Altered RIG-I/DDX58-mediated innate immunity in dermatomyositis

We investigated the molecular mechanisms involved in the pathogenesis of three inflammatory myopathies, dermatomyositis (DM), polymyositis (PM) and inclusion body myositis (IBM). We performed microarray experiments† using microdissected pathological muscle fibres from 15 patients with these disorder...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of pathology Vol. 233; no. 3; pp. 258 - 268
Main Authors Suárez-Calvet, Xavier, Gallardo, Eduard, Nogales-Gadea, Gisela, Querol, Luis, Navas, Miquel, Díaz-Manera, Jordi, Rojas-Garcia, Ricard, Illa, Isabel
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.07.2014
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0022-3417
1096-9896
1096-9896
DOI10.1002/path.4346

Cover

Abstract We investigated the molecular mechanisms involved in the pathogenesis of three inflammatory myopathies, dermatomyositis (DM), polymyositis (PM) and inclusion body myositis (IBM). We performed microarray experiments† using microdissected pathological muscle fibres from 15 patients with these disorders and five controls. Differentially expressed candidate genes were validated by immunohistochemistry on muscle biopsies, and the altered pathways were analysed in human myotube cultures. Up‐regulation of genes involved in viral and nucleic acid recognition were found in the three myopathies but not in controls. In DM, retinoic acid‐inducible gene 1 (RIG‐I, DDX58) and the novel antiviral factor DDX60, which promotes RIG‐I‐mediated signalling, were significantly up‐regulated, followed by IFIH1 (MDA5) and TLR3. Immunohistochemistry confirmed over‐expression of RIG‐I in pathological muscle fibres in 5/5 DM, 0/5 PM and 0/5 IBM patients, and in 0/5 controls. Stimulation of human myotubes with a ligand of RIG‐I produced a significant secretion of interferon‐β (IFNβ; p < 0.05) and up‐regulation of class I MHC, RIG‐I and TLR3 (p < 0.05) by IFNβ‐dependent and TLR3‐independent mechanisms. RIG‐I‐mediated innate immunity, triggered by a viral or damage signal, plays a significant role in the pathogenesis of DM, but not in that of PM or IBM. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd
AbstractList We investigated the molecular mechanisms involved in the pathogenesis of three inflammatory myopathies, dermatomyositis (DM), polymyositis (PM) and inclusion body myositis (IBM). We performed microarray experiments super() using microdissected pathological muscle fibres from 15 patients with these disorders and five controls. Differentially expressed candidate genes were validated by immunohistochemistry on muscle biopsies, and the altered pathways were analysed in human myotube cultures. Up-regulation of genes involved in viral and nucleic acid recognition were found in the three myopathies but not in controls. In DM, retinoic acid-inducible gene 1 ( RIG-I , DDX58 ) and the novel antiviral factor DDX60 , which promotes RIG-I-mediated signalling, were significantly up-regulated, followed by IFIH1 ( MDA5 ) and TLR3 . Immunohistochemistry confirmed over-expression of RIG-I in pathological muscle fibres in 5/5 DM, 0/5 PM and 0/5 IBM patients, and in 0/5 controls. Stimulation of human myotubes with a ligand of RIG-I produced a significant secretion of interferon- [beta] (IFN [beta] ; p < 0.05) and up-regulation of class I MHC, RIG-I and TLR3 ( p < 0.05) by IFN [beta] -dependent and TLR3-independent mechanisms. RIG-I-mediated innate immunity, triggered by a viral or damage signal, plays a significant role in the pathogenesis of DM, but not in that of PM or IBM. Copyright copyright 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd
We investigated the molecular mechanisms involved in the pathogenesis of three inflammatory myopathies, dermatomyositis (DM), polymyositis (PM) and inclusion body myositis (IBM). We performed microarray experiments(†) using microdissected pathological muscle fibres from 15 patients with these disorders and five controls. Differentially expressed candidate genes were validated by immunohistochemistry on muscle biopsies, and the altered pathways were analysed in human myotube cultures. Up-regulation of genes involved in viral and nucleic acid recognition were found in the three myopathies but not in controls. In DM, retinoic acid-inducible gene 1 (RIG-I, DDX58) and the novel antiviral factor DDX60, which promotes RIG-I-mediated signalling, were significantly up-regulated, followed by IFIH1 (MDA5) and TLR3. Immunohistochemistry confirmed over-expression of RIG-I in pathological muscle fibres in 5/5 DM, 0/5 PM and 0/5 IBM patients, and in 0/5 controls. Stimulation of human myotubes with a ligand of RIG-I produced a significant secretion of interferon-β (IFNβ; p < 0.05) and up-regulation of class I MHC, RIG-I and TLR3 (p < 0.05) by IFNβ-dependent and TLR3-independent mechanisms. RIG-I-mediated innate immunity, triggered by a viral or damage signal, plays a significant role in the pathogenesis of DM, but not in that of PM or IBM.
We investigated the molecular mechanisms involved in the pathogenesis of three inflammatory myopathies, dermatomyositis (DM), polymyositis (PM) and inclusion body myositis (IBM). We performed microarray experiments† using microdissected pathological muscle fibres from 15 patients with these disorders and five controls. Differentially expressed candidate genes were validated by immunohistochemistry on muscle biopsies, and the altered pathways were analysed in human myotube cultures. Up‐regulation of genes involved in viral and nucleic acid recognition were found in the three myopathies but not in controls. In DM, retinoic acid‐inducible gene 1 (RIG‐I, DDX58) and the novel antiviral factor DDX60, which promotes RIG‐I‐mediated signalling, were significantly up‐regulated, followed by IFIH1 (MDA5) and TLR3. Immunohistochemistry confirmed over‐expression of RIG‐I in pathological muscle fibres in 5/5 DM, 0/5 PM and 0/5 IBM patients, and in 0/5 controls. Stimulation of human myotubes with a ligand of RIG‐I produced a significant secretion of interferon‐β (IFNβ; p < 0.05) and up‐regulation of class I MHC, RIG‐I and TLR3 (p < 0.05) by IFNβ‐dependent and TLR3‐independent mechanisms. RIG‐I‐mediated innate immunity, triggered by a viral or damage signal, plays a significant role in the pathogenesis of DM, but not in that of PM or IBM. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd
We investigated the molecular mechanisms involved in the pathogenesis of three inflammatory myopathies, dermatomyositis (DM), polymyositis (PM) and inclusion body myositis (IBM). We performed microarray experiments(†) using microdissected pathological muscle fibres from 15 patients with these disorders and five controls. Differentially expressed candidate genes were validated by immunohistochemistry on muscle biopsies, and the altered pathways were analysed in human myotube cultures. Up-regulation of genes involved in viral and nucleic acid recognition were found in the three myopathies but not in controls. In DM, retinoic acid-inducible gene 1 (RIG-I, DDX58) and the novel antiviral factor DDX60, which promotes RIG-I-mediated signalling, were significantly up-regulated, followed by IFIH1 (MDA5) and TLR3. Immunohistochemistry confirmed over-expression of RIG-I in pathological muscle fibres in 5/5 DM, 0/5 PM and 0/5 IBM patients, and in 0/5 controls. Stimulation of human myotubes with a ligand of RIG-I produced a significant secretion of interferon-β (IFNβ; p < 0.05) and up-regulation of class I MHC, RIG-I and TLR3 (p < 0.05) by IFNβ-dependent and TLR3-independent mechanisms. RIG-I-mediated innate immunity, triggered by a viral or damage signal, plays a significant role in the pathogenesis of DM, but not in that of PM or IBM.We investigated the molecular mechanisms involved in the pathogenesis of three inflammatory myopathies, dermatomyositis (DM), polymyositis (PM) and inclusion body myositis (IBM). We performed microarray experiments(†) using microdissected pathological muscle fibres from 15 patients with these disorders and five controls. Differentially expressed candidate genes were validated by immunohistochemistry on muscle biopsies, and the altered pathways were analysed in human myotube cultures. Up-regulation of genes involved in viral and nucleic acid recognition were found in the three myopathies but not in controls. In DM, retinoic acid-inducible gene 1 (RIG-I, DDX58) and the novel antiviral factor DDX60, which promotes RIG-I-mediated signalling, were significantly up-regulated, followed by IFIH1 (MDA5) and TLR3. Immunohistochemistry confirmed over-expression of RIG-I in pathological muscle fibres in 5/5 DM, 0/5 PM and 0/5 IBM patients, and in 0/5 controls. Stimulation of human myotubes with a ligand of RIG-I produced a significant secretion of interferon-β (IFNβ; p < 0.05) and up-regulation of class I MHC, RIG-I and TLR3 (p < 0.05) by IFNβ-dependent and TLR3-independent mechanisms. RIG-I-mediated innate immunity, triggered by a viral or damage signal, plays a significant role in the pathogenesis of DM, but not in that of PM or IBM.
