Influences of dynamic load phase shifts on the energetics and biomechanics of humans

Using load-suspended backpacks to reduce vertical peak dynamic load exerted on humans can reduce metabolic costs. However, is it possible to further reduce metabolic cost by modulating dynamic load phase shift? If so, is anti-phase better than the others? In this study, we investigated the biomechan...

Full description

Saved in:
Bibliographic Details
Published inRoyal Society open science Vol. 10; no. 8; p. 230636
Main Authors Zhang, Qinhao, Chen, Wenbin, Liang, Jiejunyi, Cheng, Longfei, Huang, Bo, Xiong, Caihua
Format Journal Article
LanguageEnglish
Published England The Royal Society 30.08.2023
Subjects
Online AccessGet full text
ISSN2054-5703
2054-5703
DOI10.1098/rsos.230636

Cover

Abstract Using load-suspended backpacks to reduce vertical peak dynamic load exerted on humans can reduce metabolic costs. However, is it possible to further reduce metabolic cost by modulating dynamic load phase shift? If so, is anti-phase better than the others? In this study, we investigated the biomechanics, energetics and trunk response under phase shifts. Nine subjects wearing an active backpack with 19.4 kg loads walked on a treadmill at 5 km h −1 with four phase shift trials (T1–T4) and a load-locked trial (LK). Our results show that anti-phase trial (T3) assists ankle more and reduces the moment and gastrocnemius medialis activity, while T4 assists knee more and reduces the moment and rectus femoris activity. Due to the load injecting more mechanical energy into human in T3 and T4, the positive centre-of-mass work is significantly reduced. However, the gross metabolic rate is lowest in T4 and 4.43% lower than in T2, which may be because the activations of erector spinae and gluteus maximus are reduced in T4. In addition, T3 increases trunk extensor effort, which may weaken the metabolic advantage. This study provides guidance for improving assistance strategies and human–load interfaces and deepens the understanding of the energetics and biomechanics of human loaded walking.
AbstractList Using load-suspended backpacks to reduce vertical peak dynamic load exerted on humans can reduce metabolic costs. However, is it possible to further reduce metabolic cost by modulating dynamic load phase shift? If so, is anti-phase better than the others? In this study, we investigated the biomechanics, energetics and trunk response under phase shifts. Nine subjects wearing an active backpack with 19.4 kg loads walked on a treadmill at 5 km h with four phase shift trials (T1-T4) and a load-locked trial (LK). Our results show that anti-phase trial (T3) assists ankle more and reduces the moment and gastrocnemius medialis activity, while T4 assists knee more and reduces the moment and rectus femoris activity. Due to the load injecting more mechanical energy into human in T3 and T4, the positive centre-of-mass work is significantly reduced. However, the gross metabolic rate is lowest in T4 and 4.43% lower than in T2, which may be because the activations of erector spinae and gluteus maximus are reduced in T4. In addition, T3 increases trunk extensor effort, which may weaken the metabolic advantage. This study provides guidance for improving assistance strategies and human-load interfaces and deepens the understanding of the energetics and biomechanics of human loaded walking.
Using load-suspended backpacks to reduce vertical peak dynamic load exerted on humans can reduce metabolic costs. However, is it possible to further reduce metabolic cost by modulating dynamic load phase shift? If so, is anti-phase better than the others? In this study, we investigated the biomechanics, energetics and trunk response under phase shifts. Nine subjects wearing an active backpack with 19.4 kg loads walked on a treadmill at 5 km h-1 with four phase shift trials (T1-T4) and a load-locked trial (LK). Our results show that anti-phase trial (T3) assists ankle more and reduces the moment and gastrocnemius medialis activity, while T4 assists knee more and reduces the moment and rectus femoris activity. Due to the load injecting more mechanical energy into human in T3 and T4, the positive centre-of-mass work is significantly reduced. However, the gross metabolic rate is lowest in T4 and 4.43% lower than in T2, which may be because the activations of erector spinae and gluteus maximus are reduced in T4. In addition, T3 increases trunk extensor effort, which may weaken the metabolic advantage. This study provides guidance for improving assistance strategies and human-load interfaces and deepens the understanding of the energetics and biomechanics of human loaded walking.Using load-suspended backpacks to reduce vertical peak dynamic load exerted on humans can reduce metabolic costs. However, is it possible to further reduce metabolic cost by modulating dynamic load phase shift? If so, is anti-phase better than the others? In this study, we investigated the biomechanics, energetics and trunk response under phase shifts. Nine subjects wearing an active backpack with 19.4 kg loads walked on a treadmill at 5 km h-1 with four phase shift trials (T1-T4) and a load-locked trial (LK). Our results show that anti-phase trial (T3) assists ankle more and reduces the moment and gastrocnemius medialis activity, while T4 assists knee more and reduces the moment and rectus femoris activity. Due to the load injecting more mechanical energy into human in T3 and T4, the positive centre-of-mass work is significantly reduced. However, the gross metabolic rate is lowest in T4 and 4.43% lower than in T2, which may be because the activations of erector spinae and gluteus maximus are reduced in T4. In addition, T3 increases trunk extensor effort, which may weaken the metabolic advantage. This study provides guidance for improving assistance strategies and human-load interfaces and deepens the understanding of the energetics and biomechanics of human loaded walking.
