Genome-wide microarray analysis identifies a potential role for striatal retrograde endocannabinoid signaling in the pathogenesis of experimental l-DOPA-induced dyskinesia
ABSTRACT l‐3,4‐Dihydroxyphenylalanine (l‐DOPA) is the most widely used drug for the treatment of Parkinson's disease. Unfortunately, chronic administration of this dopamine precursor causes l‐DOPA‐induced dyskinesia (LID), which is a debilitating complication whose pathogenesis remains unclear....
Saved in:
Published in | Synapse (New York, N.Y.) Vol. 68; no. 8; pp. 332 - 343 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.08.2014
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0887-4476 1098-2396 1098-2396 |
DOI | 10.1002/syn.21740 |
Cover
Abstract | ABSTRACT
l‐3,4‐Dihydroxyphenylalanine (l‐DOPA) is the most widely used drug for the treatment of Parkinson's disease. Unfortunately, chronic administration of this dopamine precursor causes l‐DOPA‐induced dyskinesia (LID), which is a debilitating complication whose pathogenesis remains unclear. In this study, we compared gene expression profiles of sensorimotor striatum tissue derived from LID and non‐LID 6‐hydroxydopamine‐lesioned rats treated with l‐DOPA. Total RNA was amplified, transcribed and hybridized to Agilent Whole Rat Genome Oligo Microarray chips. Quantitative real‐time reverse transcription PCR was conducted to validate the microarray data. We detected 382 upregulated genes and 115 downregulated genes in LID rats when compared with that of non‐LID subjects with Significance Analysis for Microarrays software. The differentially expressed genes were mainly associated with postsynaptic cell membranes, synapses, and neurotransmitter receptors. Gene Set Analysis (GSA) software was used to identify differentially expressed gene ontology (GO) categories and pathways. The GSA found that “long‐term depression” and “retrograde endocannabinoid signaling” pathways were downregulated, whereas a set of lipid metabolism‐related GO categories and pathways were upregulated in LID rats compared with non‐LID controls. Our study provides further experimental evidence to support the direct correlation between abnormal striatal synaptic plasticity and the induction of LID, and it suggests that the dysfunction of the retrograde endocannabinoid signaling system, a lipid‐based neuromodulatory system, and the relevant alteration of the related lipid metabolism processes might play an important role in the pathogenesis of LID. Synapse 68:332–343, 2014. © 2014 Wiley Periodicals, Inc.
What's new?
The authors compared gene expression profiles of sensorimotor striatum tissue derived from rats with L‐3,4‐dihydroxyphenylalanine (L‐DOPA)‐induced dyskinesia (LID) and non‐LID 6‐hydroxydopamine‐lesioned rats treated with L‐DOPA. The results showed that abnormal striatal synaptic plasticity and the dysfunction of striatal retrograde endocannabinoid signaling might play an important role in the pathogenesis of LID. |
---|---|
AbstractList | l-3,4-Dihydroxyphenylalanine (L-DOPA) is the most widely used drug for the treatment of Parkinson's disease. Unfortunately, chronic administration of this dopamine precursor causes L-DOPA-induced dyskinesia (LID), which is a debilitating complication whose pathogenesis remains unclear. In this study, we compared gene expression profiles of sensorimotor striatum tissue derived from LID and non-LID 6-hydroxydopamine-lesioned rats treated with L-DOPA. Total RNA was amplified, transcribed and hybridized to Agilent Whole Rat Genome Oligo Microarray chips. Quantitative real-time reverse transcription PCR was conducted to validate the microarray data. We detected 382 upregulated genes and 115 downregulated genes in LID rats when compared with that of non-LID subjects with Significance Analysis for Microarrays software. The differentially expressed genes were mainly associated with postsynaptic cell membranes, synapses, and neurotransmitter receptors. Gene Set Analysis (GSA) software was used to identify differentially expressed gene ontology (GO) categories and pathways. The GSA found that "long-term depression" and "retrograde endocannabinoid signaling" pathways were downregulated, whereas a set of lipid metabolism-related GO categories and pathways were upregulated in LID rats compared with non-LID controls. Our study provides further experimental evidence to support the direct correlation between abnormal striatal synaptic plasticity and the induction of LID, and it suggests that the dysfunction of the retrograde endocannabinoid signaling system, a lipid-based neuromodulatory system, and the relevant alteration of the related lipid metabolism processes might play an important role in the pathogenesis of LID.l-3,4-Dihydroxyphenylalanine (L-DOPA) is the most widely used drug for the treatment of Parkinson's disease. Unfortunately, chronic administration of this dopamine precursor causes L-DOPA-induced dyskinesia (LID), which is a debilitating complication whose pathogenesis remains unclear. In this study, we compared gene expression profiles of sensorimotor striatum tissue derived from LID and non-LID 6-hydroxydopamine-lesioned rats treated with L-DOPA. Total RNA was amplified, transcribed and hybridized to Agilent Whole Rat Genome Oligo Microarray chips. Quantitative real-time reverse transcription PCR was conducted to validate the microarray data. We detected 382 upregulated genes and 115 downregulated genes in LID rats when compared with that of non-LID subjects with Significance Analysis for Microarrays software. The differentially expressed genes were mainly associated with postsynaptic cell membranes, synapses, and neurotransmitter receptors. Gene Set Analysis (GSA) software was used to identify differentially expressed gene ontology (GO) categories and pathways. The GSA found that "long-term depression" and "retrograde endocannabinoid signaling" pathways were downregulated, whereas a set of lipid metabolism-related GO categories and pathways were upregulated in LID rats compared with non-LID controls. Our study provides further experimental evidence to support the direct correlation between abnormal striatal synaptic plasticity and the induction of LID, and it suggests that the dysfunction of the retrograde endocannabinoid signaling system, a lipid-based neuromodulatory system, and the relevant alteration of the related lipid metabolism processes might play an important role in the pathogenesis of LID. l-3,4-Dihydroxyphenylalanine (l-DOPA) is the most widely used drug for the treatment of Parkinson's disease. Unfortunately, chronic administration of this dopamine precursor causes l-DOPA-induced dyskinesia (LID), which is a debilitating complication whose pathogenesis remains unclear. In this study, we compared gene expression profiles of sensorimotor striatum tissue derived from LID and non-LID 6-hydroxydopamine-lesioned rats treated with l-DOPA. Total RNA was amplified, transcribed and hybridized to Agilent Whole Rat Genome Oligo Microarray chips. Quantitative real-time reverse transcription PCR was conducted to validate the microarray data. We detected 382 upregulated genes and 115 downregulated genes in LID rats when compared with that of non-LID subjects with Significance Analysis for Microarrays software. The differentially expressed genes were mainly associated with postsynaptic cell membranes, synapses, and neurotransmitter receptors. Gene Set Analysis (GSA) software was used to identify differentially expressed gene ontology (GO) categories and pathways. The GSA found that "long-term depression" and "retrograde endocannabinoid signaling" pathways were downregulated, whereas a set of lipid metabolism-related GO categories and pathways were upregulated in LID rats compared with non-LID controls. Our study provides further experimental evidence to support the direct correlation between abnormal striatal synaptic plasticity and the induction of LID, and it