We investigated the molecular mechanisms involved in the pathogenesis of three inflammatory myopathies, dermatomyositis (DM), polymyositis (PM) and inclusion body myositis (IBM). We performed microarray experiments[dagger] using microdissected pathological muscle fibres from 15 patients with these disorders and five controls. Differentially expressed candidate genes were validated by immunohistochemistry on muscle biopsies, and the altered pathways were analysed in human myotube cultures. Up-regulation of genes involved in viral and nucleic acid recognition were found in the three myopathies but not in controls. In DM, retinoic acid-inducible gene 1 (RIG-I, DDX58) and the novel antiviral factor DDX60, which promotes RIG-I-mediated signalling, were significantly up-regulated, followed by IFIH1 (MDA5) and TLR3. Immunohistochemistry confirmed over-expression of RIG-I in pathological muscle fibres in 5/5 DM, 0/5 PM and 0/5 IBM patients, and in 0/5 controls. Stimulation of human myotubes with a ligand of RIG-I produced a significant secretion of interferon-[beta] (IFN[beta]; p < 0.05) and up-regulation of class I MHC, RIG-I and TLR3 (p < 0.05) by IFN[beta]-dependent and TLR3-independent mechanisms. RIG-I-mediated innate immunity, triggered by a viral or damage signal, plays a significant role in the pathogenesis of DM, but not in that of PM or IBM. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd [PUBLICATION ABSTRACT]
We investigated the molecular mechanisms involved in the pathogenesis of three inflammatory myopathies, dermatomyositis ( DM ), polymyositis ( PM ) and inclusion body myositis ( IBM ). We performed microarray experiments † using microdissected pathological muscle fibres from 15 patients with these disorders and five controls. Differentially expressed candidate genes were validated by immunohistochemistry on muscle biopsies, and the altered pathways were analysed in human myotube cultures. Up‐regulation of genes involved in viral and nucleic acid recognition were found in the three myopathies but not in controls. In DM , retinoic acid‐inducible gene 1 ( RIG ‐I , DDX58 ) and the novel antiviral factor DDX60 , which promotes RIG ‐I‐mediated signalling, were significantly up‐regulated, followed by IFIH1 ( MDA5 ) and TLR3 . Immunohistochemistry confirmed over‐expression of RIG ‐I in pathological muscle fibres in 5/5 DM , 0/5 PM and 0/5 IBM patients, and in 0/5 controls. Stimulation of human myotubes with a ligand of RIG ‐I produced a significant secretion of interferon‐ β ( IFN β ; p < 0.05) and up‐regulation of class I MHC , RIG ‐I and TLR3 ( p < 0.05) by IFN β ‐dependent and TLR3 ‐independent mechanisms. RIG ‐I‐mediated innate immunity, triggered by a viral or damage signal, plays a significant role in the pathogenesis of DM , but not in that of PM or IBM . Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd
Author Díaz-Manera, Jordi
Illa, Isabel
Gallardo, Eduard
Navas, Miquel
Suárez-Calvet, Xavier
Nogales-Gadea, Gisela
Rojas-Garcia, Ricard
Querol, Luis
Author_xml – sequence: 1
  givenname: Xavier
  surname: Suárez-Calvet
  fullname: Suárez-Calvet, Xavier
  organization: Neuromuscular Diseases Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona and Institut de Recerca Sant Pau, Barcelona, Spain
– sequence: 2
  givenname: Eduard
  surname: Gallardo
  fullname: Gallardo, Eduard
  organization: Neuromuscular Diseases Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona and Institut de Recerca Sant Pau, Barcelona, Spain
– sequence: 3
  givenname: Gisela
  surname: Nogales-Gadea
  fullname: Nogales-Gadea, Gisela
  organization: Neuromuscular Diseases Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona and Institut de Recerca Sant Pau, Barcelona, Spain
– sequence: 4
  givenname: Luis
  surname: Querol
  fullname: Querol, Luis
  organization: Neuromuscular Diseases Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona and Institut de Recerca Sant Pau, Barcelona, Spain
– sequence: 5
  givenname: Miquel
  surname: Navas
  fullname: Navas, Miquel
  organization: Neuromuscular Diseases Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona and Institut de Recerca Sant Pau, Barcelona, Spain
– sequence: 6
  givenname: Jordi
  surname: Díaz-Manera
  fullname: Díaz-Manera, Jordi
  organization: Neuromuscular Diseases Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona and Institut de Recerca Sant Pau, Barcelona, Spain
– sequence: 7
  givenname: Ricard
  surname: Rojas-Garcia
  fullname: Rojas-Garcia, Ricard
  organization: Neuromuscular Diseases Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona and Institut de Recerca Sant Pau, Barcelona, Spain
– sequence: 8
  givenname: Isabel
  surname: Illa
  fullname: Illa, Isabel
  email: iilla@santpau.cat
  organization: Neuromuscular Diseases Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona and Institut de Recerca Sant Pau, Barcelona, Spain
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24604766$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtPGzEUhS0EggRY9A-gSN20i0nujB8zXlUhoUmqiFYISHeWYzvCMI_U9qjk39dRAgtEJVZXtr9zru89XXRYN7VB6FMK_RQgG6xleOgTTNgB6qTAWcILzg5RJ75lCSZpfoK63j8CAOeUHqOTjDAgOWMd9G1YBuOM7t3MJslsMB7_pkVSGW1liJe2rmPt2apqaxs28dzTxlUyNNWm8TZYf4aOVrL05nxfT9Hd96vb0TSZ_5zMRsN5oggHlmCmOOYqB6M0X2FOCGisKZEYgOKlYoTmii9zUHiZYS01FKRQVMdh-ApYgU_Rl53v2jV_WuODqKxXpixlbZrWi5SSOGxBOfkAiinLWOwc0c9v0MemdXUcZEsRmsbPZZG62FPtMq5GrJ2tpNuIly1GYLADlGu8d2YllA0y2KYOTtpSpCC2OYltTmKbU1R8faN4MX2P3bv_taXZ_B8Uv4a3070i2SmsD-b5VSHdk2A5zqlYXE_E_Y_ryym7xGKB_wHkGa2U
CitedBy_id crossref_primary_10_1021_acsomega_4c02631
crossref_primary_10_1111_bpa_12957
