Genome-wide microarray analysis identifies a potential role for striatal retrograde endocannabinoid signaling in the pathogenesis of experimental l-DOPA-induced dyskinesia

ABSTRACT l‐3,4‐Dihydroxyphenylalanine (l‐DOPA) is the most widely used drug for the treatment of Parkinson's disease. Unfortunately, chronic administration of this dopamine precursor causes l‐DOPA‐induced dyskinesia (LID), which is a debilitating complication whose pathogenesis remains unclear....

Full description

Saved in:
Bibliographic Details
Published inSynapse (New York, N.Y.) Vol. 68; no. 8; pp. 332 - 343
Main Authors Wang, Yong, Zhang, Qiao Jun, Wang, Hui Sheng, Wang, Tao, Liu, Jian
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.08.2014
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0887-4476
1098-2396
1098-2396
DOI10.1002/syn.21740

Cover

Abstract ABSTRACT l‐3,4‐Dihydroxyphenylalanine (l‐DOPA) is the most widely used drug for the treatment of Parkinson's disease. Unfortunately, chronic administration of this dopamine precursor causes l‐DOPA‐induced dyskinesia (LID), which is a debilitating complication whose pathogenesis remains unclear. In this study, we compared gene expression profiles of sensorimotor striatum tissue derived from LID and non‐LID 6‐hydroxydopamine‐lesioned rats treated with l‐DOPA. Total RNA was amplified, transcribed and hybridized to Agilent Whole Rat Genome Oligo Microarray chips. Quantitative real‐time reverse transcription PCR was conducted to validate the microarray data. We detected 382 upregulated genes and 115 downregulated genes in LID rats when compared with that of non‐LID subjects with Significance Analysis for Microarrays software. The differentially expressed genes were mainly associated with postsynaptic cell membranes, synapses, and neurotransmitter receptors. Gene Set Analysis (GSA) software was used to identify differentially expressed gene ontology (GO) categories and pathways. The GSA found that “long‐term depression” and “retrograde endocannabinoid signaling” pathways were downregulated, whereas a set of lipid metabolism‐related GO categories and pathways were upregulated in LID rats compared with non‐LID controls. Our study provides further experimental evidence to support the direct correlation between abnormal striatal synaptic plasticity and the induction of LID, and it suggests that the dysfunction of the retrograde endocannabinoid signaling system, a lipid‐based neuromodulatory system, and the relevant alteration of the related lipid metabolism processes might play an important role in the pathogenesis of LID. Synapse 68:332–343, 2014. © 2014 Wiley Periodicals, Inc. What's new? The authors compared gene expression profiles of sensorimotor striatum tissue derived from rats with L‐3,4‐dihydroxyphenylalanine (L‐DOPA)‐induced dyskinesia (LID) and non‐LID 6‐hydroxydopamine‐lesioned rats treated with L‐DOPA. The results showed that abnormal striatal synaptic plasticity and the dysfunction of striatal retrograde endocannabinoid signaling might play an important role in the pathogenesis of LID.
AbstractList l-3,4-Dihydroxyphenylalanine (L-DOPA) is the most widely used drug for the treatment of Parkinson's disease. Unfortunately, chronic administration of this dopamine precursor causes L-DOPA-induced dyskinesia (LID), which is a debilitating complication whose pathogenesis remains unclear. In this study, we compared gene expression profiles of sensorimotor striatum tissue derived from LID and non-LID 6-hydroxydopamine-lesioned rats treated with L-DOPA. Total RNA was amplified, transcribed and hybridized to Agilent Whole Rat Genome Oligo Microarray chips. Quantitative real-time reverse transcription PCR was conducted to validate the microarray data. We detected 382 upregulated genes and 115 downregulated genes in LID rats when compared with that of non-LID subjects with Significance Analysis for Microarrays software. The differentially expressed genes were mainly associated with postsynaptic cell membranes, synapses, and neurotransmitter receptors. Gene Set Analysis (GSA) software was used to identify differentially expressed gene ontology (GO) categories and pathways. The GSA found that "long-term depression" and "retrograde endocannabinoid signaling" pathways were downregulated, whereas a set of lipid metabolism-related GO categories and pathways were upregulated in LID rats compared with non-LID controls. Our study provides further experimental evidence to support the direct correlation between abnormal striatal synaptic plasticity and the induction of LID, and it suggests that the dysfunction of the retrograde endocannabinoid signaling system, a lipid-based neuromodulatory system, and the relevant alteration of the related lipid metabolism processes might play an important role in the pathogenesis of LID.l-3,4-Dihydroxyphenylalanine (L-DOPA) is the most widely used drug for the treatment of Parkinson's disease. Unfortunately, chronic administration of this dopamine precursor causes L-DOPA-induced dyskinesia (LID), which is a debilitating complication whose pathogenesis remains unclear. In this study, we compared gene expression profiles of sensorimotor striatum tissue derived from LID and non-LID 6-hydroxydopamine-lesioned rats treated with L-DOPA. Total RNA was amplified, transcribed and hybridized to Agilent Whole Rat Genome Oligo Microarray chips. Quantitative real-time reverse transcription PCR was conducted to validate the microarray data. We detected 382 upregulated genes and 115 downregulated genes in LID rats when compared with that of non-LID subjects with Significance Analysis for Microarrays software. The differentially expressed genes were mainly associated with postsynaptic cell membranes, synapses, and neurotransmitter receptors. Gene Set Analysis (GSA) software was used to identify differentially expressed gene ontology (GO) categories and pathways. The GSA found that "long-term depression" and "retrograde endocannabinoid signaling" pathways were downregulated, whereas a set of lipid metabolism-related GO categories and pathways were upregulated in LID rats compared with non-LID controls. Our study provides further experimental evidence to support the direct correlation between abnormal striatal synaptic plasticity and the induction of LID, and it suggests that the dysfunction of the retrograde endocannabinoid signaling system, a lipid-based neuromodulatory system, and the relevant alteration of the related lipid metabolism processes might play an important role in the pathogenesis of LID.
l-3,4-Dihydroxyphenylalanine (l-DOPA) is the most widely used drug for the treatment of Parkinson's disease. Unfortunately, chronic administration of this dopamine precursor causes l-DOPA-induced dyskinesia (LID), which is a debilitating complication whose pathogenesis remains unclear. In this study, we compared gene expression profiles of sensorimotor striatum tissue derived from LID and non-LID 6-hydroxydopamine-lesioned rats treated with l-DOPA. Total RNA was amplified, transcribed and hybridized to Agilent Whole Rat Genome Oligo Microarray chips. Quantitative real-time reverse transcription PCR was conducted to validate the microarray data. We detected 382 upregulated genes and 115 downregulated genes in LID rats when compared with that of non-LID subjects with Significance Analysis for Microarrays software. The differentially expressed genes were mainly associated with postsynaptic cell membranes, synapses, and neurotransmitter receptors. Gene Set Analysis (GSA) software was used to identify differentially expressed gene ontology (GO) categories and pathways. The GSA found that "long-term depression" and "retrograde endocannabinoid signaling" pathways were downregulated, whereas a set of lipid metabolism-related GO categories and pathways were upregulated in LID rats compared with non-LID controls. Our study provides further experimental evidence to support the direct correlation between abnormal striatal synaptic plasticity and the induction of LID, and it suggests that the dysfunction of the retrograde endocannabinoid signaling system, a lipid-based neuromodulatory system, and the relevant alteration of the related lipid metabolism processes might play an important role in the pathogenesis of LID. Synapse 68:332-343, 2014. copyright 2014 Wiley Periodicals, Inc. What's new? The authors compared gene expression profiles of sensorimotor striatum tissue derived from rats with L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia (LID) and non-LID 6-hydroxydopamine-lesioned rats treated with L-DOPA. The results showed that abnormal striatal synaptic plasticity and the dysfunction of striatal retrograde endocannabinoid signaling might play an important role in the pathogenesis of LID.
l-3,4-Dihydroxyphenylalanine (L-DOPA) is the most widely used drug for the treatment of Parkinson's disease. Unfortunately, chronic administration of this dopamine precursor causes L-DOPA-induced dyskinesia (LID), which is a debilitating complication whose pathogenesis remains unclear. In this study, we compared gene expression profiles of sensorimotor striatum tissue derived from LID and non-LID 6-hydroxydopamine-lesioned rats treated with L-DOPA. Total RNA was amplified, transcribed and hybridized to Agilent Whole Rat Genome Oligo Microarray chips. Quantitative real-time reverse transcription PCR was conducted to validate the microarray data. We detected 382 upregulated genes and 115 downregulated genes in LID rats when compared with that of non-LID subjects with Significance Analysis for Microarrays software. The differentially expressed genes were mainly associated with postsynaptic cell membranes, synapses, and neurotransmitter receptors. Gene Set Analysis (GSA) software was used to identify differentially expressed gene ontology (GO) categories and pathways. The GSA found that "long-term depression" and "retrograde endocannabinoid signaling" pathways were downregulated, whereas a set of lipid metabolism-related GO categories and pathways were upregulated in LID rats compared with non-LID controls. Our study provides further experimental evidence to support the direct correlation between abnormal striatal synaptic plasticity and the induction of LID, and it suggests that the dysfunction of the retrograde endocannabinoid signaling system, a lipid-based neuromodulatory system, and the relevant alteration of the related lipid metabolism processes might play an important role in the pathogenesis of LID.