suggests that the dysfunction of the retrograde endocannabinoid signaling system, a lipid-based neuromodulatory system, and the relevant alteration of the related lipid metabolism processes might play an important role in the pathogenesis of LID. Synapse 68:332-343, 2014. copyright 2014 Wiley Periodicals, Inc. What's new? The authors compared gene expression profiles of sensorimotor striatum tissue derived from rats with L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia (LID) and non-LID 6-hydroxydopamine-lesioned rats treated with L-DOPA. The results showed that abnormal striatal synaptic plasticity and the dysfunction of striatal retrograde endocannabinoid signaling might play an important role in the pathogenesis of LID. l-3,4-Dihydroxyphenylalanine (L-DOPA) is the most widely used drug for the treatment of Parkinson's disease. Unfortunately, chronic administration of this dopamine precursor causes L-DOPA-induced dyskinesia (LID), which is a debilitating complication whose pathogenesis remains unclear. In this study, we compared gene expression profiles of sensorimotor striatum tissue derived from LID and non-LID 6-hydroxydopamine-lesioned rats treated with L-DOPA. Total RNA was amplified, transcribed and hybridized to Agilent Whole Rat Genome Oligo Microarray chips. Quantitative real-time reverse transcription PCR was conducted to validate the microarray data. We detected 382 upregulated genes and 115 downregulated genes in LID rats when compared with that of non-LID subjects with Significance Analysis for Microarrays software. The differentially expressed genes were mainly associated with postsynaptic cell membranes, synapses, and neurotransmitter receptors. Gene Set Analysis (GSA) software was used to identify differentially expressed gene ontology (GO) categories and pathways. The GSA found that "long-term depression" and "retrograde endocannabinoid signaling" pathways were downregulated, whereas a set of lipid metabolism-related GO categories and pathways were upregulated in LID rats compared with non-LID controls. Our study provides further experimental evidence to support the direct correlation between abnormal striatal synaptic plasticity and the induction of LID, and it suggests that the dysfunction of the retrograde endocannabinoid signaling system, a lipid-based neuromodulatory system, and the relevant alteration of the related lipid metabolism processes might play an important role in the pathogenesis of LID. l ‐3,4‐Dihydroxyphenylalanine ( l ‐DOPA) is the most widely used drug for the treatment of Parkinson's disease. Unfortunately, chronic administration of this dopamine precursor causes l ‐DOPA‐induced dyskinesia (LID), which is a debilitating complication whose pathogenesis remains unclear. In this study, we compared gene expression profiles of sensorimotor striatum tissue derived from LID and non‐LID 6‐hydroxydopamine‐lesioned rats treated with l ‐DOPA. Total RNA was amplified, transcribed and hybridized to Agilent Whole Rat Genome Oligo Microarray chips. Quantitative real‐time reverse transcription PCR was conducted to validate the microarray data. We detected 382 upregulated genes and 115 downregulated genes in LID rats when compared with that of non‐LID subjects with Significance Analysis for Microarrays software. The differentially expressed genes were mainly associated with postsynaptic cell membranes, synapses, and neurotransmitter receptors. Gene Set Analysis (GSA) software was used to identify differentially expressed gene ontology (GO) categories and pathways. The GSA found that “long‐term depression” and “retrograde endocannabinoid signaling” pathways were downregulated, whereas a set of lipid metabolism‐related GO categories and pathways were upregulated in LID rats compared with non‐LID controls. Our study provides further experimental evidence to support the direct correlation between abnormal striatal synaptic plasticity and the induction of LID, and it suggests that the dysfunction of the retrograde endocannabinoid signaling system, a lipid‐based neuromodulatory system, and the relevant alteration of the related lipid metabolism processes might play an important role in the pathogenesis of LID. Synapse 68:332–343, 2014. © 2014 Wiley Periodicals, Inc. l-3,4-Dihydroxyphenylalanine (l-DOPA) is the most widely used drug for the treatment of Parkinson's disease. Unfortunately, chronic administration of this dopamine precursor causes l-DOPA-induced dyskinesia (LID), which is a debilitating complication whose pathogenesis remains unclear. In this study, we compared gene expression profiles of sensorimotor striatum tissue derived from LID and non-LID 6-hydroxydopamine-lesioned rats treated with l-DOPA. Total RNA was amplified, transcribed and hybridized to Agilent Whole Rat Genome Oligo Microarray chips. Quantitative real-time reverse transcription PCR was conducted to validate the microarray data. We detected 382 upregulated genes and 115 downregulated genes in LID rats when compared with that of non-LID subjects with Significance Analysis for Microarrays software. The differentially expressed genes were mainly associated with postsynaptic cell membranes, synapses, and neurotransmitter receptors. Gene Set Analysis (GSA) software was used to identify differentially expressed gene ontology (GO) categories and pathways. The GSA found that "long-term depression" and "retrograde endocannabinoid signaling" pathways were downregulated, whereas a set of lipid metabolism-related GO categories and pathways were upregulated in LID rats compared with non-LID controls. Our study provides further experimental evidence to support the direct correlation between abnormal striatal synaptic plasticity and the induction of LID, and it suggests that the dysfunction of the retrograde endocannabinoid signaling system, a lipid-based neuromodulatory system, and the relevant alteration of the related lipid metabolism processes might play an important role in the pathogenesis of LID. Synapse 68:332-343, 2014. © 2014 Wiley Periodicals, Inc. [PUBLICATION ABSTRACT] ABSTRACT l‐3,4‐Dihydroxyphenylalanine (l‐DOPA) is the most widely used drug for the treatment of Parkinson's disease. Unfortunately, chronic administration of this dopamine precursor causes l‐DOPA‐induced dyskinesia (LID), which is a debilitating complication whose pathogenesis remains unclear. In this study, we compared gene expression profiles of sensorimotor striatum tissue derived from LID and non‐LID 6‐hydroxydopamine‐lesioned rats treated with l‐DOPA. Total RNA was amplified, transcribed and hybridized to Agilent Whole Rat Genome Oligo Microarray chips. Quantitative real‐time reverse transcription PCR was conducted to validate the microarray data. We detected 382 upregulated genes and 115 downregulated genes in LID rats when compared with that of non‐LID subjects with Significance Analysis for Microarrays software. The differentially expressed genes were mainly associated with postsynaptic cell membranes, synapses, and neurotransmitter receptors. Gene Set Analysis (GSA) software was used to identify differentially expressed gene ontology (GO) categories and pathways. The GSA found that “long‐term depression” and “retrograde endocannabinoid signaling” pathways were downregulated, whereas a set of lipid metabolism‐related GO categories and pathways were upregulated in LID rats compared with non‐LID controls. Our study provides further experimental evidence to support the direct correlation between abnormal striatal synaptic plasticity and the induction of LID, and it suggests that the dysfunction of the retrograde endocannabinoid signaling system, a lipid‐based neuromodulatory system, and the relevant alteration of the related lipid metabolism processes might play an important role in the pathogenesis of LID. Synapse 68:332–343, 2014. © 2014 Wiley Periodicals, Inc. What's new? The authors compared gene expression profiles of sensorimotor striatum tissue derived from rats with L‐3,4‐dihydroxyphenylalanine (L‐DOPA)‐induced dyskinesia (LID) and non‐LID 6‐hydroxydopamine‐lesioned rats treated with L‐DOPA. The results showed that abnormal striatal synaptic plasticity and the dysfunction of striatal retrograde endocannabinoid signaling might play an important role in the pathogenesis of LID. |