Using load-suspended backpacks to reduce vertical peak dynamic load exerted on humans can reduce metabolic costs. However, is it possible to further reduce metabolic cost by modulating dynamic load phase shift? If so, is anti-phase better than the others? In this study, we investigated the biomechanics, energetics and trunk response under phase shifts. Nine subjects wearing an active backpack with 19.4 kg loads walked on a treadmill at 5 km h−1 with four phase shift trials (T1–T4) and a load-locked trial (LK). Our results show that anti-phase trial (T3) assists ankle more and reduces the moment and gastrocnemius medialis activity, while T4 assists knee more and reduces the moment and rectus femoris activity. Due to the load injecting more mechanical energy into human in T3 and T4, the positive centre-of-mass work is significantly reduced. However, the gross metabolic rate is lowest in T4 and 4.43% lower than in T2, which may be because the activations of erector spinae and gluteus maximus are reduced in T4. In addition, T3 increases trunk extensor effort, which may weaken the metabolic advantage. This study provides guidance for improving assistance strategies and human–load interfaces and deepens the understanding of the energetics and biomechanics of human loaded walking.
Using load-suspended backpacks to reduce vertical peak dynamic load exerted on humans can reduce metabolic costs. However, is it possible to further reduce metabolic cost by modulating dynamic load phase shift? If so, is anti-phase better than the others? In this study, we investigated the biomechanics, energetics and trunk response under phase shifts. Nine subjects wearing an active backpack with 19.4 kg loads walked on a treadmill at 5 km h −1 with four phase shift trials (T1–T4) and a load-locked trial (LK). Our results show that anti-phase trial (T3) assists ankle more and reduces the moment and gastrocnemius medialis activity, while T4 assists knee more and reduces the moment and rectus femoris activity. Due to the load injecting more mechanical energy into human in T3 and T4, the positive centre-of-mass work is significantly reduced. However, the gross metabolic rate is lowest in T4 and 4.43% lower than in T2, which may be because the activations of erector spinae and gluteus maximus are reduced in T4. In addition, T3 increases trunk extensor effort, which may weaken the metabolic advantage. This study provides guidance for improving assistance strategies and human–load interfaces and deepens the understanding of the energetics and biomechanics of human loaded walking.
