Immobilization induces anabolic resistance in human myofibrillar protein synthesis with low and high dose amino acid infusion

We tested the hypothesis that increasing blood amino acid (AA) availability would counter the physical inactivity-induced reduction in muscle protein synthesis. We determined how 14 days of unilateral knee immobilization affected quadriceps myofibrillar protein synthesis (MPS) in young healthy subje...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of physiology Vol. 586; no. 24; pp. 6049 - 6061
Main Authors Glover, Elisa I., Phillips, Stuart M., Oates, Bryan R., Tang, Jason E., Tarnopolsky, Mark A., Selby, Anna, Smith, Kenneth, Rennie, Michael J.
Format Journal Article
LanguageEnglish
Published Oxford, UK The Physiological Society 15.12.2008
Blackwell Publishing Ltd
Blackwell Science Inc
Subjects
Online AccessGet full text
ISSN0022-3751
1469-7793
1469-7793
DOI10.1113/jphysiol.2008.160333

Cover

Abstract We tested the hypothesis that increasing blood amino acid (AA) availability would counter the physical inactivity-induced reduction in muscle protein synthesis. We determined how 14 days of unilateral knee immobilization affected quadriceps myofibrillar protein synthesis (MPS) in young healthy subjects (10 men, 2 women, 21 ± 1 years; 80.2 ± 4.0 kg, mean ± s.e.m. ) in the post-absorptive state and after infusing AA (10% Primene) at low or high doses (43 and 261 mg kg −1 h −1 ). Muscle cross-sectional area (MRI) and peak isometric torque declined in the immobilized leg (−5.0 ± 1.2% and −25 ± 3%, respectively, both P < 0.005), but were unchanged (all P > 0.6) in the non-immobilized leg. Immobilization induced a 27% decline in the rate of post-absorptive MPS (immobilized, 0.027 ± 0.003: non-immobilized, 0.037 ± 0.003% h −1 ; P < 0.001). Regardless of dose, AA infusion stimulated a greater rise in MPS in the non-immobilized legs; at 4 h MPS was greater by +54 ± 12% with low dose and +68 ± 17% with high dose AA infusion (both P < 0.001). There was some evidence of delayed responsiveness of phosphorylation of Akt to high doses of AA and p70S6k at both doses but no marked differences in that of mTOR, GSK3β or eEF2. Phosphorylation of focal adhesion kinase (Tyr 576/577 ) was reduced ( P < 0.05) with immobilization. We observed no change in polyubiquitinated protein content after immobilization. We confirm that 14 days of immobilization reduces MPS in the post-absorptive state and this diminution is reduced but not abolished by increased provision of AA, even at high rates. The immobilization-induced decline in post-absorptive MPS with the ‘anabolic resistance’ to amino acids can account for much of immobilization-induced muscle atrophy.
AbstractList We tested the hypothesis that increasing blood amino acid (AA) availability would counter the physical inactivity‐induced reduction in muscle protein synthesis. We determined how 14 days of unilateral knee immobilization affected quadriceps myofibrillar protein synthesis (MPS) in young healthy subjects (10 men, 2 women, 21 ± 1 years; 80.2 ± 4.0 kg, mean ± s.e.m. ) in the post‐absorptive state and after infusing AA (10% Primene) at low or high doses (43 and 261 mg kg −1 h −1 ). Muscle cross‐sectional area (MRI) and peak isometric torque declined in the immobilized leg (−5.0 ± 1.2% and −25 ± 3%, respectively, both P < 0.005), but were unchanged (all P > 0.6) in the non‐immobilized leg. Immobilization induced a 27% decline in the rate of post‐absorptive MPS (immobilized, 0.027 ± 0.003: non‐immobilized, 0.037 ± 0.003% h −1 ; P < 0.001). Regardless of dose, AA infusion stimulated a greater rise in MPS in the non‐immobilized legs; at 4 h MPS was greater by +54 ± 12% with low dose and +68 ± 17% with high dose AA infusion (both P < 0.001). There was some evidence of delayed responsiveness of phosphorylation of Akt to high doses of AA and p70S6k at both doses but no marked differences in that of mTOR, GSK3β or eEF2. Phosphorylation of focal adhesion kinase (Tyr 576/577 ) was reduced ( P < 0.05) with immobilization. We observed no change in polyubiquitinated protein content after immobilization. We confirm that 14 days of immobilization reduces MPS in the post‐absorptive state and this diminution is reduced but not abolished by increased provision of AA, even at high rates. The immobilization‐induced decline in post‐absorptive MPS with the ‘anabolic resistance’ to amino acids can account for much of immobilization‐induced muscle atrophy.
We tested the hypothesis that increasing blood amino acid (AA) availability would counter the physical inactivity-induced reduction in muscle protein synthesis. We determined how 14 days of unilateral knee immobilization affected quadriceps myofibrillar protein synthesis (MPS) in young healthy subjects (10 men, 2 women, 21 ± 1 years; 80.2 ± 4.0 kg, mean ± s.e.m. ) in the post-absorptive state and after infusing AA (10% Primene) at low or high doses (43 and 261 mg kg −1 h −1 ). Muscle cross-sectional area (MRI) and peak isometric torque declined in the immobilized leg (−5.0 ± 1.2% and −25 ± 3%, respectively, both P < 0.005), but were unchanged (all P > 0.6) in the non-immobilized leg. Immobilization induced a 27% decline in the rate of post-absorptive MPS (immobilized, 0.027 ± 0.003: non-immobilized, 0.037 ± 0.003% h −1 ; P < 0.001). Regardless of dose, AA infusion stimulated a greater rise in MPS in the non-immobilized legs; at 4 h MPS was greater by +54 ± 12% with low dose and +68 ± 17% with high dose AA infusion (both P < 0.001). There was some evidence of delayed responsiveness of phosphorylation of Akt to high doses of AA and p70S6k at both doses but no marked differences in that of mTOR, GSK3β or eEF2. Phosphorylation of focal adhesion kinase (Tyr 576/577 ) was reduced ( P < 0.05) with immobilization. We observed no change in polyubiquitinated protein content after immobilization. We confirm that 14 days of immobilization reduces MPS in the post-absorptive state and this diminution is reduced but not abolished by increased provision of AA, even at high rates. The immobilization-induced decline in post-absorptive MPS with the ‘anabolic resistance’ to amino acids can account for much of immobilization-induced muscle atrophy.
We tested the hypothesis that increasing blood amino acid (AA) availability would counter the physical inactivity-induced reduction in muscle protein synthesis. We determined how 14 days of unilateral knee immobilization affected quadriceps myofibrillar protein synthesis (MPS) in young healthy subjects (10 men, 2 women, 21 +/- 1 years; 80.2 +/- 4.0 kg, mean +/- S.E.M.) in the post-absorptive state and after infusing AA (10% Primene) at low or high doses (43 and 261 mg kg(-1) h(-1)). Muscle cross-sectional area (MRI) and peak isometric torque declined in the immobilized leg (-5.0 +/- 1.2% and -25 +/- 3%, respectively, both P < 0.005), but were unchanged (all P > 0.6) in the non-immobilized leg. Immobilization induced a 27% decline in the rate of post-absorptive MPS (immobilized, 0.027 +/- 0.003: non-immobilized, 0.037 +/- 0.003% h(-1); P < 0.001). Regardless of dose, AA infusion stimulated a greater rise in MPS in the non-immobilized legs; at 4 h MPS was greater by +54 +/- 12% with low dose and +68 +/- 17% with high dose AA infusion (both P < 0.001). There was some evidence of delayed responsiveness of phosphorylation of Akt to high doses of AA and p70S6k at both doses but no marked differences in that of mTOR, GSK3beta or eEF2. Phosphorylation of focal adhesion kinase (Tyr(576/577)) was reduced (P < 0.05) with immobilization. We observed no change in polyubiquitinated protein content after immobilization. We confirm that 14 days of immobilization reduces MPS in the post-absorptive state and this diminution is reduced but not abolished by increased provision of AA, even at high rates. The immobilization-induced decline in post-absorptive MPS with the 'anabolic resistance' to amino acids can account for much of immobilization-induced muscle atrophy.
We tested the hypothesis that increasing blood amino acid (AA) availability would counter the physical inactivity-induced reduction in muscle protein synthesis. We determined how 14 days of unilateral knee immobilization affected quadriceps myofibrillar protein synthesis (MPS) in young healthy subjects (10 men, 2 women, 21 +/- 1 years; 80.2 +/- 4.0 kg, mean +/- S.E.M.) in the post-absorptive state and after infusing AA (10% Primene) at low or high doses (43 and 261 mg kg(-1) h(-1)). Muscle cross-sectional area (MRI) and peak isometric torque declined in the immobilized leg (-5.0 +/- 1.2% and -25 +/- 3%, respectively, both P < 0.005), but were unchanged (all P > 0.6) in the non-immobilized leg. Immobilization induced a 27% decline in the rate of post-absorptive MPS (immobilized, 0.027 +/- 0.003: non-immobilized, 0.037 +/- 0.003% h(-1); P < 0.001). Regardless of dose, AA infusion stimulated a greater rise in MPS in the non-immobilized legs; at 4 h MPS was greater by +54 +/- 12% with low dose and +68 +/- 17% with high dose AA infusion (both P < 0.001). There was some evidence of delayed responsiveness of phosphorylation of Akt to high doses of AA and p70S6k at both doses but no marked differences in that of mTOR, GSK3beta or eEF2. Phosphorylation of focal adhesion kinase (Tyr(576/577)) was reduced (P < 0.05) with immobilization. We observed no change in polyubiquitinated protein content after immobilization. We confirm that 14 days of immobilization reduces MPS in the post-absorptive state and this diminution is reduced but not abolished by increased provision of AA, even at high rates. The immobilization-induced decline in post-absorptive MPS with the 'anabolic resistance' to amino acids can account for much of immobilization-induced muscle atrophy.We tested the hypothesis that increasing blood amino acid (AA) availability would counter the physical inactivity-induced reduction in muscle protein synthesis. We determined how 14 days of unilateral knee immobilization affected quadriceps myofibrillar protein synthesis (MPS) in young healthy subjects (10 men, 2 women, 21 +/- 1 years; 80.2 +/- 4.0 kg, mean +/- S.E.M.) in the post-absorptive state and after infusing AA (10% Primene) at low or high doses (43 and 261 mg kg(-1) h(-1)). Muscle cross-sectional area (MRI) and peak isometric torque declined in the immobilized leg (-5.0 +/- 1.2% and -25 +/- 3%, respectively, both P < 0.005), but were unchanged (all P > 0.6) in the non-immobilized leg. Immobilization induced a 27% decline in the rate of post-absorptive MPS (immobilized, 0.027 +/- 0.003: non-immobilized, 0.037 +/- 0.003% h(-1); P < 0.001). Regardless of dose, AA infusion stimulated a greater rise in MPS in the non-immobilized legs; at 4 h MPS was greater by +54 +/- 12% with low dose and +68 +/- 17% with high dose AA infusion (both P < 0.001). There was some evidence of delayed responsiveness of phosphorylation of Akt to high doses of AA and p70S6k at both doses but no marked differences in that of mTOR, GSK3beta or eEF2. Phosphorylation of focal adhesion kinase (Tyr(576/577)) was reduced (P < 0.05) with immobilization. We observed no change in polyubiquitinated protein content after immobilization. We confirm that 14 days of immobilization reduces MPS in the post-absorptive state and this diminution is reduced but not abolished by increased provision of AA, even at high rates. The immobilization-induced decline in post-absorptive MPS with the 'anabolic resistance' to amino acids can account for much of immobilization-induced muscle atrophy.