Author | Liu, Jian Zhang, Qiao Jun Wang, Tao Wang, Hui Sheng Wang, Yong |
Author_xml | – sequence: 1 givenname: Yong surname: Wang fullname: Wang, Yong organization: Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, 710061, Xi'an, China – sequence: 2 givenname: Qiao Jun surname: Zhang fullname: Zhang, Qiao Jun organization: Department of Rehabilitation Medicine, The Second Hospital, Xi'an Jiaotong University, 710004, Xi'an, China – sequence: 3 givenname: Hui Sheng surname: Wang fullname: Wang, Hui Sheng organization: Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, 710061, Xi'an, China – sequence: 4 givenname: Tao surname: Wang fullname: Wang, Tao organization: Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, 710061, Xi'an, China – sequence: 5 givenname: Jian surname: Liu fullname: Liu, Jian email: liujian@mail.xjtu.edu.cn organization: Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, 710061, Xi'an, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24599755$$D View this record in MEDLINE/PubMed |
BookMark | eNqNksFu1DAQhi1URLeFAy-ALHGhh7R24iTOsVroFlS1SBQQXKxZZ7J1m7WD7VWbZ-Il8bK7HCqQOFkeff9neWYOyJ51Fgl5ydkxZyw_CaM9znkt2BMy4ayRWV401R6ZMCnrTIi62icHIdwyxgrOxDOyn4uyaeqynJCfM7Ruidm9aZEujfYOvIeRgoV-DCbQVLfRdAYDBTq4uL5BT73rkXbO0xC9gbiuYPRu4SF50LZOg7UwN9aZlgazSDpjF9RYGm-QDhBv3AItrl9wHcWHAb1ZJncS9dnbq4-nmbHtSmNL2zHcmTUJz8nTDvqAL7bnIfl89u56ep5dXM3eT08vMi0axjKpNet0JbXEvE1fljgXOXQgsSy7RudNo5tOcy3bUjBkNZtL3rUaBCtEoYEVh-TNxjt492OFIaqlCRr7Hiy6VVA85fLU76r4D7Qoq7ziVZnQ14_QW7fyqS8bilcF5yJRr7bUar7EVg2pLeBHtZtYAk42QBpVCB47pU2EaJyNHkyvOFPrnVBpJ9TvnUiJo0eJnfRv7NZ-b3oc_w2qT98ud4lskzAh4sOfBPg7VdVFXaqvlzP1fVqxD1_ktTovfgHB99iU |
CODEN | SYNAET |
CitedBy_id | crossref_primary_10_1016_j_nbd_2016_06_013 crossref_primary_10_1016_j_bbr_2018_03_020 crossref_primary_10_1007_s00702_020_02240_9 crossref_primary_10_1016_j_baga_2015_09_001 crossref_primary_10_1016_j_nbd_2014_10_017 crossref_primary_10_1007_s12640_019_00109_8 crossref_primary_10_1016_j_brainres_2020_147266 crossref_primary_10_1007_s12035_017_0775_0 crossref_primary_10_1002_syn_21941 crossref_primary_10_3390_ijms252011168 crossref_primary_10_3390_cells11040691 crossref_primary_10_1111_gbb_12690 crossref_primary_10_3390_ijms21082743 |
Cites_doi | 10.1038/nn1040 10.1093/brain/awq342 10.1016/j.neuropharm.2011.05.034 10.1073/pnas.101119098 10.1038/oby.2012.38 10.1046/j.0953-816x.2001.01800.x 10.1038/75556 10.1038/nn832 10.1214/07-AOAS101 10.1016/j.neures.2011.12.006 10.1007/s00228-008-0532-4 10.1016/S1474-4422(10)70218-0 10.1523/JNEUROSCI.21-22-09068.2001 10.1073/pnas.091062498 10.1016/j.expneurol.2008.03.009 10.1016/S0006-3223(99)00092-X 10.1016/S1474-4422(06)70521-X 10.1371/journal.pone.0076874 10.1152/jn.2001.85.1.468 10.1054/plef.2001.0359 10.1016/j.expneurol.2007.07.021 10.1016/S0306-4522(97)00436-3 10.1016/j.nurx.2006.05.008 10.1038/nn.2517 10.1111/j.1471-4159.2012.07813.x 10.1016/j.neuropharm.2013.10.036 10.1152/physrev.00019.2008 10.1016/j.brainres.2010.02.008 10.1046/j.1460-9568.2003.02896.x 10.1007/s00702-003-0033-7 10.1016/S0301-0082(99)00067-2 10.1016/j.neuint.2005.12.002 10.1006/nbdi.2002.0499 10.1016/j.neuron.2012.09.020 10.1038/nrn1763 10.1016/j.tins.2007.02.005 10.1038/35086062 10.1002/mds.22019 10.1038/nprot.2008.211 10.1016/j.nbd.2004.07.005 10.1096/fasebj.14.10.1432 10.1038/nrn2471 10.1371/journal.pone.0028439 10.1186/1475-2859-6-4 10.1371/journal.pone.0022983 10.1093/nar/28.1.27 10.1016/j.neuropharm.2009.01.019 10.1016/j.clinph.2008.03.017 10.1038/1801200a0 10.1006/exnr.2002.7891 10.1523/JNEUROSCI.0945-05.2005 10.1111/j.1471-4159.2009.06556.x |
ContentType | Journal Article |
Copyright | 2014 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2014 Wiley Periodicals, Inc. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7TK K9. 7X8 |
DOI | 10.1002/syn.21740 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Neurosciences Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Calcium & Calcified Tissue Abstracts Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Neurosciences Abstracts MEDLINE CrossRef ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1098-2396 |
EndPage | 343 |
ExternalDocumentID | 3332608111 24599755 10_1002_syn_21740 SYN21740 ark_67375_WNG_ZC60JV8T_H |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities, China – fundername: National Natural Science Foundation of China funderid: 81100837 – fundername: China Postdoctoral Science Foundation funderid: 2013M532059 |
GroupedDBID | --- -~X .3N .GA .GJ .Y3 05W 10A 123 1CY 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABPVW ACAHQ ACBWZ ACCZN ACFBH ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AETEA AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GAKWD GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SV3 TEORI UB1 V2E W8V W99 WBKPD WIB WIH WIK WJL WNSPC WOHZO WQJ WXSBR WYISQ XG1 XV2 YNT ZGI ZXP ZZTAW ~IA ~WT 0R~ AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE RWD RWI SUPJJ WRC WUP AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7TK K9. 7X8 |
ID | FETCH-LOGICAL-c4900-8cc0fc68c8e2d0038eb42afa8e55f9c299c9fc1c8d540e070b81fdca40343ca03 |
IEDL.DBID | DR2 |
ISSN | 0887-4476 1098-2396 |
IngestDate | Fri Jul 11 09:43:26 EDT 2025 Thu Jul 10 23:50:42 EDT 2025 Fri Jul 25 12:22:40 EDT 2025 Wed Feb 19 01:57:56 EST 2025 Wed Oct 01 02:06:56 EDT 2025 Thu Apr 24 23:13:08 EDT 2025 Wed Jan 22 16:53:42 EST 2025 Sun Sep 21 06:15:00 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | l-DOPA endocannabinoid microarray Parkinson's disease dyskinesia |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2014 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4900-8cc0fc68c8e2d0038eb42afa8e55f9c299c9fc1c8d540e070b81fdca40343ca03 |
Notes | Fundamental Research Funds for the Central Universities, China istex:7EBB9F634BCB43428F18B2EAD2F1044C2C0A34F7 ark:/67375/WNG-ZC60JV8T-H National Natural Science Foundation of China - No. 81100837 China Postdoctoral Science Foundation - No. 2013M532059 ArticleID:SYN21740 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 24599755 |
PQID | 1535163114 |
PQPubID | 1046379 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1540221763 proquest_miscellaneous_1535626165 proquest_journals_1535163114 pubmed_primary_24599755 crossref_citationtrail_10_1002_syn_21740 crossref_primary_10_1002_syn_21740 wiley_primary_10_1002_syn_21740_SYN21740 istex_primary_ark_67375_WNG_ZC60JV8T_H |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2014 |
PublicationDateYYYYMMDD | 2014-08-01 |
PublicationDate_xml | – month: 08 year: 2014 text: August 2014 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Synapse (New York, N.Y.) |
PublicationTitleAlternate | Synapse |
