Altered RIG-I/DDX58-mediated innate immunity in dermatomyositis
We investigated the molecular mechanisms involved in the pathogenesis of three inflammatory myopathies, dermatomyositis (DM), polymyositis (PM) and inclusion body myositis (IBM). We performed microarray experiments† using microdissected pathological muscle fibres from 15 patients with these disorder...
Saved in:
Published in | The Journal of pathology Vol. 233; no. 3; pp. 258 - 268 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
01.07.2014
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0022-3417 1096-9896 1096-9896 |
DOI | 10.1002/path.4346 |
Cover
Abstract | We investigated the molecular mechanisms involved in the pathogenesis of three inflammatory myopathies, dermatomyositis (DM), polymyositis (PM) and inclusion body myositis (IBM). We performed microarray experiments† using microdissected pathological muscle fibres from 15 patients with these disorders and five controls. Differentially expressed candidate genes were validated by immunohistochemistry on muscle biopsies, and the altered pathways were analysed in human myotube cultures. Up‐regulation of genes involved in viral and nucleic acid recognition were found in the three myopathies but not in controls. In DM, retinoic acid‐inducible gene 1 (RIG‐I, DDX58) and the novel antiviral factor DDX60, which promotes RIG‐I‐mediated signalling, were significantly up‐regulated, followed by IFIH1 (MDA5) and TLR3. Immunohistochemistry confirmed over‐expression of RIG‐I in pathological muscle fibres in 5/5 DM, 0/5 PM and 0/5 IBM patients, and in 0/5 controls. Stimulation of human myotubes with a ligand of RIG‐I produced a significant secretion of interferon‐β (IFNβ; p < 0.05) and up‐regulation of class I MHC, RIG‐I and TLR3 (p < 0.05) by IFNβ‐dependent and TLR3‐independent mechanisms. RIG‐I‐mediated innate immunity, triggered by a viral or damage signal, plays a significant role in the pathogenesis of DM, but not in that of PM or IBM. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd |
---|---|
AbstractList | We investigated the molecular mechanisms involved in the pathogenesis of three inflammatory myopathies, dermatomyositis (DM), polymyositis (PM) and inclusion body myositis (IBM). We performed microarray experiments super() using microdissected pathological muscle fibres from 15 patients with these disorders and five controls. Differentially expressed candidate genes were validated by immunohistochemistry on muscle biopsies, and the altered pathways were analysed in human myotube cultures. Up-regulation of genes involved in viral and nucleic acid recognition were found in the three myopathies but not in controls. In DM, retinoic acid-inducible gene 1 ( RIG-I , DDX58 ) and the novel antiviral factor DDX60 , which promotes RIG-I-mediated signalling, were significantly up-regulated, followed by IFIH1 ( MDA5 ) and TLR3 . Immunohistochemistry confirmed over-expression of RIG-I in pathological muscle fibres in 5/5 DM, 0/5 PM and 0/5 IBM patients, and in 0/5 controls. Stimulation of human myotubes with a ligand of RIG-I produced a significant secretion of interferon- [beta] (IFN [beta] ; p < 0.05) and up-regulation of class I MHC, RIG-I and TLR3 ( p < 0.05) by IFN [beta] -dependent and TLR3-independent mechanisms. RIG-I-mediated innate immunity, triggered by a viral or damage signal, plays a significant role in the pathogenesis of DM, but not in that of PM or IBM. Copyright copyright 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd We investigated the molecular mechanisms involved in the pathogenesis of three inflammatory myopathies, dermatomyositis (DM), polymyositis (PM) and inclusion body myositis (IBM). We performed microarray experiments(†) using microdissected pathological muscle fibres from 15 patients with these disorders and five controls. Differentially expressed candidate genes were validated by immunohistochemistry on muscle biopsies, and the altered pathways were analysed in human myotube cultures. Up-regulation of genes involved in viral and nucleic acid recognition were found in the three myopathies but not in controls. In DM, retinoic acid-inducible gene 1 (RIG-I, DDX58) and the novel antiviral factor DDX60, which promotes RIG-I-mediated signalling, were significantly up-regulated, followed by IFIH1 (MDA5) and TLR3. Immunohistochemistry confirmed over-expression of RIG-I in pathological muscle fibres in 5/5 DM, 0/5 PM and 0/5 IBM patients, and in 0/5 controls. Stimulation of human myotubes with a ligand of RIG-I produced a significant secretion of interferon-β (IFNβ; p < 0.05) and up-regulation of class I MHC, RIG-I and TLR3 (p < 0.05) by IFNβ-dependent and TLR3-independent mechanisms. RIG-I-mediated innate immunity, triggered by a viral or damage signal, plays a significant role in the pathogenesis of DM, but not in that of PM or IBM. We investigated the molecular mechanisms involved in the pathogenesis of three inflammatory myopathies, dermatomyositis (DM), polymyositis (PM) and inclusion body myositis (IBM). We performed microarray experiments† using microdissected pathological muscle fibres from 15 patients with these disorders and five controls. Differentially expressed candidate genes were validated by immunohistochemistry on muscle biopsies, and the altered pathways were analysed in human myotube cultures. Up‐regulation of genes involved in viral and nucleic acid recognition were found in the three myopathies but not in controls. In DM, retinoic acid‐inducible gene 1 (RIG‐I, DDX58) and the novel antiviral factor DDX60, which promotes RIG‐I‐mediated signalling, were significantly up‐regulated, followed by IFIH1 (MDA5) and TLR3. Immunohistochemistry confirmed over‐expression of RIG‐I in pathological muscle fibres in 5/5 DM, 0/5 PM and 0/5 IBM patients, and in 0/5 controls. Stimulation of human myotubes with a ligand of RIG‐I produced a significant secretion of interferon‐β (IFNβ; p < 0.05) and up‐regulation of class I MHC, RIG‐I and TLR3 (p < 0.05) by IFNβ‐dependent and TLR3‐independent mechanisms. RIG‐I‐mediated innate immunity, triggered by a viral or damage signal, plays a significant role in the pathogenesis of DM, but not in that of PM or IBM. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd We investigated the molecular mechanisms involved in the pathogenesis of three inflammatory myopathies, dermatomyositis (DM), polymyositis (PM) and inclusion body myositis (IBM). We performed microarray experiments(†) using microdissected pathological muscle fibres from 15 patients with these disorders and five controls. Differentially expressed candidate genes were validated by immunohistochemistry on muscle biopsies, and the altered pathways were analysed in human myotube cultures. Up-regulation of genes involved in viral and nucleic acid recognition were found in the three myopathies but not in controls. In DM, retinoic acid-inducible gene 1 (RIG-I, DDX58) and the novel antiviral factor DDX60, which promotes RIG-I-mediated signalling, were significantly up-regulated, followed by IFIH1 (MDA5) and TLR3. Immunohistochemistry confirmed over-expression of RIG-I in pathological muscle fibres in 5/5 DM, 0/5 PM and 0/5 IBM patients, and in 0/5 controls. Stimulation of human myotubes with a ligand of RIG-I produced a significant secretion of interferon-β (IFNβ; p < 0.05) and up-regulation of class I MHC, RIG-I and TLR3 (p < 0.05) by IFNβ-dependent and TLR3-independent mechanisms. RIG-I-mediated innate immunity, triggered by a viral or damage signal, plays a significant role in the pathogenesis of DM, but not in that of PM or IBM.We investigated the molecular mechanisms involved in the pathogenesis of three inflammatory myopathies, dermatomyositis (DM), polymyositis (PM) and inclusion body myositis (IBM). We performed microarray experiments(†) using microdissected pathological muscle fibres from 15 patients with these disorders and five controls. Differentially expressed candidate genes were validated by immunohistochemistry on muscle biopsies, and the altered pathways were analysed in human myotube cultures. Up-regulation of genes involved in viral and nucleic acid recognition were found in the three myopathies but not in controls. In DM, retinoic acid-inducible gene 1 (RIG-I, DDX58) and the novel antiviral factor DDX60, which promotes RIG-I-mediated signalling, were significantly up-regulated, followed by IFIH1 (MDA5) and TLR3. Immunohistochemistry confirmed over-expression of RIG-I in pathological muscle fibres in 5/5 DM, 0/5 PM and 0/5 IBM patients, and in 0/5 controls. Stimulation of human myotubes with a ligand of RIG-I produced a significant secretion of interferon-β (IFNβ; p < 0.05) and up-regulation of class I MHC, RIG-I and TLR3 (p < 0.05) by IFNβ-dependent and TLR3-independent mechanisms. RIG-I-mediated innate immunity, triggered by a viral or damage signal, plays a significant role in the pathogenesis of DM, but not in that of PM or IBM. We investigated the molecular mechanisms involved in the pathogenesis of three inflammatory myopathies, dermatomyositis (DM), polymyositis (PM) and inclusion body myositis (IBM). We performed microarray experiments[dagger] using microdissected pathological muscle fibres from 15 patients with these disorders and five controls. Differentially expressed candidate genes were validated by immunohistochemistry on muscle biopsies, and the altered pathways were analysed in human myotube cultures. Up-regulation of genes involved in viral and nucleic acid recognition were found in the three myopathies but not in controls. In DM, retinoic acid-inducible gene 1 (RIG-I, DDX58) and the novel antiviral factor DDX60, which promotes RIG-I-mediated signalling, were significantly up-regulated, followed by IFIH1 (MDA5) and TLR3. Immunohistochemistry confirmed over-expression of RIG-I in pathological muscle fibres in 5/5 DM, 0/5 PM and 0/5 IBM patients, and in 0/5 controls. Stimulation of human myotubes with a ligand of RIG-I produced a significant secretion of interferon-[beta] (IFN[beta]; p < 0.05) and up-regulation of class I MHC, RIG-I and TLR3 (p < 0.05) by IFN[beta]-dependent and TLR3-independent mechanisms. RIG-I-mediated innate immunity, triggered by a viral or damage signal, plays a significant role in the pathogenesis of DM, but not in that of PM or IBM. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd [PUBLICATION ABSTRACT] We investigated the molecular mechanisms involved in the pathogenesis of three inflammatory myopathies, dermatomyositis ( DM ), polymyositis ( PM ) and inclusion body myositis ( IBM ). We performed microarray experiments † using microdissected pathological muscle fibres from 15 patients with these disorders and five controls. Differentially expressed candidate genes were validated by immunohistochemistry on muscle biopsies, and the altered pathways were analysed in human myotube cultures. Up‐regulation of genes involved in viral and nucleic acid recognition were found in the three myopathies but not in controls. In DM , retinoic acid‐inducible gene 1 ( RIG ‐I , DDX58 ) and the novel antiviral factor DDX60 , which promotes RIG ‐I‐mediated signalling, were significantly up‐regulated, followed by IFIH1 ( MDA5 ) and TLR3 . Immunohistochemistry confirmed over‐expression of RIG ‐I in pathological muscle fibres in 5/5 DM , 0/5 PM and 0/5 IBM patients, and in 0/5 controls. Stimulation of human myotubes with a ligand of RIG ‐I produced a significant secretion of interferon‐ β ( IFN β ; p < 0.05) and up‐regulation of class I MHC , RIG ‐I and TLR3 ( p < 0.05) by IFN β ‐dependent and TLR3 ‐independent mechanisms. RIG ‐I‐mediated innate immunity, triggered by a viral or damage signal, plays a significant role in the pathogenesis of DM , but not in that of PM or IBM . Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd |
Author | Díaz-Manera, Jordi Illa, Isabel Gallardo, Eduard Navas, Miquel Suárez-Calvet, Xavier Nogales-Gadea, Gisela Rojas-Garcia, Ricard Querol, Luis |