l ‐3,4‐Dihydroxyphenylalanine ( l ‐DOPA) is the most widely used drug for the treatment of Parkinson's disease. Unfortunately, chronic administration of this dopamine precursor causes l ‐DOPA‐induced dyskinesia (LID), which is a debilitating complication whose pathogenesis remains unclear. In this study, we compared gene expression profiles of sensorimotor striatum tissue derived from LID and non‐LID 6‐hydroxydopamine‐lesioned rats treated with l ‐DOPA. Total RNA was amplified, transcribed and hybridized to Agilent Whole Rat Genome Oligo Microarray chips. Quantitative real‐time reverse transcription PCR was conducted to validate the microarray data. We detected 382 upregulated genes and 115 downregulated genes in LID rats when compared with that of non‐LID subjects with Significance Analysis for Microarrays software. The differentially expressed genes were mainly associated with postsynaptic cell membranes, synapses, and neurotransmitter receptors. Gene Set Analysis (GSA) software was used to identify differentially expressed gene ontology (GO) categories and pathways. The GSA found that “long‐term depression” and “retrograde endocannabinoid signaling” pathways were downregulated, whereas a set of lipid metabolism‐related GO categories and pathways were upregulated in LID rats compared with non‐LID controls. Our study provides further experimental evidence to support the direct correlation between abnormal striatal synaptic plasticity and the induction of LID, and it suggests that the dysfunction of the retrograde endocannabinoid signaling system, a lipid‐based neuromodulatory system, and the relevant alteration of the related lipid metabolism processes might play an important role in the pathogenesis of LID. Synapse 68:332–343, 2014. © 2014 Wiley Periodicals, Inc.
l-3,4-Dihydroxyphenylalanine (l-DOPA) is the most widely used drug for the treatment of Parkinson's disease. Unfortunately, chronic administration of this dopamine precursor causes l-DOPA-induced dyskinesia (LID), which is a debilitating complication whose pathogenesis remains unclear. In this study, we compared gene expression profiles of sensorimotor striatum tissue derived from LID and non-LID 6-hydroxydopamine-lesioned rats treated with l-DOPA. Total RNA was amplified, transcribed and hybridized to Agilent Whole Rat Genome Oligo Microarray chips. Quantitative real-time reverse transcription PCR was conducted to validate the microarray data. We detected 382 upregulated genes and 115 downregulated genes in LID rats when compared with that of non-LID subjects with Significance Analysis for Microarrays software. The differentially expressed genes were mainly associated with postsynaptic cell membranes, synapses, and neurotransmitter receptors. Gene Set Analysis (GSA) software was used to identify differentially expressed gene ontology (GO) categories and pathways. The GSA found that "long-term depression" and "retrograde endocannabinoid signaling" pathways were downregulated, whereas a set of lipid metabolism-related GO categories and pathways were upregulated in LID rats compared with non-LID controls. Our study provides further experimental evidence to support the direct correlation between abnormal striatal synaptic plasticity and the induction of LID, and it suggests that the dysfunction of the retrograde endocannabinoid signaling system, a lipid-based neuromodulatory system, and the relevant alteration of the related lipid metabolism processes might play an important role in the pathogenesis of LID. Synapse 68:332-343, 2014. © 2014 Wiley Periodicals, Inc. [PUBLICATION ABSTRACT]
ABSTRACT l‐3,4‐Dihydroxyphenylalanine (l‐DOPA) is the most widely used drug for the treatment of Parkinson's disease. Unfortunately, chronic administration of this dopamine precursor causes l‐DOPA‐induced dyskinesia (LID), which is a debilitating complication whose pathogenesis remains unclear. In this study, we compared gene expression profiles of sensorimotor striatum tissue derived from LID and non‐LID 6‐hydroxydopamine‐lesioned rats treated with l‐DOPA. Total RNA was amplified, transcribed and hybridized to Agilent Whole Rat Genome Oligo Microarray chips. Quantitative real‐time reverse transcription PCR was conducted to validate the microarray data. We detected 382 upregulated genes and 115 downregulated genes in LID rats when compared with that of non‐LID subjects with Significance Analysis for Microarrays software. The differentially expressed genes were mainly associated with postsynaptic cell membranes, synapses, and neurotransmitter receptors. Gene Set Analysis (GSA) software was used to identify differentially expressed gene ontology (GO) categories and pathways. The GSA found that “long‐term depression” and “retrograde endocannabinoid signaling” pathways were downregulated, whereas a set of lipid metabolism‐related GO categories and pathways were upregulated in LID rats compared with non‐LID controls. Our study provides further experimental evidence to support the direct correlation between abnormal striatal synaptic plasticity and the induction of LID, and it suggests that the dysfunction of the retrograde endocannabinoid signaling system, a lipid‐based neuromodulatory system, and the relevant alteration of the related lipid metabolism processes might play an important role in the pathogenesis of LID. Synapse 68:332–343, 2014. © 2014 Wiley Periodicals, Inc. What's new? The authors compared gene expression profiles of sensorimotor striatum tissue derived from rats with L‐3,4‐dihydroxyphenylalanine (L‐DOPA)‐induced dyskinesia (LID) and non‐LID 6‐hydroxydopamine‐lesioned rats treated with L‐DOPA. The results showed that abnormal striatal synaptic plasticity and the dysfunction of striatal retrograde endocannabinoid signaling might play an important role in the pathogenesis of LID.
Author Liu, Jian
Zhang, Qiao Jun
Wang, Tao
Wang, Hui Sheng
Wang, Yong
Author_xml – sequence: 1
  givenname: Yong
  surname: Wang
  fullname: Wang, Yong
  organization: Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, 710061, Xi'an, China
– sequence: 2
  givenname: Qiao Jun
  surname: Zhang
  fullname: Zhang, Qiao Jun
  organization: Department of Rehabilitation Medicine, The Second Hospital, Xi'an Jiaotong University, 710004, Xi'an, China
– sequence: 3
  givenname: Hui Sheng
  surname: Wang
  fullname: Wang, Hui Sheng
  organization: Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, 710061, Xi'an, China
– sequence: 4
  givenname: Tao
  surname: Wang
  fullname: Wang, Tao
  organization: Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, 710061, Xi'an, China
– sequence: 5
  givenname: Jian
  surname: Liu
  fullname: Liu, Jian
  email: liujian@mail.xjtu.edu.cn
  organization: Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, 710061, Xi'an, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24599755$$D View this record in MEDLINE/PubMed
BookMark eNqNksFu1DAQhi1URLeFAy-ALHGhh7R24iTOsVroFlS1SBQQXKxZZ7J1m7WD7VWbZ-Il8bK7HCqQOFkeff9neWYOyJ51Fgl5ydkxZyw_CaM9znkt2BMy4ayRWV401R6ZMCnrTIi62icHIdwyxgrOxDOyn4uyaeqynJCfM7Ruidm9aZEujfYOvIeRgoV-DCbQVLfRdAYDBTq4uL5BT73rkXbO0xC9gbiuYPRu4SF50LZOg7UwN9aZlgazSDpjF9RYGm-QDhBv3AItrl9wHcWHAb1ZJncS9dnbq4-nmbHtSmNL2zHcmTUJz8nTDvqAL7bnIfl89u56ep5dXM3eT08vMi0axjKpNet0JbXEvE1fljgXOXQgsSy7RudNo5tOcy3bUjBkNZtL3rUaBCtEoYEVh-TNxjt492OFIaqlCRr7Hiy6VVA85fLU76r4D7Qoq7ziVZnQ14_QW7fyqS8bilcF5yJRr7bUar7EVg2pLeBHtZtYAk42QBpVCB47pU2EaJyNHkyvOFPrnVBpJ9TvnUiJo0eJnfRv7NZ-b3oc_w2qT98ud4lskzAh4sOfBPg7VdVFXaqvlzP1fVqxD1_ktTovfgHB99iU
CODEN SYNAET
CitedBy_id crossref_primary_10_1016_j_nbd_2016_06_013
crossref_primary_10_1016_j_bbr_2018_03_020
crossref_primary_10_1007_s00702_020_02240_9
crossref_primary_10_1016_j_baga_2015_09_001
crossref_primary_10_1016_j_nbd_2014_10_017
crossref_primary_10_1007_s12640_019_00109_8
crossref_primary_10_1016_j_brainres_2020_147266
crossref_primary_10_1007_s12035_017_0775_0
crossref_primary_10_1002_syn_21941
crossref_primary_10_3390_ijms252011168
crossref_primary_10_3390_cells11040691
crossref_primary_10_1111_gbb_12690
crossref_primary_10_3390_ijms21082743
Cites_doi 10.1038/nn1040
10.1093/brain/awq342
10.1016/j.neuropharm.2011.05.034
10.1073/pnas.101119098
10.1038/oby.2012.38
10.1046/j.0953-816x.2001.01800.x
10.1038/75556
10.1038/nn832
10.1214/07-AOAS101
10.1016/j.neures.2011.12.006
10.1007/s00228-008-0532-4
10.1016/S1474-4422(10)70218-0
10.1523/JNEUROSCI.21-22-09068.2001
10.1073/pnas.091062498
10.1016/j.expneurol.2008.03.009
10.1016/S0006-3223(99)00092-X
10.1016/S1474-4422(06)70521-X
10.1371/journal.pone.0076874
10.1152/jn.2001.85.1.468
10.1054/plef.2001.0359
10.1016/j.expneurol.2007.07.021
10.1016/S0306-4522(97)00436-3
10.1016/j.nurx.2006.05.008
10.1038/nn.2517
10.1111/j.1471-4159.2012.07813.x
10.1016/j.neuropharm.2013.10.036
10.1152/physrev.00019.2008
10.1016/j.brainres.2010.02.008
10.1046/j.1460-9568.2003.02896.x
10.1007/s00702-003-0033-7
10.1016/S0301-0082(99)00067-2
10.1016/j.neuint.2005.12.002
10.1006/nbdi.2002.0499
10.1016/j.neuron.2012.09.020
10.1038/nrn1763
10.1016/j.tins.2007.02.005
10.1038/35086062
10.1002/mds.22019
10.1038/nprot.2008.211
10.1016/j.nbd.2004.07.005
10.1096/fasebj.14.10.1432
10.1038/nrn2471
10.1371/journal.pone.0028439
10.1186/1475-2859-6-4
10.1371/journal.pone.0022983
10.1093/nar/28.1.27
10.1016/j.neuropharm.2009.01.019
10.1016/j.clinph.2008.03.017
10.1038/1801200a0
10.1006/exnr.2002.7891
10.1523/JNEUROSCI.0945-05.2005
10.1111/j.1471-4159.2009.06556.x
ContentType Journal Article
Copyright 2014 Wiley Periodicals, Inc.
