Immobilization induces anabolic resistance in human myofibrillar protein synthesis with low and high dose amino acid infusion
We tested the hypothesis that increasing blood amino acid (AA) availability would counter the physical inactivity-induced reduction in muscle protein synthesis. We determined how 14 days of unilateral knee immobilization affected quadriceps myofibrillar protein synthesis (MPS) in young healthy subje...
Saved in:
Published in | The Journal of physiology Vol. 586; no. 24; pp. 6049 - 6061 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
The Physiological Society
15.12.2008
Blackwell Publishing Ltd Blackwell Science Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0022-3751 1469-7793 1469-7793 |
DOI | 10.1113/jphysiol.2008.160333 |
Cover
Abstract | We tested the hypothesis that increasing blood amino acid (AA) availability would counter the physical inactivity-induced
reduction in muscle protein synthesis. We determined how 14 days of unilateral knee immobilization affected quadriceps myofibrillar
protein synthesis (MPS) in young healthy subjects (10 men, 2 women, 21 ± 1 years; 80.2 ± 4.0 kg, mean ± s.e.m. ) in the post-absorptive state and after infusing AA (10% Primene) at low or high doses (43 and 261 mg kg â1 h â1 ). Muscle cross-sectional area (MRI) and peak isometric torque declined in the immobilized leg (â5.0 ± 1.2% and â25 ± 3%,
respectively, both P < 0.005), but were unchanged (all P > 0.6) in the non-immobilized leg. Immobilization induced a 27% decline in the rate of post-absorptive MPS (immobilized,
0.027 ± 0.003: non-immobilized, 0.037 ± 0.003% h â1 ; P < 0.001). Regardless of dose, AA infusion stimulated a greater rise in MPS in the non-immobilized legs; at 4 h MPS was greater
by +54 ± 12% with low dose and +68 ± 17% with high dose AA infusion (both P < 0.001). There was some evidence of delayed responsiveness of phosphorylation of Akt to high doses of AA and p70S6k at both
doses but no marked differences in that of mTOR, GSK3β or eEF2. Phosphorylation of focal adhesion kinase (Tyr 576/577 ) was reduced ( P < 0.05) with immobilization. We observed no change in polyubiquitinated protein content after immobilization. We confirm
that 14 days of immobilization reduces MPS in the post-absorptive state and this diminution is reduced but not abolished by
increased provision of AA, even at high rates. The immobilization-induced decline in post-absorptive MPS with the âanabolic
resistanceâ to amino acids can account for much of immobilization-induced muscle atrophy. |
---|---|
AbstractList | We tested the hypothesis that increasing blood amino acid (AA) availability would counter the physical inactivity‐induced reduction in muscle protein synthesis. We determined how 14 days of unilateral knee immobilization affected quadriceps myofibrillar protein synthesis (MPS) in young healthy subjects (10 men, 2 women, 21 ± 1 years; 80.2 ± 4.0 kg, mean ±
s.e.m.
) in the post‐absorptive state and after infusing AA (10% Primene) at low or high doses (43 and 261 mg kg
−1
h
−1
). Muscle cross‐sectional area (MRI) and peak isometric torque declined in the immobilized leg (−5.0 ± 1.2% and −25 ± 3%, respectively, both
P
< 0.005), but were unchanged (all
P
> 0.6) in the non‐immobilized leg. Immobilization induced a 27% decline in the rate of post‐absorptive MPS (immobilized, 0.027 ± 0.003: non‐immobilized, 0.037 ± 0.003% h
−1
;
P
< 0.001). Regardless of dose, AA infusion stimulated a greater rise in MPS in the non‐immobilized legs; at 4 h MPS was greater by +54 ± 12% with low dose and +68 ± 17% with high dose AA infusion (both
P
< 0.001). There was some evidence of delayed responsiveness of phosphorylation of Akt to high doses of AA and p70S6k at both doses but no marked differences in that of mTOR, GSK3β or eEF2. Phosphorylation of focal adhesion kinase (Tyr
576/577
) was reduced (
P
< 0.05) with immobilization. We observed no change in polyubiquitinated protein content after immobilization. We confirm that 14 days of immobilization reduces MPS in the post‐absorptive state and this diminution is reduced but not abolished by increased provision of AA, even at high rates. The immobilization‐induced decline in post‐absorptive MPS with the ‘anabolic resistance’ to amino acids can account for much of immobilization‐induced muscle atrophy. We tested the hypothesis that increasing blood amino acid (AA) availability would counter the physical inactivity-induced reduction in muscle protein synthesis. We determined how 14 days of unilateral knee immobilization affected quadriceps myofibrillar protein synthesis (MPS) in young healthy subjects (10 men, 2 women, 21 ± 1 years; 80.2 ± 4.0 kg, mean ± s.e.m. ) in the post-absorptive state and after infusing AA (10% Primene) at low or high doses (43 and 261 mg kg â1 h â1 ). Muscle cross-sectional area (MRI) and peak isometric torque declined in the immobilized leg (â5.0 ± 1.2% and â25 ± 3%, respectively, both P < 0.005), but were unchanged (all P > 0.6) in the non-immobilized leg. Immobilization induced a 27% decline in the rate of post-absorptive MPS (immobilized, 0.027 ± 0.003: non-immobilized, 0.037 ± 0.003% h â1 ; P < 0.001). Regardless of dose, AA infusion stimulated a greater rise in MPS in the non-immobilized legs; at 4 h MPS was greater by +54 ± 12% with low dose and +68 ± 17% with high dose AA infusion (both P < 0.001). There was some evidence of delayed responsiveness of phosphorylation of Akt to high doses of AA and p70S6k at both doses but no marked differences in that of mTOR, GSK3β or eEF2. Phosphorylation of focal adhesion kinase (Tyr 576/577 ) was reduced ( P < 0.05) with immobilization. We observed no change in polyubiquitinated protein content after immobilization. We confirm that 14 days of immobilization reduces MPS in the post-absorptive state and this diminution is reduced but not abolished by increased provision of AA, even at high rates. The immobilization-induced decline in post-absorptive MPS with the âanabolic resistanceâ to amino acids can account for much of immobilization-induced muscle atrophy. We tested the hypothesis that increasing blood amino acid (AA) availability would counter the physical inactivity-induced reduction in muscle protein synthesis. We determined how 14 days of unilateral knee immobilization affected quadriceps myofibrillar protein synthesis (MPS) in young healthy subjects (10 men, 2 women, 21 +/- 1 years; 80.2 +/- 4.0 kg, mean +/- S.E.M.) in the post-absorptive state and after infusing AA (10% Primene) at low or high doses (43 and 261 mg kg(-1) h(-1)). Muscle cross-sectional area (MRI) and peak isometric torque declined in the immobilized leg (-5.0 +/- 1.2% and -25 +/- 3%, respectively, both P < 0.005), but were unchanged (all P > 0.6) in the non-immobilized leg. Immobilization induced a 27% decline in the rate of post-absorptive MPS (immobilized, 0.027 +/- 0.003: non-immobilized, 0.037 +/- 0.003% h(-1); P < 0.001). Regardless of dose, AA infusion stimulated a greater rise in MPS in the non-immobilized legs; at 4 h MPS was greater by +54 +/- 12% with low dose and +68 +/- 17% with high dose AA infusion (both P < 0.001). There was some evidence of delayed responsiveness of phosphorylation of Akt to high doses of AA and p70S6k at both doses but no marked differences in that of mTOR, GSK3beta or eEF2. Phosphorylation of focal adhesion kinase (Tyr(576/577)) was reduced (P < 0.05) with immobilization. We observed no change in polyubiquitinated protein content after immobilization. We confirm that 14 days of immobilization reduces MPS in the post-absorptive state and this diminution is reduced but not abolished by increased provision of AA, even at high rates. The immobilization-induced decline in post-absorptive MPS with the 'anabolic resistance' to amino acids can account for much of immobilization-induced muscle atrophy. We tested the hypothesis that increasing blood amino acid (AA) availability would counter the physical inactivity-induced reduction in muscle protein synthesis. We determined how 14 days of unilateral knee immobilization affected quadriceps