Author_xml | – sequence: 1 givenname: Xavier surname: Suárez-Calvet fullname: Suárez-Calvet, Xavier organization: Neuromuscular Diseases Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona and Institut de Recerca Sant Pau, Barcelona, Spain – sequence: 2 givenname: Eduard surname: Gallardo fullname: Gallardo, Eduard organization: Neuromuscular Diseases Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona and Institut de Recerca Sant Pau, Barcelona, Spain – sequence: 3 givenname: Gisela surname: Nogales-Gadea fullname: Nogales-Gadea, Gisela organization: Neuromuscular Diseases Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona and Institut de Recerca Sant Pau, Barcelona, Spain – sequence: 4 givenname: Luis surname: Querol fullname: Querol, Luis organization: Neuromuscular Diseases Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona and Institut de Recerca Sant Pau, Barcelona, Spain – sequence: 5 givenname: Miquel surname: Navas fullname: Navas, Miquel organization: Neuromuscular Diseases Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona and Institut de Recerca Sant Pau, Barcelona, Spain – sequence: 6 givenname: Jordi surname: Díaz-Manera fullname: Díaz-Manera, Jordi organization: Neuromuscular Diseases Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona and Institut de Recerca Sant Pau, Barcelona, Spain – sequence: 7 givenname: Ricard surname: Rojas-Garcia fullname: Rojas-Garcia, Ricard organization: Neuromuscular Diseases Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona and Institut de Recerca Sant Pau, Barcelona, Spain – sequence: 8 givenname: Isabel surname: Illa fullname: Illa, Isabel email: iilla@santpau.cat organization: Neuromuscular Diseases Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona and Institut de Recerca Sant Pau, Barcelona, Spain |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24604766$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtPGzEUhS0EggRY9A-gSN20i0nujB8zXlUhoUmqiFYISHeWYzvCMI_U9qjk39dRAgtEJVZXtr9zru89XXRYN7VB6FMK_RQgG6xleOgTTNgB6qTAWcILzg5RJ75lCSZpfoK63j8CAOeUHqOTjDAgOWMd9G1YBuOM7t3MJslsMB7_pkVSGW1liJe2rmPt2apqaxs28dzTxlUyNNWm8TZYf4aOVrL05nxfT9Hd96vb0TSZ_5zMRsN5oggHlmCmOOYqB6M0X2FOCGisKZEYgOKlYoTmii9zUHiZYS01FKRQVMdh-ApYgU_Rl53v2jV_WuODqKxXpixlbZrWi5SSOGxBOfkAiinLWOwc0c9v0MemdXUcZEsRmsbPZZG62FPtMq5GrJ2tpNuIly1GYLADlGu8d2YllA0y2KYOTtpSpCC2OYltTmKbU1R8faN4MX2P3bv_taXZ_B8Uv4a3070i2SmsD-b5VSHdk2A5zqlYXE_E_Y_ryym7xGKB_wHkGa2U |
CitedBy_id | crossref_primary_10_1021_acsomega_4c02631 crossref_primary_10_1111_bpa_12957 crossref_primary_10_1136_ard_2024_226057 crossref_primary_10_1186_s13075_017_1383_0 crossref_primary_10_1016_j_heliyon_2020_e04866 crossref_primary_10_3389_fimmu_2016_00234 crossref_primary_10_3389_fimmu_2019_01040 crossref_primary_10_1093_jnen_nlaa023 crossref_primary_10_1007_s10067_020_05568_5 crossref_primary_10_1002_art_41625 crossref_primary_10_1002_path_4355 crossref_primary_10_1055_a_1548_8934 crossref_primary_10_1186_s13075_019_1905_z crossref_primary_10_1016_j_cyto_2014_10_012 crossref_primary_10_1016_S1634_7072_20_43301_X crossref_primary_10_1080_1744666X_2022_2054803 crossref_primary_10_3389_fimmu_2019_00638 crossref_primary_10_1016_j_jneuroim_2016_07_022 crossref_primary_10_3390_ijms19092786 crossref_primary_10_1016_j_heliyon_2023_e16935 crossref_primary_10_3389_fneur_2019_00554 crossref_primary_10_1007_s12519_019_00313_8 crossref_primary_10_1038_srep23377 crossref_primary_10_1089_dna_2018_4256 crossref_primary_10_1002_acr2_11081 crossref_primary_10_18632_aging_204098 crossref_primary_10_1016_j_cyto_2014_11_026 crossref_primary_10_1016_j_pharmthera_2017_12_003 crossref_primary_10_1016_j_cyto_2018_11_022 crossref_primary_10_1038_srep32818 crossref_primary_10_1136_rmdopen_2022_002818 crossref_primary_10_1007_s00401_017_1731_9 crossref_primary_10_1016_j_nmd_2019_10_005 crossref_primary_10_1016_j_nmd_2016_05_014 crossref_primary_10_3389_fcell_2023_1084068 crossref_primary_10_1007_s00401_021_02305_3 crossref_primary_10_1002_art_41639 crossref_primary_10_31083_j_fbl2902072 crossref_primary_10_1111_nan_12519 crossref_primary_10_1002_rai2_12078 crossref_primary_10_1016_j_compbiolchem_2019_107135 crossref_primary_10_3892_mmr_2016_5703 crossref_primary_10_1177_1759720X19886494 crossref_primary_10_1136_rmdopen_2016_000294 crossref_primary_10_4049_immunohorizons_2200078 crossref_primary_10_1016_j_ajpath_2015_11_010 crossref_primary_10_1016_j_yexcr_2017_02_035 crossref_primary_10_1212_WNL_0000000000003568 crossref_primary_10_1038_s41598_021_04302_8 crossref_primary_10_5409_wjcp_v12_i3_107 crossref_primary_10_3389_fneur_2023_1328547 crossref_primary_10_1111_ncn3_12563 crossref_primary_10_1016_j_autrev_2017_07_021 crossref_primary_10_1111_cen3_12419 crossref_primary_10_1038_s41598_017_09309_8 crossref_primary_10_1007_s13311_018_00676_2 crossref_primary_10_1016_j_cytogfr_2016_03_005 crossref_primary_10_1056_NEJMra1402225 crossref_primary_10_1172_jci_insight_136471 crossref_primary_10_1038_s41590_024_02004_7 crossref_primary_10_1093_brain_awy105 crossref_primary_10_1002_jcla_24631 crossref_primary_10_1093_brain_aww122 crossref_primary_10_1038_s41598_022_15003_1 crossref_primary_10_1093_brain_awv308 crossref_primary_10_1007_s11926_021_01017_7 crossref_primary_10_1186_s12948_015_0031_y crossref_primary_10_1111_nan_12380 crossref_primary_10_1002_art_42345 crossref_primary_10_1007_s40272_017_0240_6 crossref_primary_10_1155_2021_9991726 crossref_primary_10_1016_j_jneuroim_2015_12_008 crossref_primary_10_14412_1995_4484_2020_214_224 crossref_primary_10_1016_j_autrev_2022_103161 crossref_primary_10_1155_2023_8564650 crossref_primary_10_1002_art_40328 crossref_primary_10_1186_s40478_016_0308_5 crossref_primary_10_1038_s41467_024_49460_1 crossref_primary_10_1111_bjd_15006 crossref_primary_10_1111_cen3_12824 crossref_primary_10_3233_JND_230168 crossref_primary_10_1002_jgm_3598 crossref_primary_10_1371_journal_pone_0260511 crossref_primary_10_3390_genes12121898 crossref_primary_10_1016_j_trsl_2015_01_007 crossref_primary_10_1093_rheumatology_kez508 |
Cites_doi | 10.1073/pnas.0911679106 10.1002/ana.21805 10.1074/jbc.M601885200 10.1016/j.coviro.2011.04.004 10.1128/MCB.01368-10 10.1002/ana.20464 10.1038/embor.2009.258 10.1002/ana.23791 10.1016/j.cellsig.2011.12.006 10.4049/jimmunol.1000702 10.1093/jnen/60.9.847 10.1136/ard.2011.150326 10.1212/WNL.59.8.1170 10.1093/rheumatology/kep375 10.1016/S0140-6736(03)14368-1 10.1002/ana.23840 10.1126/science.1132505 10.1002/art.21103 10.1016/j.immuni.2011.05.003 10.2202/1544-6115.1027 10.2353/ajpath.2009.090196 10.1038/ni.1824 10.1002/path.4207 10.1212/WNL.0b013e31821f440a 10.1073/pnas.93.1.211 10.1097/NEN.0b013e3181e0d01c 10.1089/jir.2010.0120 10.1126/scisignal.2000287 10.1196/annals.1443.020 10.1016/j.immuni.2005.04.010 10.1007/s10067-009-1316-7 10.1073/pnas.97.16.9209 10.1016/j.autrev.2011.05.013 10.1002/art.33350 10.1084/jem.20041367 10.1038/nrneurol.2011.63 10.1016/j.chom.2011.11.004 10.1038/nature06042 |