Copyright_xml – notice: 2014 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TK
K9.
7X8
DOI 10.1002/syn.21740
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Neurosciences Abstracts
MEDLINE
CrossRef
ProQuest Health & Medical Complete (Alumni)

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1098-2396
EndPage 343
ExternalDocumentID 3332608111
24599755
10_1002_syn_21740
SYN21740
ark_67375_WNG_ZC60JV8T_H
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities, China
– fundername: National Natural Science Foundation of China
  funderid: 81100837
– fundername: China Postdoctoral Science Foundation
  funderid: 2013M532059
GroupedDBID ---
-~X
.3N
.GA
.GJ
.Y3
05W
10A
123
1CY
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AETEA
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GAKWD
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SV3
TEORI
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XV2
YNT
ZGI
ZXP
ZZTAW
~IA
~WT
0R~
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RWD
RWI
SUPJJ
WRC
WUP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TK
K9.
7X8
ID FETCH-LOGICAL-c4900-8cc0fc68c8e2d0038eb42afa8e55f9c299c9fc1c8d540e070b81fdca40343ca03
IEDL.DBID DR2
ISSN 0887-4476
1098-2396
IngestDate Fri Jul 11 09:43:26 EDT 2025
Thu Jul 10 23:50:42 EDT 2025
Fri Jul 25 12:22:40 EDT 2025
Wed Feb 19 01:57:56 EST 2025
Wed Oct 01 02:06:56 EDT 2025
Thu Apr 24 23:13:08 EDT 2025
Wed Jan 22 16:53:42 EST 2025
Sun Sep 21 06:15:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords l-DOPA
endocannabinoid
microarray
Parkinson's disease
dyskinesia
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2014 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4900-8cc0fc68c8e2d0038eb42afa8e55f9c299c9fc1c8d540e070b81fdca40343ca03
Notes Fundamental Research Funds for the Central Universities, China
istex:7EBB9F634BCB43428F18B2EAD2F1044C2C0A34F7
ark:/67375/WNG-ZC60JV8T-H
National Natural Science Foundation of China - No. 81100837
China Postdoctoral Science Foundation - No. 2013M532059
ArticleID:SYN21740
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 24599755
PQID 1535163114
PQPubID 1046379
PageCount 12
ParticipantIDs proquest_miscellaneous_1540221763
proquest_miscellaneous_1535626165
proquest_journals_1535163114
pubmed_primary_24599755
crossref_citationtrail_10_1002_syn_21740
crossref_primary_10_1002_syn_21740
wiley_primary_10_1002_syn_21740_SYN21740
istex_primary_ark_67375_WNG_ZC60JV8T_H
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2014
PublicationDateYYYYMMDD 2014-08-01
PublicationDate_xml – month: 08
  year: 2014
  text: August 2014
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Synapse (New York, N.Y.)
PublicationTitleAlternate Synapse
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Berger A, Crozier G, Bisogno T, Cavaliere P, Innis S, Di Marzo V. 2001. Anandamide and diet: inclusion of dietary arachidonate and docosahexaenoate leads to increased brain levels of the corresponding N-acylethanolamines in piglets. Proc Natl Acad Sci USA 98:6402-6406.
Papa SM. 2008. The cannabinoid system in Parkinson's disease: Multiple targets to motor effects. Exp Neurol 211:334-338.
Kumar R, Riddle LR, Griffin SA, Chu W, Vangveravong S, Neisewander J, Mach RH, Luedtke RR. 2009. Evaluation of D2 and D3 dopamine receptor selective compounds on l-DOPA-dependent abnormal involuntary movements in rats. Neuropharmacology 56:956-969.
Bezard E, Brotchie JM, Gross CE. 2001. Pathophysiology of levodopa-induced dyskinesia: Potential for new therapies. Nat Rev Neurosci 2:577-588.
Alvheim AR, Malde MK, Osei-Hyiaman D, Lin YH, Pawlosky RJ, Madsen L, Kristiansen K, Frøyland L, Hibbeln JR. 2012. Dietary linoleic acid elevates endogenous 2-AG and anandamide and induces obesity. Obesity (Silver Spring) 20:1984-1994.
Fenton WS, Hibbeln J, Knable M. 2000. Essential fatty acids, lipid membrane abnormalities, and the diagnosis and treatment of schizophrenia. Biol Psychiatry 47:8-21.
Kozak KR, Marnett LJ. 2002. Oxidative metabolism of endocannabinoids. Prostaglandins Leukot Essent Fatty Acids 66:211-220.
Wang Y, Zhang Q, Liu J, Ali U, Gui Z, Hui Y, Chen L, Wang T. 2010. Changes in firing rate and pattern of GABAergic neurons in subregions of the substantia nigra pars reticulata in rat models of Parkinson's disease. Brain Res 1324:54-63.
Blandini F, Nappi G, Tassorelli C, Martignoni E. 2000. Functional changes of the basal ganglia circuitry in Parkinson's disease. Prog Neurobiol 62:63-88.
Gerdeman GL, Ronesi J, Lovinger DM. 2002. Postsynaptic endocannabinoid release is critical to long-term depression in the striatum. Nat Neurosci 5:446-451.
Kim J, Alger BE. 2010. Reduction in endocannabinoid tone is a homeostatic mechanism for specific inhibitory synapses. Nat Neurosci 13:592-600.
Deumens R, Blokland A, Prickaerts J. 2002. Modeling Parkinson's disease in rats: An evaluation of 6-OHDA lesions of the nigrostriatal pathway. Exp Neurol 175:303-317.
Picconi B, Centonze D, Håkansson K, Bernardi G, Greengard P, Fisone G, Cenci MA, Calabresi P. 2003. Loss of bidirectional striatal synaptic plasticity in l-DOPA-induced dyskinesia. Nat Neurosci 6:501-506.
Castillo PE, Younts TJ, Chávez AE, Hashimotodani Y. 2012. Endocannabinoid signaling and synaptic function. Neuron 76:70-81.
Lindgren HS, Andersson DR, Lagerkvist S, Nissbrandt H, Cenci MA. 2010. l-DOPA-induced dopamine efflux in the striatum and the substantia nigra in a rat model of Parkinson's disease: Temporal and quantitative relationship to the expression of dyskinesia. J Neurochem 112:1465-1476.
Bonaventura J, Rico AJ, Moreno E, Sierra S, Sánchez M, Luquin N, Farré D, Müller CE, Martínez-Pinilla E, Cortés A, Mallol J, Armentero MT, Pinna A, Canela EI, Lluís C, McCormick PJ, Lanciego JL, Casadó V, Franco R. 2013. l-DOPA-treatment in primates disrupts the expression of A2A adenosine-CB1 cannabinoid-D2 dopamine receptor heteromers in the caudate nucleus. Neuropharmacology 79C:90-100.
Jaluria P, Konstantopoulos K, Betenbaugh M, Shiloach J. 2007. A perspective on microarrays: current applications, pitfalls, and potential uses. Microb Cell Fact 6:4.
Orłowski A, Grzybek M, Bunker A, Pasenkiewicz-Gierula M, Vattulainen I, Männistö PT, Róg T. 2012. Strong preferences of dopamine and l-DOPA towards lipid head group: Importance of lipid composition and implication for neurotransmitter metabolism. J Neurochem 122:681-690.
Tsou K, Brown S, Sañudo-Peña MC, Mackie K, Walker JM. 1998. Immunohistochemical distribution of cannabinoid CB1 receptors in the rat central nervous system. Neuroscience 83:393-411.
Wang S, Guo X, Wu XM, Lammi MJ. 2012. Genome-wide gene expression analysis suggests an important role of suppressed immunity in pathogenesis of Kashin-Beck disease. PLoS One 7:e28439.