PublicationYear | 2014 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Berger A, Crozier G, Bisogno T, Cavaliere P, Innis S, Di Marzo V. 2001. Anandamide and diet: inclusion of dietary arachidonate and docosahexaenoate leads to increased brain levels of the corresponding N-acylethanolamines in piglets. Proc Natl Acad Sci USA 98:6402-6406. Papa SM. 2008. The cannabinoid system in Parkinson's disease: Multiple targets to motor effects. Exp Neurol 211:334-338. Kumar R, Riddle LR, Griffin SA, Chu W, Vangveravong S, Neisewander J, Mach RH, Luedtke RR. 2009. Evaluation of D2 and D3 dopamine receptor selective compounds on l-DOPA-dependent abnormal involuntary movements in rats. Neuropharmacology 56:956-969. Bezard E, Brotchie JM, Gross CE. 2001. Pathophysiology of levodopa-induced dyskinesia: Potential for new therapies. Nat Rev Neurosci 2:577-588. Alvheim AR, Malde MK, Osei-Hyiaman D, Lin YH, Pawlosky RJ, Madsen L, Kristiansen K, Frøyland L, Hibbeln JR. 2012. Dietary linoleic acid elevates endogenous 2-AG and anandamide and induces obesity. Obesity (Silver Spring) 20:1984-1994. Fenton WS, Hibbeln J, Knable M. 2000. Essential fatty acids, lipid membrane abnormalities, and the diagnosis and treatment of schizophrenia. Biol Psychiatry 47:8-21. Kozak KR, Marnett LJ. 2002. Oxidative metabolism of endocannabinoids. Prostaglandins Leukot Essent Fatty Acids 66:211-220. Wang Y, Zhang Q, Liu J, Ali U, Gui Z, Hui Y, Chen L, Wang T. 2010. Changes in firing rate and pattern of GABAergic neurons in subregions of the substantia nigra pars reticulata in rat models of Parkinson's disease. Brain Res 1324:54-63. Blandini F, Nappi G, Tassorelli C, Martignoni E. 2000. Functional changes of the basal ganglia circuitry in Parkinson's disease. Prog Neurobiol 62:63-88. Gerdeman GL, Ronesi J, Lovinger DM. 2002. Postsynaptic endocannabinoid release is critical to long-term depression in the striatum. Nat Neurosci 5:446-451. Kim J, Alger BE. 2010. Reduction in endocannabinoid tone is a homeostatic mechanism for specific inhibitory synapses. Nat Neurosci 13:592-600. Deumens R, Blokland A, Prickaerts J. 2002. Modeling Parkinson's disease in rats: An evaluation of 6-OHDA lesions of the nigrostriatal pathway. Exp Neurol 175:303-317. Picconi B, Centonze D, Håkansson K, Bernardi G, Greengard P, Fisone G, Cenci MA, Calabresi P. 2003. Loss of bidirectional striatal synaptic plasticity in l-DOPA-induced dyskinesia. Nat Neurosci 6:501-506. Castillo PE, Younts TJ, Chávez AE, Hashimotodani Y. 2012. Endocannabinoid signaling and synaptic function. Neuron 76:70-81. Lindgren HS, Andersson DR, Lagerkvist S, Nissbrandt H, Cenci MA. 2010. l-DOPA-induced dopamine efflux in the striatum and the substantia nigra in a rat model of Parkinson's disease: Temporal and quantitative relationship to the expression of dyskinesia. J Neurochem 112:1465-1476. Bonaventura J, Rico AJ, Moreno E, Sierra S, Sánchez M, Luquin N, Farré D, Müller CE, Martínez-Pinilla E, Cortés A, Mallol J, Armentero MT, Pinna A, Canela EI, Lluís C, McCormick PJ, Lanciego JL, Casadó V, Franco R. 2013. l-DOPA-treatment in primates disrupts the expression of A2A adenosine-CB1 cannabinoid-D2 dopamine receptor heteromers in the caudate nucleus. Neuropharmacology 79C:90-100. Jaluria P, Konstantopoulos K, Betenbaugh M, Shiloach J. 2007. A perspective on microarrays: current applications, pitfalls, and potential uses. Microb Cell Fact 6:4. Orłowski A, Grzybek M, Bunker A, Pasenkiewicz-Gierula M, Vattulainen I, Männistö PT, Róg T. 2012. Strong preferences of dopamine and l-DOPA towards lipid head group: Importance of lipid composition and implication for neurotransmitter metabolism. J Neurochem 122:681-690. Tsou K, Brown S, Sañudo-Peña MC, Mackie K, Walker JM. 1998. Immunohistochemical distribution of cannabinoid CB1 receptors in the rat central nervous system. Neuroscience 83:393-411. Wang S, Guo X, Wu XM, Lammi MJ. 2012. Genome-wide gene expression analysis suggests an important role of suppressed immunity in pathogenesis of Kashin-Beck disease. PLoS One 7:e28439. Breit S, Bouali-Benazzouz R, Benabid A, Benazzouz A. 2001. Unilateral lesion of the nigrostriatal pathway induces an increase of neuronal activity of the pedunculopontine nucleus, which is reversed by the lesion of the subthalamic nucleus in the rat. Eur J Neurosci 14:1833-1842. Kanehisa M, Goto S. 2000. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27-30. Picconi B, Bagetta V, Ghiglieri V, Paillè V, Di Filippo M, Pendolino V, Tozzi A, Giampà C, Fusco FR, Sgobio C, Calabresi P. 2011. Inhibition of phosphodiesterases rescues striatal long-term depression and reduces levodopa-induced dyskinesia. Brain 134 (Part 2):375-387. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G. 2000. Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25-29. Jenner P. 2008. Molecular mechanisms of l-DOPA-induced dyskinesia. Nat Rev Neurosci 9:665-677. Tusher VG, Tibshirani R, Chu G. 2001. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98:5116-5121. Winkler C, Kirik D, Björklund A, Cenci MA. 2002. l-DOPA-induced dyskinesia in the intrastriatal 6-hydroxydopamine model of parkinson's disease: Relation to motor and cellular parameters of nigrostriatal function. Neurobiol Dis 10:165-186. Carlsson A, Lindqvist M, Magnusson T. 1957. 3,4-Dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists. Nature 180:1200. Efron B, Tibshirani R. 2007. On testing the significance of sets of genes. Ann Appl Stat 1:107-129. Zhang F, Guo X, Wang W, Yan H, Li C. 2011. Genome-wide gene expression analysis suggests an important role of hypoxia in the pathogenesis of endemic osteochondropathy Kashin-Beck disease. PLoS One 6:e22983. Chaves-Kirsten GP, Mazucanti CH, Real CC, Souza BM, Britto LR, Torrão AS. 2013. Temporal changes of CB1 cannabinoid receptor in the basal ganglia as a possible structure-specific plasticity process in 6-OHDA lesioned rats. PLoS One 8:e76874. Gerdeman G, Lovinger DM. 2001. CB1 cannabinoid receptor inhibits synaptic release of glutamate in rat dorsolateral striatum. J Neurophysiol 85:468-471. Olanow CW, Obeso JA, Stocchi F. 2006. Continuous dopamine-receptor treatment of Parkinson's disease: Scientific rationale and clinical implications. Lancet Neurol 5:677-687. Miller RM, Federoff HJ. 2006. Microarrays in Parkinson's disease: A systematic approach. NeuroRx 3:319-326. Hurley MJ, Mash DC, Jenner P. 2003. Expression of cannabinoid CB1 receptor mRNA in basal ganglia of normal and parkinsonian human brain. J Neural Transm 110:1279-1288. Huang dW, Sherman BT, Lempicki RA. 2009. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44-57. Fahn S. 2000. The spectrum of levodopa-induced dyskinesias. Ann Neurol 47(Suppl 1):S2-S9; discussion S9-S11. Calabresi P, Di Filippo M, Ghiglieri V, Picconi B. 2008. Molecular mechanisms underlying levodopa-induced dyskinesia. Mov Disord 23 (Suppl 3):S570-S579. Paxinos G, Watson C. 2005. The rat brain in stereotaxic coordinates. San Diego: Elsevier Academic Press. Morgese MG, Cassano T, Cuomo V, Giuffrida A. 2007. Anti-dyskinetic effects of cannabinoids in a rat model of Parkinson's disease: Role of CB(1) and TRPV1 receptors. Exp Neurol 208:110-119. Julien C, Berthiaume L, Hadj-Tahar A, Rajput AH, Bédard PJ, Di Paolo T, Julien P, Calon F. 2006. Postmortem brain fatty acid profile of levodopa-treated Parkinson disease patients and parkinsonian monkeys. Neurochem Int 48:404-414. Martinez A, Macheda T, Morgese MG, Trabace L, Giuffrida A. 2012. The cannabinoid agonist WIN55212-2 decreases l-DOPA-induced PKA activation and dyskinetic behavior in 6-OHDA-treated rats. Neurosci Res 72:236-242. Massey PV, Bashir ZI. 2007. Long-term depression: Multiple forms and implications for brain function. Trends Neurosci 30:176-184. Calabresi P, Di Filippo M, Ghiglieri V, Tambasco N, Picconi B. 2010. Levodopa-induced dyskinesias in patients with Parkinson's disease: Filling the bench-to-bedside gap. Lancet Neurol 9:1106-1117. Sidhpura N, Parsons LH. 2011. Endocannabinoid-mediated synaptic plasticity and addiction-related behavior. Neuropharmacology 61:1070-1087. Galvan A, Wichmann T. 2008. Pathophysiology of parkinsonism. Clin Neurophysiol 119:1459-1474. Maejima T, Oka S, Hashimotodani Y, Ohno-Shosaku T, Aiba A, Wu D, Waku K, Sugiura T, Kano M. 2005. Synaptically driven endocannabinoid release requires Ca2+-assisted metabotropic glutamate receptor subtype 1 to phospholipase Cbeta4 signaling cascade in the cerebellum. J Neurosci 25:6826-6835. Di Marzo V, Hill MP, Bisogno T, Crossman AR, Brotchie JM. 2000. Enhanced levels of endogenous cannabinoids in the globus pallidus are associated with a reduction in movement in an animal model of Parkinson's disease. FASEB J 14:1432-1438. Kano M, Ohno-Shosaku T, Hashimotodani Y, Uchigashima M, Watanabe M. 2009. Endocannabinoid-mediated control of synaptic transmission. Physiol Rev 89:309-380. Konradi