myofibrillar protein synthesis (MPS) in young healthy subjects (10 men, 2 women, 21 +/- 1 years; 80.2 +/- 4.0 kg, mean +/- S.E.M.) in the post-absorptive state and after infusing AA (10% Primene) at low or high doses (43 and 261 mg kg(-1) h(-1)). Muscle cross-sectional area (MRI) and peak isometric torque declined in the immobilized leg (-5.0 +/- 1.2% and -25 +/- 3%, respectively, both P < 0.005), but were unchanged (all P > 0.6) in the non-immobilized leg. Immobilization induced a 27% decline in the rate of post-absorptive MPS (immobilized, 0.027 +/- 0.003: non-immobilized, 0.037 +/- 0.003% h(-1); P < 0.001). Regardless of dose, AA infusion stimulated a greater rise in MPS in the non-immobilized legs; at 4 h MPS was greater by +54 +/- 12% with low dose and +68 +/- 17% with high dose AA infusion (both P < 0.001). There was some evidence of delayed responsiveness of phosphorylation of Akt to high doses of AA and p70S6k at both doses but no marked differences in that of mTOR, GSK3beta or eEF2. Phosphorylation of focal adhesion kinase (Tyr(576/577)) was reduced (P < 0.05) with immobilization. We observed no change in polyubiquitinated protein content after immobilization. We confirm that 14 days of immobilization reduces MPS in the post-absorptive state and this diminution is reduced but not abolished by increased provision of AA, even at high rates. The immobilization-induced decline in post-absorptive MPS with the 'anabolic resistance' to amino acids can account for much of immobilization-induced muscle atrophy.We tested the hypothesis that increasing blood amino acid (AA) availability would counter the physical inactivity-induced reduction in muscle protein synthesis. We determined how 14 days of unilateral knee immobilization affected quadriceps myofibrillar protein synthesis (MPS) in young healthy subjects (10 men, 2 women, 21 +/- 1 years; 80.2 +/- 4.0 kg, mean +/- S.E.M.) in the post-absorptive state and after infusing AA (10% Primene) at low or high doses (43 and 261 mg kg(-1) h(-1)). Muscle cross-sectional area (MRI) and peak isometric torque declined in the immobilized leg (-5.0 +/- 1.2% and -25 +/- 3%, respectively, both P < 0.005), but were unchanged (all P > 0.6) in the non-immobilized leg. Immobilization induced a 27% decline in the rate of post-absorptive MPS (immobilized, 0.027 +/- 0.003: non-immobilized, 0.037 +/- 0.003% h(-1); P < 0.001). Regardless of dose, AA infusion stimulated a greater rise in MPS in the non-immobilized legs; at 4 h MPS was greater by +54 +/- 12% with low dose and +68 +/- 17% with high dose AA infusion (both P < 0.001). There was some evidence of delayed responsiveness of phosphorylation of Akt to high doses of AA and p70S6k at both doses but no marked differences in that of mTOR, GSK3beta or eEF2. Phosphorylation of focal adhesion kinase (Tyr(576/577)) was reduced (P < 0.05) with immobilization. We observed no change in polyubiquitinated protein content after immobilization. We confirm that 14 days of immobilization reduces MPS in the post-absorptive state and this diminution is reduced but not abolished by increased provision of AA, even at high rates. The immobilization-induced decline in post-absorptive MPS with the 'anabolic resistance' to amino acids can account for much of immobilization-induced muscle atrophy. We tested the hypothesis that increasing blood amino acid (AA) availability would counter the physical inactivity-induced reduction in muscle protein synthesis. We determined how 14 days of unilateral knee immobilization affected quadriceps myofibrillar protein synthesis (MPS) in young healthy subjects (10 men, 2 women, 21 ± 1 years; 80.2 ± 4.0 kg, mean ± s.e.m. ) in the post-absorptive state and after infusing AA (10% Primene) at low or high doses (43 and 261 mg kg −1 h −1 ). Muscle cross-sectional area (MRI) and peak isometric torque declined in the immobilized leg (−5.0 ± 1.2% and −25 ± 3%, respectively, both P < 0.005), but were unchanged (all P > 0.6) in the non-immobilized leg. Immobilization induced a 27% decline in the rate of post-absorptive MPS (immobilized, 0.027 ± 0.003: non-immobilized, 0.037 ± 0.003% h −1 ; P < 0.001). Regardless of dose, AA infusion stimulated a greater rise in MPS in the non-immobilized legs; at 4 h MPS was greater by +54 ± 12% with low dose and +68 ± 17% with high dose AA infusion (both P < 0.001). There was some evidence of delayed responsiveness of phosphorylation of Akt to high doses of AA and p70S6k at both doses but no marked differences in that of mTOR, GSK3 β or eEF2. Phosphorylation of focal adhesion kinase (Tyr 576/577 ) was reduced ( P < 0.05) with immobilization. We observed no change in polyubiquitinated protein content after immobilization. We confirm that 14 days of immobilization reduces MPS in the post-absorptive state and this diminution is reduced but not abolished by increased provision of AA, even at high rates. The immobilization-induced decline in post-absorptive MPS with the ‘anabolic resistance’ to amino acids can account for much of immobilization-induced muscle atrophy. We tested the hypothesis that increasing blood amino acid (AA) availability would counter the physical inactivity‐induced reduction in muscle protein synthesis. We determined how 14 days of unilateral knee immobilization affected quadriceps myofibrillar protein synthesis (MPS) in young healthy subjects (10 men, 2 women, 21 ± 1 years; 80.2 ± 4.0 kg, mean ±s.e.m.) in the post‐absorptive state and after infusing AA (10% Primene) at low or high doses (43 and 261 mg kg−1 h−1). Muscle cross‐sectional area (MRI) and peak isometric torque declined in the immobilized leg (−5.0 ± 1.2% and −25 ± 3%, respectively, both P < 0.005), but were unchanged (all P > 0.6) in the non‐immobilized leg. Immobilization induced a 27% decline in the rate of post‐absorptive MPS (immobilized, 0.027 ± 0.003: non‐immobilized, 0.037 ± 0.003% h−1; P < 0.001). Regardless of dose, AA infusion stimulated a greater rise in MPS in the non‐immobilized legs; at 4 h MPS was greater by +54 ± 12% with low dose and +68 ± 17% with high dose AA infusion (both P < 0.001). There was some evidence of delayed responsiveness of phosphorylation of Akt to high doses of AA and p70S6k at both doses but no marked differences in that of mTOR, GSK3β or eEF2. Phosphorylation of focal adhesion kinase (Tyr576/577) was reduced (P < 0.05) with immobilization. We observed no change in polyubiquitinated protein content after immobilization. We confirm that 14 days of immobilization reduces MPS in the post‐absorptive state and this diminution is reduced but not abolished by increased provision of AA, even at high rates. The immobilization‐induced decline in post‐absorptive MPS with the ‘anabolic resistance’ to amino acids can account for much of immobilization‐induced muscle atrophy. |
Author | Elisa I. Glover Jason E. Tang Mark A. Tarnopolsky Stuart M. Phillips Bryan R. Oates Anna Selby Michael J. Rennie Kenneth Smith |
Author_xml | – sequence: 1 givenname: Elisa I. surname: Glover fullname: Glover, Elisa I. – sequence: 2 givenname: Stuart M. surname: Phillips fullname: Phillips, Stuart M. – sequence: 3 givenname: Bryan R. surname: Oates fullname: Oates, Bryan R. – sequence: 4 givenname: Jason E. surname: Tang fullname: Tang, Jason E. – sequence: 5 givenname: Mark A. surname: Tarnopolsky fullname: Tarnopolsky, Mark A. – sequence: 6 givenname: Anna surname: Selby fullname: Selby, Anna – sequence: 7 givenname: Kenneth surname: Smith fullname: Smith, Kenneth – sequence: 8 givenname: Michael J. surname: Rennie fullname: Rennie, Michael J. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18955382$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1u1DAUhS1URKeFN0DIKyQWGfwTJzELJFQVKKoEi7K2HNvT3CqxBzthFKS-Ow5pK2CBWHlxzneu7z0n6MgH7xB6TsmWUspf3-y7OUHot4yQZksrwjl_hDa0rGRR15IfoQ0hjBW8FvQYnaR0QwjlRMon6Jg2UgjesA26vRiG0EIPP_QIwWPwdjIuYe11G3owOLoEadTeuKzhbhq0x8McdtBG6Hsd8T6G0WUpzX7sFjM-wNjhPhxyiMUdXHfYhuSwHsAHrA3YnLSb8t_9U_R4p_vknt29p-jr-_Ors4_F5ecPF2fvLgtTSkKL1ujala2UznBHartrW0YFFW1e3TamaWoqLLNaM8dZxSzltLWM8aqqXS1FzU_R2zV3P7WDs8b5Mepe7SMMOs4qaFB_Kh46dR2-K1YJUdIl4OVdQAzfJpdGNUAyLh_AuzAlVUlJuKh4Nr74fdLDiPuLZ8Ob1WBiSCm6nTIw_rp9Hgy9okQt9ar7etVSr1rrzXD5F_yQ_29MrtgBejf_F6OuPn3hVNLMvlrZpcgDRKdWdwoG3Dgr0VSKlaoipeQ_AdO90Ms |
