: The jackknife estimate of variance
  publication-title: Ann Stat
– volume: 55
  start-page: 1571
  year: 2017
  end-page: 1582
  ident: bb0110
  article-title: Histogram-based feature extraction from individual gray matter similarity-matrix for Alzheimer's disease classification
  publication-title: J Alzheimers Dis
– volume: 141
  start-page: 703
  year: 2012
  end-page: 708
  ident: bb0135
  article-title: Test characteristics of ultrasonography for the detection of pneumothorax: a systematic review and meta-analysis
  publication-title: Chest
– volume: 346
  start-page: f2778
  year: 2013
  ident: bb0050
  article-title: Diagnostic accuracy studies: how to report and analyse inconclusive test results
  publication-title: BMJ
– volume: 17
  start-page: 4869
  year: 2016
  end-page: 4873
  ident: bb0120
  article-title: Automatic colorectal polyp detection in colonoscopy video frames
  publication-title: Asian Pac J Cancer Prev
– volume: 23
  start-page: 1024
  year: 2016
  end-page: 1046
  ident: bb0130
  article-title: Computer-aided detection of prostate cancer with MRI: technology and applications
  publication-title: Acad Radiol
– volume: 13
  start-page: 29
  year: 2014
  end-page: 40
  ident: bb0015
  article-title: Diagnostic accuracy of chest ultrasonography versus chest radiography for identification of pneumothorax: a systematic review and meta-analysis
  publication-title: Tanaffos
– volume: 15
  start-page: 147
  year: 1997
  end-page: 153
  ident: bb0045
  article-title: The pathophysiology of tension pneumothorax in ventilated swine
  publication-title: J Emerg Med
– volume: 17
  start-page: 209
  year: 2016
  ident: 10.1016/j.ajem.2017.03.073_bb0030
  article-title: Computerized diagnostic assistant for the automatic detection of pneumothorax on ultrasound: a pilot study
  publication-title: West J Emerg Med
  doi: 10.5811/westjem.2016.1.28087
– volume: 9
  start-page: 586
  year: 1981
  ident: 10.1016/j.ajem.2017.03.073_bb0055
  article-title: The jackknife estimate of variance
  publication-title: Ann Stat
  doi: 10.1214/aos/1176345462
– volume: 40
  start-page: 087001
  year: 2013
  ident: 10.1016/j.ajem.2017.03.073_bb0060
  article-title: Evaluation of computer-aided detection and diagnosis systems
  publication-title: Med Phys
  doi: 10.1118/1.4816310
– volume: 34
  start-page: 2237
  year: 2015
  ident: 10.1016/j.ajem.2017.03.073_bb0105
  article-title: Using acoustic structure quantification during B-mode sonography for evaluation of Hashimoto thyroiditis
  publication-title: J Ultrasound Med
  doi: 10.7863/ultra.14.11077
– volume: 143
  start-page: 415
  year: 2013
  ident: 10.1016/j.ajem.2017.03.073_bb0140
  article-title: Using thoracic ultrasonography to accurately assess pneumothorax progression during positive pressure ventilation: a comparison with CT scanning
  publication-title: Chest
  doi: 10.1378/chest.12-1445
– volume: 32
  start-page: 768
  year: 2016
  ident: 10.1016/j.ajem.2017.03.073_bb0155
  article-title: Teaching chest ultrasound in an experimental porcine model
  publication-title: Pediatr Emerg Care
  doi: 10.1097/PEC.0000000000000432
– volume: 346
  start-page: f2778
  year: 2013
  ident: 10.1016/j.ajem.2017.03.073_bb0050
  article-title: Diagnostic accuracy studies: how to report and analyse inconclusive test results
  publication-title: BMJ
  doi: 10.1136/bmj.f2778
– volume: 13
  start-page: 29
  year: 2014