ContentType | Journal Article |
Copyright | Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd – notice: Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7T5 7TK 7TM 7TO 8FD FR3 H94 K9. P64 RC3 7X8 |
DOI | 10.1002/path.4346 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | AIDS and Cancer Research Abstracts MEDLINE MEDLINE - Academic Genetics Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1096-9896 |
EndPage | 268 |
ExternalDocumentID | 3330479141 24604766 10_1002_path_4346 PATH4346 ark_67375_WNG_VJNBH6B3_W |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 123 1KJ 1L6 1OB 1OC 1ZS 29L 31~ 33P 3O- 3SF 3UE 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABQWH ABXGK ACAHQ ACBWZ ACCZN ACFBH ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AI. AIACR AIDQK AIDYY AIQQE AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA GSXLS H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M J5H JPC KBYEO KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M68 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MVM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OHT OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI UB1 V2E VH1 W8V W99 WBKPD WH7 WHWMO WIB WIH WIJ WIK WJL WOHZO WQJ WVDHM WXI WXSBR X7M XG1 XPP XV2 YQI YQJ ZGI ZXP ZZTAW ~IA ~KM ~WT AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RWI WRC WUP AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7T5 7TK 7TM 7TO 8FD FR3 H94 K9. P64 RC3 7X8 |
ID | FETCH-LOGICAL-c4906-36c939c70ecd9f39440d3d54a30053bc6457c9b70c3b23dad0848c5d0969f0683 |
IEDL.DBID | DR2 |
ISSN | 0022-3417 1096-9896 |
IngestDate | Fri Jul 11 12:16:48 EDT 2025 Fri Jul 11 00:47:41 EDT 2025 Fri Jul 25 12:21:26 EDT 2025 Mon Jul 21 05:45:32 EDT 2025 Thu Apr 24 23:12:25 EDT 2025 Tue Jul 01 04:21:12 EDT 2025 Wed Jan 22 16:15:33 EST 2025 Sun Sep 21 06:20:40 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | RIG-I dermatomyositis innate immunity DDX58 inflammatory myopathy |
Language | English |
License | Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4906-36c939c70ecd9f39440d3d54a30053bc6457c9b70c3b23dad0848c5d0969f0683 |
Notes | Immunoguided laser Microdissection. A representative MHC-I-positive perifascicular area from a DM patient is shown before (A) and after (B) microdissection. Care was taken to avoid microdissection of inflammatory infiltratesIFIH1 (MDA5) is not detected in DM muscle by immunohistochemistry (A), but is present in the sarcoplasm of human control myotubes (B); scale bar = 100 µmHighest differentially up-regulated genes in dermatomyositis ark:/67375/WNG-VJNBH6B3-W ArticleID:PATH4346 istex:E621EE91F9E5B54BBC8434A7B4B577369E90FCCE ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 24604766 |
PQID | 1534510532 |
PQPubID | 1006392 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1540228594 proquest_miscellaneous_1535626300 proquest_journals_1534510532 pubmed_primary_24604766 crossref_citationtrail_10_1002_path_4346 crossref_primary_10_1002_path_4346 wiley_primary_10_1002_path_4346_PATH4346 istex_primary_ark_67375_WNG_VJNBH6B3_W |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2014 |
PublicationDateYYYYMMDD | 2014-07-01 |
PublicationDate_xml | – month: 07 year: 2014 text: July 2014 |
PublicationDecade | 2010 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: England – name: Bognor Regis |
PublicationTitle | The Journal of pathology |
PublicationTitleAlternate | J. Pathol |
PublicationYear | 2014 |
Publisher | John Wiley & Sons, Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley Subscription Services, Inc |
References | Greenberg SA, Pinkus JL, Pinkus GS, et al. Interferon-α/β-mediated innate immune mechanisms in dermatomyositis. Ann Neurol 2005; 57: 664-678. Cappelletti C, Baggi F, Zolezzi F, et al. Type I interferon and Toll-like receptor expression characterizes inflammatory myopathies. Neurology 2011; 76: 2079-2088. Kawai T, Akira S. Toll-like receptor and RIG-I-like receptor signaling. Ann N Y Acad Sci 2008; 1143: 1-20. Dalakas MC. Pathogenesis and therapies of immune-mediated myopathies. Autoimmun Rev 2012; 11: 203-206. Chakrabarti A, Jha BK, Silverman RH. New insights into the role of RNase L in innate immunity. J Interferon Cytokine Res 2011; 31: 49-57. Nagaraju K, Casciola-Rosen L, Lundberg I, et al. Activation of the endoplasmic reticulum stress response in autoimmune myositis: potential role in muscle fiber damage and dysfunction. Arthritis Rheum 2005; 52: 1824-1835. Nagaraju K, Raben N, Loeffler L, et al. Conditional up-regulation of MHC class I in skeletal muscle leads to self-sustaining autoimmune myositis and myositis-specific autoantibodies. Proc Natl Acad Sci USA 2000; 97: 9209-9214. Miyashita M, Oshiumi H, Matsumoto M, et al. DDX60, a DEXD/H box helicase, is a novel antiviral factor promoting RIG-I-like receptor-mediated signaling. Mol Cell Biol 2011; 31: 3802-3819. Seo JY, Yaneva R, Cresswell P. Viperin: a multifunctional, interferon-inducible protein that regulates virus replication. Cell Host Microbe 2011; 10: 534-539. Gallardo E, de Andres I, Illa I. Cathepsins are upregulated by IFN-γ/STAT1 in human muscle culture: a possible active factor in dermatomyositis. J Neuropathol Exp Neurol 2001; 60: 847-855. Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 2004; 3: article 3. Castanier C, Garcin D, Vazquez A, et al. Mitochondrial dynamics regulate the RIG-I-like receptor antiviral pathway. EMBO Rep 2010; 11: 133-138. Uaesoontrachoon K, Cha HJ, Ampong B, et al. The effects of MyD88 deficiency on disease phenotype in dysferlin-deficient A/J mice: role of endogenous TLR ligands. J Pathol 2013; 231: 199-209. Salajegheh M, Kong SW, Pinkus JL, et al. Interferon-stimulated gene 15 (ISG15) conjugates proteins in dermatomyositis muscle with perifascicular atrophy. Ann Neurol 2010; 67: 53-63. Cufi P, Dragin N, Weiss JM, et al. Implication of double-stranded RNA signaling in the etiology of autoimmune myasthenia gravis. Ann Neurol 2013; 73: 281-293. Nakashima R, Imura Y, Kobayashi S, et al. The RIG-I-like receptor IFIH1/MDA5 is a dermatomyositis-specific autoantigen identified by the anti-CADM-140 antibody. Rheumatology (Oxford) 2010; 49: 433-440. Engel AG, Franzini-Armstrong C. Myology: Basic and Clinical. McGraw-Hill Medical: New York, 2004: 1321-1486. Tournadre