CitedBy_id | crossref_primary_10_1089_lap_2024_0317 crossref_primary_10_1097_MCO_0b013e32833f1ae5 crossref_primary_10_3945_jn_114_199604 crossref_primary_10_3390_nu10070929 crossref_primary_10_3390_nu10050635 crossref_primary_10_1097_JES_0b013e318292f3d5 crossref_primary_10_1002_jmri_22864 crossref_primary_10_1016_j_mito_2023_07_003 crossref_primary_10_1093_ajcn_nqaa150 crossref_primary_10_1096_fj_201801857RRR crossref_primary_10_1152_ajpcell_00009_2019 crossref_primary_10_1152_japplphysiol_00625_2015 crossref_primary_10_1210_clinem_dgaa184 crossref_primary_10_1093_ajcn_nqz332 crossref_primary_10_1113_EP091937 crossref_primary_10_1152_ajpcell_00209_2019 crossref_primary_10_1152_ajpendo_00603_2011 crossref_primary_10_1097_CCM_0b013e3181f2458d crossref_primary_10_1152_ajpendo_00550_2014 crossref_primary_10_2106_JBJS_21_01014 crossref_primary_10_1249_MSS_0b013e3181a6458a crossref_primary_10_1097_MCO_0b013e3283374d19 crossref_primary_10_3390_nu11122898 crossref_primary_10_1139_H09_042 crossref_primary_10_1186_1756_0500_5_166 crossref_primary_10_3390_nu5030852 crossref_primary_10_1097_CCM_0b013e3181b6ec1f crossref_primary_10_1371_journal_pone_0051238 crossref_primary_10_1097_SPC_0b013e32834bdde3 crossref_primary_10_1183_09031936_00090011 crossref_primary_10_3390_nu8050295 crossref_primary_10_1016_j_freeradbiomed_2018_06_012 crossref_primary_10_1152_japplphysiol_00331_2016 crossref_primary_10_1113_jphysiol_2012_244897 crossref_primary_10_1113_jphysiol_2011_226266 crossref_primary_10_1093_gerona_glu103 crossref_primary_10_1152_japplphysiol_00687_2015 crossref_primary_10_1002_jcsm_12636 crossref_primary_10_1152_japplphysiol_00155_2020 crossref_primary_10_1096_fj_202002008R crossref_primary_10_1139_apnm_2018_0631 crossref_primary_10_1093_ajcn_nqab148 crossref_primary_10_3390_cells12242811 crossref_primary_10_3389_fphys_2023_1289537 crossref_primary_10_1016_j_arr_2021_101463 crossref_primary_10_1152_ajpendo_00294_2021 crossref_primary_10_1113_JP271613 crossref_primary_10_1249_MSS_0000000000002200 crossref_primary_10_1002_jcsm_13284 crossref_primary_10_3390_nu16203428 crossref_primary_10_1016_j_arr_2021_101344 crossref_primary_10_1002_mus_21721 crossref_primary_10_3945_an_113_005405 crossref_primary_10_3389_fnut_2019_00146 crossref_primary_10_1152_physrev_00022_2022 crossref_primary_10_3389_fnut_2019_00144 crossref_primary_10_3389_fphys_2019_00736 crossref_primary_10_1113_JP277841 crossref_primary_10_1111_sms_12170 crossref_primary_10_1177_0148607114567710 crossref_primary_10_1186_1750_2187_7_7 crossref_primary_10_1016_j_celrep_2020_107980 crossref_primary_10_1203_PDR_0b013e3181f2e836 crossref_primary_10_1007_s40279_025_02174_w crossref_primary_10_1152_japplphysiol_00499_2009 crossref_primary_10_1002_phy2_246 crossref_primary_10_1096_fj_201900095R crossref_primary_10_1152_japplphysiol_00395_2012 crossref_primary_10_1152_physrev_00019_2016 crossref_primary_10_1152_japplphysiol_00452_2009 crossref_primary_10_1097_BTO_0000000000000271 crossref_primary_10_1016_j_abb_2022_109411 crossref_primary_10_1152_japplphysiol_00962_2010 crossref_primary_10_1093_ajcn_nqx028 crossref_primary_10_1139_H09_137 crossref_primary_10_1152_ajpendo_00227_2015 crossref_primary_10_1139_H09_012 crossref_primary_10_1002_mnfr_201701028 crossref_primary_10_1007_s10522_015_9613_9 crossref_primary_10_1152_ajpcell_00173_2015 crossref_primary_10_1371_journal_pone_0273925 crossref_primary_10_1007_s12178_020_09610_6 crossref_primary_10_1139_apnm_2012_0092 crossref_primary_10_3357_AMHP_5855_2021 crossref_primary_10_3390_ijms23010468 crossref_primary_10_1371_journal_pone_0081495 crossref_primary_10_1113_JP284301 crossref_primary_10_1152_ajpendo_00257_2016 crossref_primary_10_3389_fnut_2021_758657 crossref_primary_10_3389_fphys_2019_01031 crossref_primary_10_1152_ajpendo_00144_2023 crossref_primary_10_1017_S0007114511007422 crossref_primary_10_1097_CCM_0b013e3181b6ea1d crossref_primary_10_1113_jphysiol_2012_240267 crossref_primary_10_1021_acs_jproteome_0c00256 crossref_primary_10_3390_nu11122972 crossref_primary_10_1016_j_plefa_2014_03_001 crossref_primary_10_1186_1743_7075_11_46 crossref_primary_10_1371_journal_pgen_1003389 crossref_primary_10_1519_JSC_0000000000001191 crossref_primary_10_1111_apha_12190 crossref_primary_10_1007_s00455_016_9710_1 crossref_primary_10_1093_jn_nxy091 crossref_primary_10_1038_sc_2015_183 crossref_primary_10_3389_fphys_2022_998380 crossref_primary_10_1123_ijsnem_2018_0290 crossref_primary_10_1097_WCO_0b013e32832f15e1 crossref_primary_10_1113_JP285897 crossref_primary_10_1371_journal_pone_0286222 crossref_primary_10_1152_ajpendo_00468_2015 crossref_primary_10_3389_fnut_2023_1093988 crossref_primary_10_3945_ajcn_115_112359 crossref_primary_10_3390_cimb45040201 crossref_primary_10_3390_ijms25063516 crossref_primary_10_1152_japplphysiol_00985_2016 crossref_primary_10_1097_JSA_0000000000000240 crossref_primary_10_1097_MCO_0b013e32834d19bc crossref_primary_10_1152_japplphysiol_00736_2017 crossref_primary_10_1007_s12603_016_0855_2 crossref_primary_10_1093_gerona_glx203 crossref_primary_10_1002_jcsm_13005 crossref_primary_10_34160_jkds_2011_1_2_007 crossref_primary_10_1111_nure_12019 crossref_primary_10_1113_jphysiol_2011_221200 crossref_primary_10_1186_s41110_018_0084_z crossref_primary_10_1093_jn_nxab010 crossref_primary_10_1017_S0029665115000130 crossref_primary_10_1002_biof_1138 crossref_primary_10_1113_jphysiol_2014_273615 crossref_primary_10_1164_rccm_201107_1320OE crossref_primary_10_3389_fnut_2019_00105 crossref_primary_10_1152_ajpendo_00541_2012 crossref_primary_10_1152_ajpendo_00481_2014 crossref_primary_10_1093_advances_nmaa015 crossref_primary_10_1177_0884533616686719 crossref_primary_10_1177_23259671241281727 crossref_primary_10_1152_japplphysiol_00957_2009 crossref_primary_10_1016_j_biocel_2013_05_039 crossref_primary_10_1016_j_clnu_2014_04_007 crossref_primary_10_1519_JSC_0000000000003148 crossref_primary_10_1016_j_tjnut_2023_02_023 crossref_primary_10_1371_journal_pone_0148311 crossref_primary_10_1016_j_arr_2022_101611 crossref_primary_10_1152_japplphysiol_00170_2012 crossref_primary_10_3389_fphys_2020_00469 crossref_primary_10_1152_ajpendo_00213_2016 crossref_primary_10_1152_japplphysiol_00563_2022 crossref_primary_10_14814_phy2_15958 crossref_primary_10_1097_MCO_0b013e328333aa66 crossref_primary_10_1152_ajpendo_00345_2023 crossref_primary_10_1007_s40279_015_0398_4 crossref_primary_10_1152_japplphysiol_00609_2014 crossref_primary_10_1111_jocn_17511 crossref_primary_10_1002_tsm2_122 crossref_primary_10_1007_s40279_014_0152_3 crossref_primary_10_1016_j_rehab_2018_09_009 crossref_primary_10_1016_j_clnu_2016_09_019 crossref_primary_10_1093_nutrit_nuac049 crossref_primary_10_1111_apha_12532 crossref_primary_10_1186_s13728_015_0036_7 crossref_primary_10_1111_apha_13986 crossref_primary_10_1134_S0006297918110020 crossref_primary_10_1152_japplphysiol_00125_2010 crossref_primary_10_1371_journal_pone_0141572 crossref_primary_10_1113_JP270343 crossref_primary_10_1210_jc_2017_00869 crossref_primary_10_1016_j_clnu_2014_09_016 crossref_primary_10_1016_j_clnu_2015_07_003 crossref_primary_10_1080_17461391_2014_936326 crossref_primary_10_4236_nm_2014_55025 crossref_primary_10_1186_s13613_015_0051_2 crossref_primary_10_1016_j_biocel_2013_06_011 crossref_primary_10_1113_JP281365 crossref_primary_10_1017_S0954422413000115 crossref_primary_10_1139_h2012_022 crossref_primary_10_3390_fishes4020025 crossref_primary_10_1016_j_tjnut_2023_01_014 crossref_primary_10_1042_CS20130295 crossref_primary_10_1249_MSS_0000000000002929 crossref_primary_10_36740_WLek201909110 crossref_primary_10_3390_nu10081099 crossref_primary_10_3389_fphys_2014_00099 crossref_primary_10_3945_ajcn_117_157818 crossref_primary_10_1113_JP283425 crossref_primary_10_1097_JES_0b013e3182a4e699 crossref_primary_10_1249_MSS_0000000000003342 crossref_primary_10_3389_fphys_2022_892749 crossref_primary_10_1007_s40279_014_0258_7 crossref_primary_10_14814_phy2_13799 