crossref_primary_10_1136_ard_2024_226057
crossref_primary_10_1186_s13075_017_1383_0
crossref_primary_10_1016_j_heliyon_2020_e04866
crossref_primary_10_3389_fimmu_2016_00234
crossref_primary_10_3389_fimmu_2019_01040
crossref_primary_10_1093_jnen_nlaa023
crossref_primary_10_1007_s10067_020_05568_5
crossref_primary_10_1002_art_41625
crossref_primary_10_1002_path_4355
crossref_primary_10_1055_a_1548_8934
crossref_primary_10_1186_s13075_019_1905_z
crossref_primary_10_1016_j_cyto_2014_10_012
crossref_primary_10_1016_S1634_7072_20_43301_X
crossref_primary_10_1080_1744666X_2022_2054803
crossref_primary_10_3389_fimmu_2019_00638
crossref_primary_10_1016_j_jneuroim_2016_07_022
crossref_primary_10_3390_ijms19092786
crossref_primary_10_1016_j_heliyon_2023_e16935
crossref_primary_10_3389_fneur_2019_00554
crossref_primary_10_1007_s12519_019_00313_8
crossref_primary_10_1038_srep23377
crossref_primary_10_1089_dna_2018_4256
crossref_primary_10_1002_acr2_11081
crossref_primary_10_18632_aging_204098
crossref_primary_10_1016_j_cyto_2014_11_026
crossref_primary_10_1016_j_pharmthera_2017_12_003
crossref_primary_10_1016_j_cyto_2018_11_022
crossref_primary_10_1038_srep32818
crossref_primary_10_1136_rmdopen_2022_002818
crossref_primary_10_1007_s00401_017_1731_9
crossref_primary_10_1016_j_nmd_2019_10_005
crossref_primary_10_1016_j_nmd_2016_05_014
crossref_primary_10_3389_fcell_2023_1084068
crossref_primary_10_1007_s00401_021_02305_3
crossref_primary_10_1002_art_41639
crossref_primary_10_31083_j_fbl2902072
crossref_primary_10_1111_nan_12519
crossref_primary_10_1002_rai2_12078
crossref_primary_10_1016_j_compbiolchem_2019_107135
crossref_primary_10_3892_mmr_2016_5703
crossref_primary_10_1177_1759720X19886494
crossref_primary_10_1136_rmdopen_2016_000294
crossref_primary_10_4049_immunohorizons_2200078
crossref_primary_10_1016_j_ajpath_2015_11_010
crossref_primary_10_1016_j_yexcr_2017_02_035
crossref_primary_10_1212_WNL_0000000000003568
crossref_primary_10_1038_s41598_021_04302_8
crossref_primary_10_5409_wjcp_v12_i3_107
crossref_primary_10_3389_fneur_2023_1328547
crossref_primary_10_1111_ncn3_12563
crossref_primary_10_1016_j_autrev_2017_07_021
crossref_primary_10_1111_cen3_12419
crossref_primary_10_1038_s41598_017_09309_8
crossref_primary_10_1007_s13311_018_00676_2
crossref_primary_10_1016_j_cytogfr_2016_03_005
crossref_primary_10_1056_NEJMra1402225
crossref_primary_10_1172_jci_insight_136471
crossref_primary_10_1038_s41590_024_02004_7
crossref_primary_10_1093_brain_awy105
crossref_primary_10_1002_jcla_24631
crossref_primary_10_1093_brain_aww122
crossref_primary_10_1038_s41598_022_15003_1
crossref_primary_10_1093_brain_awv308
crossref_primary_10_1007_s11926_021_01017_7
crossref_primary_10_1186_s12948_015_0031_y
crossref_primary_10_1111_nan_12380
crossref_primary_10_1002_art_42345
crossref_primary_10_1007_s40272_017_0240_6
crossref_primary_10_1155_2021_9991726
crossref_primary_10_1016_j_jneuroim_2015_12_008
crossref_primary_10_14412_1995_4484_2020_214_224
crossref_primary_10_1016_j_autrev_2022_103161
crossref_primary_10_1155_2023_8564650
crossref_primary_10_1002_art_40328
crossref_primary_10_1186_s40478_016_0308_5
crossref_primary_10_1038_s41467_024_49460_1
crossref_primary_10_1111_bjd_15006
crossref_primary_10_1111_cen3_12824
crossref_primary_10_3233_JND_230168
crossref_primary_10_1002_jgm_3598
crossref_primary_10_1371_journal_pone_0260511
crossref_primary_10_3390_genes12121898
crossref_primary_10_1016_j_trsl_2015_01_007
crossref_primary_10_1093_rheumatology_kez508
Cites_doi 10.1073/pnas.0911679106
10.1002/ana.21805
10.1074/jbc.M601885200
10.1016/j.coviro.2011.04.004
10.1128/MCB.01368-10
10.1002/ana.20464
10.1038/embor.2009.258
10.1002/ana.23791
10.1016/j.cellsig.2011.12.006
10.4049/jimmunol.1000702
10.1093/jnen/60.9.847
10.1136/ard.2011.150326
10.1212/WNL.59.8.1170
10.1093/rheumatology/kep375
10.1016/S0140-6736(03)14368-1
10.1002/ana.23840
10.1126/science.1132505
10.1002/art.21103
10.1016/j.immuni.2011.05.003
10.2202/1544-6115.1027
10.2353/ajpath.2009.090196
10.1038/ni.1824
10.1002/path.4207
10.1212/WNL.0b013e31821f440a
10.1073/pnas.93.1.211
10.1097/NEN.0b013e3181e0d01c
10.1089/jir.2010.0120
10.1126/scisignal.2000287
10.1196/annals.1443.020
10.1016/j.immuni.2005.04.010
10.1007/s10067-009-1316-7
10.1073/pnas.97.16.9209
10.1016/j.autrev.2011.05.013
10.1002/art.33350
10.1084/jem.20041367
10.1038/nrneurol.2011.63
10.1016/j.chom.2011.11.004
10.1038/nature06042
ContentType Journal Article
Copyright Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd
Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd
– notice: Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7T5
7TK
7TM
7TO
8FD
FR3
H94
K9.
P64
RC3
7X8
DOI 10.1002/path.4346
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList AIDS and Cancer Research Abstracts
MEDLINE

MEDLINE - Academic
Genetics Abstracts
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1096-9896
EndPage 268
ExternalDocumentID 3330479141
24604766
10_1002_path_4346
PATH4346
ark_67375_WNG_VJNBH6B3_W
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
123
1KJ
1L6
1OB
1OC
1ZS
29L
31~
33P
3O-
3SF
3UE
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AI.
AIACR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
GSXLS
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
J5H
JPC
KBYEO
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M68
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OHT
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
YQI
YQJ
ZGI
ZXP
ZZTAW
~IA
~KM
~WT
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RWI
WRC
WUP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7T5
7TK
7TM
7TO
8FD
FR3
H94
K9.