A, Lenief V, Eljaafari A, et al. Immature muscle precursors are a source of interferon-β in myositis: role of Toll-like receptor 3 activation and contribution to HLA class I up-regulation. Arthritis Rheum 2012; 64: 533-541. Kuznik A, Bencina M, Svajger U, et al. Mechanism of endosomal TLR inhibition by antimalarial drugs and imidazoquinolines. J Immunol 2011; 186: 4794-4804. Loo YM GMJ. Immune signaling by RIG-I-like receptors. Immunity 2011; 34: 680-692. Dalakas MC, Hohlfeld R. Polymyositis and dermatomyositis. Lancet 2003; 362: 971-982. Larman HB, Salajegheh M, Nazareno R, et al. Cytosolic 5′-nucleotidase 1A autoimmunity in sporadic inclusion body myositis. Ann Neurol 2013; 73: 408-418. D'Cunha J, Knight E, Jr., Haas AL, et al. Immunoregulatory properties of ISG15, an interferon-induced cytokine. Proc Natl Acad Sci USA 1996; 93: 211-215. Kato H, Sato S, Yoneyama M, et al. Cell type-specific involvement of RIG-I in antiviral response. Immunity 2005; 23: 19-28. Salminen A, Kauppinen A, Kaarniranta K. Emerging role of NF-κB signaling in the induction of senescence-associated secretory phenotype (SASP). Cell Signal 2012; 24: 835-845. Li CK, Knopp P, Moncrieffe H, et al. Overexpression of MHC class I heavy chain protein in young skeletal muscle leads to severe myositis: implications for juvenile myositis. Am J Pathol 2009; 175: 1030-1040. Higgs BW, Liu Z, White B, et al. Patients with systemic lupus erythematosus, myositis, rheumatoid arthritis and scleroderma share activation of a common type I interferon pathway. Ann Rheum Dis 2011; 70: 2029-2036. Greenberg SA, Sanoudou D, Haslett JN, et al. Molecular profiles of inflammatory myopathies. Neurology 2002; 59: 1170-1182. Malathi K, Dong B, Gale M, Jr., et al. Small self-RNA generated by RNase L amplifies antiviral innate immunity. Nature 2007; 448: 816-819. Ramos HJ, Gale M Jr. RIG-I like receptors and their signaling crosstalk in the regulation of antiviral immunity. Curr Opin Virol 2011; 1: 167-176. Casciola-Rosen L, Nagaraju K, Plotz P, et al. Enhanced autoantigen expression in regenerating muscle cells in idiopathic inflammatory myopathy. J Exp Med 2005; 201: 591-601. Yasukawa K, Oshiumi H, Takeda M, et al. Mitofusin 2 inhibits mitochondrial antiviral signaling. Sci Signal 2009; 2: ra47. Mammen AL. Autoimmune myopathies: autoantibodies, phenotypes and pathogenesis. Nat Rev Neurol 2011; 7: 343-354. Hornung V, Ellegast J, Kim S, et al. 5'-Triphosphate RNA is the ligand for RIG-I. Science 2006; 314: 994-997. Hinson ER, Cresswell P. The antiviral protein, viperin, localizes to lipid droplets via its N-terminal amphipathic α-helix. Proc Natl Acad Sci USA 2009; 106: 20452-20457. Kim GT, Cho ML, Park YE, et al. Expression of TLR2, TLR4, and TLR9 in dermatomyositis and polymyositis. Clin Rheumatol 2010; 29: 273-279. Illa I, Gallardo E, Gimeno R, et al. Signal transducer and activator of transcription 1 in human muscle: implications in inflammatory myopathies. Am J Pathol 1997; 151: 81-88. De Luna N, Gallardo E, Sonnet C, et al. Role of thrombospondin 1 in macrophage inflammation in dysferlin myopathy. J Neuropathol Exp Neurol 2010; 69: 643-653. de Luna N, Gallardo E, Soriano M, et al. Absence of dysferlin alters myogenin expression and delays human muscle differentiation 'in vitro'. J Biol Chem 2006; 281: 17092-17098. Poeck H, Bscheider M, Gross O, et al. Recognition of RNA virus by RIG-I results in activation of CARD9 and inflammasome signaling for interleukin 1β production. Nat Immunol 2010; 11: 63-69. 2010; 11 2002; 59 2007; 448 2011; 1 1997; 151 2011; 31 1996; 93 2004; 3 2011; 76 2011; 10 2004 2011; 34 2009; 175 2006; 314 2012; 11 2011; 7 2005; 23 2010; 67 2008; 1143 2001; 60 2010; 49 2010; 69 2010; 29 2005; 201 2013; 73 2011; 70 2000; 97 2005; 52 2013; 231 2006; 281 2012; 24 2009; 2 2012; 64 2003; 362 2005; 57 2011; 186 2009; 106 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Illa I (e_1_2_7_23_1) 1997; 151 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 Engel AG (e_1_2_7_2_1) 2004 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 24687932 - J Pathol. 2014 Jul;233(3):215-6 |
References_xml | – reference: Cufi P, Dragin N, Weiss JM, et al. Implication of double-stranded RNA signaling in the etiology of autoimmune myasthenia gravis. Ann Neurol 2013; 73: 281-293. – reference: Kato H, Sato S, Yoneyama M, et al. Cell type-specific involvement of RIG-I in antiviral response. Immunity 2005; 23: 19-28. – reference: Seo JY, Yaneva R, Cresswell P. Viperin: a multifunctional, interferon-inducible protein that regulates virus replication. Cell Host Microbe 2011; 10: 534-539. – reference: Ramos HJ, Gale M Jr. RIG-I like receptors and their signaling crosstalk in the regulation of antiviral immunity. Curr Opin Virol 2011; 1: 167-176. – reference: Higgs BW, Liu Z, White B, et al. Patients with systemic lupus erythematosus, myositis, rheumatoid arthritis and scleroderma share activation of a common type I interferon pathway. Ann Rheum Dis 2011; 70: 2029-2036. – reference: Chakrabarti A, Jha BK, Silverman RH. New insights into the role of RNase L in innate immunity. J Interferon Cytokine Res 2011; 31: 49-57. – reference: Dalakas MC. Pathogenesis and therapies of immune-mediated myopathies. Autoimmun Rev 2012; 11: 203-206. – reference: D'Cunha J, Knight E, Jr., Haas AL, et al. Immunoregulatory properties of ISG15, an interferon-induced cytokine. Proc Natl Acad Sci USA 1996; 93: 211-215. – reference: Greenberg SA, Sanoudou D, Haslett JN, et al. Molecular profiles of inflammatory myopathies. Neurology 2002; 59: 1170-1182. – reference: Larman HB, Salajegheh M, Nazareno R, et al. Cytosolic 5′-nucleotidase 1A autoimmunity in sporadic inclusion body myositis. Ann Neurol 2013; 73: 408-418. – reference: de Luna N, Gallardo E, Soriano M, et al. Absence of dysferlin alters myogenin expression and delays human muscle differentiation 'in vitro'. J Biol Chem 2006; 281: 17092-17098. – reference: Hornung V, Ellegast J, Kim S, et al. 5'-Triphosphate RNA is the ligand for RIG-I. Science 2006; 314: 994-997. – reference: Kuznik A, Bencina M, Svajger U, et al. Mechanism of endosomal TLR inhibition by antimalarial drugs and imidazoquinolines. J Immunol 2011; 186: 4794-4804. – reference: Castanier C, Garcin D, Vazquez A, et al. Mitochondrial dynamics regulate the