crossref_primary_10_1016_j_nut_2012_04_012 crossref_primary_10_1152_ajpcell_00444_2023 crossref_primary_10_1016_j_asmr_2024_101022 crossref_primary_10_1111_j_1469_8749_2012_04229_x crossref_primary_10_1007_s10522_013_9427_6 crossref_primary_10_2147_CEOR_S408873 crossref_primary_10_1016_j_clnu_2012_09_002 crossref_primary_10_1152_ajpendo_00085_2016 crossref_primary_10_1152_ajpcell_00425_2021 crossref_primary_10_1038_s41598_018_21552_1 crossref_primary_10_1186_2046_7648_1_12 crossref_primary_10_3390_nu14214501 crossref_primary_10_1152_japplphysiol_00354_2012 crossref_primary_10_1113_jphysiol_2012_230631 crossref_primary_10_1016_j_acra_2020_05_007 crossref_primary_10_1113_EP090434 crossref_primary_10_14814_phy2_14683 crossref_primary_10_1016_j_mcna_2011_02_008 crossref_primary_10_3389_fphys_2018_00235 crossref_primary_10_3803_EnM_2016_31_1_31 crossref_primary_10_1016_j_jnutbio_2022_109150 crossref_primary_10_1113_JP271219 crossref_primary_10_1152_japplphysiol_91481_2008 crossref_primary_10_3390_life4030295 crossref_primary_10_1152_japplphysiol_00650_2021 crossref_primary_10_1002_jcsm_13201 crossref_primary_10_3389_fphys_2016_00361 crossref_primary_10_1097_CCM_0b013e3181cc4b53 crossref_primary_10_1007_s00418_014_1212_3 crossref_primary_10_1016_j_arr_2018_07_005 crossref_primary_10_1017_S0029665120007879 crossref_primary_10_1113_jphysiol_2010_197632 crossref_primary_10_1093_ajcn_nqaa229 crossref_primary_10_1007_s00726_017_2390_9 crossref_primary_10_1007_s40279_019_01053_5 crossref_primary_10_1016_j_expneurol_2013_06_003 crossref_primary_10_1371_journal_pone_0140903 crossref_primary_10_14814_phy2_12493 crossref_primary_10_1152_ajpcell_00056_2021 crossref_primary_10_1111_apha_12200 crossref_primary_10_1016_j_clnu_2016_09_023 crossref_primary_10_1002_jcsm_13431 crossref_primary_10_3390_cells10010061 crossref_primary_10_1113_jphysiol_2010_192856 crossref_primary_10_1152_japplphysiol_00803_2017 crossref_primary_10_47529_2223_2524_2021_1_4 crossref_primary_10_1016_S2311_3006_16_30019_2 crossref_primary_10_1016_j_arr_2022_101807 crossref_primary_10_3390_nu11091991 crossref_primary_10_1113_JP284701 crossref_primary_10_1152_ajpendo_00360_2019 crossref_primary_10_1210_jc_2013_1502 crossref_primary_10_1042_CS20140447 crossref_primary_10_1152_ajpendo_00112_2015 crossref_primary_10_1007_s12541_015_0130_1 crossref_primary_10_1113_jphysiol_2009_169854 crossref_primary_10_1152_ajpendo_00409_2012 crossref_primary_10_3389_fnut_2022_976818 crossref_primary_10_1097_MCO_0b013e328352694f crossref_primary_10_1371_journal_pone_0038910 crossref_primary_10_1007_s00726_010_0636_x crossref_primary_10_1017_S002966511500422X crossref_primary_10_1017_S002966511000399X crossref_primary_10_1113_jphysiol_2010_203232 crossref_primary_10_3945_jn_114_207621 crossref_primary_10_1002_jcsm_12205 crossref_primary_10_3390_ijms22105081 crossref_primary_10_1017_S0007114512002358 crossref_primary_10_1111_apha_13431 crossref_primary_10_1113_jphysiol_2012_233684 crossref_primary_10_1093_gerona_glab077 crossref_primary_10_1093_gerona_glad014 crossref_primary_10_1556_2060_103_2016_3_12 crossref_primary_10_1152_ajpendo_00609_2009 crossref_primary_10_1152_ajpendo_00324_2010 crossref_primary_10_1002_jms_3387 crossref_primary_10_1113_JP275444 crossref_primary_10_1080_17461391_2020_1761076 crossref_primary_10_1111_j_1600_0838_2009_00967_x crossref_primary_10_1017_S0007114511006271 crossref_primary_10_3390_nu8040221 crossref_primary_10_1093_ajcn_nqaa136 crossref_primary_10_7554_eLife_61138 crossref_primary_10_3389_fnut_2019_00075 crossref_primary_10_1016_j_clnu_2023_08_010 crossref_primary_10_1152_ajpendo_00138_2012 crossref_primary_10_1113_JP277071 crossref_primary_10_1016_j_tem_2016_06_010 crossref_primary_10_1007_s12603_009_0208_5 crossref_primary_10_1016_j_clnesp_2025_01_031 crossref_primary_10_3390_ijms22105179 crossref_primary_10_3945_jn_114_194217 crossref_primary_10_1371_journal_pone_0020993 crossref_primary_10_1177_0148607116682003 crossref_primary_10_1016_j_clnu_2009_03_009 crossref_primary_10_1097_WCO_0b013e3283313b14 crossref_primary_10_1152_japplphysiol_00607_2021 crossref_primary_10_1089_rej_2017_1942 crossref_primary_10_1152_japplphysiol_00837_2024 crossref_primary_10_1113_jphysiol_2013_253203 crossref_primary_10_1139_apnm_2016_0645 crossref_primary_10_1111_apha_13460 crossref_primary_10_1139_apnm_2016_0522 crossref_primary_10_1152_ajpendo_00273_2016 crossref_primary_10_4103_CJP_CJP_31_20 crossref_primary_10_1016_j_jcrc_2015_05_002 crossref_primary_10_1152_japplphysiol_00110_2009 crossref_primary_10_1186_1743_7075_8_15 crossref_primary_10_3389_fnut_2020_569904 crossref_primary_10_1139_apnm_2015_0543 crossref_primary_10_1519_SSC_0b013e3181c212a3 crossref_primary_10_1177_1941738120944256 crossref_primary_10_1007_s10974_015_9415_3 crossref_primary_10_1016_j_ccc_2024_08_011 crossref_primary_10_1007_s00418_012_0980_x crossref_primary_10_3390_nu12051533 crossref_primary_10_1093_geront_gnz143 crossref_primary_10_1002_jcp_24604 crossref_primary_10_1111_nyas_12509 crossref_primary_10_1113_JP270699 |
Cites_doi | 10.1152/jappl.2001.90.3.1174 10.1152/japplphysiol.90558.2008 10.1152/japplphysiol.00560.2007 10.1152/ajpendo.00582.2007 10.1152/ajpendo.00415.2005 10.1152/japplphysiol.00247.2005 10.1007/s004210100467 10.1210/jc.2003-032159 10.1038/emboj.2008.39 10.1093/ajcn/82.5.941 10.1038/sj.onc.1209887 10.1128/MCB.01512-07 10.1152/japplphysiol.01346.2007 10.1093/jn/135.7.1824S 10.1111/j.1530-0277.2007.00548.x 10.1073/pnas.251541198 10.1093/ajcn/85.4.1031 10.1152/ajpcell.1999.277.1.C152 10.1152/ajpregu.00292.2007 10.1146/annurev.physiol.66.052102.134444 10.1111/j.1365-201X.2004.01293.x 10.1152/ajpendo.90411.2008 10.1093/ajcn/84.3.475 10.1111/j.1469-7793.2001.0575f.x 10.1042/cs0720503 10.1152/ajpregu.00761.2007 10.1093/jn/136.1.227S 10.1042/BJ20070024 10.1152/ajpendo.00430.2003 10.1016/j.nut.2004.04.009 10.1113/jphysiol.2006.118042 10.1042/bst0290541 10.1152/physiol.00024.2006 10.1152/japplphysiol.00221.2002 10.1113/jphysiol.2003.050674 10.1096/fj.03-0610com 10.1139/H07-076 10.1113/jphysiol.2007.134593 10.1210/jc.2004-1702 10.1152/ajpendo.00141.2006 10.1096/fj.06-6604com 10.1139/h06-028 10.1113/jphysiol.2007.142828 10.1152/ajpendo.00387.2004 10.1113/jphysiol.2004.066365 10.1152/ajpendo.1996.270.4.E627 10.1210/jc.2006-0651 10.1152/japplphysiol.00180.2006 10.1113/jphysiol.2006.113175 10.1152/japplphysiol.00346.2003 10.1152/jappl.1989.67.1.19 10.1681/ASN.2006010083 10.1096/fj.04-2640fje 10.1128/MCB.25.7.2558-2572.2005 |
ContentType | Journal Article |
Copyright | 2008 The Authors. Journal compilation © 2008 The Physiological Society Journal compilation © 2008 The Physiological Society 2008 |
Copyright_xml | – notice: 2008 The Authors. Journal compilation © 2008 The Physiological Society – notice: Journal compilation © 2008 The Physiological Society 2008 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1113/jphysiol.2008.160333 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1469-7793 |
EndPage | 6061 |
ExternalDocumentID | PMC2655417 18955382 10_1113_jphysiol_2008_160333 TJP3191 586_24_6049 |
Genre | article Clinical Trial Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Biotechnology and Biological Sciences Research Council |
GroupedDBID | - 05W 0R 0YM 10A 123 1OB 1OC 24P 29L 2WC 31 33P 3N 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 55 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAONW AAVGM AAZKR ABCUV ABFLS ABHUG ABITZ ABIVO ABOCM ABPPZ ABPTK ABPVW ABUFD ABWRO ACAHQ ACFBH ACGFS ACIWK ACMXC ACNCT ACPOU ACPRK ACXME ACXQS ADACO ADAWD ADBBV ADDAD ADEOM ADIZJ ADXAS ADZMN AEIMD AEUQT AFBPY AFFNX AFPWT AFZJQ AGJLS ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ATUGU AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMXJE BROTX BRXPI BY8 C1A C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM DZ E3Z EBS EJD EX3 F00 F01 F04 F5P FIJ FUBAC G-S G.N GA GODZA GX1 H.X H13 HZ HZI IA IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LI0 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NEJ NF O0- O66 O9- OHT OK1 OVD P2P P2W P2X P2Z P4A P4B P4D Q.N Q11 QB0 R.K RIG ROL RPM RX1 SUPJJ TLM TN5 UB1 UNR UPT UQL V8K VH1 W8V W99 WBKPD WH7 WIH WIJ WIK WIN WNSPC WOHZO WOQ WOW WQJ WRC WT WXI WYISQ X X7M XG1 Y3 YZZ ZA5 ZZTAW --- -DZ -~X .3N .55 .GA .GJ .Y3 0R~ 18M 31~ 36B 3EH AAFWJ AAHHS AAHQN AAIPD AAMNL AANLZ AASGY AAXRX AAYCA AAYJJ ABCQN ABEML ABJNI ABQWH ABXGK ACCFJ ACCZN ACGFO ACGOF ACSCC ACXBN ADBTR ADKYN ADMGS ADOZA AEEZP AEGXH AEIGN AEQDE AEUYR AFEBI AFFPM AFGKR AFWVQ AHBTC AI. AIACR AIAGR AITYG AIURR AIWBW AJBDE ALVPJ AMYDB AOIJS CHEAL EMOBN FA8 HF~ HGLYW HZ~ H~9 IPNFZ KBYEO LH4 MVM NF~ OIG SAMSI TEORI TR2 UKR W8F WHG WXSBR XOL YBU YHG YKV YQT YSK YXB YYP ZGI ZXP ~IA ~WT AAYXX AEYWJ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c4901-bca7e4b99ec3e07dfbb21515b200d8c88715d2daa2e3262d131bd223667e79573 |