  ident: 10.1016/j.ajem.2017.03.073_bb0015
  article-title: Diagnostic accuracy of chest ultrasonography versus chest radiography for identification of pneumothorax: a systematic review and meta-analysis
  publication-title: Tanaffos
– volume: 48
  start-page: 461
  year: 2016
  ident: 10.1016/j.ajem.2017.03.073_bb0125
  article-title: Computer-aided diagnosis of breast cancer using cytological images: a systematic review
  publication-title: Tissue Cell
  doi: 10.1016/j.tice.2016.07.006
– volume: 41
  start-page: 647
  year: 2015
  ident: 10.1016/j.ajem.2017.03.073_bb0010
  article-title: The accuracy of physical examination in identifying significant pathologies in penetrating thoracic trauma
  publication-title: Eur J Trauma Emerg Surg
  doi: 10.1007/s00068-014-0484-6
– year: 2016
  ident: 10.1016/j.ajem.2017.03.073_bb0020
  article-title: Automatic focused assessment with sonography for trauma exams
– volume: 47
  start-page: 2097
  year: 2016
  ident: 10.1016/j.ajem.2017.03.073_bb0040
  article-title: Adherence evaluation of vented chest seals in a swine skin model
  publication-title: Injury
  doi: 10.1016/j.injury.2016.05.041
– volume: 8
  start-page: 729
  year: 2016
  ident: 10.1016/j.ajem.2017.03.073_bb0115
  article-title: Enhanced characterization of solid solitary pulmonary nodules with Bayesian analysis-based computer-aided diagnosis
  publication-title: World J Radiol
  doi: 10.4329/wjr.v8.i8.729
– volume: 35
  start-page: 5799
  year: 2008
  ident: 10.1016/j.ajem.2017.03.073_bb0065
  article-title: Anniversary paper: history and status of CAD and quantitative image analysis: the role of medical physics and AAPM
  publication-title: Med Phys
  doi: 10.1118/1.3013555
– volume: 75
  start-page: 150
  year: 2013
  ident: 10.1016/j.ajem.2017.03.073_bb0035
  article-title: Vented versus unvented chest seals for treatment of pneumothorax and prevention of tension pneumothorax in a swine model
  publication-title: J Trauma Acute Care Surg
  doi: 10.1097/TA.0b013e3182988afe
– volume: 32
  start-page: 2185
  year: 2013
  ident: 10.1016/j.ajem.2017.03.073_bb0090
  article-title: Automated B-line scoring on thoracic sonography
  publication-title: J Ultrasound Med
  doi: 10.7863/ultra.32.12.2185
– volume: 15
  start-page: 147
  year: 1997
  ident: 10.1016/j.ajem.2017.03.073_bb0045
  article-title: The pathophysiology of tension pneumothorax in ventilated swine
  publication-title: J Emerg Med
  doi: 10.1016/S0736-4679(96)00312-5
– volume: 116
  start-page: 1017
  year: 2015
  ident: 10.1016/j.ajem.2017.03.073_bb0080
  article-title: Automated computer-assisted diagnosis of obstructive coronary artery disease in emergency department patients undergoing 256-slice coronary computed tomography angiography for acute chest pain
  publication-title: Am J Cardiol
  doi: 10.1016/j.amjcard.2015.07.014
– volume: 140
  start-page: 859
  year: 2011
  ident: 10.1016/j.ajem.2017.03.073_bb0005
  article-title: Diagnosis of pneumothorax by radiography and ultrasonography: a meta-analysis
  publication-title: Chest
  doi: 10.1378/chest.10-2946
– volume: 17
  start-page: 4869
  year: 2016
  ident: 10.1016/j.ajem.2017.03.073_bb0120
  article-title: Automatic colorectal polyp detection in colonoscopy video frames
  publication-title: Asian Pac J Cancer Prev
– volume: 141
  start-page: 703
  year: 2012
  ident: 10.1016/j.ajem.2017.03.073_bb0135