Breit S, Bouali-Benazzouz R, Benabid A, Benazzouz A. 2001. Unilateral lesion of the nigrostriatal pathway induces an increase of neuronal activity of the pedunculopontine nucleus, which is reversed by the lesion of the subthalamic nucleus in the rat. Eur J Neurosci 14:1833-1842.
Kanehisa M, Goto S. 2000. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27-30.
Picconi B, Bagetta V, Ghiglieri V, Paillè V, Di Filippo M, Pendolino V, Tozzi A, Giampà C, Fusco FR, Sgobio C, Calabresi P. 2011. Inhibition of phosphodiesterases rescues striatal long-term depression and reduces levodopa-induced dyskinesia. Brain 134 (Part 2):375-387.
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G. 2000. Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25-29.
Jenner P. 2008. Molecular mechanisms of l-DOPA-induced dyskinesia. Nat Rev Neurosci 9:665-677.
Tusher VG, Tibshirani R, Chu G. 2001. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98:5116-5121.
Winkler C, Kirik D, Björklund A, Cenci MA. 2002. l-DOPA-induced dyskinesia in the intrastriatal 6-hydroxydopamine model of parkinson's disease: Relation to motor and cellular parameters of nigrostriatal function. Neurobiol Dis 10:165-186.
Carlsson A, Lindqvist M, Magnusson T. 1957. 3,4-Dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists. Nature 180:1200.
Efron B, Tibshirani R. 2007. On testing the significance of sets of genes. Ann Appl Stat 1:107-129.
Zhang F, Guo X, Wang W, Yan H, Li C. 2011. Genome-wide gene expression analysis suggests an important role of hypoxia in the pathogenesis of endemic osteochondropathy Kashin-Beck disease. PLoS One 6:e22983.
Chaves-Kirsten GP, Mazucanti CH, Real CC, Souza BM, Britto LR, Torrão AS. 2013. Temporal changes of CB1 cannabinoid receptor in the basal ganglia as a possible structure-specific plasticity process in 6-OHDA lesioned rats. PLoS One 8:e76874.
Gerdeman G, Lovinger DM. 2001. CB1 cannabinoid receptor inhibits synaptic release of glutamate in rat dorsolateral striatum. J Neurophysiol 85:468-471.
Olanow CW, Obeso JA, Stocchi F. 2006. Continuous dopamine-receptor treatment of Parkinson's disease: Scientific rationale and clinical implications. Lancet Neurol 5:677-687.
Miller RM, Federoff HJ. 2006. Microarrays in Parkinson's disease: A systematic approach. NeuroRx 3:319-326.
Hurley MJ, Mash DC, Jenner P. 2003. Expression of cannabinoid CB1 receptor mRNA in basal ganglia of normal and parkinsonian human brain. J Neural Transm 110:1279-1288.
Huang dW, Sherman BT, Lempicki RA. 2009. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44-57.
Fahn S. 2000. The spectrum of levodopa-induced dyskinesias. Ann Neurol 47(Suppl 1):S2-S9; discussion S9-S11.
Calabresi P, Di Filippo M, Ghiglieri V, Picconi B. 2008. Molecular mechanisms underlying levodopa-induced dyskinesia. Mov Disord 23 (Suppl 3):S570-S579.
Paxinos G, Watson C. 2005. The rat brain in stereotaxic coordinates. San Diego: Elsevier Academic Press.
Morgese MG, Cassano T, Cuomo V, Giuffrida A. 2007. Anti-dyskinetic effects of cannabinoids in a rat model of Parkinson's disease: Role of CB(1) and TRPV1 receptors. Exp Neurol 208:110-119.
Julien C, Berthiaume L, Hadj-Tahar A, Rajput AH, Bédard PJ, Di Paolo T, Julien P, Calon F. 2006. Postmortem brain fatty acid profile of levodopa-treated Parkinson disease patients and parkinsonian monkeys. Neurochem Int 48:404-414.
Martinez A, Macheda T, Morgese MG, Trabace L, Giuffrida A. 2012. The cannabinoid agonist WIN55212-2 decreases l-DOPA-induced PKA activation and dyskinetic behavior in 6-OHDA-treated rats. Neurosci Res 72:236-242.
Massey PV, Bashir ZI. 2007. Long-term depression: Multiple forms and implications for brain function. Trends Neurosci 30:176-184.
Calabresi P, Di Filippo M, Ghiglieri V, Tambasco N, Picconi B. 2010. Levodopa-induced dyskinesias in patients with Parkinson's disease: Filling the bench-to-bedside gap. Lancet Neurol 9:1106-1117.
Sidhpura N, Parsons LH. 2011. Endocannabinoid-mediated synaptic plasticity and addiction-related behavior. Neuropharmacology 61:1070-1087.
Galvan A, Wichmann T. 2008. Pathophysiology of parkinsonism. Clin Neurophysiol 119:1459-1474.
Maejima T, Oka S, Hashimotodani Y, Ohno-Shosaku T, Aiba A, Wu D, Waku K, Sugiura T, Kano M. 2005. Synaptically driven endocannabinoid release requires Ca2+-assisted metabotropic glutamate receptor subtype 1 to phospholipase Cbeta4 signaling cascade in the cerebellum. J Neurosci 25:6826-6835.
Di Marzo V, Hill MP, Bisogno T, Crossman AR, Brotchie JM. 2000. Enhanced levels of endogenous cannabinoids in the globus pallidus are associated with a reduction in movement in an animal model of Parkinson's disease. FASEB J 14:1432-1438.
Kano M, Ohno-Shosaku T, Hashimotodani Y, Uchigashima M, Watanabe M. 2009. Endocannabinoid-mediated control of synaptic transmission. Physiol Rev 89:309-380.
Konradi C, Westin JE, Carta M, Eaton ME, Kuter K, Dekundy A, Lundblad M, Cenci MA. 2004. Transcriptome analysis in a rat model of l-DOPA-induced dyskinesia. Neurobiol Dis 17:219-236.
Adams F, Boschmann M, Lobsien E, Kupsch A, Lipp A, Franke G, Leisse MC, Janke J, Gottschalk S, Spranger J, Jordan J. 2008. Influences of levodopa on adipose tissue and skeletal muscle metabolism in patients with idiopathic Parkinson's disease. Eur J Clin Pharmacol 64:863-870.
Andreeva SG, Dikkes P, Epstein PM, Rosenberg PA. 2001. Expression of cGMP-specific phosphodiesterase 9A mRNA in the rat brain. J Neurosci 21:9068-9076.
Ferrer B, Asbrock N, Kathuria S, Piomelli D, Giuffrida A. 2003. Effects of levodopa on endocannabinoid levels in rat basal ganglia: Implications for the treatment of levodopa-induced dyskinesias. Eur J Neurosci 18:1607-1614.
Conn PJ, Battaglia G, Marino MJ, Nicoletti F. 2005. Metabotropic glutama
2009; 89
2012; 122
2010; 13
2000; 47
2002; 10
2011; 61
2008; 9
2003; 18
2000; 28(1)
1998; 83
2007; 30
2013; 8
2001; 85
2003; 110
2005; 25
2009; 56
2012; 72
2013; 79C
2000; 14
2003; 6
2010; 112
2000; 62
2008; 119
2008; 23
2007; 6
2008; 64
2007; 1
2001; 14
2012; 20
2010; 9
2001; 98
2010; 1324
2000; 25
2002; 175
2002; 5
2006; 5
2006; 3
2005
2007; 208
2011; 6
2012; 76
2011; 134
2001; 21
2004; 17
2006; 48
2002; 66
2005; 6
2001; 2
1957; 180
2009; 4
2008; 211
2012; 7
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
Paxinos G (e_1_2_6_46_1) 2005
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_41_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
M Kanehisa (e_1_2_6_31_1) 2000; 28
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
Marzo V (e_1_2_6_18_1) 2000; 14
e_1_2_6_50_1
Fahn S (e_1_2_6_20_1) 2000; 47
Bonaventura J (e_1_2_6_9_1) 2013; 79
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
References_xml – reference: Gerdeman GL, Ronesi J, Lovinger DM. 2002. Postsynaptic endocannabinoid release is critical to long-term depression in the striatum. Nat Neurosci 5:446-451.
– reference: Fahn S. 2000. The spectrum of levodopa-induced dyskinesias. Ann Neurol 47(Suppl 1):S2-S9; discussion S9-S11.
– reference: Huang dW, Sherman BT, Lempicki RA. 2009. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44-57.
– reference: Efron B, Tibshirani R. 2007. On testing the significance of sets of genes. Ann Appl Stat 1:107-129.
– reference: Kanehisa M, Goto S. 2000. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27-30.
– reference: Sidhpura N, Parsons LH. 2011. Endocannabinoid-mediated synaptic plasticity and addiction-related behavior. Neuropharmacology 61:1070-1087.
– reference: Winkler C, Kirik D, Björklund A, Cenci MA. 2002. l-DOPA-induced dyskinesia in the intrastriatal 6-hydroxydopamine model of parkinson's disease: Relation to motor and cellular parameters of nigrostriatal function. Neurobiol Dis 10:165-186.
– reference: Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G. 2000. Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25-29.