RIG-I-like receptor antiviral pathway. EMBO Rep 2010; 11: 133-138. – reference: Casciola-Rosen L, Nagaraju K, Plotz P, et al. Enhanced autoantigen expression in regenerating muscle cells in idiopathic inflammatory myopathy. J Exp Med 2005; 201: 591-601. – reference: Mammen AL. Autoimmune myopathies: autoantibodies, phenotypes and pathogenesis. Nat Rev Neurol 2011; 7: 343-354. – reference: Nagaraju K, Casciola-Rosen L, Lundberg I, et al. Activation of the endoplasmic reticulum stress response in autoimmune myositis: potential role in muscle fiber damage and dysfunction. Arthritis Rheum 2005; 52: 1824-1835. – reference: Salajegheh M, Kong SW, Pinkus JL, et al. Interferon-stimulated gene 15 (ISG15) conjugates proteins in dermatomyositis muscle with perifascicular atrophy. Ann Neurol 2010; 67: 53-63. – reference: Yasukawa K, Oshiumi H, Takeda M, et al. Mitofusin 2 inhibits mitochondrial antiviral signaling. Sci Signal 2009; 2: ra47. – reference: Gallardo E, de Andres I, Illa I. Cathepsins are upregulated by IFN-γ/STAT1 in human muscle culture: a possible active factor in dermatomyositis. J Neuropathol Exp Neurol 2001; 60: 847-855. – reference: Tournadre A, Lenief V, Eljaafari A, et al. Immature muscle precursors are a source of interferon-β in myositis: role of Toll-like receptor 3 activation and contribution to HLA class I up-regulation. Arthritis Rheum 2012; 64: 533-541. – reference: De Luna N, Gallardo E, Sonnet C, et al. Role of thrombospondin 1 in macrophage inflammation in dysferlin myopathy. J Neuropathol Exp Neurol 2010; 69: 643-653. – reference: Kim GT, Cho ML, Park YE, et al. Expression of TLR2, TLR4, and TLR9 in dermatomyositis and polymyositis. Clin Rheumatol 2010; 29: 273-279. – reference: Dalakas MC, Hohlfeld R. Polymyositis and dermatomyositis. Lancet 2003; 362: 971-982. – reference: Poeck H, Bscheider M, Gross O, et al. Recognition of RNA virus by RIG-I results in activation of CARD9 and inflammasome signaling for interleukin 1β production. Nat Immunol 2010; 11: 63-69. – reference: Illa I, Gallardo E, Gimeno R, et al. Signal transducer and activator of transcription 1 in human muscle: implications in inflammatory myopathies. Am J Pathol 1997; 151: 81-88. – reference: Greenberg SA, Pinkus JL, Pinkus GS, et al. Interferon-α/β-mediated innate immune mechanisms in dermatomyositis. Ann Neurol 2005; 57: 664-678. – reference: Kawai T, Akira S. Toll-like receptor and RIG-I-like receptor signaling. Ann N Y Acad Sci 2008; 1143: 1-20. – reference: Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 2004; 3: article 3. – reference: Hinson ER, Cresswell P. The antiviral protein, viperin, localizes to lipid droplets via its N-terminal amphipathic α-helix. Proc Natl Acad Sci USA 2009; 106: 20452-20457. – reference: Salminen A, Kauppinen A, Kaarniranta K. Emerging role of NF-κB signaling in the induction of senescence-associated secretory phenotype (SASP). Cell Signal 2012; 24: 835-845. – reference: Malathi K, Dong B, Gale M, Jr., et al. Small self-RNA generated by RNase L amplifies antiviral innate immunity. Nature 2007; 448: 816-819. – reference: Loo YM GMJ. Immune signaling by RIG-I-like receptors. Immunity 2011; 34: 680-692. – reference: Cappelletti C, Baggi F, Zolezzi F, et al. Type I interferon and Toll-like receptor expression characterizes inflammatory myopathies. Neurology 2011; 76: 2079-2088. – reference: Miyashita M, Oshiumi H, Matsumoto M, et al. DDX60, a DEXD/H box helicase, is a novel antiviral factor promoting RIG-I-like receptor-mediated signaling. Mol Cell Biol 2011; 31: 3802-3819. – reference: Nagaraju K, Raben N, Loeffler L, et al. Conditional up-regulation of MHC class I in skeletal muscle leads to self-sustaining autoimmune myositis and myositis-specific autoantibodies. Proc Natl Acad Sci USA 2000; 97: 9209-9214. – reference: Nakashima R, Imura Y, Kobayashi S, et al. The RIG-I-like receptor IFIH1/MDA5 is a dermatomyositis-specific autoantigen identified by the anti-CADM-140 antibody. Rheumatology (Oxford) 2010; 49: 433-440. – reference: Li CK, Knopp P, Moncrieffe H, et al. Overexpression of MHC class I heavy chain protein in young skeletal muscle leads to severe myositis: implications for juvenile myositis. Am J Pathol 2009; 175: 1030-1040. – reference: Uaesoontrachoon K, Cha HJ, Ampong B, et al. The effects of MyD88 deficiency on disease phenotype in dysferlin-deficient A/J mice: role of endogenous TLR ligands. J Pathol 2013; 231: 199-209. – reference: Engel AG, Franzini-Armstrong C. Myology: Basic and Clinical. McGraw-Hill Medical: New York, 2004: 1321-1486. – volume: 175: start-page: 1030 year: 2009 end-page: 1040 article-title: Overexpression of MHC class I heavy chain protein in young skeletal muscle leads to severe myositis: implications for juvenile myositis publication-title: Am J Pathol – volume: 314: start-page: 994 year: 2006 end-page: 997 article-title: 5'‐Triphosphate RNA is the ligand for RIG‐I publication-title: Science – volume: 70: start-page: 2029 year: 2011 end-page: 2036 article-title: Patients with systemic lupus erythematosus, myositis, rheumatoid arthritis and scleroderma share activation of a common type I interferon pathway publication-title: Ann Rheum Dis – volume: 60: start-page: 847 year: 2001 end-page: 855 article-title: Cathepsins are upregulated by IFN‐ /STAT1 in human muscle culture: a possible active factor in dermatomyositis publication-title: J Neuropathol Exp Neurol – volume: 29: start-page: 273 year: 2010 end-page: 279 article-title: Expression of TLR2, TLR4, and TLR9 in dermatomyositis and polymyositis publication-title: Clin Rheumatol – volume: 201: start-page: 591 year: 2005 end-page: 601 article-title: Enhanced autoantigen expression in regenerating muscle cells in idiopathic inflammatory myopathy publication-title: J Exp Med – volume: 11: start-page: 133 year: 2010 end-page: 138 article-title: Mitochondrial dynamics regulate the RIG‐I‐like receptor antiviral pathway publication-title: EMBO Rep – volume: 31: start-page: 49 year: 2011 end-page: 57 article-title: New insights into the role of RNase L in innate immunity publication-title: J Interferon Cytokine Res – volume: 151: start-page: 81 year: 1997 end-page: 88 article-title: Signal transducer and activator of transcription 1 in human muscle: implications in inflammatory