We tested the hypothesis that increasing blood amino acid (AA) availability would counter the physical inactivity-induced reduction in muscle protein synthesis. We determined how 14 days of unilateral knee immobilization affected quadriceps myofibrillar protein synthesis (MPS) in young healthy subjects (10 men, 2 women, 21 ± 1 years; 80.2 ± 4.0 kg, mean ± s.e.m. ) in the post-absorptive state and after infusing AA (10% Primene) at low or high doses (43 and 261 mg kg −1 h −1 ). Muscle cross-sectional area (MRI) and peak isometric torque declined in the immobilized leg (−5.0 ± 1.2% and −25 ± 3%, respectively, both P < 0.005), but were unchanged (all P > 0.6) in the non-immobilized leg. Immobilization induced a 27% decline in the rate of post-absorptive MPS (immobilized, 0.027 ± 0.003: non-immobilized, 0.037 ± 0.003% h −1 ; P < 0.001). Regardless of dose, AA infusion stimulated a greater rise in MPS in the non-immobilized legs; at 4 h MPS was greater by +54 ± 12% with low dose and +68 ± 17% with high dose AA infusion (both P < 0.001). There was some evidence of delayed responsiveness of phosphorylation of Akt to high doses of AA and p70S6k at both doses but no marked differences in that of mTOR, GSK3 β or eEF2. Phosphorylation of focal adhesion kinase (Tyr 576/577 ) was reduced ( P < 0.05) with immobilization. We observed no change in polyubiquitinated protein content after immobilization. We confirm that 14 days of immobilization reduces MPS in the post-absorptive state and this diminution is reduced but not abolished by increased provision of AA, even at high rates. The immobilization-induced decline in post-absorptive MPS with the ‘anabolic resistance’ to amino acids can account for much of immobilization-induced muscle atrophy.
We tested the hypothesis that increasing blood amino acid (AA) availability would counter the physical inactivity‐induced reduction in muscle protein synthesis. We determined how 14 days of unilateral knee immobilization affected quadriceps myofibrillar protein synthesis (MPS) in young healthy subjects (10 men, 2 women, 21 ± 1 years; 80.2 ± 4.0 kg, mean ±s.e.m.) in the post‐absorptive state and after infusing AA (10% Primene) at low or high doses (43 and 261 mg kg−1 h−1). Muscle cross‐sectional area (MRI) and peak isometric torque declined in the immobilized leg (−5.0 ± 1.2% and −25 ± 3%, respectively, both P < 0.005), but were unchanged (all P > 0.6) in the non‐immobilized leg. Immobilization induced a 27% decline in the rate of post‐absorptive MPS (immobilized, 0.027 ± 0.003: non‐immobilized, 0.037 ± 0.003% h−1; P < 0.001). Regardless of dose, AA infusion stimulated a greater rise in MPS in the non‐immobilized legs; at 4 h MPS was greater by +54 ± 12% with low dose and +68 ± 17% with high dose AA infusion (both P < 0.001). There was some evidence of delayed responsiveness of phosphorylation of Akt to high doses of AA and p70S6k at both doses but no marked differences in that of mTOR, GSK3β or eEF2. Phosphorylation of focal adhesion kinase (Tyr576/577) was reduced (P < 0.05) with immobilization. We observed no change in polyubiquitinated protein content after immobilization. We confirm that 14 days of immobilization reduces MPS in the post‐absorptive state and this diminution is reduced but not abolished by increased provision of AA, even at high rates. The immobilization‐induced decline in post‐absorptive MPS with the ‘anabolic resistance’ to amino acids can account for much of immobilization‐induced muscle atrophy.
Author Elisa I. Glover
Jason E. Tang
Mark A. Tarnopolsky
Stuart M. Phillips
Bryan R. Oates
Anna Selby
Michael J. Rennie
Kenneth Smith
Author_xml – sequence: 1
  givenname: Elisa I.
  surname: Glover
  fullname: Glover, Elisa I.
– sequence: 2
  givenname: Stuart M.
  surname: Phillips
  fullname: Phillips, Stuart M.
– sequence: 3
  givenname: Bryan R.
  surname: Oates
  fullname: Oates, Bryan R.
– sequence: 4
  givenname: Jason E.
  surname: Tang
  fullname: Tang, Jason E.
– sequence: 5
  givenname: Mark A.
  surname: Tarnopolsky
  fullname: Tarnopolsky, Mark A.
– sequence: 6
  givenname: Anna
  surname: Selby
  fullname: Selby, Anna
– sequence: 7
  givenname: Kenneth
  surname: Smith
  fullname: Smith, Kenneth
– sequence: 8
  givenname: Michael J.
  surname: Rennie
  fullname: Rennie, Michael J.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18955382$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1u1DAUhS1URKeFN0DIKyQWGfwTJzELJFQVKKoEi7K2HNvT3CqxBzthFKS-Ow5pK2CBWHlxzneu7z0n6MgH7xB6TsmWUspf3-y7OUHot4yQZksrwjl_hDa0rGRR15IfoQ0hjBW8FvQYnaR0QwjlRMon6Jg2UgjesA26vRiG0EIPP_QIwWPwdjIuYe11G3owOLoEadTeuKzhbhq0x8McdtBG6Hsd8T6G0WUpzX7sFjM-wNjhPhxyiMUdXHfYhuSwHsAHrA3YnLSb8t_9U_R4p_vknt29p-jr-_Ors4_F5ecPF2fvLgtTSkKL1ujala2UznBHartrW0YFFW1e3TamaWoqLLNaM8dZxSzltLWM8aqqXS1FzU_R2zV3P7WDs8b5Mepe7SMMOs4qaFB_Kh46dR2-K1YJUdIl4OVdQAzfJpdGNUAyLh_AuzAlVUlJuKh4Nr74fdLDiPuLZ8Ob1WBiSCm6nTIw_rp9Hgy9okQt9ar7etVSr1rrzXD5F_yQ_29MrtgBejf_F6OuPn3hVNLMvlrZpcgDRKdWdwoG3Dgr0VSKlaoipeQ_AdO90Ms
CitedBy_id crossref_primary_10_1089_lap_2024_0317
crossref_primary_10_1097_MCO_0b013e32833f1ae5
crossref_primary_10_3945_jn_114_199604
crossref_primary_10_3390_nu10070929
crossref_primary_10_3390_nu10050635
crossref_primary_10_1097_JES_0b013e318292f3d5
crossref_primary_10_1002_jmri_22864
crossref_primary_10_1016_j_mito_2023_07_003
crossref_primary_10_1093_ajcn_nqaa150
crossref_primary_10_1096_fj_201801857RRR
crossref_primary_10_1152_ajpcell_00009_2019
crossref_primary_10_1152_japplphysiol_00625_2015
crossref_primary_10_1210_clinem_dgaa184
crossref_primary_10_1093_ajcn_nqz332
crossref_primary_10_1113_EP091937
crossref_primary_10_1152_ajpcell_00209_2019
crossref_primary_10_1152_ajpendo_00603_2011
crossref_primary_10_1097_CCM_0b013e3181f2458d
crossref_primary_10_1152_ajpendo_00550_2014
crossref_primary_10_2106_JBJS_21_01014
crossref_primary_10_1249_MSS_0b013e3181a6458a
crossref_primary_10_1097_MCO_0b013e3283374d19
crossref_primary_10_3390_nu11122898
crossref_primary_10_1139_H09_042
crossref_primary_10_1186_1756_0500_5_166
crossref_primary_10_3390_nu5030852
crossref_primary_10_1097_CCM_0b013e3181b6ec1f
crossref_primary_10_1371_journal_pone_0051238
crossref_primary_10_1097_SPC_0b013e32834bdde3
crossref_primary_10_1183_09031936_00090011
crossref_primary_10_3390_nu8050295
crossref_primary_10_1016_j_freeradbiomed_2018_06_012
crossref_primary_10_1152_japplphysiol_00331_2016
crossref_primary_10_1113_jphysiol_2012_244897
crossref_primary_10_1113_jphysiol_2011_226266
crossref_primary_10_1093_gerona_glu103
crossref_primary_10_1152_japplphysiol_00687_2015
crossref_primary_10_1002_jcsm_12636
crossref_primary_10_1152_japplphysiol_00155_2020
crossref_primary_10_1096_fj_202002008R
crossref_primary_10_1139_apnm_2018_0631
crossref_primary_10_1093_ajcn_nqab148
crossref_primary_10_3390_cells12242811
crossref_primary_10_3389_fphys_2023_1289537
crossref_primary_10_1016_j_arr_2021_101463
crossref_primary_10_1152_ajpendo_00294_2021
crossref_primary_10_1113_JP271613
crossref_primary_10_1249_MSS_0000000000002200
crossref_primary_10_1002_jcsm_13284
crossref_primary_10_3390_nu16203428
crossref_primary_10_1016_j_arr_2021_101344
crossref_primary_10_1002_mus_21721
crossref_primary_10_3945_an_113_005405
crossref_primary_10_3389_fnut_2019_00146
crossref_primary_10_1152_physrev_00022_2022
crossref_primary_10_3389_fnut_2019_00144
crossref_primary_10_3389_fphys_2019_00736