Author Zhang, Qinhao
Cheng, Longfei
Chen, Wenbin
Xiong, Caihua
Huang, Bo
Liang, Jiejunyi
Author_xml – sequence: 1
  givenname: Qinhao
  orcidid: 0000-0002-3599-4012
  surname: Zhang
  fullname: Zhang, Qinhao
  organization: Institute of Medical Equipment Science and Engineering, State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
– sequence: 2
  givenname: Wenbin
  surname: Chen
  fullname: Chen, Wenbin
  organization: Institute of Medical Equipment Science and Engineering, State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
– sequence: 3
  givenname: Jiejunyi
  surname: Liang
  fullname: Liang, Jiejunyi
  organization: Institute of Medical Equipment Science and Engineering, State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
– sequence: 4
  givenname: Longfei
  orcidid: 0000-0002-2533-3552
  surname: Cheng
  fullname: Cheng, Longfei
  organization: Institute of Medical Equipment Science and Engineering, State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
– sequence: 5
  givenname: Bo
  orcidid: 0000-0001-7168-4495
  surname: Huang
  fullname: Huang, Bo
  organization: Institute of Medical Equipment Science and Engineering, State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
– sequence: 6
  givenname: Caihua
  orcidid: 0000-0003-2326-0289
  surname: Xiong
  fullname: Xiong, Caihua
  organization: Institute of Medical Equipment Science and Engineering, State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37650053$$D View this record in MEDLINE/PubMed
BookMark eNptkc1r3DAQxUVJadJtTr0XHwtlU8n6sk-lhDZdCPSydzGSR2sFW9pKdiH_fe1uEpLS04iZeb836L0lZzFFJOQ9o1eMts3nXFK5qjlVXL0iFzWVYis15WfP3ufkspQ7SimTlGul35DzpUhKJb8g-130w4zRYamSr7r7CGNw1ZCgq449FKxKH_y0DGM19VhhxHzAKbhSQewqG9KIroe4NhZ9P48Qyzvy2sNQ8PKhbsj--7f99Y_t7c-b3fXX260TTTtt0QK3XUctSicZulp4sJp5rjVo2ogaOYCz3mslNLVcaFCN6uraMQa05RuyO2G7BHfmmMMI-d4kCOZvI-WDgbycOqBxorXSo_K2UcJ30ILl3NZcAXOoGrGwvpxYx9mO2DmMU4bhBfTlJIbeHNJvw6hQsl7-f0M-PhBy-jVjmcwYisNhgIhpLqZuZKuo4Go1-_Dc7MnlMZZlgZ0WXE6lZPTGhQmmkFbvMCymZk3frOmbU_qL5tM_mkfs_7b_AK-Vssw
CitedBy_id crossref_primary_10_1109_TBME_2024_3487536
Cites_doi 10.1016/j.jelekin.2007.06.013
10.1080/00140139.2015.1053538
10.1016/j.humov.2003.11.002
10.1016/j.ymssp.2022.109101
10.1242/jeb.027581
10.1109/AIM43001.2020.9159037
10.1080/00140130600757237
10.1126/science.aba9947
10.1016/j.gaitpost.2006.12.008
10.1016/j.jbiomech.2020.109894
10.1109/ICRA48506.2021.9561495
10.14740/jocmr2107w
10.1038/4441023a
10.1249/01.MSS.0000117113.77904.46
10.1080/00140130500435066
10.1242/jeb.198.2.379
10.1080/001401300184413
10.1242/jeb.205.23.3717
10.1016/j.jbiomech.2008.10.012
10.2519/jospt.2008.2632
10.1109/TMECH.2021.3127714
10.1109/ARSO46408.2019.8948763
10.1242/jeb.160.1.55
10.1007/s10999-011-9153-7
10.1007/BF00964693
10.1002/9780470549148
10.1242/jeb.044297
10.1016/S0167-9457(99)00037-8
10.1016/j.jbiomech.2014.03.016
10.1126/scirobotics.abj1362
10.1098/rsif.2010.0084
10.1109/TNSRE.2016.2627057
10.1098/rspb.2016.1908
10.1016/j.mechmachtheory.2019.103738
10.1016/j.gaitpost.2007.08.005
10.1109/TNSRE.2020.3011974
10.1016/j.ymssp.2015.01.012
10.1126/science.1118058
10.1136/bjsm.2004.014456
10.1016/j.jbiomech.2018.04.035
10.1016/j.jbiomech.2003.11.001
10.1007/s00421-004-1286-z
10.1242/jeb.044214
10.1080/00140138508963251
10.1152/japplphysiol.00119.2014
ContentType Journal Article
Copyright 2023 The Authors.
2023 The Authors. 2023
Copyright_xml – notice: 2023 The Authors.
– notice: 2023 The Authors. 2023
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1098/rsos.230636
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Engineering
DocumentTitleAlternate Influences of dynamic load phase shifts on the energetics and biomechanics of humans
EISSN 2054-5703
ExternalDocumentID oai_doaj_org_article_c49b5fe6fb864fda9ab33b236a1ce684
PMC10465206
37650053
10_1098_rsos_230636
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: No. 2020YFC2007800
– fundername: ;
  grantid: 52005191; 52027806; 52075191; U1913205; U1913601
GroupedDBID 53G
5VS
7X2
88I
AAFWJ
AAYXX
ABJCF
ABUWG
ADBBV
ADRAZ
AEUYN
AFKRA
AFPKN
ALAEF
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ATCPS
AZQEC
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
DWQXO
EBS
EJD
GNUQQ
GROUPED_DOAJ
H13
HCIFZ
HYE
ICLEN
KB.