P64
RC3
7X8
ID FETCH-LOGICAL-c4906-36c939c70ecd9f39440d3d54a30053bc6457c9b70c3b23dad0848c5d0969f0683
IEDL.DBID DR2
ISSN 0022-3417
1096-9896
IngestDate Fri Jul 11 12:16:48 EDT 2025
Fri Jul 11 00:47:41 EDT 2025
Fri Jul 25 12:21:26 EDT 2025
Mon Jul 21 05:45:32 EDT 2025
Thu Apr 24 23:12:25 EDT 2025
Tue Jul 01 04:21:12 EDT 2025
Wed Jan 22 16:15:33 EST 2025
Sun Sep 21 06:20:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords RIG-I
dermatomyositis
innate immunity
DDX58
inflammatory myopathy
Language English
License Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4906-36c939c70ecd9f39440d3d54a30053bc6457c9b70c3b23dad0848c5d0969f0683
Notes Immunoguided laser Microdissection. A representative MHC-I-positive perifascicular area from a DM patient is shown before (A) and after (B) microdissection. Care was taken to avoid microdissection of inflammatory infiltratesIFIH1 (MDA5) is not detected in DM muscle by immunohistochemistry (A), but is present in the sarcoplasm of human control myotubes (B); scale bar = 100 µmHighest differentially up-regulated genes in dermatomyositis
ark:/67375/WNG-VJNBH6B3-W
ArticleID:PATH4346
istex:E621EE91F9E5B54BBC8434A7B4B577369E90FCCE
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 24604766
PQID 1534510532
PQPubID 1006392
PageCount 11
ParticipantIDs proquest_miscellaneous_1540228594
proquest_miscellaneous_1535626300
proquest_journals_1534510532
pubmed_primary_24604766
crossref_citationtrail_10_1002_path_4346
crossref_primary_10_1002_path_4346
wiley_primary_10_1002_path_4346_PATH4346
istex_primary_ark_67375_WNG_VJNBH6B3_W
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2014
PublicationDateYYYYMMDD 2014-07-01
PublicationDate_xml – month: 07
  year: 2014
  text: July 2014
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: England
– name: Bognor Regis
PublicationTitle The Journal of pathology
PublicationTitleAlternate J. Pathol
PublicationYear 2014
Publisher John Wiley & Sons, Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley Subscription Services, Inc
References Greenberg SA, Pinkus JL, Pinkus GS, et al. Interferon-α/β-mediated innate immune mechanisms in dermatomyositis. Ann Neurol 2005; 57: 664-678.
Cappelletti C, Baggi F, Zolezzi F, et al. Type I interferon and Toll-like receptor expression characterizes inflammatory myopathies. Neurology 2011; 76: 2079-2088.
Kawai T, Akira S. Toll-like receptor and RIG-I-like receptor signaling. Ann N Y Acad Sci 2008; 1143: 1-20.
Dalakas MC. Pathogenesis and therapies of immune-mediated myopathies. Autoimmun Rev 2012; 11: 203-206.
Chakrabarti A, Jha BK, Silverman RH. New insights into the role of RNase L in innate immunity. J Interferon Cytokine Res 2011; 31: 49-57.
Nagaraju K, Casciola-Rosen L, Lundberg I, et al. Activation of the endoplasmic reticulum stress response in autoimmune myositis: potential role in muscle fiber damage and dysfunction. Arthritis Rheum 2005; 52: 1824-1835.
Nagaraju K, Raben N, Loeffler L, et al. Conditional up-regulation of MHC class I in skeletal muscle leads to self-sustaining autoimmune myositis and myositis-specific autoantibodies. Proc Natl Acad Sci USA 2000; 97: 9209-9214.
Miyashita M, Oshiumi H, Matsumoto M, et al. DDX60, a DEXD/H box helicase, is a novel antiviral factor promoting RIG-I-like receptor-mediated signaling. Mol Cell Biol 2011; 31: 3802-3819.
Seo JY, Yaneva R, Cresswell P. Viperin: a multifunctional, interferon-inducible protein that regulates virus replication. Cell Host Microbe 2011; 10: 534-539.
Gallardo E, de Andres I, Illa I. Cathepsins are upregulated by IFN-γ/STAT1 in human muscle culture: a possible active factor in dermatomyositis. J Neuropathol Exp Neurol 2001; 60: 847-855.
Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 2004; 3: article 3.
Castanier C, Garcin D, Vazquez A, et al. Mitochondrial dynamics regulate the RIG-I-like receptor antiviral pathway. EMBO Rep 2010; 11: 133-138.
Uaesoontrachoon K, Cha HJ, Ampong B, et al. The effects of MyD88 deficiency on disease phenotype in dysferlin-deficient A/J mice: role of endogenous TLR ligands. J Pathol 2013; 231: 199-209.
Salajegheh M, Kong SW, Pinkus JL, et al. Interferon-stimulated gene 15 (ISG15) conjugates proteins in dermatomyositis muscle with perifascicular atrophy. Ann Neurol 2010; 67: 53-63.
Cufi P, Dragin N, Weiss JM, et al. Implication of double-stranded RNA signaling in the etiology of autoimmune myasthenia gravis. Ann Neurol 2013; 73: 281-293.
Nakashima R, Imura Y, Kobayashi S, et al. The RIG-I-like receptor IFIH1/MDA5 is a dermatomyositis-specific autoantigen identified by the anti-CADM-140 antibody. Rheumatology (Oxford) 2010; 49: 433-440.
Engel AG, Franzini-Armstrong C. Myology: Basic and Clinical. McGraw-Hill Medical: New York, 2004: 1321-1486.
Tournadre A, Lenief V, Eljaafari A, et al. Immature muscle precursors are a source of interferon-β in myositis: role of Toll-like receptor 3 activation and contribution to HLA class I up-regulation. Arthritis Rheum 2012; 64: 533-541.
Kuznik A, Bencina M, Svajger U, et al. Mechanism of endosomal TLR inhibition by antimalarial drugs and imidazoquinolines. J Immunol 2011; 186: 4794-4804.
Loo YM GMJ. Immune signaling by RIG-I-like receptors. Immunity 2011; 34: 680-692.
Dalakas MC, Hohlfeld R. Polymyositis and dermatomyositis. Lancet 2003; 362: 971-982.
Larman HB, Salajegheh M, Nazareno R, et al. Cytosolic 5′-nucleotidase 1A autoimmunity in sporadic inclusion body myositis. Ann Neurol 2013; 73: 408-418.
D'Cunha J, Knight E, Jr., Haas AL, et al. Immunoregulatory properties of ISG15, an interferon-induced cytokine. Proc Natl Acad Sci USA 1996; 93: 211-215.
Kato H, Sato S, Yoneyama M, et al. Cell type-specific involvement of RIG-I in antiviral response. Immunity 2005; 23: 19-28.
Salminen A, Kauppinen A, Kaarniranta K. Emerging role of NF-κB signaling in the induction of senescence-associated secretory phenotype (SASP). Cell Signal 2012; 24: 835-845.
Li CK, Knopp P, Moncrieffe H, et al. Overexpression of MHC class I heavy chain protein in young skeletal muscle leads to severe myositis: implications for juvenile myositis. Am J Pathol 2009; 175: 1030-1040.
Higgs BW, Liu Z, White B, et al. Patients with systemic lupus erythematosus, myositis, rheumatoid arthritis and scleroderma share activation of a common type I interferon pathway. Ann Rheum Dis 2011; 70: 2029-2036.
Greenberg SA, Sanoudou D, Haslett JN, et al. Molecular profiles of inflammatory myopathies. Neurology 2002; 59: 1170-1182.
Malathi K, Dong B, Gale M, Jr., et al. Small self-RNA generated by RNase L amplifies antiviral innate immunity. Nature 2007; 448: 816-819.
Ramos HJ, Gale M Jr. RIG-I like receptors and their signaling crosstalk in the regulation of antiviral immunity. Curr Opin Virol 2011; 1: 167-176.
Casciola-Rosen L, Nagaraju K, Plotz P, et al. Enhanced autoantigen expression in regenerating muscle cells in idiopathic inflammatory myopathy. J Exp Med 2005; 201: 591-601.