– reference: Orłowski A, Grzybek M, Bunker A, Pasenkiewicz-Gierula M, Vattulainen I, Männistö PT, Róg T. 2012. Strong preferences of dopamine and l-DOPA towards lipid head group: Importance of lipid composition and implication for neurotransmitter metabolism. J Neurochem 122:681-690.
– reference: Kumar R, Riddle LR, Griffin SA, Chu W, Vangveravong S, Neisewander J, Mach RH, Luedtke RR. 2009. Evaluation of D2 and D3 dopamine receptor selective compounds on l-DOPA-dependent abnormal involuntary movements in rats. Neuropharmacology 56:956-969.
– reference: Picconi B, Bagetta V, Ghiglieri V, Paillè V, Di Filippo M, Pendolino V, Tozzi A, Giampà C, Fusco FR, Sgobio C, Calabresi P. 2011. Inhibition of phosphodiesterases rescues striatal long-term depression and reduces levodopa-induced dyskinesia. Brain 134 (Part 2):375-387.
– reference: Tsou K, Brown S, Sañudo-Peña MC, Mackie K, Walker JM. 1998. Immunohistochemical distribution of cannabinoid CB1 receptors in the rat central nervous system. Neuroscience 83:393-411.
– reference: Paxinos G, Watson C. 2005. The rat brain in stereotaxic coordinates. San Diego: Elsevier Academic Press.
– reference: Berger A, Crozier G, Bisogno T, Cavaliere P, Innis S, Di Marzo V. 2001. Anandamide and diet: inclusion of dietary arachidonate and docosahexaenoate leads to increased brain levels of the corresponding N-acylethanolamines in piglets. Proc Natl Acad Sci USA 98:6402-6406.
– reference: Zhang F, Guo X, Wang W, Yan H, Li C. 2011. Genome-wide gene expression analysis suggests an important role of hypoxia in the pathogenesis of endemic osteochondropathy Kashin-Beck disease. PLoS One 6:e22983.
– reference: Lindgren HS, Andersson DR, Lagerkvist S, Nissbrandt H, Cenci MA. 2010. l-DOPA-induced dopamine efflux in the striatum and the substantia nigra in a rat model of Parkinson's disease: Temporal and quantitative relationship to the expression of dyskinesia. J Neurochem 112:1465-1476.
– reference: Jenner P. 2008. Molecular mechanisms of l-DOPA-induced dyskinesia. Nat Rev Neurosci 9:665-677.
– reference: Calabresi P, Di Filippo M, Ghiglieri V, Picconi B. 2008. Molecular mechanisms underlying levodopa-induced dyskinesia. Mov Disord 23 (Suppl 3):S570-S579.
– reference: Castillo PE, Younts TJ, Chávez AE, Hashimotodani Y. 2012. Endocannabinoid signaling and synaptic function. Neuron 76:70-81.
– reference: Kano M, Ohno-Shosaku T, Hashimotodani Y, Uchigashima M, Watanabe M. 2009. Endocannabinoid-mediated control of synaptic transmission. Physiol Rev 89:309-380.
– reference: Adams F, Boschmann M, Lobsien E, Kupsch A, Lipp A, Franke G, Leisse MC, Janke J, Gottschalk S, Spranger J, Jordan J. 2008. Influences of levodopa on adipose tissue and skeletal muscle metabolism in patients with idiopathic Parkinson's disease. Eur J Clin Pharmacol 64:863-870.
– reference: Jaluria P, Konstantopoulos K, Betenbaugh M, Shiloach J. 2007. A perspective on microarrays: current applications, pitfalls, and potential uses. Microb Cell Fact 6:4.
– reference: Olanow CW, Obeso JA, Stocchi F. 2006. Continuous dopamine-receptor treatment of Parkinson's disease: Scientific rationale and clinical implications. Lancet Neurol 5:677-687.
– reference: Calabresi P, Di Filippo M, Ghiglieri V, Tambasco N, Picconi B. 2010. Levodopa-induced dyskinesias in patients with Parkinson's disease: Filling the bench-to-bedside gap. Lancet Neurol 9:1106-1117.
– reference: Chaves-Kirsten GP, Mazucanti CH, Real CC, Souza BM, Britto LR, Torrão AS. 2013. Temporal changes of CB1 cannabinoid receptor in the basal ganglia as a possible structure-specific plasticity process in 6-OHDA lesioned rats. PLoS One 8:e76874.
– reference: Di Marzo V, Hill MP, Bisogno T, Crossman AR, Brotchie JM. 2000. Enhanced levels of endogenous cannabinoids in the globus pallidus are associated with a reduction in movement in an animal model of Parkinson's disease. FASEB J 14:1432-1438.
– reference: Papa SM. 2008. The cannabinoid system in Parkinson's disease: Multiple targets to motor effects. Exp Neurol 211:334-338.
– reference: Wang S, Guo X, Wu XM, Lammi MJ. 2012. Genome-wide gene expression analysis suggests an important role of suppressed immunity in pathogenesis of Kashin-Beck disease. PLoS One 7:e28439.
– reference: Alvheim AR, Malde MK, Osei-Hyiaman D, Lin YH, Pawlosky RJ, Madsen L, Kristiansen K, Frøyland L, Hibbeln JR. 2012. Dietary linoleic acid elevates endogenous 2-AG and anandamide and induces obesity. Obesity (Silver Spring) 20:1984-1994.
– reference: Wang Y, Zhang Q, Liu J, Ali U, Gui Z, Hui Y, Chen L, Wang T. 2010. Changes in firing rate and pattern of GABAergic neurons in subregions of the substantia nigra pars reticulata in rat models of Parkinson's disease. Brain Res 1324:54-63.
– reference: Miller RM, Federoff HJ. 2006. Microarrays in Parkinson's disease: A systematic approach. NeuroRx 3:319-326.
– reference: Kim J, Alger BE. 2010. Reduction in endocannabinoid tone is a homeostatic mechanism for specific inhibitory synapses. Nat Neurosci 13:592-600.
– reference: Carlsson A, Lindqvist M, Magnusson T. 1957. 3,4-Dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists. Nature 180:1200.
– reference: Ferrer B, Asbrock N, Kathuria S, Piomelli D, Giuffrida A. 2003. Effects of levodopa on endocannabinoid levels in rat basal ganglia: Implications for the treatment of levodopa-induced dyskinesias. Eur J Neurosci 18:1607-1614.
– reference: Morgese MG, Cassano T, Cuomo V, Giuffrida A. 2007. Anti-dyskinetic effects of cannabinoids in a rat model of Parkinson's disease: Role of CB(1) and TRPV1 receptors. Exp Neurol 208:110-119.
– reference: Conn PJ, Battaglia G, Marino MJ, Nicoletti F. 2005. Metabotropic glutamate receptors in the basal ganglia motor circuit. Nat Rev Neurosci 6:787-798.
– reference: Picconi B, Centonze D, Håkansson K, Bernardi G, Greengard P, Fisone G, Cenci MA, Calabresi P. 2003. Loss of bidirectional striatal synaptic plasticity in l-DOPA-induced dyskinesia. Nat Neurosci 6:501-506.
– reference: Bonaventura J, Rico AJ, Moreno E, Sierra S, Sánchez M, Luquin N, Farré D, Müller CE, Martínez-Pinilla E, Cortés A, Mallol J, Armentero MT, Pinna A, Canela EI, Lluís C, McCormick PJ, Lanciego JL, Casadó V, Franco R. 2013. l-DOPA-treatment in primates disrupts the expression of A2A adenosine-CB1 cannabinoid-D2 dopamine receptor heteromers in the caudate nucleus. Neuropharmacology 79C:90-100.
– reference: Blandini F, Nappi G, Tassorelli C, Martignoni E. 2000. Functional changes of the basal ganglia circuitry in Parkinson's disease. Prog Neurobiol 62:63-88.
– reference: Julien C, Berthiaume L, Hadj-Tahar A, Rajput AH, Bédard PJ, Di Paolo T, Julien P, Calon F. 2006. Postmortem brain fatty acid profile of levodopa-treated Parkinson disease patients and parkinsonian monkeys. Neurochem Int 48:404-414.
– reference: Breit S, Bouali-Benazzouz R, Benabid A, Benazzouz A. 2001. Unilateral lesion of the nigrostriatal pathway induces an increase of neuronal activity of the pedunculopontine nucleus, which is reversed by the lesion of the subthalamic nucleus in the rat. Eur J Neurosci 14:1833-1842.
– reference: Tusher VG, Tibshirani R, Chu G. 2001. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98:5116-5121.
– reference: Massey PV, Bashir ZI. 2007. Long-term depression: Multiple forms and implications for brain function. Trends Neurosci 30:176-184.
– reference: Andreeva SG, Dikkes P, Epstein PM, Rosenberg PA. 2001. Expression of cGMP-specific phosphodiesterase 9A mRNA in the rat brain. J Neurosci 21:9068-9076.
– reference: Martinez A, Macheda T, Morgese MG, Trabace L, Giuffrida A. 2012. The cannabinoid agonist WIN55212-2 decreases l-DOPA-induced PKA activation and dyskinetic behavior in 6-OHDA-treated rats. Neurosci Res 72:236-242.