C, Westin JE, Carta M, Eaton ME, Kuter K, Dekundy A, Lundblad M, Cenci MA. 2004. Transcriptome analysis in a rat model of l-DOPA-induced dyskinesia. Neurobiol Dis 17:219-236. Adams F, Boschmann M, Lobsien E, Kupsch A, Lipp A, Franke G, Leisse MC, Janke J, Gottschalk S, Spranger J, Jordan J. 2008. Influences of levodopa on adipose tissue and skeletal muscle metabolism in patients with idiopathic Parkinson's disease. Eur J Clin Pharmacol 64:863-870. Andreeva SG, Dikkes P, Epstein PM, Rosenberg PA. 2001. Expression of cGMP-specific phosphodiesterase 9A mRNA in the rat brain. J Neurosci 21:9068-9076. Ferrer B, Asbrock N, Kathuria S, Piomelli D, Giuffrida A. 2003. Effects of levodopa on endocannabinoid levels in rat basal ganglia: Implications for the treatment of levodopa-induced dyskinesias. Eur J Neurosci 18:1607-1614. Conn PJ, Battaglia G, Marino MJ, Nicoletti F. 2005. Metabotropic glutama 2009; 89 2012; 122 2010; 13 2000; 47 2002; 10 2011; 61 2008; 9 2003; 18 2000; 28(1) 1998; 83 2007; 30 2013; 8 2001; 85 2003; 110 2005; 25 2009; 56 2012; 72 2013; 79C 2000; 14 2003; 6 2010; 112 2000; 62 2008; 119 2008; 23 2007; 6 2008; 64 2007; 1 2001; 14 2012; 20 2010; 9 2001; 98 2010; 1324 2000; 25 2002; 175 2002; 5 2006; 5 2006; 3 2005 2007; 208 2011; 6 2012; 76 2011; 134 2001; 21 2004; 17 2006; 48 2002; 66 2005; 6 2001; 2 1957; 180 2009; 4 2008; 211 2012; 7 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 Paxinos G (e_1_2_6_46_1) 2005 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_43_1 e_1_2_6_41_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 M Kanehisa (e_1_2_6_31_1) 2000; 28 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 Marzo V (e_1_2_6_18_1) 2000; 14 e_1_2_6_50_1 Fahn S (e_1_2_6_20_1) 2000; 47 Bonaventura J (e_1_2_6_9_1) 2013; 79 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_39_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 |
References_xml | – reference: Gerdeman GL, Ronesi J, Lovinger DM. 2002. Postsynaptic endocannabinoid release is critical to long-term depression in the striatum. Nat Neurosci 5:446-451. – reference: Fahn S. 2000. The spectrum of levodopa-induced dyskinesias. Ann Neurol 47(Suppl 1):S2-S9; discussion S9-S11. – reference: Huang dW, Sherman BT, Lempicki RA. 2009. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44-57. – reference: Efron B, Tibshirani R. 2007. On testing the significance of sets of genes. Ann Appl Stat 1:107-129. – reference: Kanehisa M, Goto S. 2000. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27-30. – reference: Sidhpura N, Parsons LH. 2011. Endocannabinoid-mediated synaptic plasticity and addiction-related behavior. Neuropharmacology 61:1070-1087. – reference: Winkler C, Kirik D, Björklund A, Cenci MA. 2002. l-DOPA-induced dyskinesia in the intrastriatal 6-hydroxydopamine model of parkinson's disease: Relation to motor and cellular parameters of nigrostriatal function. Neurobiol Dis 10:165-186. – reference: Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G. 2000. Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25-29. – reference: Orłowski A, Grzybek M, Bunker A, Pasenkiewicz-Gierula M, Vattulainen I, Männistö PT, Róg T. 2012. Strong preferences of dopamine and l-DOPA towards lipid head group: Importance of lipid composition and implication for neurotransmitter metabolism. J Neurochem 122:681-690. – reference: Kumar R, Riddle LR, Griffin SA, Chu W, Vangveravong S, Neisewander J, Mach RH, Luedtke RR. 2009. Evaluation of D2 and D3 dopamine receptor selective compounds on l-DOPA-dependent abnormal involuntary movements in rats. Neuropharmacology 56:956-969. – reference: Picconi B, Bagetta V, Ghiglieri V, Paillè V, Di Filippo M, Pendolino V, Tozzi A, Giampà C, Fusco FR, Sgobio C, Calabresi P. 2011. Inhibition of phosphodiesterases rescues striatal long-term depression and reduces levodopa-induced dyskinesia. Brain 134 (Part 2):375-387. – reference: Tsou K, Brown S, Sañudo-Peña MC, Mackie K, Walker JM. 1998. Immunohistochemical distribution of cannabinoid CB1 receptors in the rat central nervous system. Neuroscience 83:393-411. – reference: Paxinos G, Watson C. 2005. The rat brain in stereotaxic coordinates. San Diego: Elsevier Academic Press. – reference: Berger A, Crozier G, Bisogno T, Cavaliere P, Innis S, Di Marzo V. 2001. Anandamide and diet: inclusion of dietary arachidonate and docosahexaenoate leads to increased brain levels of the corresponding N-acylethanolamines in piglets. Proc Natl Acad Sci USA 98:6402-6406. – reference: Zhang F, Guo X, Wang W, Yan H, Li C. 2011. Genome-wide gene expression analysis suggests an important role of hypoxia in the pathogenesis of endemic osteochondropathy Kashin-Beck disease. PLoS One 6:e22983. – reference: Lindgren HS, Andersson DR, Lagerkvist S, Nissbrandt H, Cenci MA. 2010. l-DOPA-induced dopamine efflux in the striatum and the substantia nigra in a rat model of Parkinson's disease: Temporal and quantitative relationship to the expression of dyskinesia. J Neurochem 112:1465-1476. – reference: Jenner P. 2008. Molecular mechanisms of l-DOPA-induced dyskinesia. Nat Rev Neurosci 9:665-677. – reference: Calabresi P, Di Filippo M, Ghiglieri V, Picconi B. 2008. Molecular mechanisms underlying levodopa-induced dyskinesia. Mov Disord 23 (Suppl 3):S570-S579. – reference: Castillo PE, Younts TJ, Chávez AE, Hashimotodani Y. 2012. Endocannabinoid signaling and synaptic function. Neuron 76:70-81. – reference: Kano M, Ohno-Shosaku T, Hashimotodani Y, Uchigashima M, Watanabe M. 2009. Endocannabinoid-mediated control of synaptic transmission. Physiol Rev 89:309-380. – reference: Adams F, Boschmann M, Lobsien E, Kupsch A, Lipp A, Franke G, Leisse MC, Janke J, Gottschalk S, Spranger J, Jordan J. 2008. Influences of levodopa on adipose tissue and skeletal muscle metabolism in patients with idiopathic Parkinson's disease. Eur J Clin Pharmacol 64:863-870. – reference: Jaluria P, Konstantopoulos K, Betenbaugh M, Shiloach J. 2007. A perspective on microarrays: current applications, pitfalls, and potential uses. Microb Cell Fact 6:4. – reference: Olanow CW, Obeso JA, Stocchi F. 2006. Continuous dopamine-receptor treatment of Parkinson's disease: Scientific rationale and clinical implications. Lancet Neurol 5:677-687. – reference: Calabresi P, Di Filippo M, Ghiglieri V, Tambasco N, Picconi B. 2010. Levodopa-induced dyskinesias in patients with Parkinson's disease: Filling the bench-to-bedside gap. Lancet Neurol 9:1106-1117. – reference: Chaves-Kirsten GP, Mazucanti CH, Real CC, Souza BM, Britto LR, Torrão AS. 2013. Temporal changes of CB1 cannabinoid receptor in the basal ganglia as a possible structure-specific plasticity process in 6-OHDA lesioned rats. PLoS One 8:e76874. – reference: Di Marzo V, Hill MP, Bisogno T, Crossman AR, Brotchie JM. 2000. Enhanced levels of endogenous cannabinoids in the globus pallidus are associated with a reduction in movement in an animal model of Parkinson's disease. FASEB J 14:1432-1438. – reference: Papa SM. 2008. The cannabinoid system in Parkinson's disease: Multiple targets to motor effects. Exp Neurol 211:334-338. – reference: Wang S, Guo X, Wu XM, Lammi MJ. 2012. Genome-wide gene expression analysis suggests an important role of suppressed immunity in pathogenesis of Kashin-Beck disease. PLoS One 7:e28439. – reference: Alvheim AR, Malde MK, Osei-Hyiaman D, Lin YH, Pawlosky RJ, Madsen L, Kristiansen K, Frøyland L, Hibbeln JR. 2012. Dietary linoleic acid elevates endogenous 2-AG and anandamide and induces obesity. Obesity (Silver Spring) 20:1984-1994. – reference: Wang Y, Zhang Q, Liu J, Ali U, Gui Z, Hui Y, Chen L, Wang T. 2010. Changes in firing rate and pattern of GABAergic neurons in subregions of the substantia nigra pars reticulata in rat models of Parkinson's disease. Brain Res 1324:54-63. – reference: Miller RM, Federoff HJ. 2006. Microarrays in Parkinson's disease: A systematic approach. NeuroRx 3:319-326. – reference: Kim J, Alger BE. 2010. Reduction in endocannabinoid tone is a homeostatic mechanism for specific inhibitory synapses. Nat Neurosci 13:592-600. – reference: Carlsson A, Lindqvist M, Magnusson T. 1957. 