Yasukawa K, Oshiumi H, Takeda M, et al. Mitofusin 2 inhibits mitochondrial antiviral signaling. Sci Signal 2009; 2: ra47.
Mammen AL. Autoimmune myopathies: autoantibodies, phenotypes and pathogenesis. Nat Rev Neurol 2011; 7: 343-354.
Hornung V, Ellegast J, Kim S, et al. 5'-Triphosphate RNA is the ligand for RIG-I. Science 2006; 314: 994-997.
Hinson ER, Cresswell P. The antiviral protein, viperin, localizes to lipid droplets via its N-terminal amphipathic α-helix. Proc Natl Acad Sci USA 2009; 106: 20452-20457.
Kim GT, Cho ML, Park YE, et al. Expression of TLR2, TLR4, and TLR9 in dermatomyositis and polymyositis. Clin Rheumatol 2010; 29: 273-279.
Illa I, Gallardo E, Gimeno R, et al. Signal transducer and activator of transcription 1 in human muscle: implications in inflammatory myopathies. Am J Pathol 1997; 151: 81-88.
De Luna N, Gallardo E, Sonnet C, et al. Role of thrombospondin 1 in macrophage inflammation in dysferlin myopathy. J Neuropathol Exp Neurol 2010; 69: 643-653.
de Luna N, Gallardo E, Soriano M, et al. Absence of dysferlin alters myogenin expression and delays human muscle differentiation 'in vitro'. J Biol Chem 2006; 281: 17092-17098.
Poeck H, Bscheider M, Gross O, et al. Recognition of RNA virus by RIG-I results in activation of CARD9 and inflammasome signaling for interleukin 1β production. Nat Immunol 2010; 11: 63-69.
2010; 11
2002; 59
2007; 448
2011; 1
1997; 151
2011; 31
1996; 93
2004; 3
2011; 76
2011; 10
2004
2011; 34
2009; 175
2006; 314
2012; 11
2011; 7
2005; 23
2010; 67
2008; 1143
2001; 60
2010; 49
2010; 69
2010; 29
2005; 201
2013; 73
2011; 70
2000; 97
2005; 52
2013; 231
2006; 281
2012; 24
2009; 2
2012; 64
2003; 362
2005; 57
2011; 186
2009; 106
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Illa I (e_1_2_7_23_1) 1997; 151
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
Engel AG (e_1_2_7_2_1) 2004
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
24687932 - J Pathol. 2014 Jul;233(3):215-6
References_xml – reference: Cufi P, Dragin N, Weiss JM, et al. Implication of double-stranded RNA signaling in the etiology of autoimmune myasthenia gravis. Ann Neurol 2013; 73: 281-293.
– reference: Kato H, Sato S, Yoneyama M, et al. Cell type-specific involvement of RIG-I in antiviral response. Immunity 2005; 23: 19-28.
– reference: Seo JY, Yaneva R, Cresswell P. Viperin: a multifunctional, interferon-inducible protein that regulates virus replication. Cell Host Microbe 2011; 10: 534-539.
– reference: Ramos HJ, Gale M Jr. RIG-I like receptors and their signaling crosstalk in the regulation of antiviral immunity. Curr Opin Virol 2011; 1: 167-176.
– reference: Higgs BW, Liu Z, White B, et al. Patients with systemic lupus erythematosus, myositis, rheumatoid arthritis and scleroderma share activation of a common type I interferon pathway. Ann Rheum Dis 2011; 70: 2029-2036.
– reference: Chakrabarti A, Jha BK, Silverman RH. New insights into the role of RNase L in innate immunity. J Interferon Cytokine Res 2011; 31: 49-57.
– reference: Dalakas MC. Pathogenesis and therapies of immune-mediated myopathies. Autoimmun Rev 2012; 11: 203-206.
– reference: D'Cunha J, Knight E, Jr., Haas AL, et al. Immunoregulatory properties of ISG15, an interferon-induced cytokine. Proc Natl Acad Sci USA 1996; 93: 211-215.
– reference: Greenberg SA, Sanoudou D, Haslett JN, et al. Molecular profiles of inflammatory myopathies. Neurology 2002; 59: 1170-1182.
– reference: Larman HB, Salajegheh M, Nazareno R, et al. Cytosolic 5′-nucleotidase 1A autoimmunity in sporadic inclusion body myositis. Ann Neurol 2013; 73: 408-418.
– reference: de Luna N, Gallardo E, Soriano M, et al. Absence of dysferlin alters myogenin expression and delays human muscle differentiation 'in vitro'. J Biol Chem 2006; 281: 17092-17098.
– reference: Hornung V, Ellegast J, Kim S, et al. 5'-Triphosphate RNA is the ligand for RIG-I. Science 2006; 314: 994-997.
– reference: Kuznik A, Bencina M, Svajger U, et al. Mechanism of endosomal TLR inhibition by antimalarial drugs and imidazoquinolines. J Immunol 2011; 186: 4794-4804.
– reference: Castanier C, Garcin D, Vazquez A, et al. Mitochondrial dynamics regulate the RIG-I-like receptor antiviral pathway. EMBO Rep 2010; 11: 133-138.
– reference: Casciola-Rosen L, Nagaraju K, Plotz P, et al. Enhanced autoantigen expression in regenerating muscle cells in idiopathic inflammatory myopathy. J Exp Med 2005; 201: 591-601.
– reference: Mammen AL. Autoimmune myopathies: autoantibodies, phenotypes and pathogenesis. Nat Rev Neurol 2011; 7: 343-354.
– reference: Nagaraju K, Casciola-Rosen L, Lundberg I, et al. Activation of the endoplasmic reticulum stress response in autoimmune myositis: potential role in muscle fiber damage and dysfunction. Arthritis Rheum 2005; 52: 1824-1835.
– reference: Salajegheh M, Kong SW, Pinkus JL, et al. Interferon-stimulated gene 15 (ISG15) conjugates proteins in dermatomyositis muscle with perifascicular atrophy. Ann Neurol 2010; 67: 53-63.
– reference: Yasukawa K, Oshiumi H, Takeda M, et al. Mitofusin 2 inhibits mitochondrial antiviral signaling. Sci Signal 2009; 2: ra47.
– reference: Gallardo E, de Andres I, Illa I. Cathepsins are upregulated by IFN-γ/STAT1 in human muscle culture: a possible active factor in dermatomyositis. J Neuropathol Exp Neurol 2001; 60: 847-855.
– reference: Tournadre A, Lenief V, Eljaafari A, et al. Immature muscle precursors are a source of interferon-β in myositis: role of Toll-like receptor 3 activation and contribution to HLA class I up-regulation. Arthritis Rheum 2012; 64: 533-541.
– reference: De Luna N, Gallardo E, Sonnet C, et al. Role of thrombospondin 1 in macrophage inflammation in dysferlin myopathy. J Neuropathol Exp Neurol 2010; 69: 643-653.
– reference: Kim GT, Cho ML, Park YE, et al. Expression of TLR2, TLR4, and TLR9 in dermatomyositis and polymyositis. Clin Rheumatol 2010; 29: 273-279.
– reference: Dalakas MC, Hohlfeld R. Polymyositis and dermatomyositis. Lancet 2003; 362: 971-982.
– reference: Poeck H, Bscheider M, Gross O, et al. Recognition of RNA virus by RIG-I results in activation of CARD9 and inflammasome signaling for interleukin 1β production. Nat Immunol 2010; 11: 63-69.
– reference: Illa I, Gallardo E, Gimeno R, et al. Signal transducer and activator of transcription 1 in human muscle: implications in inflammatory myopathies. Am J Pathol 1997; 151: 81-88.