  article-title: Test characteristics of ultrasonography for the detection of pneumothorax: a systematic review and meta-analysis
  publication-title: Chest
  doi: 10.1378/chest.11-0131
– volume: 19
  start-page: 586
  year: 2012
  ident: 10.1016/j.ajem.2017.03.073_bb0145
  article-title: A porcine pneumothorax model for teaching ultrasound diagnostics
  publication-title: Acad Emerg Med
  doi: 10.1111/j.1553-2712.2012.01349.x
– volume: 38
  start-page: 577
  year: 2012
  ident: 10.1016/j.ajem.2017.03.073_bb0025
  article-title: International evidence-based recommendations for point-of-care lung ultrasound
  publication-title: Intensive Care Med
  doi: 10.1007/s00134-012-2513-4
– year: 2016
  ident: 10.1016/j.ajem.2017.03.073_bb0100
  article-title: A computer aided diagnostic system for detecting diabetic retinopathy in optical coherence tomography images
  publication-title: Med Phys
– volume: 150
  start-page: 640
  year: 2016
  ident: 10.1016/j.ajem.2017.03.073_bb0095
  article-title: Computer-aided quantitative ultrasonography for detection of pulmonary edema in mechanically ventilated cardiac surgery patients
  publication-title: Chest
  doi: 10.1016/j.chest.2016.04.013
– volume: 55
  start-page: 1571
  year: 2017
  ident: 10.1016/j.ajem.2017.03.073_bb0110
  article-title: Histogram-based feature extraction from individual gray matter similarity-matrix for Alzheimer's disease classification
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-160850
– volume: 4
  year: 2015
  ident: 10.1016/j.ajem.2017.03.073_bb0085
  article-title: Clinical utility of ventricular repolarization dispersion for real-time detection of non-ST elevation myocardial infarction in emergency departments
  publication-title: J Am Heart Assoc
  doi: 10.1161/JAHA.115.002057
– volume: 41
  start-page: 176
  year: 2011
  ident: 10.1016/j.ajem.2017.03.073_bb0160
  article-title: A porcine training model for ultrasound diagnosis of pneumothoraces
  publication-title: J Emerg Med
  doi: 10.1016/j.jemermed.2010.05.004
– volume: 21
  start-page: 11
  year: 2013
  ident: 10.1016/j.ajem.2017.03.073_bb0150
  article-title: The intrapleural volume threshold for ultrasound detection of pneumothoraces: an experimental study on porcine models
  publication-title: Scand J Trauma Resusc Emerg Med
  doi: 10.1186/1757-7241-21-11
– volume: 14
  start-page: 24
  year: 2017
  ident: 10.1016/j.ajem.2017.03.073_bb0070
  article-title: Radiological medical device innovation: approvals via the premarket approval pathway from 2000 to 2015
  publication-title: J Am Coll Radiol
  doi: 10.1016/j.jacr.2016.08.014
– year: 2016
  ident: 10.1016/j.ajem.2017.03.073_bb0075
  article-title: Computer aided diagnosis of coronary artery disease, myocardial infarction and carotid atherosclerosis using ultrasound images: a review
  publication-title: Phys Med
– volume: 23
  start-page: 1024
  year: 2016
  ident: 10.1016/j.ajem.2017.03.073_bb0130
  article-title: Computer-aided detection of prostate cancer with MRI: technology and applications
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2016.03.010
SSID ssj0011454
Score 2.2108924
Snippet Our objective was to measure the diagnostic accuracy of a novel software technology to detect pneumothorax on Brightness (B) mode and Motion (M) mode...
Abstract Introduction Our objective was to measure the diagnostic accuracy of a novel software technology to detect pneumothorax on Brightness (B) mode and...