KQ8
M0K
M2P
M48
M7P
M7S
M~E
OK1
OP1
PATMY
PCBAR
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PTHSS
PUEGO
PYCSY
RPM
NPM
7X8
5PM
ID FETCH-LOGICAL-c489t-eba3bdd0be5c51ec24fab71f377a70842e3aacbff76470b347a686d22c11a093
IEDL.DBID M48
ISSN 2054-5703
IngestDate Wed Aug 27 01:31:19 EDT 2025
Tue Sep 30 17:13:00 EDT 2025
Fri Jul 11 04:35:10 EDT 2025
Mon Jul 21 06:01:52 EDT 2025
Wed Oct 01 04:26:00 EDT 2025
Thu Apr 24 22:58:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords dynamic load
human walking
trunk inclination
load-suspended backpack
metabolic cost
phase shifts
Language English
License 2023 The Authors.
Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c489t-eba3bdd0be5c51ec24fab71f377a70842e3aacbff76470b347a686d22c11a093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Electronic supplementary material is available online at https://doi.org/10.6084/m9.figshare.c.6771600.
ORCID 0000-0002-2533-3552
0000-0001-7168-4495
0000-0003-2326-0289
0000-0002-3599-4012
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1098/rsos.230636
PMID 37650053
PQID 2859604364
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_c49b5fe6fb864fda9ab33b236a1ce684
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10465206
proquest_miscellaneous_2859604364
pubmed_primary_37650053
crossref_citationtrail_10_1098_rsos_230636
crossref_primary_10_1098_rsos_230636
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-30
PublicationDateYYYYMMDD 2023-08-30
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-30
  day: 30
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Royal Society open science
PublicationTitleAlternate R Soc Open Sci
PublicationYear 2023
Publisher The Royal Society
Publisher_xml – name: The Royal Society
References e_1_3_8_28_2
e_1_3_8_29_2
e_1_3_8_26_2
e_1_3_8_48_2
e_1_3_8_24_2
e_1_3_8_27_2
e_1_3_8_46_2
e_1_3_8_25_2
e_1_3_8_47_2
e_1_3_8_21_2
e_1_3_8_44_2
e_1_3_8_45_2
e_1_3_8_23_2
e_1_3_8_42_2
e_1_3_8_22_2
e_1_3_8_43_2
e_1_3_8_40_2
e_1_3_8_41_2
e_1_3_8_18_2
e_1_3_8_17_2
e_1_3_8_39_2
e_1_3_8_19_2
e_1_3_8_14_2
e_1_3_8_37_2
e_1_3_8_13_2
e_1_3_8_38_2
e_1_3_8_16_2
e_1_3_8_35_2
e_1_3_8_15_2
e_1_3_8_36_2
e_1_3_8_9_2
e_1_3_8_8_2
e_1_3_8_7_2
e_1_3_8_6_2
e_1_3_8_5_2
e_1_3_8_4_2
e_1_3_8_3_2
e_1_3_8_2_2
e_1_3_8_10_2
e_1_3_8_33_2
e_1_3_8_34_2
e_1_3_8_12_2
e_1_3_8_31_2
e_1_3_8_11_2
Huang TW (e_1_3_8_20_2) 2014; 217
e_1_3_8_32_2
e_1_3_8_30_2
References_xml – ident: e_1_3_8_5_2
  doi: 10.1016/j.jelekin.2007.06.013
– ident: e_1_3_8_27_2
  doi: 10.1080/00140139.2015.1053538
– ident: e_1_3_8_33_2
  doi: 10.1016/j.humov.2003.11.002
– ident: e_1_3_8_23_2
  doi: 10.1016/j.ymssp.2022.109101
– ident: e_1_3_8_21_2
  doi: 10.1242/jeb.027581
– ident: e_1_3_8_15_2
  doi: 10.1109/AIM43001.2020.9159037
– ident: e_1_3_8_8_2
  doi: 10.1080/00140130600757237
– volume: 217
  start-page: 605
  year: 2014
  ident: e_1_3_8_20_2
  article-title: Mechanics and energetics of load carriage during human walking
  publication-title: J. Exp. Biol.