crossref_primary_10_1113_JP277841
crossref_primary_10_1111_sms_12170
crossref_primary_10_1177_0148607114567710
crossref_primary_10_1186_1750_2187_7_7
crossref_primary_10_1016_j_celrep_2020_107980
crossref_primary_10_1203_PDR_0b013e3181f2e836
crossref_primary_10_1007_s40279_025_02174_w
crossref_primary_10_1152_japplphysiol_00499_2009
crossref_primary_10_1002_phy2_246
crossref_primary_10_1096_fj_201900095R
crossref_primary_10_1152_japplphysiol_00395_2012
crossref_primary_10_1152_physrev_00019_2016
crossref_primary_10_1152_japplphysiol_00452_2009
crossref_primary_10_1097_BTO_0000000000000271
crossref_primary_10_1016_j_abb_2022_109411
crossref_primary_10_1152_japplphysiol_00962_2010
crossref_primary_10_1093_ajcn_nqx028
crossref_primary_10_1139_H09_137
crossref_primary_10_1152_ajpendo_00227_2015
crossref_primary_10_1139_H09_012
crossref_primary_10_1002_mnfr_201701028
crossref_primary_10_1007_s10522_015_9613_9
crossref_primary_10_1152_ajpcell_00173_2015
crossref_primary_10_1371_journal_pone_0273925
crossref_primary_10_1007_s12178_020_09610_6
crossref_primary_10_1139_apnm_2012_0092
crossref_primary_10_3357_AMHP_5855_2021
crossref_primary_10_3390_ijms23010468
crossref_primary_10_1371_journal_pone_0081495
crossref_primary_10_1113_JP284301
crossref_primary_10_1152_ajpendo_00257_2016
crossref_primary_10_3389_fnut_2021_758657
crossref_primary_10_3389_fphys_2019_01031
crossref_primary_10_1152_ajpendo_00144_2023
crossref_primary_10_1017_S0007114511007422
crossref_primary_10_1097_CCM_0b013e3181b6ea1d
crossref_primary_10_1113_jphysiol_2012_240267
crossref_primary_10_1021_acs_jproteome_0c00256
crossref_primary_10_3390_nu11122972
crossref_primary_10_1016_j_plefa_2014_03_001
crossref_primary_10_1186_1743_7075_11_46
crossref_primary_10_1371_journal_pgen_1003389
crossref_primary_10_1519_JSC_0000000000001191
crossref_primary_10_1111_apha_12190
crossref_primary_10_1007_s00455_016_9710_1
crossref_primary_10_1093_jn_nxy091
crossref_primary_10_1038_sc_2015_183
crossref_primary_10_3389_fphys_2022_998380
crossref_primary_10_1123_ijsnem_2018_0290
crossref_primary_10_1097_WCO_0b013e32832f15e1
crossref_primary_10_1113_JP285897
crossref_primary_10_1371_journal_pone_0286222
crossref_primary_10_1152_ajpendo_00468_2015
crossref_primary_10_3389_fnut_2023_1093988
crossref_primary_10_3945_ajcn_115_112359
crossref_primary_10_3390_cimb45040201
crossref_primary_10_3390_ijms25063516
crossref_primary_10_1152_japplphysiol_00985_2016
crossref_primary_10_1097_JSA_0000000000000240
crossref_primary_10_1097_MCO_0b013e32834d19bc
crossref_primary_10_1152_japplphysiol_00736_2017
crossref_primary_10_1007_s12603_016_0855_2
crossref_primary_10_1093_gerona_glx203
crossref_primary_10_1002_jcsm_13005
crossref_primary_10_34160_jkds_2011_1_2_007
crossref_primary_10_1111_nure_12019
crossref_primary_10_1113_jphysiol_2011_221200
crossref_primary_10_1186_s41110_018_0084_z
crossref_primary_10_1093_jn_nxab010
crossref_primary_10_1017_S0029665115000130
crossref_primary_10_1002_biof_1138
crossref_primary_10_1113_jphysiol_2014_273615
crossref_primary_10_1164_rccm_201107_1320OE
crossref_primary_10_3389_fnut_2019_00105
crossref_primary_10_1152_ajpendo_00541_2012
crossref_primary_10_1152_ajpendo_00481_2014
crossref_primary_10_1093_advances_nmaa015
crossref_primary_10_1177_0884533616686719
crossref_primary_10_1177_23259671241281727
crossref_primary_10_1152_japplphysiol_00957_2009
crossref_primary_10_1016_j_biocel_2013_05_039
crossref_primary_10_1016_j_clnu_2014_04_007
crossref_primary_10_1519_JSC_0000000000003148
crossref_primary_10_1016_j_tjnut_2023_02_023
crossref_primary_10_1371_journal_pone_0148311
crossref_primary_10_1016_j_arr_2022_101611
crossref_primary_10_1152_japplphysiol_00170_2012
crossref_primary_10_3389_fphys_2020_00469
crossref_primary_10_1152_ajpendo_00213_2016
crossref_primary_10_1152_japplphysiol_00563_2022
crossref_primary_10_14814_phy2_15958
crossref_primary_10_1097_MCO_0b013e328333aa66
crossref_primary_10_1152_ajpendo_00345_2023
crossref_primary_10_1007_s40279_015_0398_4
crossref_primary_10_1152_japplphysiol_00609_2014
crossref_primary_10_1111_jocn_17511
crossref_primary_10_1002_tsm2_122
crossref_primary_10_1007_s40279_014_0152_3
crossref_primary_10_1016_j_rehab_2018_09_009
crossref_primary_10_1016_j_clnu_2016_09_019
crossref_primary_10_1093_nutrit_nuac049
crossref_primary_10_1111_apha_12532
crossref_primary_10_1186_s13728_015_0036_7
crossref_primary_10_1111_apha_13986
crossref_primary_10_1134_S0006297918110020
crossref_primary_10_1152_japplphysiol_00125_2010
crossref_primary_10_1371_journal_pone_0141572
crossref_primary_10_1113_JP270343
crossref_primary_10_1210_jc_2017_00869
crossref_primary_10_1016_j_clnu_2014_09_016
crossref_primary_10_1016_j_clnu_2015_07_003
crossref_primary_10_1080_17461391_2014_936326
crossref_primary_10_4236_nm_2014_55025
crossref_primary_10_1186_s13613_015_0051_2
crossref_primary_10_1016_j_biocel_2013_06_011
crossref_primary_10_1113_JP281365
crossref_primary_10_1017_S0954422413000115
crossref_primary_10_1139_h2012_022
crossref_primary_10_3390_fishes4020025
crossref_primary_10_1016_j_tjnut_2023_01_014
crossref_primary_10_1042_CS20130295
crossref_primary_10_1249_MSS_0000000000002929
crossref_primary_10_36740_WLek201909110
crossref_primary_10_3390_nu10081099
crossref_primary_10_3389_fphys_2014_00099
crossref_primary_10_3945_ajcn_117_157818
crossref_primary_10_1113_JP283425
crossref_primary_10_1097_JES_0b013e3182a4e699
crossref_primary_10_1249_MSS_0000000000003342
crossref_primary_10_3389_fphys_2022_892749
crossref_primary_10_1007_s40279_014_0258_7
crossref_primary_10_14814_phy2_13799
crossref_primary_10_1016_j_nut_2012_04_012
crossref_primary_10_1152_ajpcell_00444_2023
crossref_primary_10_1016_j_asmr_2024_101022
crossref_primary_10_1111_j_1469_8749_2012_04229_x
crossref_primary_10_1007_s10522_013_9427_6
crossref_primary_10_2147_CEOR_S408873
crossref_primary_10_1016_j_clnu_2012_09_002
crossref_primary_10_1152_ajpendo_00085_2016
crossref_primary_10_1152_ajpcell_00425_2021
crossref_primary_10_1038_s41598_018_21552_1
crossref_primary_10_1186_2046_7648_1_12
crossref_primary_10_3390_nu14214501
crossref_primary_10_1152_japplphysiol_00354_2012
crossref_primary_10_1113_jphysiol_2012_230631
crossref_primary_10_1016_j_acra_2020_05_007
crossref_primary_10_1113_EP090434
crossref_primary_10_14814_phy2_14683
crossref_primary_10_1016_j_mcna_2011_02_008
crossref_primary_10_3389_fphys_2018_00235
crossref_primary_10_3803_EnM_2016_31_1_31
crossref_primary_10_1016_j_jnutbio_2022_109150
crossref_primary_10_1113_JP271219
crossref_primary_10_1152_japplphysiol_91481_2008
crossref_primary_10_3390_life4030295
crossref_primary_10_1152_japplphysiol_00650_2021
crossref_primary_10_1002_jcsm_13201
crossref_primary_10_3389_fphys_2016_00361
crossref_primary_10_1097_CCM_0b013e3181cc4b53
crossref_primary_10_1007_s00418_014_1212_3
crossref_primary_10_1016_j_arr_2018_07_005
crossref_primary_10_1017_S0029665120007879
crossref_primary_10_1113_jphysiol_2010_197632
crossref_primary_10_1093_ajcn_nqaa229
crossref_primary_10_1007_s00726_017_2390_9
crossref_primary_10_1007_s40279_019_01053_5
crossref_primary_10_1016_j_expneurol_2013_06_003
crossref_primary_10_1371_journal_pone_0140903
crossref_primary_10_14814_phy2_12493
crossref_primary_10_1152_ajpcell_00056_2021
crossref_primary_10_1111_apha_12200
crossref_primary_10_1016_j_clnu_2016_09_023
crossref_primary_10_1002_jcsm_13431
crossref_primary_10_3390_cells10010061