3,4-Dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists. Nature 180:1200. – reference: Ferrer B, Asbrock N, Kathuria S, Piomelli D, Giuffrida A. 2003. Effects of levodopa on endocannabinoid levels in rat basal ganglia: Implications for the treatment of levodopa-induced dyskinesias. Eur J Neurosci 18:1607-1614. – reference: Morgese MG, Cassano T, Cuomo V, Giuffrida A. 2007. Anti-dyskinetic effects of cannabinoids in a rat model of Parkinson's disease: Role of CB(1) and TRPV1 receptors. Exp Neurol 208:110-119. – reference: Conn PJ, Battaglia G, Marino MJ, Nicoletti F. 2005. Metabotropic glutamate receptors in the basal ganglia motor circuit. Nat Rev Neurosci 6:787-798. – reference: Picconi B, Centonze D, Håkansson K, Bernardi G, Greengard P, Fisone G, Cenci MA, Calabresi P. 2003. Loss of bidirectional striatal synaptic plasticity in l-DOPA-induced dyskinesia. Nat Neurosci 6:501-506. – reference: Bonaventura J, Rico AJ, Moreno E, Sierra S, Sánchez M, Luquin N, Farré D, Müller CE, Martínez-Pinilla E, Cortés A, Mallol J, Armentero MT, Pinna A, Canela EI, Lluís C, McCormick PJ, Lanciego JL, Casadó V, Franco R. 2013. l-DOPA-treatment in primates disrupts the expression of A2A adenosine-CB1 cannabinoid-D2 dopamine receptor heteromers in the caudate nucleus. Neuropharmacology 79C:90-100. – reference: Blandini F, Nappi G, Tassorelli C, Martignoni E. 2000. Functional changes of the basal ganglia circuitry in Parkinson's disease. Prog Neurobiol 62:63-88. – reference: Julien C, Berthiaume L, Hadj-Tahar A, Rajput AH, Bédard PJ, Di Paolo T, Julien P, Calon F. 2006. Postmortem brain fatty acid profile of levodopa-treated Parkinson disease patients and parkinsonian monkeys. Neurochem Int 48:404-414. – reference: Breit S, Bouali-Benazzouz R, Benabid A, Benazzouz A. 2001. Unilateral lesion of the nigrostriatal pathway induces an increase of neuronal activity of the pedunculopontine nucleus, which is reversed by the lesion of the subthalamic nucleus in the rat. Eur J Neurosci 14:1833-1842. – reference: Tusher VG, Tibshirani R, Chu G. 2001. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98:5116-5121. – reference: Massey PV, Bashir ZI. 2007. Long-term depression: Multiple forms and implications for brain function. Trends Neurosci 30:176-184. – reference: Andreeva SG, Dikkes P, Epstein PM, Rosenberg PA. 2001. Expression of cGMP-specific phosphodiesterase 9A mRNA in the rat brain. J Neurosci 21:9068-9076. – reference: Martinez A, Macheda T, Morgese MG, Trabace L, Giuffrida A. 2012. The cannabinoid agonist WIN55212-2 decreases l-DOPA-induced PKA activation and dyskinetic behavior in 6-OHDA-treated rats. Neurosci Res 72:236-242. – reference: Bezard E, Brotchie JM, Gross CE. 2001. Pathophysiology of levodopa-induced dyskinesia: Potential for new therapies. Nat Rev Neurosci 2:577-588. – reference: Kozak KR, Marnett LJ. 2002. Oxidative metabolism of endocannabinoids. Prostaglandins Leukot Essent Fatty Acids 66:211-220. – reference: Maejima T, Oka S, Hashimotodani Y, Ohno-Shosaku T, Aiba A, Wu D, Waku K, Sugiura T, Kano M. 2005. Synaptically driven endocannabinoid release requires Ca2+-assisted metabotropic glutamate receptor subtype 1 to phospholipase Cbeta4 signaling cascade in the cerebellum. J Neurosci 25:6826-6835. – reference: Hurley MJ, Mash DC, Jenner P. 2003. Expression of cannabinoid CB1 receptor mRNA in basal ganglia of normal and parkinsonian human brain. J Neural Transm 110:1279-1288. – reference: Gerdeman G, Lovinger DM. 2001. CB1 cannabinoid receptor inhibits synaptic release of glutamate in rat dorsolateral striatum. J Neurophysiol 85:468-471. – reference: Konradi C, Westin JE, Carta M, Eaton ME, Kuter K, Dekundy A, Lundblad M, Cenci MA. 2004. Transcriptome analysis in a rat model of l-DOPA-induced dyskinesia. Neurobiol Dis 17:219-236. – reference: Fenton WS, Hibbeln J, Knable M. 2000. Essential fatty acids, lipid membrane abnormalities, and the diagnosis and treatment of schizophrenia. Biol Psychiatry 47:8-21. – reference: Galvan A, Wichmann T. 2008. Pathophysiology of parkinsonism. Clin Neurophysiol 119:1459-1474. – reference: Deumens R, Blokland A, Prickaerts J. 2002. Modeling Parkinson's disease in rats: An evaluation of 6-OHDA lesions of the nigrostriatal pathway. Exp Neurol 175:303-317. – volume: 5 start-page: 677 year: 2006 end-page: 687 article-title: Continuous dopamine‐receptor treatment of Parkinson's disease: Scientific rationale and clinical implications publication-title: Lancet Neurol – volume: 1324 start-page: 54 year: 2010 end-page: 63 article-title: Changes in firing rate and pattern of GABAergic neurons in subregions of the substantia nigra pars reticulata in rat models of Parkinson's disease publication-title: Brain Res – year: 2005 – volume: 61 start-page: 1070 year: 2011 end-page: 1087 article-title: Endocannabinoid‐mediated synaptic plasticity and addiction‐related behavior publication-title: Neuropharmacology – volume: 180 start-page: 1200 year: 1957 article-title: 3,4‐Dihydroxyphenylalanine and 5‐hydroxytryptophan as reserpine antagonists publication-title: Nature – volume: 66 start-page: 211 year: 2002 end-page: 220 article-title: Oxidative metabolism of endocannabinoids publication-title: Prostaglandins Leukot Essent Fatty Acids – volume: 14 start-page: 1432 year: 2000 end-page: 1438 article-title: Enhanced levels of endogenous cannabinoids in the globus pallidus are associated with a reduction in movement in an animal model of Parkinson's disease publication-title: FASEB J – volume: 6 start-page: e22983 year: 2011 article-title: Genome‐wide gene expression analysis suggests an important role of hypoxia in the pathogenesis of endemic osteochondropathy Kashin‐Beck disease publication-title: PLoS One – volume: 6 start-page: 787 year: 2005 end-page: 798 article-title: Metabotropic glutamate receptors in the basal ganglia motor circuit publication-title: Nat Rev Neurosci – volume: 9 start-page: 665 year: 2008 end-page: 677 article-title: Molecular mechanisms of ‐DOPA‐induced dyskinesia publication-title: Nat Rev Neurosci – volume: 122 start-page: 681 year: 2012 end-page: 690 article-title: Strong preferences of dopamine and ‐DOPA towards lipid head group: Importance of lipid composition and implication for neurotransmitter metabolism publication-title: J Neurochem – volume: 85 start-page: 468 year: 2001 end-page: 471 article-title: CB1 cannabinoid receptor inhibits synaptic release of glutamate in rat dorsolateral striatum publication-title: J Neurophysiol – volume: 79C start-page: 90 year: 2013 end-page: 100 article-title: ‐DOPA‐treatment in primates disrupts the expression of A2A adenosine‐CB1 cannabinoid‐D2 dopamine receptor heteromers in the caudate nucleus publication-title: Neuropharmacology – volume: 9 start-page: 1106 year: 2010 end-page: 1117 article-title: Levodopa‐induced dyskinesias in patients with Parkinson's disease: Filling the bench‐to‐bedside gap publication-title: Lancet Neurol – volume: 25 start-page: 25 year: 2000 end-page: 29 article-title: Gene ontology: Tool for the unification of biology publication-title: The Gene Ontology Consortium. Nat Genet – volume: 14 start-page: 1833 year: 2001 end-page: 1842 article-title: Unilateral lesion of the nigrostriatal pathway induces an increase of neuronal activity of the pedunculopontine nucleus, which is reversed by the lesion of the subthalamic nucleus in the rat publication-title: Eur J Neurosci – volume: 47 start-page: S2 issue: Suppl 1 year: 2000 end-page: S9 article-title: The spectrum of levodopa‐induced dyskinesias publication-title: Ann Neurol – volume: 30 start-page: 176 year: 2007 end-page: 184 article-title: Long‐term depression: Multiple forms and implications for brain function publication-title: Trends Neurosci – volume: 2 start-page: 577 year: 