Introduction Our objective was to measure the diagnostic accuracy of a novel software technology to detect pneumothorax on Brightness (B) mode and Motion (M)...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1285
SubjectTerms Accuracy
Algorithms
Anesthesia
Animals
Automation
Cancer
Cardiovascular disease
Chest Tubes
Computer programs
Coronary vessels
Diabetic retinopathy
Diagnosis
Emergency
Emergency medical care
Engineers
Female
Heart attacks
Image Interpretation, Computer-Assisted - methods
Laboratory animals
Medical diagnosis
Pneumothorax
Pneumothorax - diagnostic imaging
Sensitivity and Specificity
Software
Swine
Thoracic Wall - diagnostic imaging
Thorax
Ultrasonic imaging
Ultrasonography
Ultrasound
Ventilation
SummonAdditionalLinks – databaseName: Elsevier ScienceDirect
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbLHkovpelz8ygK9FbclfXy-hjShhBIL-1CbqpWHsEuwbvso00u-e2ZsWWX0iaF3vyYscx4ZvTJ8xBj74MWIYCBzAIuUXQeNdqc1JmJIpaIEPwkp-Lkyy_2fKovrszVgJ12tTCUVpl8f-vTG2-droyTNMer-Xz8FZXTINylMLKgtupUwa4tpfV9vOvTPBDuNzuhEXFG1Klwps3x8gugavS8aBqdFuqhyekh8NlMQmfP2bOEHvlJ-4J7bAD1C_bkMsXHX7Lvn9rMObzNfQi7tQ-3fBm55_XyB1zzDTrdn34NfNv_UeeIWnkFFEvAWYyvatjR10PNuOHzGjkRoNPDebNnzis2Pfv87fQ8S3soZEGXYotetlISlC9mNsYo8cz6GK2EkONhJVTUygoFoTRGahW094AIstJAndmKqF6zYb2s4S3jEdfdpvBSRBLqTE7AhoksopBQQGXFiOWd8FxIDcZpn4tr12WSLRwJ3JHAnVAOBT5iH3qeVdte41Fq1X0T1xWOoqtz6P0f5Sr-xgWbZK0bl7uNdML9oVEjZnrO35TynyMedgrjfg1SaoNmIJUZseP-NhozRWh8Dcsd0qDLp4b0EmnetIrWiwVxBGGLcv8_X-qAPaWzNj_ukA236x0cIaDazt41FnMPpogcZw
  priority: 102
  providerName: Elsevier
Title Diagnostic accuracy of a novel software technology for detecting pneumothorax in a porcine model
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0735675717302620
https://www.clinicalkey.es/playcontent/1-s2.0-S0735675717302620
https://dx.doi.org/10.1016/j.ajem.2017.03.073
https://www.ncbi.nlm.nih.gov/pubmed/28400069
https://www.proquest.com/docview/1945872235
https://www.proquest.com/docview/1887051425
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1532-8171
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011454
  issn: 0735-6757
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1532-8171
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011454
  issn: 0735-6757
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1532-8171
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011454
  issn: 0735-6757
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1532-8171
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011454
  issn: 0735-6757
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1532-8171
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011454
  issn: 0735-6757
  databaseCode: AKRWK
  dateStart: 19830701
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (Proquest)
  customDbUrl:
  eissn: 1532-8171
  dateEnd: 20250801
  omitProxy: true
  ssIdentifier: ssj0011454
  issn: 0735-6757
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1532-8171
  dateEnd: 20250801
  omitProxy: true
  ssIdentifier: ssj0011454