crossref_primary_10_1113_jphysiol_2010_192856
crossref_primary_10_1152_japplphysiol_00803_2017
crossref_primary_10_47529_2223_2524_2021_1_4
crossref_primary_10_1016_S2311_3006_16_30019_2
crossref_primary_10_1016_j_arr_2022_101807
crossref_primary_10_3390_nu11091991
crossref_primary_10_1113_JP284701
crossref_primary_10_1152_ajpendo_00360_2019
crossref_primary_10_1210_jc_2013_1502
crossref_primary_10_1042_CS20140447
crossref_primary_10_1152_ajpendo_00112_2015
crossref_primary_10_1007_s12541_015_0130_1
crossref_primary_10_1113_jphysiol_2009_169854
crossref_primary_10_1152_ajpendo_00409_2012
crossref_primary_10_3389_fnut_2022_976818
crossref_primary_10_1097_MCO_0b013e328352694f
crossref_primary_10_1371_journal_pone_0038910
crossref_primary_10_1007_s00726_010_0636_x
crossref_primary_10_1017_S002966511500422X
crossref_primary_10_1017_S002966511000399X
crossref_primary_10_1113_jphysiol_2010_203232
crossref_primary_10_3945_jn_114_207621
crossref_primary_10_1002_jcsm_12205
crossref_primary_10_3390_ijms22105081
crossref_primary_10_1017_S0007114512002358
crossref_primary_10_1111_apha_13431
crossref_primary_10_1113_jphysiol_2012_233684
crossref_primary_10_1093_gerona_glab077
crossref_primary_10_1093_gerona_glad014
crossref_primary_10_1556_2060_103_2016_3_12
crossref_primary_10_1152_ajpendo_00609_2009
crossref_primary_10_1152_ajpendo_00324_2010
crossref_primary_10_1002_jms_3387
crossref_primary_10_1113_JP275444
crossref_primary_10_1080_17461391_2020_1761076
crossref_primary_10_1111_j_1600_0838_2009_00967_x
crossref_primary_10_1017_S0007114511006271
crossref_primary_10_3390_nu8040221
crossref_primary_10_1093_ajcn_nqaa136
crossref_primary_10_7554_eLife_61138
crossref_primary_10_3389_fnut_2019_00075
crossref_primary_10_1016_j_clnu_2023_08_010
crossref_primary_10_1152_ajpendo_00138_2012
crossref_primary_10_1113_JP277071
crossref_primary_10_1016_j_tem_2016_06_010
crossref_primary_10_1007_s12603_009_0208_5
crossref_primary_10_1016_j_clnesp_2025_01_031
crossref_primary_10_3390_ijms22105179
crossref_primary_10_3945_jn_114_194217
crossref_primary_10_1371_journal_pone_0020993
crossref_primary_10_1177_0148607116682003
crossref_primary_10_1016_j_clnu_2009_03_009
crossref_primary_10_1097_WCO_0b013e3283313b14
crossref_primary_10_1152_japplphysiol_00607_2021
crossref_primary_10_1089_rej_2017_1942
crossref_primary_10_1152_japplphysiol_00837_2024
crossref_primary_10_1113_jphysiol_2013_253203
crossref_primary_10_1139_apnm_2016_0645
crossref_primary_10_1111_apha_13460
crossref_primary_10_1139_apnm_2016_0522
crossref_primary_10_1152_ajpendo_00273_2016
crossref_primary_10_4103_CJP_CJP_31_20
crossref_primary_10_1016_j_jcrc_2015_05_002
crossref_primary_10_1152_japplphysiol_00110_2009
crossref_primary_10_1186_1743_7075_8_15
crossref_primary_10_3389_fnut_2020_569904
crossref_primary_10_1139_apnm_2015_0543
crossref_primary_10_1519_SSC_0b013e3181c212a3
crossref_primary_10_1177_1941738120944256
crossref_primary_10_1007_s10974_015_9415_3
crossref_primary_10_1016_j_ccc_2024_08_011
crossref_primary_10_1007_s00418_012_0980_x
crossref_primary_10_3390_nu12051533
crossref_primary_10_1093_geront_gnz143
crossref_primary_10_1002_jcp_24604
crossref_primary_10_1111_nyas_12509
crossref_primary_10_1113_JP270699
Cites_doi 10.1152/jappl.2001.90.3.1174
10.1152/japplphysiol.90558.2008
10.1152/japplphysiol.00560.2007
10.1152/ajpendo.00582.2007
10.1152/ajpendo.00415.2005
10.1152/japplphysiol.00247.2005
10.1007/s004210100467
10.1210/jc.2003-032159
10.1038/emboj.2008.39
10.1093/ajcn/82.5.941
10.1038/sj.onc.1209887
10.1128/MCB.01512-07
10.1152/japplphysiol.01346.2007
10.1093/jn/135.7.1824S
10.1111/j.1530-0277.2007.00548.x
10.1073/pnas.251541198
10.1093/ajcn/85.4.1031
10.1152/ajpcell.1999.277.1.C152
10.1152/ajpregu.00292.2007
10.1146/annurev.physiol.66.052102.134444
10.1111/j.1365-201X.2004.01293.x
10.1152/ajpendo.90411.2008
10.1093/ajcn/84.3.475
10.1111/j.1469-7793.2001.0575f.x
10.1042/cs0720503
10.1152/ajpregu.00761.2007
10.1093/jn/136.1.227S
10.1042/BJ20070024
10.1152/ajpendo.00430.2003
10.1016/j.nut.2004.04.009
10.1113/jphysiol.2006.118042
10.1042/bst0290541
10.1152/physiol.00024.2006
10.1152/japplphysiol.00221.2002
10.1113/jphysiol.2003.050674
10.1096/fj.03-0610com
10.1139/H07-076
10.1113/jphysiol.2007.134593
10.1210/jc.2004-1702
10.1152/ajpendo.00141.2006
10.1096/fj.06-6604com
10.1139/h06-028
10.1113/jphysiol.2007.142828
10.1152/ajpendo.00387.2004
10.1113/jphysiol.2004.066365
10.1152/ajpendo.1996.270.4.E627
10.1210/jc.2006-0651
10.1152/japplphysiol.00180.2006
10.1113/jphysiol.2006.113175
10.1152/japplphysiol.00346.2003
10.1152/jappl.1989.67.1.19
10.1681/ASN.2006010083
10.1096/fj.04-2640fje
10.1128/MCB.25.7.2558-2572.2005
ContentType Journal Article
Copyright 2008 The Authors. Journal compilation © 2008 The Physiological Society
Journal compilation © 2008 The Physiological Society 2008
Copyright_xml – notice: 2008 The Authors. Journal compilation © 2008 The Physiological Society
– notice: Journal compilation © 2008 The Physiological Society 2008
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1113/jphysiol.2008.160333
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1469-7793
EndPage 6061
ExternalDocumentID PMC2655417
18955382
10_1113_jphysiol_2008_160333
TJP3191
586_24_6049
Genre article
Clinical Trial
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
GroupedDBID -
05W
0R
0YM
10A
123
1OB
1OC
24P
29L
2WC
31
33P
3N
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
55
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAONW
AAVGM
AAZKR
ABCUV
ABFLS
ABHUG
ABITZ
ABIVO
ABOCM
ABPPZ
ABPTK
ABPVW
ABUFD
ABWRO
ACAHQ
ACFBH
ACGFS
ACIWK
ACMXC
ACNCT
ACPOU
ACPRK
ACXME
ACXQS
ADACO
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADXAS
ADZMN
AEIMD
AEUQT
AFBPY
AFFNX
AFPWT
AFZJQ
AGJLS
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ATUGU
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C1A
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DZ
E3Z
EBS
EJD
EX3
F00
F01
F04
F5P
FIJ
FUBAC
G-S
G.N
GA
GODZA
GX1
H.X
H13
HZ
HZI
IA
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LI0
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NEJ
NF
O0-
O66
O9-
OHT
OK1
OVD
P2P
P2W
P2X
P2Z
P4A
P4B
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RPM
RX1
SUPJJ
TLM
TN5
UB1
UNR
UPT
UQL
V8K
VH1
W8V
W99
WBKPD
WH7
WIH
WIJ
WIK
WIN
WNSPC
WOHZO
WOQ
WOW
WQJ
WRC
WT
WXI
WYISQ
X
X7M
XG1
Y3
YZZ
ZA5
ZZTAW
---
-DZ
-~X
.3N
.55
.GA
.GJ
.Y3
0R~
18M
31~
36B
3EH
AAFWJ
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAYJJ
ABCQN
ABEML
ABJNI
ABQWH
ABXGK
ACCFJ
ACCZN
ACGFO
ACGOF
ACSCC
ACXBN
ADBTR
ADKYN
ADMGS
ADOZA
AEEZP
AEGXH
AEIGN
AEQDE
AEUYR
AFEBI
AFFPM
AFGKR
AFWVQ
AHBTC
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALVPJ
AMYDB
AOIJS
CHEAL
EMOBN
FA8
HF~
HGLYW
HZ~
H~9
IPNFZ
KBYEO
LH4
MVM
NF~
OIG
SAMSI
TEORI
TR2
UKR
W8F
WHG
WXSBR
XOL
YBU
YHG
YKV
YQT
YSK
YXB
YYP
ZGI
ZXP
~IA
~WT
AAYXX
AEYWJ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c4901-bca7e4b99ec3e07dfbb21515b200d8c88715d2daa2e3262d131bd223667e79573
IEDL.DBID DR2
ISSN 0022-3751
1469-7793
IngestDate Thu Aug 21 14:12:24 EDT 2025
Thu Jul 10 22:15:42 EDT 2025
Mon Jul 21 05:37:14 EDT 2025
Thu Apr 24 23:03:02 EDT 2025
Tue Jul 01 04:28:52 EDT 2025
Wed Jan 22 16:45:17 EST 2025
Fri Jan 15 01:58:37 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4901-bca7e4b99ec3e07dfbb21515b200d8c88715d2daa2e3262d131bd223667e79573
Notes This paper has online supplemental material.