2001 end-page: 588 article-title: Pathophysiology of levodopa‐induced dyskinesia: Potential for new therapies publication-title: Nat Rev Neurosci – volume: 62 start-page: 63 year: 2000 end-page: 88 article-title: Functional changes of the basal ganglia circuitry in Parkinson's disease publication-title: Prog Neurobiol – volume: 110 start-page: 1279 year: 2003 end-page: 1288 article-title: Expression of cannabinoid CB1 receptor mRNA in basal ganglia of normal and parkinsonian human brain publication-title: J Neural Transm – volume: 1 start-page: 107 year: 2007 end-page: 129 article-title: On testing the significance of sets of genes publication-title: Ann Appl Stat – volume: 112 start-page: 1465 year: 2010 end-page: 1476 article-title: ‐DOPA‐induced dopamine efflux in the striatum and the substantia nigra in a rat model of Parkinson's disease: Temporal and quantitative relationship to the expression of dyskinesia publication-title: J Neurochem – volume: 23 start-page: S570 issue: Suppl 3 year: 2008 end-page: S579 article-title: Molecular mechanisms underlying levodopa‐induced dyskinesia publication-title: Mov Disord – volume: 83 start-page: 393 year: 1998 end-page: 411 article-title: Immunohistochemical distribution of cannabinoid CB1 receptors in the rat central nervous system publication-title: Neuroscience – volume: 98 start-page: 6402 year: 2001 end-page: 6406 article-title: Anandamide and diet: inclusion of dietary arachidonate and docosahexaenoate leads to increased brain levels of the corresponding ‐acylethanolamines in piglets publication-title: Proc Natl Acad Sci USA – volume: 89 start-page: 309 year: 2009 end-page: 380 article-title: Endocannabinoid‐mediated control of synaptic transmission publication-title: Physiol Rev – volume: 119 start-page: 1459 year: 2008 end-page: 1474 article-title: Pathophysiology of parkinsonism publication-title: Clin Neurophysiol – volume: 175 start-page: 303 year: 2002 end-page: 317 article-title: Modeling Parkinson's disease in rats: An evaluation of 6‐OHDA lesions of the nigrostriatal pathway publication-title: Exp Neurol – volume: 28(1) start-page: 27 year: 2000 end-page: 30 article-title: KEGG: kyoto encyclopedia of genes and genomes publication-title: Nucleic Acids Res – volume: 8 start-page: e76874 year: 2013 article-title: Temporal changes of CB1 cannabinoid receptor in the basal ganglia as a possible structure‐specific plasticity process in 6‐OHDA lesioned rats publication-title: PLoS One – volume: 48 start-page: 404 year: 2006 end-page: 414 article-title: Postmortem brain fatty acid profile of levodopa‐treated Parkinson disease patients and parkinsonian monkeys publication-title: Neurochem Int – volume: 98 start-page: 5116 year: 2001 end-page: 5121 article-title: Significance analysis of microarrays applied to the ionizing radiation response publication-title: Proc Natl Acad Sci USA – volume: 7 start-page: e28439 year: 2012 article-title: Genome‐wide gene expression analysis suggests an important role of suppressed immunity in pathogenesis of Kashin‐Beck disease publication-title: PLoS One – volume: 64 start-page: 863 year: 2008 end-page: 870 article-title: Influences of levodopa on adipose tissue and skeletal muscle metabolism in patients with idiopathic Parkinson's disease publication-title: Eur J Clin Pharmacol – volume: 134 start-page: 375 issue: Part 2 year: 2011 end-page: 387 article-title: Inhibition of phosphodiesterases rescues striatal long‐term depression and reduces levodopa‐induced dyskinesia publication-title: Brain – volume: 10 start-page: 165 year: 2002 end-page: 186 article-title: ‐DOPA‐induced dyskinesia in the intrastriatal 6‐hydroxydopamine model of parkinson's disease: Relation to motor and cellular parameters of nigrostriatal function publication-title: Neurobiol Dis – volume: 13 start-page: 592 year: 2010 end-page: 600 article-title: Reduction in endocannabinoid tone is a homeostatic mechanism for specific inhibitory synapses publication-title: Nat Neurosci – volume: 4 start-page: 44 year: 2009 end-page: 57 article-title: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources publication-title: Nat Protoc – volume: 56 start-page: 956 year: 2009 end-page: 969 article-title: Evaluation of D2 and D3 dopamine receptor selective compounds on ‐DOPA‐dependent abnormal involuntary movements in rats publication-title: Neuropharmacology – volume: 47 start-page: 8 year: 2000 end-page: 21 article-title: Essential fatty acids, lipid membrane abnormalities, and the diagnosis and treatment of schizophrenia publication-title: Biol Psychiatry – volume: 5 start-page: 446 year: 2002 end-page: 451 article-title: Postsynaptic endocannabinoid release is critical to long‐term depression in the striatum publication-title: Nat Neurosci – volume: 25 start-page: 6826 year: 2005 end-page: 6835 article-title: Synaptically driven endocannabinoid release requires Ca ‐assisted metabotropic glutamate receptor subtype 1 to phospholipase Cbeta4 signaling cascade in the cerebellum publication-title: J Neurosci – volume: 211 start-page: 334 year: 2008 end-page: 338 article-title: The cannabinoid system in Parkinson's disease: Multiple targets to motor effects publication-title: Exp Neurol – volume: 6 start-page: 501 year: 2003 end-page: 506 article-title: Loss of bidirectional striatal synaptic plasticity in ‐DOPA‐induced dyskinesia publication-title: Nat Neurosci – volume: 6 start-page: 4 year: 2007 article-title: A perspective on microarrays: current applications, pitfalls, and potential uses publication-title: Microb Cell Fact – volume: 3 start-page: 319 year: 2006 end-page: 326 article-title: Microarrays in Parkinson's disease: A systematic approach publication-title: NeuroRx – volume: 17 start-page: 219 year: 2004 end-page: 236 article-title: Transcriptome analysis in a rat model of ‐DOPA‐induced dyskinesia publication-title: Neurobiol Dis – volume: 21 start-page: 9068 year: 2001 end-page: 9076 article-title: Expression of cGMP‐specific phosphodiesterase 9A mRNA in the rat brain publication-title: J Neurosci – volume: 76 start-page: 70 year: 2012 end-page: 81 article-title: Endocannabinoid signaling and synaptic function publication-title: Neuron – volume: 18 start-page: 1607 year: 2003 end-page: 1614 article-title: Effects of levodopa on endocannabinoid levels in rat basal ganglia: Implications for the treatment of levodopa‐induced dyskinesias publication-title: Eur J Neurosci – volume: 20 start-page: 1984 year: 2012 end-page: 1994 article-title: Dietary linoleic acid elevates endogenous 2‐AG and anandamide and induces obesity publication-title: Obesity (Silver Spring) – volume: 72 start-page: 236 year: 2012 end-page: 242 article-title: The cannabinoid agonist WIN55212‐2 decreases ‐DOPA‐induced PKA activation and dyskinetic behavior in 6‐OHDA‐treated rats publication-title: Neurosci Res – volume: 208 start-page: 110 year: 2007 end-page: 119 article-title: Anti‐dyskinetic effects of cannabinoids in a rat model of Parkinson's disease: Role of CB(1) and TRPV1 receptors publication-title: Exp Neurol – ident: e_1_2_6_47_1 doi: 10.1038/nn1040 – ident: e_1_2_6_48_1 doi: 10.1093/brain/awq342 – ident: e_1_2_6_49_1 doi: 10.1016/j.neuropharm.2011.05.034 – ident: e_1_2_6_6_1 doi: 10.1073/pnas.101119098 – ident: e_1_2_6_3_1 doi: 10.1038/oby.2012.38 – ident: e_1_2_6_10_1 doi: 10.1046/j.0953-816x.2001.01800.x – ident: e_1_2_6_5_1 doi: 10.1038/75556 – ident: e_1_2_6_25_1 doi: 10.1038/nn832 – ident: e_1_2_6_19_1 doi: 10.1214/07-AOAS101 – volume-title: The rat brain in stereotaxic coordinates year: 2005 ident: e_1_2_6_46_1 – ident: e_1_2_6_39_1 doi: 10.1016/j.neures.2011.12.006 – ident: e_1_2_6_2_1 doi: 10.1007/s00228-008-0532-4 – ident: e_1_2_6_12_1 doi: 10.1016/S1474-4422(10)70218-0 – ident: e_1_2_6_4_1 doi: 10.1523/JNEUROSCI.21-22-09068.2001 – ident: e_1_2_6_51_1 doi: 10.1073/pnas.091062498 – ident: e_1_2_6_45_1 doi: 10.1016/j.expneurol.2008.03.009 – ident: e_1_2_6_21_1 