– ident: e_1_3_8_36_2
  doi: 10.1126/science.aba9947
– ident: e_1_3_8_3_2
  doi: 10.1016/j.gaitpost.2006.12.008
– ident: e_1_3_8_11_2
  doi: 10.1016/j.jbiomech.2020.109894
– ident: e_1_3_8_14_2
  doi: 10.1109/ICRA48506.2021.9561495
– ident: e_1_3_8_40_2
  doi: 10.14740/jocmr2107w
– ident: e_1_3_8_10_2
  doi: 10.1038/4441023a
– ident: e_1_3_8_39_2
  doi: 10.1249/01.MSS.0000117113.77904.46
– ident: e_1_3_8_44_2
  doi: 10.1080/00140130500435066
– ident: e_1_3_8_47_2
  doi: 10.1242/jeb.198.2.379
– ident: e_1_3_8_4_2
  doi: 10.1080/001401300184413
– ident: e_1_3_8_18_2
  doi: 10.1242/jeb.205.23.3717
– ident: e_1_3_8_13_2
  doi: 10.1016/j.jbiomech.2008.10.012
– ident: e_1_3_8_41_2
  doi: 10.2519/jospt.2008.2632
– ident: e_1_3_8_25_2
  doi: 10.1109/TMECH.2021.3127714
– ident: e_1_3_8_16_2
  doi: 10.1109/ARSO46408.2019.8948763
– ident: e_1_3_8_45_2
  doi: 10.1242/jeb.160.1.55
– ident: e_1_3_8_30_2
  doi: 10.1007/s10999-011-9153-7
– ident: e_1_3_8_28_2
  doi: 10.1007/BF00964693
– ident: e_1_3_8_34_2
  doi: 10.1002/9780470549148
– ident: e_1_3_8_35_2
  doi: 10.1242/jeb.044297
– ident: e_1_3_8_43_2
  doi: 10.1016/S0167-9457(99)00037-8
– ident: e_1_3_8_29_2
  doi: 10.1016/j.jbiomech.2014.03.016
– ident: e_1_3_8_37_2
  doi: 10.1126/scirobotics.abj1362
– ident: e_1_3_8_46_2
  doi: 10.1098/rsif.2010.0084
– ident: e_1_3_8_12_2
  doi: 10.1109/TNSRE.2016.2627057
– ident: e_1_3_8_24_2
  doi: 10.1098/rspb.2016.1908
– ident: e_1_3_8_32_2
  doi: 10.1016/j.mechmachtheory.2019.103738
– ident: e_1_3_8_42_2
  doi: 10.1016/j.gaitpost.2007.08.005
– ident: e_1_3_8_2_2
  doi: 10.1109/TNSRE.2020.3011974
– ident: e_1_3_8_31_2
  doi: 10.1016/j.ymssp.2015.01.012
– ident: e_1_3_8_17_2
  doi: 10.1126/science.1118058
– ident: e_1_3_8_38_2
  doi: 10.1136/bjsm.2004.014456
– ident: e_1_3_8_26_2
  doi: 10.1016/j.jbiomech.2018.04.035
– ident: e_1_3_8_22_2
  doi: 10.1016/j.jbiomech.2003.11.001
– ident: e_1_3_8_6_2
  doi: 10.1007/s00421-004-1286-z
– ident: e_1_3_8_19_2
  doi: 10.1242/jeb.044214
– ident: e_1_3_8_48_2
– ident: e_1_3_8_7_2
  doi: 10.1080/00140138508963251
– ident: e_1_3_8_9_2
  doi: 10.1152/japplphysiol.00119.2014
SSID ssj0001503767
Score 2.2856781
Snippet Using load-suspended backpacks to reduce vertical peak dynamic load exerted on humans can reduce metabolic costs. However, is it possible to further reduce...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 230636
SubjectTerms dynamic load
Engineering
human walking
load-suspended backpack
metabolic cost
phase shifts
trunk inclination
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fSxwxEA5yT74UT_vjrEoKPrSFxWSTTbKPKooK7dMJvi2TbMIJx97RPf9_M8ne9a4IffE1mZAwM8nMbvJ9Q8g5i0EP40wRZBkQkuMK8I4V0nEJAAIYR6Dwr9_q7lE-PFVPW6W-8E1YpgfOirtwsrZV8CpYo2RooQYrhC2FAu68MokJNIaxrY-pjA9mSFMyAPJYbS5i-trjq2eVyJj_hqDE1P9WevnvK8mtsHN7QD4M-SK9zOsckz3fHZLxsCN7-n2gjf5xRKb363ojPV0E2uZS83S-gJYuZzFY0X72HFaxs6Mx66M4EDFmrqfQtTTh8BEGjA1xfCre138k09ub6fVdMdRMKJw09arwFoRtW2Z95SruXSkDWM2D0Bo0M7L0AsDZELSSmlkhNSij2rJ0nAOrxScy6had_0JoYKbWvvbKxRwFuAHlYnDXIfDKGRPEhPxca7FxA584lrWYN_le2zSo8iarfELON8LLTKPxttgVmmMjgtzXqSF6RDN4RPM_j5iQb2tjNnGv4AUIdH7xEicxFXLRCBVlPmfjbqaK7lLhiTQhZsfsO2vZ7emeZ4mPG6_Jq5Kp4_dY_VeyjxXt029rdkJGqz8v_jTmPSt7llz8FSxUBU8