– reference: Bezard E, Brotchie JM, Gross CE. 2001. Pathophysiology of levodopa-induced dyskinesia: Potential for new therapies. Nat Rev Neurosci 2:577-588.
– reference: Kozak KR, Marnett LJ. 2002. Oxidative metabolism of endocannabinoids. Prostaglandins Leukot Essent Fatty Acids 66:211-220.
– reference: Maejima T, Oka S, Hashimotodani Y, Ohno-Shosaku T, Aiba A, Wu D, Waku K, Sugiura T, Kano M. 2005. Synaptically driven endocannabinoid release requires Ca2+-assisted metabotropic glutamate receptor subtype 1 to phospholipase Cbeta4 signaling cascade in the cerebellum. J Neurosci 25:6826-6835.
– reference: Hurley MJ, Mash DC, Jenner P. 2003. Expression of cannabinoid CB1 receptor mRNA in basal ganglia of normal and parkinsonian human brain. J Neural Transm 110:1279-1288.
– reference: Gerdeman G, Lovinger DM. 2001. CB1 cannabinoid receptor inhibits synaptic release of glutamate in rat dorsolateral striatum. J Neurophysiol 85:468-471.
– reference: Konradi C, Westin JE, Carta M, Eaton ME, Kuter K, Dekundy A, Lundblad M, Cenci MA. 2004. Transcriptome analysis in a rat model of l-DOPA-induced dyskinesia. Neurobiol Dis 17:219-236.
– reference: Fenton WS, Hibbeln J, Knable M. 2000. Essential fatty acids, lipid membrane abnormalities, and the diagnosis and treatment of schizophrenia. Biol Psychiatry 47:8-21.
– reference: Galvan A, Wichmann T. 2008. Pathophysiology of parkinsonism. Clin Neurophysiol 119:1459-1474.
– reference: Deumens R, Blokland A, Prickaerts J. 2002. Modeling Parkinson's disease in rats: An evaluation of 6-OHDA lesions of the nigrostriatal pathway. Exp Neurol 175:303-317.
– volume: 5
  start-page: 677
  year: 2006
  end-page: 687
  article-title: Continuous dopamine‐receptor treatment of Parkinson's disease: Scientific rationale and clinical implications
  publication-title: Lancet Neurol
– volume: 1324
  start-page: 54
  year: 2010
  end-page: 63
  article-title: Changes in firing rate and pattern of GABAergic neurons in subregions of the substantia nigra pars reticulata in rat models of Parkinson's disease
  publication-title: Brain Res
– year: 2005
– volume: 61
  start-page: 1070
  year: 2011
  end-page: 1087
  article-title: Endocannabinoid‐mediated synaptic plasticity and addiction‐related behavior
  publication-title: Neuropharmacology
– volume: 180
  start-page: 1200
  year: 1957
  article-title: 3,4‐Dihydroxyphenylalanine and 5‐hydroxytryptophan as reserpine antagonists
  publication-title: Nature
– volume: 66
  start-page: 211
  year: 2002
  end-page: 220
  article-title: Oxidative metabolism of endocannabinoids
  publication-title: Prostaglandins Leukot Essent Fatty Acids
– volume: 14
  start-page: 1432
  year: 2000
  end-page: 1438
  article-title: Enhanced levels of endogenous cannabinoids in the globus pallidus are associated with a reduction in movement in an animal model of Parkinson's disease
  publication-title: FASEB J
– volume: 6
  start-page: e22983
  year: 2011
  article-title: Genome‐wide gene expression analysis suggests an important role of hypoxia in the pathogenesis of endemic osteochondropathy Kashin‐Beck disease
  publication-title: PLoS One
– volume: 6
  start-page: 787
  year: 2005
  end-page: 798
  article-title: Metabotropic glutamate receptors in the basal ganglia motor circuit
  publication-title: Nat Rev Neurosci
– volume: 9
  start-page: 665
  year: 2008
  end-page: 677
  article-title: Molecular mechanisms of ‐DOPA‐induced dyskinesia
  publication-title: Nat Rev Neurosci
– volume: 122
  start-page: 681
  year: 2012
  end-page: 690
  article-title: Strong preferences of dopamine and ‐DOPA towards lipid head group: Importance of lipid composition and implication for neurotransmitter metabolism
  publication-title: J Neurochem
– volume: 85
  start-page: 468
  year: 2001
  end-page: 471
  article-title: CB1 cannabinoid receptor inhibits synaptic release of glutamate in rat dorsolateral striatum
  publication-title: J Neurophysiol
– volume: 79C
  start-page: 90
  year: 2013
  end-page: 100
  article-title: ‐DOPA‐treatment in primates disrupts the expression of A2A adenosine‐CB1 cannabinoid‐D2 dopamine receptor heteromers in the caudate nucleus
  publication-title: Neuropharmacology
– volume: 9
  start-page: 1106
  year: 2010
  end-page: 1117
  article-title: Levodopa‐induced dyskinesias in patients with Parkinson's disease: Filling the bench‐to‐bedside gap
  publication-title: Lancet Neurol
– volume: 25
  start-page: 25
  year: 2000
  end-page: 29
  article-title: Gene ontology: Tool for the unification of biology
  publication-title: The Gene Ontology Consortium. Nat Genet
– volume: 14
  start-page: 1833
  year: 2001
  end-page: 1842
  article-title: Unilateral lesion of the nigrostriatal pathway induces an increase of neuronal activity of the pedunculopontine nucleus, which is reversed by the lesion of the subthalamic nucleus in the rat
  publication-title: Eur J Neurosci
– volume: 47
  start-page: S2
  issue: Suppl 1
  year: 2000
  end-page: S9
  article-title: The spectrum of levodopa‐induced dyskinesias
  publication-title: Ann Neurol
– volume: 30
  start-page: 176
  year: 2007
  end-page: 184
  article-title: Long‐term depression: Multiple forms and implications for brain function
  publication-title: Trends Neurosci
– volume: 2
  start-page: 577
  year: 2001
  end-page: 588
  article-title: Pathophysiology of levodopa‐induced dyskinesia: Potential for new therapies
  publication-title: Nat Rev Neurosci
– volume: 62
  start-page: 63
  year: 2000
  end-page: 88
  article-title: Functional changes of the basal ganglia circuitry in Parkinson's disease
  publication-title: Prog Neurobiol
– volume: 110
  start-page: 1279
  year: 2003
  end-page: 1288
  article-title: Expression of cannabinoid CB1 receptor mRNA in basal ganglia of normal and parkinsonian human brain
  publication-title: J Neural Transm
– volume: 1
  start-page: 107
  year: 2007
  end-page: 129
  article-title: On testing the significance of sets of genes
  publication-title: Ann Appl Stat
– volume: 112
  start-page: 1465
  year: 2010
  end-page: 1476
  article-title: ‐DOPA‐induced dopamine efflux in the striatum and the substantia nigra in a rat model of Parkinson's disease: Temporal and quantitative relationship to the expression of dyskinesia
  publication-title: J Neurochem
– volume: 23
  start-page: S570
  issue: Suppl 3
  year: 2008
  end-page: S579
  article-title: Molecular mechanisms underlying levodopa‐induced dyskinesia
  publication-title: Mov Disord
– volume: 83
  start-page: 393
  year: 1998
  end-page: 411
  article-title: Immunohistochemical distribution of cannabinoid CB1 receptors in the rat central nervous system
  publication-title: Neuroscience
– volume: 98
  start-page: 6402
  year: 2001
  end-page: 6406
  article-title: Anandamide and diet: inclusion of dietary arachidonate and docosahexaenoate leads to increased brain levels of the corresponding ‐acylethanolamines in piglets
  publication-title: Proc Natl Acad Sci USA
– volume: 89
  start-page: 309
  year: 2009
  end-page: 380
  article-title: Endocannabinoid‐mediated control of synaptic transmission
  publication-title: Physiol Rev
– volume: 119
  start-page: 1459
  year: 2008
  end-page: 1474
  article-title: Pathophysiology of parkinsonism
  publication-title: Clin Neurophysiol
– volume: 175
  start-page: 303
  year: 2002
  end-page: 317
  article-title: Modeling Parkinson's disease in rats: An evaluation of 6‐OHDA lesions of the nigrostriatal pathway
  publication-title: Exp Neurol
– volume: 28(1)
  start-page: 27
  year: 2000
  end-page: 30
  article-title: KEGG: kyoto encyclopedia of genes and genomes
  publication-title: Nucleic Acids Res
– volume: 8
  start-page: e76874
  year: 2013
  article-title: Temporal changes of CB1 cannabinoid receptor in the basal ganglia as a possible structure‐specific plasticity process in 6‐OHDA lesioned rats
  publication-title: PLoS One
– volume: 48
  start-page: 404
  year: 2006
  end-page: 414
  article-title: Postmortem brain fatty acid profile of levodopa‐treated Parkinson disease patients and parkinsonian monkeys
  publication-title: Neurochem Int
– volume: 98
  start-page: 5116
  year: 2001
  end-page: 5121
  article-title: Significance analysis of microarrays applied to the ionizing radiation response
  publication-title: Proc Natl Acad Sci USA