– reference: Greenberg SA, Pinkus JL, Pinkus GS, et al. Interferon-α/β-mediated innate immune mechanisms in dermatomyositis. Ann Neurol 2005; 57: 664-678.
– reference: Kawai T, Akira S. Toll-like receptor and RIG-I-like receptor signaling. Ann N Y Acad Sci 2008; 1143: 1-20.
– reference: Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 2004; 3: article 3.
– reference: Hinson ER, Cresswell P. The antiviral protein, viperin, localizes to lipid droplets via its N-terminal amphipathic α-helix. Proc Natl Acad Sci USA 2009; 106: 20452-20457.
– reference: Salminen A, Kauppinen A, Kaarniranta K. Emerging role of NF-κB signaling in the induction of senescence-associated secretory phenotype (SASP). Cell Signal 2012; 24: 835-845.
– reference: Malathi K, Dong B, Gale M, Jr., et al. Small self-RNA generated by RNase L amplifies antiviral innate immunity. Nature 2007; 448: 816-819.
– reference: Loo YM GMJ. Immune signaling by RIG-I-like receptors. Immunity 2011; 34: 680-692.
– reference: Cappelletti C, Baggi F, Zolezzi F, et al. Type I interferon and Toll-like receptor expression characterizes inflammatory myopathies. Neurology 2011; 76: 2079-2088.
– reference: Miyashita M, Oshiumi H, Matsumoto M, et al. DDX60, a DEXD/H box helicase, is a novel antiviral factor promoting RIG-I-like receptor-mediated signaling. Mol Cell Biol 2011; 31: 3802-3819.
– reference: Nagaraju K, Raben N, Loeffler L, et al. Conditional up-regulation of MHC class I in skeletal muscle leads to self-sustaining autoimmune myositis and myositis-specific autoantibodies. Proc Natl Acad Sci USA 2000; 97: 9209-9214.
– reference: Nakashima R, Imura Y, Kobayashi S, et al. The RIG-I-like receptor IFIH1/MDA5 is a dermatomyositis-specific autoantigen identified by the anti-CADM-140 antibody. Rheumatology (Oxford) 2010; 49: 433-440.
– reference: Li CK, Knopp P, Moncrieffe H, et al. Overexpression of MHC class I heavy chain protein in young skeletal muscle leads to severe myositis: implications for juvenile myositis. Am J Pathol 2009; 175: 1030-1040.
– reference: Uaesoontrachoon K, Cha HJ, Ampong B, et al. The effects of MyD88 deficiency on disease phenotype in dysferlin-deficient A/J mice: role of endogenous TLR ligands. J Pathol 2013; 231: 199-209.
– reference: Engel AG, Franzini-Armstrong C. Myology: Basic and Clinical. McGraw-Hill Medical: New York, 2004: 1321-1486.
– volume: 175:
  start-page: 1030
  year: 2009
  end-page: 1040
  article-title: Overexpression of MHC class I heavy chain protein in young skeletal muscle leads to severe myositis: implications for juvenile myositis
  publication-title: Am J Pathol
– volume: 314:
  start-page: 994
  year: 2006
  end-page: 997
  article-title: 5'‐Triphosphate RNA is the ligand for RIG‐I
  publication-title: Science
– volume: 70:
  start-page: 2029
  year: 2011
  end-page: 2036
  article-title: Patients with systemic lupus erythematosus, myositis, rheumatoid arthritis and scleroderma share activation of a common type I interferon pathway
  publication-title: Ann Rheum Dis
– volume: 60:
  start-page: 847
  year: 2001
  end-page: 855
  article-title: Cathepsins are upregulated by IFN‐ /STAT1 in human muscle culture: a possible active factor in dermatomyositis
  publication-title: J Neuropathol Exp Neurol
– volume: 29:
  start-page: 273
  year: 2010
  end-page: 279
  article-title: Expression of TLR2, TLR4, and TLR9 in dermatomyositis and polymyositis
  publication-title: Clin Rheumatol
– volume: 201:
  start-page: 591
  year: 2005
  end-page: 601
  article-title: Enhanced autoantigen expression in regenerating muscle cells in idiopathic inflammatory myopathy
  publication-title: J Exp Med
– volume: 11:
  start-page: 133
  year: 2010
  end-page: 138
  article-title: Mitochondrial dynamics regulate the RIG‐I‐like receptor antiviral pathway
  publication-title: EMBO Rep
– volume: 31:
  start-page: 49
  year: 2011
  end-page: 57
  article-title: New insights into the role of RNase L in innate immunity
  publication-title: J Interferon Cytokine Res
– volume: 151:
  start-page: 81
  year: 1997
  end-page: 88
  article-title: Signal transducer and activator of transcription 1 in human muscle: implications in inflammatory myopathies
  publication-title: Am J Pathol
– volume: 49:
  start-page: 433
  year: 2010
  end-page: 440
  article-title: The RIG‐I‐like receptor IFIH1/MDA5 is a dermatomyositis‐specific autoantigen identified by the anti‐CADM‐140 antibody
  publication-title: Rheumatology (Oxford)
– volume: 11:
  start-page: 203
  year: 2012
  end-page: 206
  article-title: Pathogenesis and therapies of immune‐mediated myopathies
  publication-title: Autoimmun Rev
– volume: 186:
  start-page: 4794
  year: 2011
  end-page: 4804
  article-title: Mechanism of endosomal TLR inhibition by antimalarial drugs and imidazoquinolines
  publication-title: J Immunol
– volume: 31:
  start-page: 3802
  year: 2011
  end-page: 3819
  article-title: DDX60, a DEXD/H box helicase, is a novel antiviral factor promoting RIG‐I‐like receptor‐mediated signaling
  publication-title: Mol Cell Biol
– volume: 52:
  start-page: 1824
  year: 2005
  end-page: 1835
  article-title: Activation of the endoplasmic reticulum stress response in autoimmune myositis: potential role in muscle fiber damage and dysfunction
  publication-title: Arthritis Rheum
– volume: 281:
  start-page: 17092
  year: 2006
  end-page: 17098
  article-title: Absence of dysferlin alters myogenin expression and delays human muscle differentiation ' '
  publication-title: J Biol Chem
– volume: 67:
  start-page: 53
  year: 2010
  end-page: 63
  article-title: Interferon‐stimulated gene 15 ( ) conjugates proteins in dermatomyositis muscle with perifascicular atrophy
  publication-title: Ann Neurol
– volume: 7:
  start-page: 343
  year: 2011
  end-page: 354
  article-title: Autoimmune myopathies: autoantibodies, phenotypes and pathogenesis
  publication-title: Nat Rev Neurol
– volume: 73:
  start-page: 281
  year: 2013
  end-page: 293
  article-title: Implication of double‐stranded RNA signaling in the etiology of autoimmune myasthenia gravis
  publication-title: Ann Neurol
– volume: 69:
  start-page: 643
  year: 2010
  end-page: 653
  article-title: Role of thrombospondin 1 in macrophage inflammation in dysferlin myopathy
  publication-title: J Neuropathol Exp Neurol
– volume: 73:
  start-page: 408
  year: 2013
  end-page: 418