IEDL.DBID | DR2 |
ISSN | 0022-3751 1469-7793 |
IngestDate | Thu Aug 21 14:12:24 EDT 2025 Thu Jul 10 22:15:42 EDT 2025 Mon Jul 21 05:37:14 EDT 2025 Thu Apr 24 23:03:02 EDT 2025 Tue Jul 01 04:28:52 EDT 2025 Wed Jan 22 16:45:17 EST 2025 Fri Jan 15 01:58:37 EST 2021 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4901-bca7e4b99ec3e07dfbb21515b200d8c88715d2daa2e3262d131bd223667e79573 |
Notes | This paper has online supplemental material. ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1113/jphysiol.2008.160333 |
PMID | 18955382 |
PQID | 69903563 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2655417 proquest_miscellaneous_69903563 pubmed_primary_18955382 crossref_citationtrail_10_1113_jphysiol_2008_160333 crossref_primary_10_1113_jphysiol_2008_160333 wiley_primary_10_1113_jphysiol_2008_160333_TJP3191 highwire_physiosociety_586_24_6049 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-12-15 |
PublicationDateYYYYMMDD | 2008-12-15 |
PublicationDate_xml | – month: 12 year: 2008 text: 2008-12-15 day: 15 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England |
PublicationTitle | The Journal of physiology |
PublicationTitleAlternate | J Physiol |
PublicationYear | 2008 |
Publisher | The Physiological Society Blackwell Publishing Ltd Blackwell Science Inc |
Publisher_xml | – name: The Physiological Society – name: Blackwell Publishing Ltd – name: Blackwell Science Inc |
References | 2007; 103 2004; 287 2004; 66 2007; 585 2004; 20 2006; 31 2001; 90 1987; 72 2005; 135 2007; 582 2008; 105 2006; 291 2008; 32 2006; 290 2007; 32 2003; 95 2003; 552 2001; 85 2006; 576 2006; 136 2005; 25 2007; 579 2007; 293 2006; 21 2006; 25 2008; 27 2008; 28 2002; 93 2007; 21 2001; 532 2001; 98 2006; 91 1989; 67 2006; 50 2007; 403 2004; 181 2002; 9 2005; 90 2006; 17 2004; 89 2005; 82 2001; 29 2005; 19 2006; 84 2004; 18 2005; 288 1996; 270 2005; 10 1999; 277 2007; 85 2004; 558 2008; 295 2006; 101 2005; 99 2008; 294 e_1_2_5_27_1 e_1_2_5_25_1 e_1_2_5_48_1 e_1_2_5_23_1 e_1_2_5_46_1 e_1_2_5_21_1 e_1_2_5_44_1 e_1_2_5_29_1 Anastasi G (e_1_2_5_4_1) 2006; 50 Rennie MJ (e_1_2_5_40_1) 2005; 10 e_1_2_5_42_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_57_1 e_1_2_5_7_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_55_1 e_1_2_5_5_1 e_1_2_5_3_1 e_1_2_5_19_1 e_1_2_5_30_1 e_1_2_5_53_1 e_1_2_5_51_1 e_1_2_5_28_1 e_1_2_5_49_1 e_1_2_5_26_1 e_1_2_5_47_1 e_1_2_5_24_1 e_1_2_5_45_1 e_1_2_5_22_1 e_1_2_5_43_1 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_58_1 e_1_2_5_8_1 e_1_2_5_35_1 e_1_2_5_56_1 e_1_2_5_6_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_54_1 e_1_2_5_2_1 e_1_2_5_18_1 e_1_2_5_31_1 e_1_2_5_52_1 e_1_2_5_50_1 Carrithers JA (e_1_2_5_10_1) 2002; 9 15196095 - Acta Physiol Scand. 2004 Jul;181(3):345-57 16365087 - J Nutr. 2006 Jan;136(1 Suppl):227S-31S 18577697 - Am J Physiol Endocrinol Metab. 2008 Sep;295(3):E595-604 14600160 - J Appl Physiol (1985). 2003 Dec;95(6):2185-201 16960159 - Am J Clin Nutr. 2006 Sep;84(3):475-82 15212752 - Nutrition. 2004 Jul-Aug;20(7-8):689-95 17478528 - J Physiol. 2007 Jul 15;582(Pt 2):813-23 2435445 - Clin Sci (Lond). 1987 Apr;72(4):503-9 17218363 - J Physiol. 2007 Mar 15;579(Pt 3):877-92 17641219 - J Appl Physiol (1985). 2007 Oct;103(4):1242-50 16835402 - Am J Physiol Endocrinol Metab. 2006 Dec;291(6):E1197-205 8928769 - Am J Physiol. 1996 Apr;270(4 Pt 1):E627-33 16873412 - J Physiol. 2006 Oct 15;576(Pt 2):613-24 18483167 - J Appl Physiol (1985). 2008 Jul;105(1):241-8 11606016 - Eur J Appl Physiol. 2001 Sep;85(5):466-71 11306673 - J Physiol. 2001 Apr 15;532(Pt 2):575-9 15987873 - J Nutr. 2005 Jul;135(7):1824S-1828S 15356032 - J Clin Endocrinol Metab. 2004 Sep;89(9):4351-8 14977422 - Annu Rev Physiol. 2004;66:799-828 17041627 - Oncogene. 2006 Oct 16;25(48):6423-35 12183515 - J Appl Physiol (1985). 2002 Sep;93(3):1168-80 18059587 - Appl Physiol Nutr Metab. 2007 Dec;32(6):1132-8 17037086 - Ann Transplant. 2005;10(4):31-4 18337751 - EMBO J. 2008 Apr 9;27(7):1005-16 18056791 - Am J Physiol Endocrinol Metab. 2008 Feb;294(2):E392-400 18160716 - Mol Cell Biol. 2008 Mar;28(5):1429-42 16280423 - Am J Clin Nutr. 2005 Nov;82(5):941-8 15131238 - J Physiol. 2004 Jul 15;558(Pt 2):381-8 17376031 - Biochem J. 2007 Apr 15;403(2):217-34 14998784 - Am J Physiol Endocrinol Metab. 2004 Jul;287(1):E1-7 17901116 - J Physiol. 2007 Nov 15;585(Pt 1):241-51 2668254 - J Appl Physiol (1985). 1989 Jul;67(1):19-23 17413102 - Am J Clin Nutr. 2007 Apr;85(4):1031-40 18028527 - Alcohol Clin Exp Res. 2008 Jan;32(1):128-37 15860685 - J Appl Physiol (1985). 2005 Sep;99(3):1085-92 18094071 - Am J Physiol Regul Integr Comp Physiol. 2008 Mar;294(3):R939-47 11717410 - Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14440-5 17213042 - Eur J Histochem. 2006 Oct-Dec;50(4):327-36 16263770 - Am J Physiol Endocrinol Metab. 2006 Apr;290(4):E731-8 16763108 - J Appl Physiol (1985). 2006 Oct;101(4):1136-48 17670860 - Am J Physiol Regul Integr Comp Physiol. 2007 Oct;293(4):R1722-7 12909668 - J Physiol. 2003 Oct 1;552(Pt 1):315-24 11498025 - Biochem Soc Trans. 2001 Aug;29(Pt 4):541-7 15596483 - FASEB J. 2005 Mar;19(3):422-4 11181634 - J Appl Physiol (1985). 2001 Mar;90(3):1174-83; discussion 1165 16990457 - Physiology (Bethesda). 2006 Oct;21:362-9 14718385 - FASEB J. 2004 Jan;18(1):39-51 15598679 - J Clin Endocrinol Metab. 2005 Mar;90(3):1453-9 15002527 - J Gravit Physiol. 2002 Jul;9(1):P155-6 17116744 - FASEB J. 2007 Jan;21(1):140-55 16984982 - J Clin Endocrinol Metab. 2006 Dec;91(12):4836-41 16738015 - J Am Soc Nephrol. 2006 Jul;17(7):1807-19 15572656 - Am J Physiol Endocrinol Metab. 2005 Jun;288(6):E1153-9 17111006 - Appl Physiol Nutr Metab. 2006 Oct;31(5):518-29 15767663 - Mol Cell Biol. 2005 Apr;25(7):2558-72 18535133 - J Appl Physiol (1985). 2008 Sep;105(3):902-6 10409118 - Am J Physiol. 1999 Jul;277(1 Pt 1):C152-62 |
References_xml | – volume: 25 start-page: 2558 year: 2005 end-page: 2572 article-title: Distinct signaling events downstream of mTOR cooperate to mediate the effects of amino acids and insulin on initiation factor 4E‐binding proteins publication-title: Mol Cell Biol – volume: 552 start-page: 315 year: 2003 end-page: 324 article-title: Human muscle protein synthesis is modulated by extracellular, not intramuscular amino acid availability: a dose–response study publication-title: J Physiol – volume: 90 start-page: 1453 year: 2005 end-page: 1459 article-title: The catabolic effects of prolonged inactivity and acute hypercortisolemia are offset by dietary supplementation publication-title: J Clin Endocrinol Metab – volume: 98 start-page: 14440 year: 2001 end-page: 14445 article-title: Atrogin‐1, a muscle‐specific F‐box protein highly expressed during muscle atrophy publication-title: Proc Natl Acad Sci U S A – volume: 90 start-page: 1174 year: 2001 end-page: 1183 article-title: Selected contribution: Skeletal muscle focal adhesion kinase, paxillin, and serum response factor are loading dependent publication-title: J Appl Physiol – volume: 89 start-page: 4351 year: 2004 end-page: 4358 article-title: Essential amino acid and carbohydrate supplementation ameliorates muscle protein loss in humans during 28 days bedrest publication-title: J Clin Endocrinol Metab – volume: 82 start-page: 941 year: 2005 end-page: 948 article-title: Factors influencing variation in basal metabolic rate include fat‐free mass, fat mass, age, and