myopathies publication-title: Am J Pathol – volume: 49: start-page: 433 year: 2010 end-page: 440 article-title: The RIG‐I‐like receptor IFIH1/MDA5 is a dermatomyositis‐specific autoantigen identified by the anti‐CADM‐140 antibody publication-title: Rheumatology (Oxford) – volume: 11: start-page: 203 year: 2012 end-page: 206 article-title: Pathogenesis and therapies of immune‐mediated myopathies publication-title: Autoimmun Rev – volume: 186: start-page: 4794 year: 2011 end-page: 4804 article-title: Mechanism of endosomal TLR inhibition by antimalarial drugs and imidazoquinolines publication-title: J Immunol – volume: 31: start-page: 3802 year: 2011 end-page: 3819 article-title: DDX60, a DEXD/H box helicase, is a novel antiviral factor promoting RIG‐I‐like receptor‐mediated signaling publication-title: Mol Cell Biol – volume: 52: start-page: 1824 year: 2005 end-page: 1835 article-title: Activation of the endoplasmic reticulum stress response in autoimmune myositis: potential role in muscle fiber damage and dysfunction publication-title: Arthritis Rheum – volume: 281: start-page: 17092 year: 2006 end-page: 17098 article-title: Absence of dysferlin alters myogenin expression and delays human muscle differentiation ' ' publication-title: J Biol Chem – volume: 67: start-page: 53 year: 2010 end-page: 63 article-title: Interferon‐stimulated gene 15 ( ) conjugates proteins in dermatomyositis muscle with perifascicular atrophy publication-title: Ann Neurol – volume: 7: start-page: 343 year: 2011 end-page: 354 article-title: Autoimmune myopathies: autoantibodies, phenotypes and pathogenesis publication-title: Nat Rev Neurol – volume: 73: start-page: 281 year: 2013 end-page: 293 article-title: Implication of double‐stranded RNA signaling in the etiology of autoimmune myasthenia gravis publication-title: Ann Neurol – volume: 69: start-page: 643 year: 2010 end-page: 653 article-title: Role of thrombospondin 1 in macrophage inflammation in dysferlin myopathy publication-title: J Neuropathol Exp Neurol – volume: 73: start-page: 408 year: 2013 end-page: 418 article-title: Cytosolic 5′‐nucleotidase 1A autoimmunity in sporadic inclusion body myositis publication-title: Ann Neurol – volume: 1143: start-page: 1 year: 2008 end-page: 20 article-title: Toll‐like receptor and RIG‐I‐like receptor signaling publication-title: Ann N Y Acad Sci – volume: 57: start-page: 664 year: 2005 end-page: 678 article-title: Interferon‐ / ‐mediated innate immune mechanisms in dermatomyositis publication-title: Ann Neurol – volume: 59: start-page: 1170 year: 2002 end-page: 1182 article-title: Molecular profiles of inflammatory myopathies publication-title: Neurology – volume: 93: start-page: 211 year: 1996 end-page: 215 article-title: Immunoregulatory properties of ISG15, an interferon‐induced cytokine publication-title: Proc Natl Acad Sci USA – volume: 3 year: 2004 article-title: Linear models and empirical bayes methods for assessing differential expression in microarray experiments publication-title: Stat Appl Genet Mol Biol – volume: 231: start-page: 199 year: 2013 end-page: 209 article-title: The effects of MyD88 deficiency on disease phenotype in dysferlin‐deficient A/J mice: role of endogenous TLR ligands publication-title: J Pathol – volume: 64: start-page: 533 year: 2012 end-page: 541 article-title: Immature muscle precursors are a source of interferon‐ in myositis: role of Toll‐like receptor 3 activation and contribution to HLA class I up‐regulation publication-title: Arthritis Rheum – volume: 23: start-page: 19 year: 2005 end-page: 28 article-title: Cell type‐specific involvement of RIG‐I in antiviral response publication-title: Immunity – volume: 10: start-page: 534 year: 2011 end-page: 539 article-title: Viperin: a multifunctional, interferon‐inducible protein that regulates virus replication publication-title: Cell Host Microbe – volume: 448: start-page: 816 year: 2007 end-page: 819 article-title: Small self‐RNA generated by RNase L amplifies antiviral innate immunity publication-title: Nature – volume: 97: start-page: 9209 year: 2000 end-page: 9214 article-title: Conditional up‐regulation of MHC class I in skeletal muscle leads to self‐sustaining autoimmune myositis and myositis‐specific autoantibodies publication-title: Proc Natl Acad Sci USA – volume: 1: start-page: 167 year: 2011 end-page: 176 article-title: RIG‐I like receptors and their signaling crosstalk in the regulation of antiviral immunity publication-title: Curr Opin Virol – volume: 11: start-page: 63 year: 2010 end-page: 69 article-title: Recognition of RNA virus by RIG‐I results in activation of CARD9 and inflammasome signaling for interleukin 1 production publication-title: Nat Immunol – volume: 2 year: 2009 article-title: Mitofusin 2 inhibits mitochondrial antiviral signaling publication-title: Sci Signal – start-page: 1321 year: 2004 end-page: 1486 – volume: 76: start-page: 2079 year: 2011 end-page: 2088 article-title: Type I interferon and Toll‐like receptor expression characterizes inflammatory myopathies publication-title: Neurology – volume: 34: start-page: 680 year: 2011 end-page: 692 article-title: Immune signaling by RIG‐I‐like receptors publication-title: Immunity – volume: 106: start-page: 20452 year: 2009 end-page: 20457 article-title: The antiviral protein, viperin, localizes to lipid droplets via its N‐terminal amphipathic ‐helix publication-title: Proc Natl Acad Sci USA – volume: 362: start-page: 971 year: 2003 end-page: 982 article-title: Polymyositis and dermatomyositis publication-title: Lancet – volume: 24: start-page: 835 year: 2012 end-page: 845 article-title: Emerging role of NF‐ B signaling in the induction of senescence‐associated secretory phenotype (SASP) publication-title: Cell Signal – ident: e_1_2_7_37_1 doi: 10.1073/pnas.0911679106 – ident: e_1_2_7_11_1 doi: 10.1002/ana.21805 – ident: e_1_2_7_27_1 doi: 10.1074/jbc.M601885200 – ident: e_1_2_7_16_1 doi: 10.1016/j.coviro.2011.04.004 – ident: e_1_2_7_32_1 doi: 10.1128/MCB.01368-10 – ident: e_1_2_7_9_1 doi: 10.1002/ana.20464 – ident: e_1_2_7_35_1 doi: 10.1038/embor.2009.258 – ident: e_1_2_7_31_1 doi: 10.1002/ana.23791 – ident: e_1_2_7_20_1 doi: 10.1016/j.cellsig.2011.12.006 – ident: e_1_2_7_26_1 doi: 10.4049/jimmunol.1000702 – ident: e_1_2_7_6_1 doi: 10.1093/jnen/60.9.847 – ident: e_1_2_7_13_1 doi: 10.1136/ard.2011.150326 – ident: e_1_2_7_12_1 doi: 10.1212/WNL.59.8.1170 – ident: e_1_2_7_41_1 doi: 10.1093/rheumatology/kep375 – ident: e_1_2_7_3_1 doi: 10.1016/S0140-6736(03)14368-1 – ident: e_1_2_7_5_1 doi: 10.1002/ana.23840 – ident: e_1_2_7_25_1 doi: 10.1126/science.1132505 – volume: 151 start-page: 81 year: 1997 ident: e_1_2_7_23_1 article-title: Signal transducer and activator of transcription 1 in human muscle: implications in inflammatory myopathies publication-title: Am J Pathol – ident: e_1_2_7_7_1 doi: 10.1002/art.21103 – ident: e_1_2_7_29_1 doi: 10.1016/j.immuni.2011.05.003 – ident: e_1_2_7_28_1 doi: 10.2202/1544-6115.1027 – ident: e_1_2_7_38_1 doi: 10.2353/ajpath.2009.090196 – ident: e_1_2_7_19_1 doi: 10.1038/ni.1824 – ident: e_1_2_7_30_1 doi: 10.1002/path.4207 – ident: e_1_2_7_10_1 doi: 10.1212/WNL.0b013e31821f440a – ident: e_1_2_7_14_1 doi: 10.1073/pnas.93.1.211 – ident: e_1_2_7_24_1 doi: 10.1097/NEN.0b013e3181e0d01c – ident: e_1_2_7_39_1 doi: 10.1089/jir.2010.0120 – ident: e_1_2_7_36_1 doi: 10.1126/scisignal.2000287 – ident: e_1_2_7_15_1 doi: 10.1196/annals.1443.020 – ident: e_1_2_7_33_1 doi: 10.1016/j.immuni.2005.04.010 – ident: e_1_2_7_17_1 doi: 10.1007/s10067-009-1316-7 – ident: e_1_2_7_8_1 doi: 10.1073/pnas.97.16.9209 – ident: e_1_2_7_22_1 doi: 10.1016/j.autrev.2011.05.013 – ident: e_1_2_7_18_1 doi: 10.1002/art.33350 – start-page: 1321 volume-title: Myology: Basic and Clinical year: 2004 ident: e_1_2_7_2_1 – ident: e_1_2_7_40_1 doi: 10.1084/jem.20041367 – ident: e_1_2_7_4_1 doi: 10.1038/nrneurol.2011.63 – ident: e_1_2_7_34_1 doi: 10.1016/j.chom.2011.11.004 – ident: e_1_2_7_21_1 doi: 10.1038/nature06042 – reference: 24687932 - J Pathol. 2014 Jul;233(3):215-6 |
SSID | ssj0009955 |
Score | 2.4339695 |
Snippet | We investigated the molecular mechanisms involved in the pathogenesis of three inflammatory myopathies, dermatomyositis (DM), polymyositis (PM) and inclusion... We investigated the molecular mechanisms involved in the pathogenesis of three inflammatory myopathies, dermatomyositis ( DM ), polymyositis ( PM ) and... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 258 |
SubjectTerms | Adult Aged Case-Control Studies Cells, Cultured DDX58 DEAD Box Protein 58 DEAD-box RNA Helicases - genetics DEAD-box RNA Helicases - metabolism dermatomyositis Dermatomyositis - genetics Dermatomyositis - immunology Dermatomyositis - metabolism Female Gene Expression Profiling - methods Gene Expression Regulation Genetic Association Studies Histocompatibility Antigens Class I - metabolism Humans Immunity, Innate Immunohistochemistry Inclusion Bodies - immunology Inclusion Bodies - metabolism inflammatory myopathy innate immunity Interferon-beta - metabolism Interferon-Induced Helicase, IFIH1 Male Microdissection Middle Aged Muscle Fibers, Skeletal - immunology Muscle Fibers, Skeletal - metabolism Oligonucleotide Array Sequence Analysis Polymyositis - genetics Polymyositis - immunology Polymyositis - metabolism Receptors, Immunologic RIG-I Signal Transduction Toll-Like Receptor 3 - genetics Toll-Like Receptor 3 - metabolism |
Title | Altered RIG-I/DDX58-mediated innate immunity in dermatomyositis |
URI | https://api.istex.fr/ark:/67375/WNG-VJNBH6B3-W/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpath.4346 https://www.ncbi.nlm.nih.gov/pubmed/24604766 https://www.proquest.com/docview/1534510532 https://www.proquest.com/docview/1535626300 https://www.proquest.com/docview/1540228594 |
Volume | 233 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CCqWXvh9O0-KWUnLxrmxJVkRPm2yTTSBLCUmzh4KwHoaQ1huyXmh66k_ob-wvqUZ-hJS0lJ4s4zHoMSN9kma-AXhTFoQXWpdJqq1ImC2LREvnkhIXN-51iITMcwfTfHLM9md8tgLvuliYhh-iP3BDywjzNRp4oRfDK9JQzNg7YJQh3XZKc-TNHx9eUUdJyXnPFM5S0bEKkWzY_3ltLbqF3fr1JqB5HbeGhWfnHnzqqtz4m5wNlrUemG-_sTn-Z5vuw90WkMajRoMewIqrHsLtg_bK_RFsj_A-3dn4cG_35_cfe8PxeMY3fSnEnHi8Gp9WlX_GpyHSpL7077HF-b6ef7kMLmGLx3C88_5oe5K0mRcSwyQ6w-VGUmkEccbKEmNniaWWswLJ7ak2OePCSC2IoTqjtrDIym-49fshWZJ8kz6B1WpeuWcQU-o3jFankhvGdGq00DZzHhU44aGD1hFsdGOgTEtLjtkxPquGUDlT2CkKOyWC173oecPFcZPQ2zCQvURxcYbOa4Krk-mu-rg_3ZrkW1SdRLDejbRq7Xah_PzPEHLSLIJX_WdvcXiNUlRuvgwyHDl8CPmbDENiIS5ZBE8bLeorlLGcMJH7mm4EXfhzW9SH0dEEC2v_Lvoc7nhMxxqP4nVYrS-W7oXHTbV-GQzkF4JaE6Q |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVgIuvB-BAgEh1Et2vbGd1BKXbUubLd0VqrbtXpAVPyJVhSxqsxLlxE_gN_JL8DiPqqggxCmOMpH8mLE_e8bfALwucsJzpYpooEwaMVPkkRLWRgUubtzpEPGZ58aTJDtguzM-W4K37V2Ymh-iO3BDy_DzNRo4Hkj3L1hDMWVvj1GWXIMV759DSLR_QR4lBOcdVzgbpC2vEIn73a-XVqMV7NivV0HNy8jVLz3bt-FjW-k64uSkt6hUT3_7jc_xf1t1B241mDQc1kp0F5ZseQ-ujxuv-33YHKJL3Zpwf7Tz8_uPUX9ra8bXXclfO3GQNTwuS_cMj_1lk-rcvYcGp_xq_vncR4WdPYCD7XfTzSxqki9EmgmMh0u0oEKnxGojCrw-Sww1nOXIb0-Vdh2eaqFSoqmKqckNEvNrbtyWSBQkWacPYbmcl_YxhJS6PaNRA8E1Y2qgVapMbB0wsKlDD0oFsNYOgtQNMzkmyPgka07lWGKnSOyUAF51ol9qOo6rhN74kewk8tMTjF9LuTya7MjD3clGlmxQeRTAajvUsjHdM-mWAIaok8YBvOw-O6NDT0pe2vnCy3Ck8SHkbzIMuYW4YAE8qtWoq1DMEsLSxNV0zSvDn9siPwynGRae_LvoC7iRTcd7cm80ef8UbjqIx-oA41VYrk4X9pmDUZV67q3lF7KoF8I |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RkFAvfT_S0pJWVcUlu97YTrB6WliWXVpWCEHZQyUrfkRCtFkEWan0xE_gN_aX1OM8EBWtqp7iKBPJj5nM53jmG4B3eUZ4plQe9ZRJI2byLFLC2ihH58adDhFfeW53kowO2c6UTxfgQ5MLU_FDtD_c0DL89xoN_NTk3WvSUKzY22GUJXdgiSXOTSIi2r_mjhKC85YqnPXShlaIxN321RvOaAnn9fttSPMmcPWeZ3gfvjR9rgJOTjrzUnX0j9_oHP9zUA_gXo1Iw36lQg9hwRaPYHm3PnN_DJt9PFC3Jtwfb_-8vBp3B4MpX3ctn3TiAGt4XBTuGh77VJPywt2HBj_45ezbhY8JO38Ch8Otg81RVJdeiDQTGA2XaEGFTonVRuSYPEsMNZxlyG5PlU4YT7VQKdFUxdRkBmn5NTduQyRykqzTp7BYzAr7HEJK3Y7RqJ7gmjHV0ypVJrYOFtjUYQelAlhr1kDqmpccy2N8lRWjcixxUiROSgBvW9HTiozjNqH3fiFbiezsBKPXUi6PJtvy885kY5RsUHkUwEqz0rI23HPpHABDzEnjAN60j53J4TlKVtjZ3MtwJPEh5G8yDJmFuGABPKu0qO1Q7NSVpYnr6ZrXhT-PRe71D0bYePHvoquwvDcYyk_jyceXcNfhO1ZFF6_AYnk2t68chirVa28rvwBc8xZx |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Altered+RIG+%E2%80%90I%2F+DDX58+%E2%80%90mediated+innate+immunity+in+dermatomyositis&rft.jtitle=The+Journal+of+pathology&rft.au=Su%C3%A1rez%E2%80%90Calvet%2C+Xavier&rft.au=Gallardo%2C+Eduard&rft.au=Nogales%E2%80%90Gadea%2C+Gisela&rft.au=Querol%2C+Luis&rft.date=2014-07-01&rft.issn=0022-3417&rft.eissn=1096-9896&rft.volume=233&rft.issue=3&rft.spage=258&rft.epage=268&rft_id=info:doi/10.1002%2Fpath.4346&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_path_4346 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3417&client=summon |