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1113/jphysiol.2008.160333
PMID 18955382
PQID 69903563
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2655417
proquest_miscellaneous_69903563
pubmed_primary_18955382
crossref_citationtrail_10_1113_jphysiol_2008_160333
crossref_primary_10_1113_jphysiol_2008_160333
wiley_primary_10_1113_jphysiol_2008_160333_TJP3191
highwire_physiosociety_586_24_6049
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-12-15
PublicationDateYYYYMMDD 2008-12-15
PublicationDate_xml – month: 12
  year: 2008
  text: 2008-12-15
  day: 15
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
PublicationTitle The Journal of physiology
PublicationTitleAlternate J Physiol
PublicationYear 2008
Publisher The Physiological Society
Blackwell Publishing Ltd
Blackwell Science Inc
Publisher_xml – name: The Physiological Society
– name: Blackwell Publishing Ltd
– name: Blackwell Science Inc
References 2007; 103
2004; 287
2004; 66
2007; 585
2004; 20
2006; 31
2001; 90
1987; 72
2005; 135
2007; 582
2008; 105
2006; 291
2008; 32
2006; 290
2007; 32
2003; 95
2003; 552
2001; 85
2006; 576
2006; 136
2005; 25
2007; 579
2007; 293
2006; 21
2006; 25
2008; 27
2008; 28
2002; 93
2007; 21
2001; 532
2001; 98
2006; 91
1989; 67
2006; 50
2007; 403
2004; 181
2002; 9
2005; 90
2006; 17
2004; 89
2005; 82
2001; 29
2005; 19
2006; 84
2004; 18
2005; 288
1996; 270
2005; 10
1999; 277
2007; 85
2004; 558
2008; 295
2006; 101
2005; 99
2008; 294
e_1_2_5_27_1
e_1_2_5_25_1
e_1_2_5_48_1
e_1_2_5_23_1
e_1_2_5_46_1
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_29_1
Anastasi G (e_1_2_5_4_1) 2006; 50
Rennie MJ (e_1_2_5_40_1) 2005; 10
e_1_2_5_42_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_57_1
e_1_2_5_7_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_55_1
e_1_2_5_5_1
e_1_2_5_3_1
e_1_2_5_19_1
e_1_2_5_30_1
e_1_2_5_53_1
e_1_2_5_51_1
e_1_2_5_28_1
e_1_2_5_49_1
e_1_2_5_26_1
e_1_2_5_47_1
e_1_2_5_24_1
e_1_2_5_45_1
e_1_2_5_22_1
e_1_2_5_43_1
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_58_1
e_1_2_5_8_1
e_1_2_5_35_1
e_1_2_5_56_1
e_1_2_5_6_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_54_1
e_1_2_5_2_1
e_1_2_5_18_1
e_1_2_5_31_1
e_1_2_5_52_1
e_1_2_5_50_1
Carrithers JA (e_1_2_5_10_1) 2002; 9
15196095 - Acta Physiol Scand. 2004 Jul;181(3):345-57
16365087 - J Nutr. 2006 Jan;136(1 Suppl):227S-31S
18577697 - Am J Physiol Endocrinol Metab. 2008 Sep;295(3):E595-604
14600160 - J Appl Physiol (1985). 2003 Dec;95(6):2185-201
16960159 - Am J Clin Nutr. 2006 Sep;84(3):475-82
15212752 - Nutrition. 2004 Jul-Aug;20(7-8):689-95
17478528 - J Physiol. 2007 Jul 15;582(Pt 2):813-23
2435445 - Clin Sci (Lond). 1987 Apr;72(4):503-9
17218363 - J Physiol. 2007 Mar 15;579(Pt 3):877-92
17641219 - J Appl Physiol (1985). 2007 Oct;103(4):1242-50
16835402 - Am J Physiol Endocrinol Metab. 2006 Dec;291(6):E1197-205
8928769 - Am J Physiol. 1996 Apr;270(4 Pt 1):E627-33
16873412 - J Physiol. 2006 Oct 15;576(Pt 2):613-24
18483167 - J Appl Physiol (1985). 2008 Jul;105(1):241-8
11606016 - Eur J Appl Physiol. 2001 Sep;85(5):466-71
11306673 - J Physiol. 2001 Apr 15;532(Pt 2):575-9
15987873 - J Nutr. 2005 Jul;135(7):1824S-1828S
15356032 - J Clin Endocrinol Metab. 2004 Sep;89(9):4351-8
14977422 - Annu Rev Physiol. 2004;66:799-828
17041627 - Oncogene. 2006 Oct 16;25(48):6423-35
12183515 - J Appl Physiol (1985). 2002 Sep;93(3):1168-80
18059587 - Appl Physiol Nutr Metab. 2007 Dec;32(6):1132-8
17037086 - Ann Transplant. 2005;10(4):31-4
18337751 - EMBO J. 2008 Apr 9;27(7):1005-16
18056791 - Am J Physiol Endocrinol Metab. 2008 Feb;294(2):E392-400
18160716 - Mol Cell Biol. 2008 Mar;28(5):1429-42
16280423 - Am J Clin Nutr. 2005 Nov;82(5):941-8
15131238 - J Physiol. 2004 Jul 15;558(Pt 2):381-8
17376031 - Biochem J. 2007 Apr 15;403(2):217-34
14998784 - Am J Physiol Endocrinol Metab. 2004 Jul;287(1):E1-7
17901116 - J Physiol. 2007 Nov 15;585(Pt 1):241-51
2668254 - J Appl Physiol (1985). 1989 Jul;67(1):19-23
17413102 - Am J Clin Nutr. 2007 Apr;85(4):1031-40
18028527 - Alcohol Clin Exp Res. 2008 Jan;32(1):128-37
15860685 - J Appl Physiol (1985). 2005 Sep;99(3):1085-92
18094071 - Am J Physiol Regul Integr Comp Physiol. 2008 Mar;294(3):R939-47
11717410 - Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14440-5
17213042 - Eur J Histochem. 2006 Oct-Dec;50(4):327-36
16263770 - Am J Physiol Endocrinol Metab. 2006 Apr;290(4):E731-8
16763108 - J Appl Physiol (1985). 2006 Oct;101(4):1136-48
17670860 - Am J Physiol Regul Integr Comp Physiol. 2007 Oct;293(4):R1722-7
12909668 - J Physiol. 2003 Oct 1;552(Pt 1):315-24
11498025 - Biochem Soc Trans. 2001 Aug;29(Pt 4):541-7
15596483 - FASEB J. 2005 Mar;19(3):422-4
11181634 - J Appl Physiol (1985). 2001 Mar;90(3):1174-83; discussion 1165
16990457 - Physiology (Bethesda). 2006 Oct;21:362-9
14718385 - FASEB J. 2004 Jan;18(1):39-51
15598679 - J Clin Endocrinol Metab. 2005 Mar;90(3):1453-9
15002527 - J Gravit Physiol. 2002 Jul;9(1):P155-6
17116744 - FASEB J. 2007 Jan;21(1):140-55
16984982 - J Clin Endocrinol Metab. 2006 Dec;91(12):4836-41
16738015 - J Am Soc Nephrol. 2006 Jul;17(7):1807-19
15572656 - Am J Physiol Endocrinol Metab. 2005 Jun;288(6):E1153-9
17111006 - Appl Physiol Nutr Metab. 2006 Oct;31(5):518-29
15767663 - Mol Cell Biol. 2005 Apr;25(7):2558-72
18535133 - J Appl Physiol (1985). 2008 Sep;105(3):902-6
10409118 - Am J Physiol. 1999 Jul;277(1 Pt 1):C152-62
References_xml – volume: 25
  start-page: 2558
  year: 2005
  end-page: 2572
  article-title: Distinct signaling events downstream of mTOR cooperate to mediate the effects of amino acids and insulin on initiation factor 4E‐binding proteins
  publication-title: Mol Cell Biol
– volume: 552
  start-page: 315
  year: 2003
  end-page: 324
  article-title: Human muscle protein synthesis is modulated by extracellular, not intramuscular amino acid availability: a dose–response study
  publication-title: J Physiol
– volume: 90
  start-page: 1453
  year: 2005
  end-page: 1459
  article-title: The catabolic effects of prolonged inactivity and acute hypercortisolemia are offset by dietary supplementation
  publication-title: J Clin Endocrinol Metab
– volume: 98
  start-page: 14440
  year: 2001
  end-page: 14445
  article-title: Atrogin‐1, a muscle‐specific F‐box protein highly expressed during muscle atrophy
  publication-title: Proc Natl Acad Sci U S A
– volume: 90
  start-page: 1174
  year: 2001
  end-page: 1183
  article-title: Selected contribution: Skeletal muscle focal adhesion kinase, paxillin, and serum response factor are loading dependent
  publication-title: J Appl Physiol
– volume: 89
  start-page: 4351
  year: 2004
  end-page: 4358
  article-title: Essential amino acid and carbohydrate supplementation ameliorates muscle protein loss in humans during 28 days bedrest
  publication-title: J Clin Endocrinol Metab
– volume: 82
  start-page: 941
  year: 2005
  end-page: 948
  article-title: Factors influencing variation in basal metabolic rate include fat‐free mass, fat mass, age, and circulating thyroxine but not sex, circulating leptin, or triiodothyronine
  publication-title: Am J Clin Nutr
– volume: 290
  start-page: E731
  year: 2006
  end-page: E738
  article-title: Anabolic signalling and protein synthesis in human skeletal muscle after dynamic shortening or lengthening exercise
  publication-title: Am J Physiol Endocrinol Metab
– volume: 27
  start-page: 1005
  year: 2008
  end-page: 1016
  article-title: cdc2‐cyclin B regulates eEF2 kinase activity in a cell cycle‐ and amino acid‐dependent manner
  publication-title: EMBO J
– volume: 103
  start-page: 1242
  year: 2007
  end-page: 1250
  article-title: Single muscle fiber function with concurrent exercise or nutrition countermeasures during 60 days of bed rest in women
  publication-title: J Appl Physiol
– volume: 85
  start-page: 466
  year: 2001
  end-page: 471
  article-title: Adaptation to chronic eccentric exercise in humans: the influence of contraction velocity
  publication-title: Eur J Appl Physiol
– volume: 18
  start-page: 39
  year: 2004
  end-page: 51
  article-title: Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression
  publication-title: FASEB J
– volume: 288
  start-page: E1153
  year: 2005
  end-page: E1159
  article-title: Myofibrillar and collagen protein synthesis in human skeletal muscle in young men after maximal shortening and lengthening contractions
  publication-title: Am J Physiol Endocrinol Metab
– volume: 293
  start-page: R1722
  year: 2007
  end-page: R1727
  article-title: Contractile and connective tissue protein content of human skeletal muscle: Effects of 35 and 90 days of simulated microgravity and exercise countermeasures