circulating thyroxine but not sex, circulating leptin, or triiodothyronine publication-title: Am J Clin Nutr – volume: 290 start-page: E731 year: 2006 end-page: E738 article-title: Anabolic signalling and protein synthesis in human skeletal muscle after dynamic shortening or lengthening exercise publication-title: Am J Physiol Endocrinol Metab – volume: 27 start-page: 1005 year: 2008 end-page: 1016 article-title: cdc2‐cyclin B regulates eEF2 kinase activity in a cell cycle‐ and amino acid‐dependent manner publication-title: EMBO J – volume: 103 start-page: 1242 year: 2007 end-page: 1250 article-title: Single muscle fiber function with concurrent exercise or nutrition countermeasures during 60 days of bed rest in women publication-title: J Appl Physiol – volume: 85 start-page: 466 year: 2001 end-page: 471 article-title: Adaptation to chronic eccentric exercise in humans: the influence of contraction velocity publication-title: Eur J Appl Physiol – volume: 18 start-page: 39 year: 2004 end-page: 51 article-title: Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression publication-title: FASEB J – volume: 288 start-page: E1153 year: 2005 end-page: E1159 article-title: Myofibrillar and collagen protein synthesis in human skeletal muscle in young men after maximal shortening and lengthening contractions publication-title: Am J Physiol Endocrinol Metab – volume: 293 start-page: R1722 year: 2007 end-page: R1727 article-title: Contractile and connective tissue protein content of human skeletal muscle: Effects of 35 and 90 days of simulated microgravity and exercise countermeasures publication-title: Am J Physiol Regul Integr Comp Physiol – volume: 32 start-page: 128 year: 2008 end-page: 137 article-title: Alcohol accelerates loss of muscle and impairs recovery of muscle mass resulting from disuse atrophy publication-title: Alcohol Clin Exp Res – volume: 576 start-page: 613 year: 2006 end-page: 624 article-title: Resistance exercise increases AMPK activity and reduces 4E‐BP1 phosphorylation and protein synthesis in human skeletal muscle publication-title: J Physiol – volume: 9 start-page: 155 year: 2002 end-page: 156 article-title: Skeletal muscle protein composition following 5 weeks of ULLS and resistance exercise countermeasures publication-title: J Gravit Physiol – volume: 585 start-page: 241 year: 2007 end-page: 251 article-title: The temporal responses of protein synthesis, gene expression and cell signalling in human quadriceps muscle and patellar tendon to disuse publication-title: J Physiol – volume: 20 start-page: 689 year: 2004 end-page: 695 article-title: Protein requirements and supplementation in strength sports publication-title: Nutrition – volume: 67 start-page: 19 year: 1989 end-page: 23 article-title: Insulin action in human thighs after one‐legged immobilization publication-title: J Appl Physiol – volume: 101 start-page: 1136 year: 2006 end-page: 1148 article-title: Analysis of human skeletal muscle after 48 h immobilization reveals alterations in mRNA and protein for extracellular matrix components publication-title: J Appl Physiol – volume: 294 start-page: E392 year: 2008 end-page: E400 article-title: Leucine‐enriched essential amino acid and carbohydrate ingestion following resistance exercise enhances mTOR signaling and protein synthesis in human muscle publication-title: Am J Physiol Endocrinol Metab – volume: 105 start-page: 902 year: 2008 end-page: 906 article-title: Skeletal muscle proteolysis in response to short‐term unloading in humans publication-title: J Appl Physiol – volume: 95 start-page: 2185 year: 2003 end-page: 2201 article-title: Skeletal muscle unweighting: spaceflight and ground‐based models publication-title: J Appl Physiol – volume: 579 start-page: 877 year: 2007 end-page: 892 article-title: Alterations in mRNA expression and protein products following spinal cord injury in humans publication-title: J Physiol – volume: 29 start-page: 541 year: 2001 end-page: 547 article-title: Interplay between insulin and nutrients in the regulation of translation factors publication-title: Biochem Soc Trans – volume: 135 start-page: 1824S year: 2005 end-page: 1828S article-title: Metabolic consequences of muscle disuse atrophy publication-title: J Nutr – volume: 270 start-page: E627 year: 1996 end-page: E633 article-title: Prolonged bed rest decreases skeletal muscle and whole body protein synthesis publication-title: Am J Physiol – volume: 93 start-page: 1168 year: 2002 end-page: 1180 article-title: Role of insulin in translational control of protein synthesis in skeletal muscle by amino acids or exercise publication-title: J Appl Physiol – volume: 532 start-page: 575 year: 2001 end-page: 579 article-title: Latency and duration of stimulation of human muscle protein synthesis during continuous infusion of amino acids publication-title: J Physiol – volume: 294 start-page: R939 year: 2008 end-page: R947 article-title: Human soleus single muscle fiber function with exercise or nutrition countermeasures during 60 days of bed rest publication-title: Am J Physiol Regul Integr Comp Physiol – volume: 84 start-page: 475 year: 2006 end-page: 482 article-title: The underappreciated role of muscle in health and disease publication-title: Am J Clin Nutr – volume: 136 start-page: 227S year: 2006 end-page: 231S article-title: Signaling pathways and molecular mechanisms through which branched‐chain amino acids mediate translational control of protein synthesis publication-title: J Nutr – volume: 91 start-page: 4836 year: 2006 end-page: 4841 article-title: Atrophy and impaired muscle protein synthesis during prolonged inactivity and stress publication-title: J Clin Endocrinol Metab – volume: 21 start-page: 140 year: 2007 end-page: 155 article-title: Rapid disuse and denervation atrophy involve transcriptional changes similar to those of muscle wasting during systemic diseases publication-title: FASEB J – volume: 66 start-page: 799 year: 2004 end-page: 828 article-title: Control of the size of the human muscle mass publication-title: Annu Rev Physiol – volume: 10 start-page: 31 year: 2005 end-page: 34 article-title: Maintenance of the musculoskeletal mass by control of protein turnover: the concept of anabolic resistance and its relevance to the transplant recipient publication-title: Ann Transplant – volume: 291 start-page: E1197 year: 2006 end-page: E1205 article-title: Maximal lengthening contractions increase p70, S6 kinase phosphorylation in human skeletal muscle in the absence of nutritional supply publication-title: Am J Physiol Endocrinol Metab – volume: 28 start-page: 1429 year: 2008 end-page: 1442 article-title: A novel mechanism for the control of translation initiation by amino acids, mediated by phosphorylation of eukaryotic initiation factor 2B publication-title: Mol Cell Biol – volume: 287 start-page: E1 year: 2004 end-page: E7 article-title: Branched‐chain amino acids increase p70S6k phosphorylation in human skeletal muscle after resistance exercise publication-title: Am J Physiol Endocrinol Metab – volume: 25 start-page: 6423 year: 2006 end-page: 6435 article-title: When translation meets transformation: the mTOR story publication-title: Oncogene – volume: 558 start-page: 381 year: 2004 end-page: 388 article-title: Short‐term bed rest impairs amino acid‐induced protein anabolism in humans publication-title: J Physiol – volume: 105 start-page: 241 year: 2008 end-page: 248 article-title: Resistance training and timed essential amino acids protect against the loss of muscle mass and strength during 28 days of bed rest and energy deficit publication-title: J Appl Physiol – volume: 403 start-page: 217 year: 2007 end-page: 234 article-title: Signalling to translation: how signal transduction pathways control the protein synthetic machinery publication-title: Biochem J – volume: 72 start-page: 503 year: 1987 end-page: 509 article-title: Decrease in human quadriceps muscle protein turnover consequent upon leg immobilization publication-title: Clin Sci (Lond) – volume: 99 start-page: 1085 year: 2005 end-page: 1092 article-title: Sex‐based