  article-title: Cytosolic 5′‐nucleotidase 1A autoimmunity in sporadic inclusion body myositis
  publication-title: Ann Neurol
– volume: 1143:
  start-page: 1
  year: 2008
  end-page: 20
  article-title: Toll‐like receptor and RIG‐I‐like receptor signaling
  publication-title: Ann N Y Acad Sci
– volume: 57:
  start-page: 664
  year: 2005
  end-page: 678
  article-title: Interferon‐ / ‐mediated innate immune mechanisms in dermatomyositis
  publication-title: Ann Neurol
– volume: 59:
  start-page: 1170
  year: 2002
  end-page: 1182
  article-title: Molecular profiles of inflammatory myopathies
  publication-title: Neurology
– volume: 93:
  start-page: 211
  year: 1996
  end-page: 215
  article-title: Immunoregulatory properties of ISG15, an interferon‐induced cytokine
  publication-title: Proc Natl Acad Sci USA
– volume: 3
  year: 2004
  article-title: Linear models and empirical bayes methods for assessing differential expression in microarray experiments
  publication-title: Stat Appl Genet Mol Biol
– volume: 231:
  start-page: 199
  year: 2013
  end-page: 209
  article-title: The effects of MyD88 deficiency on disease phenotype in dysferlin‐deficient A/J mice: role of endogenous TLR ligands
  publication-title: J Pathol
– volume: 64:
  start-page: 533
  year: 2012
  end-page: 541
  article-title: Immature muscle precursors are a source of interferon‐ in myositis: role of Toll‐like receptor 3 activation and contribution to HLA class I up‐regulation
  publication-title: Arthritis Rheum
– volume: 23:
  start-page: 19
  year: 2005
  end-page: 28
  article-title: Cell type‐specific involvement of RIG‐I in antiviral response
  publication-title: Immunity
– volume: 10:
  start-page: 534
  year: 2011
  end-page: 539
  article-title: Viperin: a multifunctional, interferon‐inducible protein that regulates virus replication
  publication-title: Cell Host Microbe
– volume: 448:
  start-page: 816
  year: 2007
  end-page: 819
  article-title: Small self‐RNA generated by RNase L amplifies antiviral innate immunity
  publication-title: Nature
– volume: 97:
  start-page: 9209
  year: 2000
  end-page: 9214
  article-title: Conditional up‐regulation of MHC class I in skeletal muscle leads to self‐sustaining autoimmune myositis and myositis‐specific autoantibodies
  publication-title: Proc Natl Acad Sci USA
– volume: 1:
  start-page: 167
  year: 2011
  end-page: 176
  article-title: RIG‐I like receptors and their signaling crosstalk in the regulation of antiviral immunity
  publication-title: Curr Opin Virol
– volume: 11:
  start-page: 63
  year: 2010
  end-page: 69
  article-title: Recognition of RNA virus by RIG‐I results in activation of CARD9 and inflammasome signaling for interleukin 1 production
  publication-title: Nat Immunol
– volume: 2
  year: 2009
  article-title: Mitofusin 2 inhibits mitochondrial antiviral signaling
  publication-title: Sci Signal
– start-page: 1321
  year: 2004
  end-page: 1486
– volume: 76:
  start-page: 2079
  year: 2011
  end-page: 2088
  article-title: Type I interferon and Toll‐like receptor expression characterizes inflammatory myopathies
  publication-title: Neurology
– volume: 34:
  start-page: 680
  year: 2011
  end-page: 692
  article-title: Immune signaling by RIG‐I‐like receptors
  publication-title: Immunity
– volume: 106:
  start-page: 20452
  year: 2009
  end-page: 20457
  article-title: The antiviral protein, viperin, localizes to lipid droplets via its N‐terminal amphipathic ‐helix
  publication-title: Proc Natl Acad Sci USA
– volume: 362:
  start-page: 971
  year: 2003
  end-page: 982
  article-title: Polymyositis and dermatomyositis
  publication-title: Lancet
– volume: 24:
  start-page: 835
  year: 2012
  end-page: 845
  article-title: Emerging role of NF‐ B signaling in the induction of senescence‐associated secretory phenotype (SASP)
  publication-title: Cell Signal
– ident: e_1_2_7_37_1
  doi: 10.1073/pnas.0911679106
– ident: e_1_2_7_11_1
  doi: 10.1002/ana.21805
– ident: e_1_2_7_27_1
  doi: 10.1074/jbc.M601885200
– ident: e_1_2_7_16_1
  doi: 10.1016/j.coviro.2011.04.004
– ident: e_1_2_7_32_1
  doi: 10.1128/MCB.01368-10
– ident: e_1_2_7_9_1
  doi: 10.1002/ana.20464
– ident: e_1_2_7_35_1
  doi: 10.1038/embor.2009.258
– ident: e_1_2_7_31_1
  doi: 10.1002/ana.23791
– ident: e_1_2_7_20_1
  doi: 10.1016/j.cellsig.2011.12.006
– ident: e_1_2_7_26_1
  doi: 10.4049/jimmunol.1000702
– ident: e_1_2_7_6_1
  doi: 10.1093/jnen/60.9.847
– ident: e_1_2_7_13_1
  doi: 10.1136/ard.2011.150326
– ident: e_1_2_7_12_1
  doi: 10.1212/WNL.59.8.1170
– ident: e_1_2_7_41_1
  doi: 10.1093/rheumatology/kep375
– ident: e_1_2_7_3_1
  doi: 10.1016/S0140-6736(03)14368-1
– ident: e_1_2_7_5_1
  doi: 10.1002/ana.23840
– ident: e_1_2_7_25_1
  doi: 10.1126/science.1132505
– volume: 151
  start-page: 81
  year: 1997
  ident: e_1_2_7_23_1
  article-title: Signal transducer and activator of transcription 1 in human muscle: implications in inflammatory myopathies
  publication-title: Am J Pathol
– ident: e_1_2_7_7_1
  doi: 10.1002/art.21103
– ident: e_1_2_7_29_1
  doi: 10.1016/j.immuni.2011.05.003
– ident: e_1_2_7_28_1
  doi: 10.2202/1544-6115.1027
– ident: e_1_2_7_38_1
  doi: 10.2353/ajpath.2009.090196
– ident: e_1_2_7_19_1
  doi: 10.1038/ni.1824
– ident: e_1_2_7_30_1
  doi: 10.1002/path.4207
– ident: e_1_2_7_10_1
  doi: 10.1212/WNL.0b013e31821f440a
– ident: e_1_2_7_14_1
  doi: 10.1073/pnas.93.1.211
– ident: e_1_2_7_24_1
  doi: 10.1097/NEN.0b013e3181e0d01c
– ident: e_1_2_7_39_1
  doi: 10.1089/jir.2010.0120
– ident: e_1_2_7_36_1
  doi: 10.1126/scisignal.2000287
– ident: e_1_2_7_15_1
  doi: 10.1196/annals.1443.020
– ident: e_1_2_7_33_1
  doi: 10.1016/j.immuni.2005.04.010
– ident: e_1_2_7_17_1
  doi: 10.1007/s10067-009-1316-7
– ident: e_1_2_7_8_1
  doi: 10.1073/pnas.97.16.9209
– ident: e_1_2_7_22_1
  doi: 10.1016/j.autrev.2011.05.013
– ident: e_1_2_7_18_1
  doi: 10.1002/art.33350
– start-page: 1321
  volume-title: Myology: Basic and Clinical
  year: 2004
  ident: e_1_2_7_2_1
– ident: e_1_2_7_40_1
  doi: 10.1084/jem.20041367
– ident: e_1_2_7_4_1
  doi: 10.1038/nrneurol.2011.63
– ident: e_1_2_7_34_1
  doi: 10.1016/j.chom.2011.11.004
– ident: e_1_2_7_21_1
  doi: 10.1038/nature06042
– reference: 24687932 - J Pathol. 2014 Jul;233(3):215-6
SSID ssj0009955
Score 2.4339695
Snippet We investigated the molecular mechanisms involved in the pathogenesis of three inflammatory myopathies, dermatomyositis (DM), polymyositis (PM) and inclusion...