  publication-title: Am J Physiol Regul Integr Comp Physiol
– volume: 32
  start-page: 128
  year: 2008
  end-page: 137
  article-title: Alcohol accelerates loss of muscle and impairs recovery of muscle mass resulting from disuse atrophy
  publication-title: Alcohol Clin Exp Res
– volume: 576
  start-page: 613
  year: 2006
  end-page: 624
  article-title: Resistance exercise increases AMPK activity and reduces 4E‐BP1 phosphorylation and protein synthesis in human skeletal muscle
  publication-title: J Physiol
– volume: 9
  start-page: 155
  year: 2002
  end-page: 156
  article-title: Skeletal muscle protein composition following 5 weeks of ULLS and resistance exercise countermeasures
  publication-title: J Gravit Physiol
– volume: 585
  start-page: 241
  year: 2007
  end-page: 251
  article-title: The temporal responses of protein synthesis, gene expression and cell signalling in human quadriceps muscle and patellar tendon to disuse
  publication-title: J Physiol
– volume: 20
  start-page: 689
  year: 2004
  end-page: 695
  article-title: Protein requirements and supplementation in strength sports
  publication-title: Nutrition
– volume: 67
  start-page: 19
  year: 1989
  end-page: 23
  article-title: Insulin action in human thighs after one‐legged immobilization
  publication-title: J Appl Physiol
– volume: 101
  start-page: 1136
  year: 2006
  end-page: 1148
  article-title: Analysis of human skeletal muscle after 48 h immobilization reveals alterations in mRNA and protein for extracellular matrix components
  publication-title: J Appl Physiol
– volume: 294
  start-page: E392
  year: 2008
  end-page: E400
  article-title: Leucine‐enriched essential amino acid and carbohydrate ingestion following resistance exercise enhances mTOR signaling and protein synthesis in human muscle
  publication-title: Am J Physiol Endocrinol Metab
– volume: 105
  start-page: 902
  year: 2008
  end-page: 906
  article-title: Skeletal muscle proteolysis in response to short‐term unloading in humans
  publication-title: J Appl Physiol
– volume: 95
  start-page: 2185
  year: 2003
  end-page: 2201
  article-title: Skeletal muscle unweighting: spaceflight and ground‐based models
  publication-title: J Appl Physiol
– volume: 579
  start-page: 877
  year: 2007
  end-page: 892
  article-title: Alterations in mRNA expression and protein products following spinal cord injury in humans
  publication-title: J Physiol
– volume: 29
  start-page: 541
  year: 2001
  end-page: 547
  article-title: Interplay between insulin and nutrients in the regulation of translation factors
  publication-title: Biochem Soc Trans
– volume: 135
  start-page: 1824S
  year: 2005
  end-page: 1828S
  article-title: Metabolic consequences of muscle disuse atrophy
  publication-title: J Nutr
– volume: 270
  start-page: E627
  year: 1996
  end-page: E633
  article-title: Prolonged bed rest decreases skeletal muscle and whole body protein synthesis
  publication-title: Am J Physiol
– volume: 93
  start-page: 1168
  year: 2002
  end-page: 1180
  article-title: Role of insulin in translational control of protein synthesis in skeletal muscle by amino acids or exercise
  publication-title: J Appl Physiol
– volume: 532
  start-page: 575
  year: 2001
  end-page: 579
  article-title: Latency and duration of stimulation of human muscle protein synthesis during continuous infusion of amino acids
  publication-title: J Physiol
– volume: 294
  start-page: R939
  year: 2008
  end-page: R947
  article-title: Human soleus single muscle fiber function with exercise or nutrition countermeasures during 60 days of bed rest
  publication-title: Am J Physiol Regul Integr Comp Physiol
– volume: 84
  start-page: 475
  year: 2006
  end-page: 482
  article-title: The underappreciated role of muscle in health and disease
  publication-title: Am J Clin Nutr
– volume: 136
  start-page: 227S
  year: 2006
  end-page: 231S
  article-title: Signaling pathways and molecular mechanisms through which branched‐chain amino acids mediate translational control of protein synthesis
  publication-title: J Nutr
– volume: 91
  start-page: 4836
  year: 2006
  end-page: 4841
  article-title: Atrophy and impaired muscle protein synthesis during prolonged inactivity and stress
  publication-title: J Clin Endocrinol Metab
– volume: 21
  start-page: 140
  year: 2007
  end-page: 155
  article-title: Rapid disuse and denervation atrophy involve transcriptional changes similar to those of muscle wasting during systemic diseases
  publication-title: FASEB J
– volume: 66
  start-page: 799
  year: 2004
  end-page: 828
  article-title: Control of the size of the human muscle mass
  publication-title: Annu Rev Physiol
– volume: 10
  start-page: 31
  year: 2005
  end-page: 34
  article-title: Maintenance of the musculoskeletal mass by control of protein turnover: the concept of anabolic resistance and its relevance to the transplant recipient
  publication-title: Ann Transplant
– volume: 291
  start-page: E1197
  year: 2006
  end-page: E1205
  article-title: Maximal lengthening contractions increase p70, S6 kinase phosphorylation in human skeletal muscle in the absence of nutritional supply
  publication-title: Am J Physiol Endocrinol Metab
– volume: 28
  start-page: 1429
  year: 2008
  end-page: 1442
  article-title: A novel mechanism for the control of translation initiation by amino acids, mediated by phosphorylation of eukaryotic initiation factor 2B
  publication-title: Mol Cell Biol
– volume: 287
  start-page: E1
  year: 2004
  end-page: E7
  article-title: Branched‐chain amino acids increase p70S6k phosphorylation in human skeletal muscle after resistance exercise
  publication-title: Am J Physiol Endocrinol Metab
– volume: 25
  start-page: 6423
  year: 2006
  end-page: 6435
  article-title: When translation meets transformation: the mTOR story
  publication-title: Oncogene
– volume: 558
  start-page: 381
  year: 2004
  end-page: 388
  article-title: Short‐term bed rest impairs amino acid‐induced protein anabolism in humans
  publication-title: J Physiol
– volume: 105
  start-page: 241
  year: 2008
  end-page: 248
  article-title: Resistance training and timed essential amino acids protect against the loss of muscle mass and strength during 28 days of bed rest and energy deficit
  publication-title: J Appl Physiol
– volume: 403
  start-page: 217
  year: 2007
  end-page: 234
  article-title: Signalling to translation: how signal transduction pathways control the protein synthetic machinery
  publication-title: Biochem J
– volume: 72
  start-page: 503
  year: 1987
  end-page: 509
  article-title: Decrease in human quadriceps muscle protein turnover consequent upon leg immobilization
  publication-title: Clin Sci (Lond)
– volume: 99
  start-page: 1085
  year: 2005
  end-page: 1092
  article-title: Sex‐based differences in skeletal muscle function and morphology with short‐term limb immobilization
  publication-title: J Appl Physiol
– volume: 31
  start-page: 518
  year: 2006
  end-page: 529
  article-title: Addition of glutamine to essential amino acids and carbohydrate does not enhance anabolism in young human males following exercise
  publication-title: Appl Physiol Nutr Metab
– volume: 277
  start-page: C152
  year: 1999
  end-page: C162
  article-title: Focal adhesion proteins FAK and paxillin increase in hypertrophied skeletal muscle
  publication-title: Am J Physiol Endocrinol Metab
– volume: 21
  start-page: 362
  year: 2006
  end-page: 369
  article-title: The mTOR pathway in the control of protein synthesis
  publication-title: Physiology (Bethesda)
– volume: 181
  start-page: 345
  year: 2004
  end-page: 357
  article-title: Efficacy of a gravity‐independent resistance exercise device as a countermeasure to muscle atrophy during 29‐day bed rest
  publication-title: Acta Physiol Scand
– volume: 50
  start-page: 327
  year: 2006
  end-page: 336
  article-title: Integrins, muscle agrin and sarcoglycans during muscular inactivity conditions: an immunohistochemical study
  publication-title: Eur J Histochem
– volume: 32
  start-page: 1132
  year: 2007
  end-page: 1138
  article-title: Minimal whey protein with carbohydrate stimulates muscle protein synthesis following resistance exercise in trained young men
  publication-title: Appl Physiol Nutr Metab
– volume: 17
  start-page: 1807
  year: 2006
  end-page: 1819
  article-title: Protein degradation by the ubiquitin‐proteasome pathway in normal and disease states
  publication-title: J Am Soc Nephrol
– volume: 19
  start-page: 422
  year: 2005
  end-page: 424