differences in skeletal muscle function and morphology with short‐term limb immobilization publication-title: J Appl Physiol – volume: 31 start-page: 518 year: 2006 end-page: 529 article-title: Addition of glutamine to essential amino acids and carbohydrate does not enhance anabolism in young human males following exercise publication-title: Appl Physiol Nutr Metab – volume: 277 start-page: C152 year: 1999 end-page: C162 article-title: Focal adhesion proteins FAK and paxillin increase in hypertrophied skeletal muscle publication-title: Am J Physiol Endocrinol Metab – volume: 21 start-page: 362 year: 2006 end-page: 369 article-title: The mTOR pathway in the control of protein synthesis publication-title: Physiology (Bethesda) – volume: 181 start-page: 345 year: 2004 end-page: 357 article-title: Efficacy of a gravity‐independent resistance exercise device as a countermeasure to muscle atrophy during 29‐day bed rest publication-title: Acta Physiol Scand – volume: 50 start-page: 327 year: 2006 end-page: 336 article-title: Integrins, muscle agrin and sarcoglycans during muscular inactivity conditions: an immunohistochemical study publication-title: Eur J Histochem – volume: 32 start-page: 1132 year: 2007 end-page: 1138 article-title: Minimal whey protein with carbohydrate stimulates muscle protein synthesis following resistance exercise in trained young men publication-title: Appl Physiol Nutr Metab – volume: 17 start-page: 1807 year: 2006 end-page: 1819 article-title: Protein degradation by the ubiquitin‐proteasome pathway in normal and disease states publication-title: J Am Soc Nephrol – volume: 19 start-page: 422 year: 2005 end-page: 424 article-title: Anabolic signaling deficits underlie amino acid resistance of wasting, aging muscle publication-title: FASEB J – volume: 582 start-page: 813 year: 2007 end-page: 823 article-title: Nutrient signalling in the regulation of human muscle protein synthesis publication-title: J Physiol – volume: 295 start-page: E595 year: 2008 end-page: E604 article-title: Disassociation between the effects of amino acids and insulin on signalling, ubiquitin‐ligases and protein turnover in human muscle publication-title: Am J Physiol Endocrinol Metab – volume: 85 start-page: 1031 year: 2007 end-page: 1040 article-title: Consumption of fluid skim milk promotes greater muscle protein accretion following resistance exercise than an isonitrogenous and isoenergetic soy protein beverage publication-title: Am J Clin Nutr – ident: e_1_2_5_22_1 doi: 10.1152/jappl.2001.90.3.1174 – ident: e_1_2_5_46_1 doi: 10.1152/japplphysiol.90558.2008 – ident: e_1_2_5_48_1 doi: 10.1152/japplphysiol.00560.2007 – ident: e_1_2_5_14_1 doi: 10.1152/ajpendo.00582.2007 – ident: e_1_2_5_11_1 doi: 10.1152/ajpendo.00415.2005 – ident: e_1_2_5_58_1 doi: 10.1152/japplphysiol.00247.2005 – ident: e_1_2_5_32_1 doi: 10.1007/s004210100467 – ident: e_1_2_5_35_1 doi: 10.1210/jc.2003-032159 – ident: e_1_2_5_43_1 doi: 10.1038/emboj.2008.39 – ident: e_1_2_5_25_1 doi: 10.1093/ajcn/82.5.941 – ident: e_1_2_5_5_1 doi: 10.1038/sj.onc.1209887 – ident: e_1_2_5_54_1 doi: 10.1128/MCB.01512-07 – ident: e_1_2_5_9_1 doi: 10.1152/japplphysiol.01346.2007 – ident: e_1_2_5_44_1 doi: 10.1093/jn/135.7.1824S – ident: e_1_2_5_51_1 doi: 10.1111/j.1530-0277.2007.00548.x – ident: e_1_2_5_21_1 doi: 10.1073/pnas.251541198 – ident: e_1_2_5_56_1 doi: 10.1093/ajcn/85.4.1031 – ident: e_1_2_5_18_1 doi: 10.1152/ajpcell.1999.277.1.C152 – ident: e_1_2_5_24_1 doi: 10.1152/ajpregu.00292.2007 – ident: e_1_2_5_39_1 doi: 10.1146/annurev.physiol.66.052102.134444 – ident: e_1_2_5_3_1 doi: 10.1111/j.1365-201X.2004.01293.x – ident: e_1_2_5_23_1 doi: 10.1152/ajpendo.90411.2008 – ident: e_1_2_5_57_1 doi: 10.1093/ajcn/84.3.475 – ident: e_1_2_5_7_1 doi: 10.1111/j.1469-7793.2001.0575f.x – ident: e_1_2_5_20_1 doi: 10.1042/cs0720503 – ident: e_1_2_5_47_1 doi: 10.1152/ajpregu.00761.2007 – volume: 50 start-page: 327 year: 2006 ident: e_1_2_5_4_1 article-title: Integrins, muscle agrin and sarcoglycans during muscular inactivity conditions: an immunohistochemical study publication-title: Eur J Histochem – ident: e_1_2_5_28_1 doi: 10.1093/jn/136.1.227S – ident: e_1_2_5_37_1 doi: 10.1042/BJ20070024 – ident: e_1_2_5_26_1 doi: 10.1152/ajpendo.00430.2003 – ident: e_1_2_5_36_1 doi: 10.1016/j.nut.2004.04.009 – ident: e_1_2_5_49_1 doi: 10.1113/jphysiol.2006.118042 – ident: e_1_2_5_38_1 doi: 10.1042/bst0290541 – ident: e_1_2_5_53_1 doi: 10.1152/physiol.00024.2006 – ident: e_1_2_5_27_1 doi: 10.1152/japplphysiol.00221.2002 – ident: e_1_2_5_8_1 doi: 10.1113/jphysiol.2003.050674 – ident: e_1_2_5_30_1 doi: 10.1096/fj.03-0610com – volume: 9 start-page: 155 year: 2002 ident: e_1_2_5_10_1 article-title: Skeletal muscle protein composition following 5 weeks of ULLS and resistance exercise countermeasures publication-title: J Gravit Physiol – ident: e_1_2_5_45_1 doi: 10.1139/H07-076 – ident: e_1_2_5_19_1 doi: 10.1113/jphysiol.2007.134593 – ident: e_1_2_5_34_1 doi: 10.1210/jc.2004-1702 – ident: e_1_2_5_16_1 doi: 10.1152/ajpendo.00141.2006 – ident: e_1_2_5_42_1 doi: 10.1096/fj.06-6604com – ident: e_1_2_5_55_1 doi: 10.1139/h06-028 – ident: e_1_2_5_13_1 doi: 10.1113/jphysiol.2007.142828 – ident: e_1_2_5_31_1 doi: 10.1152/ajpendo.00387.2004 – volume: 10 start-page: 31 year: 2005 ident: e_1_2_5_40_1 article-title: Maintenance of the musculoskeletal mass by control of protein turnover: the concept of anabolic resistance and its relevance to the transplant recipient publication-title: Ann Transplant – ident: e_1_2_5_6_1 doi: 10.1113/jphysiol.2004.066365 – ident: e_1_2_5_17_1 doi: 10.1152/ajpendo.1996.270.4.E627 – ident: e_1_2_5_33_1 doi: 10.1210/jc.2006-0651 – ident: e_1_2_5_50_1 doi: 10.1152/japplphysiol.00180.2006 – ident: e_1_2_5_15_1 doi: 10.1113/jphysiol.2006.113175 – ident: e_1_2_5_2_1 doi: 10.1152/japplphysiol.00346.2003 – ident: e_1_2_5_41_1 doi: 10.1152/jappl.1989.67.1.19 – ident: e_1_2_5_29_1 doi: 10.1681/ASN.2006010083 – ident: e_1_2_5_12_1 doi: 10.1096/fj.04-2640fje – ident: e_1_2_5_52_1 doi: 10.1128/MCB.25.7.2558-2572.2005 – reference: 17213042 - Eur J Histochem. 2006 Oct-Dec;50(4):327-36 – reference: 16984982 - J Clin Endocrinol Metab. 2006 Dec;91(12):4836-41 – reference: 17901116 - J Physiol. 2007 Nov 15;585(Pt 1):241-51 – reference: 14977422 - Annu Rev Physiol. 2004;66:799-828 – reference: 14718385 - FASEB J. 2004 Jan;18(1):39-51 – reference: 16280423 - Am J Clin Nutr. 2005 Nov;82(5):941-8 – reference: 17037086 - Ann Transplant. 2005;10(4):31-4 – reference: 2668254 - J Appl Physiol (1985). 1989 Jul;67(1):19-23 – reference: 17413102 - Am J Clin Nutr. 2007 Apr;85(4):1031-40 – reference: 14600160 - J Appl Physiol (1985). 2003 Dec;95(6):2185-201 – reference: 15572656 - Am J Physiol Endocrinol Metab. 2005 Jun;288(6):E1153-9 – reference: 18535133 - J Appl Physiol (1985). 2008 Sep;105(3):902-6 – reference: 17218363 - J Physiol. 2007 Mar 15;579(Pt 3):877-92 – reference: 16835402 - Am J Physiol Endocrinol Metab. 2006 Dec;291(6):E1197-205 – reference: 15356032 - J Clin Endocrinol Metab. 2004 Sep;89(9):4351-8 – reference: 17670860 - Am J Physiol Regul Integr Comp Physiol. 2007 Oct;293(4):R1722-7 – reference: 18483167 - J Appl Physiol (1985). 2008 Jul;105(1):241-8 – reference: 17116744 - FASEB J. 2007 Jan;21(1):140-55 – reference: 11717410 - Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14440-5 – reference: 12183515 - J Appl Physiol (1985). 2002 Sep;93(3):1168-80 – reference: 18160716 - Mol Cell Biol. 2008 Mar;28(5):1429-42 – reference: 18056791 - Am J Physiol Endocrinol Metab. 2008 Feb;294(2):E392-400 – reference: 16960159 - Am J Clin Nutr. 2006 Sep;84(3):475-82 – reference: 15598679 - J Clin Endocrinol Metab. 2005 Mar;90(3):1453-9 – reference: 15196095 - Acta Physiol Scand. 2004 Jul;181(3):345-57 – reference: 11306673 - J Physiol. 2001 Apr 15;532(Pt 2):575-9 – reference: 15212752 - Nutrition. 2004 Jul-Aug;20(7-8):689-95 – reference: 18577697 - Am J Physiol Endocrinol Metab. 2008 Sep;295(3):E595-604 – reference: 11498025 - Biochem Soc Trans. 2001 Aug;29(Pt 4):541-7 – reference: 11606016 - Eur J Appl Physiol. 