– volume: 7
  start-page: e28439
  year: 2012
  article-title: Genome‐wide gene expression analysis suggests an important role of suppressed immunity in pathogenesis of Kashin‐Beck disease
  publication-title: PLoS One
– volume: 64
  start-page: 863
  year: 2008
  end-page: 870
  article-title: Influences of levodopa on adipose tissue and skeletal muscle metabolism in patients with idiopathic Parkinson's disease
  publication-title: Eur J Clin Pharmacol
– volume: 134
  start-page: 375
  issue: Part 2
  year: 2011
  end-page: 387
  article-title: Inhibition of phosphodiesterases rescues striatal long‐term depression and reduces levodopa‐induced dyskinesia
  publication-title: Brain
– volume: 10
  start-page: 165
  year: 2002
  end-page: 186
  article-title: ‐DOPA‐induced dyskinesia in the intrastriatal 6‐hydroxydopamine model of parkinson's disease: Relation to motor and cellular parameters of nigrostriatal function
  publication-title: Neurobiol Dis
– volume: 13
  start-page: 592
  year: 2010
  end-page: 600
  article-title: Reduction in endocannabinoid tone is a homeostatic mechanism for specific inhibitory synapses
  publication-title: Nat Neurosci
– volume: 4
  start-page: 44
  year: 2009
  end-page: 57
  article-title: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources
  publication-title: Nat Protoc
– volume: 56
  start-page: 956
  year: 2009
  end-page: 969
  article-title: Evaluation of D2 and D3 dopamine receptor selective compounds on ‐DOPA‐dependent abnormal involuntary movements in rats
  publication-title: Neuropharmacology
– volume: 47
  start-page: 8
  year: 2000
  end-page: 21
  article-title: Essential fatty acids, lipid membrane abnormalities, and the diagnosis and treatment of schizophrenia
  publication-title: Biol Psychiatry
– volume: 5
  start-page: 446
  year: 2002
  end-page: 451
  article-title: Postsynaptic endocannabinoid release is critical to long‐term depression in the striatum
  publication-title: Nat Neurosci
– volume: 25
  start-page: 6826
  year: 2005
  end-page: 6835
  article-title: Synaptically driven endocannabinoid release requires Ca ‐assisted metabotropic glutamate receptor subtype 1 to phospholipase Cbeta4 signaling cascade in the cerebellum
  publication-title: J Neurosci
– volume: 211
  start-page: 334
  year: 2008
  end-page: 338
  article-title: The cannabinoid system in Parkinson's disease: Multiple targets to motor effects
  publication-title: Exp Neurol
– volume: 6
  start-page: 501
  year: 2003
  end-page: 506
  article-title: Loss of bidirectional striatal synaptic plasticity in ‐DOPA‐induced dyskinesia
  publication-title: Nat Neurosci
– volume: 6
  start-page: 4
  year: 2007
  article-title: A perspective on microarrays: current applications, pitfalls, and potential uses
  publication-title: Microb Cell Fact
– volume: 3
  start-page: 319
  year: 2006
  end-page: 326
  article-title: Microarrays in Parkinson's disease: A systematic approach
  publication-title: NeuroRx
– volume: 17
  start-page: 219
  year: 2004
  end-page: 236
  article-title: Transcriptome analysis in a rat model of ‐DOPA‐induced dyskinesia
  publication-title: Neurobiol Dis
– volume: 21
  start-page: 9068
  year: 2001
  end-page: 9076
  article-title: Expression of cGMP‐specific phosphodiesterase 9A mRNA in the rat brain
  publication-title: J Neurosci
– volume: 76
  start-page: 70
  year: 2012
  end-page: 81
  article-title: Endocannabinoid signaling and synaptic function
  publication-title: Neuron
– volume: 18
  start-page: 1607
  year: 2003
  end-page: 1614
  article-title: Effects of levodopa on endocannabinoid levels in rat basal ganglia: Implications for the treatment of levodopa‐induced dyskinesias
  publication-title: Eur J Neurosci
– volume: 20
  start-page: 1984
  year: 2012
  end-page: 1994
  article-title: Dietary linoleic acid elevates endogenous 2‐AG and anandamide and induces obesity
  publication-title: Obesity (Silver Spring)
– volume: 72
  start-page: 236
  year: 2012
  end-page: 242
  article-title: The cannabinoid agonist WIN55212‐2 decreases ‐DOPA‐induced PKA activation and dyskinetic behavior in 6‐OHDA‐treated rats
  publication-title: Neurosci Res
– volume: 208
  start-page: 110
  year: 2007
  end-page: 119
  article-title: Anti‐dyskinetic effects of cannabinoids in a rat model of Parkinson's disease: Role of CB(1) and TRPV1 receptors
  publication-title: Exp Neurol
– ident: e_1_2_6_47_1
  doi: 10.1038/nn1040
– ident: e_1_2_6_48_1
  doi: 10.1093/brain/awq342
– ident: e_1_2_6_49_1
  doi: 10.1016/j.neuropharm.2011.05.034
– ident: e_1_2_6_6_1
  doi: 10.1073/pnas.101119098
– ident: e_1_2_6_3_1
  doi: 10.1038/oby.2012.38
– ident: e_1_2_6_10_1
  doi: 10.1046/j.0953-816x.2001.01800.x
– ident: e_1_2_6_5_1
  doi: 10.1038/75556
– ident: e_1_2_6_25_1
  doi: 10.1038/nn832
– ident: e_1_2_6_19_1
  doi: 10.1214/07-AOAS101
– volume-title: The rat brain in stereotaxic coordinates
  year: 2005
  ident: e_1_2_6_46_1
– ident: e_1_2_6_39_1
  doi: 10.1016/j.neures.2011.12.006
– ident: e_1_2_6_2_1
  doi: 10.1007/s00228-008-0532-4
– ident: e_1_2_6_12_1
  doi: 10.1016/S1474-4422(10)70218-0
– ident: e_1_2_6_4_1
  doi: 10.1523/JNEUROSCI.21-22-09068.2001
– ident: e_1_2_6_51_1
  doi: 10.1073/pnas.091062498
– ident: e_1_2_6_45_1
  doi: 10.1016/j.expneurol.2008.03.009
– ident: e_1_2_6_21_1
  doi: 10.1016/S0006-3223(99)00092-X
– ident: e_1_2_6_43_1
  doi: 10.1016/S1474-4422(06)70521-X
– ident: e_1_2_6_15_1
  doi: 10.1371/journal.pone.0076874
– ident: e_1_2_6_24_1
  doi: 10.1152/jn.2001.85.1.468
– ident: e_1_2_6_35_1
  doi: 10.1054/plef.2001.0359
– ident: e_1_2_6_42_1
  doi: 10.1016/j.expneurol.2007.07.021
– ident: e_1_2_6_50_1
  doi: 10.1016/S0306-4522(97)00436-3
– ident: e_1_2_6_41_1
  doi: 10.1016/j.nurx.2006.05.008
– ident: e_1_2_6_33_1
  doi: 10.1038/nn.2517
– ident: e_1_2_6_44_1
  doi: 10.1111/j.1471-4159.2012.07813.x
– volume: 79
  start-page: 90
  year: 2013
  ident: e_1_2_6_9_1
  article-title: l‐DOPA‐treatment in primates disrupts the expression of A2A adenosine‐CB1 cannabinoid‐D2 dopamine receptor heteromers in the caudate nucleus
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2013.10.036
– ident: e_1_2_6_32_1
  doi: 10.1152/physrev.00019.2008
– ident: e_1_2_6_52_1
  doi: 10.1016/j.brainres.2010.02.008
– ident: e_1_2_6_22_1
  doi: 10.1046/j.1460-9568.2003.02896.x
– ident: e_1_2_6_27_1
  doi: 10.1007/s00702-003-0033-7
– ident: e_1_2_6_8_1
  doi: 10.1016/S0301-0082(99)00067-2
– ident: e_1_2_6_30_1
  doi: 10.1016/j.neuint.2005.12.002
– ident: e_1_2_6_54_1
  doi: 10.1006/nbdi.2002.0499
– ident: e_1_2_6_14_1
  doi: 10.1016/j.neuron.2012.09.020
– ident: e_1_2_6_16_1
  doi: 10.1038/nrn1763
– ident: e_1_2_6_40_1
  doi: 10.1016/j.tins.2007.02.005
– ident: e_1_2_6_7_1
  doi: 10.1038/35086062
– ident: e_1_2_6_11_1
  doi: 10.1002/mds.22019
– ident: e_1_2_6_26_1
  doi: 10.1038/nprot.2008.211
– ident: e_1_2_6_34_1
  doi: 10.1016/j.nbd.2004.07.005
– volume: 14
  start-page: 1432
  year: 2000
  ident: e_1_2_6_18_1
  article-title: Enhanced levels of endogenous cannabinoids in the globus pallidus are associated with a reduction in movement in an animal model of Parkinson's disease
  publication-title: FASEB J
  doi: 10.1096/fasebj.14.10.1432
– ident: e_1_2_6_29_1
  doi: 10.1038/nrn2471
– ident: e_1_2_6_53_1
  doi: 10.1371/journal.pone.0028439
– ident: e_1_2_6_28_1
  doi: 10.1186/1475-2859-6-4
– ident: e_1_2_6_55_1
  doi: 10.1371/journal.pone.0022983
– volume: 28
  start-page: 27
  year: 2000
  ident: e_1_2_6_31_1
  article-title: KEGG: kyoto encyclopedia of genes and genomes
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/28.1.27
– ident: e_1_2_6_36_1
  doi: 10.1016/j.neuropharm.2009.01.019
– ident: e_1_2_6_23_1
  doi: 10.1016/j.clinph.2008.03.017
– ident: e_1_2_6_13_1
  doi: 10.1038/1801200a0
– ident: e_1_2_6_17_1
  doi: 10.1006/exnr.2002.7891
– ident: e_1_2_6_38_1
  doi: 10.1523/JNEUROSCI.0945-05.2005
– volume: 47
  start-page: S2
  issue: 1
  year: 2000
  ident: e_1_2_6_20_1
  article-title: The spectrum of levodopa‐induced dyskinesias
  publication-title: Ann Neurol
– ident: e_1_2_6_37_1
  doi: 10.1111/j.1471-4159.2009.06556.x
SSID ssj0003104
Score 2.1675026
Snippet ABSTRACT l‐3,4‐Dihydroxyphenylalanine (l‐DOPA) is the most widely used drug for the treatment of Parkinson's disease. Unfortunately, chronic administration of...