  article-title: Anabolic signaling deficits underlie amino acid resistance of wasting, aging muscle
  publication-title: FASEB J
– volume: 582
  start-page: 813
  year: 2007
  end-page: 823
  article-title: Nutrient signalling in the regulation of human muscle protein synthesis
  publication-title: J Physiol
– volume: 295
  start-page: E595
  year: 2008
  end-page: E604
  article-title: Disassociation between the effects of amino acids and insulin on signalling, ubiquitin‐ligases and protein turnover in human muscle
  publication-title: Am J Physiol Endocrinol Metab
– volume: 85
  start-page: 1031
  year: 2007
  end-page: 1040
  article-title: Consumption of fluid skim milk promotes greater muscle protein accretion following resistance exercise than an isonitrogenous and isoenergetic soy protein beverage
  publication-title: Am J Clin Nutr
– ident: e_1_2_5_22_1
  doi: 10.1152/jappl.2001.90.3.1174
– ident: e_1_2_5_46_1
  doi: 10.1152/japplphysiol.90558.2008
– ident: e_1_2_5_48_1
  doi: 10.1152/japplphysiol.00560.2007
– ident: e_1_2_5_14_1
  doi: 10.1152/ajpendo.00582.2007
– ident: e_1_2_5_11_1
  doi: 10.1152/ajpendo.00415.2005
– ident: e_1_2_5_58_1
  doi: 10.1152/japplphysiol.00247.2005
– ident: e_1_2_5_32_1
  doi: 10.1007/s004210100467
– ident: e_1_2_5_35_1
  doi: 10.1210/jc.2003-032159
– ident: e_1_2_5_43_1
  doi: 10.1038/emboj.2008.39
– ident: e_1_2_5_25_1
  doi: 10.1093/ajcn/82.5.941
– ident: e_1_2_5_5_1
  doi: 10.1038/sj.onc.1209887
– ident: e_1_2_5_54_1
  doi: 10.1128/MCB.01512-07
– ident: e_1_2_5_9_1
  doi: 10.1152/japplphysiol.01346.2007
– ident: e_1_2_5_44_1
  doi: 10.1093/jn/135.7.1824S
– ident: e_1_2_5_51_1
  doi: 10.1111/j.1530-0277.2007.00548.x
– ident: e_1_2_5_21_1
  doi: 10.1073/pnas.251541198
– ident: e_1_2_5_56_1
  doi: 10.1093/ajcn/85.4.1031
– ident: e_1_2_5_18_1
  doi: 10.1152/ajpcell.1999.277.1.C152
– ident: e_1_2_5_24_1
  doi: 10.1152/ajpregu.00292.2007
– ident: e_1_2_5_39_1
  doi: 10.1146/annurev.physiol.66.052102.134444
– ident: e_1_2_5_3_1
  doi: 10.1111/j.1365-201X.2004.01293.x
– ident: e_1_2_5_23_1
  doi: 10.1152/ajpendo.90411.2008
– ident: e_1_2_5_57_1
  doi: 10.1093/ajcn/84.3.475
– ident: e_1_2_5_7_1
  doi: 10.1111/j.1469-7793.2001.0575f.x
– ident: e_1_2_5_20_1
  doi: 10.1042/cs0720503
– ident: e_1_2_5_47_1
  doi: 10.1152/ajpregu.00761.2007
– volume: 50
  start-page: 327
  year: 2006
  ident: e_1_2_5_4_1
  article-title: Integrins, muscle agrin and sarcoglycans during muscular inactivity conditions: an immunohistochemical study
  publication-title: Eur J Histochem
– ident: e_1_2_5_28_1
  doi: 10.1093/jn/136.1.227S
– ident: e_1_2_5_37_1
  doi: 10.1042/BJ20070024
– ident: e_1_2_5_26_1
  doi: 10.1152/ajpendo.00430.2003
– ident: e_1_2_5_36_1
  doi: 10.1016/j.nut.2004.04.009
– ident: e_1_2_5_49_1
  doi: 10.1113/jphysiol.2006.118042
– ident: e_1_2_5_38_1
  doi: 10.1042/bst0290541
– ident: e_1_2_5_53_1
  doi: 10.1152/physiol.00024.2006
– ident: e_1_2_5_27_1
  doi: 10.1152/japplphysiol.00221.2002
– ident: e_1_2_5_8_1
  doi: 10.1113/jphysiol.2003.050674
– ident: e_1_2_5_30_1
  doi: 10.1096/fj.03-0610com
– volume: 9
  start-page: 155
  year: 2002
  ident: e_1_2_5_10_1
  article-title: Skeletal muscle protein composition following 5 weeks of ULLS and resistance exercise countermeasures
  publication-title: J Gravit Physiol
– ident: e_1_2_5_45_1
  doi: 10.1139/H07-076
– ident: e_1_2_5_19_1
  doi: 10.1113/jphysiol.2007.134593
– ident: e_1_2_5_34_1
  doi: 10.1210/jc.2004-1702
– ident: e_1_2_5_16_1
  doi: 10.1152/ajpendo.00141.2006
– ident: e_1_2_5_42_1
  doi: 10.1096/fj.06-6604com
– ident: e_1_2_5_55_1
  doi: 10.1139/h06-028
– ident: e_1_2_5_13_1
  doi: 10.1113/jphysiol.2007.142828
– ident: e_1_2_5_31_1
  doi: 10.1152/ajpendo.00387.2004
– volume: 10
  start-page: 31
  year: 2005
  ident: e_1_2_5_40_1
  article-title: Maintenance of the musculoskeletal mass by control of protein turnover: the concept of anabolic resistance and its relevance to the transplant recipient
  publication-title: Ann Transplant
– ident: e_1_2_5_6_1
  doi: 10.1113/jphysiol.2004.066365
– ident: e_1_2_5_17_1
  doi: 10.1152/ajpendo.1996.270.4.E627
– ident: e_1_2_5_33_1
  doi: 10.1210/jc.2006-0651
– ident: e_1_2_5_50_1
  doi: 10.1152/japplphysiol.00180.2006
– ident: e_1_2_5_15_1
  doi: 10.1113/jphysiol.2006.113175
– ident: e_1_2_5_2_1
  doi: 10.1152/japplphysiol.00346.2003
– ident: e_1_2_5_41_1
  doi: 10.1152/jappl.1989.67.1.19
– ident: e_1_2_5_29_1
  doi: 10.1681/ASN.2006010083
– ident: e_1_2_5_12_1
  doi: 10.1096/fj.04-2640fje
– ident: e_1_2_5_52_1
  doi: 10.1128/MCB.25.7.2558-2572.2005
– reference: 17213042 - Eur J Histochem. 2006 Oct-Dec;50(4):327-36
– reference: 16984982 - J Clin Endocrinol Metab. 2006 Dec;91(12):4836-41
– reference: 17901116 - J Physiol. 2007 Nov 15;585(Pt 1):241-51
– reference: 14977422 - Annu Rev Physiol. 2004;66:799-828
– reference: 14718385 - FASEB J. 2004 Jan;18(1):39-51
– reference: 16280423 - Am J Clin Nutr. 2005 Nov;82(5):941-8
– reference: 17037086 - Ann Transplant. 2005;10(4):31-4
– reference: 2668254 - J Appl Physiol (1985). 1989 Jul;67(1):19-23
– reference: 17413102 - Am J Clin Nutr. 2007 Apr;85(4):1031-40
– reference: 14600160 - J Appl Physiol (1985). 2003 Dec;95(6):2185-201
– reference: 15572656 - Am J Physiol Endocrinol Metab. 2005 Jun;288(6):E1153-9
– reference: 18535133 - J Appl Physiol (1985). 2008 Sep;105(3):902-6
– reference: 17218363 - J Physiol. 2007 Mar 15;579(Pt 3):877-92
– reference: 16835402 - Am J Physiol Endocrinol Metab. 2006 Dec;291(6):E1197-205
– reference: 15356032 - J Clin Endocrinol Metab. 2004 Sep;89(9):4351-8
– reference: 17670860 - Am J Physiol Regul Integr Comp Physiol. 2007 Oct;293(4):R1722-7
– reference: 18483167 - J Appl Physiol (1985). 2008 Jul;105(1):241-8
– reference: 17116744 - FASEB J. 2007 Jan;21(1):140-55
– reference: 11717410 - Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14440-5
– reference: 12183515 - J Appl Physiol (1985). 2002 Sep;93(3):1168-80
– reference: 18160716 - Mol Cell Biol. 2008 Mar;28(5):1429-42
– reference: 18056791 - Am J Physiol Endocrinol Metab. 2008 Feb;294(2):E392-400
– reference: 16960159 - Am J Clin Nutr. 2006 Sep;84(3):475-82
– reference: 15598679 - J Clin Endocrinol Metab. 2005 Mar;90(3):1453-9
– reference: 15196095 - Acta Physiol Scand. 2004 Jul;181(3):345-57
– reference: 11306673 - J Physiol. 2001 Apr 15;532(Pt 2):575-9
– reference: 15212752 - Nutrition. 2004 Jul-Aug;20(7-8):689-95
– reference: 18577697 - Am J Physiol Endocrinol Metab. 2008 Sep;295(3):E595-604
– reference: 11498025 - Biochem Soc Trans. 2001 Aug;29(Pt 4):541-7
– reference: 11606016 - Eur J Appl Physiol. 2001 Sep;85(5):466-71
– reference: 16263770 - Am J Physiol Endocrinol Metab. 2006 Apr;290(4):E731-8
– reference: 17376031 - Biochem J. 2007 Apr 15;403(2):217-34
– reference: 15987873 - J Nutr. 2005 Jul;135(7):1824S-1828S
– reference: 15767663 - Mol Cell Biol. 2005 Apr;25(7):2558-72
– reference: 18059587 - Appl Physiol Nutr Metab. 2007 Dec;32(6):1132-8
– reference: 17641219 - J Appl Physiol (1985). 2007 Oct;103(4):1242-50
– reference: 16763108 - J Appl Physiol (1985). 2006 Oct;101(4):1136-48
– reference: 18094071 - Am J Physiol Regul Integr Comp Physiol. 2008 Mar;294(3):R939-47
– reference: 10409118 - Am J Physiol. 1999 Jul;277(1 Pt 1):C152-62
– reference: 18337751 - EMBO J. 2008 Apr 9;27(7):1005-16
– reference: 15002527 - J Gravit Physiol. 2002 Jul;9(1):P155-6
– reference: 16365087 - J Nutr. 2006 Jan;136(1 Suppl):227S-31S
– reference: 2435445 - Clin Sci (Lond). 1987 Apr;72(4):503-9
– reference: 17478528 - J Physiol. 2007 Jul 15;582(Pt 2):813-23
– reference: 11181634 - J Appl Physiol (1985). 2001 Mar;90(3):1174-83; discussion 1165
– reference: 17041627 - Oncogene. 2006 Oct 16;25(48):6423-35
– reference: 14998784 - Am J Physiol Endocrinol Metab. 2004 Jul;287(1):E1-7
– reference: 16990457 - Physiology (Bethesda). 2006 Oct;21:362-9
– reference: 15131238 - J Physiol. 2004 Jul 15;558(Pt 2):381-8
– reference: 16738015 - J Am Soc Nephrol. 2006 Jul;17(7):1807-19
– reference: 8928769 - Am J Physiol. 1996 Apr;270(4 Pt 1):E627-33
– reference: 12909668 - J Physiol. 2003 Oct 1;552(Pt 1):315-24
– reference: 18028527 - Alcohol Clin Exp Res. 2008 Jan;32(1):128-37
– reference: 17111006 - Appl Physiol Nutr Metab. 2006 Oct;31(5):518-29
– reference: 16873412 - J Physiol. 2006 Oct 15;576(Pt 2):613-24
– reference: 15596483 - FASEB J. 2005 Mar;19(3):422-4
– reference: 15860685 - J Appl Physiol (1985). 2005 Sep;99(3):1085-92
SSID ssj0013099
Score 2.4484184
Snippet We tested the hypothesis that increasing blood amino acid (AA) availability would counter the physical inactivity-induced reduction in muscle protein...