  priority: 102
  providerName: Directory of Open Access Journals
Title Influences of dynamic load phase shifts on the energetics and biomechanics of humans
URI https://www.ncbi.nlm.nih.gov/pubmed/37650053
https://www.proquest.com/docview/2859604364
https://pubmed.ncbi.nlm.nih.gov/PMC10465206
https://doaj.org/article/c49b5fe6fb864fda9ab33b236a1ce684
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2054-5703
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001503767
  issn: 2054-5703
  databaseCode: KQ8
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2054-5703
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001503767
  issn: 2054-5703
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2054-5703
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001503767
  issn: 2054-5703
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central (Free e-resource, activated by CARLI)
  customDbUrl:
  eissn: 2054-5703
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001503767
  issn: 2054-5703
  databaseCode: RPM
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAUN
  databaseName: Royal Society Open Access Journals
  customDbUrl:
  eissn: 2054-5703
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001503767
  issn: 2054-5703
  databaseCode: OP1
  dateStart: 20140901
  isFulltext: true
  titleUrlDefault: http://royalsocietypublishing.org/journals
  providerName: Royal Society Publications
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2054-5703
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0001503767
  issn: 2054-5703
  databaseCode: M48
  dateStart: 20140901
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VcoEDouVrC1RG6gGQAnbs2M4BIUBUBanAYSv1Fo0dm620SspmK5V_jyfJrrrVnrjkYI_lyDOTmdie9wCOeAp6FGeyqPJIJTk-w-B5prxQiCiRCyoUPv2hT87U9_PifAdWZJzjAnZbf-2IT-psMX93_efvx-TwHwYwJPs-ZaYdXWjWUt-Buykk5WTep2OeP5QLc0ItGevzbo3ZiEg9cP-2bPP2pckbUej4ITwY00f2adD3HuyEZh_u3wAV3Ie90V079nrElH7zCKbfVmQkHWsjqwceejZvsWaXsxTJWDe7iMvU2bCUEjIaSAVovmPY1Kwv0qcaYWpI43tmv-4xTI-_Tr-cZCOhQuaVLZdZcChdXXMXCl-I4HMV0RkRpTFouFV5kIjexWi0MtxJZVBbXee5FwJ5KZ_AbtM24RmwyG1pQhm0TwkMCovap8hvYhSFtzbKCbxdrWnlR7Bx4ryYV8Oht61IAdWggAkcrYUvB4yN7WKfSTlrEQLG7hvaxe9q9LPKq9IVMejorFaxxhKdlC6XGoUP2qoJvFqptkqORKcj2IT2Kk1iCwKqkTrJPB1UvZ4qGU9Bn6sJ2A0j2HiXzZ7mYtaDddMZepFzffD_Q5_DPSK573ey-QvYXS6uwsuUCi3dYb-FcNgbe3r-_CX-AdNUEE0
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influences+of+dynamic+load+phase+shifts+on+the+energetics+and+biomechanics+of+humans&rft.jtitle=Royal+Society+open+science&rft.au=Zhang%2C+Qinhao&rft.au=Chen%2C+Wenbin&rft.au=Liang%2C+Jiejunyi&rft.au=Cheng%2C+Longfei&rft.date=2023-08-30&rft.pub=The+Royal+Society&rft.eissn=2054-5703&rft.volume=10&rft.issue=8&rft_id=info:doi/10.1098%2Frsos.230636&rft.externalDocID=PMC10465206
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2054-5703&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2054-5703&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2054-5703&client=summon