We investigated the molecular mechanisms involved in the pathogenesis of three inflammatory myopathies, dermatomyositis ( DM ), polymyositis ( PM ) and...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 258
SubjectTerms Adult
Aged
Case-Control Studies
Cells, Cultured
DDX58
DEAD Box Protein 58
DEAD-box RNA Helicases - genetics
DEAD-box RNA Helicases - metabolism
dermatomyositis
Dermatomyositis - genetics
Dermatomyositis - immunology
Dermatomyositis - metabolism
Female
Gene Expression Profiling - methods
Gene Expression Regulation
Genetic Association Studies
Histocompatibility Antigens Class I - metabolism
Humans
Immunity, Innate
Immunohistochemistry
Inclusion Bodies - immunology
Inclusion Bodies - metabolism
inflammatory myopathy
innate immunity
Interferon-beta - metabolism
Interferon-Induced Helicase, IFIH1
Male
Microdissection
Middle Aged
Muscle Fibers, Skeletal - immunology
Muscle Fibers, Skeletal - metabolism
Oligonucleotide Array Sequence Analysis
Polymyositis - genetics
Polymyositis - immunology
Polymyositis - metabolism
Receptors, Immunologic
RIG-I
Signal Transduction
Toll-Like Receptor 3 - genetics
Toll-Like Receptor 3 - metabolism
Title Altered RIG-I/DDX58-mediated innate immunity in dermatomyositis
URI https://api.istex.fr/ark:/67375/WNG-VJNBH6B3-W/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpath.4346
https://www.ncbi.nlm.nih.gov/pubmed/24604766
https://www.proquest.com/docview/1534510532
https://www.proquest.com/docview/1535626300
https://www.proquest.com/docview/1540228594
Volume 233
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CCqWXvh9O0-KWUnLxrmxJVkRPm2yTTSBLCUmzh4KwHoaQ1huyXmh66k_ob-wvqUZ-hJS0lJ4s4zHoMSN9kma-AXhTFoQXWpdJqq1ImC2LREvnkhIXN-51iITMcwfTfHLM9md8tgLvuliYhh-iP3BDywjzNRp4oRfDK9JQzNg7YJQh3XZKc-TNHx9eUUdJyXnPFM5S0bEKkWzY_3ltLbqF3fr1JqB5HbeGhWfnHnzqqtz4m5wNlrUemG-_sTn-Z5vuw90WkMajRoMewIqrHsLtg_bK_RFsj_A-3dn4cG_35_cfe8PxeMY3fSnEnHi8Gp9WlX_GpyHSpL7077HF-b6ef7kMLmGLx3C88_5oe5K0mRcSwyQ6w-VGUmkEccbKEmNniaWWswLJ7ak2OePCSC2IoTqjtrDIym-49fshWZJ8kz6B1WpeuWcQU-o3jFankhvGdGq00DZzHhU44aGD1hFsdGOgTEtLjtkxPquGUDlT2CkKOyWC173oecPFcZPQ2zCQvURxcYbOa4Krk-mu-rg_3ZrkW1SdRLDejbRq7Xah_PzPEHLSLIJX_WdvcXiNUlRuvgwyHDl8CPmbDENiIS5ZBE8bLeorlLGcMJH7mm4EXfhzW9SH0dEEC2v_Lvoc7nhMxxqP4nVYrS-W7oXHTbV-GQzkF4JaE6Q
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVgIuvB-BAgEh1Et2vbGd1BKXbUubLd0VqrbtXpAVPyJVhSxqsxLlxE_gN_JL8DiPqqggxCmOMpH8mLE_e8bfALwucsJzpYpooEwaMVPkkRLWRgUubtzpEPGZ58aTJDtguzM-W4K37V2Ymh-iO3BDy_DzNRo4Hkj3L1hDMWVvj1GWXIMV759DSLR_QR4lBOcdVzgbpC2vEIn73a-XVqMV7NivV0HNy8jVLz3bt-FjW-k64uSkt6hUT3_7jc_xf1t1B241mDQc1kp0F5ZseQ-ujxuv-33YHKJL3Zpwf7Tz8_uPUX9ra8bXXclfO3GQNTwuS_cMj_1lk-rcvYcGp_xq_vncR4WdPYCD7XfTzSxqki9EmgmMh0u0oEKnxGojCrw-Sww1nOXIb0-Vdh2eaqFSoqmKqckNEvNrbtyWSBQkWacPYbmcl_YxhJS6PaNRA8E1Y2qgVapMbB0wsKlDD0oFsNYOgtQNMzkmyPgka07lWGKnSOyUAF51ol9qOo6rhN74kewk8tMTjF9LuTya7MjD3clGlmxQeRTAajvUsjHdM-mWAIaok8YBvOw-O6NDT0pe2vnCy3Ck8SHkbzIMuYW4YAE8qtWoq1DMEsLSxNV0zSvDn9siPwynGRae_LvoC7iRTcd7cm80ef8UbjqIx-oA41VYrk4X9pmDUZV67q3lF7KoF8I
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RkFAvfT_S0pJWVcUlu97YTrB6WliWXVpWCEHZQyUrfkRCtFkEWan0xE_gN_aX1OM8EBWtqp7iKBPJj5nM53jmG4B3eUZ4plQe9ZRJI2byLFLC2ihH58adDhFfeW53kowO2c6UTxfgQ5MLU_FDtD_c0DL89xoN_NTk3WvSUKzY22GUJXdgiSXOTSIi2r_mjhKC85YqnPXShlaIxN321RvOaAnn9fttSPMmcPWeZ3gfvjR9rgJOTjrzUnX0j9_oHP9zUA_gXo1Iw36lQg9hwRaPYHm3PnN_DJt9PFC3Jtwfb_-8vBp3B4MpX3ctn3TiAGt4XBTuGh77VJPywt2HBj_45ezbhY8JO38Ch8Otg81RVJdeiDQTGA2XaEGFTonVRuSYPEsMNZxlyG5PlU4YT7VQKdFUxdRkBmn5NTduQyRykqzTp7BYzAr7HEJK3Y7RqJ7gmjHV0ypVJrYOFtjUYQelAlhr1kDqmpccy2N8lRWjcixxUiROSgBvW9HTiozjNqH3fiFbiezsBKPXUi6PJtvy885kY5RsUHkUwEqz0rI23HPpHABDzEnjAN60j53J4TlKVtjZ3MtwJPEh5G8yDJmFuGABPKu0qO1Q7NSVpYnr6ZrXhT-PRe71D0bYePHvoquwvDcYyk_jyceXcNfhO1ZFF6_AYnk2t68chirVa28rvwBc8xZx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Altered+RIG+%E2%80%90I%2F+DDX58+%E2%80%90mediated+innate+immunity+in+dermatomyositis&rft.jtitle=The+Journal+of+pathology&rft.au=Su%C3%A1rez%E2%80%90Calvet%2C+Xavier&rft.au=Gallardo%2C+Eduard&rft.au=Nogales%E2%80%90Gadea%2C+Gisela&rft.au=Querol%2C+Luis&rft.date=2014-07-01&rft.issn=0022-3417&rft.eissn=1096-9896&rft.volume=233&rft.issue=3&rft.spage=258&rft.epage=268&rft_id=info:doi/10.1002%2Fpath.4346&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_path_4346
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3417&client=summon