We tested the hypothesis that increasing blood amino acid (AA) availability would counter the physical inactivity‐induced reduction in muscle protein...
We tested the hypothesis that increasing blood amino acid (AA) availability would counter the physical inactivity-induced reduction in muscle protein...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6049
SubjectTerms Adult
Amino Acids - administration & dosage
Amino Acids - metabolism
Amino Acids - pharmacology
Amino Acids, Essential - blood
Amino Acids, Essential - metabolism
Dose-Response Relationship, Drug
Elongation Factor 2 Kinase - metabolism
Female
Focal Adhesion Protein-Tyrosine Kinases - metabolism
Glycogen Synthase Kinase 3 - metabolism
Glycogen Synthase Kinase 3 beta
Humans
Immobilization - methods
Infusions, Intravenous
Insulin - blood
Male
Muscle Proteins - biosynthesis
Muscle Strength - drug effects
Muscle Strength - physiology
Myofibrils - drug effects
Myofibrils - metabolism
Myofibrils - physiology
Phosphorylation - drug effects
Protein Kinases - metabolism
Proto-Oncogene Proteins c-akt - metabolism
Quadriceps Muscle - drug effects
Quadriceps Muscle - metabolism
Quadriceps Muscle - physiology
Ribosomal Protein S6 Kinases, 70-kDa - metabolism
Skeletal Muscle and Exercise
TOR Serine-Threonine Kinases
Ubiquitination - drug effects
Young Adult
Title Immobilization induces anabolic resistance in human myofibrillar protein synthesis with low and high dose amino acid infusion
URI http://jp.physoc.org/content/586/24/6049.abstract
https://onlinelibrary.wiley.com/doi/abs/10.1113%2Fjphysiol.2008.160333
https://www.ncbi.nlm.nih.gov/pubmed/18955382
https://www.proquest.com/docview/69903563
https://pubmed.ncbi.nlm.nih.gov/PMC2655417
Volume 586
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1469-7793
  dateEnd: 20240930
  omitProxy: true
  ssIdentifier: ssj0013099
  issn: 0022-3751
  databaseCode: DIK
  dateStart: 18780101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1469-7793
  dateEnd: 20240930
  omitProxy: true
  ssIdentifier: ssj0013099
  issn: 0022-3751
  databaseCode: GX1
  dateStart: 18780101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVALS
  databaseName: IngentaConnect Open Access Journals
  customDbUrl:
  eissn: 1469-7793
  dateEnd: 20141130
  omitProxy: true
  ssIdentifier: ssj0013099
  issn: 0022-3751
  databaseCode: FIJ
  dateStart: 19860501
  isFulltext: true
  titleUrlDefault: http://www.ingentaconnect.com/content/title?j_type=online&j_startat=Aa&j_endat=Af&j_pagesize=200&j_page=1
  providerName: Ingenta
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1469-7793
  dateEnd: 20240930
  omitProxy: true
  ssIdentifier: ssj0013099
  issn: 0022-3751
  databaseCode: RPM
  dateStart: 18780101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0022-3751
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1469-7793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013099
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELaqnrjwKo_wtBDitiW21-v1sUKEUglUoVbKzfIrZSHxomwiFCT-O2N7NyVQCQSXXGxPZO9n-xt7_A1Cz2ttmRBGFxWwh6L0TBfaWFJoYq0gxHJj44H-u_fV8Xl5MuXTPTQZ3sJkfYjtgVucGWm9jhNcmz4LCYliA5-S69_OczxkzJbMougnYTzd1n6gl5cJYym3ouGCk_4FHZh5eZWR3R1qUA2-ioH-Hkj5M8FNO9TkBroY-pYDUz4frlfm0H77Rfbx_zt_E13vSSw-yqi7hfZ8uI0OjgI48IsNfoFPc7P2YnOAvr8FpMcI3PzeEzfBAZo6rAPAb95YDP5-5LAAPijDKWcgXmwA82YZMyItcZKSgKJuE4CtQmUcD4_xvP0KRhyOQ4dd23msF01osbaNA0uzdTwHvIPOJ6_PXh0Xfc6HwpZATQpjtfClkdJb5sfCzYyJpIQb6KirLSyJhDvqtKYeiCd1hBHjgOJUlfBCcsHuov3QBn8fYUa99DMNHqO2pZAemujxrAaXLd4dSjFCbPjOyvaC6DEvx1xlx4ipYZRzrs48yiNUbFt9yYIgf6j_bICQysVdDsdVvK4ULVUFPtoIPR3ApWB6xzsbHXy77lQFbAEQDWbuZahd_mktOexWdITEDgi3FaJw-G5JaD4mAXFaAYkkMAA0Yeyv-qHOTk5huSYP_qXRQ3QtxdkQWhD-CO2vlmv_GMjcyjxJUxV-30zJD8zRSlY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfGeIAXGIyPwmAWQrxl1HYcJ4_TYHRjmybUSXuz_NUt0DqoaYWKxP--c5x0FCaBEM-2L7LzO_t35_MdQq9zZZgQWiUZsIckdUwlShuSKGKMIMRwbYJD__gkG5ylh-f8fA196N7CxPwQS4db0Ixmvw4KHhzSrZaHbAOfG9u_GseAyFAumbFb6Ha4qgsa-u4Tvb5O6BfFMm244KR9Qwdy3t4kZfWM6vIG38RBfw-l_JniNmfU_n102c0uhqZ82ZnP9I75_kvix_8w_Q10r-WxeDcC7wFac_4h2tz1YMNPFvgNPo3DqovFJvpxAGAPQbjxyScuvQVA1Vh5QOC4NBhM_kBjAX_QhpuygXiyANjraSiKNMVNNgloqhceCCt0xsF_jMfVNxBicVg7bKvaYTUpfYWVKS1IGs2DK_AROtt_P9wbJG3Zh8SkwE4SbZRwqS4KZ5jrCzvSOvASrmGiNjewKxJuqVWKOuCe1BJGtAWWk2XCiYIL9hit-8q7pwgz6go3UmA0KpOKwsEQ1R_lYLWF68NC9BDrfrQ0bU70UJpjLKNtxGS3yrFcZ1zlHkqWo77GnCB_6P-qw5CMzXWMyJU8zyRNZQZmWg9td-iSoOHh2kZ5V81rmQFhYDwDMU8i1q4_mhccDizaQ2IFhcsOIXf4aosvL5sc4jQDHklgAWgDsr-ahxwensKOTZ79y6BtdGcwPD6SRwcnH5-ju03YDaEJ4VtofTaduxfA7Wb6ZaO3V2x4TYE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLbGkBAv4zIuHZdZCPGWUduJnTxOQLUNmCq0SXuzfMsWaJ2paYWKxH_nOE46CpNA8Gz7RHY-29-xj7-D0MtcGSaEVgkH9pCkjqlEaUMSRYwRhJhMm3Cg__GYH5ymR2fZ2QYa9W9hoj7E6sAtzIx2vQ4T_NKW3SQPYgOfW9e_nsR4yJAtmbEb6GbKwdEK5OgTvbpNGBbFSjVcZKR7Qgd2Xl9nZX2L6mWDr6Ogv0dS_sxw2y1qdAed952LkSlf9hZzvWe-_aL7-P-9v4u2OhaL9yPs7qEN5--j7X0PHvx0iV_hcWxWny-30fdDgHoIwY0PPnHlLcCpwcoD_iaVweDwBxIL6IMy3CYNxNMlgF7PQkqkGW61JKCoWXqgq1AZh9NjPKm_ghGLw9BhWzcOq2nla6xMZcFSuQgHgQ_Q6ejdyZuDpEv6kJgUuEmijRIu1UXhDHNDYUutAyvJNHTU5gbWRJJZapWiDpgntYQRbYHjcC6cKDLBHqJNX3v3GGFGXeFKBS6jMqkoHDRRwzIHny1cHhZigFj_n6XpFNFDYo6JjJ4Rk_0ox2SdcZQHKFm1uoyKIH-o_6KHkIzFTYzHlVnOJU0lBydtgHZ7cEmY3-HSRnlXLxrJgS6wjIOZRxFqVx_Niwy2KzpAYg2EqwpBOXy9xFcXrYI45cAiCQwAbTH2V_2QJ0djWK_Jzr802kW3xm9H8sPh8fsn6HYbc0NoQrKnaHM-W7hnQOzm-nk7a38AWQxMMA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Immobilization+induces+anabolic+resistance+in+human+myofibrillar+protein+synthesis+with+low+and+high+dose+amino+acid+infusion&rft.jtitle=The+Journal+of+physiology&rft.au=Elisa+I.+Glover&rft.au=Stuart+M.+Phillips&rft.au=Bryan+R.+Oates&rft.au=Jason+E.+Tang&rft.date=2008-12-15&rft.pub=The+Physiological+Society&rft.issn=0022-3751&rft.eissn=1469-7793&rft.volume=586&rft.issue=24&rft.spage=6049&rft_id=info:doi/10.1113%2Fjphysiol.2008.160333&rft_id=info%3Apmid%2F18955382&rft.externalDBID=n%2Fa&rft.externalDocID=586_24_6049
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3751&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3751&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3751&client=summon