l ‐3,4‐Dihydroxyphenylalanine ( l ‐DOPA) is the most widely used drug for the treatment of Parkinson's disease. Unfortunately, chronic administration of this...
l-3,4-Dihydroxyphenylalanine (L-DOPA) is the most widely used drug for the treatment of Parkinson's disease. Unfortunately, chronic administration of this...
l-3,4-Dihydroxyphenylalanine (l-DOPA) is the most widely used drug for the treatment of Parkinson's disease. Unfortunately, chronic administration of this...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 332
SubjectTerms Adrenergic Agents - toxicity
Animals
Antiparkinson Agents - adverse effects
Corpus Striatum - drug effects
Corpus Striatum - physiopathology
dyskinesia
Dyskinesia, Drug-Induced - physiopathology
endocannabinoid
Endocannabinoids - metabolism
Gene Expression - drug effects
Gene Ontology
l-DOPA
Levodopa - adverse effects
Male
microarray
Microarray Analysis
Motor Activity - drug effects
Motor Activity - physiology
Oxidopamine - toxicity
Parkinson's disease
Rats, Sprague-Dawley
Real-Time Polymerase Chain Reaction
Reverse Transcriptase Polymerase Chain Reaction
Signal Transduction - drug effects
Title Genome-wide microarray analysis identifies a potential role for striatal retrograde endocannabinoid signaling in the pathogenesis of experimental l-DOPA-induced dyskinesia
URI https://api.istex.fr/ark:/67375/WNG-ZC60JV8T-H/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsyn.21740
https://www.ncbi.nlm.nih.gov/pubmed/24599755
https://www.proquest.com/docview/1535163114
https://www.proquest.com/docview/1535626165
https://www.proquest.com/docview/1540221763
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0887-4476
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1098-2396
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003104
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLaqcuHCVpZAQQahqpdMs9hJLE6jQjvqYUDQQkFIkbdU0XScapIRDCd-An-Fv8Qv4dlZSlFBiNMseck447d8L_78HkJPGY25Bi8IJm635LCE-oCKuB8zIbgIeApHLdtimkyOyMExPV5Dz_q9MG19iOGBm7UM56-tgXNR75wXDa1XZmTxtM3Xw5i6JdrX56WjALaQvsonIWnSVxUKop3hzAux6Ir9Wz9fBjQv4lYXePauo4_9kFu-yWy0bMRIfvmtmuN_3tMNdK0DpHjcatBNtKbNLbQxNpCMz1d4CzuKqHv2voG-72tTzfWPr98-lUrjuSXz8cWCrzDvapvgUrX0I11jjs-qxn6Cy1sSIwZ8jF2bkMZ-oxtHDYPraKMgohrDIUuvSoUtp4TbbfK4NBgAKrZtk6sT65XhF6oC_9qWAJ_CcJ6_fDWGl9Io0FSF1aqeWTp_yW-jo70Xh7sTv-v54EvCgsDPpAwKmWQy05Gyy5ZakIgXPNOUFkxC8JSskKHMFEBNDf5KZGGhJCdBTGLJg_gOWjeV0fcQjgDcZjpNRMEoIUKzNKZZFgsRg09ihHtou5_9XHYF0W1fjtO8LeUc5TAduZsODz0ZRM_aKiCXCW05FRok-GJmaXMpzd9N9_MPu0lw8DY7zCce2ux1LO88Rp1D5KGAjSE99dDj4TDYul3A4UZXy1YGEtAwoX-TIQDLQggbHrrb6u8woIhQxlIKZ287LfzzveRv3k_dm_v_LvoAXQU0SVp25CZabxZL_RAQWyMeOdP8CYXeQvw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLam7QJuGDB-MgYYhKbdtEsTO4klbqrBVsYoCDo2kJBlOw6KujpTmwrKFY_Aq_BKPAnHzs8YGghx1bQ5SZ34-Jzv2J_PQegRo6HQYAVhiNstOSyiHUBFohMyKYX0RQxnLdtiGA0Oyf4xPV5Cj5u9MFV-iHbCzY4MZ6_tALcT0ttnWUNnC9O1gBoC9hUCjtUt0r4-Sx4FwIU0eT4JiaMmr5AfbLeXnvNGK_bFfr4Iap5Hrs717K6iD02jK8bJuDsvZVd9-S2f4_8-1VV0pcakuF8p0TW0pM11tNY3EI9PFngTO5aom35fQ9_3tCkm-sfXb5_yVOOJ5fOJ6VQssKjTm-A8rRhIeoYFPi1K-w1ub3mMGCAydpVCSvuLLh07DO6jTQpO1RgBgXqRp9jSSoTdKY9zgwGjYls5ufhoDTP8Q5HhXysT4BNozpOXr_rwkZsUlDXF6WI2toz-XNxAh7tPRzuDTl32oaMI8_1OopSfqShRiQ5Su3KpJQlEJhJNacYU-E_FMtVTSQpoU4PJkkkvS5UgfkhCJfzwJlo2hdG3EQ4A3yY6jmTGKCFSszikSRJKGYJZYkR4aKvpfq7qnOi2NMcJr7I5Bxy6g7vu8NDDVvS0SgRykdCm06FWQkzHljkXU3403OPvdyJ__20y4gMPbTRKxmujMePgfCjAY4hQPfSgPQ3D3a7hCKOLeSUDMWgvon-TIYDMeuA5PHSrUuC2QQGhjMUUrt5yavjnZ-Fv3g3dwfq_i95HlwajFwf84Nnw-R10GcAlqciSG2i5nM71XQBwpbznxulPgiJHGw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLamTUK8cBuXwgCD0LSXbmliJ7F4qla6MlCZYIMNIVm-BUVdnapNBeWJn8Bf4S_xSzh2moyhgRBPTZuT1InP5TvJ53MQesJoJAx4QTBxtySHxbQNqEi0IyalkIFIYK9jWwzjwRHZP6bHK-hpvRamqg_RPHBzluH9tTPwic52zoqGzhZ22-FpyNfXCKQVrn1B7_VZ7SjALaQu80lIEtdlhYJwpzn0XDBac_f180VI8zxw9ZGnfxV9qMdcEU5G2_NSbqsvv5Vz_M-LuoauLBEp7lYqdB2tGHsDrXctZOPjBd7EniPqH76vo-97xhZj8-Prt0-5Nnjs2HxiOhULLJbFTXCuK_6RmWGBJ0XpvsHpHYsRA0DGvk9I6X4xpeeGwXmM1RBSrRWQphe5xo5UItw6eZxbDAgVu77JxUfnluEfigz_2pcAn8Jweq8OuvCRWw2qqrFezEaOz5-Lm-io_-xwd9BeNn1oK8KCoJ0qFWQqTlVqQu3eWxpJQpGJ1FCaMQXRU7FMdVSqAWsacFgy7WRaCRJEJFIiiG6hVVtYcwfhENBtapJYZowSIg1LIpqmkZQROCVGRAtt1bPP1bIiumvMccqrWs4hh-ngfjpa6HEjOqnKgFwktOlVqJEQ05HjzSWUvxvu8fe7cbD_Nj3kgxbaqHWML13GjEPooQCOIT9toUfNbjB29wZHWFPMKxnIQDsx_ZsMAVzWgbjRQrcr_W0GFBLKWELh6C2vhX--Fv7mZOg37v676EN06aDX5y-fD1_cQ5cBWZKKKbmBVsvp3NwH9FbKB95KfwJpA0XB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genome-wide+microarray+analysis+identifies+a+potential+role+for+striatal+retrograde+endocannabinoid+signaling+in+the+pathogenesis+of+experimental+L-DOPA-induced+dyskinesia&rft.jtitle=Synapse+%28New+York%2C+N.Y.%29&rft.au=Wang%2C+Yong&rft.au=Zhang%2C+Qiao+Jun&rft.au=Wang%2C+Hui+Sheng&rft.au=Wang%2C+Tao&rft.date=2014-08-01&rft.issn=1098-2396&rft.eissn=1098-2396&rft.volume=68&rft.issue=8&rft.spage=332&rft_id=info:doi/10.1002%2Fsyn.21740&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-4476&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-4476&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-4476&client=summon