2001 Sep;85(5):466-71 – reference: 16263770 - Am J Physiol Endocrinol Metab. 2006 Apr;290(4):E731-8 – reference: 17376031 - Biochem J. 2007 Apr 15;403(2):217-34 – reference: 15987873 - J Nutr. 2005 Jul;135(7):1824S-1828S – reference: 15767663 - Mol Cell Biol. 2005 Apr;25(7):2558-72 – reference: 18059587 - Appl Physiol Nutr Metab. 2007 Dec;32(6):1132-8 – reference: 17641219 - J Appl Physiol (1985). 2007 Oct;103(4):1242-50 – reference: 16763108 - J Appl Physiol (1985). 2006 Oct;101(4):1136-48 – reference: 18094071 - Am J Physiol Regul Integr Comp Physiol. 2008 Mar;294(3):R939-47 – reference: 10409118 - Am J Physiol. 1999 Jul;277(1 Pt 1):C152-62 – reference: 18337751 - EMBO J. 2008 Apr 9;27(7):1005-16 – reference: 15002527 - J Gravit Physiol. 2002 Jul;9(1):P155-6 – reference: 16365087 - J Nutr. 2006 Jan;136(1 Suppl):227S-31S – reference: 2435445 - Clin Sci (Lond). 1987 Apr;72(4):503-9 – reference: 17478528 - J Physiol. 2007 Jul 15;582(Pt 2):813-23 – reference: 11181634 - J Appl Physiol (1985). 2001 Mar;90(3):1174-83; discussion 1165 – reference: 17041627 - Oncogene. 2006 Oct 16;25(48):6423-35 – reference: 14998784 - Am J Physiol Endocrinol Metab. 2004 Jul;287(1):E1-7 – reference: 16990457 - Physiology (Bethesda). 2006 Oct;21:362-9 – reference: 15131238 - J Physiol. 2004 Jul 15;558(Pt 2):381-8 – reference: 16738015 - J Am Soc Nephrol. 2006 Jul;17(7):1807-19 – reference: 8928769 - Am J Physiol. 1996 Apr;270(4 Pt 1):E627-33 – reference: 12909668 - J Physiol. 2003 Oct 1;552(Pt 1):315-24 – reference: 18028527 - Alcohol Clin Exp Res. 2008 Jan;32(1):128-37 – reference: 17111006 - Appl Physiol Nutr Metab. 2006 Oct;31(5):518-29 – reference: 16873412 - J Physiol. 2006 Oct 15;576(Pt 2):613-24 – reference: 15596483 - FASEB J. 2005 Mar;19(3):422-4 – reference: 15860685 - J Appl Physiol (1985). 2005 Sep;99(3):1085-92 |
SSID | ssj0013099 |
Score | 2.4484184 |
Snippet | We tested the hypothesis that increasing blood amino acid (AA) availability would counter the physical inactivity-induced
reduction in muscle protein... We tested the hypothesis that increasing blood amino acid (AA) availability would counter the physical inactivity‐induced reduction in muscle protein... We tested the hypothesis that increasing blood amino acid (AA) availability would counter the physical inactivity-induced reduction in muscle protein... |
SourceID | pubmedcentral proquest pubmed crossref wiley highwire |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6049 |
SubjectTerms | Adult Amino Acids - administration & dosage Amino Acids - metabolism Amino Acids - pharmacology Amino Acids, Essential - blood Amino Acids, Essential - metabolism Dose-Response Relationship, Drug Elongation Factor 2 Kinase - metabolism Female Focal Adhesion Protein-Tyrosine Kinases - metabolism Glycogen Synthase Kinase 3 - metabolism Glycogen Synthase Kinase 3 beta Humans Immobilization - methods Infusions, Intravenous Insulin - blood Male Muscle Proteins - biosynthesis Muscle Strength - drug effects Muscle Strength - physiology Myofibrils - drug effects Myofibrils - metabolism Myofibrils - physiology Phosphorylation - drug effects Protein Kinases - metabolism Proto-Oncogene Proteins c-akt - metabolism Quadriceps Muscle - drug effects Quadriceps Muscle - metabolism Quadriceps Muscle - physiology Ribosomal Protein S6 Kinases, 70-kDa - metabolism Skeletal Muscle and Exercise TOR Serine-Threonine Kinases Ubiquitination - drug effects Young Adult |
Title | Immobilization induces anabolic resistance in human myofibrillar protein synthesis with low and high dose amino acid infusion |
URI | http://jp.physoc.org/content/586/24/6049.abstract https://onlinelibrary.wiley.com/doi/abs/10.1113%2Fjphysiol.2008.160333 https://www.ncbi.nlm.nih.gov/pubmed/18955382 https://www.proquest.com/docview/69903563 https://pubmed.ncbi.nlm.nih.gov/PMC2655417 |
Volume | 586 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1469-7793 dateEnd: 20240930 omitProxy: true ssIdentifier: ssj0013099 issn: 0022-3751 databaseCode: DIK dateStart: 18780101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1469-7793 dateEnd: 20240930 omitProxy: true ssIdentifier: ssj0013099 issn: 0022-3751 databaseCode: GX1 dateStart: 18780101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVALS databaseName: IngentaConnect Open Access Journals customDbUrl: eissn: 1469-7793 dateEnd: 20141130 omitProxy: true ssIdentifier: ssj0013099 issn: 0022-3751 databaseCode: FIJ dateStart: 19860501 isFulltext: true titleUrlDefault: http://www.ingentaconnect.com/content/title?j_type=online&j_startat=Aa&j_endat=Af&j_pagesize=200&j_page=1 providerName: Ingenta – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1469-7793 dateEnd: 20240930 omitProxy: true ssIdentifier: ssj0013099 issn: 0022-3751 databaseCode: RPM dateStart: 18780101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0022-3751 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1469-7793 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013099 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELaqnrjwKo_wtBDitiW21-v1sUKEUglUoVbKzfIrZSHxomwiFCT-O2N7NyVQCQSXXGxPZO9n-xt7_A1Cz2ttmRBGFxWwh6L0TBfaWFJoYq0gxHJj44H-u_fV8Xl5MuXTPTQZ3sJkfYjtgVucGWm9jhNcmz4LCYliA5-S69_OczxkzJbMougnYTzd1n6gl5cJYym3ouGCk_4FHZh5eZWR3R1qUA2-ioH-Hkj5M8FNO9TkBroY-pYDUz4frlfm0H77Rfbx_zt_E13vSSw-yqi7hfZ8uI0OjgI48IsNfoFPc7P2YnOAvr8FpMcI3PzeEzfBAZo6rAPAb95YDP5-5LAAPijDKWcgXmwA82YZMyItcZKSgKJuE4CtQmUcD4_xvP0KRhyOQ4dd23msF01osbaNA0uzdTwHvIPOJ6_PXh0Xfc6HwpZATQpjtfClkdJb5sfCzYyJpIQb6KirLSyJhDvqtKYeiCd1hBHjgOJUlfBCcsHuov3QBn8fYUa99DMNHqO2pZAemujxrAaXLd4dSjFCbPjOyvaC6DEvx1xlx4ipYZRzrs48yiNUbFt9yYIgf6j_bICQysVdDsdVvK4ULVUFPtoIPR3ApWB6xzsbHXy77lQFbAEQDWbuZahd_mktOexWdITEDgi3FaJw-G5JaD4mAXFaAYkkMAA0Yeyv-qHOTk5huSYP_qXRQ3QtxdkQWhD-CO2vlmv_GMjcyjxJUxV-30zJD8zRSlY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfGeIAXGIyPwmAWQrxl1HYcJ4_TYHRjmybUSXuz_NUt0DqoaYWKxP--c5x0FCaBEM-2L7LzO_t35_MdQq9zZZgQWiUZsIckdUwlShuSKGKMIMRwbYJD__gkG5ylh-f8fA196N7CxPwQS4db0Ixmvw4KHhzSrZaHbAOfG9u_GseAyFAumbFb6Ha4qgsa-u4Tvb5O6BfFMm244KR9Qwdy3t4kZfWM6vIG38RBfw-l_JniNmfU_n102c0uhqZ82ZnP9I75_kvix_8w_Q10r-WxeDcC7wFac_4h2tz1YMNPFvgNPo3DqovFJvpxAGAPQbjxyScuvQVA1Vh5QOC4NBhM_kBjAX_QhpuygXiyANjraSiKNMVNNgloqhceCCt0xsF_jMfVNxBicVg7bKvaYTUpfYWVKS1IGs2DK_AROtt_P9wbJG3Zh8SkwE4SbZRwqS4KZ5jrCzvSOvASrmGiNjewKxJuqVWKOuCe1BJGtAWWk2XCiYIL9hit-8q7pwgz6go3UmA0KpOKwsEQ1R_lYLWF68NC9BDrfrQ0bU70UJpjLKNtxGS3yrFcZ1zlHkqWo77GnCB_6P-qw5CMzXWMyJU8zyRNZQZmWg9td-iSoOHh2kZ5V81rmQFhYDwDMU8i1q4_mhccDizaQ2IFhcsOIXf4aosvL5sc4jQDHklgAWgDsr-ahxwensKOTZ79y6BtdGcwPD6SRwcnH5-ju03YDaEJ4VtofTaduxfA7Wb6ZaO3V2x4TYE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLbGkBAv4zIuHZdZCPGWUduJnTxOQLUNmCq0SXuzfMsWaJ2paYWKxH_nOE46CpNA8Gz7RHY-29-xj7-D0MtcGSaEVgkH9pCkjqlEaUMSRYwRhJhMm3Cg__GYH5ymR2fZ2QYa9W9hoj7E6sAtzIx2vQ4T_NKW3SQPYgOfW9e_nsR4yJAtmbEb6GbKwdEK5OgTvbpNGBbFSjVcZKR7Qgd2Xl9nZX2L6mWDr6Ogv0dS_sxw2y1qdAed952LkSlf9hZzvWe-_aL7-P-9v4u2OhaL9yPs7qEN5--j7X0PHvx0iV_hcWxWny-30fdDgHoIwY0PPnHlLcCpwcoD_iaVweDwBxIL6IMy3CYNxNMlgF7PQkqkGW61JKCoWXqgq1AZh9NjPKm_ghGLw9BhWzcOq2nla6xMZcFSuQgHgQ_Q6ejdyZuDpEv6kJgUuEmijRIu1UXhDHNDYUutAyvJNHTU5gbWRJJZapWiDpgntYQRbYHjcC6cKDLBHqJNX3v3GGFGXeFKBS6jMqkoHDRRwzIHny1cHhZigFj_n6XpFNFDYo6JjJ4Rk_0ox2SdcZQHKFm1uoyKIH-o_6KHkIzFTYzHlVnOJU0lBydtgHZ7cEmY3-HSRnlXLxrJgS6wjIOZRxFqVx_Niwy2KzpAYg2EqwpBOXy9xFcXrYI45cAiCQwAbTH2V_2QJ0djWK_Jzr802kW3xm9H8sPh8fsn6HYbc0NoQrKnaHM-W7hnQOzm-nk7a38AWQxMMA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Immobilization+induces+anabolic+resistance+in+human+myofibrillar+protein+synthesis+with+low+and+high+dose+amino+acid+infusion&rft.jtitle=The+Journal+of+physiology&rft.au=Elisa+I.+Glover&rft.au=Stuart+M.+Phillips&rft.au=Bryan+R.+Oates&rft.au=Jason+E.+Tang&rft.date=2008-12-15&rft.pub=The+Physiological+Society&rft.issn=0022-3751&rft.eissn=1469-7793&rft.volume=586&rft.issue=24&rft.spage=6049&rft_id=info:doi/10.1113%2Fjphysiol.2008.160333&rft_id=info%3Apmid%2F18955382&rft.externalDBID=n%2Fa&rft.externalDocID=586_24_6049 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3751&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3751&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3751&client=summon |