doi: 10.1016/S0006-3223(99)00092-X – ident: e_1_2_6_43_1 doi: 10.1016/S1474-4422(06)70521-X – ident: e_1_2_6_15_1 doi: 10.1371/journal.pone.0076874 – ident: e_1_2_6_24_1 doi: 10.1152/jn.2001.85.1.468 – ident: e_1_2_6_35_1 doi: 10.1054/plef.2001.0359 – ident: e_1_2_6_42_1 doi: 10.1016/j.expneurol.2007.07.021 – ident: e_1_2_6_50_1 doi: 10.1016/S0306-4522(97)00436-3 – ident: e_1_2_6_41_1 doi: 10.1016/j.nurx.2006.05.008 – ident: e_1_2_6_33_1 doi: 10.1038/nn.2517 – ident: e_1_2_6_44_1 doi: 10.1111/j.1471-4159.2012.07813.x – volume: 79 start-page: 90 year: 2013 ident: e_1_2_6_9_1 article-title: l‐DOPA‐treatment in primates disrupts the expression of A2A adenosine‐CB1 cannabinoid‐D2 dopamine receptor heteromers in the caudate nucleus publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2013.10.036 – ident: e_1_2_6_32_1 doi: 10.1152/physrev.00019.2008 – ident: e_1_2_6_52_1 doi: 10.1016/j.brainres.2010.02.008 – ident: e_1_2_6_22_1 doi: 10.1046/j.1460-9568.2003.02896.x – ident: e_1_2_6_27_1 doi: 10.1007/s00702-003-0033-7 – ident: e_1_2_6_8_1 doi: 10.1016/S0301-0082(99)00067-2 – ident: e_1_2_6_30_1 doi: 10.1016/j.neuint.2005.12.002 – ident: e_1_2_6_54_1 doi: 10.1006/nbdi.2002.0499 – ident: e_1_2_6_14_1 doi: 10.1016/j.neuron.2012.09.020 – ident: e_1_2_6_16_1 doi: 10.1038/nrn1763 – ident: e_1_2_6_40_1 doi: 10.1016/j.tins.2007.02.005 – ident: e_1_2_6_7_1 doi: 10.1038/35086062 – ident: e_1_2_6_11_1 doi: 10.1002/mds.22019 – ident: e_1_2_6_26_1 doi: 10.1038/nprot.2008.211 – ident: e_1_2_6_34_1 doi: 10.1016/j.nbd.2004.07.005 – volume: 14 start-page: 1432 year: 2000 ident: e_1_2_6_18_1 article-title: Enhanced levels of endogenous cannabinoids in the globus pallidus are associated with a reduction in movement in an animal model of Parkinson's disease publication-title: FASEB J doi: 10.1096/fasebj.14.10.1432 – ident: e_1_2_6_29_1 doi: 10.1038/nrn2471 – ident: e_1_2_6_53_1 doi: 10.1371/journal.pone.0028439 – ident: e_1_2_6_28_1 doi: 10.1186/1475-2859-6-4 – ident: e_1_2_6_55_1 doi: 10.1371/journal.pone.0022983 – volume: 28 start-page: 27 year: 2000 ident: e_1_2_6_31_1 article-title: KEGG: kyoto encyclopedia of genes and genomes publication-title: Nucleic Acids Res doi: 10.1093/nar/28.1.27 – ident: e_1_2_6_36_1 doi: 10.1016/j.neuropharm.2009.01.019 – ident: e_1_2_6_23_1 doi: 10.1016/j.clinph.2008.03.017 – ident: e_1_2_6_13_1 doi: 10.1038/1801200a0 – ident: e_1_2_6_17_1 doi: 10.1006/exnr.2002.7891 – ident: e_1_2_6_38_1 doi: 10.1523/JNEUROSCI.0945-05.2005 – volume: 47 start-page: S2 issue: 1 year: 2000 ident: e_1_2_6_20_1 article-title: The spectrum of levodopa‐induced dyskinesias publication-title: Ann Neurol – ident: e_1_2_6_37_1 doi: 10.1111/j.1471-4159.2009.06556.x |
SSID | ssj0003104 |
Score | 2.1675026 |
Snippet | ABSTRACT
l‐3,4‐Dihydroxyphenylalanine (l‐DOPA) is the most widely used drug for the treatment of Parkinson's disease. Unfortunately, chronic administration of... l ‐3,4‐Dihydroxyphenylalanine ( l ‐DOPA) is the most widely used drug for the treatment of Parkinson's disease. Unfortunately, chronic administration of this... l-3,4-Dihydroxyphenylalanine (L-DOPA) is the most widely used drug for the treatment of Parkinson's disease. Unfortunately, chronic administration of this... l-3,4-Dihydroxyphenylalanine (l-DOPA) is the most widely used drug for the treatment of Parkinson's disease. Unfortunately, chronic administration of this... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 332 |
SubjectTerms | Adrenergic Agents - toxicity Animals Antiparkinson Agents - adverse effects Corpus Striatum - drug effects Corpus Striatum - physiopathology dyskinesia Dyskinesia, Drug-Induced - physiopathology endocannabinoid Endocannabinoids - metabolism Gene Expression - drug effects Gene Ontology l-DOPA Levodopa - adverse effects Male microarray Microarray Analysis Motor Activity - drug effects Motor Activity - physiology Oxidopamine - toxicity Parkinson's disease Rats, Sprague-Dawley Real-Time Polymerase Chain Reaction Reverse Transcriptase Polymerase Chain Reaction Signal Transduction - drug effects |
Title | Genome-wide microarray analysis identifies a potential role for striatal retrograde endocannabinoid signaling in the pathogenesis of experimental l-DOPA-induced dyskinesia |
URI | https://api.istex.fr/ark:/67375/WNG-ZC60JV8T-H/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsyn.21740 https://www.ncbi.nlm.nih.gov/pubmed/24599755 https://www.proquest.com/docview/1535163114 https://www.proquest.com/docview/1535626165 https://www.proquest.com/docview/1540221763 |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0887-4476 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1098-2396 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003104 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLaqcuHCVpZAQQahqpdMs9hJLE6jQjvqYUDQQkFIkbdU0XScapIRDCd-An-Fv8Qv4dlZSlFBiNMseck447d8L_78HkJPGY25Bi8IJm635LCE-oCKuB8zIbgIeApHLdtimkyOyMExPV5Dz_q9MG19iOGBm7UM56-tgXNR75wXDa1XZmTxtM3Xw5i6JdrX56WjALaQvsonIWnSVxUKop3hzAux6Ir9Wz9fBjQv4lYXePauo4_9kFu-yWy0bMRIfvmtmuN_3tMNdK0DpHjcatBNtKbNLbQxNpCMz1d4CzuKqHv2voG-72tTzfWPr98-lUrjuSXz8cWCrzDvapvgUrX0I11jjs-qxn6Cy1sSIwZ8jF2bkMZ-oxtHDYPraKMgohrDIUuvSoUtp4TbbfK4NBgAKrZtk6sT65XhF6oC_9qWAJ_CcJ6_fDWGl9Io0FSF1aqeWTp_yW-jo70Xh7sTv-v54EvCgsDPpAwKmWQy05Gyy5ZakIgXPNOUFkxC8JSskKHMFEBNDf5KZGGhJCdBTGLJg_gOWjeV0fcQjgDcZjpNRMEoIUKzNKZZFgsRg09ihHtou5_9XHYF0W1fjtO8LeUc5TAduZsODz0ZRM_aKiCXCW05FRok-GJmaXMpzd9N9_MPu0lw8DY7zCce2ux1LO88Rp1D5KGAjSE99dDj4TDYul3A4UZXy1YGEtAwoX-TIQDLQggbHrrb6u8woIhQxlIKZ287LfzzveRv3k_dm_v_LvoAXQU0SVp25CZabxZL_RAQWyMeOdP8CYXeQvw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLam7QJuGDB-MgYYhKbdtEsTO4klbqrBVsYoCDo2kJBlOw6KujpTmwrKFY_Aq_BKPAnHzs8YGghx1bQ5SZ34-Jzv2J_PQegRo6HQYAVhiNstOSyiHUBFohMyKYX0RQxnLdtiGA0Oyf4xPV5Cj5u9MFV-iHbCzY4MZ6_tALcT0ttnWUNnC9O1gBoC9hUCjtUt0r4-Sx4FwIU0eT4JiaMmr5AfbLeXnvNGK_bFfr4Iap5Hrs717K6iD02jK8bJuDsvZVd9-S2f4_8-1VV0pcakuF8p0TW0pM11tNY3EI9PFngTO5aom35fQ9_3tCkm-sfXb5_yVOOJ5fOJ6VQssKjTm-A8rRhIeoYFPi1K-w1ub3mMGCAydpVCSvuLLh07DO6jTQpO1RgBgXqRp9jSSoTdKY9zgwGjYls5ufhoDTP8Q5HhXysT4BNozpOXr_rwkZsUlDXF6WI2toz-XNxAh7tPRzuDTl32oaMI8_1OopSfqShRiQ5Su3KpJQlEJhJNacYU-E_FMtVTSQpoU4PJkkkvS5UgfkhCJfzwJlo2hdG3EQ4A3yY6jmTGKCFSszikSRJKGYJZYkR4aKvpfq7qnOi2NMcJr7I5Bxy6g7vu8NDDVvS0SgRykdCm06FWQkzHljkXU3403OPvdyJ__20y4gMPbTRKxmujMePgfCjAY4hQPfSgPQ3D3a7hCKOLeSUDMWgvon-TIYDMeuA5PHSrUuC2QQGhjMUUrt5yavjnZ-Fv3g3dwfq_i95HlwajFwf84Nnw-R10GcAlqciSG2i5nM71XQBwpbznxulPgiJHGw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLamTUK8cBuXwgCD0LSXbmliJ7F4qla6MlCZYIMNIVm-BUVdnapNBeWJn8Bf4S_xSzh2moyhgRBPTZuT1InP5TvJ53MQesJoJAx4QTBxtySHxbQNqEi0IyalkIFIYK9jWwzjwRHZP6bHK-hpvRamqg_RPHBzluH9tTPwic52zoqGzhZ22-FpyNfXCKQVrn1B7_VZ7SjALaQu80lIEtdlhYJwpzn0XDBac_f180VI8zxw9ZGnfxV9qMdcEU5G2_NSbqsvv5Vz_M-LuoauLBEp7lYqdB2tGHsDrXctZOPjBd7EniPqH76vo-97xhZj8-Prt0-5Nnjs2HxiOhULLJbFTXCuK_6RmWGBJ0XpvsHpHYsRA0DGvk9I6X4xpeeGwXmM1RBSrRWQphe5xo5UItw6eZxbDAgVu77JxUfnluEfigz_2pcAn8Jweq8OuvCRWw2qqrFezEaOz5-Lm-io_-xwd9BeNn1oK8KCoJ0qFWQqTlVqQu3eWxpJQpGJ1FCaMQXRU7FMdVSqAWsacFgy7WRaCRJEJFIiiG6hVVtYcwfhENBtapJYZowSIg1LIpqmkZQROCVGRAtt1bPP1bIiumvMccqrWs4hh-ngfjpa6HEjOqnKgFwktOlVqJEQ05HjzSWUvxvu8fe7cbD_Nj3kgxbaqHWML13GjEPooQCOIT9toUfNbjB29wZHWFPMKxnIQDsx_ZsMAVzWgbjRQrcr_W0GFBLKWELh6C2vhX--Fv7mZOg37v676EN06aDX5y-fD1_cQ5cBWZKKKbmBVsvp3NwH9FbKB95KfwJpA0XB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genome-wide+microarray+analysis+identifies+a+potential+role+for+striatal+retrograde+endocannabinoid+signaling+in+the+pathogenesis+of+experimental+L-DOPA-induced+dyskinesia&rft.jtitle=Synapse+%28New+York%2C+N.Y.%29&rft.au=Wang%2C+Yong&rft.au=Zhang%2C+Qiao+Jun&rft.au=Wang%2C+Hui+Sheng&rft.au=Wang%2C+Tao&rft.date=2014-08-01&rft.issn=1098-2396&rft.eissn=1098-2396&rft.volume=68&rft.issue=8&rft.spage=332&rft_id=info:doi/10.1002%2Fsyn.21740&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-4476&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-4476&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-4476&client=summon |