  issn: 0735-6757
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELfYJiFeEN8URmUk3lDB8UfcPqEBmwrVKjSY6JtxnbPENCWlafl44W_nLnHCCytPSWSfHZ3P59_Z5zvGngUtQgADoxzQRNFZ1DjnpB6ZKOIEEYIfZ3Q5-XSeT8_1-4VZpA23OrlVdjqxUdRFFWiP_CUa2wZbkcq8Wn0bUdYoOl1NKTT22EGGUIWk2i56gwuhfpMFDaWYHOyNTZdmWv8ufwF0Ez2zTZBTq65amK4Cns0CdHKL3UzIkR-1Q32bXYPyDrt-ms7G77Ivb1uvOSzmPoTt2odfvIrc87L6Dpe8RoX7w6-Bb_rddI6IlRdA5wi4gvFVCVsaOZSKn_xriZQIzqlx3uTLucfOT44_vZmOUv6EUdATsUENWygJyttlHmOU-JX7GHMJIcPXQqioVS4UhIkxUqugvQdEj4UGispmo7rP9suqhIeMR7S5jfVSRGLqUo4hD2Npo5BgocjFgGUd81xIwcUpx8Wl67zILhwx3BHDnVAOGT5gz3uaVRtaY2dt1Y2J6y6NoppzqPl3Utl_UUGdZmrtMldLJ9xHEhKSkQxVHgXpHzDTUyYw0oKM__Z42AmM-9tJL7wD9rQvxolMpzO-hGqLdVDdUzB6iXUetILWswUxBOGKyaPdjT9mN-hPWhe4Q7a_WW_hCWKmzXLI9l78zobN9Biyg6N3s-mcnrOzzzN8vj6efzj7A1zdGWU
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIkEviHcDBRYJTshivQ9vcqgqRKlS2vRCK-W23axnJarKDnFC6Z_iNzLjFxcaTr0l8s7aGs_jG-88GHsXtAgBDCQZYIii06hR56ROTBRxhAjBD1MqTp6cZOMz_XVqphvsd1cLQ2mVnU2sDXVeBvpG_hGDbYO7SGX25j8SmhpFp6vdCI1GLI7g-gpDtmr3cB_f73spD76cfh4n7VSBJOiRWKLdyZUE5e0sizFK_Jf5GDMJIcWfuVBRq0woCCNjpFZBew-IqXIN1KvMRoX73mF3tRKaevXbaR_gYWhRT11DraGEfmPbIp0mn8xfAFW-p7ZuqmrVTY7wJqBbO7yDh-xBi1T5p0a0HrENKB6ze5P2LP4JO99vsvTwMvchrBY-XPMycs-L8idc8goN_JVfAF_2X-85ImSeA51boMfk8wJWJCkohb_49wIpMRigzXk9n-cpO7sVzj5jm0VZwDbjEWN8Y70UkZg6k0PIwlDaKCRYyDMxYGnHPBfaZuY0U-PSdVlrF44Y7ojhTiiHDB-wDz3NvGnlsXa16t6J64pU0aw69DRrqey_qKBqLUPlUldJJ9w3EhKSkRRNLA0FGDDTU7bgpwE1_73jTicw7u9NemUZsLf9ZTQcdBrkCyhXuAbdCzW_l7jmeSNoPVsQsxCOGb1Yv_kbdn98Ojl2x4cnRy_ZFj1Vk363wzaXixW8Qry2nL2ulYSz89vWyj8nOlBq
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIlVcEG9SCiwSnJDV9T68yQEhRIhaSiskqJTbdrOelagqO8RJH3-tv44Zv7jQcOotkXfW1nge33jnwdjboEUIYCDJAEMUnUaNOid1YqKII0QIfphScfLhUbZ3rL9OzXSDXXe1MJRW2dnE2lDnZaBv5LsYbBvcRSqzG9u0iO_jycf574QmSNFJazdOoxGRA7i6wPCt-rA_xnf9TsrJl5-f95J2wkAS9Egs0QblSoLydpbFGCX-y3yMmYSQ4s9cqKhVJhSEkTFSq6C9B8RXuQbqW2ajwn3vsLtWaUXpZHbaB3sYZtQT2FCDKLnf2LZgp8kt86dAVfCprRusWnWTU7wJ9NbOb_KA3W9RK__UiNlDtgHFI7Z12J7LP2Yn4yZjDy9zH8Jq4cMVLyP3vCjP4YxXaOwv_AL4sv-SzxEt8xzoDAO9J58XsCKpQYm85L8KpMTAgDbn9ayeJ-z4Vjj7lG0WZQHPGY8Y7xvrpYjE1JkcQhaG0kYhwUKeiQFLO-a50DY2p_kaZ67LYDt1xHBHDHdCOWT4gL3vaeZNW4-1q1X3TlxXsIom1qHXWUtl_0UFVWslKpe6SjrhfpCQkIykaG5pQMCAmZ6yBUINwPnvHXc6gXF_b9IrzoC96S-jEaGTIV9AucI16GqoEb7ENc8aQevZgviFMM1oe_3mr9kW6qP7tn908ILdo4dqMvF22OZysYKXCN2Ws1e1jnB2cttK-Qf55FSl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diagnostic+accuracy+of+a+novel+software+technology+for+detecting+pneumothorax+in+a+porcine+model&rft.jtitle=The+American+journal+of+emergency+medicine&rft.au=Summers%2C+Shane+M&rft.au=Chin%2C+Eric+J&rft.au=April%2C+Michael+D&rft.au=Grisell%2C+Ronald+D&rft.date=2017-09-01&rft.pub=Elsevier+Limited&rft.issn=0735-6757&rft.eissn=1532-8171&rft.volume=35&rft.issue=9&rft.spage=1285&rft_id=info:doi/10.1016%2Fj.ajem.2017.03.073&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0735-6757&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0735-6757&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0735-6757&client=summon